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Part 1

Finite groups



I got it one piece at a time
And it wouldn’t cost me a dime
You’ll know it’s me
When I come through your town



CHAPTER 1

Hopf algebras

la. Hopf algebras

The classical spaces X, such as the Lie groups, homogeneous spaces, or more general
manifolds, are described by various algebras A, defined over various fields F. These
algebras A typically satisfy a commutativity type condition, such as fg = ¢gf when A
is a usual algebra of functions, and the idea of quantum algebra is that of lifting this
commutativity condition, and calling quantum spaces the underlying space-like objects
X. With the hope that these quantum spaces X can be useful in physics.

In this chapter we start developing quantum algebra, with some inspiration from
classical group theory. We would like to develop a theory of suitable algebras A, which
are not necessarily commutative, corresponding to quantum groups G.

In what regards the classical constructions G — A that we have in mind, in view of
a noncommutative extension, there are three of them, all well-known and widely used in
group theory, which can be informally described, modulo several details, as follows:

Fact 1.1. A group G can be typically described by several algebras:

(1) We have the algebra F(G) of functions f : G — F, with the usual, pointwise
product of functions. This algebra is commutative, fg = gf.

(2) We have the algebra F|G] of functions f : G — F, with the convolution product
of functions. This algebra is commutative when G is abelian.

(3) We have the algebra Ug generated by the functions f : G — F infinitesimally
defined around 1. This algebra is commutative when G is abelian.

As already mentioned, this is something quite informal, just meant to help us in order
to start this book, and do not worry, we will come back to this later, with details. At the
present stage of things, the comments to be made on this are as follows:

(1) The construction there is something quite simple and solid, and makes sense as
stated, with the remark however that when G is a topological group, things get more
complicated, because we can further ask for the functions f : G — F' that we use to be
continuous, or even smooth, or vanishing at oo, or be measurable, and so on, leading to
several interesting versions of F'(G). Also, the recovery of G from the algebra F(G), or
one of its versions, when G is topological, is usually a non-trivial question.

11



12 1. HOPF ALGEBRAS

(2) In what regards the construction there, pretty much the same comments apply,
the point being that when G is a topological group, things get more complicated, again
leading to several interesting versions of the algebra F'[G], and with the recovery of the
group G itself, out of these algebras, being usually a non-trivial question. We will be back
to all this later, with details, and in the meantime, you can simply consider, by using
Dirac masses, that F[G] is the formal span of the group elements g € G.

(3) What we said there is definitely informal, the idea being that, when G is a Lie
group, we can consider its tangent space at the origin, or Lie algebra g = T (G), consisting
of the functions f : G — F infinitesimally defined around 1, and then the corresponding
enveloping Lie algebra Ug, with product such that the Lie bracket is given by [z,y] =
xy — yx. All this is quite non-trivial, notably with a discussion in relation with the field
F being needed, but do not worry, we will come back to it, with details.

Looking now at our list (1,2,3) above, it looks like (1) is the simplest construction,
and the most adapted to our noncommutative goals, followed by (2), followed by (3). So,
let us formulate the following goal, for the theory that we want to develop:

GoOAL 1.2. We want to develop a theory of associative algebras A over a given field
F, with some extra structure, as follows:

(1) As main and motivating examples, we want to have the algebras F(G).
(2) We also want our theory to include, later, the algebras F[G] and Ug.
(3) And we also want, later, to discuss what happens when G is topological.

Needless to say, this goal is formulated quite informally, but this is just a goal, and if
at this point you can see right away a complete and rigorous theory doing the job, that
would be of course very welcome, and I will look myself for something else to do.

Getting started now, we would first like to have a look at the algebras F(G) that we
want to generalize. But before that, let us have a closer look at the groups G themselves,
with algebraic motivations in mind, in relation with the algebras F/(G). As our first result
in this book, we have the following frightening reformulation of the group axioms:

PROPOSITION 1.3. A group is a set G with operations as follows,
m:GxG—-G , u:A{}—->G , i:G->G
which are subject to the following azioms, with 6(g) = (g,9):
m(m X id) = m(id X m)
m(u X id) = m(id X u) = id
m(i x id)6 = m(id x i)0 =1

In addition, the inverse map i satisfies i> = id.
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PROOF. Our claim is that the formulae in the statement correspond to the axioms
satisfied by the multiplication, unit and inverse map of G, given by:

m(g,h) =gh , u(.)=1 , i(g) = g !
Indeed, let us start with the group axioms for GG, which are as follows:
(gh)k = g(hk)
lg=gl=yg
g lg=g9 ' =1
With 6(g) = (g,9) being as in the statement, these group axioms read:
m(m x id)(g, h, k) = m(id x m)(g, h, k)
m(u x id)(g) = m(id x u)(g) = g
m(i x id)d(g) = m(id x i)6(g) = 1
Now since these must hold for any g, h, k, they are equivalent, as claimed, to:
m(m x id) = m(id x m)
m(u X id) = m(id X u) = id
m(i x id)d = m(id x i)0 =1
As for i? = id, this is something which holds too, coming from (¢~!)~! = 1:
(gH'=1 = i*(g) =g <= i*=1id
Thus, we are led to the various conclusions in the statement. ]

The above result does not look very healthy, and might make Sophus Lie, Felix Klein
and the others turn in their graves, but for our purposes here, this is exactly what we
need. Indeed, turning now to the algebra F'(G), we have the following result:

THEOREM 1.4. Given a finite group G, the functional transposes of the structural
maps m,u,t, called comultiplication, counit and antipode, are as follows,

A:A—-ARA |, e:A—-F |, S:A—-A
with A = F(Q) being the algebra of functions ¢ : G — F. The group azioms read:
(A ®id)A = (id® A)A
(e®id)A = (id®e)A =id
m(S ®id)A = m(id ® S)A =¢(.)1
In addition, the square of the antipode is the identity, S* = id.
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PRroOOF. This is something which is clear from Proposition 1.3, and from the properties
of the functional transpose, with no computations needed. However, since the formalism
of the functional transpose might be new to you, here is a detailed proof:

(1) Let us first recall that, given a map between two sets f : X — Y, its functional
transpose is the morphism of algebras f*: F(Y) — F(X) given by:

f'le) = [z = o(f(2))]

To be more precise, this map f* is indeed well-defined, and the fact that we obtain in
this way a morphism of algebras is clear. Indeed, for the addition, we have:

flle+d) = [z = (e +¥)(f(2)]
= [z = (p(f(2)) + ¢ (f(2)))]
= |z = (p(f(@)] + [z = »(f(2))]
= flle)+f(¥)

As for the multiplication, the verification here is similar, as follows:

o) = [z = (ed)(f(2))]

= [z = (p(f(2)y(f(z)))]

= [z = (e(f(2))] - [z = ¢(f(2))]
= [ ' (@)

(2) Observe now that the operation f — f* is by definition contravariant, in the sense
that it reverses the direction of the arrows. Also, we have the following formula:

(f9)' =g'f'
In order to check this, consider indeed two composable maps, as follows:
g: X—=>Y | f:Y—=>Z
The transpose of the composed map fg: X — Z is then given by:

(f9)'(e) = [z —= o(fg(@))]
= [z = (¢f)(9(x))]
= [z = (f'(9)(9(x))]
= ¢'f'(¢)
Thus, we have indeed (fg)! = ¢'f*, as claimed above. It is of course possible to use
this iteratively, with the general formula, that we will often use, being as follows:
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(3) As a second piece of preliminaries, we will need a bit of tensor product calculus
too. In case you are familiar with this, say from physics classes, that is good news, and
if not, here is a crash course on this. Let us start with something familiar, namely:

FM+N — FM D FN
As a consequence of this, that my students quite often tend to forget, we have:
And so, question for us now, what can be the new, mysterious operation ®, which is
definitely not the direct sum @, making the following formula work:

(4) In answer, let us look at the standard bases of these three vector spaces. We can
denote by {fi,..., far} the standard basis of F* and by {gi,..., gy} the standard basis
of FN. As for the space FM¥ on the left, here you would probably say to use the notation

{e1,...,enmn}, but I have here something better, namely {ej1,...,enn}, by using double
indices. And, with this trick, the solution of our problem becomes clear, namely:
€ia = fz & Ga

Thus, as a conclusion, given two vector spaces with bases {f;} and {g,}, we can talk
about their tensor product, as being the vector space with basis { f; ® g,}. And with this,
we have the following formula, answering the question raised above:

(5) As a continuation of this, in the case where our vector spaces are algebras A, B,
their tensor product A ® B is an algebra too, with multiplication as follows:
(a®b)(d @) =ad @bV
Indeed, the algebra axioms are easily seen to be satisfied. And as a verification here,
the above identification FMN = FM & FV is indeed an algebra morphism, due to:
ity = (i ®3ga)(fj © gp)
= [ifj ® gagv
= 5z]fl ® (Sabga
= 5ia,jbfi ® Ga
= 5ia,jbeia
(6) Moving ahead, still in relation with tensor products, we can say, more abstractly,
that given two finite sets X,Y, we have an isomorphism of algebras as follows:

F(XxY)=F(X)®F(Y)
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To be more precise, we have a morphism from right to left, constructed as follows:

Y = [(7,y) = ¢()Y(y)]

Now since this morphism is injective, and since the dimensions of the domain and
range match, both being equal to | X| - |Y|, this morphism is an isomorphism.

(7) In what follows, the above formula from (6) will be what we will mostly need, in
relation with the tensor products. As a last comment here, observe that this is in fact the
formula FMY = FM @ FN that we started with. Indeed, when writing X = {1,..., M}
and Y = {1,..., N}, the above formula from (6) takes the following form:

F{1,.... M} x{1,...,.N}h)=F({L,.... M} ® F({1,...,N})
But this obviously translates into the following formula, as claimed:
And we will end with our preliminaries here. In case all this was not fully clear, may
the Gods of Algebra forgive us, and we recommend on one hand reading about tensor

products from a solid algebra book, such as Lang [67], and on the other hand, doing some
physics computations with tensor products, nothing can replace those either.

(8) Still with me, I hope, and time now to prove our theorem? With the above
ingredients in hand, let us go back indeed to our group theory problems. To start with,
the structural maps m, u, of our group G are maps as follows:

m:GxG—-G , u:{}—->G |, i:G—>G

Thus, with A = F(G) being the algebra of functions ¢ : G — F, their functional
transposes are morphisms of algebras A, e, S as follows:

AASARA , c:AsF |, S:AsA

(9) Regarding now the formulae of these transposed maps, we know that the structural
maps m, u, ¢ of our group G are given by the following formulae:

m(g,h) =gh , u()=1 , i(g)=g"
Thus, the functional transposes A, ¢, .S are given by the following formulae:
Alp) =(g:h) = wlgh)] . elp)=9) , Slp) =9 ¢lg™)]

(10) Regarding the group axioms, we know from Proposition 1.3 that in terms of the
structural maps m, u, i, these are as follows, with d(g) = (g, 9):

m(m x id) = m(id x m)
m(u X id) = m(id X u) = id
m(i x id)d = m(id x )0 = 1
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In terms of the functional transposes A, ¢, S, these axioms read:
(A ®id)A = (id® A)A
(e®id)A = (id®e)A =id
m(S ®id)A =m(id® S)A =e(.)1
Finally, the formula S? = id comes by transposing i = id. O

Good news, Theorem 1.4 is all we need, or almost, in order to fulfill Goal 1.2 (1).
Indeed, based on what we found above, we can formulate the following definition:

DEFINITION 1.5. A Hopf algebra is an algebra A, with morphisms of algebras
A:A—ARA |, e:A—>F |, S:A— AP
called comultiplication, counit and antipode, satisfying the following conditions:
(A ®id)A = (id @ A)A
(e®id)A = (id®e)A =id
m(S ®id)A =m(id® S)A =¢e(.)1

If the square of the antipode is the identity, S* = id, we say that A is undeformed.
Otherwise, in the case S* # id, we say that A is deformed.

Here everything is standard, based on what we found in Theorem 1.4, we just copied
the formulae there, with a different banner for them, except for two points, namely:

(1) We chose to have the antipode S as being a morphism of algebras S : A — A%P,
instead of being a morphism S : A — A, as Theorem 1.4 might suggest. Indeed, since
the algebra A = F'(G) in Theorem 1.4 is commutative, we have A = A°? in that case, so
we can make this choice. And, we will see in a moment that S : A — AP is indeed the
good choice, with this coming from some further examples, that we want our formalism
to cover, and more specifically, coming from the algebras F[G], from Goal 1.2 (2).

(2) We also chose the antipode S not to be subject to the condition S? = id. However,
this is something debatable, because in the usual group setting i> = id, while formally
not being a group axiom, is something so trivial and familiar, that it is “almost” a group
axiom. We will be back to this issue, on several occasions. In fact, clarifying the relation
between Hopf algebras axiomatized with S? = id, and Hopf algebras axiomatized without
S? = id, will be a main theme of discussion, throughout this book.

Finally, observe also that we chose not to impose any finite dimensionality condition
on our Hopf algebra A, and this in contrast with Theorem 1.4, where the group G there
is finite. Again, this is something subtle, to be discussed more in detail later on.
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1b. Basic examples

There are several basic examples of Hopf algebras, which are all undeformed. We first
have the following result, which provides a good motivation for our theory:

THEOREM 1.6. Given a finite group G, the algebra of the F-valued functions on it,
F(G)={y¢: G — F}, with the usual pointwise product of functions,

(e)(9) = p(g9)¥(g)

1s a Hopf algebra, with comultiplication, counit and antipode as follows:
A(p) = [(g. 1) = ©(gh)]
e(p) = (1)

S(p)=1lg = ¢lg™")]
This Hopf algebra is finite dimensional, commutative, and undeformed.

Proor. This is a reformulation of Theorem 1.4, by taking into account Definition 1.5,
with the remark, already made above, that we have A = A°P? in this case, due to the
commutativity of A = F(G), and with the last assertion being something clear. O

In view of the above result, we can make the following speculation:

SPECULATION 1.7. We can think of any finite dimensional Hopf algebra A as being of
the following form, with G being a finite quantum group:

A=F(G)

That is, we can define the category of finite quantum groups G to be the category of finite
dimensional Hopf algebras A, with the arrows reversed.

Observe that, from the perspective of pure mathematics, all this is not that specu-
latory, because what we said in the end is something categorical and rigorous, perfectly
making sense, and with the category of the usual finite groups G embedding covariantly
into the category of the finite quantum groups G, thanks to Theorem 1.6.

However, still mathematically speaking, there are some bugs with this. One problem
is whether we want to include or not S? = id in our axioms, and in the lack of S? # id
examples, at this stage of things, we are in the dark. Another problem is that, even
when assuming S? = id, nothing guarantees that a finite dimensional commutative Hopf
algebra must be of the form A = F(G), which would be something desirable to have.

As for the perspective brought by applied mathematics, here things are harsher, be-
cause the use of the word “quantum” would normally assume that our notion of Hopf
algebra has something to do with quantum physics, and this is certainly not the case,
now that we are into chapter 1 of the present book. Long way to go here, trust me.

In short, Speculation 1.7 remains a speculation, with our comments on it being:
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COMMENT 1.8. The above A = F(QG) picture is something very useful, definitely worth
to be kept in mind, but we will have to work some more on our axioms for Hopf algebras
A, as for the corresponding objects G to deserve the name “quantum groups”.

Finally, still in connection with all this, axiomatics, we would like if possible the
construction in Theorem 1.6 to cover other groups as well, infinite this time, such as the
discrete ones, or the compact ones, or, ideally, the locally compact ones.

The problem with this, however, is that in the framework of Definition 1.5 this is not
exactly possible, due to the fact that the comultiplication A would have to land in the
algebra F'(G x GG), and for infinite groups G, H, we have:

F(G x H) # F(G) ® F(H)

However, there are several tricks in order to overcome this, either by allowing ® to be
a topological tensor product, or by using Lie algebras. We will be back to this question,
which is not trivial to solve, on several occassions, in what follows.

Moving ahead now, let us say that a Hopf algebra A as axiomatized above is cocom-
mutative if, with X(a ® b) = b ® a being the flip map, we have the following formula:

YA=A

With this notion in hand, we have the following result, providing us with more exam-
ples, and that we will soon see to be “dual” to Theorem 1.6, in a suitable sense:

THEOREM 1.9. Given a group H, which can be finite or not, its group algebra
F[H| = span(H)
is a Hopf algebra, with structural maps given on group elements as follows:
Alg)=g®g , clgg=1 , Slg=g"
This Hopf algebra is cocommutative, and undeformed.
PRroOF. This is something elementary, the idea being as follows:

(1) As a first observation, we can define indeed linear maps A, ¢, S as in the statement,
by linearity, and the maps A, ¢ are obviously morphisms of algebras. As for the antipode
S : A — AP this is a morphism of algebras too, due to the following computation,
crucially using the opposite multiplication (a,b) — a - b on the target algebra:

S(gh) = (gh)™"
— h—lg—l
— g—l . h—l
— S(g)- S(h)
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(2) We have to verify now that A e, S satisfy the axioms in Definition 1.5, and the
verifications here, performed on generators, are as follows:

(A®id)A(g) = (Id®@ A)A(g) =g®g®g
(e®@id)A(g) = (id®@e)Ag) =g

m(S ®id)A(g) = m(id ® S)A(g) =€(g9)l =1

(3) Finally, it is clear from definitions that our Hopf algebra satisfies indeed the co-
commutativity condition YA = A, as well as the condition S? = id. O

The fact that the group H in the above can be infinite comes as good news, and it is
tempting to jump on this, and formulate, in analogy with Speculation 1.7:

SPECULATION 1.10. We can think of any Hopf algebra A as being of the following
form, with H being a quantum group:

A = F[H]

That is, we can define the category of quantum groups H to be the category of Hopf
algebras A.

However, as before with Speculation 1.7, while this being something useful, providing
us with some intuition on what a Hopf algebra is, when looking more in detail at this,
there are countless problems with it, which are both purely mathematical, of algebraic
and analytic nature, and applied mathematical, in relation with quantum physics, which
is certainly something more complicated than what we did in the above.

Be said in passing, observe that, while both Speculation 1.7 and Speculation 1.10
formally make sense, from a pure mathematics perspective, their joint presence does not
make much sense, mathematically, at least with the results that we have so far, because
nothing guarantees that the category of finite quantum groups from Speculation 1.7 is
indeed a subcategory of the category of quantum groups from Speculation 1.10.

Thinking a bit more at all this, we are led into the following question:

QUESTION 1.11. What is the precise relation between Theorems 1.6 and 1.9, in the
finite group case, and can this make peace between Speculations 1.7 and 1.107

And the point now is that, despite its informal look, this question appears to be
well-defined, and quite interesting, and answering it will be our next objective.

For this purpose, we first need to see what happens to Theorem 1.9, when assuming
that the group H there is finite. And here, we have the following statement:
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THEOREM 1.12. Given a finite group H, the algebra of the F-valued functions on it
F[H] ={yp: H— F}, with the convolution product of functions,

(px¥)(g) = Y p(h)(k)
g=hk
15 a Hopf algebra, with structural maps given on Dirac masses as follows:
A(dg) =0,®0, , €(dg) =1 , 5(dg) =g
This Hopf algebra, which coincides with the previous F[H], in the finite group case, is

finite dimensional, cocommutative, and undeformed.

Proor. This is what comes from Theorem 1.9, when the group H there is finite.
Indeed, in this case the vector space F[H| = span(H) from Theorem 1.9 coincides with
the vector space F[H| = {¢ : H — F'} in the statement, with the correspondence being
given on the standard generators g € span(H) by the following formula:

g — 0g

Regarding now the product operation, the product on F[H] = span(H ) from Theorem
1.9 corresponds to the above convolution product on F[H]| = {¢ : H — F'}, because:

(6, %0)(g) = > _ 6,:(h)ds(k)

g=hk
6g,7"8
- 6’/‘8 (g>
Thus 6, * d5 = 0,5, as desired. We conclude that the algebra F[H] from Theorem 1.9
coincides with the algebra F'[H| constructed here, and this gives the result. O

In practice now, the above statement has a weakness, coming from the fact that our
formulae for A, e, S are in terms of the Dirac masses. Here is a better version of it:

THEOREM 1.13. Given a finite group H, the algebra of the F-valued functions on it
F[H] ={y: H — F}, with the convolution product of functions,

(pxv)(9) = > w(h)i(k)
g=hk
is a Hopf algebra, with structural maps constructed as follows:

Alp) = [(g,h) = dgnip(g)]
(o) => ¢lg)

geH
S(p) =g — ¢(g™")]
This Hopf algebra, which coincides with the previous F[H], in the finite group case, is
finite dimensional, cocommutative, and undeformed.
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ProoOF. This is what comes from Theorem 1.12, by linearity. Indeed, according to
our formula of A there, on the Dirac masses, we have:

Alp)(g,h) = A <Z @(’f)%) (g, h)

keH

= Y o(k)A(k)(g, )

keH

= > o(k)(0r @ ) (g, )

keH

= Z ©(k)OrgOrn

keH
= Ognp(9)

Also, according to our formula of € there, on the Dirac masses, we have:

e(p) = 6(29@(9)%)

geH

> 0(9)e(5y)

geH

> elg)

geH

Finally, according to our formula of S there, on the Dirac masses, we have:

S(p)g) = S (Z so(h)5h> (9)

heH

= D w(h)S(@)(9)

heH

= Z@(h)%—l(g)
heH

= (g

Thus, we are led to the conclusions in the statement. U

As a comment here, the proof of the above result relies on Theorem 1.12, which itself
relies on Theorem 1.9, and in this type of situation, when things pile up, it is better to
work out a new, direct proof, matter of doublechecking everything, and also matter of
better understanding what is going on. So, let us do this, as an instructive exercise.
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The problem is that of checking the Hopf algebra axioms directly, starting from the
formulae of A, e,.S from Theorem 1.13, and we have here the following result:

PROPOSITION 1.14. We have the following formulae over the algebra F[H],
(A ®id)A(p) = (id @ A)A(p)
(e @id)Ap) = (id @ ) Ap) = ¢
m(S ®id)A(p) = m(id @ S)A(p) = e(p)1
guaranteeing that F[H| is indeed a Hopf algebra, for any finite group H.

PROOF. As mentioned, we already know this, as a consequence of Theorem 1.13,
coming as consequence of Theorem 1.12, coming itself as consequence of Theorem 1.9,
but time now to prove this directly as well, by using the formulae of A, ¢, S, namely:

Alp) = [(g,h) = dgni(g)]

(@) => ¢lg)

geH

S(p)=1lg— ¢lg™")]
We have to prove the following formulae, for any group elements g, h, k:

(A @id)A(p)(g, h, k) = (id @ A)A(#) (g, h, k)

(e ®id)Ap)(g) = (id®e)A(p)(g9) = ¢(9)
m(S @ id)A(p)(g) = m(id ® S)A(p)(g) = e(p)1

In what regards the first formula, this is clear, because the second iteration A®) of
the comultiplication, no matter how computed, will by given the following formula:

AP (p)(g, h, k) = ,0(9)

Regarding the second formula, this is again clear, because when applying either of the
maps F; = ¢ ®id and Fy = id ® € to the quantity A(p), what we get is:

EA(9)(9) = > p(h) = ¢(g)
g=h

As for the third formula, this is similar, because when applying either of the maps
Ty = m(S ®id) and Ty = m(id ® S) to the quantity A(p), what we get is:

TA(p)(9) = Y p(g)l = £(p)1

geH

Thus, we are led to the conclusions in the statement. U
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1lc. Abelian groups

With the above done, let us try now to understand the relation between the algebras
F(G) from Theorem 1.6, and the algebras F[H] from Theorem 1.12, or Theorem 1.13.

For this purpose, we must first talk about abelian groups, and their duals. And as a
starting point here, we first have the following elementary result:

THEOREM 1.15. Given a finite group G, the multiplicative characters
x:G— F*

form a group @, called dual group, having the following properties:

(1) G is finite and abelian, and depends on both G and F.
(2) G = Gap, where Gy, = G/[G G] is the abelianization of G.
(3)

(4)

N

3
4

We have a morphism G — G producing a morph@sm G ab = G.
The dual of a product is the product of duals, GxH=GxH.

PROOF. Our first claim is that G as constructed above is indeed a group, with the
pointwise multiplication of the characters, given by the following formula:
(xp)(9) = x(9)r(g)

Indeed, if x, p are characters, so is xp, and so the multiplication is well-defined on G.
Regarding the unit, this is the trivial character, constructed as follows:

1:G—F" , g—1
Finally, we have inverses, with the inverse of x : G — F™* being as follows:
G F, g—=x(g)!
Thus the dual group G is indeed a group, and regarding now the other assertions:

(1) We have several things to be proved here, the idea being as follows:

~ Our first claim is that G is finite. Indeed, given a group element g € G, we can talk
about its order, which is smallest integer N € N such that ¢ = 1. Now assuming that
we have a character xy : G — F*, we must have the following formula:

x(g)" =1
Thus x(g) must be one of the N-th roots of unity inside F', that is, must be one of the
roots over F of the polynomial X — 1, and in particular, there are finitely many choices
for x(g). Thus, there are finitely many choices for x, and so G is finite, as claimed.

— Next, the fact that G is abelian follows from definitions, because the pointwise
multiplication of functions, and in particular of characters, is commutative.
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— Finally, the group dual G as constructed above certainly depends on G, but the
point is that it can depend on the ground field F' too. Indeed, for an illustration here,
consider the cyclic group G = Zy. A character x : Zy — F* is then uniquely determined
by its value z = x(g) on the standard generator g € Zy, and this value must satisfy:

N=1
Now over the complex numbers, F' = C, the solutions here are the usual N-th roots
of unity, so we have |Zy| = N. Moreover, by thinking a bit, we have in fact:
Zy =Ty
In contrast, over the real numbers, F' = R, the possible solutions of z¥ = 1 must be
among z = 1, and we conclude that in this case, the dual is given by:

5 {{1} (N odd)

B Zs (N even)

There are of course far more things that can be said here, with all this being related to
the structure of the group of N-th roots of unity inside F', but for our present purposes,
what we have so far, namely the above illustration using F' = R, C, will do.

(2) Let us prove now the second assertion, G = @ab. We recall that given a group G,
its commutator subgroup [G, G| C G is constructed as follows:

G, G = {ghg’lh’l g.he G}

This subgroup is then normal, and we can define the abelianization of G as being:
Guw = G/[G,G]

Now given a character y : G — F*, we have the following formula, for any g, h € G,
based of course on the fact that the multiplicative group F™* is abelian:

X(ghg™th™') =1
Thus, our character factorizes as follows, into a character of the group Gy:
X:G— Gy — F*
Summarizing, we have constructed an identification G = @ab, as claimed.
(3) Regarding now the third afsertion, as a first remark, given a finite group G we

have indeed a morphism I : G — @, appearing via evaluation maps, as follows:

[:G=G , g—x—x9)

Since the group duals, and so the group double duals too, are always abelian, we
cannot expect I to be injective, in general. In fact, due to x(ghg 'h™') = 1, we have:

|G,G]| C ker [
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Thus, the morphism [ : G — G constructed above factorizes as follows:

1:G— Gu— G
And with this, third assertion proved. There are of course some further things that

can be said here, in relation with the factorized morphism G, — G , but the examples in
(1) above, where G itself was abelian, show that, when using an arbitrary field F'; as we
are currently doing, this factorized morphism is not an isomorphism, in general.

(4) Finally, in what regards the fourth assertion, GxH=0Cx10 , observe that a
character of a product of groups x : G x H — F* must satisfy:

x(g:h) = xl(g, (1, h)]
= x(g,1)x(1,h)

= Xic(9)xiu(h)
Thus x must appear as the product of its restrictions x|q, x|z, Which must be both
characters, and this gives the identification in the statement. O

As a conclusion to what we have above, certainly some interesting things, but with

the overall situation being not very good, due to the fact that the group dual G' depends
on the ground field F', and with this preventing many interesting things to happen.

So, good time to temporarily break with our policy so far of using an arbitrary field
F. By choosing our ground field to be the smartest one around, namely F' = C, and by
assuming as well that G is abelian, in view of what we found above, we are led to:

THEOREM 1.16. Given a finite abelian group G, its complex characters
xX:G—T
form a finite abelian group CA;, called Pontrjagin dual, and the following happen:
(1) The dual of a cyclic group is the group itself, Zn = Zn.
(2) The dual of a product is the product of duals, G x H =G x H.
(3) Any product of cyclic groups G = Zy, X ... X Ly, is self-dual, G = G.

Proor. We already know some of these things from Theorem 1.15, but since we are
here simplifying that, the best is to start all over again. We have indeed a finite abelian
group, as stated, and regarding the other assertions, their proof goes as follows:

(1) A character x : Zy — T is uniquely determined by its value z = x(g) on the
standard generator g € Zy. But this value must satisfy:

N =1
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Thus we must have z € Zy, with the cyclic group Zy being regarded this time as
being the group of N-th roots of unity. Now conversely, any N-th root of unity z € Zy
defines a character x : Zy — T, by setting, for any » € N:

x(g") = 2"
Thus we have an identification Z N = Zy, as claimed.
(2) A character of a product of groups x : G x H — T must satisfy:
x(g,h) = x (g, 1)(L, h)] = x(g, 1)x(1, h)

Thus x must appear as the product of its restrictions x|, x|z, which must be both
characters, and this gives the identification in the statement.

(3) This follows from (1) and (2). Alternatively, any character x : G — T is uniquely
determined by its values x(g1),...,x(gx) on the standard generators of Zy,,...,Zn,,

which must belong to Zy,, ..., Zy, C T, and this gives G= G, as claimed. U

Let us discuss now the structure result for the finite abelian groups. This is something
which is more advanced, requiring good knowledge of group theory, as follows:

THEOREM 1.17. The finite abelian groups are the following groups,
GIZNI X .. XZNk
and these groups are all self-dual, G = G.

Proor. This is something quite tricky, the idea being as follows:

(1) In order to prove our result, assume that G is finite and abelian. For any prime
number p € N, let us define GG, C G to be the subset of elements having as order a power
of p. Equivalently, this subset G, C G' can be defined as follows:

G, = {g e G‘Hk eN, g = 1}

(2) It is then routine to check, based on definitions, that each G, is a subgroup. Our
claim now is that we have a direct product decomposition as follows:

G=]]6G
p

(3) Indeed, by using the fact that our group G is abelian, we have a morphism as
follows, with the order of the factors when computing [, g, being irrelevant:

HGp—>G , (gp)—>ng
p P

Moreover, it is routine to check that this morphism is both injective and surjective,
via some simple manipulations, so we have our group decomposition, as in (2).
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(4) Thus, we are left with proving that each component G, decomposes as a product
of cyclic groups, having as orders powers of p, as follows:

Gp:Zpﬁ X...XZprs

But this is something that can be checked by recurrence on |G|, via some routine
computations, and so we are led to the conclusions in the statement.

(5) So, this was for the quick story of the present result, structure theorem for the finite
abelian groups, and for more on all this, technical details, and some useful generalizations
too, we recommend learning this from a solid algebra book, such as Lang [67]. U

Getting back now to the Hopf algebras, we have the following result:

THEOREM 1.18. If G, H are finite abelian groups, dual to each other via Pontrjagin
duality, in the sense that each of them is the character group of the other,

Gz{x:H—>T} , Hz{p:G—ﬂI‘}
we have an identification of Hopf algebras as follows:
F(G) = F[H]

In the case G = H = Zy, this identification is the usual discrete Fourier transform
isomorphism. In general, we obtain a tensor product of such Fourier transforms.

Proor. All this is standard Fourier analysis, the idea being as follows:

(1) In the simplest case, where our groups are G = H = Zy, we have indeed an
identification of algebras as above, which is a Hopf algebra isomorphism, given by the
usual discrete Fourier transform isomorphism, whose matrix with respect to the standard

basis on each side is the following matrix, with w = e?™/" called Fourier matrix:
1 1 1 1
1 w w? wV 1
Fo— |1 w? w? W2(N-1)

(2) In the general case now, we can invoke the stucture theorem for the abelian groups,
which tells us that G must appear as a product of cyclic groups, as follows:

G:ZNl X .. XZNk
Indeed, due to the functorial properties of the Pontrjagin duality, we have as well:

H:Zle--'XZNk
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Thus, we are led to the conclusions in the statement, with the corresponding iso-
morphism of Hopf algebras being obtained by tensoring the isomorphisms from (1), and
corresponding to the following matrix, called generalized Fourier matrix:

Fo=Fyn®...®Fy,

(3) Alternatively, it is possible to be more direct on all this, and short-circuiting
the heavy results, simply by viewing the identification F'(G) = F[H] as appearing by
complexifying the characters from the definition of the dual group, namely:

H:{X:G—>T} or G:{X:H—>T}

Indeed, with this approach, which relies only on the definition of the Pontrjagin dual,
there is no need for the computations for Zy, or for the structure theorem for the finite
abelian groups. Again, we will leave the details here as an instructive exercise. O

As a comment here, we can feel that Theorem 1.18 is related to Fourier analysis, and
this is indeed the case. The point is that we have 3 types of Fourier analysis in life:

(1) We first have the “standard” one, corresponding to G = R, that you probably
know well, and which can be learned from any advanced analysis book.

(2) Then we have another one, called the “Fourier series” one, which is also something
popular and useful, corresponding to G = Z, T, that you probably know well too.

(3) And finally we have the “discrete” one, as above, over G = Zy and other finite
abelian groups. We will be back to this, on several occasions, in this book.
1d. Duality theory

Quite remarkably, the Pontrjagin duality for finite abelian groups can be extended to
the general finite group case, in the context of the Hopf algebras. To be more precise, we
have the following result, which is something truly remarkable, solving many questions,
and which will be our first general theorem on the Hopf algebras:

THEOREM 1.19. Given a finite dimensional Hopf algebra A, its dual space
A = {gp A= F linear}
is also a finite dimensional Hopf algebra, with multiplication and unit as follows,
Al A QA - A, & F — AT
and with comultiplication, counit and antipode as follows:
miAF s AR AT W AT F, ST AT A

This duality makes correspond the commutative algebras to the cocommutative algebras.
Also, this duality makes correspond F(G) to F[G], for any finite group G.
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PROOF. At the first glance, we can only expect here something more complicated than
for Theorem 1.18, that our result generalizes. However, by the power of abstract algebra,
where precise formulations matter a lot, things are in fact quite simple:

(1) To start with, we know that A is a Hopf algebra. Thus, as an associative algebra,
A has a multiplication map m, and a unit map u, which are as follows:

m:AQA—-A ., u:F— A
Also, A has a comultiplication A, counit ¢ and antipode .S, which are as follows:
A:A—-ARA |, e:A—-F , S:A— A%

(2) By taking now the functional transposes of these 5 maps, we obtain 5 other maps,
whose domains and ranges are as in the statement. Moreover, it is routine to check that
these latter 5 maps are all morphisms of algebras, with this being actually clear for all
the maps involved, except for S?, which requires some thinking at opposite algebras.

(3) Regarding now the axioms, since A is, before anything, an associative algebra, its
multiplication and unit maps m, u are subject to the following axioms:

m(m ® id) = m(id @ m)
m(u ® id) = m(id ® u) = id
We also know that A is a Hopf algebra, so the following are satisfied too:
(A ®id)A = (id® A)A
(e®id)A = (id®e)A =id
m(S ®id)A =m(id @ S)A =e(.)1

(4) The point now is that the collection of the above 8 formulae is “self-dual”, in
the sense that when transposing, we obtain exactly the same 8 formulae. Indeed, the
transposes of the first two formulae are as follows:

(m' ®id)m' = (id @ m")m’
(u' @ id)m" = (id @ u')m' = id
As for the transposes of the last three formulae, these are as follows:
ANA' ®@id) = Al(id @ AY)
A" ®@id) = A'(id ® €') = id
AY(S' @ id)m' = A'(id @ S*)ym' = u'(.)1

But, we recognize here the full axioms for Hopf algebras, including those for associative
algebras. Thus A*, as constructed in the statement, is indeed a Hopf algebra.
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(5) Observe now, as a complement to what is said in the statement, and which is
something that is useful to know, in practice, that the operation A — A* is indeed a
duality, because if we dualize one more time, we obtain A itself:

A=A

(6) Regarding the assertion about commutative and cocommutative algebras, this is
clear from definitions, because we have the following equivalences:

ymt=m' = Ym'(p) =m'(p),Vy
<~ Ym'(p)(a,b) = m'(p)(a,b),Ye, a,b
<  p(ba) = ¢(ab),Vy,a,b
<= ba =ab,Va,b

Indeed, this computation gives the result in one sense, and in the other sense, this
follows either via a similar computation, or just by dualizing, and using (5).

(7) Finally, the last assertion, regarding the group algebras, is clear from definitions
too, after a quick comparison with Theorem 1.6 and Theorem 1.13.

(8) Indeed, the point is that we have dual vector spaces, and the Hopf algebra maps
from Theorem 1.6 are given by the following formulae:

() (9) = ¢(9)1(g)
1=[g—1]
Alp) = [(g9,h) = ¢(gh)]
e(p) = (1)
S(p) =g = ¢(g™)]
(9) As for the Hopf algebra maps from Theorem 1.13, these are as follows:
(px)(g) = > w(h)p(k)
g=hk
1=[g— 591]
Ay ) [(g.h) = 5gh90(9)]
()= ¢l
geH
S(p) =g — ¢(g™")]
Thus, we have indeed a pair of dual Hopf algebras, as stated.

(10) As a last observation, in the case where the finite group G is abelian, we recover in
this way what we know from Theorem 1.18, proved there the hard way. But, as mentioned
there, there are in fact several proofs for that result, with going via the heavy theorems
for the finite abelian groups being something practical, but not really necessary. U
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As a conclusion to this, we can now answer Question 1.11 in the affirmative, by merging
Speculation 1.7 and Speculation 1.10 in the finite case, in the following way:

SPECULATION 1.20. We can think of any finite dimensional Hopf algebra A, not nec-
essarily commutative or cocommutative, as being of the form

A= F(G) = F[H]

with G, H being finite quantum groups, related by a generalized Pontrjagin duality. And
with this generalizing what we know about the abelian groups.

All this is very nice, and we will leave some further categorical thinking and clarifica-
tion of all this, if needed, depending on taste, as an exercise.

As a second comment, despite the above being something nice, and quite deep, the
criticisms formulated on the occasion of Speculation 1.7 and Speculation 1.10 remain.
One problem, as usual, is whether we want to further include the condition S? = id in our
axioms for the quantum groups. Another problem is that, even when assuming S? = id,
nothing guarantees that a finite dimensional commutative Hopf algebra must be of the
form A = F(G). And also, once again when assuming S? = id, nothing guarantees that
a finite dimensional cocommutative Hopf algebra must be of the form A = F[H|. And
finally, we have the big question regarding the relation of all this, mathematics developed
in a few pages, with quantum physics, which is certainly something more complicated.
All these are good problems, and we will be back to them, in what follows.

As a third comment, all the above concerns the finite dimensional case, and when
trying to do such things in the infinite dimensional setting, which must be topological, as
per the usual Pontrjagin duality for infinite groups, there are plenty of difficulties. Again,
these are all good questions, and we will be back to them, later in this book.

le. Exercises

We had a lot of interesting algebra in this chapter, sometimes going towards basic
functional analysis, or differential geometry, and as exercises, we have:

EXERCISE 1.21. Learn everything about tensor products, from a good algebra book.
EXERCISE 1.22. Do as well some physics computations with &, matter of loving it.
EXERCISE 1.23. Clarify all details of the functional transpose operation f — f°.
EXERCISE 1.24. Learn everything about abelian groups, and Pontrjagin duality.
EXERCISE 1.25. Learn about the various types of Fourier transforms and series.
EXERCISE 1.26. Work out all details for the duality theorem for Hopf algebras.

As bonus exercise, learn some functional analysis, which is obviously related to all
this. The more you will know here, in advance, the better that will be.



CHAPTER 2

Basic theory

2a. The antipode

With the Hopf algebras axiomatized, the basic examples F'(G) and F[H| discussed,
and the duality theory discussed too, in the finite dimensional case, what is next? Many
things, and as a list of pressing topics to be discussed, for this chapter, we have:

(1) We would first like to have a more detailed look at the Hopf algebra axioms, and
what can be done with them. And notably, know more about the antipode S.

(2) Next, at the level of the basic examples, we have unfinished business, or rather
unstarted business, with the enveloping Lie algebras Ug. On our to-do list, too.

(3) Then, with the knowledge of F(G), F[H], Ug, we can try to emulate, as a contin-
uation of (1), some advanced group technology, inside the arbitrary Hopf algebras A.

(4) And finally, again with some inspiration from F(G), F[H], Ug, which will be our
main input here, we can have a discussion about Haar integration.

Which sounds quite good, and with none of the above questions (1,2,3,4) being easy
to solve, via some instant thinking, expect lots of new and interesting things, to come.

Getting started, as a first topic for this chapter, let us go back to the arbitrary Hopf
algebras, as axiomatized in chapter 1, and have a more detailed look at their antipode S.
The definition and basic properties of the antipode can be summarized as follows:

THEOREM 2.1. Given a Hopf algebra A, its antipode is the morphism of algebras
S:A— APP
A°PP being the opposite algebra, with product a - b = ba, subject to the following axiom.:
m(S ®id)A = m(id ® S)A =e(.)1

For F(G) the antipode is the transpose of the inversion map i : G — G. For F[H|, the
antipode is given by S(g) = g~*. In both these cases, the above axiom corresponds to

9 lg=997" =1
and the extra condition S* = id, coming from (¢~)~' = g, is satisfied.

33
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PRroOOF. This is something that we know well from chapter 1, and for full details about
all this, along with slightly more about .S, we refer to the material there. U

In relation with this, as a first question that you might have, are there Hopf algebras
with S? # id? Here is a key example, due to Sweedler, which is the simplest one:

THEOREM 2.2. The Sweedler algebra, A = span(1,c,x, cx) with the relations
=1, 2°=0 , cx=—xc
and with Hopf algebra structure given by
Alc)=c®c , Alz)=10z+z2z®c , Alx)=cQcr+cr®1
ele)=1 , ex)=0 , e(cx)=0
S(c)y=c , Sx)=cx , Slcx)=—x

is not commutative, nor cocommutative, and has the property S* = id, but S* # id.

ProoOF. This is something quite tricky, the idea being as follows:

(1) Consider the 4-dimensional vector space A = span(1, ¢, x, cx), with 1, ¢, z, cx being
some abstract variables. We can make then A into an associative algebra, with unit 1, by
declaring that we have indeed ¢ - x = cx, and by imposing the following rules:

=1, 2°=0 , cx=—zxc
(2) Next, by using the universal property of A, we can define a morphism of algebras
A:A— A® A, according to the following formulae, on the algebra generators ¢, z:
Ale)=c®c , Alx)=1®@zr+zr®c
Observe that by multiplying we have as well A(cz) = ¢ ® cx + cx ® 1.

(3) Now let us try to prove that A is a Hopf algebra. By using the Hopf algebra
axioms, we conclude that ¢, .S can only be given on ¢, z by the following formulae:
ec)=1 , ¢e(x)=0
Sic)=c , Sx)=cx
But, and here comes the point, we can define indeed such morphisms, ¢ : A — F and

S A — AP via the above formulae, by using the universality property of A. Observe
that by multiplying, we obtain as well e(cz) = 0 and S(cz) = —=z.

(4) Summarizing, we have our Hopf algebra, which is clearly not commutative, not
cocommutative either, and whose antipode satisfies S* = id, but S? # id. O

Getting back now to the general case, in order to further build on Theorem 2.1, our
main source of inspiration will be what happens for A = F(G), where the antipode
appears as the functional analytic transpose, S = i', of the inversion map i(g) = g~

In view of this, we have the following natural question, which appears:
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QUESTION 2.3. In group theory we have many elementary formulae involving products,
units and inverses, all coming from the group azxioms, such as

17'=1, (¢gHY'=9g , (Gh)y'=hrtg" |

which can be reformulated in terms of m,u, v, and then transposed, leading to formulae as
follows, involving A, e, S, inside the algebras A = F(G):

eS=¢ , S*=id , AS=%(S®S5)A |,
But, which of these latter formulae hold in general, inside any Hopf algebra A?

And isn’t this a good question. Indeed, as we know well from chapter 1, the answer
to the above question is definitely “yes” for the group axioms themselves, which are as
follows, and which reformulate, by definition, into the Hopf algebra axioms:

(gh)k = g(hk) , lg=gl=g , g lg=g9 ' =1

However, in what regards for instance the group theory formula (¢7!)~! = g, this
reformulates in Hopf algebra terms as S? = id, and we have seen in Theorem 2.2 that we
have counterexamples to this. Thus, Question 2.3 definitely makes sense.

In order to get familiar with this, let us first study 17! = 1. We have here:
THEOREM 2.4. We have the following formula, valid over any Hopf algebra,
eS=c¢
and with this coming from 171 =1 for A = F(G), and being trivial for A = F[H].
PRroOF. This is something elementary, the idea being as follows:

(1) In order to establish the above formula, we can use the Hopf algebra axiom for S.
Indeed, by applying the counit to this axiom, we obtain the following formula:

em(S @ id)A =em(id ® S)A = ¢
Let us compute the map on the left. By using the counit axiom, we have:
em(S ®@id)A = (e®e)(S®id)A
= (eS®e)A
= eS(id®e)A
= eSoid
= &5

Similarly, and although not needed here, the map appearing in the middle in the above
formula is €5 too. Thus, our above equality of maps reads €S = S = ¢, as desired.
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(2) Regarding now the case A = F(G), here our condition is as follows, as claimed:

eS=¢ <<= &S(p)=¢(p)

= o1 =(1)
— 17t'=1

(3) On the opposite, in the case A = F[H]| our condition is trivial, coming from:

eS=¢ <= &S(g9) =¢(9)

= e(g ) =¢ly)
— 1=1

(4) Thus, result proved, with all this being quite trivial, but with the remark that what
we have at the end, that F/(G) vs F[H| dissymmetry, is however quite interesting. O

Next on our list, still coming from Question 2.3, let us have a look at (gh)~! = h~tg~1.
Things here are more tricky, and as a first result on the subject, we have:

PROPOSITION 2.5. The antipode of both the algebras F(G) and F[H] satisfies
AS=X(S®95A
with this coming from (gh)™' = h=tg™! for A= F(G), and being trivial for A = F[H].
PRrOOF. For A = F(G) the proof goes as follows, with (g, h) = (h, g):
(gh)y=h"lg™" = im(g,h) =m(ixi)a(g,h)

< im=m(i X i)o
— mhi' =o'(i'@i"m’
— AS=X(S®95A
As for the algebra A = F[H], here the verification is trivial, as follows:

AS=3(S®SA <= AS(g)=3(S® S)A(g)

= Alg)=X(095)(ge9)
= Alg)=X(¢g'®g")
= Alg)=g'®g"
Observe that, again, we have an interesting F'(G) vs F[H] dissymmetry here. O

Before getting further with our study of (gh) ™' = h~'g!, that we will eventually show
to hold over any Hopf algebra, let us go back to Question 2.3. We have only recorded 3
possible relations there, but there are infinitely many more, and in relation with this, we
have the following result, related to (gh)~! = h='g~!, making a bit of cleanup:
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PROPOSITION 2.6. We have the following implication, over any Hopf algebra,
AS=X(S®SA = AP g = xC (S®S®S)A(2
corresponding in the case A = F(QG) to the following implication, at the group level:
(gh) '=h"lg7t = (ghk) =k'hlg"
Moreover, we can iterate this observation, as many times as we want to.
PROOF. We are presently into uncharted territory, so take the above statement as it

is, as something a bit informal. The point with all this is that, in the group theory setting,
it is quite obvious that by iterating, we have the following series of implications:

gh)'=hlgt = (ghk)‘1 =k"'hTg!
— (ghkl) T =17k Ry
—

And the question is that, can we have these implications going, I mean these implica-
tions only, not the validity of the formulae themselves, in the Hopf algebra setting. With
the answer to this latter question being definitely yes, for the first implication, with the
computation being as follows, using twice the condition AS = X(S ® S)A:

APS = (A®id)AS
= (ARidX(S®S)A
= Y. (id® A)(S®S)A
Y (S®AS)A
= Y. (S®XE(S®S)A)A

Y, (ldeX)(S®S®S)(id A)A

= ¥ ®Sws)A?

Thus, result proved, and I will leave it to you to figure out what the various versions
of ¥, A used above exactly mean. In what regards the last assertion, exercise as well. [

Summarizing, things are quite tricky. In order to further discuss this, we will need
some abstract algebraic preliminaries. Let us start with something standard, namely:

THEOREM 2.7. If we define the convolution of linear maps ¢, : A — A by
pxh=m(p@YP)A
then the Hopf algebra axiom for the antipode reads
Sxid=1idx S =¢(.)1
with the map on the right, €(.)1, being the unit for the operation .
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PRrooOF. This is something which comes from the axioms, as follows:

(1) The first assertion is clear from the Hopf algebra axiom for the antipode, as
formulated in chapter 1, or in Theorem 2.1, which was as follows:

m(S ®id)A = m(id ® S)A = ¢(.)1
Indeed, in terms of the convolution operation from the statement, px1) = m(pY)A,
this axiom takes the following more conceptual form, as indicated above:
Sxid=1d* S =¢(.)1
(2) Regarding the second assertion, this follows from the counit axiom, namely:
(e ®id)A = (id®e)A =id
Indeed, given a linear map ¢ : A — A, we have the following computation:
pxe()l = mpee())A
= p(id®e)A
= poid
= ¥
Similarly, again for any linear map ¢ : A — A, we have the following computation:
e()lxe = me()l®p)A
= p(e®id)A
poid
= ¥

Thus the linear map £(.)1 is indeed the unit for the operation *, as claimed. O

In order to do our next antipode computations, which will be sometimes quite tough,
we will need as well the following useful convention, due to Sweedler:

DEFINITION 2.8. We use the Sweedler notation for the comultiplication A,
A(z) = Z T1 ® Ty
with the sum on the right being understood to correspond to the tensor expansion of A(x).

And in the hope that this will sound quite nice and clever to you, when seeing it for
the first time. As illustrations for this Sweedler notation, or rather as a first piece of
advertisement for it, let us have a look at the Hopf algebra axioms, namely:

(A ®id)A = (id ® A)A
(e®id)A = (id®e)A =id
m(S ®id)A = m(id ® S)A =¢(.)1
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We know these axioms since the beginning of chapter 1, and we certainly have some
knowledge in dealing with them. However, the point is that by using the Sweedler notation
above, these axioms take the following form, which is even more digest:

Z Ary) @ 19 = Zﬂﬁl ® A(22)

Zs(ml)xg = les(xg) =z
Z S(x1)xe = leS(xg) = e(x)

With this discussed, let us go back now to Theorem 2.7, which is our main theoretical
result, so far. With a bit more work, we can further improve this result, as follows:

THEOREM 2.9. Given an algebra A, with morphisms of algebras
A:A>ARA , e: A= F
satisfying the usual axioms for a comultiplication and an antipode, namely
(A ®id)A = (id® A)A
(e®id)A = (id®e)A =id
this is a Hopf algebra precisely when id : A — A is invertible with respect to
Y =m(p®Y)A
and in this case, the convolution inverse S = id~' is the antipode.

Proor. This follows indeed from what we have in Theorem 2.7, and from a few extra
computations, best done by using the Sweedler notation, the idea being as follows:

(1) Assume first that A is a Hopf algebra. According to Theorem 2.7 we have indeed
S = id~!, inverse with respect to convolution, so the only thing that we have to prove is
that this inverse is unique. But this is something purely algebraic, which is valid under
very general circumstances, because for any associative multiplication - we have:

ab=ba=1 ac=ca=1 = b=bac=c

(2) Conversely now, assume that the identity map id : A — A is invertible with respect
to the convolution operation *, with inverse S = id~'. As explained in Theorem 2.7, the
condition S = id~! tells us that S satisfies the usual antipode axiom, namely:

m(S ®id)A = m(id ® S)A =¢(.)1
However, we are not done yet, because our map S : A — A is just a linear map, that

we still have to prove to be a morphism, when regarded as map S : A — A°P. Thus, with
S = id ! regarded as it comes, as linear map S : A — A, we must prove that we have:

S(ab) = S(b)S(a)
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(3) In order to prove this formula, consider the following three linear maps:
m(a®@b)=ab , pla®b)=S(ab) , gla®b)=S(b)S(a)
We have then the following computation, involving the maps m, p:
(pxm)(@a®b) = > p(la®b))m((a®b))

= > play @ by)m(az @ by)

= Z S(aiby)agbs

= >_S((aby) (ab)s

= (S*1)(ab)

= ¢(ab)

= e(a)e(b)
= (e®e)(a®b)
On the other hand, we have as well the following computation, involving m, ¢:
(mx*q)(a®b) = Z m(a; @ by)g(as @ be)
= > aibiS(b2)S(az)
= Z are(b)S(ay
= (1*S)(a)-e(b
= &(a)e(b)
= (e®e)(a®D)
Summarizing, we have proved that we have the following formulae:

pxm=mxxqg=(e®e)(.)I®1

)
)

(4) But with this, we can finish our proof, in the following way:
p = px((e®e)()I®1)
= px(mxq)
= (pxm)*q
= ((e®e)()I®1)*q
= q
Thus we have p = ¢, which means S(ab) = S(b)S(a), as desired. O

With all these preliminaries discussed, time now for our first true theorem. We can
indeed formulate something non-trivial regarding the antipode, as follows:
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THEOREM 2.10. The antipode of a Hopf algebra S : A — A°PP satisfies:

(1) S =e.
(2) AS =X(S® S)A.

(3) S% =id, when A is commutative or cocommutative.
Proor. This is something quite tricky, the idea being as follows:
(1) This is something that we already know, from Theorem 2.4.
(2) We have, by using the Sweedler notation from Definition 2.8:

(AS x A)(z) = ZAS(xl)A To
= A (Z S(xl)x2>
— A
= e(x)-1®1
On the other hand, we have as well, by using the Sweedler notation, iterated:
(A*E(S@9A)(x) = Y (21 ©2:)(S(z4) @ S(x3))
= les x4) ® 225 (x3)
= les ZL’3) X e ZL’Q)
= leS x3)e(we) ® 1
= leS Z’Q)
= ¢(z)-1®1
As a conclusion to this, we have proved the following equalities:
AS*xA=A*xE(SR5NA=¢()1®1
Now by using Theorem 2.7, we obtain from this, as desired:
AS = ASx(e()1®1)
= ASx*x(AxX(S®S)A)
= (AS*xA)xX(S®S)A
= (e()1®1)*X(S®S)A
= X(S®S5A

(3) Our first claim is that when A is commutative or cocommutative, we have:

Z S(z2)x; = e(x)

41
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Indeed, in the commutative case this follows from the Hopf algebra axiom for S, in
Sweedler notation, which reads, as explained before:

Z r15(x2) = e(x)
As for the cocommutative case, here we can use again the axiom for S, namely:
m(S ® id)A(x) = e(x)1

Indeed, by replacing A(z) with YA(z), for flipping the tensors, we obtain the formula
claimed in the above. Thus, claim proved, and with this in hand, we have:

m(S @ S)A(x) = m(S® S?) (Zx1®x2)
= ) S(x1)S*(x2)
= S(ZS(xg)xl)

= S(e(x)1)
= ¢(z)1
Now by using Theorem 2.9, we obtain from this S? = id, as claimed. O

As a first comment on the above result, (2) there can be used in conjunction with
Proposition 2.6, and shows that much more is true. However, Question 2.3 as formulated
is still there, and knowing what group theory type relations hold, and what don’t, inside
an arbitrary Hopf algebra, remains something which requires some experience and skill.

Many other things can be said, as a continuation of the above, notably with some
general theory for the square of the antipode S? : A — A, which is more specialized,
again based on the general interpretation of the antipode coming from Theorem 2.9. For
more on all this, we refer to the specialized Hopf algebra literature.

2b. Lie algebras

As a second task for this chapter, again coming as a continuation of what we did in
chapter 1, let us try now to better understand what happens, at the fine level, beyond
the finite dimensional case, where we already have some good examples and results.

As already mentioned in chapter 1, when trying to cover various infinite groups, such
as the compact, discrete, or more generally locally compact ones, the standard trick is
that of modifying a bit the Hopf algebra axioms, by using topological tensor products.
But this is something quite technical, and we will discuss this later in this book.

For the moment, let us show that we can cover the compact Lie groups, without
changing our axioms, by using a Lie algebra trick. Our claim is as follows:
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CrLAam 2.11. Gwen a compact Lie group G, with Lie algebra g, the corresponding
enveloping Lie algebra Ug is a Hopf algebra, which is cocommutative.

Obviously, many non-trivial notions involved here, with this being not your routine
abstract algebra statement, that you can understand right away, armed with Love for
algebra only. So, we will explain in what follows the various notions involved, namely the
Lie groups G, the Lie algebras g, and the enveloping Lie algebras Ug, and then we will
get of course to what the above claim says, and even provide a proof for it.

Getting started now, a Lie group is by definition a group which is a smooth manifold.
So, let us start our discussion with this, smooth manifolds. Here is their definition:

DEFINITION 2.12. A smooth manifold is a space X which is locally isomorphic to RN .
To be more precise, this space X must be covered by charts, bijectively mapping open pieces
of it to open pieces of RY, with the changes of charts being C°° functions.

As basic examples of smooth manifolds, we have of course RY itself, or any open
subset X C RY, with only 1 chart being needed here. Other basic examples, in the plane,
at N = 2, include the circle, or various curves like ellipses and so on, somehow for obvious
reasons. Here is a more precise statement in this sense, covering the conics:

PROPOSITION 2.13. The following are smooth manifolds, in the plane:

(1) The circles.

(2) The ellipses.

(3) The non-degenerate conics.
(4) Smooth deformations of these.

Proor. All this is quite intuitive, the idea being as follows:

(1) Consider the unit circle, % + y* = 1. We can write then x = cost, y = sint, with
t € [0,27), and we seem to have here the solution to our problem, just using 1 chart.
But this is of course wrong, because [0, 27) is not open, and we have a problem at 0. In
practice we need to use 2 such charts, say with the first one being with t € (0,37/2),
and the second one being with ¢ € (m,57/2). As for the fact that the change of charts
is indeed smooth, this comes by writing down the formulae, or just thinking a bit, and
arguing that this change of chart being actually a translation, it is automatically linear.

(2) This follows from (1), by pulling the circle in both the Ox and Oy directions, and
the formulae here, based on the standard formulae for ellipses, are left to you reader.

(3) We already have the ellipses, and the case of the parabolas and hyperbolas is
elementary as well, and in fact simpler than the case of the ellipses. Indeed, a parablola
is clearly homeomorphic to R, and a hyperbola, to two copies of R.

(4) This is something which is clear too, depending of course on what exactly we mean
by “smooth deformation”, and by using a bit of multivariable calculus if needed. O
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In higher dimensions we have as basic examples the spheres, and I will leave it to you
to find a proof, using spherical coordinates, or the stereographic projection. Exercise as
well, to find higher dimensional analogues of the other assertions in Proposition 2.13.

Getting now to what we wanted to do here, Lie groups, let us start with:

DEFINITION 2.14. A Lie group is a group G which is a smooth manifold, with the
corresponding multiplication and inverse maps

m:GxG—-G , 1:G—=>G
being assumed to be smooth. The tangent space at the origin 1 € G s denoted
g="TG
and is called Lie algebra of G.

So, this is our definition, and as a first observation, the examples of Lie groups abound,
with the circle T and with the higher dimensional tori TV being the standard examples.
For these, the Lie algebra is obviously equal to R and RY, respectively. There are of
course many other examples, all very interesting, and more on this in a moment.

Before getting into examples, let us discuss a basic question, that you surely have in
mind, namely why calling the tangent space g = 171G an algebra. In answer, since G is a
group, with a certain multiplication map m : G X G — G, we can normally expect this
map m to produce some sort of “algebra structure” on the tangent space g = T1G.

This was for the general idea, but in practice, things are more complicated than this,
because even for very simple examples of Lie groups, what we get in this way is not an
associative algebra, but rather a new type of beast, called Lie algebra.

So, coming as a continuation and complement to Definition 2.14, we have:

DEFINITION 2.15. A Lie algebra is a vector space g with an operation (x,y) — [z,v],
called Lie bracket, subject to the following conditions:

(1) [x+y, 2l = [z, 2] + [y, 2], [w,y + 2] = [z,9] + [, 2].
(2) [Ae,y] = [, My = Al yl.

(3) [z, 2] = 0.

(4) [[z,9], 2] + lly, 2], 2] + [[2, 2], 4] = 0.

As a basic example, consider a usual, associative algebra A. We can define then the
Lie bracket on it as being the usual commutator, namely:

[x,y] = zy —yx
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The above axioms (1,2,3) are then clearly satisfied, and in what regards axiom (4),
called Jacobi identity, this is satisfied too, the verification being as follows:

[z 9l 2] + [ly, 2], =] + [[2, 2], /]
[vy — yx, 2] + [yz — 2y, 2] + [22 — 22, ]

= TYzZ — Yrz — 2TY + 2Yxr + Y2xr — 2Yr — TYZ + T2y + 2TY — T2Y — YT + YTz
0

We will see in a moment that up to a certain abstract operation g — Ug, called
enveloping Lie algebra construction, and which is something quite elementary, any Lie
algebra appears in this way, with its Lie bracket being formally given by:

[z,y] = 2y — yx

Before that, however, you might wonder where that Gothic letter g in Definition 2.15
comes from. That comes from the following fundamental result, making the connection
with the theory of Lie groups from Definition 2.14, denoted as usual by G-

THEOREM 2.16. Given a Lie group G, that is, a group which is a smooth manifold,
with the group operations being smooth, the tangent space at the identity

g="T1(G)
15 a Lie algebra, with its Lie bracket being basically a usual commutator.
PRrROOF. This is something non-trivial, the idea being as follows:

(1) Let us first have a look at the orthogonal and unitary groups Oy, Ny. These
are both Lie groups, and the corresponding Lie algebras oy, uy can be computed by
differentiating the equations defining Oy, Uy, with the conclusion being as follows:

on = {A € MN(R)‘A’* - —A}

Uy = {B € MN(C)‘B* S }

This was for the correspondences Oy — oy and Uy — uy. In the other sense, the
correspondences oy — Oy and uy — Uy appear by exponentiation, the result here
stating that, around 1, the orthogonal matrices can be written as U = e?, with A € oy,
and the unitary matrices can be written as U = e, with B € uy.

(2) Getting now to the Lie bracket, the first observation is that both oy, uy are stable
under the usual commutator of the N x N matrices. Indeed, assuming that A, B € My(R)
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satisfy A = —A, B* = —B, their commutator satisfies [A, B] € My(R), and:

[A,B]' = (AB— BA)!

= B'A'— A'B!
= BA-—-AB
= _[Av B]

Similarly, assuming that A, B € My(C) satisfy A* = —A, B* = — B, their commutator
[A, B] € Mx(C) satisfies the condition [A, B]* = —[A, BJ.

(3) We conclude from this discussion that both the tangent spaces oy, uy are Lie
algebras, with the Lie bracket being the usual commutator of the N x N matrices.

(4) It remains now to understand how the Lie bracket [A, B] = AB — BA is related
to the group commutator [U, V] = UVU V! via the exponentiation map U = e”, and
this can be indeed done, by making use of the differential geometry of Oy, Uy, and the
situation is quite similar when dealing with an arbitrary Lie group G. U

With this understood, let us go back to the arbitrary Lie algebras, as axiomatized
in Definition 2.15. There is an obvious analogy there with the axioms for the usual,
associative algebras, and based on this analogy, we can build some abstract algebra theory
for the Lie algebras. Let us record some basic results, along these lines:

PROPOSITION 2.17. Let g be a Lie algebra. If we define its ideals as being the vector
spaces i C g satisfying the condition

relL,yeg = [r,y| €i

then the quotients g/i are Lie algebras. Also, given a morphism of Lie algebras f : g — b,
its kernel ker(f) C g is an ideal, and we have g/ ker(f) = Im(f).

Proor. All this is very standard, exactly as in the case of the associative algebras,
and we will leave the various verifications here as an instructive exercise. O

Getting now to the point, remember our claim from the discussion after Definition
2.15, stating that up to a certain abstract operation g — Ug, called enveloping Lie
algebra construction, any Lie algebra appears in fact from the “trivial” associative algebra
construction, that is, with its Lie bracket being formally a usual commutator:

[x,y] = 2y —yx

Time now to clarify this. The result here, making as well to the link with the various
Lie group considerations from Theorem 2.16 and its proof, is as follows:
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THEOREM 2.18. Given a Lie algebra g, define its enveloping Lie algebra Ug as being
the quotient of the tensor algebra of g, namely

T(g) = P o™
k=0
by the following associative algebra ideal, with x,y ranging over the elements of g:
I=<z®y—y®z—|r,y] >
Then Ug 1s an associative algebra, so it is a Lie algebra too, with bracket

[z,y] = xy — ya
and the standard embedding g C Ug is a Lie algebra embedding.
Proor. This is something which is quite self-explanatory, and in what regards the

examples, illustrations, and other things that can be said, for instance in relation with
the Lie groups, we will leave some further reading here as an instructive exercise. U

Importantly, the above enveloping Lie algebra construction makes the link with our
Hopf algebra considerations, from the present book, via the following result:

THEOREM 2.19. Given a Lie algebra g, its enveloping Lie algebra Ug is a cocommu-
tative Hopf algebra, with comultiplication, counit and antipode given by

A:Ug—U(gdg) =UgeUg , z—z+x
e:Ug—F |, x—1
S:Ug—Ug”™ = Ug)? |, x— —x
via various standard identifications, for the various associative algebras involved.
PROOF. Again, this is something quite self-explanatory, and in what regards the ex-

amples, illustrations, and other things that can be said, for instance in relation with the
Lie groups, we will leave some further reading here as an instructive exercise. U

We will be back to this, and to Lie algebras in general, on several occasions, in what
follows. Among others, we will see later in this book how to reconstruct the Lie group G
from the knowledge of the enveloping Lie algebra Ug, using representation theory.

2c. Special elements

In view of the above results regarding the enveloping Lie algebras Ug, which are
cocommutative, and of the results from chapter 1 too, regarding the group algebras F[H],
which are cocommutative too, it makes sense to have a more systematic look at the Hopf
algebras A which are cocommutative, in our usual sense, namely:

YA=A
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We already know a bit about such algebras, in the finite dimensional case, and as a
complement to that material, we first have the following result:
THEOREM 2.20. Let A be a Hopf algebra. The elements satisfying the condition
Ala)=a®a
which are called group-like, have the following properties:
(1) They form a group G 4.
(2) They satisfy XA(a) = A(a).
(3) We have a Hopf algebra embedding F|G 4] C A.
(4) For a group algebra A = F[H|, this embedding is an isomorphism.
Proor. This is something elementary, the idea being as follows:

(1) Let us call indeed group-like the elements a € A satisfying A(a) = a®a, in analogy
with the formula A(g) = ¢ ® g when A = F[H], and more on this in a moment. The
group-like elements are then stable under the product operation, as shown by:

Aab) = A(a)A(b) = (a®a)(b®b) = ab® ab
We have as well the stability under taking inverses, with this coming from:
Al =Aa)'=@®a) ' =a'®a"’
Finally, the formula A(1) = 1 ® 1 shows that 1 € A is group-like. Thus, the set of
group-like elements G4 C A is indeed a multiplicative subgroup, as claimed.
(2) Assuming that a € A is group-like, we have indeed, as claimed:
YA(a) =3(a®a) =a®a=A(a)
Observe that the converse of what we just proved here does not hold, for instance

because in the case of the group algebras A = F[H], which are cocommutative, XA = A,
there are many elements a € A which are not group-like. More on this in a moment.

(3) There are several checks here, all being trivial or routine, the only point being that
of proving that the group-like elements are linearly independent. So, let us prove this.
Assume that we have a linear combination of group-like elements, as follows:

a = Z /\iai
By applying A to this element we obtain, by using the condition a € G 4:
A(G) =a®a= Z)\Z)\]al ® Q;
]
On the other hand, also by applying A, but by using a; € G4, we obtain:
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We conclude that the following equation must be satisfied, when a € G 4:
Z )\i)\jai X a; = Z )\iai X a;
ij i

But this equation shows that we must have #{i} = #{j} = 1, as desired. That is, we
have proved that the group-like elements are linearly independent, and this gives a Hopf
algebra embedding F[G 4] C A as in the statement, appearing in the obvious way.

(4) This is indeed clear from (3), because in the case of a group algebra A = F[H]
we have G4 = H, with G4 D H being clear, and with G4 C H coming from linear
independence. Thus, in this case, the embedding F[G 4] C A is an isomorphism. O

Many other things can be said about the group-like elements, and we will leave their
study in the case algebras A = F(G), and of the algebras A = g too, as an instructive
exercise. Moving on, here is another key construction, this time Lie algebra-inspired:

THEOREM 2.21. Let A be a Hopf algebra. The elements satisfying the condition
Ala)=a®1+1®a

which are called primitive, have the following properties:

(1) They form a Lie algebra Py, with bracket [a,b] = ab — ba.

(2) They automatically satisfy YA (a) = A(a).

(3) We have a Hopf algebra embedding UP, C A.

(4) For an enveloping Lie algebra A = Ug, this embedding is an isomorphism.

PROOF. Observe the similarity with Theorem 2.20, and more on this later. Regarding

now the proof of the various assertions, this is straightforward, as follows:

(1) There are several things to be checked here, all being trivial or routine, the only
point being that of proving that the primitive elements are stable under taking commu-
tators. So, let us prove this. Assuming a,b € P4, we have the following computation:

A([a,b]) = Aa-Ab—Ab-Aa
= (®14+1®ad)(b1+10b0) - (b1+11b)(a®1+1®a)
= ab®1—-ba®1+1®ab—1® ba
= [a,b]®1+1®]a,b]
Thus we have [a,b] € P4, as desired, and this gives the assertion.
(2) Assuming that a € A is primitive, we have indeed, as claimed:
YAla) = E(ae®1l+1®a)
= 1®a+a®l
= a®1l+1®a
= Afa)
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Observe that the converse of what we just proved does not hold, for instance because
in the case of the envelopoing Lie algebras A = Ug, which are cocommutative, XA = A,
there are many elements a € A which are not primitive. More on this in a moment.

(3) This indeed something quite routine, a bit as before, for the group-likes.
(4) This follows indeed from (3), again a bit as before, for the group-likes. O

Many other things can be said about the primitive elements, and we will leave their
study in the case of the function algebras A = F(G), and of the group algebras A = F[H|
too, which is something quite routine, as an instructive exercise.

Along the same lines, as a third and last construction now, motivated this time by the
function algebras A = F(G), which are commutative, we have:

THEOREM 2.22. Given a Hopf algebra A, we can talk about its center
Z(A)C A
which 1s an associative subalgebra, having the following properties:

(1) For A= F(G), and more generally when A is commutative, Z(A) = A.
(2) For A = F[H], this algebra Z(A) is the algebra of central functions on H.
(3) In particular, when all conjugacy classes of H are infinite, Z(A) = F.

Proor. This is something quite self-explanatory, and a bit in analogy with Theorem
2.20, and Theorem 2.21. Consider indeed the central elements of a Hopf algebra A:

Z(A) = {a € Alab = ba, Vb € A}

It is then clear that these central elements form an associative subalgebra, and:
(1) For A = F(G), and more generally when A is commutative, Z(A) = A.

(2) For A = F[H], consider a linear combination of group elements, as follows:
ey
g

By linearity, this element a € F[H] belongs to the center of F[H]| precisely when it
commutes with all the group elements h € H, and this gives:

a€ Z(A) <= ah=ha

= ) Agh=) Ahg
g g

= > Atk =) Nk
k k

< -t = -1
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We conclude that A must satisfy Ay, = Ay, and so must be a central function on H,
as claimed, with the precise conclusion being that the center is given by:

Z(A) = {Z)‘gg Agh = Ahg}

(3) This is a consequence of what we found in (2), and of the fact that the elements
a € F[H] have by definition finite support. Indeed, when the group H is infinite, having
the infinite conjugacy class (ICC) property, there is no central function having finite
support, except for scalar multiples of the unit, so we have Z(A) = F', as stated. O

Many other things can be said about the central elements, and we will leave their
study for the enveloping Lie algebras A = Ug as an instructive exercise.

So long for special elements, inside an arbitrary Hopf algebra. The above results are
in fact just the tip of the iceberg, and we will be back to this on several occasions, in
what follows, and notably in chapter 3 below, when doing representation theory.

Finally, for our discussion to be complete, many things can be said about the group-
like, primitive and central elements, in relation with the various possible operations for
the Hopf algebras. But here, again, we will leave all this material for later.

2d. Haar measure

As a last topic for this chapter, which is something which is of key importance too,
let us discuss now Haar integration. Let us formulate, indeed:

DEFINITION 2.23. Given a Hopf algebra A, a linear form [ : A — F satisfying

(/@M)A:/@l

is called a left integral. Similarly, a linear form [ : A — F satisfying

(M®/>A:/Q1

is called a right integral. If both conditions are satisfied, we call [ : A — F an integral.

These notions are motivated by the Haar integration theory on the various types of
groups, such as finite, compact, or locally compact. Among others, and in answer to a
question that you might have right now, we have to make the distinction between left
and right integrals, because for the generally locally compact groups, these two integrals
might differ. But more on such topics, which can be quite technical, later.

As a first illustration, in the case of the function algebras, A = F(G), with G finite
group, these notions are all equivalent, and lead to the uniform integration over G:
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THEOREM 2.24. For a function algebra, A = F(G) with G finite group, with the
notation [ ¢ = ngp )Ydg, the left integral condition takes the following form,

/Gw(gh)dQZ/GsO(g)dg

and the right integral condition takes the following form,

/G o(hg)dg = / 2(9)dg

and in both cases the unique solution is the um’form integration over G,
/ g)dg = Z w(g
G geG
under the normalization assumption [1=1.
Proor. This is something quite Self-explanatory, the idea being as follows:
(1) With the convention [ ¢ = [ ¢(g)dg from the statement, we have:

([oi)ae - ( [ @id) 0.1) (o)
= /G ©(gh)dg

Thus, the left integral condition reformulates as in the statement.

(2) Again with the convention [ ¢ = f g)dg from the statement, we have:

(id@/)A = (id@/)A[(h,g)%so(hg)}
= /Gw(hg)dg

Thus, the right integral condition reformulates as in the statement.

(3) When looking now for solutions, be that either for left invariant forms, or right
invariant forms, by taking as input Dirac masses, ¢ = J, with g € G, we are led to the
conclusion that our invariant linear form must satisfy the following condition:

/592/6h s Vg,h
G G

Thus the correspoding density function must be constant over G, and under the extra
assumption [ 1 =1, the only solution is the uniform, mass 1 integration, as stated. [

As a second illustration, for the group algebras, A = F[H], with H arbitrary group,
the notions in Definition 2.23 are again equivalent, with unique solution, as follows:
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THEOREM 2.25. For a group algebra, A = F[H|, with H arbitrary group, the various
invariance notions for a linear form [ : A — F are equivalent, with the solution being

/gzdg,l

under the normalization assumption [1=1. When H is finite and abelian we have

/=),

with H being the dual finite abelian group.

Proor. This is again something quite self-explanatory, the idea being as follows:

(1) In what regards the left invariance condition, we have the following computation,
using the fact that the group elements g € H span the group algebra F[H]:

(/@z’d)A:/(.)l PN (/@id)A(g):/g-l
— (/@id)(g@g):/g-l
— /g.g:/g.1

~ frr= [

Thus with the normalization [ 1 = 1, the solution is unique, [ g = d,1, as stated.

(2) In what regards the right invariance condition, we have the following computation,
using again the fact that the group elements g € H span the group algebra F[H]:

(z’d@/)A:/(.)l (id@/)A(g):/g-l
e oen-f>
Joom for

~ frr= [

111

Thus, with the normalization [ 1 = 1, the solution is unique, [ g = d 1, as stated.

(3) This is something which follows from the uniqueness of the integral, both from
Theorem 2.24 and from here, and which is clear as well from definitions. U
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Inspired by the above, a number of things can be said about integrals in the finite
dimensional algebra case, by using the duality A <> A* from chapter 1, as follows:

THEOREM 2.26. For a finite dimensional Hopf algebra A, in the context of the duality
A A", the left and right integrals, regarded as elements ft € A*, must satisfy

t t
[e=cen=0 ., w-cen-[ =0
for any p € A*. At the level of the main examples, of mass 1, these are as follows:
(1) For A= F(QG) the integral is ft = ‘—é' >_gec 9; as element of A* = F[G].
(2) For A = F[H] the integral is ft = 01, as element of A* = F(H).

PROOF. In what regards the left integrals, we have the following equivalences:

(/@id)A:/(.)l — (/@z’d)A:/®u
= At(/Z@m‘d)/t@z:t
— Att(/ ®i6i>90=(/ @ut)so
= [re=[ =0

Similarly, in what regards the right integrals, we have the following equivalences:

(z’d@/)A:/(.)l — (id@/)A:/@m
= At(id®/z)/t®1tf
o N(f@{)wz(/®M>w
= o[ =[ =0

Thus, main assertion proved, and in what regards now the illustrations:

(1) For A = F(G) we have A* = F[G], with the isomorphism F[G] ~ F(G)* coming
via g — 4. But this isomorphism maps ﬁ dgecd |—é| >_gec 0g, which is exactly the
normalized, mass 1 integral of F'(G), as computed in Theorem 2.24.

(2) Similarly, for the algebra A = F[H] we have A* = F(H), with the isomorphism
F(H) ~ F[H|* coming via 6, — J,. But this isomorphism maps §; — d;, which is exactly
the normalized, mass 1 integral of F[H|, as computed in Theorem 2.25. O
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As a comment here, with a bit more algebraic work, there are many other things that
can be said, in the finite dimensional case, as a continuation of the above. For more on
all this, further theory and examples, we refer to any specialized Hopf algebra book.

In the general case now, observe that the invariance conditions in Definition 2.23 can
be written as follows, in terms of the usual convolution operation ¢ % 1) = (@ * ¥)A:

/*id:id*/:/(.)l

There is a bit of analogy here with what we did in the beginning of this chapter, in
relation with the antipode S, and many things can be said here. We have indeed:

THEOREM 2.27. Both the left and right integrals [ : A — F, when normalized as to
have [1 =1, satisfy the following idempotent linear form condition:

[+]-]

At the level of the main examples, for this latter condition, these are as follows:

(1) For A = F(G) this condition is satisfied in fact by the normalized uniform inte-
gration form over any subgroup H C G.

(2) For A = F[H] this condition is satisfied in fact by the normalized uniform inte-
gration form over any quotient group H — K.

ProOF. We have several asssertions here, the idea being as follows:

(1) In what regards the first assertion, for a left integral [ : A — F, normalized as to
have [1 =1, we have indeed the following computation:

[+] = (Je))
= Jel(Jem)]
_ /OU(.)@
- fofw
- o
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(2) Also in what regards the first assertion, for a right integral [ : A — F, again
normalized as to have [ 1= 1, the computation is similar, as follows:

[+ = (=)
s
el
o
- o

(3) Finally, regarding the various generalizations of the above computations, in the
special cases A = F(G) and A = F[H], as indicated in the statement, we will leave these
as an instructive exercise. We will be back to this in the next chapter, when talking about
quantum subgroups in general, and subgroups of group duals in particular. O

Summarizing, the theory of integrals for the Hopf algebras brings us right away into a
number of interesting topics, featuring duality, subgroups, quotients, and more. We will
be back to this later, and discuss as well later the relation with representation theory.

2e. Exercises

We had a lot of interesting algebra in this chapter, sometimes going towards basic
functional analysis, or differential geometry, and as exercises, we have:

EXERCISE 2.28.
EXERCISE 2.29.
EXERCISE 2.30.
EXERCISE 2.31.
EXERCISE 2.32.

EXERCISE 2.33.

Learn more about the Hopf algebra antipode S.

Learn more about the square of the antipode S®.

Clarify the missing details for the group-like elements.
Clarify the missing details for the primitive elements.
Work out some further examples for the central elements.

Compute the Haar integral, for some algebras of your choice.

As bonus exercise, reiterated, learn some functional analysis, which is obviously related
to all this. The more you will know here, in advance, the better that will be.



CHAPTER 3

Product operations

3a. Representations

We have seen so far that some interesting general theory can be developed for the
Hopf algebras, in analogy with the basic theory of groups, by using the Hopf algebra
maps A, e, 5, and the axioms satisfied by them. However, when doing group theory, you
won’t get very far just by playing with m,u, 4, and the situation is pretty much the same
with the Hopf algebras, where you won’t get very far just by playing with A, e, S.

In order to reach to a more advanced theory, we must talk about actions and coactions,
and about representations and corepresentations. Many things can be said here, and in
what follows we will present the basics, mostly definitions, that we will use right after
for talking about various product operations, and keep for later a more detailed study of
this, notably in relation with the notion of semisimplicity, and cosemisimplicity.

Let us begin with something straightforward, namely:

DEFINITION 3.1. An action, or representation, of a Hopf algebra A on a finite dimen-
sional vector space V' is a morphism of associative algebras, as follows:
n:A— L(V)
Equivalently, by using a basis of V', this is the same as having a morphism as follows:
m:A— My(F)
In this latter situation, we write ™ = (m;;), with m;; : A — F given by m;;(a) = w(a);;.
Observe that the above notion has nothing to do with the Hopf algebra maps A, ¢, .9,

with only the associative algebra structure of A being involved. However, when A is a
Hopf algebra, as above, several interesting things can be said, as we will soon discover.

To start with, in the context of Definition 3.1, the number N = dimV is called
dimension of the representation m. The simplest situation, namely N = 1, corresponds
by definition to a representation as follows, also called character of A:

T: A= F

So, let us first study these characters, under our assumption that A is a Hopf algebra,
as in Definition 3.1. We can say several things here, as follows:

57
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THEOREM 3.2. The characters of a Hopf algebra m: A — F are as follows:
(1) When A is finite dimensional, m € A* must be a group-like element.
(2) When A = F(G) with |G| < oo, we must have w(f) = f(g), for some g € G.
(3) When A = F[H]|, our character must come from a group morphism p: H — F*.

Proor. This follows from the general Hopf algebra theory that we developed in chap-
ter 1, the details of the proof, and of the statement too, being as follows:

(1) Assuming dim A < oo, we know from chapter 1 how to construct the dual Hopf
algebra A*, consisting of the linear forms 7 : A — F. So, let us pick such a linear form,
and see when this form is a character. But this happens precisely when 7 is multiplicative,
7(ab) = w(a)mw(b), and we can process this latter condition as follows:

m(ab) = m(a)mw(b) ™(a®b) =m(r @ m)(a ® b)

mm =m(r Q@ 7)
m'tt = (7' @ 7")m!
m'7t(1) = (7" @ ©")m'(1)
mir'(1) = (7" @) (1 ®1)
min'(1) = 7*(1) ® 7'(1)

111ttt

Now forgetting about A, and using the notation A = m! for the comultiplication of
A*, and also by identifying 7'(1) € A* with = € A*, this condition reads:

Alm)=r®m
Thus, we are led to the conclusion in the statement.

(2) Assume now A = F(G), with |G| < co. Our Hopf algebra A being finite dimen-
sional, what we found in (1) above applies, and we conclude that the characters of A
correspond to the group-like elements of the following Hopf algebra:

F(Q)* = FIG]

But the group-like elements of F[G] are very easy to compute, due to:

A(Z)\gg> => XNg®yg

geG geqG

Indeed, this formula shows that the group-like elements of F'[G] are precisely the group
elements g € G. Thus, as a conclusion, the characters 7 : A — F must come from the
group elements g € GG, and now by carefully looking at what we did in the above, we can
also say that the connecting formula is the one in the statement, namely:

m(f) = f(9)
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(3) Again, this is something which comes from the general theory from chapter 1.
Indeed, assuming A = F[H], to any character 7 : A — F we can associate a group
morphism p : H — F*, simply as being the following composition:

p:HCF[H - F

Conversely now, given a group morphism p : H — F*, we can associate to it a Hopf
algebra character 7 : F[H] — F, simply by linearizing, as follows:

™ (Z A h) =3 Mup(h)

heH heH

Thus, we have our bijection, as claimed in the statement. U

Many other things can be said, as a continuation of the above. Recall for instance
from chapter 1 that to any finite abelian group G we can associate its dual G with respect
to a field F', as being the finite abelian group formed by the group characters of G:

~

Gz{p:G—)F*}

In fact, again following chapter 1, we can perform this construction for any group G,
not necessarily finite, or abelian, and we obtain in this way a certain group G. Of course,
this construction is not always very interesting, for instance because there are non-trivial,
and even infinite groups G, for which G = {1}. However, our construction makes sense,
as something rather theoretical, and with this in hand, what we found in Theorem 3.2
(3) says that the characters of A = F[H] come from the following group elements:

peH

Moving forward now, in the general context of Definition 3.1, we have so far some
good understanding on what happens in the case dim V' = 1, coming from Theorem 3.2.
In general things can be quite complicated, and as a first result here, regarding the main
examples of Hopf algebras, namely F'(G), with G finite group, and F[H|, with H arbitrary
group, we can say a few things about representations, as follows:

THEOREM 3.3. The following happen:

(1) Given a finite group G, and elements g1, ...,gn € G, we have a representation

m: F(G) = My(F), given by ©(f) = diag(f(g1),---, f(gn))-
(2) Given a group H, the representations w : F|H| — My(F') come by linearization
from the group representations p : H — GLx(F).

PROOF. These assertions come as a continuation of Theorem 3.2 (2) and (3), with
their proof, along with a bit more on the subject, being as follows:
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(1) Given a finite group G, and a field F', let us try to find representations, in the
sense of Definition 3.1, of the corresponding function algebra of G:
m: F(G) = My(F)

Now observe that, since the algebra F(G) is commutative, so must be its image
Im(m) C My(F). Thus, as a first question, we must look for commutative subalge-
bras A C My(F). But the standard choice here is the algebra of diagonal matrices
A C My(F), and its various subalgebras A C A, which are all commutative.

(2) With this idea in mind, in order to find basic examples, let us look for representa-
tions as follows, with A C My(F) being the algebra of diagonal matrices:

7 F(G) = A

But such a representation must be of the special form © = diag(my,...,7x), with
7+ F(G) — F being certain 1-dimensional representations, or characters. Now since
such characters must come from group elements, we must have m;(f) = f(g;), for certain
elements g; € G, and we are led to the formula in the statement, namely:

f(g1)
m(f) =
fgn)

(3) Summarizing, we have proved the result for F'(G), along with a bit more, namely
the fact that any representation of type 7 : F(G) — A C My(F') appears as in the state-
ment. It is possible to say more about this, for instance by spinning our representations
with the help of a matrix U € GLy(F'), but no hurry with this, and we will leave this
material for later, when systematically doing representation theory.

(4) With this done, let us discuss now the second situation in the statement, where
we have a group H, which can be finite or not, and a field F', and we are looking for
representations of the corresponding group algebra, as follows:

7 F[H] — My(F)
By restriction to H C F[H]|, we obtain a certain map, as follows:
p: H — My(F)

(5) Now observe that, since 7 is a morphism of algebras, this map p must be multi-
plicative with respect to the group structure of H, in the sense that we must have:

p(g)p(h) = p(gh)

In particular with h = g~! we can see that each p(g) must be invertible, and so our
map p must be in fact a group morphism, as follows:

p:H — GLy(F)
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(6) But this gives the result. Indeed, by linearity, the representation 7 is uniquely
determined by p, and conversely, given a group morphism p : H — GLy(F') as above, by
linearizing we obtain an algebra representation 7 : F[H] — My(F), as desired.

(7) Thus, done with the second assertion too, and as before with the first assertion,
several things can be added to this. For instance when H is finite and abelian, we know
from chapter 1 that we have an isomorphism as follows, with G = H:

F(G) ~ F[H]|

In view of this, the question is, how do the examples of representations of F(G)

constructed in (1) fit with the arbitrary representations of F[H] classified in (2).

(8) In answer, the representations classified in (2) correspond, via Pontrjagin duality,
to those constructed in (1), further spinned by a matrix U € GLy(F'), along the lines
suggested in step (3) above. We will leave the clarification of this as an instructive exercise,
and we will come back to this subject, with full details, in due time. Il

Many other things can be said, as a continuation of the above. We will be back to
this, once we will have more general theory to be applied, and examples to be studied.

3b. Corepresentations

Moving forward, in order to reach to a continuation of the above, let us recall that
a Hopf algebra A = (A, m,u, A, g,5) is a special type of bialgebra A = (A4, m,u, A, ¢),
which itself is a certain mix of an algebra (A, m,u), and a coalgebra (A, A,e). We have
not talked about such things so far, but right now is the good time to do it.

Indeed, with Definition 3.1 being something only related to the algebra structure of
A, the question is, what is the “dual” definition, related to the coalgebra structure of A.
In answer, such a dual definition exists indeed, as follows:

DEFINITION 3.4. A coaction, or corepresentation, of a Hopf algebra A on a finite
dimensional vector space V' is a linear map o'V — V @ A satisfying the condition

(a®id)a = (id® A)a
called coassociativity. FEquivalently, by using a basis of V', and writing
a(ei) = Z Gj X uji
J

with w;; € A, the square matriz u = (w;;) must satisfy the condition
Aluy) = Zuzk & Uk
k

also called coassociativity.
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As a first observation, it looks like we forgot here to say something in relation with ¢,
but that condition is automatic, and more on this in a moment. Also, the fact that the
condition at the end is indeed equivalent to that in the beginning is something that must
be checked, and this can be done by comparing the following two formulae:

(id ® A)ale;) = (id @ A) Z € @ Uy = Z e; ® A(ug;)

K3 7

(a ®id)ale;) = (o ®id) Z er ® U = Z e ® Ui @ Uj
k ik
Getting back to Definition 3.4 as formulated, as already said, this appears as a “dual”
of Definition 3.1, and similar comments can be made about it. Let us start with:

PROPOSITION 3.5. The 1-dimensional corepresentations of A correspond to the ele-
ments a € A satisfying

Ala) =a®a
which are the group-like elements of A.

ProOOF. This is indeed clear from definitions, because at N = 1 the corepesentations
of A are the 1 x 1 matrices u = (a), satisfying A(a) = a ® a. O

Observe the similarity with what we know from Theorem 3.2 (1). However, at the
level of the proofs, Theorem 3.2 (1) was something rather complicated, while the above
is something trivial. Quite surprising all this, hope you agree with me. In short, we
have something interesting here, philosophically speaking, suggesting that Definition 3.4
is something quite magical, when compared to Definition 3.1. Good to know, and because
of this, we will be often prefer Definition 3.4 over Definition 3.1, in what follows.

As another comment, Definition 3.4 only involves the comultiplication A, and you
might wonder about the role of the counit £ and the antipode S, in relation with corep-
resentations. In answer, at N = 1 the situation is very simple, because, as we know well
from chapter 2, the group-like elements a € A are subject to the following formulae:

gla)=1 , S(a)=a"

A similar phenomenon happens in general, with the result here, which can be regarded
as being a useful complement to Definition 3.4, being as follows:

THEOREM 3.6. Given a corepresentation u € My(A), we have:
(ideu=1 , (id®S)u=u"

Also, the associated coaction o : FN — FN @ A is counital, (id ® €)a = id.
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PROOF. There are several things going on here, the idea being as follows:

(1) Let us first prove the second formula, the one involving the antipode S. For this
purpose, we can use the Hopf algebra axiom for the antipode, namely:

m(S ®id)A = m(id ® S)A = ¢(.)1
Indeed, by applying this to u;;, and setting v = (id ® S)u, we have, as desired:
m(S ® id)A(u;;) = m(id @ S)A(u;j) = e(usj)
= > S(um)ur; = Y upS(ug) = &y
k

k
== Z VigUgj = Zuikvkj = 0y
k k
= (vu)iy = (wv)y; = b
= ov=u!

(2) Let us prove now the first formula, the one involving the counit . For this purpose,
we can use the Hopf algebra axiom for the counit, namely:

(e®id)A = (id®e)A =id
Indeed, by applying this to u;;, and setting £ = (id ® €)u, we have:
(e @ id)Alui;) = (id @ €) Aui;) = i

Zc’(Uik)Ukj = Zuikéf(ukg’) = U5

=
k k
— Z Eipuy; = Z Uik By = uy;
k k
= (Bu)ij = (uE)i; = uy
— Fu=ub=u
Now since u is invertible by (1), we obtain from this, as desired:
E=1

(3) Regarding now the last assertion, our claim here is that, in the general context of
Definition 3.4, the following two counitality conditions are equivalent:

(ld@ec)a=1id <= (id®@c)u=1

But this is something which is clear, coming from the following computation:

(Zd® 6)0&(60 = (Zd@ 6) Z@j X Uj; = Zejs(uji)

J J
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Indeed, we obtain from this the following equivalences:
(Zd@g)()é < (2d®€)06(€z) =€
e E(Uj,L') = 5@'
— (d®ecu=1

Thus, we are led to the conclusion in the statement. U

Still talking generalities, in the finite dimensional case we have the following result,
making it clear that Definition 3.1 and Definition 3.4 are indeed dual to each other:

THEOREM 3.7. Given a finite dimensional Hopf algebra A:

(1) The representations of A correspond to the corepresentations of A*.
(2) The corepresentations of A* correspond to the representations of A.

PROOF. In view of the duality result from chapter 1, it is enough to prove one of the
assertions, and we will prove the first one. So, consider a linear map, as follows:

WIA—)MN(F)

As in Definition 3.1, let us construct the coefficients m;; : A — F' of this map by the
following formula, which must hold for any a € A:

mij(a) = 7(a)i

Now observe that each of these coefficients 7;; : A — F' can be regarded as an element
of the dual algebra A*. As in Definition 3.4, we denote by u,; these elements:

T35 = U4 c A"

With these conventions made, we must prove that 7 is a representation of A precisely
when w is a corepresentation of A*. But this can be done as follows:

(1) Our first claim is that 7 is associative precisely when u is coassociative. But this
is something straightforward, which can be established as follows:

n(ab) = w(a)m(h) <= wylab) =Y mi(a)my,(b)

= uylab) =Y u(a)ug, ()
k

!

Afug)(a @b) = (Z ®ukj) (a® )

Alui;) = Z Uik & Up;j
k

!
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(2) Our second claim is that 7 is unital precisely when w is counital. But this is again
something straightforward, which can be established as follows:

(1) =1 <= m;(1) =4
= wu,(l) =6
— eluy) = 0y
Thus, we are led to the conclusion in the statement. [l
Finally, at the level of basic examples, we have the following result, which is in analogy
with what we know about representations, from Theorem 3.3:

THEOREM 3.8. The following happen:

(1) Given a finite group G, the corepresentations u € My(F(G)) come, via u;;(g) =
p(9)i; from the group representations p : G — GLy(F).

(2) Given an arbitrary group H, and elements g1,...,gn € H, we have a corepre-
sentation u € Mn(F[H]), given by u = diag(g1,-..,gn).

PROOF. As before with Theorem 3.3, many things can be said here, and we will come
back to this, on the several occasions, the idea for now being as follows:

(1) To start with, in the case of the finite groups, which produce finite dimensional
Hopf algebras, the result formally follows from Theorem 3.3, via the duality from Theorem
3.7. Thus, done with (1), and with (2) being trivial anyway, done.

(2) However, all this is a bit abstract, so let us check as well (1) directly. Given a
finite group G, the question is when w;; € F/(G) satisfy the following conditions:

Auyg) =Y ug®@uy eluy) =0
k

But, by doing exactly the same computations as those in the proof of Theorem 3.7,
the answer here is that this happens precisely when the following is a representation:

uii(g) . win(g)
g— : :
uni1(g) .. unn(g)
Thus, we have a bijection with the representations p : G — GLy(F), as stated.

(3) Now let us look at the second assertion in the statement. Given a group H, we
know from Proposition 3.5 that all the group elements g € H € F[H] are 1-dimensional
corepresentations. Now let us perform a diagonal sum of such corepresentations:

(%1

gn
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This matrix is then a corepresentation of F'[H], as stated, with both the coassociativity
and counitaly axioms being clear. And with the remark that we actually proved a bit
more, namely that the diagonal corepresentations of F[H| are those in the statement.

(4) Finally, as before in the proof of Theorem 3.3, some further things can be said
here, by conjugating such diagonal corepresentations with matrices U € GLy(F'), and by
making the link with the first assertion, in the abelian group case. But, also as before, on
several occasions, we will rather leave this for now as an instructive exercise, and come
back to all this later, when systematically doing representation theory. U

As a conclusion to all this, we have now a nice representation and corepresentation
theory, up and working, for the Hopf algebras, which is related in a nice way to the
duality considerations from chapter 1, and with the main examples, which are all quite
illustrating, coming from the group algebras of type F(G) and F[H]. However, this
remains just the tip of the iceberg, and as questions still to be solved, we have:

(1) Fully clarify the classification of the representations and corepresentations of the
group algebras of type F(G) and F[H], in the missing cases.

(2) Clarify as well what happens to the duality between representations of A and
corepresentations of A*, when A is no longer finite dimensional.

(3) And finally, discuss what happens for the enveloping Lie algebras Ug, in relation
with the representations of the associated Lie groups G.

These questions are all fundamental, but none being trivial, we will leave them for
later, when discussing more systematically representation theory.

3c. Product operations

Let us discuss now some natural operations on the Hopf algebras, inspired by those
for the groups. We will heavily rely here on the following speculation, from chapter 1:

SPECULATION 3.9. We can think of any finite dimensional Hopf algebra A, not nec-
essarily commutative or cocommutative, as being of the form

A= F(G) = F[H]

with G, H being finite quantum groups, related by a generalized Pontrjagin duality. And
with this generalizing what we know about the finite abelian groups.

As explained in chapter 1, this speculation is here for what it is worth, on one hand
encapsulating some non-trivial results regarding the finite abelian groups, and the finite
dimensional Hopf algebras, and the duality theory for them, but on the other hand,
missing some important aspects of the same theory of finite dimensional Hopf algebras.
Thus, interesting speculation that we have here, but to be taken with care.
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In relation with various product operations, what we would like to have are product
operations for the Hopf algebras «, subject to formulae of the following type:

F(G)* F(H) = F(G o H)

Equivalently, at the dual level, what we would like to have are product operations for
the Hopf algebras %, subject to formulae of the following type:

FIG] % F[H] = F(G e H)

But probably too much talking, let us get to work. We first have the tensor products
of Hopf algebras, whose construction and main properties are as follows:

THEOREM 3.10. Given two Hopf algebras A, B, so is their tensor product
C=A®B

and as main illustrations for this operation, we have the following formulae:

(1) F(G x H) = F(G) ® F(H).
(2) FIG x H] = F|G] ® F[H].

Proor. This is something quite self-explanatory, relying on the general theory of the
tensor products ® explained in chapter 1, the details being as follows:

(1) To start with, given two associative algebras A, B, so is their tensor product as
vector spaces A ® B, with multiplicative structure as follows:

(a@b)(d @V)=ad @b , 1=1®1

Now assume in addition that A, B are Hopf algebras, each coming with its own A, e, S
operations. In this case we can define A, e, .S operations on A ® B, as follows:

Ala®b) = A(a)i3A(b)2a

e(a®b) =¢e(a)e(b)
S(a®b) = S(a) ®S(b)
(2) But with the above formulae in hand, the verification of the Hopf algebra axioms

is straightforward. Indeed, in what regards the comultiplication axiom, we have:

(ARid)Ala®b) = (A®id®id)(A(a)i13A(b)2s)
[(A @ id)A(a)]135[(A @ id) A(b)]246
[(id @ A)A(a)]135[(id @ A)A(b)]246
= (id®id® A)(A(a)13A()24)
(id ®@ A)A(a ® b)
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As for the counit and antipode axioms, their verification is similar, with no tricks of
any kind involved. To be more precise, in what regards the counit axiom, we have:

(e®id)A(a®b) = (®e®id®id)(A(a)13A(b)24)
= [(e®id)Aa)h[(e @ id)A(D)]2
= a1by
= a®b
Similarly, we have the following computation, for the other counit axiom:
(id@e)Ala®b) = (Id®id®e® e)(A(a)i3A(b)2a)
= [(id @ e)A(a))1[(id ® €) A(D)]2
= aiby
= a®b
Finally, for the antipode axiom, we have the following computation:
m(S ®@id)A(a®@b) = (miz3ma)(S @S ®@id @ id)(A(a)13A(b)2)
= (m(S®id)A(a));(m(S @ id)A(b))s
= (e(a)1)1(e(b)1),
= ¢(a)l ®e(b)1
= g(a®b)1®1
Similarly, we have the following computation, for the other antipode axiom:
m(id @ S)A(a®@b) = (mizma)(id®id® S @ S)(A(a)13A(b)2)
= (m(id® S)A(a));(m(id ® S)A(D))a
= (e(a)1)1(e(b)1)2
= e(a)l ®@e(b)1
= g(a®b)1®1
We conclude that C' = A ® B is indeed a Hopf algebra, as stated.

(3) In what regards now the formula F(G x H) = F(G)® F(H), when G, H are finite
groups, as well as the formula F|G x H] = F[G]® F[H], when G, H are arbitrary groups,
these are both clear from the definition of the tensor product operation. Il

As a continuation of the above, in what regards the special elements, we have:

PROPOSITION 3.11. The special elements of A® B are as follows:

(1) Gagp contains G4 X Gp.
(2) Pagp contains Py, Pg.
(3) Z(A® B) = Z(A) ® Z(B).
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Proor. This is something quite self-explanatory, the idea being as follows:

(1) In what regards the group-like elements, A(c) = ¢ ® ¢, assuming a € G4,b € Gp
we have the following computation, showing that we have a ® b € G axp:

Ala®b) = Ala)13A(b)ay
= (a®a)3(b®b)oy
= a®b®a®b
But this gives the inclusion in the statement, G4 X Gg C GagB-

(2) In what regards the primitive elements, A(c) = c® 1+ 1 ® ¢, assuming a € P4 we
have the following computation, showing that we have a ® 1 € Py p:

A(a@l) = A(a)lg
= (CL®1+1®O,)13
= a®1II®I1I+1I®x1I®aea®1l

Similarly, assuming b € Pg we have 1 ®b € Pagp. We therefore conclude that the Lie
algebra P, p contains the Lie algebras Py, Pg, as stated.

(3) In what regards the center, Z(A) ® Z(B) C Z(A ® B) is clear. Conversely, we
have the following computation, assuming that the elements b; are linearly independent:

i

Zai®bl~,a®1 =0

aia®bi:Zaai®bi

a;a = aa;

a; € Z(A)

Ll

Similarly, assuming that the elements a; are linearly independent, we have:

Thus we have the reverse inclusion too, so Z(A® B) = Z(A) ® Z(B), as stated. [

We have as well a result regarding the Haar integration, as follows:

THEOREM 3.12. The Haar integral of a tensor product A ® B appears as

A

with this happening for left integrals, right integrals, and integrals.
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Proor. This is again something self-explanatory, the idea being as follows:

(1) In what regards the left integrals, the verification goes as follows:

(/A®B®id) Ala®b) = (/A®/B®id®z’d) (A(a)13A(b)21)
< (e )sal [(fo)so),

/Al)</3b1>

a-/Bb-1®1

/A®/B)(a®b)-1®1

= / (a®b)-1®1
ARB

(2) In what regards the right integrals, the verification is similar, as follows:

(zm/A@B) Ala®b) = (@de@zd@/A@/B) (A(a)13A(b)s1)
= (e ) aw] (e f) 20,
= (L), (L),
_ /Aa./Bb.lm
- (fof)uene

= / (a®b)-1®1
A®B

(3) Finally, in relation with all this, there is a uniqueness discussion to be made too,
which is quite standard, and that we will leave here as an instructive exercise. U

Il Il Il
N~

Summarizing, we have now a good understanding of the tensor product operation,
with good results all around the spectrum, with respect to the general theory developed
in chapters 1-2. Many other things can be said, for instance with some straightforward
results regarding the representations and corepresentations, introduced earlier in this
chapter. We will be back to tensor products on a regular basis, in what follows.
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Moving forward, now that we know about tensor products, we can do exactly the same
thing with free products, and we are led in this way to the following result:

THEOREM 3.13. Given two Hopf algebras A, B, so is their free product
C=AxB

and as main illustrations for this operation, we have the following formulae:

(1) F(GxH) = F(G) * F(H), standing as definition for G H, as quantum group.
(2) F|G* H) = F|G] *= F[H].

PRrooF. This is again something self-explanatory, save for the abstract meaning of the
object G' % H appearing in (1), that we will explain below, the details being as follows:

(1) To start with, given two associative algebras A, B, so is their free product A x B,
with the multiplicative structure being by definition as follows:

1=14=1p

Now assume in addition that A, B are Hopf algebras, each coming with its own A, e, S
operations. In this case we can define A, ¢, S operations on A x B, as follows:

Al ab;..) = ... Aa)Aby) . ..

(2) But with the above formulae in hand, the verification of the Hopf algebra axioms
is straightforward. Indeed, in what regards the comultiplication axiom, we have:
(AR IA(..ab;...) = (A®id)(...A(a;)Ab;)...)
= . [(A®id)A(w)][(A ®id)Ab)] ...
o Gd @ A)A(a)][(id @ A)A(D;)] . ..
= (id@A)(...Aa;)A(b;) . ..)
As for the counit and antipode axioms, their verification is similar, with no tricks of
any kind involved. To be more precise, in what regards the counit axiom, we have:
(e®id)A(...ab;...) = (e®id)(...Aa;)Ab;)...)
= ... (e®id)A(a;)(e @ id)A(b;) . ..
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Similarly, we have the following computation, for the other counit axiom:
(ld®@e)A(...ab;...) = (id®e)(...Aa;)Ab;)...)
= ... (ild®e)Aa;)(id @ e)A(b;) . ..
= ...a;b;...
Finally, for the antipode axiom, we have the following computation:
m(S @ id)A(...ab;...) = m(S®id)(... Ala;)Ab;)...)
= m(...(S®id)A(b;)(S ®id)Ala;) . ..)
= e(...ab;. )1
Similarly, we have the following computation, for the other antipode axiom:
m(id @ S)A(...ab;...) = m(id® S)(...Ala;)Ab;) .. .)
= m(...(1d® S)Ab;)(id ® S)A(a;) . ..)
= e(...ab;. .01
We conclude that C' = A % B is indeed a Hopf algebra, as stated.
(3) In what regards now the formula F(G% H) = F(G) = F(H), when G, H are finite
groups, this stands as a definition for G % H, as a quantum group, the point being that,

unless G or H is trivial, the Hopf algebra F/(G)* F'(H) is not commutative, and so cannot
be understood as being an algebra of functions. Welcome to noncommutativity.

(4) As for the formula F[Gx H| = F[G]* F[H|, with here G, H being arbitrary groups,
possibly infinite, this is something which is clear from definitions. Il

As a continuation of the above, in what regards the special elements, we have:

PROPOSITION 3.14. The special elements of A * B are as follows:

(1) Gasp contains G4 * Gp.
(2) Pasp contains Py, Pg.
(3) Z(AxB)=F, unless A=F, or B=F.

Proor. This is something quite similar to Proposition 3.11, with the various compu-
tations being very similar to those there, the idea being as follows:

(1) As before with tensor products, we have G4, Gg C G a.p, which gives the result.
(2) Also as before with tensor products, we have P4, Pg C Pa.p, as claimed.

(3) Finally, in what regards the center, things are different with respect to Proposition
3.11. Indeed, since the elements a € A — F' cannot commute with the elements b € B — F,
by definition of the free product A* B, we generically have Z(A* B) = F, as claimed. [

We have as well a result regarding the Haar integration, as follows:
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THEOREM 3.15. The Haar integral of a free product A x B appears as

I

with this happening for left integrals, right integrals, and integrals.
PrROOF. This is again something self-explanatory, the idea being as follows:

(1) In what regards the left integrals, the verification goes as follows:

(/A*B@?id) A(oab;...) = (/A*/Bmd) (... Ala)Ab;) . .)
= ...(A@id)A(ai) (/B@”id)ﬁ(bz‘)--.

b - 1...
B

_ /Aal/
_ /A*B(...aib@...)-l

(2) In what regards the right integrals, the verification is similar, as follows:

(id@/A*B) Al abi ) = (id@/A*/B) (. Ala)A®B)...)
_ ...<¢d®/A) Alay) (z’d@/B) A). ..
_ ...Aai~1[3bi-1...
_ /A*B(...aibi...)-l

(3) Finally, in relation with all this, there is a uniqueness discussion to be made too,
which is quite standard, and that we will leave here as an instructive exercise. O

As before with the tensor products, many other things can be said about free prod-
ucts, for instance with some straightforward results regarding their representations and
corepresentations. We will be back to free products on a regular basis, in what follows.

As a further comment here, algebrically speaking, there are several other possible
products, which are quite natural, between the tensor products and the free products.
But things here are quite technical, and we will discuss them later in this book.
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3d. Quotients, subalgebras

Another standard operation, that we would like to discuss now, is that of taking
quantum subgroups, with the result here, at the algebraic level, being as follows:

THEOREM 3.16. Given a Hopf algebra A, so is its quotient B = A/I, provided that
I C A is an ideal satisfying the following conditions, called Hopf ideal conditions,

AYcAI+I®A |, I)=0 , S{U)cCI

and as main illustrations for this operation, we have the following formulae:

(1) F(G)/I = F(H), with H C G being a certain subgroup.
(2) F|G]/I = F[H], with G — H being a certain quotient.

PROOF. As before, this is something self-explanatory, the idea being as follows:

(1) Given an associative algebra A and an ideal I C A, we can certainly construct
the quotient B = A/I, which is an associative algebra. Thus, we must just see when the
Hopf algebra operations A, e, S correctly factorize, from A to B.

(2) Let us first see when A factorizes. If we denote by m : A — B the canonical
projection, the factorization diagram that we are looking for is as follows:

A = A® A
Iy TR
B o ~B® B

We can see that the factorization condition is as follows:

m(a) =0 = (r®@m)A(a) =0
Thus, in terms of the ideal I C A, the following condition must be satisfied:

acel = (n®@m)A(a)=0
But, for an element b € A ® A, we have the following equivalence:
(rRmMb=0 <= be ARI+I®RA
We conclude that the factorization condition for A is as follows:
a€l = Ala) e ARI+I®A

But this is precisely the first condition on I in the statement, namely:

ADCARIT+I®A
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(3) Similarly, the counit e factorizes precisely when the condition (/) = 0 in the
statement is satisfied, with the factorization diagram here being as follows:

A s F

7

(4) Also, the antipode S factorizes precisely when the condition S(I) C I in the
statement is satisfied, with the factorization diagram here being as follows:

A s Aopp
™ OPP
B oo ~ BoPp

(5) Together with the remark that the maps A, e, S, once factorized, will keep satis-
fying the Hopf algebra axioms, automatically, we are led to the first assertion.

(6) In the group setting now, the formula F(G)/I = F(H), with H C G being a
certain subgroup, is something which clear from definitions.

(7) As for the last formula, namely F[G]/I = F[H], with G — H being a certain
quotient, this is something which is clear from definitions too. U

As a continuation of the above, in what regards the special elements, we have:

PROPOSITION 3.17. In what regards the special elements of a quotient B = A/I, the
quotient map A — B induces quotient maps as follows:

(1) GA — GB.

(2) PA — PB.
(3) Z(A) — Z(B).

Proor. This is something quite trivial, because in what regards the group-like ele-

ments, the primitive elements, and the central elements too, their defining formulae pass
to the quotient, in the obvious way. Thus, we are led to the above conclusions. O

We have as well a statement regarding the Haar integration, as follows:
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Fact 3.18. The Haar integral of a quotient B = A/I does not appear as for the other
Hopf algebra operations, simply by factorizing the following diagram,

Ja

A F

but is related however to the Haar integral of A, via a number of more technical formulae,
and with this happening for left integrals, right integrals, and integrals.

PrROOF. This is obviously something quite informal, that we included here for the
sake of symmetry, with respect to the other operations, the idea being as follows:

(1) The first assertion is certainly something which happens, coming from the intuitive
fact that, by taking for instance B = A/A, we have certainly not constructed here the
integral of A, which is well-known to require some hard work, harder than this.

(2) As for the second assertion, this is something more technical, say involving rep-
resentations and corepresentations. We will leave working out the details here, based on
what happens in the cases A = F(G) and A = F[H], as an instructive exercise, and we
will come back to such questions later, under a number of suitable extra assumptions. [J

As before with the tensor and free products, many other things can be said, for instance
with some straightforward results regarding the representations and corepresentations of
quotients. We will be back to quotients on a regular basis, in what follows.

Regarding now taking quotient quantum groups, the result here is quite similar, some-
how dual to Theorem 3.16, but technically very straightforward, as follows:

THEOREM 3.19. Given a Hopf algebra A, any subalgebra B C A satisfying
A(BycB®B , S(B)CB

1s a Hopf algebra, and as main illustrations, we have the following subalgebras:

(1) F(H) C F(G), for any quotient group G — H.
(2) F[H| C F[G], for any subgroup H C G.

PROOF. The main assertion is clear from definitions, because the Hopf algebra axioms
being satisfied over A, they are satisfied as well over the subalgebra B C A. As for the
main illustrations, in the group case, these are as well both clear from definitions. U

The above result is a bit abstract, and as a useful version of it, providing examples,
let us record as well the following statement, that will play an important role later:
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THEOREM 3.20. Given a Hopf algebra A, and a finite dimensional corepresentation
u = (u;;), the subalgebra generated by the coefficients of u,

B =< Wjj >C A

is a Hopf algebra. As main illustrations for this operation, we obtain subalgebras:
(1) F(H) C F(G), with G — H being certain quotients.
(2) F[H] C F[G], with H C G being certain subgroups.

PRrROOF. This is something which follows from Theorem 3.19, and that we will actually
fully clarify later in this book, the idea being as follows:

(1) Given a coalgebra A and a corepresentation u = (u;;), we can certainly construct
the space of coefficients C,, =< w;; >C A, which is automatically a coalgebra. Indeed,
recall that the corepresentations are subject to the following condition:

Alug) = Z Uik Q) Up;
k

But, by using this condition, we see that A leaves indeed invariant C,:
A(C,) C C, ® C,

(2) In the case now where A is a Hopf algebra, by setting B =< C' >C A, our claim is
that we obtain both an algebra and a coalgebra, so that we have a Hopf algebra. Indeed,
in what regards A, the inclusion found in (1) gives, by multiplicativity:

A(B)C B®B

In what regards now the counit e, there is no verification needed, because we can
simply take the restriction of the counit of A, to the subalgebra B C A.

(3) Finally, in what regards the antipode S, things here are more tricky. We can use
here the following formula, that we know from Theorem 3.6:

(id® S)u =u""!

Thus, with the convention that our subalgebra B =< C' >C A contains the inverses
of all invertible elements ¢ € C', we see that S satisfies the following condition:

S(B)C B

Alternatively, the fact that our subalgebra B =< C' >C A contains the inverses of all
invertible elements ¢ € C can come by theorem, under suitable assumptions on the class
of algebras involved. We will be back to this point, later on in this book.

(4) As a conclusion, under the assumptions in the statement, the Hopf algebra maps
A e, S restrict to the subalgebra B =< C' >C A. But the Hopf algebras axioms being
automatic for these restrictions, we are led to the first assertion.



78 3. PRODUCT OPERATIONS
(5) In the group setting now, the formula F(H) C F(G), with G — H being a certain
quotient, is something which is clear from definitions.

(6) As for the last formula, namely F[H| C F[G], with H C G being a certain
subgroup, this is something which is clear from definitions too. U

As a continuation of the above, in what regards the special elements, we have:

PROPOSITION 3.21. The special elements of a subalgebra B C A are as follows,
(1) Gg =G4 NB.
(2) P =PsNB.
and 1n what regards the center, nothing in particular can be said.
ProoF. This is something trivial, the idea being as follows:

(1) The first two assertions are clear, since the comultiplication of B appears by
definition as the restriction of the comultiplication of A. Thus, when it comes to group-
like elements, or to primitive elements, we obtain the formulae in the statement.

(2) As for the last assertion, this is something informal, and we will leave some thinking
here, with various examples and counterexamples, as an instructive exercise, the idea being
that the center of B can be substantially smaller, or larger, than the center of A. O

We have as well a result regarding the Haar integration, as follows:

THEOREM 3.22. The Haar integral of a subalgebra B C A appears as a restriction

=),

and with this happening for left integrals, right integrals, and integrals.

Proor. This is again something quite self-explanatory, and clear from definitions,
with the corresponding commuting diagram here being as follows:

A Ja F
’ I
B
Thus, we are led to the conclusion in the statement. Ul

As before with the products and quotients, many other things can be said, for instance
with some straightforward results regarding the representations and corepresentations of
subalgebras. We will be back to subalgebras on a regular basis, in what follows.

Finally, in relation with the above quotient and subalgebra operations, and with their
main illustrations too, there is some discussion to be made, in the finite dimensional case,
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in the context of the Hopf algebra duality for such Hopf algebras, from chapter 1. To be
more precise, we have here the following result, which clarifies the situation:

THEOREM 3.23. In the context of the duality for finite dimensional Hopf algebras
A A*
the operations of taking quotients and subalgebras are dual to each other.
Proo¥r. This is something straightforward, the idea being as follows:
(1) Consider a finite dimensional Hopf algebra A, with structural maps as follows:
m: AR A— A
u: FF— A
A:A—>ARA
e:A—F
S A— APP

(2) As explained in chapter 1, the dual vector space A*, consisting of the linear forms
v : A — F|is then a Hopf algebra too, with structural maps as follows:

Al AT @ A — A
g F— A
mb: A* — A* @ A
ut  A* = F
St A* — (A¥)oPP

(3) But, with these formulae in hand, it is straightforward to check that the Hopf
algebra quotients of A correspond to the Hopf subalgebras of A*, and vice versa:

BCA <+— C=A"1

B=A/I +— CCA"

(4) Moreover, in the context of the duality between the function algebras A = F(G)
and the group algebras A = F[G], with G being a finite group, we obtain in this way
generalizations of the well-known fact that the quotients of a finite abelian group G
correspond to the subgroups of the dual finite abelian group G, and vice versa.

(5) So, this was for the general idea, that everything comes in the end from what we
know about the finite abelian groups, and we will leave the proof of the various assertions
formulated above, in the precise order that you prefer, as an instructive exercise. U
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3e. Exercises

We had a lot of interesting algebra in this chapter, and as exercises, we have:

EXERCISE 3.24.
EXERCISE 3.25.
EXERCISE 3.26.
EXERCISE 3.27.
EXERCISE 3.28.

EXERCISE 3.29.

Further study the representation theory of F(QG).
Further study the representation theory of F[H].

Fill in the missing details for the ® operation.

Fill in the missing details for the x operation.
Clarify the missing details for the quotient operation.

Clarify the missing details for the subalgebra operation.

As bonus exercise, figure out what happens to all the above when F = C.



CHAPTER 4

Affine algebras

4a. Affine algebras

We have seen so far the Hopf algebra basics, including the theory of the basic op-
erations for the Hopf algebras. We would like to discuss now a number of more tricky
operations on the Hopf algebras, appearing as variations of the above.

For this purpose, let us introduce the following notion, inspired as usual from group
theory, that will play a key role in this book, starting from now, and until the end:

DEFINITION 4.1. We call a Hopf algebra A affine when it is of the form
A=< W5 >
with uw € My(A) being a corepresentation, called fundamental corepresentation.

As already mentioned, this notion is inspired from group theory, and more specifically,
from advanced group theory, our motivation coming from the following facts:

(1) In group theory, at a reasonably advanced level, a natural assumption on a group
G is that this appears as an algebraic group, G C GLy(F'). This is indeed how most of
the examples of groups GG appear, in practice, as groups of invertible matrices.

(2) Observe that any finite group G appears as above, thanks to the Cayley embedding
theorem, G C Sy with N = |G|, coupled with the standard embedding Sy C GLy(F)
given by the permutation matrices, which give an embedding as follows:

G C Sy C GLy(F)

(3) As another key example, which is more advanced, it is known that any compact
Lie group G appears as a group of unitary matrices, G C Uy, so that we have:

G C Uy C GLy(C)

(4) Now the point is that, save for a few topological issues, the fact that a group G is
algebraic is equivalent to the fact that the Hopf algebra A = F(G) is affine, in the sense
of Definition 4.1. Thus, we have here a good motivation for Definition 4.1.

In addition to this, getting now to the group dual level, we have some extra motivations
for Definition 4.1, again coming from advanced group theory, which are as follows:

81
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(1) Again in group theory, at a reasonably advanced level, but this time with the
discrete group theory in mind, instead of the continuous group theory used above, a
natural assumption on a group H is that this group is finitely generated:

H:<gl,...,gN>

(2) Indeed, this is how nearly all the interesting discrete groups appear. In fact, many
of these groups appear by definition via generators and relations, as follows:

H:<gl,...,gN‘R>

(3) As another comment here, passed the wealth of examples, the fact of being finitely
generated is needed for developing the theory, because talking about Cayley graphs and
their metric aspects, random walks and so on, always requires the use of generators.

(4) Now the point is that, save for a few topological issues, the fact that a group H
is finitely generated is equivalent to the fact that the Hopf algebra A = F[H] is affine, in
the sense of Definition 4.1. Thus, we have again a good motivation for Definition 4.1.

Summarizing, in order to reach to a more advanced Hopf algebra theory, we have all
good reasons in this world to assume that our algebras are affine, as in Definition 4.1.
And for ending this discussion, let us formulate our conclusions as follows:

CONCLUSION 4.2. In relation with group advanced theory:

(1) It makes sense to assume that the groups are algebraic, G C GLy(F),

(2) Or to assume that the groups are finitely generated, H =< ¢1,...,gn >,

(3) With this basically corresponding to the fact that F(G) and F[H] are affine,
(4) So, we will assume in what follows that our Hopf algebras A are affine.

And more on this later. Also, we will see many examples of affine Hopf algebras
in what follows, appearing via various operations, the idea being that the affine Hopf
algebras are subject to far more operations than those discussed before. More later.

In order to get started now, we need to know more about corepresentations, and
in particular, about the fundamental one. As a first result, that we will need in what
follows, the corepresentations of an arbitrary Hopf algebra A are subject to a number of
operations, exactly as the group representations in the usual group case, as follows:

PROPOSITION 4.3. The corepresentations of a Hopf algebra A are subject to the fol-
lowing operations, in analogy with what happens for the group representations:
(1) Making sums, u +v = diag(u,v).
(2) Making tensor products, (4 @ v)iq jb = UijVab-
(3) Spinning by invertible scalar matrices, u — VuV 1.
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PROOF. Observe first that the result holds indeed for A = F(G), where we obtain the
usual operations on the representations of G. In general, the proof goes as follows:

(1) Everything here is clear from definitions.

(2) The comultiplicativity condition follows indeed from the following computation:
A((u® v)iagp) = Aluiva)
= A(uij) A(va)

= E Uik®“kj§ Vae @ Ueh
k

C

= § Uik Vge & Uk Veh
ke

= D (U@ )iake ® (U D Ve
kc

(3) The comultiplicativity property of the matrix v = VuV =1 in the statement can be
checked by doing a straightforward computation. Alternatively, if we write u € M, (F)®A,
the usual comultiplicativity axiom, as formulated in chapter 3, reads:

(Zd X A)U, = U12U13

Here we use standard tensor calculus conventions. Now when spinning by a scalar
matrix, the matrix that we obtain is v = VjuV; !, and we have:

(id® A = ViupusVi?
= ViupV ' ViugV!
= V12013
Thus, with usual notations, v = VuV ~! is a corepresentation, as claimed. Il

As a comment now, the various operations in Proposition 4.3 can be viewed as oper-
ations on the class of affine Hopf algebras, the result here being as follows:

PROPOSITION 4.4. We have the following operations on the affine Hopf algebras, with
the convention A, =< u;; >C A, for a corepresentation u € My(A):
(1) (Am Av) — Au+v-
(2) (Au, Ay) — Augo-
(3) (A,u) = (A, VuV1).

ProOF. This is indeed something clear, coming from the various operations on the
corepresentations constructed in Proposition 4.3, and with the remark that, in the context
of the last assertion, we have indeed < u;; >=< (VuV™!);; >, as needed there. g

As a further operation, also inspired from usual group theory, we have:
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THEOREM 4.5. Given a Hopf algebra corepresentation u € M,(A),
U= (t®idu"
15 a corepresentation too, called contragradient, or conjugate to u.
PRroOOF. This is something very standard, the idea being as follows:

(1) To start with, we know from chapter 3 that u is indeed invertible, with inverse
given by u™! = (id ® S)u. Thus, u is well-defined, and in addition, we have:
u=(t®S)u

(2) But with this latter formula in hand, the proof of the corepresentation property
of u goes as follows, by using the formula AS = ¥(S ® S)A from chapter 2:

A(ui;) = AS(uy)
= X(S®S5)A(uy0)
k

= ) S(ur) ® S(uje)
k

= ) Uy @1y
k

(3) Alternatively, we can check the corepresentation property of u as follows, simply
by inverting the corepresentation property of u, written in compact form:
(id @ A)u = uppu;zs = (id® A)u™" = ujzugy
= (tAu = ({t®iduy - (t@id)uy
=  (id® A)u = uyaly3
(4) Thus, one way or another, we get the result. As further comments, observe first

that S? = id implies @ = u. Observe also that when F' = C and u is unitary, u* = u=!,
the matrix « is the usual conjugate, given by u;; = u;;. We will be back to this. |

In analogy now with Proposition 4.4, the above result suggests talking about the op-
eration A, — Ay for the affine Hopf algebras, and also investigating the relation between
the conditions A =< u;; > and A =< 4;; >. In relation with this, which actually leads
to a bit of rethinking of Definition 4.1, let us make the following convention:

CONVENTION 4.6. Given a Hopf algebra A, with a corepresentation u € My(A),

(1) We keep calling A affine when A =< u;; >,
(2) We call A fully affine when A =< w;j, @;; >,

with the remark that, when u ~ @, meaning v = VaV !, these notions coincide.



4A. AFFINE ALGEBRAS 85

Many further things can be said here, and we will see later in this book that the
complex algebra framework, F' = C, brings some clarification in relation with all this, by

using *-algebras and unitary corepresentations, which are subject to @;; = uj;.

However, importantly, we will also see later in this book, when talking F' = C, that
most of the interesting examples satisfy u ~ u, and that in fact, up to passing to projective
versions, which is something quite natural, we can always assume u ~ @. Thus, and for
closing this discussion, Definition 4.1 as stated is basically the good one.

Getting now to what can be done with an affine Hopf algebra, we will use as source
of inspiration what happens for A = F(G). Given an algebraic group G C GLy(F), a
natural construction is that of considering its diagonal torus 7' C G, which is given by
the following formula, (F*) C GLy(F) being the subgroup of diagonal matrices:
T=Gn(F)N

The point now is that we can perform in fact this construction in the general affine
Hopf algebra context, that of Definition 4.1, with the result being as follows:

THEOREM 4.7. Given an undeformed affine Hopf algebra (A, u), the quotient

AP = A/ <u] =y = o‘\ﬁ 7éj>
is an affine Hopf algebra too, called diagonal algebra. Its standard generators
u; € A°
are group-like, and the algebra A° itself is cocommutative.
PRroOOF. This is something very standard, the idea being as follows:

(1) We know from chapter 3 that given a Hopf algebra A, so is its quotient B = A/I,
provided that I C A is an ideal satisfying the Hopf ideal conditions, namely:

Al)CAIT+I®A , «I)=0 , S({U)cI

In our case, the ideal that we are dividing by is given by the following formula:

1= (s i # 7)
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(2) So, let us check that this is indeed a Hopf ideal. Regarding the condition involving
the comultiplication, on the main generators of I we have, as desired:

Alug) = Zuik®ukj
k

= Uy D Uiy + Zuzk & Up;
ki

6A®I+2ﬁ®A
ki
— AQI+I®A

Similarly, in what regards the coefficients of @ = (¢ ® id)u~!, we have:
Ala)) e AQI+I®A
(3) Next, the condition involving the counit is clear as well, because we have:
i#j = eluy) =¢e(uy) =0
In what regards now the last condition, involving the antipode, here we can use the

following formulae, with the first one being something that we know well, and with the
second one coming from it, by using our undeformability assumption S? = id:

u=({t®S)u , u=({t®9Su
Indeed, we obtain from these formulae that for any ¢ # j we have, as desired:
S(uij) =uz €1, S(uy) =wuj €l

(4) We conclude from all this that A° = A/I is indeed an affine Hopf algebra, with its
fundamental corepresentation being as follows, with the convention u;; € A°:

UNN

(5) Regarding now the last assertion, this is clear from the above diagonal form of the
fundamental corepresentation, but we can check this directly too. We have, inside A%:

Auy) = Zuik®uki
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Thus the standard generators are indeed group-like, and this implies of course that
the diagonal algebra A° itself is indeed cocommutative, as stated.

(6) Finally, as a complement to this, in relation with what was said before the state-
ment, for A = F(G) with G C GLy(F) we obtain A° = F(T), with T C G being the
diagonal torus. Also, for A = F[H]|, with H =< ¢1,...,gy > being a finitely generated
group, with fundamental corepresentation u = diag(gi, ..., gn), we obtain A° = A, [

As an interesting variation of the above construction, generalizing it, we have:

THEOREM 4.8. Given an undeformed affine Hopf algebra (A,u) and Q € GLy(F),
4= A/ {(Qu@)y = olvi# j)
1s an affine Hopf algebra too, called spinned diagonal algebra. Its standard generators
(QuQ ™)y € A(SQ
are group-like, and the algebra AéQ itself is cocommutative.

Proor. This follows indeed from Theorem 4.7 applied to the following affine Hopf
algebra, with this latter Hopf algebra coming from Proposition 4.4 (3):

(A ) = (4, QuQ ™)

Alternatively, we can redo the proof of Theorem 4.7, in the present more general
setting, by adding the parameter matrix @) € GLy(F), to all the computations there. [

All the above is quite interesting, making a connection with advanced group theory,
and more specifically, with the notion of maximal torus, from the Lie group theory. Indeed,
at the level of basic examples, we first have the following result:

THEOREM 4.9. For a function algebra A = F(G), with G C GLy(F), the diagonal
algebra A — A° is the algebra of functions on the diagonal torus T = G N (F*)N:

A° = F(T)

More generally, the spinned diagonal algebras A — A‘SQ, with @@ € GLy(F), are the
algebras of functions on the spinned diagonal tori, To = GN Q™Y (F*)NQ:

AS) = F(Typ)
Also, when F' = C, any abelian subgroup H C G appears inside such a torus, H C Tj.
Proor. This is something quite self-explanatory, the idea being as follows:

(1) The first assertion, regarding the diagonal torus, is something routine, coming
from definitions, as explained at the end of the proof of Theorem 4.7.

(2) The second assertion, regarding the spinned tori, is clear from definitions too, via
the same argument, with the above definition for the spinned tori.
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(3) Finally, in what regards the third assertion, given an abelian subgroup H C G, we
can compose this group embedding with the embedding G C GLx(F):
H C G CGLN(F)

Now the group H being assumed to be abelian, when F' = C, by representation
theory, this embedding must be similar to a diagonal embedding. Thus, if we denote by
Q € GLy(F) the matrix producing this similarity, we have an embedding as follows:

HcQ'(FY)Q
But this proves our claim, because by intersecting with G, we obtain:
HcCcGNQ Y FN)Q =Ty,

So, this was for the general idea, and in practice, we will be back to this later, with
full details and explanations, and with some generalizations too. Il

Let us discuss as well the case of the group algebras. Here we have:

THEOREM 4.10. For a group algebra A = F[H], with H =< ¢, ...,gn >, the diagonal
algebra A — A° is the group algebra of the following quotient group,

Ho = H [ (g = g5|3k, Qui # 0, Q1 #0)

with the embedding Ty = ﬁQ cCG=H coming from the quotient map H — Hg. Also, a
similar result holds for A = F[H|, with spinned fundamental corepresentation.

ProoF. This is something elementary, the idea being as follows:

(1) Assume first that H =< ¢y,...,gny > is a discrete group, with dual H diagonally
embedded, that is, with fundamental corepresentation of F[H]| as follows:

(%51

gn
With v = Qu@Q ™!, we have then the following computation:

Z(Q_l)sivsk - Z(Q_1>si<QuQ_l)sk

S S

- Z(Q_1>siQstutt<Q_l)kt
- Z(Q_l)SiQst(Q_l)ktgt
- Z 51'1‘/(@71)]%91‘,

= (Q My



4B. PROJECTIVE VERSIONS 89

Thus the condition v;; = 0 for 7 # j, used in Theorem 4.8, gives:
(Q rivir = (Q kigs

(2) But this latter condition tells us that we must have:
Qri #0 = gi = Ui

We conclude from this that we have, as desired:

Qri #0,Qr; #0 = g; = g;

(3) In order to finish now, consider the group in the statement. We must prove that
the off-diagonal coefficients of Qu@~! vanish. So, let us look at these coefficients:

(Qu@™! Zszukk B Zsz - k:]gk

In this sum k ranges over the set S = {1,..., N}, but we can restrict the attention to
the subset S’ of indices having the property Qx(Q'); # 0. But for these latter indices
the elements g, are all equal, say to an element g, and we obtain, as desired:

(QuQ™h)y = (ZQik(Ql)kj>g

= (QQ iy
= 0ijg
(4) Finally, in what regards the last assertion, this is again elementary, obtained by

adding an extra matrix parameter to the above computations, spinning the fundamental
corepresentation of F[H], and we will leave the computations here as an exercise. i

Summarizing, we have here some beginning of Lie theory, for the affine Hopf algebras,
going beyond what we know from chapter 2. According to the above results, we can
expect the collection of tori {TH|Q € GLN(F)} to encode various algebraic and analytic
properties of G. We will discuss this later, with a number of results and conjectures.

4b. Projective versions

As already mentioned in the beginning of this chapter, the affine Hopf algebras are
subject to far more operations than those discussed in chapter 3, for the arbitrary Hopf
algebras, and this makes the world of affine Hopf algebras quite interesting.

In fact, we have already seen a number of such new operations, in Theorem 4.7 and
Theorem 4.8, making an interesting link with the advanced Lie group theory. So, let us
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further explore this subject, what operations can be applied to the affine Hopf algebras.
We can first talk about complexifications, in an abstract sense, as follows:

THEOREM 4.11. Given an affine Hopf algebra (A, u), we can construct its complezifi-
cation (A, u°) as follows,

A=<u*>CFZ®@ A |, u=zu

with z =1 € F[Z]. As main illustrations for this operation, we have:

(1) F(G)° = F(G°), for a certain group quotient T x G — G°.
(2) F[H|® = F[H¢], with H® C Z x H being constructed similarly.

Proor. This is something quite routine, the idea being as follows:

(1) Regarding the Hopf algebra assertion, this follows from our general results regard-
ing the tensor products and subalgebras, from chapter 3. Indeed, we have:

Auf;) = A(z)A(uy)
= (Z®Z)Zuik®ukj

= g ZUik, @ ZUp;
k

R c C

= E Uyp, @ Uy
k

Thus @ = zu is indeed a corepresentation of the tensor product algebra F[Z| ® F(G),
as constructed in chapter 3, so the results there apply, and gives the result.

(2) As a comment here, by Fourier transform, we can define alternatively the com-
plexification A¢ as follows, with z = id € F[T] being the standard generator:
A=<u*>C FT)® A , u’=zu
(3) In what regards now the formula F(G)¢ = F(G°), with T x G — G°, many things

can be said here, and we will leave some study here as an exercise.

(4) As for the formula F[H]* = F[H¢], with the subgroup H® C Z x H being con-
structed similarly, by multiplying the generators by z, this is something self-explanatory
too. Again, many things can be said here, and we will leave this as an exercise. U

As a comment here, the above construction is particularly relevant when the ground
field is F' = C. We will be back to this later, with comments and illustrations.

Now still at the general level, we have a result regarding the Haar integration of the
complexifications, which is something quite straightforward, as follows:
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THEOREM 4.12. The Haar integral of a complexification
A=<u*>CF]Z)® A , u°=zu

appears as a restriction of a tensor product, as follows,

[ (=),

and with this happening for left integrals, right integrals, and integrals.

Proor. This is something quite self-explanatory, and clear from our various results
from chapter 3, with the corresponding commuting diagram here being as follows:

F[Z]@ALF

Jac

AC
Thus, we are led to the conclusion in the statement. U

Moving on, along the same lines, we have as well the following construction:

THEOREM 4.13. Given an affine Hopf algebra (A,u), we can construct its free com-
plezification (A, @) as follows,
A=<a>CF[ZxA |, a=zu
with z =1 € F[Z]. As main illustrations for this operation, we have:
(1) F(G) = F(G), standing as definition for G, as quantum group.
(2) F[H]| = F[H], with H C Z x H being constructed similarly.
Proor. This is something quite similar, the idea being as follows:

(1) Regarding the Hopf algebra assertion, this follows from our general results regard-
ing free products and subalgebras, from chapter 3. Indeed, we have:

Auig) = A(2)A(ugy)
= (Z®Z)Zuik®ukj

= E ZUi, @ ZUp;
k

= E Uip @ Ugj
k

Thus @ = zu is indeed a corepresentation of the free product algebra F[Z] x F/(G), as
constructed in chapter 3, so the results there apply, and gives the result.
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(2) As a comment here, by Fourier transform, we can define alternatively the free
complexification A as follows, with z = id € F[T] being the standard generator:

A=<a>CF(M)*A , a=zu

(3) In what regards now F(G) = F(G), this stands as a definition for G, as a quantum

group, the point being that, unless G is trivial, the algebra F'(G) is not commutative. We
will be back to this, with some examples and illustrations, in what follows.

(4) As for the formula F[H] = F[H], with the subgroup H C Z H being constructed
similarly, by multiplying the generators by z, this is something self-explanatory. Again,
we will be back to this, with some examples and illustrations, in what follows. U

As a comment here, the above construction is particularly relevant when the ground
field is FF = C. We will be back to this later in this book, with comments and illustrations.
Now still at the general level, we have a result regarding the Haar integration, which is
quite similar to what we had before for the usual complexifications, as follows:

THEOREM 4.14. The Haar integral of a free complexification
A=<a>CF[Z]xA |, a=zu

appears as a restriction of a free product, as follows,

[ (1),

and with this happening for left integrals, right integrals, and integrals.

Proor. This is something quite self-explanatory, and clear from our various results
from chapter 3, with the corresponding commuting diagram here being as follows:

Fz]sA—2 p

Ja
A
Thus, exactly as before, when talking about the usual complexifications, and their
Haar functionals, we are led to the conclusion in the statement. Il

The above results raise the question of understanding what are the “intermediate”
complexifications, lying between the usual one, and the free one. More on this later.

Moving ahead, we can introduce now our next basic operation on the affine Hopf
algebras, which is something quite fundamental, as follows:
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THEOREM 4.15. Given an affine Hopf algebra (A, u), we can construct its projective
version (PA,v) by setting
PA =<qj6 >CA | Vigjb = Uijlap
and as main illustrations for this construction, we have the following formulae:
(1) PF(G) = F(PG), with PG = G/(GNTY), when F = C.
(2) PF[H] = F[PH], with PH =< gigj’1 >, assuming H =< g; >.

PROOF. As before, this is something self-explanatory, the idea being as follows:

(1) Our first claim is that the matrix v in the statement is a corepresentation. But
this is something standard, the computation being as follows:
A(Viagp) = A(tijlap)
= A(uij) Ata)

= E Ui ® Uk E Uge @ Uep
k c

= E Uik Uge & uk:jﬂcb
kc

- E Via,ke X Vke,jb
ke

(2) Thus, v is indeed a corepresentation, and so, by the results in chapter 3, the
projective version PA, as constructed in the statement, is indeed a Hopf subalgebra.

(3) Before going further with our study, let us mention that the construction in the
statement is that of the standard, left projective version. It is possible to talk as well
about right projective versions, constructed by using the following corepresentation:

Wiq,jb = UijUqp
In general, the left and right projective versions do not coincide, as one can see with
examples coming from algebras of type A = F[H], discussed below. Many other things

can be said here, but with the subject being quite technical, we will basically restrict the
attention in what follows to the left projective versions, from the statement.

(4) Regarding now the formula PF(G) = F(PQG), with PG = G/(GNTY), this follows
from the elementary fact that, via Gelfand duality, the matrix v in the statement is the
matrix of coefficients of the adjoint representation of G, whose kernel is the subgroup
G NTY, where TV C Uy denotes the subgroup formed by the diagonal matrices.

(5) So, this was for the idea with PF(G) = F(PG), and in practice, we will leave
some study here, both over F' = C and in general, as an instructive exercise.

(6) As for the last formula, namely PF[H| = F[PH], with PH =< gigj_l >, assuming
H =< g; >, this is something trivial, which comes from definitions. U
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We have as well a result regarding the Haar integration, as follows:
THEOREM 4.16. The Haar integral of a projective version
PA =< Via,jb > C A y Via,jb = uijﬂab

appears as a restriction, as follows,

J.=(),.

and with this happening for left integrals, right integrals, and integrals.

PrOOF. This is again something quite self-explanatory, and clear from our results
from chapter 3, with the corresponding commuting diagram here being as follows:

A F
’ Joa
PA
Thus, we are led to the conclusion in the statement. Il

Importantly now, let us mention that there is an interesting relation here with the
notion of free complexification. Indeed, in the context of Theorem 4.13, we have:

THEOREM 4.17. Given an affine Hopf algebra (A, u), construct its free complezification
(A, a), with & = zu. We have then an identification

PA=PA
and the same happens at the level of right projective versions.
Proor. This is something coming from definitions, the idea being as follows:

(1) Let us construct indeed the free complexification (A, @), with @ = zu, as in Theo-
rem 4.13. The conjugate of u is then given by the following formula:

0 =uz"1

Thus, the adjoint of u is given by the following formula:
0= zvz !

But this gives an identification PA = PA as in the statement, by conjugating by z.

(2) Regarding now the right projective versions, as constructed in the proof of Theorem
4.15, things here are in fact even simpler. Indeed, the right adjoint of @ is given by:

W= w

Thus, we have a plain equality of right projective versions PA = PA.
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(3) Finally, let us mention that the story is not over here, quite the opposite. Indeed,
an interesting subsequent question, of categorical and algebraic geometry flavor, is that
of understanding if the free complexification A is the biggest affine Hopf algebra having
the same projective version as A. We will discuss this question later in this book, when
systematically discussing the relation between affine and projective geometry. U

So long for the basic operations on the Hopf algebras. Many more things can be said,
and we will be back to this later, when discussing the representation theory and Haar
integration, for the various products of Hopf algebras constructed above.

Finally, let us mention that it is possible to talk as well about wreath products, and
free wreath products, in the Hopf algebra setting. However, this is something more tricky,
requiring talking about quantum permutations first, and we will do this later in this book,
after developing some more theory, in order to talk about quantum permutations.

4c. Intersection, generation

We would like to discuss now a number of further basic operations on the Hopf algebras,
again coming from group theory, but which are more subtle, and related to each other,
namely the intersection operation, generation operation, and Hopf image operation.

As before with the usual operations, it is convenient in what follows to have in mind the
following informal formula, for an arbitrary Hopf algebra A, in terms of certain underlying
quantum groups G and H, related by some sort of generalized Pontrjagin duality:

A=F(G)=F[H]|
In terms of such quantum groups, and more specifically of the first ones, A = F(G),

the questions that we would like to solve, which are quite natural, are as follows:

PROBLEM 4.18. Given two quantum subgroups H, K C G of a quantum group:

(1) How to define their intersection, H N K ¢
(2) What about the subgroup that they generate, < H, K >7?

In order to answer the first question, the best is to start by drawing some diagrams. In
the classical case, given a group G and two subgroups H, K C GG, we can indeed intersect
these subgroups, and the relevant diagram, which gives H N K, is as follows:

G H

HNK
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Now at the level of the corresponding algebras of functions, the diagram, having as
arrows surjections which are dual to the above inclusions, is as follows:

F(G) F(H)

F(K) F(HNK)

But this is exactly what we need, in order to solve our intersection problem formulated
above. Indeed, based on this, we can come up with the following solution:

THEOREM 4.19. Given two quotient Hopf algebras A — B,C', we can construct the
universal Hopf algebra quotient A — B M C producing the following diagram.:

A B

C BncC

As an illustration for this, in the group algebra case we have the formula
FH)NF(K)=FHNK)
for any two subgroups of a given group, H, K C G.

Proor. We must prove that the universal Hopf algebra in the statement exists indeed.
For this purpose, let us pick writings as follows, with I, J being Hopf ideals:

B=A/I , C=A/J
We can then construct our universal Hopf algebra, as follows:
BnCc=A/<1,J>
Thus, we are led to the conclusions in the statement. Il

In the affine Hopf algebra setting now, that of Definition 4.1, the operation ' con-
structed above can be usually computed by using the following simple fact:

PROPOSITION 4.20. Assuming A — B,C, the intersection BT C s given by
BnC =A/{R,P}
whenever we have writings as follows,
B=A/R , C=A/P

with R, P being certain sets of polynomial relations between the coordinates u;.
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Proor. This follows from Theorem 4.19, or rather from its proof, and from the fol-

lowing trivial fact, regarding relations and ideals:
I=<R>,J=<P> = <I,J>>=<R,P>

Thus, we are led to the conclusion in the statement. Il

Finally, let us record as well what happens in the group algebra case:

THEOREM 4.21. Given two quotient groups G — H, K, we have the formula

F[H|NF[K]=F[HNK]
with the quotient G — [H M K] being the one producing the following diagram:
G H

K HNMK
Alternatively, we have [H M K| = G/ < ker(G — H),ker(G — K) >.

ProOF. This is indeed something self-explanatory, with the first assertion coming
from Theorem 4.19, and with the second assertion coming from Proposition 4.20. U

Moving on, regarding now the generation operation question, from Problem 4.18 (2),
the theory here is quite similar. In the classical case, given a group G' and two subgroups
H, K C G, the relevant diagram, which gives the subgroup < H, K >, is as follows:

G H

K <HK->

Now at the level of the corresponding algebras of functions, the diagram, having as
arrows surjections which are dual to the above inclusions, is as follows:

F(G) F(H)

F(K)

F(< H,K >)

But this is exactly what we need, in order to solve our generation problem formulated
above. Indeed, based on this, we can come up with the following solution:
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THEOREM 4.22. Given two quotient Hopf algebras A — B,C, we can construct the
universal Hopf algebra quotient A — [B, C| producing the following diagram:

A B

C (B, C]
As an illustration for this, in the group algebra case we have the formula
[F(H),F(K)]=F(< H,K >)
for any two subgroups of a given group, H, K C G.

PrRoOOF. We must prove that the universal Hopf algebra in the statement exists indeed.
For this purpose, let us pick writings as follows, with I, J being Hopf ideals:

B=A/I , C=A/J
We can then construct our universal Hopf algebra, as follows:
BNcC=A/(INJ)
Thus, we are led to the conclusions in the statement. O
As a complement to this, let us record as well what happens for group algebras:
THEOREM 4.23. Given two quotient groups G — H, K, we have the formula
[F(H), FIK]) = F[H,K]
with the quotient G — [H, K| being the one producing the following diagram:
G H

K H, K]
Alternatively, we have [H, K] = G/(ker(G — H) Nker(G — K)).

Proor. This is indeed something self-explanatory, and elementary, with both the
assertions coming from Theorem 4.22, and its proof. O

So long for the basics of the intersection and generation operations. The story is
of course not over with the above results, because we still have as job, as apprentice
or confirmed algebraists, to explore the obvious dual nature of these operations. And
skipping some details here, that we will leave as an exercise, the situation is as follows:
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FAcT 4.24. In the finite dimensional case, where the quotients A — B, C' correspond
to certain subalgebras B*,C* C A*:

(1) The intersection and generation operations on the algebras B, C' can be understood
in terms of the dual algebras B*, C*.

(2) For the algebras of functions, and for group algebras too, all this is compatible
with known formulae from group theory.

As a last topic for this section, let us discuss now the connection with the notion of
diagonal algebras, introduced earlier in this chapter. As explained there, associated to an
affine Hopf algebra is a family of cocommutative diagonal algebras, as follows:

A% = {Ag‘Q € GLy(F)}

Generally speaking, we can expect this collection of diagonal algebras to encode the
various algebraic and analytic properties of A. Here is a basic result on this subject:

THEOREM 4.25. The following hold, over the complex numbers F = C, both for the
algebras A = F(G) with G C Uy, and for the group algebras A = F[H|:
(1) Injectivity: the construction A — A is injective, in the sense that A # B implies
AY # BY, for some Q € GLy(F).
(2) Monotony: the construction A — A% s increasing, in the sense that passing to
a quotient A — B decreases one of the diagonal algebras, A‘SQ # Bé?.

(3) Generation: any quantum group is generated by its tori, or, equivalently, any
affine Hopf algebra A has the property A = [A}|Q € GLy(F)].

ProoOF. We have two cases to be investigated, as follows:

(1) Assume first that we are in the group algebra case, A = F(G). In order to prove
the generation property we use the following formula, established before:

To=GNQ'(F)"Q

Now since any group element U € G is unitary, and so diagonalizable by basic linear
algebra, we can write, for certain matrices Q € Uy and D € (F*)V:

U=Q'DQ

But this shows that we have U € Ty, for this precise value of the spinning matrix
@ € Uy, used in the construction of the standard torus Ty. Thus we have proved the
generation property, and the injectivity and monotony properties follow from this.

(2) Regarding now the group algebras, here everything is trivial. Indeed, when these
algebras are diagonally embedded we can take () = 1, and when they are embedded by
using a spinning matrix @) € GLy(F), we can use precisely this matrix Q. O
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Many other things can be said, as a continuation of the above, notably with some
further verifications of the above conjectures, say in relation with product operations,
and with some more specialized conjectures too. We will be back to this later in this
book, when systematically discussing what happens over the complex numbers.

4d. Images and models

In order to further discuss now the generation operation [, ] introduced above, we will
need the following construction, which is something of independent interest:

THEOREM 4.26. Given a representation m : A — C, with C being an associative
algebra, there is a smallest Hopf algebra quotient A — B producing a factorization

mT:A—=B—=C

called Hopf image of w. More generally, given representations m : A — C;, with C; being
algebras, there is a smallest Hopf algebra quotient A — B producing factorizations

VIT A— B — Cz
called joint Hopf image of the family of representations ;.
ProoOF. This is something quite obvious, obtained by dividing by a suitable ideal:

(1) Let I, be sum of all Hopf ideals contained in ker(r). It is clear then that I is a
Hopf ideal, and to be more precise, is the largest Hopf ideal contained in ker(w). Thus,
we have the solution to our factorization problem, obtained as follows:

B=A/I,

(2) As for the second assertion, regarding the Hopf image of an arbitrary family of
representations m; : A — C}, the proof here is similar, again by dividing by a suitable
ideal, obtained as the sum of all Hopf ideals contained in all the kernels ker(m;). i

The above construction might look quite trivial, but under some suitable extra as-
sumptions, such as having the complex numbers as scalars, F' = C, a number of more
subtle things can be said about it, and this even at the very general level, as follows:

(1) To start with, the Hopf image construction has a very simple description at the
Tannakian level, namely “the Hom spaces are those in the model”, and this can be taken
as a definition for it. But more on this later, when talking Tannakian duality.

(2) As yet another approach, we can talk about idempotent states, and again, we have
a simple description of the Hopf image construction, in such terms. But more on this
later in this book, when talking Haar integration, and idempotent states.

Before going further, with some applications of the above construction to the compu-
tation of the [,] operation, let us formulate the following definition, which is something
of theoretical interest, that will appear on a regular basis, in what follows:
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DEFINITION 4.27. We say that a representation w : A — C' is inner faithful when
there is no proper factorization of type

m:A—>B—C
that is, when its Hopf image is A itself.

As before with the notion of Hopf image, this might look like a trivial notion, but under
a number of some suitable extra assumptions, such as having F' = C, some non-trivial
things can be said too, including a simple Tannakian description of inner faithfulness, and
an indempotent state formula as well. More on this, later in this book.

Getting now to the examples and illustrations, for the notions introduced above, these
will come, as usual, from the case of the function algebras A = F(G), and that of the
group algebras A = F[H]. It is convenient to start with these latter algebras, A = F[H],
which are the most illustrating. Regarding them, we have the following result:

THEOREM 4.28. Given a matrix representation of a group algebra
7 F[H| — My(F)
coming by linearizing from a usual group representation
p:H— GLy(F)
the Hopf tmage factorization of w is obtained by taking the group image
7w : F[H] = Flp(H)] = My(F)
and 7 is inner faithful when p is faithful, that is, when H C GLy(F).

ProoOF. This is something elementary and self-explanatory, with the first assertion
coming from definitions, and with the second assertion coming from it. O

The above result is quite interesting, providing us with the key for understanding the
Hopf image construction, and the related notion of inner faithfulness. For making things
clear here, let us formulate our final conclusion a bit informally, as follows:

CONCLUSION 4.29. When regarding the Hopf algebras as being of the form A = F[H],
with H being a quantum group:

(1) The Hopf image construction produces the algebra A" = F[H'|, with the quantum
group H' being the image of H.

(2) A representation of A = F[H] is inner faithful precisely when the corresponding
representation of H s faithful.

With this discussed, let us get now to our other class of basic examples, the function
algebras A = F(G). Here the result is something quite simple as well, as follows:
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THEOREM 4.30. Given a diagonal representation of a function algebra

f(g1)
m: F(G)— My(F) , f—

f(gr)
coming from an arbitrary family of group elements, as follows,
gi,--,9x € G
the Hopf image factorization of m is obtained by taking the generated subgroup
7 F(G) = F(<g1,...,9x >) = My(F)
and 7 1s inner faithful when we have G =< gy, ...,gx >.

Proor. This is again something elementary and self-explanatory, with the first as-
sertion coming from definitions, and with the second assertion coming from it. O

So long for the notions of Hopf image, and inner faithfulness. There are of course some
other examples too, and we will be back to this later. Also, as already mentioned, there
is some further general theory to be developed too, under suitable extra assumptions, in
relation with Tannakian duals and Haar integration, and we will come back to this later
too. For the moment, what we have in the above, which is quite illustrating, will do.

Now by getting back to the generation operation [, ], as introduced before, we have
the following result about it, which is something very useful, in practice:
THEOREM 4.31. Assuming A — B,C, the Hopf algebra [B, C] is such that
A— [B,C]— B,C
is the joint Hopf image of the following quotient maps:
A— B,C
A similar result holds for an arbitrary family of quotients A — B;.

PROOF. In the particular case from the statement, the joint Hopf image appears as
the smallest Hopf algebra quotient D producing factorizations as follows:

A—D— B,C

We conclude from this that we have D = [B, C], as desired. As for the extension to
the case of an arbitrary family of quotients A — B;, this is straightforward. O

As an application of the above Hopf image technology, let us discuss now matrix
modeling questions. Let us start with something very basic, as follows:
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DEFINITION 4.32. A matriz model for an affine Hopf algebra (A,w) is a morphism of
associative algebras as follows, with T being a certain space:
T:A— MK(F(T)) y o Ui — Uij
When this morphism 7 is an inclusion, we say that our model is faithful.

Obviously, this notion is potentially something quite useful. In practice now, we would
like of course our matrix models to be faithful, and this in order for our computations
inside the random matrix algebra My (F(T')) to be relevant, to our questions regarding
A. In fact, this is why we chose above to use random matrix algebras My (F(T)) instead
of plain matrix algebras Mg (F), as to have more chances to have faithfulness.

But, the problem is that this situation is not always possible, due to a number of
analytic reasons, the idea here being that the random matrix algebras My (F(T)) are
quite “thin”, from a certain functional analytic viewpoint, while the algebra A to be
modeled might be “thick”, from the same functional analytic viewpoint.

We will discuss more in detail such things later in this book, when talking about
F = C, and various analytic aspects. In the meantime, however, we certainly do have a
problem, that is quite clear, and the point is that the notion of inner faithfulness from
Definition 4.27 provides us with a potential solution to this problem, as follows:

DEFINITION 4.33. We say that a matrix model as above,
m:A—= Mg(F(T)) , wy;—U;
15 inner faithful when there is no Hopf algebra factorization as follows:
m:A— B— Mg(F(T)) , wy— v — U;
That s, we can use our inner faithfulness notion, for the matrix models.

And the point now is that, with this notion in hand, we can model far more affine
Hopf algebras than before, with the above-mentioned analytic obstructions dissapearing.
In fact, there is no known obstruction on the algebras A than can be modeled as above.

Still in relation with the faithfulness problematics for models, let us record as well:
THEOREM 4.34. Given an arbitrary matriz model, as before,
m:A— Mg(F(T)) , wy;—U;
we can always factorize it via a smallest Hopf algebra, as follows,
m:A—=B—= Mg(F(T)) , wj—v;—U;
and the resulting factorized model B — My (F(T)) is then inner faithful.

ProoF. This is indeed something self-explanatory, coming by dividing by a suitable
ideal, with the result itself being a particular case of Theorem 4.26. U
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Summarizing, we have some interesting theory going on, for the matrix models. In
practice now, in order to reach to something concrete, out of this, far more work is needed,
and we will discuss this later in this book. In the meantime, let us formulate:

CONCLUSION 4.35. In relation with the matriz models m: A — Mg (F(T)):

(1) The notion of inner faithful model is the good one, perfectly remembering A, and
allowing us to model far more algebras A, than with usual faithfulness.

(2) In general, we can also use the Hopf image technology in order to construct new
Hopf algebras, by taking the Hopf image of an arbitrary model.

And we will end this chapter, and the present opening Part I, with this. Good con-
clusions that we have here, waiting to be explored. We will be back to this, later.

4e. Exercises
We had a lot of interesting algebra in this chapter, and as exercises, we have:
EXERCISE 4.36. Further study the projective versions.
EXERCISE 4.37. Further study the free complexifications.
EXERCISE 4.38. Work out some basic examples of intersections.
EXERCISE 4.39. Work out some basic ezamples of generations.
EXERCISE 4.40. Clarify the missing details for the Hopf image illustrations.
EXERCISE 4.41. Work out some basic examples of matriz models.

As bonus exercise, figure out what happens to all the above when F' = C.
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I'm going to Jackson
I'm gonna mess around
Yeah, I'm going to Jackson
Look out Jackson town



CHAPTER 5

Quantum groups

5a. Quantum spaces

Welcome to quantum groups. In this first part of the present book we discuss the
construction and basic properties of the main quantum permutation and rotation groups.

The story here involves the foundational papers of Woronowicz [99], [100], from the
end of the 80s, then the key paper of Wang [92], from the mid 90s, then my own papers
from the late 90s and early 00s, and finally some more specialized papers from the mid
and late 00s, including [9], [12], [17], containing a few fundamentals too.

In short, cavern man mathematics from about 20 years ago, but lots of things to be
learned. We will provide here 100 pages on the subject, with a decent presentation of
what is known about the main quantum groups, of fundamental type, coming in the form
of theorems accompanied by short proofs. For further details on all this, you have my
graduate textbook on quantum groups [5], along with the original papers cited above.

Getting started now, at the beginning of everything, we have:
QUESTION 5.1 (Connes). What is a quantum permutation group?

This question is more tricky than it might seem. For solving it you need a good
formalism of quantum groups, and there is a bewildering number of choices here, with
most of these formalisms leading nowhere, in connection with the above question. So, we
are into philosophy, and for truly getting started, we have to go back in time, with:

QUESTION 5.2 (Heisenberg). What is a quantum space?

Regarding this latter question, there are as many answers as quantum physicists,
starting with Heisenberg himself in the early 1920s, then Schrédinger and Dirac short
after, with each coming with his own answer to the question. Not to forget Einstein, who
labeled all these solutions as “nice, but probably fundamentally wrong”.

In short, we are now into controversy, and a look at more modern physics does not help
much, with the controversy basically growing instead of diminishing, over the time. So, in
the lack of a good answer, let us take as starting point something nice and mathematical,
rather agreed upon in the 1930s, coming from Dirac’s work, namely:

107
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ANSWER 5.3 (von Neumann). A quantum space is the dual of an operator algebra.

Fast forward now to the 90s and to Connes’ question, this remains something non-
trivial, even when knowing what a quantum space is, and this for a myriad technical
reasons. You have to work a bit on that question, try all sorts of things which do not
work, until you hit the good answer. With this good answer being as follows:

ANSWER 5.4 (Wang). The quantum permutation group Sy% is the biggest compact
quantum group acting on {1,..., N}, by leaving the counting measure invariant.

To be more precise, the idea is that {1,..., N} has all sorts of quantum permutations,
and even when restricting the attention to the “correct” ones, namely those leaving in-
variant the counting measure, there is still an infinity of such quantum permutations, and
the quantum group formed by this infinity of quantum permutations is compact.

This was for the story of the subject, very simplified, and as a final ingredient, two
answers to two natural questions that you might have:

(1) Isn’t the conclusion |SF;| = co a bit too speculatory, not to say crazy? Certainly
not, I would say, because in quantum mechanics particles do not have clear positions and
speeds, and once you're deep into this viewpoint, “think quantum”, a bit fuzzy about
everything, why the set {1,..., N} not being allowed to have an infinity of quantum
permutations, after all. So, no contradiction, philosophically speaking.

(2) Why was the theory of Sy developed so late? Good question, and in answer,
looking retrospectively, quantum groups and permutations should have been developed
by von Neumann and Weyl, sometimes in the 1940s, perhaps with some help from Gelfand.
But that never happened. As for the story after WW2, with mathematics, physics, and
mankind in general: that was sex, drugs and rock and roll, forget about it.

Getting started now for good, we have the whole remainder of this chapter for un-
derstanding what Question 1.1 is about, and what its Answer 1.4 says. But before that,
Question 1.2 and Answer 1.3 coming first. Leaving aside physics, we must first talk about
operator algebras, and the starting definition here is as follows:

DEFINITION 5.5. A C*-algebra is a complex algebra A, having a norm ||.|| making it
a Banach algebra, and an involution *, related to the norm by the formula

llaa™|| = [|al[*
which must hold for any a € A.
As a basic example, the algebra My (C) of the complex N x N matrices is a C*-algebra,

with the usual matrix norm and involution of matrices, namely:
IM|] = sup [[Mzl| , (M) = Mj

||l||=1
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More generally, any s-subalgebra A C My (C) is automatically closed, and so is a
C*-algebra. In fact, in finite dimensions, the situation is as follows:

PROPOSITION 5.6. The finite dimensional C*-algebras are exactly the algebras
A=M,(C)®...® M, (C)
with norm ||(ay, ..., ax)|| = sup; ||a]|, and involution (ay,...,ar)* = (af,...,a}).

PROOF. In one sense this is clear. In the other sense, this comes by splitting the unit
of our algebra A as a sum of central minimal projections, 1 = p; + ...+ pr. Indeed, when
doing so, each of the x-algebras A; = p;Ap; follows to be a matrix algebra, A; ~ M, (C),
and this gives the direct sum decomposition in the statement. U

In general now, a main theoretical result about C*-algebras, due to Gelfand, Naimark
and Segal, and called GNS representation theorem, is as follows:

THEOREM 5.7. Given a complex Hilbert space H, finite dimensional or not, the algebra
B(H) of linear operators T : H — H which are bounded, in the sense that

IT]| = sup [|Tx||
llz]|=1
18 finite, is a C*-algebra, with the above norm, and with involution given by:
<Tx,y>=<uz,T"y >
More generally, and norm closed x-subalgebra of this full operator algebra
AC B(H)
is a C*-algebra. Any C*-algebra appears in this way, for a certain Hilbert space H.

PROOF. There are several statements here, with the first ones being standard operator
theory, and with the last one being the GNS theorem, the idea being as follows:

(1) First of all, the full operator algebra B(H) is a Banach algebra. Indeed, given a
Cauchy sequence {7} inside B(H), we can set Tz = lim,_,, T,,x, for any = € H. It is
then routine to check that we have 7' € B(H), and that 7,, — T" in norm.

(2) Regarding the involution, the point is that we must have < Tx,y >=< x,T*y >,
for a certain vector T*y € H. But this can serve as a definition for 7™, and the fact that
T* is indeed linear, and bounded, with the bound ||T*|| = ||T|, is routine. As for the
formula ||TT*|| = ||T||?, this is elementary as well, coming by double inequality.

(3) Finally, the fact that any C*-algebra appears as A C B(H), for a certain Hilbert
space H, is advanced. The idea is that each a € A acts on A by multiplication, T,(b) = ab.
Thus, we are more or less led to the result, provided that we are able to convert our algebra
A, regarded as a complex vector space, into a Hilbert space H = L?(A). But this latter
conversion can be done, by taking some inspiration from abstract measure theory. U
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As a third and last basic result about C*-algebras, which will be of particular interest
for us, we have the following well-known theorem of Gelfand:

THEOREM 5.8. Given a compact space X, the algebra C(X) of continuous functions
f: X = C s a C*-algebra, with norm and involution as follows:

1Al =suplf@)] . F @) =F@)

This algebra is commutative, and any commutative C*-algebra A is of this form, with
X = Spec(A) appearing as the space of Banach algebra characters x : A — C.

PROOF. Once again, there are several statements here, some of them being trivial,
and some of them being advanced, the idea being as follows:

(1) First of all, the fact that C'(X) is indeed a Banach algebra is clear, because a
uniform limit of continuous functions is continuous.

(2) Regarding now for the formula ||ff*|| = ||f||?, this is something trivial for func-
tions, because on both sides we obtain sup,¢y | f(z)|?.

(3) Given a commutative C*-algebra A, the character space X = {x : A — C} is
compact, and we have an evaluation morphism ev : A — C(X).

(4) The tricky point, which follows from basic spectral theory in Banach algebras, is
to prove that ev is indeed isometric. This gives the last assertion. U

In what follows, we will be mainly using Definition 1.5 and Theorem 1.8, as general
framework. To be more precise, in view of Theorem 1.8, let us formulate:

DEFINITION 5.9. Given an arbitrary C*-algebra A, we agree to write
A=C(X)
and call the abstract space X a compact quantum space.

In other words, we can define the category of compact quantum spaces X as being
the category of the C*-algebras A, with the arrows reversed. A morphism f : X — Y
corresponds by definition to a morphism ® : C(Y) — C(X), a product of spaces X x Y
corresponds by definition to a product of algebras C'(X) ® C(Y'), and so on.

All this is of course quite speculative, and as a first result regarding these compact
quantum spaces, coming from Proposition 1.6, we have:
PROPOSITION 5.10. The finite quantum spaces are exactly the disjoint unions of type
X =M, U...UM,,
where M, is the finite quantum space given by C(M,) = M,(C).
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Proor. This is a reformulation of Proposition 1.6, by using the above philosophy.
Indeed, for a compact quantum space X, coming from a C*-algebra A via the formula
A = C(X), being finite can only mean that the following number is finite:

’X’ =dimc A < o0
Thus, by using Proposition 1.6, we are led to the conclusion that we must have:
CX)=M,(C)&...& M, (C)

But since direct sums of algebras A correspond to disjoint unions of quantum spaces
X, via the correspondence A = C'(X), this leads to the conclusion in the statement. [

This was for the basic theory of C*-algebras, the idea being that we have some basic
operator theory results, that can be further learned from any standard book, such as
Blackadar [31], and then we can talk about reformulations of these results in quantum
space terms, by using Definition 1.9 and some basic common sense.

Finally, no discussion would be complete without a word about the von Neumann
algebras. These are operator algebras of more advanced type, as follows:

THEOREM b5.11. For a *-algebra A C B(H) the following conditions are equivalent,
and if they are satisfied, we say that A is a von Neumann algebra:

(1) A is closed with respect to the weak topology, making each T — Tz continuous.
(2) A is equal to its algebraic bicommutant, A = A", computed inside B(H).

As basic examples, we have the algebras A = L>=(X), acting on H = L*(X). Such algebras
are commutative, any any commutative von Neumann algebra is of this form.

PROOF. There are several assertions here, the idea being as follows:

(1) The equivalence (1) <= (2) is the well-known bicommutant theorem of von
Neumann, which can be proved by using an amplification trick, H — CV @ H.

(2) Given a measured space X, we have indeed an emdedding L>(X) C B(L*(X)),
with weakly closed image, given by Tt : ¢ — fg, as in the proof of the GNS theorem.

(3) Given a commutative von Neumann algebra A C B(H) we can write A =< T >
with 7" being a normal operator, and the Spectral Theorem gives A ~ L>(X). O

In the context of a C*-algebra representation A C B(H) we can consider the weak clo-
sure, or bicommutant A” C B(H), which is a von Neumann algebra. In the commutative
case, C(X) C B(L*(X)), the weak closure is L>(X). In general, we agree to write:

A" = L*(X)

For more on all this, basic theory of the C*-algebras and von Neumann algebras, we
refer to any standard operator algebra book, such as Blackadar [31].
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5b. Quantum groups

We are ready now to introduce the compact quantum groups. The axioms here, due
to Woronowicz [99], and slightly modified for our present purposes, are as follows:

DEFINITION 5.12. A Woronowicz algebra is a C*-algebra A, given with a unitary
matriz uw € My(A) whose coefficients generate A, such that the formulae

Alug) =Y ugw@uy ,  eug) =d; ,  Sluy) =u,
k

define morphisms of C*-algebras A : A - AR A, e¢: A— Cand S : A — AP, called

comultiplication, counit and antipode.

In this definition the tensor product needed for A can be any C*-algebra tensor prod-
uct. In order to get rid of redundancies, coming from this and from amenability issues,
we will divide everything by an equivalence relation, as follows:

DEFINITION 5.13. We agree to identify two Woronowicz algebras, (A,u) = (B,v),
when we have an isomorphism of x-algebras

< Uy > V5 >
mapping standard coordinates to standard coordinates, u;; — v;;.

We say that A is cocommutative when ¥A = A, where ¥(a ® b) = b ® a is the flip.
We have then the following key result, from [99], providing us with examples:

PROPOSITION 5.14. The following are Woronowicz algebras, which are commutative,
respectively cocommutative:

(1) C(G), with G C Ux compact Lie group. Here the structural maps are:
Alp) = [(g.h) = elgh)] . =(p)=¢(1) , S()=[g9—elg )]
(2) C*(T"), with Fy — T' finitely generated group. Here the structural maps are:
Alg)=g@g . elg=1 , Slg=g"

Moreover, we obtain in this way all the commutative/cocommutative algebras.

PROOF. In both cases, we first have to exhibit a certain matrix u, and then prove
that we have indeed a Woronowicz algebra. The constructions are as follows:

(1) For the first assertion, we can use the matrix u = (u;;) formed by the standard
matrix coordinates of GG, which is by definition given by:

u(g) ... win(g)
g = : :
uni(g) .. unn(9)
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(2) For the second assertion, we can use the diagonal matrix formed by generators:

g1 0
u = .
0 gn
Finally, regarding the last assertion, in the commutative case this follows from the
Gelfand theorem, and in the cocommutative case, we will be back to this. Il

In order to get now to quantum groups, we will need as well:

PROPOSITION 5.15. Assuming that G C Uy s abelian, we have an identification of
Woronowicz algebras C(G) = C*(T'), with T being the Pontrjagin dual of G:

Fz{x:G—>T}

Conversely, assuming that Fy — T is abelian, we have an identification of Woronowicz
algebras C*(T") = C(QG), with G being the Pontrjagin dual of T':

Gz{x:F—>T}

Thus, the Woronowicz algebras which are both commutative and cocommutative are exactly
those of type A = C(G) = C*(T'), with G, T being abelian, in Pontrjagin duality.

PROOF. This follows from the Gelfand theorem applied to C*(T"), and from the fact
that the characters of a group algebra come from the characters of the group. O

In view of this result, and of the findings from Proposition 1.14 too, we have the
following definition, complementing Definition 1.12 and Definition 1.13:

DEFINITION 5.16. Given a Woronowicz algebra, we write it as follows, and call G a
compact quantum Lie group, and I' a finitely generated discrete quantum group:

A=C(G)=CcI)
Also, we say that G,T" are dual to each other, and write G = f, r=aG.

Let us discuss now some tools for studying the Woronowicz algebras, and the under-
lying quantum groups. First, we have the following result:

PROPOSITION 5.17. Let (A,u) be a Woronowicz algebra.

(1) A e satisfy the usual axioms for a comultiplication and a counit, namely:
(A ®id)A = (id® A)A
(e®id)A = (id®e)A =id
(2) S satisfies the antipode aziom, on the x-algebra generated by entries of u:
m(S ®id)A = m(id ® S)A =¢(.)1
(3) In addition, the square of the antipode is the identity, S* = id.
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PROOF. As a first observation, the result holds in the commutative case, A = C(G)
with G C Uy. Indeed, here we know from Proposition 1.14 that A, e, S appear as func-
tional analytic transposes of the multiplication, unit and inverse maps m, u, :

A=mt | e=u" , S=1¢
Thus, in this case, the various conditions in the statement on A, ¢, .S simply come by
transposition from the group axioms satisfied by m, u, 7, namely:
m(m x id) = m(id x m)
m(u X id) = m(id X u) = id
m(i x id)6 = m(id x i)6 =1

Here 6(g) = (g,9). Observe also that the result holds as well in the cocommutative

case, A = C*(I') with Fy — I, trivially. In general now, the first axiom follows from:

(A @ id)A(ui;) = (id @ A)A(uy) = > g ® g @ uy
kl
As for the other axioms, the verifications here are similar. O

In order to reach to more advanced results, the idea will be that of doing representation
theory. Following Woronowicz [99], let us start with the following definition:

DEFINITION 5.18. Given (A,u), we call corepresentation of it any unitary matriz
v € M,(A), with A =< w;; >, satisfying the same conditions as u, namely:

A(vij) = Zvik @ugj 5 e(viy) =0 ,  S(viy) = v
k
We also say that v is a representation of the underlying compact quantum group G.

In the commutative case, A = C(G) with G C Uy, we obtain in this way the finite
dimensional unitary smooth representations v : G — U, via the following formula:

vi(g) . vin(9)
vig) =1 :
Un1(g9) - Unn(9)

In the cocommutative case, A = C*(I") with Fiy — I', we will see in a moment that

we obtain in this way the formal sums of elements of I', possibly rotated by a unitary. As
a first result now regarding the corepresentations, we have:

PROPOSITION 5.19. The corepresentations are subject to the following operations:
(1) Making sums, v+ w = diag(v,w).
(2) Making tensor products, (v & W);q jb = VijWap-
(3) Taking conjugates, (v)i; = vj;.

(4)

4) Rotating by a unitary, v — UvU*.
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PRrooF. We first check the fact that the matrices in the statement are unitaries:
(1) The fact that v + w is unitary is clear.

(2) Regarding now v ® w, this can be written in standard leg-numbering notation as
v ® w = v13ws3, and with this interpretation in mind, the unitarity is clear.

(3) In order to check that v is unitary, we can use the antipode. Indeed, by regarding
the antipode as an antimultiplicative map S : A — A, we have:

(00")i; =D v = > S(viyue) = S((070);1) = 6
k k

(') = > _vwaviy = > S(uviy) = S((v0);1) = 6
k k

(4) Finally, the fact that UvU* is unitary is clear. As for the verification of the
comultiplicativity axioms, involving A, ¢, .S, this is routine, in all cases. U

As a consequence of the above result, we can formulate:

DEFINITION 5.20. We denote by u®*, with k = c e e o ... being a colored integer, the
various tensor products between wu,u, indexed according to the rules
=1, u®=u , W¥=u
and multiplicativity, u®* = u®* @ u®', and call them Peter-Weyl corepresentations.

Here are a few examples of such corepresentations, namely those coming from the
colored integers of length 2, to be often used in what follows:

WP =u@u , W =u®u

WP =uou , u*T=u®u
In order to do representation theory, we first need to know how to integrate over G.
And we have here the following key result, due to Woronowicz [99]:

THEOREM 5.21. Any Woronowicz algebra A = C(G) has a unique Haar integration,

</G®id> A= (im/(;) A= fon

which can be constructed by starting with any faithful positive form ¢ € A*, and setting
1 n
= lim — *k
/; n—oo 1 k; Y

where ¢ x 1) = (¢ @ Y)A. Moreover, for any corepresentation v € M, (C) ® A we have

(ias [ Jo=r

where P is the orthogonal projection onto Fix(v) = { € C*"|v§ = &}
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PRroOF. Following [99], this can be done in 3 steps, as follows:

(1) Given ¢ € A*, our claim is that the following limit converges, for any a € A:

1 n
a=lim — Y ¢*(a)

Indeed, by linearity we can assume that a is the coefficient of certain corepresentation,
a = (T ® id)v. But in this case, an elementary computation gives the following formula,
with P, being the orthogonal projection onto the 1-eigenspace of (id ® ¢)v:

(¢d®[p)vzp¢

(2) Since v€ = ¢ implies [(id ® ¢)v]¢ = &, we have P, > P, where P is the orthogonal
projection onto the following fixed point space:

Fiz(v) = {5 eC”

ve=¢}
The point now is that when ¢ € A* is faithful, by using a standard positivity trick,
we can prove that we have P, = P. Assume indeed F,§ = &, and let us set:

J k
A straightforward computation shows then that ¢(a) = 0, and so a = 0, as desired.

(3) With this in hand, the left and right invariance of [, = [ is clear on coefficients,
and so in general, and this gives all the assertions. See [99]. u

We can now develop a Peter-Weyl type theory for the corepresentations, in analogy
with the theory from the classical case. We will need:

DEFINITION 5.22. Given two corepresentations v € M, (A),w € M,,(A), we set
Hom(v,w) = {T € men(C)‘TU = wT}

and we use the following conventions:
(1) We use the notations Fixz(v) = Hom(1,v), and End(v) = Hom(v,v).
(2) We write v ~ w when Hom(v,w) contains an invertible element.
(3) We say that v is irreducible, and write v € Irr(G), when End(v) = C1.

In the classical case, where A = C(G) with G C Uy being a closed subgroup, we
obtain in this way the usual notions regarding the representation intertwiners. Observe
also that in the group dual case we have g ~ h when g = h. Finally, observe that v ~ w
means that v, w are conjugated by an invertible matrix.

Here are now a few basic results, regarding the above linear spaces:
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PROPOSITION 5.23. We have the following results:
(1) T € Hom(u,v),S € Hom(v,w) = ST € Hom(u,w).
(2) S € Hom(u,v), T € Hom(w,z) = S®T € Hom(u ® w,v ® z).
(3) T € Hom(v,w) = T* € Hom(w,v).

In other words, the Hom spaces form a tensor x-category.
PROOF. The proofs are all elementary, as follows:
(1) Assume indeed that we have Tu = vT, Sv = Ws. We obtain, as desired:
STu = SvT = wST
(2) Assuming that we have Su = vS, Tw = 2T, we obtain, as desired:
(S@T)(u®w) = (Su)13(Tw)as = (v8)13(2T)23 = (V@ 2) (SR T)
(3) By conjugating, and then using the unitarity of v, w, we obtain:
Tv=uwT = v'T"=T""
= vw'T"w = vT"w*w
= T'w=vT"

Finally, the last assertion follows from definitions, and from the obvious fact that, in
addition to (1,2,3), the Hom spaces are linear spaces, and contain the units. U

Finally, in order to formulate the Peter-Weyl results, we will need as well:
PROPOSITION 5.24. The characters of the corepresentations, given by
Xv = Z (%70
behave as follows, in respect to the various operations:
Xv+w = Xv + Xw Xvew = XvXw > Xo = XZ

In addition, given two equivalent corepresentations, v ~ w, we have Xy = Xw-

PROOF. The three formulae in the statement are all clear from definitions. Regarding
now the last assertion, assuming that we have v = T~ 'wT, we obtain:

Xo = Tr(v) =Tr(T'wT) = Tr(w) = Yu
We conclude that v ~ w implies x, = X, as claimed. O

Consider the dense x-subalgebra A C A generated by the coefficients of the funda-
mental corepresentation u, and endow it with the following scalar product:

<a,b >:/ab*
G

With this convention, we have the following fundamental result, from [99]:
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THEOREM 5.25. We have the following Peter-Weyl type results:

(1) Any corepresentation decomposes as a sum of irreducible corepresentations.
(2) Each irreducible corepresentation appears inside a certain u®*.

(3) A= Derrr(a) Maimw)(C), the summands being pairwise orthogonal.

(4) The characters of irreducible corepresentations form an orthonormal system.

ProoOF. All these results are from Woronowicz [99], the idea being as follows:

(1) Given a corepresentation v € M, (A), we know from Proposition 1.23 that End(v)
is a finite dimensional C*-algebra, and by using Proposition 1.6, we obtain:

End(v) = My, (C) & ... & M,,(C)

But this decomposition allows us to define subcorepresentations v; C v, which are
irreducible, so we obtain, as desired, a decomposition v = vy + ... + vp.

(2) To any corepresentation v € M,(A) we associate its space of coefficients, given
by C(v) = span(v;j). The construction v — C(v) is then functorial, in the sense that it
maps subcorepresentations into subspaces. Observe also that we have:

A=Y Cu®)
keNxN

Now given an arbitrary corepresentation v € M, (A), the corresponding coefficient
space is a finite dimensional subspace C(v) C A, and so we must have, for certain positive
integers ki, ..., kp, an inclusion of vector spaces, as follows:

C(v) c Clu® @ ... ¢ u®k)
Thus we have v C u®* @ ... ®u® and by (1) we obtain the result.

(3) As a first observation, which follows from an elementary computation, for any two
corepresentations v, w we have a Frobenius type isomorphism, as follows:

Hom(v,w) ~ Fiz(t ® w)

Now assume v o w, and let us set P, ;5 = fG vi;wiy. According to Theorem 1.21, the
matrix P is the orthogonal projection onto the following vector space:

Fiz(v® w) ~ Hom(v,w) = {0}
Thus we have P = 0, and so C(v) L C(w), which gives the result.

(4) The fact that the characters form indeed an orthogonal system follows from (3).
Regarding now the norm 1 assertion, consider the following integrals:

*
Pik,jl:/vijvkl
G
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We know from Theorem 1.21 that these integrals form the orthogonal projection onto
Fiz(v®v) ~ End(v) = C1. By using this fact, we obtain the following formula:

1
\/GXUX:;:%:/GU’L’LU;j:Z:N:]-

Thus the characters have indeed norm 1, and we are done. Il

Observe that in the cocommutative case, we obtain from (4) that our algebra must be
of the form A = C*(I"), for some discrete group I', as mentioned in Proposition 1.14. As
another consequence of the above results, following Woronowicz [99], we have:

THEOREM 5.26. Let Ay, be the enveloping C*-algebra of A, and A,eq be the quotient
of A by the null ideal of the Haar integration. The following are then equivalent:

) The Haar functional of Ay ts faithful.

(1

(2) The projection map Ajpyy — Areq i an isomorphism.

(3) The counit map € : Apuy — C factorizes through A,eq.

(4) We have N € o(Re(xy.)), the spectrum being taken inside Ayeq.

If this is the case, we say that the underlying discrete quantum group I' is amenable.

PROOF. This is well-known in the group dual case, A = C*(T"), with T" being a usual
discrete group. In general, the result follows by adapting the group dual case proof:

(1) <= (2) This simply follows from the fact that the GNS construction for the
algebra Ay,; with respect to the Haar functional produces the algebra A, 4.

(2) < (3) Here = is trivial, and conversely, a counit € : A,.q — C produces an
isomorphism ® : A,.q — Ay, by slicing the map A Ayeqg = Ared @ Agun.

(3) <= (4) Here = is clear, coming from (/N — Re(x(u))) = 0, and the converse
can be proved by doing some functional analysis. See [99]. U

With these results in hand, we can formulate, as a refinement of Definition 1.16:
DEFINITION 5.27. Given a Woronowicz algebra A, we formally write as before
A=C(G)=CcI)
and by GNS construction with respect to the Haar functional, we write as well
A" = L=(G) = L(T)
with G being a compact quantum group, and I' being a discrete quantum group.

Now back to Theorem 1.26, as in the discrete group case, the most interesting criterion
for amenability, leading to some interesting mathematics and physics, is the Kesten one,
(4) there. This leads us into computing character laws:
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THEOREM 5.28. Given a Woronowicz algebra (A, u), consider its main character:
X = Z Wi

(1) The moments of x are the numbers My = dim(Fiz(u®*)).
(2) When u ~ @ the law of x is a real measure, supported by o(x).
(3) The notion of coamenability of A depends only on law(x).

Proor. All this follows from the above results, the idea being as follows:

(1) This follows indeed from Peter-Weyl theory.

(2) When u ~ @ we have xy = x*, which gives the result.

(3) This follows from Theorem 1.26 (4), and from (2) applied to u + . O

This was for the basic theory of compact and discrete quantum groups. For more on
all this, we refer to Woronowicz [99] and related papers, or to the book [5].

5c. Quantum rotations

We know so far that the compact quantum groups include the usual compact Lie

groups, G C Uy, and the abstract duals G = T of the finitely generated groups Fn — T
We can combine these examples by performing basic operations, as follows:

PROPOSITION 5.29. The class of Woronowicz algebras is stable under taking:

(1) Tensor products, A= A" @ A", with uw = v +u". At the quantum group level we
obtain usual products, G =G x G" and ' =T" x I'”".

(2) Free products, A = A" x A", with u = v’ + u”. At the quantum group level we
obtain dual free products G = G' * G" and free products T' =T" % T,

PRrROOF. Everything here is clear from definitions. In addition to this, let us mention as
well that we have [ oA = Ju® [yand [, . = [, * [, Also, the corepresentations
of the products can be explicitely computed. See Wang [92]. U

Here are some further basic operations, once again from Wang [92]:

PRrROPOSITION 5.30. The class of Woronowicz algebras is stable under taking:

(1) Subalgebras A" =< wj; >C A, with u' being a corepresentation of A. At the
quantum group level we obtain quotients G — G’ and subgroups I C T

(2) Quotients A — A" = A/I, with I being a Hopf ideal, A(I) CARQ I +1® A. At
the quantum group level we obtain subgroups G' C G and quotients I' — 1",

PROOF. Once again, everything is clear, and we have as well some straightforward
supplementary results, regarding integration and corepresentations. See [92]. Il

Finally, here are two more operations, which are of key importance:
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PROPOSITION 5.31. The class of Woronowicz algebras is stable under taking:

(1) Projective versions, PA =< wjq ;s >C A, where w = u® u. At the quantum
group level we obtain projective versions, G — PG and PI' C T.

(2) Free complezifications, A =< zu;; >C C(T) = A. At the quantum group level we
obtain free complexifications, denoted G andT.

PRrROOF. This is clear from the previous results. For details here, we refer to [92]. O

Once again following Wang [92] and related papers, let us discuss now a number of
truly “new” quantum groups, obtained by liberating. We first have:

THEOREM 5.32. The following universal algebras are Woronowicz algebras,

C’(OX,) =C" <(uij)i,j=1,...,N‘u =a,u’ = lfl)

C(Uy)=C" ((uij>i,j:1,...,N‘U* =yt ut = ﬁ’1>
so the underlying quantum spaces O;{,, U;; are compact quantum groups.

PRrROOF. This comes from the elementary fact that if a matrix u = (u;;) is orthogonal
or biunitary, then so must be the following matrices:

W)y =Y uw@ugy (W) =0y , (W)y=uj
k

Thus we can define A, ¢, .S by using the universal property of C(O}), C(U}). O

Now with this done, we can look for various intermediate subgroups Oy C O% C OF,
and Uy C Uy C Uy Following [17], a basic construction here is as follows:

THEOREM 5.33. The following quotient algebras are Woronowicz algebras,

C(Oy) = C(O;{,)/ <abc = cba)Va, b,c € {uw}>

C(Ux) = C’(U;\;)/ <abc = cba‘Va, b, c € {uy, uj; >
so the underlying quantum spaces Oy, Ux; are compact quantum groups.

Proor. This follows as in the proof of Theorem 1.32, because if the entries of u satisfy
the half-commutation relations abc = cba, then so do the entries of u®,u®, u”. U

Obviously, there are many more things that can be done here, with the above con-
structions being just the tip of the iceberg. But instead of discussing this, let us first
verify that Theorem 1.32 and Theorem 1.33 provide us indeed with new quantum groups.
For this purpose, we can use the notion of diagonal torus, which is as follows:



122 5. QUANTUM GROUPS

PROPOSITION 5.34. Given a closed subgroup G C Uy, consider its diagonal torus,
which is the closed subgroup T C G constructed as follows:

(1) = C(G) [ (wiy = 0fvi # )

This torus is then a group dual, T = K, where A =< g1, ...,gn > is the discrete group
generated by the elements g; = u;;, which are unitaries inside C(T).

PROOF. Since w is unitary, its diagonal entries g; = w;; are unitaries inside C(T).
Moreover, from A(u;;) = >, wix ® ug; we obtain, when passing inside the quotient:

A(gi) = 9 ® gi

It follows that we have C'(T") = C*(A), modulo identifying as usual the C*-completions
of the various group algebras, and so that we have T'= A, as claimed. O

We can now distinguish between our various quantum groups, as follows:

THEOREM 5.35. The diagonal tori of the basic unitary quantum groups, namely

Uy U Uy

O o o%

are the following discrete group duals,

o~ — o~

N Z°N Fy

with o standing for the half-classical product operation for groups.

PROOF. This is clear for Uy, where on the diagonal we obtain the biggest possible

group dual, namely ]5]\\[ For the other quantum groups this follows by taking quotients,
which correspond to taking quotients as well, at the level of the groups A =T Il

As a consequence of the above result, the quantum groups that we have are indeed
distinct. There are many more things that can be said about these quantum groups, and
about further versions of these quantum groups that can be constructed. More later.
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5d. Quantum permutations

Eventually. Following Wang [92], let us discuss now the construction and basic prop-
erties of the quantum permutation group Sy;. Let us first look at Sy. We have:

PROPOSITION 5.36. Consider the symmetric group Sy, viewed as permutation group
of the N coordinate azes of RN . The coordinate functions on Sy C On are given by

Uij = X <a € G‘a(j) = z)

and the matriz uw = (u;;) that these functions form is magic, in the sense that its entries
are projections (p? = p* = p), summing up to 1 on each row and each column.

PROOF. The action of Sy on the standard basis e1,...,ey € RY being given by
0 1 ej — eq(;), this gives the formula of u;; in the statement. As for the fact that the
matrix u = (u;;) that these functions form is magic, this is clear. O

With a bit more effort, we obtain the following nice characterization of Sy:
THEOREM 5.37. The algebra of functions on Sy has the following presentation,
C(Sy)=0Cx ((uij)i7j:17,,,,N‘u = magic)
and the multiplication, unit and inversion map of Sy appear from the maps

A(ugj) = Zum Qug; ,  e(uy) =06y ,  Sluy) =uy
k

defined at the algebraic level, of functions on Sy, by transposing.

PROOF. The universal algebra A in the statement being commutative, by the Gelfand
theorem it must be of the form A = C'(X), with X being a certain compact space. Now
since we have coordinates u;; : X — R, we have an embedding X C My (R). Also, since
we know that these coordinates form a magic matrix, the elements ¢ € X must be 0-1
matrices, having exactly one 1 entry on each row and each column, and so X = Sy. Thus
we have proved the first assertion, and the second assertion is clear as well. O

Following now Wang [92], we can liberate Sy, as follows:

THEOREM 5.38. The following universal C*-algebra, with magic meaning as usual
formed by projections (p* = p* = p), summing up to 1 on each row and each column,

C(sy) =" ((Uz‘j)i,y‘:l,...,zv
1s a Woronowicz algebra, with comultiplication, counit and antipode given by:

A(u) = Zuzk Qugj , e(uy) =065 , Suy)=1uy
k

U = magic)

Thus the space S¥ is a compact quantum group, called quantum permutation group.
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PROOF. As a first observation, the universal C*-algebra in the statement is indeed
well-defined, because the conditions p? = p* = p satisfied by the coordinates give:

[Jugl| <1

In order to prove now that we have a Woronowicz algebra, we must construct maps
A e, S given by the formulae in the statement. Consider the following matrices:

A _2 : e _ S.. Sy
k

Our claim is that, since u is magic, so are these three matrices. Indeed, regarding u?,
its entries are idempotents, as shown by the following computation:

A2 A
(uij> = E Uik Ui & UpUy = E Okl @ Oy = U
Kl Kl

These elements are self-adjoint as well, as shown by the following computation:
(u)" = D ui @ uiy = 3 uan ® wg = g
k k

The row and column sums for the matrix u® can be computed as follows:

ZuiAj:ZUik@)ukg‘:Zuik@l:l
J ik k
ZuiAj:Zuik(gukj:Zl@Ukj:l
i ik k

Thus, u® is magic. Regarding now u°, u®, these matrices are magic too, and this for
obvious reasons. Thus, all our three matrices u®, uf, u® are magic, so we can define A, ¢, S
by the formulae in the statement, by using the universality property of C(Sy). O

Our first task now is to make sure that Theorem 1.38 produces indeed new quantum
groups, which do not collapse to Sy. Following Wang [92], we have:

THEOREM 5.39. We have an embedding Sy C Sy, given at the algebra level by:
Ui —> X (O’ < SN’O'O) = Z)
This is an isomorphism at N < 3, but not at N > 4, where S5, is not classical, nor finite.

PROOF. The fact that we have indeed an embedding as above follows from Theorem
1.37. Observe that in fact more is true, because Theorems 1.37 and 1.38 give:

C(Sy) = C(S%) / <ab - ba>

Thus, the inclusion Sy C Sj; is a “liberation”, in the sense that Sy is the classical
version of SJ;. We will often use this basic fact, in what follows. Regarding now the
second assertion, we can prove this in four steps, as follows:
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Case N = 2. The fact that S5 is indeed classical, and hence collapses to S, is trivial,
because the 2 x 2 magic matrices are as follows, with p being a projection:

-2, 1)
I—-p p

Indeed, this shows that the entries of U commute. Thus C(Sy) is commutative, and
so equals its biggest commutative quotient, which is C'(S;). Thus, Sy = Ss.

Case N = 3. By using the same argument as in the N = 2 case, and the symmetries
of the problem, it is enough to check that wuqy, uss commute. But this follows from:
Uy = UriUg(urr + Uiz + Ui3)
= U U22U11 + U1 U22UI3
Ur U1 + upr (1 — g1 — Ug3) Uiz
= UpU22U11

Indeed, by applying the involution to this formula, we obtain that we have as well
Ugol11 = U 1UgeUir. Thus, we obtain uiiugsy = ugouyy, as desired.

Case N = 4. Consider the following matrix, with p, ¢ being projections:
P 1—p O 0
1—p p 0 0

0 0 q 1—g¢q
0 0 1—gq q

U —

This matrix is magic, and we can choose p,q € B(H) as for the algebra < p,q > to be
noncommutative and infinite dimensional. We conclude that C(S)) is noncommutative
and infinite dimensional as well, and so S is non-classical and infinite, as claimed.

Case N > 5. Here we can use the standard embedding S} C S}, obtained at the level
of the corresponding magic matrices in the following way:

N U 0
“ 0 In—4

Indeed, with this in hand, the fact that S is a non-classical, infinite compact quantum
group implies that Sj; with N > 5 has these two properties as well. O

The above result is quite surprising. How on Earth can the set {1,2,3,4} have an
infinity of quantum permutations, and will us be able to fully understand this, one day.
But do not worry, the remainder of the present book will be here for that.

As a first observation, as a matter of doublechecking our findings, we are not wrong
with our formalism, because as explained once again in [92], we have as well:
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THEOREM 5.40. The quantum permutation group Sy acts on the set X = {1,..., N},
the corresponding coaction map ® : C(X) — C(X) @ C(S%) being given by:

(I)(GZ) = Z €; ® Uj;
J

In fact, Sy is the biggest compact quantum group acting on X, by leaving the counting
measure invariant, in the sense that (tr ® id)® = tr(.)1, where tr(e;) = =, Vi.

PrROOF. Our claim is that given a compact matrix quantum group G, the follow-
ing formula defines a morphism of algebras, which is a coaction map, leaving the trace
invariant, precisely when the matrix u = (u;;) is a magic corepresentation of C(G):

(I)(el) = Z €; ® Ugjs
J
Indeed, let us first determine when ® is multiplicative. We have:

O(e;)P(ey) = Z ejer @ Wyl = Z e; @ ;i
gl J
®(€i€k> = 5z/€(1)(61) = 5119 Z €; & Ui
J
We conclude that the multiplicativity of ® is equivalent to the following conditions:
Ujitgr = Oiptji Vi, 7,k

Similarly, ® is unital when ) u;; = 1, Vj. Finally, the fact that ® is a *-morphism
translates into u;; = uj;, Vi,j. Summing up, in order for ®(e;) = Zj e; ® u;; to be a
morphism of C*-algebras, the elements u;; must be projections, summing up to 1 on each
row of u. Regarding now the preservation of the trace, observe that we have:

(tr @ id)®(e;) = % Z Uyj;

Thus the trace is preserved precisely when the elements w;; sum up to 1 on each of
the columns of u. We conclude from this that ®(e;) = >_, e; ® uj; is a morphism of C*-
algebras preserving the trace precisely when u is magic, and since the coaction conditions
on ® are equivalent to the fact that u must be a corepresentation, this finishes the proof
of our claim. But this claim proves all the assertions in the statement. U

As a technical comment here, the invariance of the counting measure is a key assump-
tion in Theorem 1.40, in order to have an universal object S3. That is, this condition
is automatic for classical group actions, but not for quantum group actions, and when
dropping it, there is no universal object of type S%. This explains the main difficulty
behind Question 1.1, and the credit for this discovery goes to Wang [92].

In order to study now Sy, we can use the technology that we have, which gives:
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THEOREM 5.41. The quantum groups Sy have the following properties:
1) We have S} % S§; C Sy, for any N, M.

) In particular, we have an embedding Dy, C Sy .

) Sy C Sy are distinguished by their spinned diagonal tori.

) If Zn, % ... x Ly, — T, with N =5 N;, then T C S},.

) The quantum groups Sj; with N > 5 are not coamenable.

) The half-classical version Sk = Sy N O% collapses to Sy.

PROOF. These results follow from what we have, the proofs being as follows:

(1) If we denote by wu,v the fundamental corepresentations of C(Sy),C(S};), the
fundamental corepresentation of C'(Sy % S;;) is by definition:

_(u O
=10 v
But this matrix is magic, because both u, v are magic, and this gives the result.
(2) This result, which refines our N = 4 trick from the proof of Theorem 1.39, follows
from (1) with N = M = 2. Indeed, we have the following computation:
S;_%S;_ - SQ%SQZZQQZQ
~ Dok Zn =T * I

- D..

(3) Observe first that S; C S; are not distinguished by their diagonal torus, which is
{1} for both of them. However, according to the Peter-Weyl theory applied to the group

duals, the group dual 1/7\00 C S; from (2) must be a subgroup of the diagonal torus of
(Sy, FuF™), for a certain unitary F' € Uy, and this gives the result.

(4) This result, which generalizes (2), can be deduced as follows:

I' C ZNl*---*ZNk:Zqu‘”'%ZNk
~ ZN1>T<. -;‘ZN;CCSN1’T< ;‘SN;C
C S§h. ASE CSh

(5) This follows from (4), because at N = 5 the dual of the group I' = Zy * Zs, which
is well-known not to be amenable, embeds into Si. As for the general case, that of S¥
with N > 5, here the result follows by using the embedding S5 C S5 .

(6) We must prove that Sk = Sy N Oy is classical. But here, we can use the fact that
for a magic matrix, the entries on each row sum up to 1. Indeed, by making ¢ vary over
a full row of u, we obtain abc = cba = ab = ba, as desired. O
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The above results are all quite interesting, notably with (2) providing us with a better
understanding of why S is infinite, and with (4) telling us that S5 is not only infinite,
but just huge. We have as well (6), suggesting that Sj might be the only liberation of
Sy. We will be back to these observations, with further results, in due time.

5e. Exercises

Exercises:

EXERCISE 5.42.
EXERCISE 5.43.
EXERCISE 5.44.
EXERCISE 5.45.
EXERCISE 5.46.
EXERCISE 5.47.
EXERCISE 5.48.
EXERCISE 5.49.

Bonus exercise.



CHAPTER 6

Diagrams, easiness

6a. Some philosophy

We have seen the definition and basic properties of S¥, and a number of more advanced
results as well, such as the non-isomorphism of Sy C Sy at N > 4, obtained by using
suitable group duals T C S Tt is possible to further build along these lines, but all this
remains quite amateurish. For strong results, we must do representation theory.

So, let us first go back to the general closed subgroups G C Uj;. We have seen in
chapter 1 that such quantum groups have a Haar measure, and that by using this, a
Peter-Weyl theory can be developed for them. However, all this is just a beginning, and
many more things can be said, at the general level, which are all useful. We will present
now this material, and go back afterwards to our problems regarding Sy .

Let us start with a claim, which is quite precise, and advanced, and which will stand
as a guiding principle for this chapter, and in fact for the remainder of this book:

CLAIM 6.1. Given a closed subgroup G C, Uy, no matter what you want to do with
it, of algebraic or analytic type, you must compute the following spaces:

F}, = Fiz(u®*)
Moreover, for most questions, the computation of the dimensions M = dim F},, which are

the moments of the main character x =), u;, will do.

This might look like a quite bold claim, so let us explain this. Assuming first that
you are interested in doing representation theory for G, you will certainly run into the
spaces F}, via Peter-Weyl theory. In fact, Peter-Weyl tells you that the irreducible rep-
resentations appear as r C u®*, so for finding them, you must compute the algebras
Cr = End(u®). But the knowledge of these algebras Cj, is more or less the same thing
as the knowledge of the spaces Fj, due to Frobenius duality, as follows:

PROPOSITION 6.2. Given a closed subgroup G C, Uy, consider the following spaces:
F, = Fiz(u®) | Cy=Endu®) , Cy= Hom(u®" u®)

Then knowing the sequence {Fy} is the same as knowing the double sequence {Cy}, and
in the case 1 € u, this is the same as knowing the sequence {Cy}.

129
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PROOF. In the particular case of the Peter-Weyl corepresentations, the Frobenius
isomorphism Hom(v,w) ~ Fix(v ® w), that we know from chapter 1, reads:

Cly = Hom(u®*, u®) = Fiz(u®™) = Fy,

But this gives the equivalence in the statement. Regarding now the last assertion,
assuming 1 € u we have 1 € u®* for any colored integer k, and so:

Fy, = Hom(1,u®*) € Hom(u®*,u®*) = G
Thus the spaces F}, can be identified inside the algebras C}, and we are done. O

Summarizing, we have now good algebraic motivations for Claim 2.1. Before going
further, however, let us point out that looking at Proposition 2.2 leads us a bit into a
dillema, on which spaces are the best to use. And the traditional answer here is that the
spaces CY; are the best, due to Tannakian duality, which is as follows:

THEOREM 6.3. The following operations are inverse to each other:

(1) The construction G — C, which associates to a closed subgroup G C, Uy the
tensor category formed by the intertwiner spaces Cyy = Hom(u®*, u®).

(2) The construction C — G, associating to a tensor category C' the closed subgroup
G C, Uy coming from the relations T € Hom(u®* u®), with T € Cy,.

PRroOOF. This is something quite deep, going back to Woronowicz [100] in a slightly
different form, and to Malacarne [71] in the simplified form above. The idea is that we
have indeed a construction G — Cg, whose output is a tensor C*-subcategory with duals
of the tensor C*-category of finite dimensional Hilbert spaces, as follows:

(Ca)ur = Hom(u®*, u®")
We have as well a construction C' — G¢, obtained by setting:

C(Ge) = C(UY)/ <T e Hom(u®,u®)|Vk,1|,VT ¢ Ckl>

Regarding now the bijection claim, some elementary algebra shows that C' = Cg,.
implies G = G¢,,, and that C' C Cg,, is automatic. Thus we are left with proving:

CGC ccC
But this latter inclusion can be proved indeed, by doing some algebra, and using von
Neumann’s bicommutant theorem, in finite dimensions. See Malacarne [71]. O

The above result is something quite abstract, yet powerful. We will see applications
of it in a moment, in the form of Brauer theorems for Uy, Oy, Sy and Uy, O, S¥.

All this is very good, providing us with strong motivations for Claim 2.1. However,
algebra is of course not everything, and we must comment now on analysis as well. As an
analyst you would like to know how to integrate over GG, and here, we have:
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THEOREM 6.4. The integration over G C, Uy is given by the Weingarten formula
[t = Y 508G Wilm,o)
G m,0€Dy,
for any colored integer k = ey ... ey, and indices i, j, where Dy, is a linear basis of Fiz(u®*),
0r(i) =<m e ®...Qe; >
and Wy, = G*, with Gy(w,0) =< 7,0 >.

ProoF. We know from chapter 1 that the integrals in the statement form altogether
the orthogonal projection P* onto the following space:

Fiz(u®*) = span(Dy)

Consider now the following linear map, with Dy = {{;} being as in the statement:

E@)=> <2t >&
weDy
By a standard linear algebra computation, it follows that we have P = W E, where W
is the inverse on span(T,|m € Dy) of the restriction of E. But this restriction is the linear
map given by Gy, and so W is the linear map given by Wy, and this gives the result. [J

As a conclusion, regardless on whether you're an algebraist or an analyst, if you
want to study G C, Uy you are led into the computation of the spaces Fy = Fiz(u®*).
However, the story is not over here, because you might say that you are a functional
analyst, interested in the fine analytic properties of the dual I' = G. But here, T would
strike back with the following statement, based on the Kesten amenability criterion:

PROPOSITION 6.5. Given a closed subgroup G C, Uy, consider its main character:
X = Z Uz
i

(1) The moments of x are the numbers M, = dim(Fiz(u®*)).
(2) When u ~ @ the law of x is a real measure, supported by o(x).
(3) The notion of amenability of ' = G depends only on law(x).

PROOF. This is something that we know from chapter 1, the idea being that (1) comes
from Peter-Weyl theory, that (2) comes from v ~ 4 = x = x*, and that (3) comes
from the Kesten amenability criterion, and from (2) applied to u + a. O

Finally, you might argue that you are in fact a pure mathematician interested in the
combinatorial beauty of the dual I' = . But I have an answer to this too, as follows,
again urging you to look at the spaces F, = Fiz(u®*), before getting into I':
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PROPOSITION 6.6. Consider a closed subgroup G C, Uy, and assume, by enlarging if

necessary u, that we have 1 € uw = u. The formula
d(v,w) = min{k € N‘l C 6®w®u®k}

defines then a distance on Irr(G), which coincides with the geodesic distance on the
associated Cayley graph. Moreover, the moments of the main character,

/ x* = dim (Fiz(u®))
a
count the loops based at 1, having lenght k, on the corresponding Cayley graph.

PROOF. Observe first the result holds indeed in the group dual case, where the
Woronowicz algebra is A = C*(I'), with I' =< S > being a finitely generated discrete
group. In general, the fact that the lengths are finite follows from Peter-Weyl theory. The
symmetry axiom is clear as well, and the triangle inequality is elementary to establish
too. Finally, the last assertion, regarding the moments, is elementary too. O

As a conclusion, looks like I won the debate, with Claim 2.1 reigning over both the
compact and discrete quantum group worlds, without opposition. Before getting further,
let us record a result in relation with the second part of that claim, as follows:

THEOREM 6.7. Given a closed subgroup G C, Uy, the law of its main character
X = Z U

with respect to the Haar integration has the following properties:
(1) The moments of x are the numbers My, = dim(Fiz(u®*)).
) =d.
) law(x) is the Kesten measure of the discrete quantum group I' = G.
) When u ~ u the law of x is a usual measure, supported on [—N, N].
) T =G is amenable precisely when N € supp(law(Re(x))).
) Any inclusion G C,, H C, U;; must decrease the numbers M;,.
) Such an inclusion is an isomorphism when law(x,) = law(x.).

Proor. All this is very standard, coming from the Peter-Weyl theory developed by
Woronowicz in [99], and explained in chapter 1, the idea being as follows:

(1) This comes from the Peter-Weyl type theory, which tells us the number of fixed
points of v = u®* can be recovered by integrating the character y, = x*.

(2) This is something true, and well-known, for G = T with I =< J1,--.,9n > being
a discrete group. In general, the proof is quite similar.

(3) This is actually the definition of the Kesten measure, in the case G = f, with
['=<g,...,gn > being a discrete group. In general, this follows from (2).
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(4) The equivalence u ~ u translates into x, = X, and this gives the first assertion.
As for the support claim, this follows from vu* =1 = ||uy|| < 1, for any i.

(5) This is the Kesten amenability criterion, which can be established as in the group
dual case, G =T, with I' =< ¢1,...,gny > being a discrete group.

(6) This is something elementary, which follows from (1), and from the fact that the
inclusions of closed subgroups of U}, decrease the spaces of fixed points.

(7) This follows by using (6), and the Peter-Weyl type theory, the idea being that if
G C H is not injective, then it must strictly decrease one of the spaces Fiz(u®*). O

As a conclusion to all this, somewhat improving Claim 2.1, given a closed subgroup
G C, Uj;, regardless of our precise motivations, be that algebra, analysis or other, com-
puting the law of x = >, u;; is the “main problem” to be solved. Good to know.

6b. Diagrams, easiness

Let us discuss now the representation theory of S, and the computation of the law
of the main character. Our main result here, which will be something quite conceptual,
will be the fact that Sy C Sy is a liberation of “easy quantum groups”.

Looking at what has been said above, as a main tool, at the general level, we only
have Tannakian duality. So, inspired by that, and following [17], let us formulate:

DEFINITION 6.8. Let P(k,l) be the set of partitions between an upper row of k points,
and a lower row of | points. A collection of sets

D =| | D(k,1)

kel
with D(k,1) C P(k,l) is called a category of partitions when it has the following properties:

(

(1) Stability under the horizontal concatenation, (w,0) — [mo].
(2) Stability under the vertical concatenation, (w,0) — [2].

(3) Stability under the upside-down turning, ™ — 7*.

(4) Each set P(k,k) contains the identity partition ||...||.

(5) The sets P(D,0e) and P((), ®0) both contain the semicircle N.

As a basic example, we have the category of all partitions P itself. Other basic
examples are the category of pairings P,, and the categories NC, NCy of noncrossing
partitions, and pairings. We have as well the category P, of pairings which are “matching”,
in the sense that they connect o — o, @ — @ on the vertical, and o — e on the horizontal,
and its subcategory NCy C P, consisting of the noncrossing matching pairings.

There are many other examples, and we will be back to this. Following [17], the
relation with the Tannakian categories and duality comes from:



134 6. DIAGRAMS, EASINESS

PROPOSITION 6.9. Each partition m € P(k,l) produces a linear map
T7T . ((CN>®k — (CN)®l

given by the following formula, with ey, ..., en being the standard basis of CV,
11 ... I
Tw(eh®-..®eik>=;‘5”(ﬁ jl)%@“'@eﬁ
101

and with the Kronecker type symbols 6, € {0,1} depending on whether the indices fit or
not. The assignement m — T, is categorical, in the sense that we have

T, ®1T, = T[T(O’] , TR, = NC(W’U)T[g] ’ T;: = T
where c(m,0) are certain integers, coming from the erased components in the middle.
PROOF. The concatenation axiom follows from the following computation:

(T @T,)(€, ®..Q¢€, ey, ® ... ex,)

= Y 5ﬂ<2 ;.”>§U(l11 lr)ej1®...®ejq®el1®...®els
g )

jl---jq ly..ls
= > b | p e, ®..0¢, Qe Q...Qe,
Lt Ji - Jq ll ... ls a
J1-Jg li.ls
= 7—‘[71'0'](62'1 ®“'®eip®ek’1 ®®€kr)
As for the composition and involution axioms, their proof is similar. O

In relation with quantum groups, we have the following result, from [17]:

THEOREM 6.10. Fach category of partitions D = (D(k,l)) produces a family of com-
pact quantum groups G = (Gy), one for each N € N, via the formula

Hom(u®* u®") = span <T,r 7 € D(k, l))

which produces a Tannakian category, and so a closed subgroup Gy C, Uy

PROOF. Let call Cy; the spaces on the right. By using the axioms in Definition 2.8,
and the categorical properties of the operation # — T, from Proposition 2.9, we see that
C' = (Cyy) is a Tannakian category. Thus Theorem 2.3 applies, and gives the result. [

We can now formulate a key definition, as follows:
DEFINITION 6.11. A compact quantum group Gy is called easy when we have

Hom(u®* u®") = span (T7r 7 € D(k, l))

for any colored integers k,l, for a certain category of partitions D C P.
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In other words, a compact quantum group is called easy when its Tannakian category
appears in the simplest possible way: from a category of partitions. The terminology is
quite natural, because Tannakian duality is basically our only serious tool. In relation
now with quantum permutation groups, and with the orthogonal and unitary quantum
groups too, here is our main result, coming from [5], [17]:

THEOREM 6.12. The basic quantum permutation and rotation groups,

Sy Oy Uy
SN ON UN
are all easy, the corresponding categories of partitions being as follows,
NC NC, NC,
P P2 PQ

with 2 standing for pairings, NC for noncrossing, and calligraphic for matching.
ProOF. This is something quite fundamental, the proof being as follows:

(1) The quantum group Uy; is defined via the following relations:

* —1 t

U = , w=u"!

But, by doing some elementary computations, these relations tell us precisely that the
following two operators must be in the associated Tannakian category C"
T. : n=151, 1

Thus, the associated Tannakian category is C' = span(T,|m € D), with:

D=< [, l>=NC,
(2) The subgroup OF C Uy, is defined by imposing the following relations:

Ujj = Usj
Thus, the following operators must be in the associated Tannakian category C"
T. : wm=%,1

We conclude that the Tannakian category is C' = span(T,|r € D), with:

D =< NCy,{,! >= NCy
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(3) The subgroup Uy C Uy is defined via the following relations:
[Wij,ui) =0, [wij, Gg) =0
Thus, the following operators must be in the associated Tannakian category C'
. : m=%,%
Thus the associated Tannakian category is C' = span(T,|r € D), with:
D =< NCy, %, % >= P,
(4) In order to deal now with Oy, we can simply use the following formula:
On =04 NUy
At the categorical level, this tells us that Oy is indeed easy, coming from:
D =< NCy, Py >= Py
(5) We know that the subgroup S3; C O3 appears as follows:

C(s}) = C(0}) / (u = magic)
In order to interpret the magic condition, consider the fork partition:
Y € P(2,1)
Given a corepresentation u, we have the following formulae:

(Tyu™)i e = Y (T )i (U™ )im i = izt

Im
(WTy)ige = > wa(Ty)ije = Ot
z

We conclude that we have the following equivalence:
Ty € Hom(u®? u) < wjjug = 6w, Vi, j, k
The condition on the right being equivalent to the magic condition, we obtain:
C(Sy%) = C’(O;{,)/<Ty € Hom(u®2,u)>
Thus S} is indeed easy, the corresponding category of partitions being:
D =<Y >=NC
(6) Finally, in order to deal with Sy, we can use the following formula:
Sy =SHNOy
At the categorical level, this tells us that Sy is indeed easy, coming from:
D=<NC,P,>=P

Thus, we are led to the conclusions in the statement.
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The above result is something quite deep, and we will see in what follows countless
applications of it. As a first such application, which is rather philosophical, we have:

THEOREM 6.13. The constructions Gy — G with G = U,0, S are easy quantum
group liberations, in the sense that they come from the construction

D—DNNC
at the level of the associated categories of partitions.

ProoOF. This is clear indeed from Theorem 2.12, and from the following trivial equal-
ities, connecting the categories found there:

NCy,=P,NNC , NC,=P,NNC , NC=PNNC
Thus, we are led to the conclusion in the statement. O

The above result is quite nice, because the various constructions Gy — G}, that we
saw in chapter 1, although natural, were something quite ad-hoc. Now all this is no longer
ad-hoc, and the next time that we will have to liberate a subgroup Gy C Uy, we know
what the recipe is, namely check if G is easy, and if so, simply define G}, C Uy, as being
the easy quantum group coming from the category D = Dg N NC.

6¢c. Laws of characters

Let us discuss now some more advanced applications of Theorem 2.12; this time to
the computation of the law of the main character, in the spirit of Claim 2.1. First, we
have the following result, valid in the general easy quantum group setting:

PROPOSITION 6.14. For an easy quantum group G = (Gy), coming from a category
of partitions D = (D(k,l)), the moments of the main character are given by

/GN " = dim (span (é} TE D(k)))

where D(k) = D(0, k), and with the notation &, = Ty, for partitions m € D(k).

PROOF. According to the Peter-Weyl theory, and to the definition of easiness, the
moments of the main character are given by the following formula:

[ o
= dim (sz(u®k))
dim (span (&T e D(k)))

Thus, we obtain the formula in the statement. U
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With the above result in hand, you would probably say very nice, so in practice, this is
just a matter of counting the partitions appearing in Theorem 2.12, and then recovering
the measures having these numbers as moments. However, this is wrong, because such
a computation would lead to a law of y which is independent on N € N, and for the
classical groups at least, Sy, Oy, Uy, we obviously cannot have such a result.

The mistake comes from the fact that the vectors &, are not necessarily linearly inde-
pendent. Let us record this finding, which will be of key importance for us:

CONCLUSION 6.15. The vectors associated to the partitions m € P(k), namely

gﬂ': Z57r(2.17'--7ik)ei1®"'®eik

i1

are not linearly independent, with this making the main character moments for Sy,

/S " = dim <span <§7r T E P(k:)))

depend on N € N. Moreover, the same phenomenon happens for Oy, Uy.

All this suggests by doing some linear algebra for the vectors &, but this looks rather
complicated, and let’s keep that for later. What we can do right away, instead, is that of
studying Sy with alternative, direct techniques. And here we have:

THEOREM 6.16. Consider the symmetric group Sy, regarded as a compact group of
matrices, Sy C Oy, via the standard permutation matrices.

(1) The main character x € C(Sn), defined as usual as x = Y . u;, counts the
number of fized points, x(o) = #{i|lo(i) =i}.

(2) The probability for a permutation o € Sy to be a derangement, meaning to have
no fized points at all, becomes, with N — oo, equal to 1/e.

(3) The law of the main character x € C(Sn) becomes with N — oo the Poisson law
P = %Zk O/ k!, with respect to the counting measure.

PRroOF. This is something very classical, the proof being as follows:

(1) We have indeed the following computation, which gives the result:
w(0) = Y ualo) = 3 by = # {i|oli) = i}

(2) We use the inclusion-exclusion principle. Consider the following sets:

S = {U € SN‘J(Z') = 2}
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The probability that we are interested in is then given by:

P(x=0) = m<|SN\—Z\S]\,]JFZLSNQS{V\— Z ySNmSijS]’“VH...)

1<j 1<j<k

_ %Z(—l)r'z‘(N—r)!

- w3 (Me-n
N 1y

B Z;(r!

Since we have here the expansion of 1/e, this gives the result.

(3) This follows by generalizing the computation in (2). To be more precise, a similar
application of the inclusion-exclusion principle gives the following formula:

. 1
A POc=h) =
Thus, we obtain in the limit a Poisson law of parameter 1, as stated. U

The above result is quite interesting, and tells us what to do next. As a first goal,
we can try to recover (3) there by using Proposition 2.14, and easiness. Then, once this
understood, we can try to look at S}, and then at Oy, Uy and Oy, Uy too, with the
same objective, namely finding N — oo results for the law of x, using easiness.

So, back to Proposition 2.14 and Conclusion 2.15, and we have now to courageously
attack the main problem, namely the linear independence question for the vectors &;.
This will be quite technical. Let us begin with some standard combinatorics:

DEFINITION 6.17. Let P(k) be the set of partitions of {1,...,k}, and 7,0 € P(k).

(1) We write m < o if each block of 7 is contained in a block of o.
(2) We let mV o € P(k) be the partition obtained by superposing 7, o.

Also, we denote by |.| the number of blocks of the partitions = € P (k).
As an illustration here, at k = 2 we have P(2) = {||,M}, and we have:
<
Also, at k = 3 we have P(3) = {|||,M|, 1, |r1,M}, and the order relation is as follows:
1< nap, m, n < rm

In relation with our linear independence questions, the idea will be that of using:
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PROPOSITION 6.18. The Gram matrixz of the vectors &, is given by the formula
< 571—’50' >— N|TI'VO'|
where V is the superposition operation, and |.| is the number of blocks.

PRrROOF. According to the formula of the vectors &, we have:

< &r,&, > = Z (Sﬂ('l'l, . ,ik)5a(i1, .. ,ik)

i1

— Z 57T\/0(i1, o ,ik)

110k
_ N|TI'\/O'|
Thus, we have obtained the formula in the statement. Il

In order to study the Gram matrix Gy (7, 0) = N!™°| and more specifically to compute
its determinant, we will use several standard facts about the partitions. We have:

DEFINITION 6.19. The Mobius function of any lattice, and so of P, is given by

1 itr=o0
(o) =< =2 o um7) ifm<o
0 ifrLo

with the construction being performed by recurrence.
As an illustration here, for P(2) = {||,M}, we have by definition:
pudlls 1) = p(m,m1) =1
Also, || < M, with no intermediate partition in between, so we obtain:
pdl, ) = =pdll 1)) = -1
Finally, we have M £ ||, and so we have as well the following formula:
p(M,[1) =0

Thus, as a conclusion, we have computed the M&bius matrix My(w,0) = p(w,0) of
the lattice P(2) = {||, M}, the formula being as follows:

1 -1
o )

Back to the general case now, the main interest in the Mobius function comes from
the Mobius inversion formula, which states that the following happens:

flo)=) g(m) = glo) =) p(mo)f(r)

<o <o

In linear algebra terms, the statement and proof of this formula are as follows:
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THEOREM 6.20. The inverse of the adjacency matriz of P(k), given by
1 ifr<
Amo) =3 "0
0 frLo
is the Mébius matriz of P, given by My(mw, o) = p(m, o).

Proor. This is well-known, coming for instance from the fact that Aj is upper trian-
gular. Indeed, when inverting, we are led into the recurrence from Definition 2.19. U

As an illustration, for P(2) the formula M, = A;' appears as follows:
(1 —1) i (1 1)‘1
0 1 01
Now back to our Gram matrix considerations, we have the following key result:
PROPOSITION 6.21. The Gram matriz of the vectors &, with m € P(k),
Grp = NI
decomposes as a product of upper/lower triangular matrices, Gy, = Ay Ly, where
O AR A
and where Ay, is the adjacency matriz of P(k).
ProoOF. We have the following computation, based on Proposition 2.18:
Gp(m,0) = NI™vel
- #{zlzk c {1,...,N}‘keri 27r\/a}
- ¥ #{z’l,...,ike {1,...,N}‘kerz’:7}

T>1mNVo

= Y N(N-1)...(N-|r|+1)

>N

According now to the definition of Ay, Ly, this formula reads:

Gy(m,o0) = Z Ly(t,0)

T>T

= Z Ay (7, 7)Ly(T,0)

= @Akl%)(ﬁ,a)

Thus, we are led to the formula in the statement. U
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As an illustration for the above result, at k = 2 we have P(2) = {||,M}, and the above
decomposition Gy = Ay Ly appears as follows:

N? N\ (1 1\ (N*-N 0
N N) \0 1 N N
We are led in this way to the following formula, due to Lindstom [68]:

THEOREM 6.22. The determinant of the Gram matriz Gy is given by

N!

weP (k)

with the convention that in the case N < k we obtain 0.

Proor. If we order P(k) as usual, with respect to the number of blocks, and then
lexicographically, Ay is upper triangular, and Ly is lower triangular. Thus, we have:

det(Gk) = det(Ak)det(Lk)
= det(Lk)

= HLk(ﬂ',ﬂ')

= [[NWNV=1) ... (N = x| +1)

Thus, we are led to the formula in the statement. U
Now back to easiness and laws of characters, we can formulate:

THEOREM 6.23. For an easy quantum group G = (Gy), coming from a category of
partitions D = (D(k, 1)), the asymptotic moments of the main character are given by

im [\ = |D(k)|

N—o0 Gn

where D(k) = D(0, k), with the limiting sequence on the left consisting of certain integers,
and being stationary at least starting from the k-th term.

Proor. We know from Proposition 2.14 that we have the following formula:

/GN ¥ = dim <span (fﬂ TE D(k)))

Now since by Theorem 2.22 the vectors &, are linearly independent with N > k, and
in particular with N — oo, we obtain the formula in the statement. Il

This is very nice, and as a first application, we can recover as promised the Poisson
law result from Theorem 2.16, this time by using easiness, as follows:
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THEOREM 6.24. For the symmetric group Sy, the main character becomes Poisson
X~ D1
in the N — oo limit.

PROOF. As already mentioned, this is something that we already know, from Theorem
2.16. Alternatively, according to Theorem 2.23, we have the following formula:

lim [ x*=[P(k)|
N—o0 SN
Now since a partition of {1,...,k + 1} appears by choosing s neighbors for 1, among
the k& numbers available, and then partitioning the k — s elements left, the numbers on
the right By = |P(k)|, called Bell numbers, satisfy the following recurrence:

By = Z (lz) By

S

On the other hand, the moments Mj, of the Poisson law p; = 13" 4, /r! are subject
to the same recurrence formula, as shown by the following computation:

1 (r+ 1)
T L

k
- 2 ()
— \s
As for the initial values, at k = 1, 2, these are 1,2, for both the Bell numbers By, and
the Poisson moments M. Thus we have B, = M}, which gives the result. O

6d. Free probability

Moving ahead, we have now to work out free analogues of Theorem 2.24 for the other
easy quantum groups that we know. A bit of thinking at traces of unitary matrices
suggests that for the groups Oy, Uy we should get the real and complex normal laws. As
for O%, U, Sy, we are a bit in the dark here, and we can only say that we can expect to
have “free versions” of the real and complex normal laws, and of the Poisson law.
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Long story short, the combinatorics ahead looks quite complicated, and we are in need
of a crash course on probability. So, let us start with that, classical and free probability,
and we will come back later to combinatorics and quantum groups. We first have:

DEFINITION 6.25. Let A be a C*-algebra, given with a trace tr : A — C.

(1) The elements a € A are called random variables.
(2) The moments of such a variable are the numbers My(a) = tr(a®).
(3) The law of such a variable is the functional i : P — tr(P(a)).

Here k = ceeo. .. is by definition a colored integer, and the corresponding powers a”

are defined by the following formulae, and multiplicativity:
=1, a®=a , a" =a
As for the polynomial P, this is a noncommuting *-polynomial in one variable:
PeC< X, X*>

Observe that the law is uniquely determined by the moments, because we have:
P(X) =) MX" = u(P)=> A\eMy(a)
k k

Generally speaking, the above definition is something quite abstract, but there is no
other way of doing things, at least at this level of generality. However, in certain special
cases, the formalism simplifies, and we recover more familiar objects, as follows:

PROPOSITION 6.26. Assuming that a € A is normal, aa® = a*a, its law corresponds
to a probability measure on its spectrum o(a) C C, according to the following formula:

() = | P@
When the trace is faithful we have supp(u) = o(a). Also, in the particular case where the

variable is self-adjoint, a = a*, this law is a real probability measure.

PRroOOF. This is something very standard, coming from the Gelfand theorem, applied
to the algebra < a >, which is commutative, and then the Riesz theorem. U

Following Voiculescu [90], we have the following two notions of independence:
DEFINITION 6.27. Two subalgebras A, B C C' are called independent when
tr(a) =tr(b) =0 = tr(ab) =0
holds for any a € A and b € B, and free when
tr(a;) =tr(b;) =0 = tr(aibjagby...) =0
holds for any a; € A and b; € B.
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In short, we have here a straightforward extension of the usual notion of independence,
in the framework of Definition 2.25, along with a quite natural free analogue of it. In order
to understand what is going on, let us first discuss some basic models for independence
and freeness. We have the following result, from [90], which clarifies things:

PROPOSITION 6.28. Given two algebras (A, tr) and (B, tr), the following hold:

(1) A, B are independent inside their tensor product A ® B.
(2) A, B are free inside their free product A x B.

PrOOF. Both the assertions are clear from definitions, after some standard discussion
regarding the tensor product and free product trace. See Voiculescu [90]. U

In relation with groups, we have the following result:

PROPOSITION 6.29. We have the following results, valid for group algebras:
(1) C*(I"),C*(A) are independent inside C*(I" x A).
(2) C*(T'),C*(A) are free inside C*(I" % A).

Proor. This follows from the general results in Proposition 2.28, along with the
following two isomorphisms, which are both standard:

CT x A) = C*(A) @ C*(T) , C*(%A)=C*(A)*CH(T)

Alternatively, we can prove this directly, by using the fact that each algebra is spanned
by the corresponding group elements, and checking the result on group elements. U

In order to study independence and freeness, our main tool will be:
THEOREM 6.30. The convolution is linearized by the log of the Fourier transform,
Fy(x) = B(e™)
and the free convolution s linearized by the R-transform, given by:

60 = [ P — 6, (R0 + ) =

rRE—1

PROOF. In what regards the first assertion, if f, g are independent, we have indeed:
Froa) = [ ewdlng + )2

= [ e )y
RxR

— /emzd,uf(z)/emd,ug(t)
R R

= F(a)Fy(z)
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As for the second assertion, here we need a good model for free convolution, and the
best is to use the semigroup algebra of the free semigroup on two generators:

A=C*(N*N)

Indeed, we have some freeness in the semigroup setting, a bit in the same way as for
the group algebras C*(I" x A), from Proposition 2.29, and in addition to this fact, and to
what happens in the group algebra case, the following two key things happen:

(1) The variables of type S*+ f(.9), with S € C*(N) being the shift, and with f € C[X]
being a polynomial, model in moments all the distributions p : C[X] — C. This is indeed
something elementary, which can be checked via a direct algebraic computation.

(2) Given f, g € C[X], the variables S* + f(S) and T + ¢(T), where S,T € C*(N*N)
are the shifts corresponding to the generators of N % N, are free, and their sum has the
same law as S* + (f + ¢)(.S). This follows indeed by using a 45° argument.

With this in hand, we can see that the operation y — f linearizes the free convolution.
We are therefore left with a computation inside C*(N), whose conclusion is that R, = f
can be recaptured from p via the Cauchy transform G, as stated. See [90]. g

As a first result now, which is central and classical and free probability, we have:

THEOREM 6.31 (CLT). Given self-adjoint variables x1, x2, x3, . .. which are i.i.d. /f.i.d.,
centered, with variance t > 0, we have, with n — 00, in moments,

1 n
— ) @i~ g/
Vn i=1
where g/ are the normal and Wigner semicircle law of parameter t, given by:

1 2 1
_ —z?/2t — NSAF2 — 2
g = e de |, v = 4t? — x?dx
V2rt 2mt

PRrROOF. This is routine, by using the Fourier transform and the R-transform. U
Next, we have the following complex version of the CLT:

THEOREM 6.32 (CCLT). Given variables x1,xa, x3, ... which are i.i.d./f.i.d., centered,
with variance t > 0, we have, with n — 0o, in moments,

1 n
_le ~ Gt/Ft
ﬁi:l

where Gy /Ty are the complex normal and Voiculescu circular law of parameter t, given by:

Gy = law (%(a + ib)) . Ty =law (%(a + zﬂ))

where a,b/a, B are independent/free, each following the law g;/7:.
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PRrROOF. This follows indeed from the CLT, by taking real and imaginary parts. [J
Finally, we have the following discrete version of the CLT:

THEOREM 6.33 (PLT). The following Poisson limits converge, for any t > 0,

*n Hn
t t t t
p; = lim ((1——) 50—1-—(51) , m = lim ((1——) (5o+—51)
n—o00 n n n— 00 n n

the limiting measures being the Poisson law py, and the Marchenko-Pastur law m,

1 < tF At — (x — 1 —1t)2
Ok VAt — (z )dx

et K omx
k=0

with at t = 1, the Marchenko-Pastur law being m = %\/496—1 — ldx.

pe = 7 = max(1 —¢,0)d +

Proor. This is again routine, by using the Fourier and R-transform. O

This was for the basic classical and free probability. In relation now with combina-
torics, we have the following result, which reminds easiness, and is of interest for us:

THEOREM 6.34. The moments of the various central limiting measures, namely

Ty Mt Iy

bt Gt Gy
are always given by the same formula, involving partitions, namely
= ¥ i
weD(k)

with the sets of partitions D(k) in question being respectively

NC NOQ NCQ

P Py P
and with |.| being the number of blocks.

Proor. This follows indeed from the various computations leading to Theorems 2.31,
2.32, 2.33, and details can be found in any free probability book. See [90]. O
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It is possible to say more on this, following Rota in the classical case, Speicher in the
free case, and Bercovici-Pata for the classical/free correspondence. We first have:

DEFINITION 6.35. The cumulants of a self-adjoint variable a € A are given by
N (i€)"
10g Fa(f) - Zl kn(a) T
and the free cumulants of the same variable a € A are given by:

Ry (§) = Z ”in(a)gn_l

Moreover, we have extensions of these notions to the non-self-adjoint case.

In what follows we will only discuss the self-adjoint case, which is simpler, and illustrat-
ing. Since the classical and free cumulants are by definition certain linear combinations
of the moments, we should have conversion formulae. The result here is as follows:

THEOREM 6.36. The moments can be recaptured out of cumulants via
M= Y hela) . M= Y wela)
TEP(n) TENC(n)
with the convention that k., k., are defined by multiplicativity over blocks. Also,
kn(a) = Z pp(v, 1,)M,y(a) ,  kn(a) = Z pnc(v, 1,) M, (a)
veP(n) veNC(n)
where pp, pine are the Mébius functions of P(n), NC'(n).

PROOF. Here the first formulae follow from Definition 2.35, by doing some combina-
torics, and the second formulae follow from them, via M6bius inversion. Il

In relation with the various laws that we are interested in, we have:

PROPOSITION 6.37. The classical and free cumulants are as follows:

(1) For u =4, both the classical and free cumulants are ¢, 0,0, ...
(2) For pn= g¢/v the classical/free cumulants are 0,t,0,0,. ..
(3) For u = pi/m the classical/free cumulants are t,t,t,. ..

PRrROOF. Here (1) is something trivial, and (2,3) can be deduced either directly, starting
from the definition of the various laws involved, or by using Theorem 2.34. U

Following now Bercovici-Pata [18], let us formulate the following definition:

DEFINITION 6.38. If the classical cumulants of n equal the free cumulants of w,

kn(n) = kn(p)
we say that n is the classical version of u, and that p is the free version of n.
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All this is quite interesting, and we have now a better understanding of Theorem 2.34,
the point there being that on the vertical, we have measures in Bercovici-Pata bijection.
Now back to quantum groups, we first have the following result, from [5]:

THEOREM 6.39. The asymptotic laws of characters for the basic quantum groups,

Sn O% Uy

SN ON UN

are precisely the main laws in classical and free probability at t = 1.

Proo¥F. This follows indeed from our various easiness considerations before, and from
Theorem 2.34 applied at t = 1, which gives My = |D(k)| in this case. d

More generally, again following [5], let us discuss now the computation for the trun-
cated characters. These are variables constructed as follows:

DEFINITION 6.40. Associated to any Woronowicz algebra (A, w) are the variables
[tN]

Xt = Z Ui
i=1

depending on a parameter t € (0,1], called truncations of the main character.

In order to understand what these variables x; are about, let us first investigate the
symmetric group Sy. We have here the following result:

THEOREM 6.41. For the symmetric group Sy C Oy, the truncated character

[tN]
xt(g) = Z WUij
i=1
becomes, with N — oo, a Poisson variable of parameter t.

Proo¥r. This can be deduced via inclusion-exclusion, as in the proof of Theorem 2.16,
but let us prove this via an alternative method, which is instructive as well. Our first
claim is that the integrals over Sy are given by the following formula:

N—|keri])! - . .
/ Wi s - % if keri = kerj
sy TR 0 otherwise

Indeed, according to the definition of w;;, the above integrals are given by:

1 . . . .
/SNU,L'ljl...uikjk = ﬁ#{UGSN‘U(jl) —217---70-(]k) —Zk}
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But this proves our claim. Now with the above formula in hand, with Sy, being the
Stirling numbers, counting the partitions in P(k) having b blocks, we have:

[tN]

k
/ Xt = E , / Wsyiy - - - Wigiy,
SN SN

i1..ip=1

tN]! N — |x|!
- ¥ [tN] (N —|=]1)

([EN] = [=]!) N!

weP(k)
[tN]

[tN]! (N —b)!
;([W]—b)!' NSk

Thus with N — oo the moments are M}, ~ Zlgzl Sipt’, which gives the result. O

Summarizing, we have nice results about Sy. In general, however, and in particular
for Oy, Uy and S}, OF, Uy, there is no simple trick as for Sy, and we must use general
integration methods, from [5], [36]. We have here the following formula:

THEOREM 6.42. For an easy quantum group G C, Uy, coming from a category of
partitions D = (D(k, 1)), we have the Weingarten integration formula

/G Wigy - - Uiyj, = w;(k) 0r(1)05 () Wi (m, )
where D(k) = D(0, k), § are usual Kronecker symbols, and Wiy = G, with
G (m,0) = NI™!
where |.| is the number of blocks.

PRrROOF. This follows from the general Weingarten formula from Theorem 2.4. Indeed,
in the easy case we can take Dy = D(k, k), and the Kronecker symbols are given by:

6§W(Z') =< gﬂ, €, ...Q¢e, >= 57r(ila . ,Zk)
The Gram matrix being as well the correct one, we obtain the result. See [5]. U

With the above formula in hand, we can go back to the question of computing the
laws of truncated characters. First, we have the following moment formula, from [5]:

PROPOSITION 6.43. The moments of truncated characters are given by the formula
/ (wns + -+ 1)t = Tr(WinGro)
a

where Gy and Win = G,;]b are the associated Gram and Weingarten matrices.
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PrROOF. We have indeed the following computation:

/G(un +...+ uss)k Z Z /um1 Uiy

i1=1 =1

= Z WkNWUZ 25

moeD(k =1 =1
= Z WkN (m,0)Gs(o, )
mo€D(k)
= TT(WkNGkS)
Thus, we have obtained the formula in the statement. U

In order to process now the above formula, things are quite technical, and won’t work
well in general. We must impose here a uniformity condition, as follows:

THEOREM 6.44. For an easy quantum group G = (Gy), coming from a category of
partitions D C P, the following conditions are equivalent:

(1) Gn—1 = Gy NUN_y, via the embedding Uy;_; C Uy given by u — diag(u, 1).
(2) Gy_1 =Gy NUN_, via the N possible diagonal embeddings Uy, C Uy,
(3) D is stable under the operation which consists in removing blocks.
If these conditions are satisfied, we say that G = (Gy) is uniform.
Proor. This is something very standard, the idea being as follows:

(1) <= (2) This equivalence is elementary, coming from the inclusion Sy C Gy,
which makes everything Sy-invariant.

(1) <= (3) Given a closed subgroup K C Uj;_,, with fundamental corepresentation
u, consider the following N x N matrix:

B <u O>
0 1

Then for any 7 € P(k) a standard computation shows that we have:

& € Fiz(v®*) «—= & € Fiz(v®), Vo' e P(K),n' C =
Now with this in hand, the result follows from Tannakian duality. U
By getting back now to the truncated characters, we have the following result:
THEOREM 6.45. For a uniform easy quantum group G = (Gy), we have the formula

' ||
s 2

with D C P being the associated category of partztzons.
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PROOF. In the uniform case the Gram matrix, and so the Weingarten matrix too, are
asymptotically diagonal, so the asymptotic moments are given by:

/ = Tr(WinGriny) =~ Z N[N 3 i
GnN

weD(k weD(k)

Thus, we are led to the conclusion in the statement. See [5], [17]. O
We can now improve our quantum group results, as follows:

THEOREM 6.46. The asymptotic laws of truncated characters for the quantum groups

St 0%, Uy
S N O N U N
are precisely the main limiting laws in classical and free probability, namely:
Tt Yt Iy
Pt gt G,
Proor. This follows indeed from easiness, Theorem 2.34 and Theorem 2.45. Il

6e. Exercises

Exercises:

EXERCISE 6.47.
EXERCISE 6.48.
EXERCISE 6.49.
EXERCISE 6.50.
EXERCISE 6.51.
EXERCISE 6.52.
EXERCISE 6.53.
EXERCISE 6.54.

Bonus exercise.



CHAPTER 7

Algebraic invariants

7a. Rotation groups

We have seen that the inclusion Sy C Sy, and its companion inclusions Oy C OF
and Uy C Uy, are all liberations in the sense of easy quantum group theory, and that
some representation theory consequences, in the N — oo limit, can be derived from this.
We discuss here the case where N € N is fixed, which is more technical.

Let us first study the representations of OF;. We know that in the N — oo limit we
have x ~ 71, and as a first question, we would like to know how the irreducible repre-
sentations of a “formal quantum group” should look like, when subject to the condition
X ~ 1. And fortunately, the answer here is very simple, coming from SUs:

THEOREM 7.1. The group SUs is as follows:

(1) The main character is real, its odd moments vanish, and its even moments are
the Catalan numbers:
/ X2k — Ck
SU»

(2) This main character follows the Wigner semicircle law, x ~ 7.
(3) The irreducible representations can be labelled by positive integers, ry with k € N,
and the fusion rules for these representations are:

Tk @11 = Tg—i] + Tk—i|42 + - - - + Tk
(4) The dimensions of these representations are dimry = k + 1.
PROOF. There are many possible proofs here, the idea being as follows:

(1,2) These statements are equivalent, and in order to prove them, a simple argument
is by using the well-known isomorphism SU, ~ S3, coming from:

B r+iy z+ial
S0, = {(—z—i—it :E—z'y)
Indeed, in this picture the moments of y = 2x can be computed via spherical coordi-
nates and some calculus, and follow to be the Catalan numbers:

1 (2
Ck—k+1<k>

153

x2+y2+22+t2—1}
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As for the formula x ~ 71, this follows from this, and is geometrically clear as well.

(3,4) Our claim is that we can construct, by recurrence on k € N, a sequence 1 of
irreducible, self-adjoint and distinct representations of SUs, satisfying:

ro=1 , m=u , T ®r=rea+ry

Indeed, assume that rg,...,ry_; are constructed, and let us construct r,. We have:
Th—2 @ T1 = Tk—3 + Tk-1
Thus ry_1 C rg_o ® 11, and since ry_s is irreducible, by Frobenius we have:
Th—2 C Tp—1 @11
We conclude there exists a certain representation r; such that:
Tp—1 @11 = Tp—2 + Tk

By recurrence, ry is self-adjoint. Now observe that according to our recurrence formula,

we can split u®* as a sum of the following type, with positive coefficients:

k
u®" = ¢y + CpaTk—2 + ChoaTra + . ..

We conclude by Peter-Weyl that we have an inequality as follows, with equality pre-
cisely when 7, is irreducible, and non-equivalent to the other summands r;:

Zc? < dim(End(u®*))
But by (1) the number on the right is Cj, and some straightforward combinatorics,
based on the fusion rules, shows that the number on the left is C}, as well. Thus:

Cp = 3" & < dim(End(u®™)) = / NS
- SU>

We conclude that we have equality in our estimate, so our representation 7y is ir-
reducible, and non-equivalent to r;_s,7,_4,... Moreover, this representation r, is not
equivalent to r_q, g3, ... either, with this coming from r, C u®?, and from:

dim(Fi$(u®25+1)) — / X23+1 =0
SUs
Thus, we have proved our claim. Now since each irreducible representation of SU,
must appear in some tensor power u®*, and we know how to decompose each u®* into
sums of representations 7y, these representations r; are all the irreducible representations
of SUs,, and we are done with (3). As for the formula in (4), this is clear. O

There are of course many other proofs for the above result, which are all instructive,
and we recommend here any good book on geometry and physics. In what concerns us,
the above will do, and we will be back to this later, with some further comments.
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Getting back now to O}, we know that in the N — oo limit we have y ~ 71, so
by the above when formally setting N = oo, the fusion rules are the same as for SUs,.
Miraculously, however, this happens in fact at any N > 2, the result being as follows:

THEOREM 7.2. The quantum groups O with N > 2 are as follows:
(1) The odd moments of the main character vanish, and the even moments are:

/ X =Gy
0

+
N
(2) This main character follows the Wigner semicircle law, x ~ 7.
(3) The fusion rules for irreducible representations are as for SUs,, namely:

T QT = T k—1| +T|k—l|+2 + . T
(4) We have dimry = (¢ —¢*") /(¢ —¢7"), withq+¢~' = N.
PROOF. The idea is to skilfully recycle the proof of Theorem 3.1, as follows:

(1,2) These assertions are equivalent, and since we cannot prove them directly, we will
simply say that these follow from the combinatorics in (3) below.

(3,4) As before, our claim is that we can construct, by recurrence on k € N, a sequence
To,T1, 79, ... of irreducible, self-adjoint and distinct representations of O3, satisfying:

ro=1 , m=u , 11 @®@ri=rpao+rg

In order to do so, we can use as before r,_o ® r1 = rp_3 + rr—1 and Frobenius, and we
conclude there exists a certain representation r; such that:

Th—1 ®T1 =Tr—2 + Tk

As a first observation, r is self-adjoint, because its character is a certain polynomial
with integer coefficients in y, which is self-adjoint. In order to prove now that ry is
irreducible, and non-equivalent to r, ..., r,_1, let us split as before u®*, as follows:

k
u® = CxTk + Ck—2Tk—2 + Ch—aTh—g + ...

The point now is that we have the following equalities and inequalities:

Cr=Y ¢ < dim(End(u®)) < |[NCy(k, k)| = Cy

7
Indeed, the equality at left is clear as before, then comes a standard inequality, then
an inequality coming from easiness, then a standard equality. Thus, we have equality,
so 1y is irreducible, and non-equivalent to ry_s, rr_4, . .. Moreover, r; is not equivalent to
Tk—1,Tk—3,- - . €ither, by using the same argument as for SU,, and the end of the proof of
(3) is exactly as for SU,. As for (4), by recurrence we obtain, with ¢ + ¢~! = N:

dimr, = ¢* +¢* 2+ ... 4q¢ 244"

But this gives the dimension formula in the statement, and we are done. U
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The above result raises several interesting questions. For instance we would like to
know if Theorem 3.1 can be unified with Theorem 3.2. Also, combinatorially speaking,
we would like to have a better understanding of the “miracle” making Theorem 3.2 hold
at any N > 2, instead of N = oo only. These questions will be answered in due time.

Regarding now the quantum group Uy, a similar result holds here, which is also
elementary, using only algebraic techniques, based on easiness. Let us start with:

THEOREM 7.3. We have isomorphisms as follows,
Ut—0. ., PO%L=PUS
modulo the usual equivalence relation for compact quantum groups.

PrOOF. The above isomorphisms both come from easiness, as follows:

(1) We have embeddings as follows, with the first one coming by using the counit, and
with the second one coming from the universality property of Uy:

O} c Of, c Uy,
We must prove that the embedding on the right is an isomorphism. In order to do so,

let us denote by v, zv, u the fundamental representations of the above quantum groups.
At the level of the associated Hom spaces we obtain reverse inclusions, as follows:

Hom(v®*,v®) 5 Hom((2v)®*, (20)®") D Hom(u®*, u®")

But the spaces on the left and on the right are known from chapter 2, the easiness
result there stating that these are as follows:

span (T,r T € NCyk, l)) D span <T,r e NCy(k, l))

Regarding the spaces in the middle, these are obtained from those on the left by
coloring, and we obtain the same spaces as those on the right. Thus, by Tannakian duality,

our embedding O}, C U} is an isomorphism, modulo the usual equivalence relation.

(2) Regarding now the projective versions, the result here follows from:
PUY, = PO}, = PO}
Alternatively, with the notations in the proof of (1), we have:

Hom ((v®@v)*, (v®wv)') = span (T,r T € NCy((00)F, (oo)l)>

Hom ((u®a)¥, (u® u)') = span (T7r

7€ NCa((on)", (00)))

The sets on the right being equal, we conclude that the inclusion PO}, C PU}; pre-
serves the corresponding Tannakian categories, and so must be an isomorphism. O

Getting now to the representations of Uy, the result here is as follows:
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THEOREM 7.4. The quantum groups Uy with N > 2 are as follows:
(1) The moments of the main character count the matching pairings:

[ =)
Uy

(2) The main character follows the Voiculescu circular law of parameter 1:
X~ T

(3) The irreducible representations are indexed by N x N, with as fusion rules:

rE QT = E Trz

k=xy,l=1yz
(4) The corresponding dimensions dimry can be computed by recurrence.
PROOF. There are several proofs here, the idea being as follows:

(1) The original proof, explained for instance in [5], is by construcing the representa-
tions 7, by recurrence, exactly as in the proof of Theorem 3.2, and then arguing, also as
there, that the combinatorics found proves the first two assertions as well. In short, what
we have is a “complex remake” of Theorem 3.2, which can be proved in a similar way.

(2) An alternative argument, discussed as well in [5], is by using Theorem 3.3. Indeed,

the fusion rules for Uy, = OF can be computed by using those of OF;, and we end up
with the above “free complexification” of the Clebsch-Gordan rules. As for the first two

assertions, these follow too from Uy, = O}, via standard free probability. O

As a conclusion, our results regarding O}, U}, show that the N — oo convergence
of the law of the main character to v1,1"1, known since chapter 2, is in fact stationary,
starting with NV = 2. And this is quite a miracle, for instance because for Oy, Uy, some
elementary computations show that the same N — oo convergence, this time to the
normal laws g1, GGy, is far from being stationary. Thus, it is tempting to formulate:

CONCLUSION 7.5. The free world is simpler than the classical world.

And please don’t get me wrong, especially if you're new to the subject, having struggled
with the free material explained so far in this book. What I'm saying here is that, once
you're reasonably advanced, and familiar with freeness, and so you will be soon, a second
look at what has been said so far in this book can only lead to the above conclusion.

More on this later, in connection with permutations and quantum permutations too.
Finally, as an extra piece of evidence, we have the isomorphism PO}, = PUy from
Theorem 3.3, which is something quite intruiguing too, suggesting that the “free projective
geometry is scalarless”. We will be back to this later, with the answer that yes, free
projective geometry is indeed scalarless, simpler than classical projective geometry.



158 7. ALGEBRAIC INVARIANTS

7b. Clebsch-Gordan rules

We discuss now the representation theory of S}, at N > 4. Let us begin our study
exactly as for OF;. We know that in the N — oo limit we have x ~ 7, and as a
first question, we would like to know how the irreducible representations of a “formal
quantum group” should look like, when subject to the condition y ~ 7. And fortunately,
the answer here is very simple, involving this time the group SOs:

THEOREM 7.6. The group SOz is as follows:

(1) The moments of the main character are the Catalan numbers:

/ Xk = C}
SO5

(2) The main character follows the Marchenko-Pastur law of parameter 1:
X~ T
(3) The fusion rules for irreducible representations are as follows:
T QT =Tkt + k=41 + -+ -+ Tkpi
(4) The dimensions of these representations are dimry = 2k — 1.

PROOF. As before with SU,, there are many possible proofs here, which are all in-
structive. Here is our take on the subject, in the spirit of our proof for SUs,:

(1,2) These statements are equivalent, and in order to prove them, a simple argument
is by using the SU, result, and the double cover map SU; — SOs5. Indeed, let us recall
from the proof for SU, that we have an isomorphism SU, ~ S3, coming from:

. T4y 2+t ‘2 9 9 .o
SU; = {(—z+z’t x—iy) Yy 2+t —1}

The point now is that we have a double cover map SUs — SOs, which gives the

following formula for the generic elements of SOj, called Euler-Rodrigues formula:

2yt — 22— 12 2(yz — wt) 2(xz + yt)
U= 2(xt + yz) 2?22 -yt — 12 2(zt — xy)
2(yt — x2) 2(xy + zt) e A A

It follows that the main character of SOj is given by the following formula:
x(U) = Tr(U)+1
= 3x2—y2—22—t2+1
= 4a?

On the other hand, we know from Theorem 3.1 and its proof that 2z ~ ~;. Now since
we have f ~ v = f? ~ m, we obtain y ~ 7, as desired.
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(3,4) Our claim is that we can construct, by recurrence on k € N, a sequence 4, of
irreducible, self-adjoint and distinct representations of SOs, satisfying:

ro=1 , m=u—-1 , 71 1®@r =ryo+r,1+7m

Indeed, assume that rq,...,ry_1 are constructed, and let us construct r,. The Frobe-
nius trick from the proof for SU, will no longer work, as you can verify yourself, so we
have to invoke (1). To be more precise, by integrating characters we obtain:

Th—1,Tk—2 C Tp—1 @ T
Thus, there exists a representation r; such that:
Tp—1 & T1 = Tk + g1+ 7Tk

Once again by integrating characters, we conclude that r; is irreducible, and non-
equivalent to rq,...,7x_1, and this proves our claim. Also, since any irreducible repre-
sentation of SOz must appear in some tensor power of u, and we can decompose each
u®* into sums of representations r,, we conclude that these representations r, are all the
irreducible representations of SO3. Finally, the dimension formula is clear. O

Based on the above result, and on what we know about the relation between SU,; and
the quantum groups O} at N > 2, we can safely conjecture that the fusion rules for Sy
at N > 4 should be the same as for SO3;. However, a careful inspection of the proof of
Theorem 3.6 shows that, when trying to extend it to S}, a bit in the same way as the
proof of Theorem 3.1 was extended to O}, we run into a serious problem, namely:

PROBLEM 7.7. Regarding S3; with N > 4, we can’t get away with the estimate

/ X < Gy
S

+
N
because the Frobenius trick won’t work. We need equality in this estimate.

To be more precise, the above estimate comes from easiness, and we have seen that
for OF; with N > 2, a similar easiness estimate, when coupled with the Frobenius trick,
does the job. However, the proof of Theorem 3.6 makes it clear that no Frobenius trick
is available, and so we need equality in the above estimate, as indicated.

So, how to prove the equality? The original argument, from [5], is something quick
and advanced, saying that modulo some standard identifications, we are in need of the
fact that the trace on the Temperley-Lieb algebra T'Ly (k) = span(NCq(k, k)) is faithful
at index values N > 4, and with this being true by the results of Jones in [58]. However,
while very quick, this remains something advanced, because the paper [58] itself is based
on a good deal of von Neumann algebra theory, covering a whole book or so. And so, we
don’t want to get into this, at least at this stage of our presentation.
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In short, we are a bit in trouble. But no worries, there should be a pedestrian way
of solving our problem, because that is how reasonable mathematics is made, always
available to pedestrians. Here is an idea for a solution, which is a no-brainer:

SOLUTION 7.8. We can get the needed equality at N > 4, namely

/ ' =Gy
Sk

by proving that the vectors {&:|m € NC(k)} are linearly independent.

Indeed, this is something coming from easiness, and since this problem does not look
that scary, let us try to solve it. As a starting point for our study, we have:

PROPOSITION 7.9. The following are linearly independent, at any N > 2:
(1) The linear maps {Tx|m € NCo(k,1)}, with k+1 € 2N.
(2) The vectors {&|m € NCy(2k)}, with k € N.
(3) The linear maps {Tx|m € NCa(k,k)}, with k € N.

PROOF. All this follows from the dimension equalities established in the proof of
Theorem 3.2, because in all cases, the number of partitions is a Catalan number. U

In order to pass now to quantum permutations, we can use the following trick:

PROPOSITION 7.10. We have a bijection NC(k) ~ NC5(2k), constructed by fattening
and shrinking, as follows:

(1) The application NC(k) — NCy(2k) is the “fattening” one, obtained by doubling
all the legs, and doubling all the strings too.

(2) Its inverse NCy(2k) — NC(k) is the “shrinking” application, obtained by col-
lapsing pairs of consecutive neighbors.

PROOF. The fact that the above two operations are indeed inverse to each other is
clear, by drawing pictures, and computing the corresponding compositions. Il

At the level of the associated Gram matrices, the result is as follows:
PROPOSITION 7.11. The Gram matrices of NCy(2k) ~ NC (k) are related by
Gan(7,0) = 0 (A G2 A (', o)
where m — 7' is the shrinking operation, and Ay, is the diagonal of Gy,,.
PROOF. In the context of the bijection from Proposition 3.10, we have:
|TrVo|=k+2n'Vd|—|r|—|o]
We therefore have the following formula, valid for any n € N:

n\w\/a\ _ nk+2\7r’Va’|—\7r’|—|a’\

Thus, we are led to the formula in the statement. U



7B. CLEBSCH-GORDAN RULES 161

We can now formulate a “projective” version of Proposition 3.9, as follows:

PROPOSITION 7.12. The following are linearly independent, for N = n? with n > 2:
(1) The linear maps {Tﬂ|7r € NC(k,l)}, with k,1 € 2N.
(2) The vectors {&|m € NC(k)}, with k € N.
(3) The linear maps {Tﬂ|7r € NC’(k,k)}, with k € N.

Proor. This follows from the various linear independence results from Proposition
3.9, by using the Gram matrix formula from Proposition 3.11, along with the well-known
fact that vectors are linearly independent when their Gram matrix is invertible. U

Good news, we can now discuss Sy with N = n? n > 2, as follows:

THEOREM 7.13. The quantum groups Sy with N =n?, n > 2 are as follows:
(1) The moments of the main character are the Catalan numbers:

/ X" = Ch

SN

(2) The main character follows the Marchenko-Pastur law, x ~ .

(3) The fusion rules for irreducible representations are as for SOz, namely:
T QT = Tlk—t] + Tk—i]+1 + -+ Tkpi

(4) We have dimry, = (¢"*' — ¢ %) /(¢ — 1), with q+q ' = N — 2.

ProOF. This is quite similar to the proof of Theorem 3.2, by using the linear inde-
pendence result from Proposition 3.12 as main ingredient, as follows:

(1) We have the following computation, using Peter-Weyl, then the easiness property
of Sy, then Proposition 3.12 (2), then Proposition 3.10, and the definition of C:

[ X = Ivow) = v Cazh)| = 6
SN

(2) This is a reformulation of (1), using standard free probability theory.
(3) This is identical to the proof of Theorem 3.6 (3), based on (1).
(4) Finally, the dimension formula is clear by recurrence. d

All this is very nice, and although there is still some work, in order to reach to results
for S% at any N > 4, let us just enjoy what we have. As a consequence, we have:

THEOREM 7.14. The free quantum groups are as follows:
(1) Uy, is not coamenable at N > 2.

(2) OF is coamenable at N = 2, and not coamenable at N > 3.
(3) Sy is coamenable at N < 4, and not coamenable at N > 5.
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PRrOOF. The various non-coamenability assertions are all clear, due to various exam-
ples of non-coamenable group dual subgroups rca , coming from the theory in chapter
1. As for the amenability assertions, regarding O; and S, these come from Theorem 3.2
and Theorem 3.13, which show that the support of the spectral measure of y is:

supp(m) =[—2,2] , supp(m) =[0,4]

Thus the Kesten criterion from chapter 1, telling us that G C O}, is coamenable
precisely when N € supp(law(x)), applies in both cases, and gives the result. O

7c. Meander determinants

Let us discuss now the extension of Theorem 3.13, to all the quantum groups S}, with
N > 4. For this purpose we need an extension of the linear independence results from
Proposition 3.12. This is something non-trivial, and the first thought goes to:

SPECULATION 7.15. There should be a theory of deformed compact quantum groups,
alowing us to talk about OF with n € [2,00), having the same fusion rules as SUs,, and
therefore solving via partition shrinking our Sj; problems at any N > 4.

This speculation is legit, and in what concerns the first part, generalities, that theory
is indeed available, from the Woronowicz papers [99], [100]. Is it also possible to talk
about deformations of O}, in this setting, as explained in Wang’s paper [92], with the new
parameter n € [2, 00) being of course not the dimension of the fundamental representation,
but rather its “quantum dimension”. And with this understood, all the rest is quite
standard, and worked out in the quantum group literature. We refer to [5] for more
about this, but we will not follow this path, which is too complicated.

As a second speculation now, which is something complicated too, but is far more
conceptual, we have the idea, already mentioned before, of getting what we want via the
trace on the Temperley-Lieb algebra T'Ly (k) = span(NCy(k, k)). We will not follow this
path either, which is quite complicated too, but here is how this method works:

THEOREM 7.16. Consider the Temperley-Lieb algebra of index N > 4, defined as
TLy(k) = span(NCsy(k, k))

with product given by the rule () = N, when concatenating.

(1) We have a representation i : T Ly (k) — B((CN)®%), given by m — T.
(2) Tr(Ty) = N'ors(<m) where 1 —< 7 > is the closing operation.

(3) The linear form T =Troi:TLy(k) — C is a faithful positive trace.
(4) The representation i : TLyn(k) — B((CN)®*) is faithful.

In particular, the vectors {&x|m € NC(k)} C (CN)®* are linearly independent.
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Proor. All this is quite standard, but advanced, the idea being as follows:
(1) This is clear from the categorical properties of 7 — T.

(2) This follows indeed from the following computation:

) = ()

91 0)

= #{Zl,,ZkE{l,,N}‘ker(zllk) ZT(}
11 ...

Nloops(<7r>)

(3) The traciality of 7 is clear from definitions. Regarding now the faithfulness, this
is something well-known, and we refer here to Jones’ paper [58].

(4) This follows from (3) above, via a standard positivity argument. As for the last
assertion, this follows from (4), by fattening the partitions. O

We will be back to this later, when talking subfactors and planar algebras, with a closer
look into Jones’ paper [58]. In the meantime, however, Speculation 3.15 and Theorem
3.16 will not do, being too advanced, so we have to come up with something else, more
pedestrian. And this can only be the computation of the Gram determinant.

We already know, from chapter 2, that for the group Sy the formula of the corre-
sponding Gram matrix determinant, due to Lindstom [68], is as follows:
THEOREM 7.17. The determinant of the Gram matrixz of Sy is given by

NI
det(GkN): H m

weP (k)
with the convention that in the case N < k we obtain 0.

Proor. This is something that we know from chapter 2, the idea being that Gy
decomposes as a product of an upper triangular and lower triangular matrix. U

Although we will not need this here, let us discuss as well, for the sake of complet-
ness, the case of the orthogonal group Oy. Here the combinatorics is that of the Young
diagrams. We denote by |.| the number of boxes, and we use quantity f*, which gives the
number of standard Young tableaux of shape . The result is then as follows:

THEOREM 7.18. The determinant of the Gram matriz of Oy s given by
det(GkN) = H fN(A)fM
I\|=k/2

where the quantities on the right are fn(A) = [ jea(N +25 —i—1).
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PRrROOF. This follows from the results of Zinn-Justin on the subject. Indeed, it is
known from there that the Gram matrix is diagonalizable, as follows:

Gin =Y [n(A)Pa

[A|=Fk/2

Here 1 = ) P,y is the standard partition of unity associated to the Young diagrams
having k/2 boxes, and the coefficients fy(A) are those in the statement. Now since we
have Tr(Pyy) = f?*, this gives the result. See [5]. O

For the free orthogonal and symmetric groups, the results, by Di Francesco [41], are
substantially more complicated. Let us begin with some examples. We first have:

PROPOSITION 7.19. The first Gram matrices and determinants for O, are

2
det (]]VV szv2> — NN’ —1)

N3 N? N? N2 N
N? N3 N N N?
det | N2> N N® N N?2|=N°N?-1)*N?*-2)
N2 N N N3 N?
N N? N2 N2 N3
with the matrices being written by using the lexicographic order on NCy(2k).

PRrROOF. The formula at k = 2, where NC(4) = {1, A}, is clear. At k = 3 however,
things are tricky. We have NC(3) = {||[,M|,m, |7, M1}, and the corresponding Gram
matrix and its determinant are, according to Theorem 3.17:

N3 N? N? N? N
N> N> N N N
det [N2 N N2 N N|=N(N-1D%N-2)
N> N N N? N
N N N N N

By using Proposition 3.11, the Gram determinant of NC5(6) is given by:

det(Gey) = — leO(N2—1)4(N2—2)><N21/N

N2y/N
= N°(N?-1D*}N*-2)

Thus, we have obtained the formula in the statement. Il

In general, such tricks won't work, because NC(k) is strictly smaller than P(k) at
k > 4. However, following Di Francesco [41], we have the following result:
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THEOREM 7.20. The determinant of the Gram matriz for OF; is given by

[k/2]
det(GkN) = H PT(N)dk/2*T
r=1

where P, are the Chebycheff polynomials, given by
=1, PA=X , Pu=XP -P,
and diy = fir — for+1, With fi, being the following numbers, depending on k,r € Z,

for = 2k \ 2k
e \k - kE—r—1
with the convention fy,. =0 for k ¢ 7.

Proor. This is something quite technical, obtained by using a decomposition as fol-
lows of the Gram matrix Gy, with the matrix Ty being lower triangular:

Gin = TinTin
Thus, a bit as in the proof of the Lindstom formula, we obtain the result, but the

problem lies however in the construction of Ty, which is non-trivial. See [41]. O

We refer to [5] for further details regarding the above result, including a short proof,
based on the bipartite planar algebra combinatorics developed by Jones in [61]. Let us
also mention that the Chebycheff polynomials have something to do with all this due to
the fact that these are the orthogonal polynomials for the Wigner law. See [5].

Moving ahead now, regarding Sy, we have here the following formula, which is quite
similar, obtained via shrinking, also from Di Francesco [41]:

THEOREM 7.21. The determinant of the Gram matriz for S5, is given by
k

det(Gry) = (\/N)ak HPT(\/N)dkT

r=1

where P, are the Chebycheff polynomials, given by
PBR=1, P=X , P,2w=XP—P_,
and di, = fir — fror+1, with fy, being the following numbers, depending on k,r € Z,
2k 2k
Jor = (k—r) a (/{;—7’—1)
with the convention fi, =0 for k ¢ Z, and where ar, = 3 pq, (2|7| — k).

Proor. This follows indeed from Theorem 3.20, by using Proposition 3.11. U
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Getting back now to our quantum permutation group questions, by using the above
results we can produce a key technical ingredient, as follows:

PROPOSITION 7.22. The following are linearly independent, for any N > 4:
(1) The linear maps {T,r|7r € NC(k,1)}, with k,1 € 2N.
(2) The vectors {ﬁﬂ}w € NC(k)}, with k € N.
(3) The linear maps {Tx|m € NC(k,k)}, with k € N.

PROOF. The statement is identical to Proposition 3.12, with the assumption N = n?
lifted. As for the proof, this comes from the formula in Theorem 3.21. U

With this in hand, we have the following extension of Theorem 3.13:

THEOREM 7.23. The quantum groups Sy with N > 4 are as follows:

(1) The moments of the main character are the Catalan numbers:

/ Xk:Ck:
s

+
N
(2) The main character follows the Marchenko-Pastur law, x ~ .
(3) The fusion rules for irreducible representations are as for SOz, namely:

Tk @ T = Tp—g| + Tp—i|+1 + - - - + Tt
(4) We have dimry, = (¢** — ¢ %) /(¢ — 1), with q+ ¢ ' = N — 2.

Proor. This is identical to the proof of Theorem 3.13, by using this time the linear
independence result from Proposition 3.22 as technical ingredient. U

So long for representations of S3;. All the above might seem quite complicated, but
we repeat, up to some standard algebra, everything comes down to Proposition 3.22. And
with some solid modern mathematical knowledge, be that operator algebras a la Jones, or
deformed quantum groups a la Woronowicz, or meander determinants a la Di Francesco,
the result there is in fact trivial. You can check here [5], [5], both short papers.

In what concerns us, we will be back to the similarity between S}, and SO3 on several
occasions, with a number of further results on the subject, refining Theorem 3.23.

7d. Planar algebras

In the remainder of this chapter we keep developing some useful theory for Uy, O%, St
We will present among others a result from [7], refining the Tannakian duality for the
quantum permutation groups G C S;{,, stating that these quantum groups are in corre-
spondence with the subalgebras of Jones’ spin planar algebra P C Sy.
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In order to get started, we need a lot of preliminaries, the lineup being von Neumann
algebras, II; factors, subfactors, and finally planar algebras. We already met von Neumann
algebras, in chapter 1. The advanced general theory regarding them is as follows:

THEOREM 7.24. The von Neumann algebras A C B(H) are as follows:

(1) Any such algebra decomposes as A = fX Agdx, with X being the spectrum of the
center, Z(A) = L*(X), and with the fibers A, being factors, Z(A,) = C.

(2) The factors can be fully classified in terms of 11y factors, which are those factors
satisfying dim A = oo, and having a faithful trace tr : A — C.

(3) The 11y factors enjoy the “continuous dimension geometry” property, in the sense
that the traces of their projections can take any values in [0, 1].

(4) Among the 11; factors, the smallest one is the Murray-von Neumann hyperfinite
factor R, obtained as an inductive limit of matriz algebras.

ProoF. This is something heavy, the idea being as follows:

(1) This is von Neumann’s reduction theory theorem, which follows in finite dimensions
from A= M,,(C)& ... & M,, (C), and whose proof in general is quite technical.

(2) This comes from results of Murray-von Neumann and Connes, the idea being that
the other factors can be basically obtained via crossed product constructions.

(3) This is subtle functional analysis, with the rational traces being relatively easy to
obtain, and with the irrational ones coming from limiting arguments.

(4) Once again, heavy results, by Murray-von Neumann and Connes, the idea being
that any finite dimensional construction always leads to the same factor, called R. U

Let us discuss now subfactor theory, following Jones’ fundamental paper [58]. Jones
looked at the inclusions of II; factors A C B, called subfactors, which are quite natural
objects in physics. Given such an inclusion, we can talk about its index:

DEFINITION 7.25. The index of an inclusion of 11y factors A C B is the quantity
[B: Al =dimy B € [1, 0]
constructed by using the Murray-von Neumann continuous dimension theory.

In order to explain Jones’ result in [58], it is better to relabel our subfactor as Ay C A;.
We can construct the orthogonal projection e; : A1 — Ap, and set:

Ag =< Al, ey >

This remarkable procedure, called “basic construction”, can be iterated, and we obtain
in this way a whole tower of II; factors, as follows:

Ay Cey Ay Ce, Ao Ces A3 C......

Quite surprisingly, this construction leads to a link with the Temperley-Lieb algebra
TLy = span(NCy). The results can be summarized as follows:
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THEOREM 7.26. Let Ag C Ay be an inclusion of 11y factors.

(1) The sequence of projections ey, es, €3, ... € B(H) produces a representation of the
Temperley-Lieb algebra of index N = [Ay, Ao], as follows:

TLy C B(H)

(2) The index N = [Ay, Ao, which is a Murray-von Neumann continuous quantity
N € [1, 00|, must satisfy the following condition:

N € {4(3052 <§) ’n € N} U [4, o0

PROOF. This result, from [58], is something tricky, the idea being as follows:

(1) The idea here is that the functional analytic study of the basic construction leads to

the conclusion that the sequence of projections e, es, €3, ... € B(H) behaves algebrically,
when rescaled, exactly as the sequence of diagrams €1, e9,€3,... € T'Ly given by:
81:H ) 52:|% ) 6\3:||H )

But these diagrams generate T'Ly, and so we have an embedding T'Ly C B(H), where
H is the Hilbert space where our subfactor Ag C A; lives, as claimed.

(2) This is something quite surprising, which follows from (1), via some clever positivity
considerations, involving the Perron-Frobenius theorem. In fact, the subfactors having
index N € [1,4] can be classified by ADE diagrams, and the obstruction N = 4 cos*(Z)
comes from the fact that N must be the squared norm of such a graph. O

Quite remarkably, Theorem 3.26 is just the tip of the iceberg. One can prove indeed
that the planar algebra structure of T'Ly, taken in an intuitive sense, extends to a planar
algebra structure on the sequence of relative commutants P, = Aj N Ag. In order to
discuss this key result, due as well to Jones, from [60], and that we will need too, in
connection with our quantum group problems, let us start with:

DEFINITION 7.27. The planar algebras are defined as follows:

(1) A k-tangle, or k-box, is a rectangle in the plane, with 2k marked points on its
boundary, containing r small bozes, each having 2k; marked points, and with the
2k + > 2k; marked points being connected by noncrossing strings.

(2) A planar algebra is a sequence of finite dimensional vector spaces P = (Py),
together with linear maps Py, ® ... ® P, — Py, one for each k-box, such that the
gluing of boxes corresponds to the composition of linear maps.

As basic example of a planar algebra, we have the Temperley-Lieb algebra T L.
Indeed, putting T'Ly(k;) diagrams into the small r boxes of a k-box clearly produces a
T Ly (k) diagram, so we have indeed a planar algebra, of somewhat “trivial” type.

In general, the planar algebras are more complicated than this, and we will be back
later with some explicit examples. However, the idea is very simple, namely that “the
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elements of a planar algebra are not necessarily diagrams, but they behave like diagrams”.
In relation now with subfactors, the result, which extends Theorem 3.26 (1), and which
was found by Jones in [60], almost 20 years after [58], is as follows:

THEOREM 7.28. Given a subfactor Ay C Ay, the collection P = (Py) of linear spaces
P, = AN Ay
has a planar algebra structure, extending the planar algebra structure of T Ly .

PROOF. As a first observation, since e; : A} — Ay commutes with Ay we have e; € Pj.
By translation we obtain ey, ..., e;_1 € Py for any k, and so:

TLy C P

The point now is that the planar algebra structure of T'Ly, obtained by composing
diagrams, can be shown to extend into an abstract planar algebra structure of P. This is
something quite technical, and we will not get into details here. See [60]. u

Getting back to quantum groups, all this machinery is interesting for us. We will need
the construction of the tensor and spin planar algebras Ty, Sy. Let us start with:

DEFINITION 7.29. The tensor planar algebra Ty is the sequence of vector spaces
Py = My(C)®F
with the multilinear maps T, : Py, ® ... ® Py, — Py being given by the formula

Tﬂ-(eil ®®€ZT) = Z(Srr(ila"-air :j)ej
J

with the Kronecker symbols 0, being 1 if the indices fit, and being 0 otherwise.

In other words, we are using here a construction which is very similar to the construc-
tion m — T that we used for easy quantum groups. We put the indices of the basic
tensors on the marked points of the small boxes, in the obvious way, and the coefficients
of the output tensor are then given by Kronecker symbols, exactly as in the easy case.

The fact that we have indeed a planar algebra, in the sense that the gluing of tangles
corresponds to the composition of linear maps, as required by Definition 3.27, is something
elementary, in the same spirit as the verification of the functoriality properties of the
correspondence m — T}, discussed in chapter 2, and we refer here to Jones [60].

Let us discuss now a second planar algebra of the same type, which is important as
well for various reasons, namely the spin planar algebra Sy. This planar algebra appears
somehow as the “square root” of the tensor planar algebra 7Ty. Let us start with:
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DEFINITION 7.30. We write the standard basis of (CN)®* in 2 x k matriz form,
i1 i1 Gyl 03 ... ...
Cirap = i . .
ko U Up—1 .. oo oo Ll
by duplicating the indices, and then writing them clockwise, starting from top left.

Now with this convention in hand for the tensors, we can formulate the construction
of the spin planar algebra Sy, also from [60], as follows:

DEFINITION 7.31. The spin planar algebra Sy is the sequence of vector spaces

Pk —_ ((CN)®k
written as above, with the multiplinear maps T : Py, @ ... ® P, — Py being given by
Te(len ®...Qe€;,) = Zé B,y iyt g)eg

with the Kronecker symbols 0, being 1 if the mdzces fit, and being 0 otherwise.

Here are some illustrating examples for the spin planar algebra calculus:

(1) The identity 1; is the (k, k)-tangle having vertical strings only. The solutions of
1, (z,y) = 1 being the pairs of the form (x,z), this tangle 1; acts by the identity:

1, Juoee I\ _ (- Tk
Zl ’Lk 11 Zk

(2) The multiplication My, is the (k, k, k)-tangle having 2 input boxes, one on top of
the other, and vertical strings only. It acts in the following way:

Mk,((fl f’“)@(ﬂf ﬁ)):@m@m(ﬁl f’“)
1 k 1 k 1 k

(3) The inclusion I is the (k,k + 1)-tangle which looks like 1, but has one more
vertical string, at right of the input box. Given z, the solutions of d;, (z,y) = 1 are the
elements y obtained from z by adding to the right a vector of the form (!), and so:

Jl A Jioooo gk

(4) The expectation Uy is the (k + 1, k)-tangle which looks like 1, but has one more
string, connecting the extra 2 input points, both at right of the input box:

N Tk e _ o [0 o Tk
U (21 ’lk ’ik+1> o 6Zk+1]k+l <21 c. ’Lk>
(5) The Jones projection Ej is a (0, k + 2)-tangle, having no input box. There are
k vertical strings joining the first k upper points to the first k lower points, counting
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from left to right. The remaining upper 2 points are connected by a semicircle, and the
remaining lower 2 points are also connected by a semicircle. We have:

B S YR B
Ee(1) =2 (7;1 i l)
ijl
The elements e, = N1 Ej(1) are then projections, and define a representation of the
infinite Temperley-Lieb algebra of index N inside the inductive limit algebra Sy.

(6) The rotation Ry, is the (k, k)-tangle which looks like 15, but the first 2 input points
are connected to the last 2 output points, and the same happens at right:

m ||
Ry =| |
(ARRRY

The action of Ry on the standard basis is by rotation of the indices, as follows:
Ri(€irig..ir) = Cig.ipin

There are many other interesting examples of k-tangles, but in view of our present
purposes, we can actually stop here, due to the following fact:

THEOREM 7.32. The multiplications, inclusions, expectations, Jones projections and
rotations generate the set of all tangles, via the gluing operation.

ProoF. This is something well-known and elementary, obtained by “chopping” the
various planar tangles into small pieces, as in the above list. See [60]. O

Finally, in order for our discussion to be complete, we must talk as well about the
x-structure of the spin planar algebra. Once again this is constructed as in the easy
quantum group calculus, by turning upside-down the diagrams, as follows:

R T N A TR
i [T
Getting back now to quantum groups, following [7], we have the following result:

THEOREM 7.33. Given G C S5, consider the tensor powers of the associated coaction
map on C(X), where X = {1,..., N}, which are the folowing linear maps:

dF . O(XF) = O(XP) @ C(G)
eil...ik — Z e]l]k ® U’jlil tte u]klk

Jie-Jk
The fized point spaces of these coactions, which are by definition the spaces

P = {:c c C(X’“)‘CI)’“(:(;) —1® ;1:}

are given by P, = Fiz(u®*), and form a subalgebra of the spin planar algebra Sy .
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PROOF. Since the map ® is a coaction, its tensor powers ®* are coactions too, and at
the level of fixed point algebras we have the following formula:
Py, = Fiz(u®*)

In order to prove now the planar algebra assertion, we will use Theorem 3.32. Consider
the rotation Rj. Rotating, then applying ®*, and rotating backwards by R,;l is the same
as applying ®*, then rotating each k-fold product of coefficients of ®. Thus the elements
obtained by rotating, then applying ®*, or by applying ®*, then rotating, differ by a sum
of Dirac masses tensored with commutators in A = C(G):

O* Ry, (z) — (R @ id)®F () € C(X*) @ [A, A]

Now let [ 4 be the Haar functional of A, and consider the conditional expectation onto
the fixed point algebra P, which is given by the following formula:

br = (id@/A)CI)’“

Since [ 4 18 a trace, it vanishes on commutators. Thus R; commutes with ¢y:

OrRi = Ry

The commutation relation ¢, = T'¢; holds in fact for any (I, k)-tangle T. These
tangles are called annular, and the proof is by verification on generators of the annular
category. In particular we obtain, for any annular tangle 7'

o TP =Ty
We conclude from this that the annular category is contained in the suboperad P’ C P

of the planar operad consisting of tangles T satisfying the following condition, where
¢ = (¢r), and where i(.) is the number of input boxes:

¢T¢®i(T) — T¢®i(T)

On the other hand the multiplicativity of ®* gives M), € P’. Now since the planar
operad P is generated by multiplications and annular tangles, it follows that we have
P’ = P. Thus for any tangle T" the corresponding multilinear map between spaces P (X)
restricts to a multilinear map between spaces Pi.. In other words, the action of the planar
operad P restricts to P, and makes it a subalgebra of Sy, as claimed. O

As a second result now, also from [7], completing our study, we have:

THEOREM 7.34. We have a bijection between quantum permutation groups and subal-
gebras of the spin planar algebra,

(GCSH +— (QcSy)

given 1n one sense by the construction in Theorem 3.33, and in the other sense by a
suitable modification of Tannakian duality.



7D. PLANAR ALGEBRAS 173

PROOF. The idea is that this will follow by applying Tannakian duality to the annular
category over (). Let n, m be positive integers. To any element 7,.,, € (., We associate
a linear map L (Thim) @ Po(X) = P (X) in the following way:

|

| | | | Tn+m

Lom | Towm | : lan | = | |] |
!

That is, we consider the planar (n,n + m, m)-tangle having an small input n-box, a
big input n + m-box and an output m-box, with strings as on the picture of the right.
This defines a certain multilinear map, as follows:

Po(X)® Ppim(X) = Pp(X)

If we put the element T,,,, in the big input box, we obtain in this way a certain linear
map P,(X) — P, (X), that we call L,,,. With this convention, let us set:

Qnm = {an(Tn-l—m) . Pn(X) — Pm(X) Tn+m S Qn—i—m}
These spaces form a Tannakian category, so by [100] we obtain a Woronowicz algebra
(A, u), such that the following equalities hold, for any m, n:
Hom(u®™, u®") = Qun

We prove now that u is a magic unitary. We have Hom(1,u®?) = Qg = Q-, so the
unit of Q, must be a fixed vector of u®2. But u®? acts on the unit of Q5 as follows:

= (2 )

kl

From u®%(1) = 1®1 ve get that wu’ is the identity matrix. Together with the unitarity
of u, this gives the following formulae:
ut=ut =ut

Consider the Jones projection F; € Q3. After isotoping, Loi(E;) looks as follows:
|
|

N
U Ll I
(1) 51) = (552 = o
i)\
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In other words, the linear map M = Lo (E}) is the multiplication §; ® 0; — §;;0;:

;)0 )

In order to finish, consider the following element of C'(X) ® A:

(M ® id)u® ((; ;) ® 1) -y (z) B ® Uity

k
Since M € Qo1 = Hom(u®? u), this equals the following element of C'(X) ® A:

() k
( )<(J J) ) Z,;@’“ T
Thus we have wup;ur; = 0;jux; for any 4, j, k, which shows that v is a magic unitary.

Now if P is the planar algebra associated to u, we have Hom(1,v*") = P, = Q,, as
desired. As for the uniqueness, this is clear from the Peter-Weyl theory. g

All the above might seem a bit technical, but is worth learning, and for good reason,
because it is extremely powerful. As an example of immediate application, if you agree
with the bijection G <+ @ in Theorem 3.34, then G = Sy itself, which is the biggest
object on the left, must correspond to the smallest object on the right, namely ) = T'Ly.
Thus, more or less everything that we learned so far in this book is trivial.

Welcome to planar algebras. Try to master this technology. And once this understood,
get to know some analysis too, which comes after. But it will be among our main purposes
here to do so, getting you familiar with algebra, and with some analysis as well.

Back now to work, the results established above, regarding the subgroups G C Sy,
have several generalizations, to the subgroups G C O%; and G C Uy, as well as subfactor
versions, going beyond the combinatorial level. At the algebraic level, we have:

THEOREM 7.35. The following happen:

(1) The closed subgroups G C O%; produce planar algebras P C Ty, via the following
formula, and any subalgebra P C Ty appears in this way:

Py, = End(u®)
(2) The closed subgroups G C Uy, produce planar algebras P C Ty, via the following
formula, and any subalgebra P C Ty appears in this way:
Po=Endu®@u®u®...)

k terms

(3) In fact, the closed subgroups G C POY, ~ PUy are in correspondence with the
subalgebras P C Ty, with G — P being given by P, = Fiz(u®*).
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PROOF. There is a long story with this result, whose origins go back to papers of mine
written before the 1999 papers [5], [60], using Popa’s standard lattice formalism, instead
of the planar algebra one, and then to a number of papers written in the early 2000s,
proving results which are more general. For the whole story, and a modern treatment of
the subject, we refer to Tarrago-Wahl [87]. As in what regards the proof:

(1) This is similar to the proof of Theorem 3.33 and Theorem 3.34, ultimately coming
from Woronowicz’s Tannakian duality in [100]. Note however that the correspondence is
not bijective, because the spaces Py, determine PG C PO}, but not G C O, itself.

(2) This is an extension of (1), and the same comments apply. With the extra comment
that the fact that the subgroups PG C PO}; produce the same planar algebras as the
subgroups PG C PU}; should not be surprising, due to PO}, = PU},.

(3) This is an extension of (2), and a further extension of (1), and is in fact the best
result on the subject, due to the fact that we have there a true, bijective correspondence.
As before, this ultimately comes from Woronowicz’s Tannakian duality in [100].

(4) As a final comment, you might say that, now that we have (3) as ultimate result on
the subject, why not saying a few words about the proof. In answer, (3) is in fact just the
tip of the iceberg, so we prefer to discuss this later, once we’ll see the whole iceberg. [J

Finally, in relation with subfactors, the result here is as follows:

THEOREM 7.36. The planar algebras coming the subgroups G C S3; appear from fived
point subfactors, of the following type,

A c (CN ® A)°

and the planar algebras coming from the subgroups G C POJ; = PUY; appear as well from
fixed point subfactors, of the following type,

AS c (My(C) ® A)°
with the action G ~ A being assumed to be minimal, (A%) N A= C.

PROOF. Again, there is a long story with this result, and besides needing some expla-
nations, regarding the proof, all this is in need of some unification. We will be back to
this in chapter 4, and in the meantime we refer to [5], [87] and related papers. O

Finally, let us mention that an important question, which is still open, is that of
understanding whether the above subfactors can be taken to be hyperfinite, A ~ R.
This is related to the axiomatization of hyperfinite subfactors, another open question,
which is of central importance in von Neumann algebras. We will be back to this.
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Exercises:

EXERCISE 7.37.
EXERCISE 7.38.
EXERCISE 7.39.
EXERCISE 7.40.
EXERCISE 7.41.
EXERCISE 7.42.
EXERCISE 7.43.

EXERCISE 7.44.

Bonus exercise.
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7Te. Exercises



CHAPTER 8

Analytic aspects

8a. Matrix models

One potentially interesting method for the study of the closed subgroups G C Sy,
that we have not tried yet, consists in modeling the standard coordinates u;; € C(G)
by concrete variables over some familiar C*-algebra, U;; € B. Indeed, assuming that the
model is faithful in some suitable sense, and that the variables U;; are not too complicated,
all questions about G would correspond in this way to routine questions inside B. We
will discuss here such questions, which are quite interesting, first for the arbitrary closed
subgroups G C Uy, and then for the quantum permutation groups G' C Sj,.

All this sounds good, mathematically speaking, and we will soon see that there are
some potentially interesting connections with physics as well. Getting started now, we
have a good idea, but we must first solve the following philosophical question:

QUESTION 8.1. What type of target algebras B shall we use for our matriz models
7 : C(G) — B? We would like these to be simple enough, as for the computations inside
them to be doable, but also general enough, as to model well our quantum groups.

In answer, a good idea would be probably that of using random matrix algebras,
B = Mg(C(T)), with K > 1 being an integer, and T being a compact space. Indeed,
these algebras generalize the most familiar algebras that we know, namely the matrix
ones Mk (C), and the commutative ones C(7T'), so they are definitely simple enough. As
for their potential modeling power, my cat who knows some physics says okay.

In short, time to start our study, with the following definition:

DEFINITION 8.2. A matriz model for G C Uy, is a morphism of C*-algebras
m:C(G) - Mg(C(T))
where K > 1 is an integer, and T is a compact space.
As a first comment, focusing on such models might look a bit restrictive, but we will
soon discover that, with some know-how, we can do many things with such models. For
the moment, let us develop some general theory. The main question to be solved is that

of understanding the suitable faithfulness assumptions needed on 7, as for the model to
“remind” the quantum group. As we will see, this is something quite tricky:.

177
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The simplest situation is when m is faithful in the usual sense. Here m obviously
reminds GG. However, this is something quite restrictive, because in this case the algebra
C(G) must be quite small, admitting an embedding as follows:

m:C(G) C Mg(C(T))

Technically, this means that C'(G) must be of type I, as an operator algebra, and
we will discuss this in a moment, with the comment that this is indeed something quite
restrictive. However, there are many interesting examples here, and all this is worth a
detailed look. First, we have the following result, providing us with basic examples:

PROPOSITION 8.3. The following closed subgroups G C Uy, have faithful models:

(1) The compact Lie groups G C Uy.

(2) The finite quantum groups G C Uy:.
In both cases, we can arrange for fG to be restriction of the random matriz trace.
PROOF. These assertions are all elementary, the proofs being as follows:
(1) This is clear, because we can simply use here the identity map:
id: C(G) = M1(C(G))

(2) Here we can use the left regular representation A : C(G) — M(C). Indeed, let
us endow the linear space H = C(G) with the scalar product < a,b >= fG ab*. We have
then a representation of x-algebras, as follows:

AN:C(G) = B(H) , a—[b— ab
Now since we have H ~ CI¢l, we can view \ as a matrix model map, as above.

(3) Finally, our claim is that we can choose our model as for the following formula to
hold, where fT is the integration with respect to a given probability measure on 7"

f=(eef)

But this is clear for the model in (1), by definition, and is clear as well for the model
in (2), by using the basic properties of the left regular representation. Il

In the above result, the last assertion is quite interesting, and suggests formulating
the following definition, somewhat independently on the notion of faithfulness:

DEFINITION 8.4. A matriz model 7 : C(G) — My (C(T)) is called stationary when

fi= (e )

where fT 15 the integration with respect to a given probability measure on T .
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Here the term “stationary” comes from a functional analytic interpretation of all this,
with a certain Cesaro limit needed to be stationary, and this will be explained later. Yet
another explanation comes from a certain relation with the lattice models, but this is
something rather folklore, not axiomatized yet. We will be back to this.

We will see in a moment that stationarity implies faithfulness, so that stationarity can
be regarded as being a useful, pragmatic version of faithfulness. But let us first discuss
the examples. Besides those in Proposition 4.3, we can look at group duals. So, consider
a discrete group I', and a model for the corresponding group algebra, as follows:

71 C*(T) — Myg(C(T))

Since a representation of a group algebra must come from a unitary representation of
the group, such a matrix model must come from a representation as follows:

p: T — C(T,Uk)
With this identification made, we have the following result:

PROPOSITION 8.5. An matriz model p : I' C C(T,Uk) is stationary when:

/ tr(g®)dx = 0,Vg # 1
T
Moreover, the examples include all abelian groups, and all finite groups.

ProOOF. Consider indeed a group embedding p : I' C C(T, Uk), which produces by
linearity a matrix model, as follows:

m: C*(I") — Mg (C(T))

It is enough to formulate the stationarity condition on the group elements g € C*(I").
Let us set p(g) = (x — ¢*). With this notation, the stationarity condition reads:

/ tr(g®)dx = 41
T

Since this equality is trivially satisfied at g = 1, where by unitality of our representa-
tion we must have ¢ = 1 for any x € T, we are led to the condition in the statement.
Regarding now the examples, these are both clear. More precisely:

(1) When I is abelian we can use the following trivial embedding:
FcCu) , g—[x—x(9)
(2) When T is finite we can use the left regular representation:
'cL(CT) , g—[h— ghl

Indeed, in both cases, the stationarity condition is trivially satisfied. U
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In order to discuss now certain analytic aspects of the matrix models, let us go back
to the von Neumann algebras, discussed in chapter 1, and in chapter 3. We recall from
there that we have the following result, due to Murray-von Neumann and Connes:

THEOREM 8.6. Given a von Neumann algebra A C B(H), if we write its center as
Z(A) = L>*(X)

then we have a decomposition as follows, with the fibers A, having trivial center:

A:/Axdx
X

Moreover, the factors, Z(A) = C, can be basically classified in terms of the 11y factors,
which are those satisfying dim A = oo, and having a faithful trace tr : A — C.

ProOF. This is something which is clear in finite dimensions, and in the commutative
case too. In general, this is something heavy, the idea being as follows:

(1) The first assertion, regarding the decomposition into factors, is von Neumann’s
reduction theory main result, which is actually one of the heaviest results in fundamental
mathematics, and whose proof uses advanced functional analysis techniques.

(2) The classification of factors, due to Murray-von Neumann and Connes, is again
something heavy, the idea being that the II; factors are the “building blocks”, with the
other factors basically appearing from them via crossed product type constructions. [

Back now to matrix models, as a first general result, which is something which is not
exactly trivial, and whose proof requires some functional analysis, we have:

THEOREM 8.7. Assuming that a closed subgroup G C Uy, has a stationary model
m:C(G) = Mg(C(T))

it follows that G must be coamenable, and that the model is faithful. Moreover, © extends
into an embedding of von Neumann algebras, as follows,

L¥(G) € Myc(L=(T))
which commutes with the canonical integration functionals.

PROOF. Assume that we have a stationary model, as in the statement. By performing
the GNS construction with respect to fG, we obtain a factorization as follows, which
commutes with the respective canonical integration functionals:

7 :C(G) = C(G)rea C Mg (C(T))

Thus, in what regards the coamenability question, we can assume that 7 is faithful.
With this assumption made, we have an embedding as follows:

C(G) € Mk (C(T))
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By performing the GNS construction we obtain a better embedding, as follows:
L=(G) € Mk (L™(T))

Now since the von Neumann algebra on the right is of type I, so must be its subalgebra
A = L*(G). But this means that, when writing the center of this latter algebra as
Z(A) = L*(X), the whole algebra decomposes over X, as an integral of type I factors:

In particular, we can see from this that C’ (G) C L*>*(@G) has a unique C*-norm, and so
(G is coamenable. Thus we have proved our first assertion, and the second assertion follows
as well, because our factorization of 7 consists of the identity, and of an inclusion. g

In relation with the above, we have the following well-known result of Thoma:

THEOREM 8.8. For a discrete group I, the following are equivalent:

(1) C*(I") is of type I, so that we have an embedding © : C*(I') C Mk (C(X)), with
X being a compact space.

(2) C*(I") has a stationary model of type m : C*(I') — Mp(C(L)), with F being a
finite group, and L being a compact abelian group.

(3) T is virtually abelian, in the sense that we have an abelian subgroup A <T' such
that the quotient group F' =T /A is finite.

(4) T has an abelian subgroup A C I' whose index K = [I" : A] is finite.

PRrROOF. There are several proofs for this fact, the idea being as follows:

(1) = (4) This is the non-trivial implication, that we will not prove here. We refer
instead to the literature, either Thoma’s orignal paper, or books like those of Dixmier,
mixing advanced group theory and advanced operator algebra theory.

(4) = (3) We choose coset representatives g; € I', and we set:
=T

Then A’ C A has finite index, and we have A’ < T, as desired.

(3) = (2) This follows by using the theory of induced representations. We can
define a model 7 : C*(I') — Mp(C(A)) by setting:

m(g9)(x) = Indy(x)(9)

Indeed, any character y € A is a l-dimensional representation of A, and we can
therefore consider the induced representation Ind(x) of the group I'. This representa-
tion is |F|-dimensional, and so maps the group elements g € I' into order |F'| matrices
Indy (x)(g). Thus the above map 7 is well-defined, and the fact that it is a representation
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is clear as well. In order to check now the stationarity property of this representation, we
can use the following well-known character formula, due to Frobenius:

Tr (Indy(x)(9)) = Z 01 gaenX (€7 g)

zeF

By integrating with respect to x € /AX, we deduce from this that we have:

(Tr@/A> mlg) = ZézlgrEA/K)dx_lgx)dX

A zeF

= § 5:(:—1g:ceA6g,1

z€EF
= |F | '5971
Now by dividing by |F'| we conclude that the model is stationary, as claimed.

(2) = (1) This is the trivial implication, with the faithfulness of 7 following from
the abstract functional analysis arguments from the proof of Theorem 4.7. O

We refer to [5] and related papers for more on all this, including for some partial
extensions of Thoma’s theorem, to the case of the discrete quantum groups.

Getting back now to Definition 4.2, more generally, we can model in that way the
standard coordinates x; € C'(X) of various algebraic manifolds X C S(]C\f ;1. Indeed, these
manifolds generalize the compact matrix quantum groups, which appear as:

G cUf sy
Thus, we have many other interesting examples of such manifolds, such as the homo-
geneous spaces over our quantum groups. However, at this level of generality, not much
general theory is available. It is elementary to show that, under the technical assumption

Xelass £ () there exists a universal K x K model for the algebra C'(X), which factorizes
as follows, with X®) C X being a certain algebraic submanifold:

ik C(X) — C(X(K)) C Mg(C(Tk))

To be more precise, the universal K x K model space Tk appears by imposing to the
complex K x K matrices the relations defining X, and the algebra C(X ) is then by
definition the image of 7. In relation with this, we can set as well:

x (o) — U X (K)

KeN
We are led in this way to a filtration of X, as follows:
xelass = XM c X@ c x® .. cX®™cXx

It is possible to say a few non-trivial things about these manifolds X ). In the
compact quantum group case, however, that we are mainly interested in here, the matrix
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truncations G) C G are generically not quantum subgroups at K > 2. and so this
theory is a priori not very useful, at least in its basic form presented above.

8b. Inner faithfulness

Let us discuss now the general, non-coamenable case, with the aim of finding a weaker
notion of faithfulness, which still does the job, namely that of “reminding” the quantum
group. The idea comes by looking at the group duals G = I'. Consider indeed a general
model for the associated group algebra, which can be written as follows:

m:C*(T) = Mg (C(T))

The point is that such a representation of the group algebra must come by linearization
from a unitary group representation, as follows:

p:I' = C(T,Uk)

Now observe that when this group representation p is faithful, the representation 7
is in general not faithful, for instance because when T" = {.} its target algebra is finite
dimensional. On the other hand, this representation “reminds” I', so can be used in order
to fully understand I'. Thus, we have an idea here, basically saying that, for practical
purposes, the faithfuless property can be replaced with something much weaker.

This weaker notion, which will be of great interest for us, is called “inner faithfulness”.
The general theory here, from [10], starts with the following definition:

DEFINITION 8.9. Let m: C(G) — Mg (C(T)) be a matriz model.

(1) The Hopf image of 7 is the smallest quotient Hopf C*-algebra C(G) — C(H)
producing a factorization as follows:

m:C(G) = C(H) — Mg(C(T))

(2) When the inclusion H C G is an isomorphism, i.e. when there is no non-trivial
factorization as above, we say that 7 is inner faithful.

The above notions are quite tricky, and having them well understood will take us some
time. As a first example, motivated by the above discussion, in the case where G =I" is
a group dual, m must come from a group representation, as follows:

p:I'—= C(T,Uk)
Thus the minimal factorization in (1) is obtained by taking the image:
p:I'=ACC(T,Uk)
Thus, as a conclusion, in this case 7 is inner faithful precisely when we have:

I' Cc C(T,Uk)
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Dually now, given a compact Lie group G, and elements g¢q,...,9x € G, we have a
diagonal representation m : C(G) — Mg (C), appearing as follows:

f(gl)
f—
f9x)

The minimal factorization of this representation , as in Definition 4.9 (1), is then via
the algebra C'(H), with H being the following closed subgroup of G:

H:<gla"'>gK>
Thus, as a conclusion, 7 is inner faithful precisely when we have:
G=H

There are many other examples of inner faithful representations, which are however
substantially more technically advanced, and we will discuss them later.

Back to general theory now, in the framework of Definition 4.9, the existence and
uniqueness of the Hopf image come by dividing C'(G) by a suitable ideal, with this being
something standard. Alternatively, in Tannakian terms, as explained in [10], we have:

THEOREM 8.10. Assuming G C Uy, with fundamental corepresentation u = (u;;), the
Hopf image of a model  : C(G) — My (C(T)) comes from the Tannakian category

Crw = Hom(U®* U®)
where U;; = m(u;;), and where the spaces on the right are taken in a formal sense.

PROOF. Since the morphisms increase the intertwining spaces, when defined either in
a representation theory sense, or just formally, we have inclusions as follows:

Hom(u®* u®) ¢ Hom(U®* U®)

More generally, we have such inclusions when replacing (G, u) with any pair producing
a factorization of w. Thus, by Tannakian duality, the Hopf image must be given by the
fact that the intertwining spaces must be the biggest, subject to the above inclusions. On
the other hand, since u is biunitary, so is U, and it follows that the spaces on the right
form a Tannakian category. Thus, we have a quantum group (H,v) given by:

Hom(v®* v®) = Hom(U®* U®")
By the above discussion, C'(H) follows to be the Hopf image of 7, as claimed. O

Regarding now the study of the inner faithful models, a key problem is that of com-
puting the Haar integration functional. The result here, from [5], is as follows:
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THEOREM 8.11. Given an inner faithful model w : C(G) — Mg (C(T)), we have

1 7
— lim =
/G fgzkz/

with the truncations of the integration on the right being given by

[-ton

with ¢ Y = (¢ @ YP)A, and with ¢ = tr @ [, being the random matriz trace.

Proor. This is something quite tricky, the idea being as follows:

(1) As a first observation, there is an obvious similarity here with the Woronowicz
construction of the Haar measure, explained in chapter 1. In fact, the above result holds
more generally for any model 7 : C(G) — B, with ¢ € B* being a faithful trace.

(2) In order to prove now the result, we can proceed as in chapter 1. If we denote by
/. (; the limit in the statement, we must prove that this limit converges, and that:

/=

It is enough to check this on the coefficients of the Peter-Weyl corepresentations, and
if we let v = u®* be one of these corepresentations, we must prove that we have:

(iae [)o=(iae [ )

(3) In order to prove this, we already know, from the Haar measure theory from
chapter 1, that the matrix on the right is the orthogonal projection onto Fiz(v):

<z’d ® /G) v = Proj [Fz’x(v)}

Regarding now the matrix on the left, the trick in [99] applied to the linear form ¢
tells us that this is the orthogonal projection onto the 1-eigenspace of (id ® pm)v:

(id@ /G) v = Proj [1 € (id® gmr)v]

(4) Now observe that, if we set V;; = 7(v;;), we have the following formula:
(id @ pm)v = (id @ p)V

Thus, we can apply the trick in [99], and we conclude that the 1-eigenspace that we
are interested in equals Fiz(V'). But, according to Theorem 4.10, we have:

Fix(V) = Fiz(v)
Thus, we have proved that we have fé = | as desired. O
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In practice, Theorem 4.11 is something quite powerful. As an illustration, regarding
the law of the main character, we obtain here the following result:

PROPOSITION 8.12. Assume that w: C(G) — Mg (C(T)) is inner faithful, let

= law(x)
and let p" be the law of x with respect to [, = (p o m)*", where ¢ =tr @ [,

(1) We have the following convergence formula, in moments:
1
h D

(2) The moments of u" are the numbers cZ = Tr(17), where:

(Ta)i1~nip7j1~njp = (tr & /T) <Ul811]1 . U'ijp>
PROOF. These formulae are both elementary, by using the convergence result estab-

lished in Theorem 4.11, the proof being as follows:

(1) This follows from the limiting formula in Theorem 4.11, by applying the linear
forms there to the main character y.

(2) This follows from the definitions of the measure p" and of the matrix 7,, by
summing the entries of T, over equal indices, i, = j,. U

Interestingly, the above results regarding inner faithfulness have applications as well
to the notion of stationarity introduced before, clarifying among others the use of the
word “stationary”. To be more precise, in order to detect the stationary models, we have
the following useful criterion, mixing linear algebra and analysis, from [10]:

THEOREM 8.13. For a model m : C(G) — Mg(C(T)), the following are equivalent:
(1) Im(m) is a Hopf algebra, and the Haar integration on it is:

¢=(W®A>w

(2) The linear form ¢ = (tr ® [,)m satisfies the idempotent state property:
Yrp =1
(3) We have T> =T,, ¥p € N, Ve € {1,x}?, where:

(Te)is iy = (tT@ /T) U, - U )

If these conditions are satisfied, we say that w is stationary on its image.
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PROOF. Given a matrix model 7 : C(G) — Mg (C(T)) as in the statement, we can
factorize it via its Hopf image, as in Definition 4.9:

m:C(G) - C(H) - Mg(C(T))
Now observe that (1,2,3) above depend only on the factorized representation:
v:C(H)— Mg(C(T))

Thus, we can assume in practice that we have G = H, which means that we can
assume that 7 is inner faithful. With this assumption made, the formula in Theorem 4.11
applies to our situation, and the proof of the equivalences goes as follows:

(1) = (2) This is clear from definitions, because the Haar integration on any
compact quantum group satisfies the idempotent state equation:

Py =1

(2) = (1) Assuming ¢ x 1) = 1, we have ¥»*" = 9 for any r € N, and Theorem 4.11
gives [ o = ¥. By using now Theorem 4.7, we obtain the result.

In order to establish now (2) <= (3), we use the following elementary formula, which
comes from the definition of the convolution operation:

(gl i) = (T )i g
(2) = (3) Assuming ¥ * ¢ = 1), by using the above formula at r = 1,2 we obtain
that the matrices T, and T have the same coefficients, and so they are equal.

(3) = (2) Assuming 77 = T, by using the above formula at r = 1,2 we obtain that

. . . . el ep
the linear forms ¢ and ¢ * ¢ coincide on any product of coefficients u;;, .. Ui . Now

since these coefficients span a dense subalgebra of C'(G), this gives the result. O

8c. Half-liberation

As a first illustration, we can apply the above criterion to certain models for Oy, Uy .
We first have the following result, coming from the work in [5], [10]:

PROPOSITION 8.14. We have a matriz model as follows,

C(Oy) = My(C(Ux)) 5 ug — (O Uéj)

where v is the fundamental corepresentation of C'(Uy), as well as a model as follows,

CUL) = My(C(Uy x Uy)) iy — ( o véj)
ij

where v, w are the fundamental corepresentations of the two copies of C(Uy).
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PROOF. It is routine to check that the matrices on the right are indeed biunitaries,
and since the first matrix is also self-adjoint, we obtain in this way models as follows:

C(O}) = Mx(C(Ux))  C(Uy) = My(C(Uy x Uy))

Regarding now the half-commutation relations, this comes from something general,
regarding the antidiagonal 2 x 2 matrices. Consider indeed matrices as follows:

0 ZT;
Xi= (Z/z 0)

We have then the following computation:

0 =z 0 z; 0 =z 0 TiYiTh
X; X X, = J — J
Tk (yz 0) (yj 0) (yk 0) (yiiijk 0 >

Since this quantity is symmetric in ¢, k, we obtain from this:

Thus, the antidiagonal 2 x 2 matrices half-commute, and we conclude that our models
for C'(O%) and C(Uy,) constructed above factorize as in the statement. O

We can now formulate our first concrete modeling theorem, as follows:
THEOREM 8.15. The above antidiagonal models, namely
C(Oy) = My(C(Uy)) , C(Uy) = My(C(Uy x Uy))
are both stationary, and in particular they are faithful.

PROOF. Let us first discuss the case of O}. We will use Theorem 4.13 (3). Since the
fundamental representation is self-adjoint, the various matrices T, with e € {1, *}? are all
equal. We denote this common matrix by 7,,. We have, by definition:

L = 0 Viq 41 0 Uipjp
(Tp)’ll-..’bp,]l---]p - (t”a@\/l;) |:<U21]1 O ) ““““ (Uipjp O ):|

Since when multipliying an odd number of antidiagonal matrices we obtain an atidi-
agonal matrix, we have T, = 0 for p odd. Also, when p is even, we have:

Viyiq « - - Vg i 0
7Y . . . = tr®/ o s
( p)ll---lpvﬂl---ﬂp ( H) ( O Uiljl c 'Uipjp
1 _ _
- 5 Virgy -+« Vipjp + Viyji -+« Vipjp
H H

= / Re(v’iljl v T)Z‘pjp)
H
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We have sz = T, = 0 when p is odd, so we are left with proving that for p even we
have Tp2 = T,,. For this purpose, we use the following formula:

Re(x) Rely) = 3 (Re(y) + Re(zp))

By using this identity for each of the terms which appear in the product, and multi-
index notations in order to simplify the writing, we obtain:

(TDi; = > (T)is iy (Tpks sy

ki...kp

= / / E Re(viyk, - - Uik, ) Re(Wiyj, - . - Wy, 5, ) dvdw
HJHp &,
1 - _ _
= 3 E Re(Vi o, Wkyjy - - - VipkyWhyj, ) + Re(Vi o, Wy, - - - Dk Whyj, ) dvdw
HJIH g,

= % /H /H Re((vw)iyj, - - (00)s,5,) + Re((vi)i,j, - .. (0w)s, ) dvdw

Now since vw € H is uniformly distributed when v, w € H are uniformly distributed,
the quantity on the left integrates up to (7,);;. Also, since H is conjugation-stable, w € H
is uniformly distributed when w € H is uniformly distributed, so the quantity on the right
integrates up to the same quantity, namely (7,);;. Thus, we have:

(2= 5 () + T)) = @)y

Summarizing, we have obtained that for any p, we have Tg = T,. Thus Theorem
4.13 applies, and shows that our model is stationary, as claimed. As for the proof of the
stationarity for the model for Uy, this is similar. See [16]. O

As a second illustration, regarding Hy,, Ky, we have:
THEOREM 8.16. We have a stationary matriz model as follows,

C(Hy) = Ma(C(Ky)) “iﬂ‘_)(v(zj U6j>

where v is the fundamental corepresentation of C(Ky), as well as a stationary model

C(KY) = My(C(Kx x Ky)) gy — <u? véj)
ij
where v, w are the fundamental corepresentations of the two copies of C(Ky).
Proor. This follows by adapting the proof of Proposition 4.14 and Theorem 4.15, by
adding there the Hy;, K relations. All this is in fact part of a more general phenomenon,
concerning half-liberation in general, and we refer here to [5], [10]. O
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As a consequence of this, we can now work out the discrete group case:

PROPOSITION 8.17. Any reflection group I' =< g1, ..., gn > which is half-abelian, in
the sense that its standard generators half-commute,

9i959k = 9k9;9i
has an algebraic stationary model, with K = 2.

Proor. This follows from Theorem 4.15. To be more precise, in the non-abelian
case, the results in [5] show that I' C O} must come from a group dual A C Uy, via the
construction there, and with A =< hq, ..., hy >, the corresponding model is:

N 0 X(hz>):|
rccNUy) , g— |x— | -
( 2) g {X (X(hz> 0
As for the abelian case, the result here follows from Proposition 4.5. U

More generally now, we have the following result, from [5]:

PRoOPOSITION 8.18. If L is a compact group, having a N -dimensional unitary corep-
resentation v, and an order K automorphism o : L — L, we have a matrix model

T C(U;{f) — MK(C(L>> y U — T[UZQ), .. 7U(K)]

J

where vV (g) = v(0'(g)), and where |z, ..., xx| is obtained by filling the standard K-
cycle T € M(0,1) with the elements xy,...,xx. We call such models “cyclic”.

(1) (K

PROOF. The matrices U;; = T[Uij pees Uy )] in the statement appear by definition as

follows, with the convention that all the blank spaces denote 0 entries:

The matrix U = (Uy;) is then unitary, and so is U = (U;). Thus, if we denote by
w = (w;;) the fundamental corepresentation of C'(Uy;), we have a model as follows:

p:CUS) = Mg(C(L) , wiy — Uy

Now observe that the matrices U;;Uy;, Uj;Uy are all diagonal, so in particular, they
commute. Thus the above morphism p factorizes through C(Uy), as claimed. U

In relation with the above models, we have the following result, also from [5]:
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THEOREM 8.19. Any cyclic model in the above sense,
m:C(Uyx) = Mg(C(L))
is stationary on its image, with the corresponding closed subgroup [L] C U}, given by
Im(m) = C([L])
being the quotient L X Zyk — [L] having as coordinates the variables u;; = v;; @ T.

PROOF. Assuming that (L, o) are as in Proposition 4.18, we have an action Zx ~ L,
and we can therefore consider the following short exact sequence:

1l —>Zg > L XZg —L—1

By performing a Thoma type construction we obtain a model as follows, where (") =
o'(x), with ¢ : C(L) — C(L) being the automorphism induced by o : L — L:
p:C(LxZg)C Mg(C(L) , z@7 =7 2zW, . .. 20

Consider now the quotient quantum group L x Zyx — [L] having as coordinates the
variables u;; = v;; ® 7. We have then a injective morphism, as follows:

I/O([L]) CO(LNZK) R Uij—>vij®7—
By composing the above two embeddings, we obtain an embedding as follows:

pY . O([L]) C MK(C(L)) y Uyj — T[U(D U(K)]

(A ? Vig
Now since p is stationary, and since v commutes with the Haar funtionals as well, it
follows that this morphism pv is stationary, and this finishes the proof. U

As an illustration, we can now recover the following result, from [5]:

PROPOSITION 8.20. For any non-classical G C Oy we have a stationary model
7:C(G) = My(C(L)) , wy = (_0 ”@'f)
Uij 0
where L C Uy, with coordinates denoted v;;, is the lift of PG C POy = PUy.

PROOF. Assume first that L C Uy is self-conjugate, in the sense that g € L — g €
L. If we consider the order 2 automorphism of C'(L) induced by g;; — §i;, we can apply
Theorem 4.19, and we obtain a stationary model, as follows:

m: C([L]) C Mx(C(L)) , wu;®1= (?7(33‘ Uéj)

The point now is that, as explained in [5], any non-classical subgroup G C O} must
appear as G = [L], for a certain self-conjugate subgroup L C Uy. Moreover, since we
have PG = P[L], it follows that L C Uy is the lift of PG C PO} = PUy, as claimed. O
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In the unitary case now, and with the matrix size K € N being arbitrary, we recall
from [5], [10] and related papers that Uy has a certain “arithmetic version” U}, ; C Uy,
obtained by imposing some natural length 2K relations on the standard coordinates. As
basic examples, at K =1 we have Uy, = Uy, the defining relations being ab = ba with
a,b € {uy,uj;}, and at K = 2 we have Uy, = Uy, with the latter quantum group
appearing via the relations ab - cd = cd - ab, for any a,b, c,d € {ug, uj;}.

With this convention, we have the following result, also from [5]:

THEOREM 8.21. For any subgroup G C Uy, i which is K-symmetric, in the sense that

Ui — ezm/Kuij defines an automorphism of C(G), we have a stationary model

1 K
m:C(G) = Mg(C(L)) , uy — 1o}, ... 0]
with L C UE being a closed subgroup which is symmetric, in the sense that it is stable
under the cyclic action Zx ~ UE.

ProOF. This follows from what we have, as follows:

(1) Assuming that L C U is symmetric in the above sense, we have representations

v L CU KU ﬁ) for any i, and the cyclic action Zx ~ UL restricts into an order
K automorphism o : L — L. Thus we can apply Theorem 4.19, and we obtain a certain
closed subgroup [L] C Uy g, having a stationary model as in the statement.

(2) Conversely now, assuming that G C Uy j is K-symmetric, the main result in [10]
applies, and shows that we must have C'(G) C C(L) x Zg, for a certain closed subgroup
L C U¥ which is symmetric. But this shows that we have G = [L], and we are done. [J

We refer to [5], [10] and related papers for more on the above.

8d. Group duals

Let us discuss now the group dual case, where we have a closed subgroup T c S,
with T being a discrete group. Following [5], we use the following construction:

PROPOSITION 8.22. The following happen:

(1) Given integers Ky, ..., Ky satisfying Ki+...+ Ky = N, the dual of any quotient
group Zg, * ... x Lg,, — I' appears as a closed subgroup T'c St

(2) By refining if necessary the partition N = Ky + ...+ Ky, we can always assume
that the M morphisms Zk, — I' are all injective.

(3) Assuming that the partition N = Ky+. ..+ Ky is refined, as above, this partition
15 precisely the one describing the orbit structure off C Sy
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PROOF. The idea for (1) is that we have embeddings ZKZ ~ Zg, C Sk, C S}Z_, and
by performing a free product construction, we obtain an embedding as follows:

fCZKI*...*ZKMCS?\;

To be more precise, the magic unitary that we get is as follows, where F; = \/%(wfb)ab

with w; = 2™/ and V; = (¢%),, with g; being the standard generator of Zg,:

VK : : :
(FiVi)i ... (EVi)o

Regarding (2,3), the idea here is that the orbit structure of any T c S% produces a
partition N = K; + ...+ K), and then a quotient map Zg, * ... * Zg,, — I'. Il

Following the material from the previous chapters, we will be mainly interested in
what follows in the quasi-transitive case. Let us start with the following definition:

DEFINITION 8.23. Given a subgroup G C S, a random matriz model of type
m:C(G) = Mg (C(T))
is called quasi-flat when the fibers Pg = w(u;)(z) all have rank < 1.

We will explore more in detail this notion later. Now with this convention made, and
getting back to the group duals, we have the following result, from [5]:

PROPOSITION 8.24. The quasi-transitive group duals T c S, with orbits having K
elements, appearing as above, have the following properties:

(1) These come from the quotients Z3M — T, having the property that the corre-
sponding M morphisms Zg? CZM — T are all injective.

(2) For such a quotient, a matriz model m : C*(I') — My (C) is quasi-flat if and only
if it is stationary on each subalgebra C*(Zg?) c ().

PRrROOF. The first assertion follows from Proposition 4.23. Regarding the second as-
sertion, consider a matrix model 7 : C*(I') — Mg(C), mapping g; — U;, where g; is the
standard generator of Zg?. With notations from the proof of Proposition 4.23, the images
of the nonzero standard coordinates on I’ C S are mapped as follows:

1 1
T \/F(F Vi)e = Ni7e

Here V; = (¢8)a, Wi = (Uf)q, and F = \/Lf(w“b)ab with w = e?™/%_ With this formula

7
in hand, the flatness condition on 7 simply states that we must have:

Tr((FW,).) =VEK , Vi Ve
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In terms of the trace vectors T; = (Tr(U%)), this condition becomes FT; = VKE,
where £ € C¥ is the all-one vector. Thus we must have T} = v K F*¢, which reads:

Tr(1) 1 K

Tr(U; 1 0
(: ) =VEKF | | =]|. Vi

Tr(US) 1 0

In other words, we have reached to the conclusion that 7 is flat precisely when its
restrictions to each subalgebra C* (Zg?) C C*(T") are stationary, as claimed. O

We would like to end our study with a purely group-theoretical formulation of these
results, and of some related questions, that we believe of interest. Let us start with:

DEFINITION 8.25. A discrete group I is called uniform when:

(1) T is finitely generated, I' =< gy,..., gn >.

(2) The generators gi,...,gn have common order K < oc.
(3) T appears as an intermediate quotient ZM — T — 7.
(4) We have an action Syr ~ T, given by 0(g;) = go(s)-

Here the conditions (1-3) basically come from [22], via Proposition 4.24 (1), and
together with some extra considerations from [5], which prevent us from using groups of
type I' = (Zk * Zk) X Zk, we are led to the condition (4) as well.

Observe that some of the above conditions are technically redundant, with (4) implying
that the generators g,..., gy have common order, as stated in (2), and also with (3)
implying that the group is finitely generated, with the generators having finite order. We
have as well the following notion, which is once again group-theoretical:

DEFINITION 8.26. If a discrete group I' is uniform, as above, a unitary representation
p: ' —= Uk is called quasi-flat when the eigenvalues of each

Ui = p(gi) € Uk
are uniformly distributed.

To be more precise, assuming that I' =< ¢1,...,gy > with ord(g;) = K is as in
Definition 4.25, any unitary representation p : I' — Uk is uniquely determined by the
images U; = p(g;) € Uk of the standard generators. Now since each of these unitaries
satisfies U = 1, its eigenvalues must be among the K-th roots of unity, and our quasi-
flatness assumption states that each eigenvalue must appear with multiplicity 1.

With these notions in hand, we have the following result:
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THEOREM 8.27. If ' =< g1,...,9m > is uniform, with ord(g;) = K, a model
7 C*(T) = Mg(C(X)
is quasi-flat precisely when the associated unitary representation
p:I'—= C(X,Ugk)
has quasi-flat fibers, in the sense of Definition 4.26.

PROOF. According to Proposition 4.24 (2), the model is quasi-flat precisely when the
following compositions are all stationary:

m: CHZYY € C*(T) — Mg (C(X))

On the other hand, as already observed in the proof of Proposition 4.24, a matrix
model p : C*(Zg) — Mg(C(X)) is stationary precisely when the unitary U = p(g),
where ¢ is the standard generator of Z, satisfies the following condition:

tr(1) 1
tr(U) [0
tr(U:K_l) O

Thus, such a model is stationary precisely when the eigenvalues of U are uniformly
distributed, over the K-th roots of unity. We conclude that 7 is quasi-flat precisely when
the eigenvalues of each U; = p(g;) are uniformly distributed, as in Definition 4.26. O

We are interested now in the matrix models for the discrete group algebras, which are
stationary. We use a lift of the quasi-flat models, in the following sense:

PROPOSITION 8.28. The affine lift of the universal quasi-flat model for C*(Z3M),
T CHZR) — Mg (C(UY))
is given on the canonical generator g; of the i-th factor by

ﬂ-(gi)(U17 ceey UM) = Z ijU;
J

where UJZ-' is the j-th column of U" and Py denotes the orthogonal projection onto CE.

PRrOOF. There is indeed a canonical quotient map Uy — E, obtained by parametriz-
ing the orthonormal bases of CX by the unitary group Uk, and this gives the result. [

We know that the maximal group dual subgroups T c S are the free products of
type Zg, * ... * Lg,, with K; + ...+ Ky = N. In the quasi-transitive case, where by
definition K; = ... = Ky = K with K|N, we have the following result, from [5]:
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THEOREM 8.29. The universal quasi-flat model for the group
r=zM
is inner faithful.

PRrOOF. It is enough to prove that the affine lift of the universal model in the statement
is inner faithful, and this is indeed something very standard. U

8e. Exercises

Exercises:

EXERCISE 8.30.
EXERCISE 8.31.
EXERCISE 8.32.
EXERCISE 8.33.
EXERCISE 8.34.
EXERCISE 8.35.
EXERCISE 8.36.
EXERCISE 8.37.

Bonus exercise.
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Discrete groups



If it hadn’t been for Cotton-Eye Joe
I'd been married long time ago
Where did you come from, where did you go
Where did you come from, Cotton-Eye Joe



CHAPTER 9

9a.
9b.
9c.
9d.
9e. Exercises

Exercises:

EXERCISE 9.1.

EXERCISE 9.2.

EXERCISE 9.3.

EXERCISE 9.4.

EXERCISE 9.5.

EXERCISE 9.6.

EXERCISE 9.7.

EXERCISE 9.8.

Bonus exercise.
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Exercises:

EXERCISE 10.1.
EXERCISE 10.2.
EXERCISE 10.3.
EXERCISE 10.4.
EXERCISE 10.5.
EXERCISE 10.6.
EXERCISE 10.7.

EXERCISE 10.8.

Bonus exercise.

CHAPTER 10

10a.
10b.
10c.
10d.

10e. Exercises
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Exercises:

EXERCISE 11.1.
EXERCISE 11.2.
EXERCISE 11.3.
EXERCISE 11.4.
EXERCISE 11.5.
EXERCISE 11.6.
EXERCISE 11.7.

EXERCISE 11.8.

Bonus exercise.

CHAPTER 11

11a.
11b.
11c.
11d.

11le. Exercises
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Exercises:

EXERCISE 12.1.
EXERCISE 12.2.
EXERCISE 12.3.
EXERCISE 12.4.
EXERCISE 12.5.
EXERCISE 12.6.
EXERCISE 12.7.

EXERCISE 12.8.

Bonus exercise.

CHAPTER 12

12a.
12b.
12c.
12d.

12e. Exercises
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Part IV

Fourier analysis



Come on let’s twist again
Like we did last Summer
Yeah, let’s twist again
Like we did last year



Exercises:

EXERCISE 13.1.
EXERCISE 13.2.
EXERCISE 13.3.
EXERCISE 13.4.
EXERCISE 13.5.
EXERCISE 13.6.
EXERCISE 13.7.

EXERCISE 13.8.

Bonus exercise.

CHAPTER 13

13a.
13b.
13c.
13d.

13e. Exercises
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Exercises:

EXERCISE 14.1.
EXERCISE 14.2.
EXERCISE 14.3.
EXERCISE 14.4.
EXERCISE 14.5.
EXERCISE 14.6.
EXERCISE 14.7.

EXERCISE 14.8.

Bonus exercise.

CHAPTER 14

14a.
14b.
14c.
14d.

14e. Exercises
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Exercises:

EXERCISE 15.1.
EXERCISE 15.2.
EXERCISE 15.3.
EXERCISE 15.4.
EXERCISE 15.5.
EXERCISE 15.6.
EXERCISE 15.7.

EXERCISE 15.8.

Bonus exercise.

CHAPTER 15

15a.
15b.
15c.
15d.

15e. Exercises
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CHAPTER 16

16a.
16b.
16c¢.
16d.
16e. Exercises

Congratulations for having read this book, and no exercises for this final chapter.
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