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Abstract. This is an introduction to the various algebras formed by diagrams, and vice
versa, and their applications to questions from quantum physics. We first discuss the
basic questions of topology, followed by a discussion of the simplest diagrammatic objects
appearing, namely braids and partitions, and with a look into the associated algebras
too. Then we go on a detailed study of knot invariants, following Alexander, Jones,
Witten and others. We then discuss the relation between diagrams and representation
theory, following Schur-Weyl, Brauer and others, and with a look into quantum groups
and planar algebras too. Finally, we provide an introduction to the Feynman diagrams
and their applications, and the various combinatorial algebras associated to them.



Preface

We certainly live in 3 dimensions, but our understanding of this world is rather 2-
dimensional. Information gets to us, be that via sight, or hearing and so on, as some
sort of 2-dimensional picture, and it is hard to say something reliable about the distance
between us and the objects and phenomena that we see, hear, smell and so on. For
instance a pungent odor of rotten eggs usually means that the rotten eggs are close, but is
that really correct, it might well happen that the rotten eggs are somewhere out in space,
as a chemical weapon, brought by the little green men from Mars, attacking us.

In mathematics and physics, which are normally about 3 dimensions, we have of
course a lot of troubles in fighting with this 2-dimensionality of our thought. Who was
not dreamed, for instance, to be able to manipulate N ×N ×N matrices, the way we do
it for the usual N × N matrices, with lots of useful theorems about them. Well, this is
unfortunately not really possible, for us humans, so stuck with usual linear algebra.

Nevermind. With this lesson learned, we can do our best in mathematics and physics
by using 2-dimensional methods, which in practice means, using “diagrams”. And there
are countless such useful diagrams, invented by mankind since ages, for all sorts of practi-
cal purposes. In addition, in the present modern times, a bit of abstract algebra can help
too, the idea being that the formal linear combinations of such diagrams, which usually
form an algebra, can be more powerful tools than the diagrams themselves.

This book is an introduction to the various algebras formed by diagrams, and vice
versa, and their applications to questions from quantum physics. We have tried to keep
things as simple and elementary as possible, usually relying only on some basic knowledge
of undergraduate mathematics, with the organization, in 4 parts, being as follows:

(1) We first discuss the basic questions of topology, concerned with bodies and their
shapes, followed by a discussion of the simplest diagrammatic objects appearing, namely
braids and partitions, and with a look into the associated algebras too.

(2) Then we go on a detailed study of knot invariants, following Alexander, Jones,
Witten and others. Our approach here will be closely following the 1980s work of Jones,
and its ramifications, with a regular look backwards, and forward.
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4 PREFACE

(3) We then discuss the relation between diagrams and representation theory, first for
the finite and compact groups, following Schur-Weyl, Brauer and others, and then with a
look into quantum groups, random matrices and planar algebras too.

(4) Finally, we will get into quantum physics, with the aim of applying the techniques
that we learned. We will provide here an introduction to the Feynman diagrams and their
applications, and the various combinatorial algebras associated to them.

Many thanks to my colleagues, collaborators, and to various books and internet too,
there is so much to be learned about diagrams, from so many places, and with this being
a never-ending story. Thanks as well to my cats, for some help with the physics.

Cergy, March 2025

Teo Banica
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Part I

Topology, diagrams
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CHAPTER 1

Topology

1a. Topological spaces

Welcome to topology. Before getting started with our mathematics, we need spaces.
We will use here a very general definition, as folllows:

Definition 1.1. A topological space is a set X, given with a collection of subsets
E ⊂ X called open sets, satisfying what we can expect from the open sets, namely:

(1) X itself is open, and so is ∅.
(2) Union of open sets is open.
(3) Finite intersection of open sets is open.

We will see examples in a moment, but before anything, it looks like we forgot the
closed sets, which are often more important than the open sets, when doing analysis, in
our axiomatization. Good point, and in answer, we have the following result:

Proposition 1.2. Given a topological space X, call a subset F ⊂ X closed when its
complement F c ⊂ X is open. Then, the closed sets have the following properties:

(1) X itself is closed, and so is ∅.
(2) Finite union of closed sets is closed.
(3) Intersection of closed sets is closed.

Proof. This is something trivial, which follows by talking the complement of the var-
ious axioms from Definition 1.1. As an important remark, however, observe the symmetry
between the present statement and Definition 1.1, which shows that, whenever needed,
these statements can be interchanged. That is, if needed, we can define a topological
space X via its closed sets F ⊂ X, which must satisfy the present conditions (1,2,3), and
then we can talk about the open sets E ⊂ X too, as being the complements of the closed
sets, and these open sets satisfy then the conditions (1,2,3) in Definition 1.1. □

In practice now, for geometry and analysis, we will mostly need the case where X is a
metric space, with the remark however that the abstract topological spaces as above are
something quite interesting, in relation with all sorts of geometry.

So, getting right away to the metric spaces, we have here the following result, making
the link with Definition 1.1 and Proposition 1.2, and providing us with examples:

11



12 1. TOPOLOGY

Theorem 1.3. Given a metric space X, call a subset E ⊂ X open if any x ∈ E has a
ball around it belonging to U , and call a subset F ⊂ X closed if its complement F c ⊂ X
is open. Then, the following happen, showing that X is a topological space:

(1) If Ei are open, then ∪iEi is open.
(2) If Fi are closed, then ∩iFi is closed.
(3) If E1, . . . , En are open, then ∩iEi is open.
(4) If F1, . . . , Fn are closed, then ∪iFi is closed.

Moreover, both (3) and (4) can fail for infinite intersections and unions.

Proof. We have several things to be proved, the idea being as follows:

(1) This is clear from definitions, because any point x ∈ ∪iEi must satisfy x ∈ Ei for
some i, and so has a ball around it belonging to Ei, and so to ∪iEi.

(2) This follows from (1), by using the following well-known set theory formula:(⋃
i

Ei

)c

=
⋂
i

Ec
i

(3) Given an arbitrary point x ∈ ∩iEi, we have x ∈ Ei for any i, and so we have a
ball Bx(ri) ⊂ Ei for any i. Now with this in hand, let us set:

B = Bx(r1) ∩ . . . ∩Bx(rn)

As a first observation, this is a ball around x, B = Bx(r), of radius given by:

r = min(r1, . . . , rn)

But this ball belongs to all the Ei, and so belongs to their intersection ∩iEi. We
conclude that the intersection ∩iEi is open, as desired.

(4) This follows from (3), by using the following well-known set theory formula:(⋂
i

Ei

)c

=
⋃
i

Ec
i

(5) Finally, in what regards the counterexamples at the end, we will leave their con-
struction, which is something very elementary, as an instructive exercise. □

Getting back now to the general topological spaces, from Definition 1.1 and Proposition
1.2, we can do analysis on them, inspired a bit by Theorem 1.3, and we have:

Proposition 1.4. For a set E ∈ X, the following are equivalent:

(1) E is closed in our sense, meaning that Ec is open.
(2) We have xn → x, xn ∈ E =⇒ x ∈ E.
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Proof. For metric spaces, we can prove this by double implication, as follows:

(1) =⇒ (2) Assume by contradiction xn → x, xn ∈ E with x /∈ E. Since we
have x ∈ Ec, which is open, we can pick a ball Bx(r) ⊂ Ec. But this contradicts our
convergence assumption xn → x, so we are done with this implication.

(2) =⇒ (1) Assume by contradiction that E is not closed in our sense, meaning that
Ec is not open. Thus, we can find x ∈ Ec such that there is no ball Bx(r) ⊂ Ec. But
with r = 1/n this provides us with a point xn ∈ Bx(1/n)∩E, and since we have xn → x,
this contradicts our assumption (2). Thus, we are done with this implication too. □

Still in relation with open and closed sets, we have as well:

Definition 1.5. Let X be a metric space, and E ⊂ X be a subset.

(1) The interior E◦ ⊂ E is the set of points x ∈ E which admit around them open
balls Bx(r) ⊂ E.

(2) The closure E ⊂ Ē is the set of points x ∈ X which appear as limits of sequences
xn → x, with x ∈ E.

These notions are quite interesting, because they make sense for any set E. That is,
when E is open, that is open and end of the story, and when E is closed, that is closed
and end of the story. In general, however, a set E ⊂ X is not open or closed, and what
we can best do to it, in order to study with our tools, is to “squeeze” it, as follows:

E◦ ⊂ E ⊂ Ē

In practice now, in order to use the above notions, we need to know a number of
things, including that fact that E open implies E◦ = E, the fact that E closed implies
Ē = E, and many more such results. But all this can be done, and the useful statement
here, summarizing all that we need to know about interiors and closures, is as follows:

Proposition 1.6. Let X be a metric space, and E ⊂ X be a subset.

(1) The interior E◦ ⊂ E is the biggest open set contained in E.
(2) The closure E ⊂ Ē is the smallest closed set containing E.

Proof. We have several things to be proved, the idea being as follows:

(1) Let us first prove that the interior E◦ is open. For this purpose, pick x ∈ E◦. We
know that we have a ball Bx(r) ⊂ E, and since this ball is open, it follows that we have
Bx(r) ⊂ E◦. Thus, the interior E◦ is open, as claimed.

(2) Let us prove now that the closure Ē is closed. For this purpose, we will prove
that the complement Ēc is open. So, pick x ∈ Ēc. Then x cannot appear as a limit of a
sequence xn → x with xn ∈ E, so we have a ball Bx(r) ⊂ Ēc, as desired.

(3) Finally, the maximality and minimality assertions regarding E◦ and Ē are both
routine too, coming from definitions, and we will leave them as exercises. □



14 1. TOPOLOGY

As an application of the theory developed above, and more specifically of the notion
of closure from Definition 1.5, we can talk as well about density, as follows:

Definition 1.7. We say that a subset E ⊂ X is dense when:

Ē = X

That is, any point of X must appear as a limit of points of E.

Obviously, this is something which is in tune with what we know so far from this book,
and with the intuitive notion of density. As a basic example, we have Q̄ = R.

Moving ahead now, again in analogy with what we know about X = R,C, we can talk
about compact sets, and about connected sets. Let us start with:

Definition 1.8. A set K ⊂ X is called compact if any cover with open sets

K ⊂
⋃
i

Ei

has a finite subcover, K ⊂ (Ei1 ∪ . . . ∪ Ein).

This might seem overly abstract, but our claim is that this is the correct definition,
and that there is no way of doing otherwise. The point indeed is that we have:

Proposition 1.9. Given an infinite set X with the discrete distance on it, namely
d(p, q) = 1− δpq, which can be modeled as the basis of a suitable Hilbert space,

X = {ex}x∈X ⊂ l2(X)

this set is closed and bounded, but not compact.

Proof. Here the first part, regarding the modelling of X, that we will actually not
really need, is something that we already know. Regarding now the second part:

(1) X being the total space, it is by definition closed. As a remark here, that we will
need later, since the points of X are obviously open, any subset E ⊂ X is open, and by
taking complements, any set E ⊂ X is closed as well.

(2) X is also bounded, because all distances are smaller than 1.

(3) However, our set X is not compact, because its points being open, as noted above,
X = ∪x∈X{x} is an open cover, having no finite subcover. □

Let us develop now the theory of compact sets. We first have the following result:

Proposition 1.10. The following hold:

(1) Compact implies closed.
(2) Closed inside compact is compact.
(3) Compact intersected with closed is compact.



1A. TOPOLOGICAL SPACES 15

Proof. These assertions are all clear from definitions, as follows:

(1) Assume that K ⊂ X is compact, and let us prove that K is closed. For this
purpose, we will prove that Kc is open. So, pick p ∈ Kc. For any q ∈ K we set
r = d(p, q)/3, and we consider the following balls, separating p and q:

Uq = Bp(r) , Vq = Bq(r)

We have then K ⊂ ∪q∈KVq, so we can pick a finite subcover, as follows:

K ⊂ (Vq1 ∪ . . . ∪ Vqn)

With this done, consider the following intersection:

U = Uq1 ∩ . . . ∩ Uqn

This intersection is then a ball around p, and since this ball avoids Vq1 , . . . , Vqn , it
avoids the whole K. Thus, we have proved that Kc is open at p, as desired.

(2) Assume that F ⊂ K is closed, with K ⊂ X being compact. For proving our result,
we can assume, by replacing X with K, that we have X = K. In order to prove now that
F is compact, consider an open cover of it, as follows:

F ⊂
⋃
i

Ei

By adding the set F c, which is open, to this cover, we obtain a cover of K. Now since
K is compact, we can extract from this a finite subcover Ω, and there are two cases:

– If F c ∈ Ω, by removing F c from Ω we obtain a finite cover of F , as desired.

– If F c /∈ Ω, we are done too, because in this case Ω is a finite cover of F .

(3) This follows from (1) and (2), because if K ⊂ X is compact, and F ⊂ X is closed,
then K ∩ F ⊂ K is closed inside a compact, so it is compact. □

As a second batch of results, which are useful as well, we have:

Proposition 1.11. The following hold:

(1) If Ki ⊂ X are compact, satisfying Ki1 ∩ . . . ∩Kin ̸= ∅, then ∩iKi ̸= ∅.
(2) If K1 ⊃ K2 ⊃ K3 ⊃ . . . are non-empty compacts, then ∩iKi ̸= ∅.
(3) If K is compact, and E ⊂ K is infinite, then E has a limit point in K.
(4) If K is compact, any sequence {xn} ⊂ K has a limit point in K.
(5) If K is compact, any {xn} ⊂ K has a subsequence which converges in K.

Proof. Again, these are elementary results, which can be proved as follows:

(1) Assume by contradiction ∩iKi = ∅, and let us pick K1 ∈ {Ki}. Since any x ∈ K1

is not in ∩iKi, there is an index i such that x ∈ Kc
i , and we conclude that we have:

K1 ⊂
⋃
i ̸=1

Kc
i
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But this can be regarded as being an open cover of K1, that we know to be compact,
so we can extract from it a finite subcover, as follows:

K1 ⊂
(
Kc

i1
∪ . . . ∪Kc

in

)
Now observe that this latter subcover tells us that we have:

K1 ∩Ki1 ∩ . . . ∩Kin = ∅

But this contradicts our intersection assumption in the statement, and we are done.

(2) This is a particular case of (1), proved above.

(3) We prove this by contradiction. So, assume that E has no limit point in K. This
means that any p ∈ K can be isolated from the rest of E by a certain open ball Vp = Bp(r),
and in both the cases that can appear, p ∈ E or p /∈ E, we have:

|Vp ∩ E| = 0, 1

Now observe that these sets Vp form an open cover of K, and so of E. But due to
|Vp ∩ E| = 0, 1 and to |E| = ∞, this open cover of E has no finite subcover. Thus the
same cover, regarded now as cover of K, has no finite subcover either, contradiction.

(4) This follows from (3) that we just proved, with E = {xn}.

(5) This is a reformulation of (4), that we just proved. □

Getting now to some more exciting theory, here is a key result about compactness,
which is less trivial, and that we will need on a regular basis, in what follows:

Theorem 1.12. For a subset K ⊂ RN , the following are equivalent:

(1) K is closed and bounded.
(2) K is compact.
(3) Any infinite subset E ⊂ K has a limiting point in K.

Proof. This is something quite tricky, the idea being as follows:

(1) =⇒ (2) As a first task, in order to establish this implication, let us prove that
any product of closed intervals, as follows, is indeed compact:

J =
N∏
i=1

[ai, bi] ⊂ RN

We can assume by linearity that we are dealing with the unit cube:

C1 =
N∏
i=1

[0, 1] ⊂ RN
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In order to prove that C1 is compact, we proceed by contradiction. So, assume that
we have an open cover as follows, having no finite subcover:

C1 ⊂
⋃
i

Ei

Now let us cut C1 into 2N small cubes, in the obvious way, over the N coordinate axes.
Then at least one of these small cubes, which are all covered by ∪iEi too, has no finite
subcover. So, let us call C2 ⊂ C1 one of these small cubes, having no finite subcover:

C2 ⊂
⋃
i

Ei

We can then cut C2 into 2N small cubes, and by the same reasoning, we obtain a
smaller cube C3 ⊂ C2 having no finite subcover. And so on by recurrence, and we end up
with a decreasing sequence of cubes, as follows, having no finite subcover:

C1 ⊃ C2 ⊃ C3 ⊃ . . .

Now since these decreasing cubes have edge size 1, 1/2, 1/4, . . . , their intersection must
be a point. So, let us call p this point, defined by the following formula:

{p} =
⋂
k

Ck

But this point p must be covered by ∪iEi, so we can find an index i such that:

p ∈ Ei

Now observe that Ei must contain a whole ball around p, and so starting from a
certain K ∈ N, all the cubes Ck will be contained in this ball, and so in Ei:

Ck ⊂ Ei , ∀k ≥ K

But this is a contradiction, because CK , and in fact the smaller cubes Ck with k > K
as well, were assumed to have no finite subcover. Thus, we have proved our claim.

(1) =⇒ (2), continuation. But with this claim in hand, the result is now clear.
Indeed, assume that K ⊂ RN is closed and bounded. Then, since K is bounded, we can
view it as a subset as a suitable big cube, of the following form:

K ⊂
N∏
i=1

[−M,M ] ⊂ RN

But, what we have here is a closed subset inside a compact set, that follows to be
compact, as desired.

(2) =⇒ (3) This is something that we already know, not needing K ⊂ RN .

(3) =⇒ (1) We have to prove that K as in the statement is both closed and bounded,
and we will do both these things by contradiction, as follows:
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– Assume first that K is not closed. But this means that we can find a point x /∈ K
which is a limiting point of K. Now let us pick xn ∈ K, with xn → x, and consider the
set E = {xn}. According to our assumption, E must have a limiting point in K. But this
limiting point can only be x, which is not in K, contradiction.

– Assume now that K is not bounded. But this means that we can find points xn ∈ K
satisfying ||xn|| → ∞, and if we consider the set E = {xn}, then again this set must have
a limiting point in K, which is impossible, so we have our contradiction, as desired. □

So long for compactness. As a last piece of general topology, in our metric space
framework, we can talk as well about connectedness, as follows:

Definition 1.13. We can talk about connected sets E ⊂ X, as follows:

(1) We say that E is connected if it cannot be separated as E = E1 ∪ E2, with the
components E1, E2 satisfying E1 ∩ Ē2 = Ē1 ∩ E2 = ∅.

(2) We say that E is path connected if any two points p, q ∈ E can be joined by a
path, meaning a continuous f : [0.1]→ X, with f(0) = p, f(1) = q.

All this looks a bit technical, and indeed it is. To start with, (1) is something quite
natural, but the separation condition there E1 ∩ Ē2 = Ē1 ∩E2 = ∅ can be weakened into
E1 ∩ E2 = ∅, or strengthened into Ē1 ∩ Ē2 = ∅, depeding on purposes, and with our (1)
as formulated being the good compromise, for most purposes. As for (2), this condition
is obviously something stronger, and we have in fact the following implications:

convex =⇒ path connected =⇒ connected

The problem, however, is that connected does not imply path connected, and there
are as well various counterexamples in relation with the various versions of (1) that can
be formulated, as explained above. In any case, once these questions clarified, the idea is
that any set E can be written as a disjoint union of connected components, as follows:

E =
⊔
i

Ei

Getting back now to more concrete things, that is, calculus, we have:

Theorem 1.14. Assuming that f : X → Y is continuous, the following happen:

(1) If O is open, then f−1(O) is open.
(2) If C is closed, then f−1(C) is closed.
(3) If K is compact, then f(K) is compact.
(4) If E is connected, then f(E) is connected.

Proof. This is something fundamental, which can be proved as follows:

(1) This is clear from the definition of continuity, written with ε, δ. In fact, the converse
holds too, in the sense that if f−1(open) = open, then f must be continuous.
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(2) This follows from (1), by taking complements. And again, the converse holds too,
in the sense that if f−1(closed) = closed, then f must be continuous.

(3) Given an open cover f(K) ⊂ ∪iEi, we have by using (1) an open cover K ⊂
∪if−1(Ei), and so by compactness of K, a finite subcover K ⊂ f−1(Ei1)∪ . . .∪ f−1(Ein),
and so finally a finite subcover f(K) ⊂ Ei1 ∪ . . . ∪ Ein , as desired.

(4) This can be proved via the same trick as for (3). Indeed, any separation of f(E) into
two parts can be returned via f−1 into a separation of E into two parts, contradiction. □

As a comment here, Theorem 1.14 generalizes, and in a clever way, many things that
we know from one-variable calculus. Of particular interest is (3), which shows in particular
that any continuous function on a compact space f : X → R attains its minimum and its
maximum, and then (4), which can be regarded as being a general mean value theorem.
As for (1) and (2), these are useful in everyday life, and we will see examples of this.

1b. Homotopy groups

Time now to start investigating the shape of our topological spaces. Let us start with
something that we know from the above, namely:

Definition 1.15. A topological space X is called connected when any two points x, y ∈
X can be connected by a path. That is, given any two points x, y ∈ X, we can find a
continuous function f : [0, 1]→ X such that f(0) = x and f(1) = y.

The problem is now, given a connected space X, how to count its “holes”. And this
is quite subtle problem, because as examples of such spaces we have:

(1) The sphere, the donut, the double-holed donut, the triple-holed donut, and so on.
These spaces are quite simple, and intuition suggests to declare that the number of holes
of the N -holed donut is, and you guessed right, N .

(2) However, we have as well as example the empty sphere, I mean just the crust of
the sphere, and while this obviously falls into the class of “one-holed spaces”, this is not
the same thing as a donut, its hole being of different nature.

(3) As another example, consider again the sphere, but this time with two tunnels
drilled into it, in the shape of a cross. Whether that missing cross should account for 1
hole, or for 2 holes, or for something in between, I will leave it up to you.

Summarizing, things are quite tricky, suggesting that the “number of holes” of a
topological space X is not an actual number, but rather something more complicated.

Now with this in mind, let us formulate the following definition:
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Definition 1.16. The homotopy group π1(X) of a connected space X is the group of
loops based at a given point ∗ ∈ X, with the following conventions,

(1) Two such loops are identified when one can pass continuously from one loop to
the other, via a family of loops indexed by t ∈ [0, 1],

(2) The composition of two such loops is the obvious one, namely is the loop obtaining
by following the first loop, then the second loop,

(3) The unit loop is the null loop at ∗, which stays there, and the inverse of a given
loop is the loop itself, followed backwards,

with the remark that the group π1(X) defined in this way does not depend on the choice
of the given point ∗ ∈ X, where the loops are based.

This definition is obviously something non-trivial, based on some preliminary thinking
on the subject, the technical details being as follows:

– The fact that the set π1(X) defined as above is indeed a group is obvious, with all
the group axioms being clear from definitions.

– Obvious as well is the fact that, since X is assumed to be connected, this group does
not depend on the choice of the given point ∗ ∈ X, where the loops are based.

As basic examples now, for spaces having “no holes”, such as R itself, or RN , and so
on, we have π1 = {1}. In fact, having no holes can only mean, by definition, π1 = {1}:

Definition 1.17. A space is called simply connected when:

π1 = {1}

That is, any loop inside our space must be contractible.

So, this will be our starting definition, for the considerations in this section. As further
illustrations for Definition 1.16, here are now a few basic computations:

Theorem 1.18. We have the following computations of homotopy groups:

(1) For the circle, we have π1 = Z.
(2) For the torus, we have π1 = Z× Z.
(3) For the disk minus 2 points, we have π1 = F2.
(4) In fact, for the disk minus N points, we have π1 = FN .

Proof. These results are all standard, as follows:

(1) The first assertion is clear, because a loop on the circle must wind n ∈ Z times
around the center, and this parameter n ∈ Z uniquely determines the loop, up to the
identification in Definition 1.16. Thus, the homotopy group of the circle is the group of
such parameters n ∈ Z, which is of course the group Z itself.
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(2) In what regards now the second assertion, the torus being a product of two circles,
we are led to the conclusion that its homotopy group must be some kind of product of
Z with itself. But pictures show that the two standard generators of Z, and so the two
copies of Z themselves, commute, gh = hg, so we obtain the product of Z with itself,
subject to commutation, which is the usual product Z× Z:〈

g, h
∣∣∣gh = hg

〉
= Z× Z

It is actually instructive here to work out explicitly the proof of the commutation
relation. We can use the usual drawing convention for the torus, namely:

//

∗

OO

//

OO

The standard generators g, h of the homotopy group are then as follows:

// //

// ∗ // ∗

OOOO

//

OO OO

//

OO

OO

Regarding now the two compositions gh, hg, these are as follows:

// //

// ∗

OO AA

∗ //

OO

//

33

OO OO

//

OO

OO

But these two pictures coincide, up to homotopy, with the following picture:

//AAOO

//

33

OO

Thus we have indeed gh = hg, as desired, which gives the formula in (2).
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(3) Regarding now the disk minus 2 points, the result here is quite clear, because the
homotopy group is generated by the 2 loops around the 2 missing points, and these 2
loops are obviously free, algebrically speaking. Thus, we obtain a free product of the
group Z with itself, which is by definition the free group on 2 generators F2.

(4) This is again clear, because the homotopy group is generated here by the N loops
around the N missing points, which are free, algebrically speaking. Thus, we obtain a
N -fold free product of Z with itself, which is the free group on N generators FN . □

As another interesting example, which is a bit more complicated, we have:

Theorem 1.19. The braid group Bk, which is the group of diagrams of type

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

with composition by vertical concatenation, in the homotopy group of

X = (Ck −∆)/Sk

with ∆ ⊂ Ck standing for the points z satisfying zi = zj for some i ̸= j.

Proof. This is something quite self-explanatory, and many other things can be said
here. We will be back to this later, when discussing knot invariants. □

There are many other things that can be said about homotopy groups, notably about
their behavior with respect to all sorts of product and gluing operations for the topological
spaces, in the spirit of those that we met in Theorem 1.18 and Theorem 1.19.

1c. Surfaces, genus

We can talk about the genus of a surface, g ∈ N, as being its number of holes:

Fact 1.20. We can talk about the genus of a surface

g ∈ N

as being its number of holes.

In order to be fully rigorous here, there are many possible approaches, ranging from
elementary to advanced, depending on how much geometric you want to be. The best
answer, which is however a bit complicated, involves complex analysis, and the notion of
Riemann surface. Indeed, it is for such surfaces that the genus is best understood.
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1d. Graph theory

All the above leads us into many things, mostly from discrete mathematics, via trian-
gulations, and in particular, into graphs. Some graphs can be drawn without crossings in
the plane, and we call them planar. For instance the fact that trees are planar is obvious,
and as an illustration, here is some sort of “random” tree, which is clearly planar:

• • • •

• • • • • • •

• • • •

• •

•
Of course, there are many other interesting examples of planar graphs, as for instance

the cube graph, and up to you to tell me why this graph is planar:

• •

• •

• •

• •
However, not all graphs are planar. In order to find basic examples of non-planar

graphs, we can look at simplices, and we are led to the following result:

Proposition 1.21. When looking at simplices, the segment K2, the triangle K3 and
the tetrahedron K4 are planar. However, the next simplex K5, namely

•

• •

• •
is not planar. Nor are the higher simplices, KN with N ≥ 6, planar.
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Proof. This is something quite elementary and intuitive, as follows:

(1) The graphs K2, K3, K4 are indeed planar, with this being clear for K2, K3, and
with the planarity of K4 being shown by the following picture for it:

•

•

• •

(2) Regarding now the non-planarity of K5, let us try to manufacture an intuitive
proof for this. In order to draw K5 in a planar way, we first have to draw its subgraph
K4 in a planar way, and it is pretty much clear that this can only be done as a variation
of the above picture, from (1), with curved edges this time, as follows:

•

•

• •

But with this in hand, it is clear that there is no room in the plane for our 5th vertex,
as to avoid crossings. Indeed, we have 4 possible regions in the plane for this 5th vertex,
and each of them is forbidden by the edge towards a certain vertex, as follows:

1

̸4

̸ 2 ̸ 3
4

̸ 1
3 2

(3) Finally, the fact that the graphs KN with N ≥ 6 are not planar either follows from
the fact that their subgraphs K5 are not planar, that we know from (2). □

In order to find some further examples of non-planar graphs, we can look as well at
the bipartite simplices, and we are led to the following result:
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Proposition 1.22. When looking at bipartite simplices, the square K2,2 is planar,
and so are all the graphs K2,N . However, the next such graph, namely K3,3,

• • •

• • •

called “utility graph” is not planar. Nor are planar the graphs KM,N , for any M,N ≥ 3.

Proof. Again, this is something elementary and intuitive, as follows:

(1) In what regards the first bipartite simplex, which is K2,2, this is indeed the square,
which is of course a planar graph, as shown by the following equality:

◦ ◦ ◦ •

=

• • • ◦

(2) Regarding now the bipartite simplex K2,N with N ≥ 2 arbitrary, this graph looks
at follows, with N vertices in the lower row:

◦ ◦

· · · • • • • · · ·

But this graph is planar too, because we can draw it in the following way:

◦

· · · • • • • · · ·

◦

(3) Regarding now K3,3, as before with the simplex K5, the result here is quite clear
by thinking a bit, and drawing pictures. To be more precise, reasoning by contradiction,
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we first have to draw its subgraph K2,3 in a planar way, and this is done as follows:

◦

• • •

◦
(4) But now, as before with K5, it is clear that there is no room in the plane for our

6th vertex, as to avoid crossings. Indeed, we have 3 regions in the plane for this 6th
vertex, and each of them is forbidden by the edge towards a certain vertex, as follows:

◦

1 2 3

̸ 3 ̸ 1 ̸ 2

◦
Thus, theorem proved for the utility graph K3,3, via the same method as for K5.

(5) Still talking K3,3, let us mention that this is called indeed “utility graph”, as said
above, due to a certain story with it. The story involves 3 companies, selling gas, water
and electricity to 3 customers, and looking for a way to arrange their underground tubes
and wires as not to cross. Thus, they are looking to implement their “utillity graph”,
which is K3,3, in a planar way, and unfortunately, this is not possible.

(6) And as further comments on K3,3, quite remarkably, in recent years the stocks of
the above-mentioned 3 companies have skyrocketed, apparently due to very good business
done by their Saturn ring branches, which were able to considerably cut from their costs.
But are we here for talking about economy, or about mathematics.

(7) Finally, the bipartite simplex KM,N with M,N ≥ 3 is not planar either, because
it contains K3,3. Thus, we are led to the conclusions in the statement. □

As a first main result now about the planar graphs, we have:

Theorem 1.23. The fact that a graph X is non-planar can be checked as follows:

(1) Kuratowski criterion: X contains a subdivision of K5 or K3,3.
(2) Wagner criterion: X has a minor of type K5 or K3,3.
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Proof. This is obviously something quite powerful, when thinking at the potential
applications, and non-trivial to prove as well, the idea being as follows:

(1) Regarding the Kuratowski criterion, the convention is that “subdivision” means
graph obtained by inserting vertices into edges, e.g. replacing • − • with • − • − •.

(2) Regarding the Wagner criterion, the convention there is that “minor” means graph
obtained by contracting certain edges into vertices.

(3) Regarding now the proofs, the Kuratowski and Wagner criteria are more or less
equivalent, and their proof is via standard, although long, recurrence methods.

(4) In short, non-trivial, but rather routine results that we have here, and we will leave
finding and studying their complete proofs as an instructive exercise.

(5) Finally, let us mention that, often in practice, Wagner works a bit better than
Kuratowski. More on this in a moment, when discussing examples. □

Regarding now the applications of the Kuratowski and Wagner criteria, things are
quite tricky here, because most of the graphs that we met so far in this book are trees and
other planar graphs, for which these criteria are not needed. We have as well the graphs
KN and KM,N , to which these criteria apply trivially. Thus, for illustrations, we have to
go to more complicated graphs, and as a standard example here, we have:

Proposition 1.24. The Petersen graph P , namely

•

• • •

• •

• •

• •

is not planar, the reasons for this being as follows:

(1) Kuratowski: P contains no subdivision of K5, but contains a subdivision of K3,3.
(2) Wagner: P has both K5 and K3,3 as minors.

Proof. We have four things to be proved, all instructive, the idea being as follows:

(1) To start with, P contains no subdivision of K5, because P has valence 3, while K5

has valence 4 > 3. Thus, game over with the Kuratowski criterion using K5.
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(2) On the other hand, regarding K3,3, this has valence 3, exactly as P , so there is a
chance for the Kuratowski criterion using K3,3 to apply to P . And this is indeed the case,
showing that P is not planar, with the subdivision of K3,3 being obtained as follows:

◦

• • •

◦ ◦

To be more precise, ignoring the dotted edges, what we have here is indeed a subdi-
vision of K3,3, obtained from K3,3 by inserting 4 vertices into 4 certain edges.

(3) Regarding now Wagner, in contrast with Kuratowski, and better than it, this
applies to P by using K5, with the K5 minor of P being obtained as follows:

•

• • •

• •

• •

• •

To be more precise, the convention here is that we identify the vertices joined by =
edges, and this procedure obviously producing the graph K5, we have K5 as minor.

(4) Finally, still regarding Wagner, and adding to the power of this criterion, this
applies to P as well by using K3,3, with the K3,3 minor of P being obtained as follows,
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again with the above conventions, namely identifying the vertices joined by = edges:

◦

• • •

• •

◦ ◦

◦ ◦

Thus, we are led to the various conclusions in the statement. □

As a second main result now about the planar graphs, we have:

Theorem 1.25. For a connected planar graph we have the Euler formula

v − e+ f = 2

with v, e, f being the number of vertices, edges and faces.

Proof. Given a connected planar graph, drawn in a planar way, without crossings,
we can certainly talk about v and e, as for any graph, and also about f , as being the
number of faces that our graph has, in our picture, with these including by definition the
outer face too, the one going to ∞. As an example here, for a triangle we have v = e = 3
and f = 2, and we conclude that the Euler formula holds indeed, as:

3− 3 + 2 = 2

More generally now, the Euler formula holds for any N -gon graph, as:

N −N + 2 = 2

But this shows that the Euler formula holds at f = 2, and by a standard recurrence
on f , we conclude that this formula is valid at any f ∈ N, as desired. □

As a third main result now about the planar graphs, we have:

Theorem 1.26. Any planar graph has the following properties:

(1) It is vertex 4-colorable.
(2) It is a 4-partite graph.

Proof. This is something quite difficult, definitely beyond our reach, in this book,
but do not hesitate to look it up, and learn more about it. □
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As you can see, the theory of planar graphs can vary a lot, with Theorem 1.25 being
something trivial, Theorem 1.23 being something quite tricky, and Theorem 1.26 being
something of extreme difficulty. Quite fascinating all this, hope you agree with me.

Switching topics now, let us get into the following question:

Question 1.27. What are the graphs which are not planar, but can be however drawn
on a torus? Also, what about graphs which can be drawn on higher surfaces, having g ≥ 2
holes, instead of the g = 0 holes of the sphere, and the g = 1 hole of the torus?

As a first result on this subject, generalizing Theorem 1.25, we have:

Theorem 1.28. For a connected graph of genus g ∈ N we have the Euler formula

v − e+ f = 2− 2g

with v, e, f being the number of vertices, edges and faces.

Proof. This comes as a continuation of Theorem 1.25, dealing with the case g = 0,
and assuming that you have read in detail the proof there, to put it in this way, you will
certainly have no troubles now in understanding the present extension, to genus g ∈ N. □

But all this might seem a bit abstract. In practice, passed the planar graphs, g = 0,
that we understand quite well, the next problem comes in understanding the toral graphs,
g = 1, with a main example here being the Petersen graph, which is as follows:

Theorem 1.29. The Petersen graph, namely

•

• • •

• •

• •

• •
is toral, and the Euler formula for it reads 10− 15 + 5 = 0.

Proof. There are several things going on here, the idea being as follows:

(1) The fact that this graph is indeed not planar can be best seen by using the Wagner
criterion from Theorem 1.23, with both the graphs K5 and K3,3 being minors of it, and
we have already talked about this, with full details, in Proposition 1.24.
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(2) Regarding now the toral graph assertion, this requires some skill. By inverting the
two pentagons, in the obvious way, the Petersen graph becomes as follows:

•

• • •

• •

• •

• •

But now, we can keep the two pentagons and the solid edges, and send flying the
various dotted edges, on suitable directions on a torus, as follows:

//

•

• • •

• •

• •

• •
//

OO OO

Observe the usage of the lower left vertex, which is identified with the upper right
vertex, and in fact with the other two vertices of the rectangle as well, according to our
gluing conventions for the torus. In any case, job done, and torality proved.
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(3) In order to finish, we still have to count the number of faces, in order to check the
Euler formula. But there are 5 faces, as shown by the following picture:

//

3
•

2 4
2

• • •
5

• •
1 5

4 • •

• 3 •
2 4

//

OO OO

Thus the Euler formula holds indeed in our embedding, as 10− 15 + 5 = 0. □

Many other things can be said about the Petersen graph, and about other toral graphs,
of similar type, or of general type. We will be back to this.

1e. Exercises

Exercises:

Exercise 1.30.

Exercise 1.31.

Exercise 1.32.

Exercise 1.33.

Exercise 1.34.

Exercise 1.35.

Exercise 1.36.

Exercise 1.37.

Bonus exercise.



CHAPTER 2

Braids

2a. Braids

At a more advanced level now, we will need the following key observation, making the
connection with group theory, and algebra in general, due to Alexander:

Theorem 2.1. Any knot or link can be thought of as being the closure of a braid,

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦
with the braids forming a group Bk, called braid group.

Proof. Again, this is something quite self-explanatory, as follows:

(1) Consider indeed the braids with k strings, with the convention that things go from
up to down. For instance the braid in the statement should be thought of as being:

◦ ◦

��

◦

��

◦ ◦

���� ��
◦ ◦ ◦ ◦ ◦

But, with this convention, braids become some sort of permutations of {1, . . . , k},
which are decorated at the level of crossings, with for instance the above braid corre-
sponding to the following permutation of {1, 2, 3, 4, 5}, with due decorations:

1 2

��

3

��

4 5

���� ��
1 2 3 4 5

In any case, we can see in this picture that Bk is indeed a group, with composition
law similar to that of the permutations in Sk, that is, going from up to down.

33
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(2) Moreover, we can also see in this picture that we have a surjective group morphism
Bk → Sk, obtained by forgetting the decorations, at the level of crossings. For instance
the braid pictured above is mapped in this way to the following permutation in S5:

1

��

2

��

3

��

4

��

5

��
1 2 3 4 5

It is possible to do some more algebra here, in relation with the morphism Bk → Sk,
but we will not need this in what follows. We will keep in mind, from the above, the fact
that “braids are not exactly permutations, but they compose like permutations”.

(3) Regarding now the closure operation in the statement, this consists by definition
in adding semicircles at right, which makes our braid into a certain oriented link. As an
illustration, the closure of the braid pictured above is the following link:

|| "" ��"" ||

(4) This was for the precise statement of the theorem, and in what regards now the
proof, this can be done by some sort of cut and paste procedure, or recurrence if you
prefer. As before with such things, we will leave this as an easy exercise for you. □

Many interesting things can be said about the braid group Bk, as for instance:

Theorem 2.2. The braid group Bk has the following properties:

(1) It is generated by variables g1, . . . , gk−1, with the following relations:

gigi+1gi = gi+1gigi+1 , gigj = gjgi for |i− j| ≥ 2

(2) It is the homotopy group of X = (Ck − ∆)/Sk, with ∆ ⊂ Ck standing for the
points z satisfying zi = zj for some i ̸= j.

Proof. These are things that we will not really need here, as follows:
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(1) In order to prove this assertion, due to Artin, consider the following braids:

◦ ◦ ◦ ◦ ◦ ◦
g1 = . . .

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦
g2 = . . .

◦ ◦ ◦ ◦ ◦ ◦
...

◦ ◦ ◦ ◦ ◦ ◦

gk−1 = . . .

◦ ◦ ◦ ◦ ◦ ◦
We have then gigj = gjgi, for |i− j| ≥ 2. As for the relation gigi+1gi = gi+1gigi+1, by

translation it is enough to check this at i = 1. And here, we first have:

◦ ◦ ◦ ◦ ◦ ◦
. . .

◦ ◦ ◦ ◦ ◦ ◦
g1g2g1 = . . .

◦ ◦ ◦ ◦ ◦ ◦
. . .

◦ ◦ ◦ ◦ ◦ ◦
On the other hand, we have as well the following computation:

◦ ◦ ◦ ◦ ◦ ◦
. . .

◦ ◦ ◦ ◦ ◦ ◦
g2g1g2 = . . .

◦ ◦ ◦ ◦ ◦ ◦
. . .

◦ ◦ ◦ ◦ ◦ ◦
Now since the above two pictures are identical, up to isotopy, we have g1g2g1 = g2g1g2,

as desired. Thus, the braid group Bk is indeed generated by elements g1, . . . , gk−1 with
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the relations in the statement, and in what regards now the proof of universality, this can
only be something quite routine, and we will leave this as an instructive exercise.

(2) This is something quite self-explanatory, based on the general homotopy group
material from chapter 1, and we will leave this as an easy exercise for you.

(3) Finally, before leaving the subject, let us mention that the Artin relations in (1)
are something very useful, in order to construct explicit matrix representations of Bk. For
instance, it can be shown that the braid group Bk is linear, and well, we will leave this
as usual as an exercise for you, meaning either solve it, or look it up. □

2b.

2c.

2d.

2e. Exercises

Exercises:

Exercise 2.3.

Exercise 2.4.

Exercise 2.5.

Exercise 2.6.

Exercise 2.7.

Exercise 2.8.

Exercise 2.9.

Exercise 2.10.

Bonus exercise.



CHAPTER 3

Partitions

3a. Partitions

We have seen in the previous chapter that the study of the braids suggests introducing
a number of related algebras, and notably, of the Temperley-Lieb algebra.

In order to introduce the Temperley-Lieb algebra, many options are on the table.
Group theory, topology, statistical mechanics, as in the original paper of Temperley and
Lieb, operator algebras, quantum mechanics, probability theory, random matrices, and
many more, all these can be useful in order to introduce you to this algebra.

However, for “creation” purposes in mathematics, nothing beats set theory, and the
mighty empty set ∅. So, here is the story that we intend to tell, to start with:

Fact 3.1. The legend has it that ∅ produced N and mathematics, by recursion. In
fact, ∅ produced the Temperley-Lieb algebra too, by recursion and partition.

Very nice, so eventually, we have a plan. We will talk here about ∅ and its various
creations, including sets, partitions, and later about the Temperley-Lieb algebra too.

Getting started for good now, as a first definition for this chapter, we have:

Definition 3.2. We denote by P (k) the set of partitions of {1, . . . , k}, with these
partitions π ∈ P (k) being most conveniently being drawn as diagrams,

1 2 3 4 5 6 7 8

with the strings joining the numbers belonging to the same block of π. That is, the above
diagram represents the partition {1, . . . , 8} = {1, 3, 4} ∪ {2, 5} ∪ {6, 7} ∪ {8}.

Observe that there is a bit of care to be taken with this convention, in respect to
the crossings. We can either proceed as above, with the {2, 5} block being respresented

37
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“under” the block {1, 3, 4}, or use different types of strings, as for instance:

1 2 3 4 5 6 7 8

Both these conventions are good in practice, and we will be mostly using here the first
one, that from Definition 3.3.

Now, let us study these partitions. And here, surprise, instead of pulling a theorem,
as you would expect, and believe me I would have liked as well to have a quick theorem,
to start my book, we must formulate something quite modest, as follows:

Proposition 3.3. The Bell numbers Bk = |P (k)| satisfy the recurrence relation

Bk+1 =
∑
s

(
k

s

)
Bk−s

with initial data B0 = 1, B1 = 1, and are numerically as follows:

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, . . .

However, there is no mathematical formula for Bk.

Proof. There are several things going on here, the idea being as follows:

(1) Experiments first, before anything, let us compute a few Bell numbers. Obviously
B1 = 1, and then we have B2 = 2, the partitions being as follows:

| | , ⊓

Next, we have B3 = 5, the partitions at k = 3 being as follows:

| | | , ⊓ | , ⊓| , | ⊓ , ⊓⊓

At k = 4 now, things become more complex, and it is better to trick. We can count the
partitions up to permutations of the corresponding diagrams, and with this convention
made, here are the relevant partitions and their multiplicities, leading to B4 = 15:

| | | | × 1 , ⊓ | | × 6 , ⊓ ⊓ ×3 , ⊓⊓ | × 4 , ⊓⊓⊓ × 1

The same method works at k = 5, with the block distributions and multiplicities,
which are simpler to draw than partitions, being as follows, leading to B5 = 52:

11111→ 1 , 2111→ 10 , 221→ 15 , 311→ 10 , 32→ 10 , 41→ 5 , 5→ 1

As for the case k = 6, where B6 = 203, we will leave this as an instructive exercise.
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(2) Let us try now to find a recurrence for these Bell numbers. Since a partition of
{1, . . . , k + 1} appears by choosing s partners for 1, among the k numbers available, and
then partitioning the k − s elements left, we have the following formula:

Bk+1 =
∑
s

(
k

s

)
Bk−s

Observe that this formula forces us to talk about B0 = 1, as done in the statement.

(3) As for the last assertion, regarding the non-computability of the Bell numbers, take
this as a physics fact. Mankind has tried to find a formula for these numbers, had not
found anything, and we are reporting here this finding, which is of course rock-solid. □

All the above does not look very good. We seem to be going on some sort of wrong way
with our partitions, most likely into one of the numerous fringe branches of mathematics.

However, as a ray of light, we have the following theorem, connecting the partitions
and Bell numbers to the central objects in discrete probability, the Poisson laws:

Theorem 3.4. The moments of the Poisson law are the Bell numbers:

p1 =
1

e

∑
k∈N

δk
k!

: Mk(p1) = |P (k)|

More generally, the moments of the Poisson law of parameter t > 0 are as follows,

pt = e−t
∑
k∈N

tk

k!
δk : Mk(pt) =

∑
π∈P (k)

t|π|

where |.| is the number of blocks.

Proof. The moments of p1 are given by the following formula:

Mk =
1

e

∑
r

rk

r!

We therefore have the following recurrence formula for these moments:

Mk+1 =
1

e

∑
r

rk

r!

(
1 +

1

r

)k

=
1

e

∑
r

rk

r!

∑
s

(
k

s

)
r−s

=
∑
s

(
k

s

)
Mk−s
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But the Bell numbers Bk = |P (k)| satisfy the same recurrence, so we have Mk = Bk,
as claimed. Next, the moments of pt with t > 0 are given by:

Nk = e−t
∑
r

trrk

r!

We therefore have the following recurrence formula for these moments:

Nk+1 = e−t
∑
r

tr+1rk

r!

(
1 +

1

r

)k

= e−t
∑
r

tr+1rk

r!

∑
s

(
k

s

)
r−s

= t
∑
s

(
k

s

)
Nk−s

But the numbers Sk =
∑

π∈P (k) t
|π| are easily seen to satisfy the same recurrence, with

the same initial values, namely t and t+ t2, so we have Nk = Sk, as claimed. □

Summarizing, we have some partition mathematics going on, for sure, but with the
Poisson laws being something quite deep, we are not exactly into the simple and conceptual
things we were wishing for. Let us record our conclusions as follows:

Conclusion 3.5. The set partitions π ∈ P (k) are something quite complicated, and
better not mess with them, unless doing advanced probability.

Shall we give up? Certainly not. When looking for a bug in our theory, after some
thinking, that bug is in fact in Definition 3.3 and in the comments afterwards, regarding
the annoyance caused by the crossings, when drawing our partitions. So, forgetting all the
mathematics that we know, back to primary school, and we would prefer our partitions
to be noncrossing, as for us to be able to draw them quicker. Obviously.

This might sound of course overly futile, but you know what, sometimes kids are right,
and adults are wrong. So, let us record this thought, as follows:

Thought 3.6. The partitions π ∈ P (k) look like non-topological objects, but when it
comes to drawing them, they are topological, with the crossings causing the mess.

And in what follows, we will trust this thought. Which teaches us something very
simple, namely that in order to reach to simpler objects, we must remove the crossings.
So, let us update Definition 3.3, in wishing for a better theory, as follows:
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Definition 3.7. We denote by NC(k) the set of noncrossing partitions of {1, . . . , k},
that is, of the partitions π ∈ P (k) which can be drawn as noncrossing diagrams,

1 2 3 4 5 6 7 8

with the strings joining as usual the numbers belonging to the same block of π. The above
diagram represents the partition {1, . . . , 8} = {1, 5, 8} ∪ {2, 3, 4} ∪ {6, 7}.

And surprise here, with this definition in hand, everything illuminates. To start with,
the numbers Ck = |NC(k)|, called Catalan numbers, are computable, and very interesting.
There are many things to be said here, and as a first result on the subject, we have:

Theorem 3.8. The Catalan numbers Ck = |NC(k)| satisfy the recurrence relation

Ck+1 =
∑

a+b=k

CaCb

with initial data C0 = 1, C1 = 1, and are numerically as follows:

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, . . .

Moreover, these numbers are given by the formula

Ck =
1

k + 1

(
2k

k

)
coming from the fact that f(z) =

∑
k Ckz

k satisfies zf 2 − f + 1 = 0.

Proof. As before with the Bell numbers, there is no hurry in proving this, and we
will take our time, with experiments first, comments, and then proofs:

(1) To start with, let us compute a few Catalan numbers. At k = 1, 2, 3 all the
partitions are obviously noncrossing, so we have Ck = Bk here, that is:

C1 = 1 , C2 = 2 , C3 = 5

At k = 4 now, we have exactly 1 crossing partition, namely ∩
⋂
, and we obtain:

C4 = B4 − 1 = 14

At k = 5, we can recycle the count for the Bell numbers, from the proof of Proposition
1.4. Taking into account the crossings, this goes as follows, yielding C5 = 42:

11111→ 1 , 2111→ 10 , 221→ /15 10 , 311→ 10 , 32→ /10 5 , 41→ 5 , 5→ 1

As for the case k = 6, where C6 = 132, we will leave this as an instructive exercise.
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(2) Before getting into abstract mathematics, let us record a numeric comparison
between the Bell and the Catalan numbers. The table here is as follows:

k 1 2 3 4 5 6 7 8 9 10
Bk 1 2 5 15 52 203 877 4140 21147 115975
Ck 1 2 5 14 42 132 429 1430 4862 16796

Bk − Ck 0 0 0 1 10 71 448 2710 16285 99179

This table is quite interesting, definitely showing that we are dealing with different
beasts here, the point being that, with k →∞, most of the partitions appear crossing.

(3) Getting now to general theory, let us try to find a recurrence for the Catalan
numbers. In order to construct a noncrossing partition of {1, . . . , k + 1}, we must choose
a number of partners for 1, and by looking at the partner which appears the most at right,
we are led to the following recurrence formula for the Catalan numbers:

Ck+1 =
∑

a+b=k

CaCb

Observe that this formula forces us to talk about C0 = 1, as done in the statement.

(4) In order to solve our recurrence, consider the generating series of the Catalan
numbers, f(z) =

∑
k≥0Ckz

k. In terms of this generating series, our recurrence gives:

zf 2 =
∑
a,b≥0

CaCbz
a+b+1

=
∑
k≥1

∑
a+b=k−1

CaCbz
k

=
∑
k≥1

Ckz
k

= f − 1

(5) By solving the equation zf 2 − f + 1 = 0 found above, and choosing the solution
which is bounded at z = 0, we obtain the following formula for our series:

f(z) =
1−
√
1− 4z

2z

(6) In order to compute now this function, we use the generalized binomial formula,
which is as follows, with p ∈ R being an arbitrary exponent, and with |t| < 1:

(1 + t)p =
∞∑
k=0

(
p

k

)
tk
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To be more precise, this formula, which generalizes the usual binomial formula, holds
indeed due to the Taylor formula, with the binomial coefficients being given by:(

p

k

)
=

p(p− 1) . . . (p− k + 1)

k!

(7) For the exponent p = 1/2, the generalized binomial coefficients are:(
1/2

k

)
=

1/2(−1/2)(−3/2) . . . (3/2− k)

k!

= (−1)k−11 · 3 · 5 . . . (2k − 3)

2kk!

= (−1)k−1 (2k − 2)!

2k−1(k − 1)!2kk!

=
(−1)k−1

22k−1
· 1
k

(
2k − 2

k − 1

)
= −2

(
−1
4

)k

· 1
k

(
2k − 2

k − 1

)
(8) Thus the generalized binomial formula at exponent p = 1/2 reads:

√
1 + t = 1− 2

∞∑
k=1

1

k

(
2k − 2

k − 1

)(
−t
4

)k

But with t = −4z we obtain from this the following formula:

√
1− 4z = 1− 2

∞∑
k=1

1

k

(
2k − 2

k − 1

)
zk

(9) Now back to our series f , we obtain the following formula for it:

f(z) =
1−
√
1− 4z

2z

=
∞∑
k=1

1

k

(
2k − 2

k − 1

)
zk−1

=
∞∑
k=0

1

k + 1

(
2k

k

)
zk

(10) Thus the Catalan numbers are given by the formula the statement, namely:

Ck =
1

k + 1

(
2k

k

)
So done, we have now proof for everything claimed in the statement. □
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The above was quite exciting, but the occurrence of heavy calculus at the end can
be interpreted as good or bad news, depending on your mathematical knowledge and
philosophy, and mood. Personally I tend to take such things as good news, whenever I
see calculus showing up in abstract algebra questions, I say to myself “calculus, saved”.

But this is of course something subjective, assuming that calculus is indeed the foun-
dation of mathematics, which, while most likely true, remains something debatable.

So, here is as well a bijective proof for the formula of Ck, that I sort of love too, while
considering however that this is no match for our previous

√
1− 4z beauties:

Theorem 3.9. The Catalan numbers are given by the formula

Ck =
1

k + 1

(
2k

k

)
with this being seen also by counting the length 2k Dyck paths in the plane.

Proof. This is something quite tricky, the idea being as follows:

(1) To start with, the length 2k Dyck paths in the plane are by definition the paths
from (0, 0) to (k, k), marching North-East over the integer lattice Z2 ⊂ R2, by staying
inside the square [0, k]× [0, k], and staying as well under the diagonal of this square. As
an example, here are the 5 possible Dyck paths at k = 3:

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

(2) In practice, counting a bit, and we will leave this as an exercise, shows that the
number of such paths is as follows, exactly as the Catalan numbers:

1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, . . .

Now forgetting all the math that we know, from Theorem 3.8, let us denote by C ′
k

the number of such length 2k Dyck paths. We have to do two things, namely prove that
these numbers C ′

k equal indeed the Catalan numbers Ck = |NC(k)|, and then, do some
sort of direct counting, as to reach to the formula for Ck = C ′

k in the statement.

(3) In what concerns the first question, this is easy settled. Indeed, when looking at
the point where our Dyck path last intersects the diagonal, we are led to the following
recurrence relation for the number of such paths, exactly as for the Catalan numbers:

C ′
k+1 =

∑
a+b=k

C ′
aC

′
b
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Moreover, the initial data being C ′
1 = 1, C ′

2 = 2, we conclude that we have:

C ′
k = Ck

(4) Let us count now the Dyck paths in the plane. For this purpose, we use a trick. If
we ignore the assumption that our path must stay under the diagonal of the square, we
have

(
2k
k

)
such paths. And among these, we have the “good” ones, those that we want to

count, and then the “bad” ones, those that we want to ignore.

(5) So, let us count the bad paths, those crossing the diagonal of the square, and
reaching the higher diagonal next to it, the one joining (0, 1) and (k, k + 1). In order to
count these, the trick is to “flip” their bad part over that higher diagonal, as follows:

· · · · · ·
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦

(6) Now observe that, as it is obvious on the above picture, due to the flipping, the
flipped bad path will no longer end in (k, k), but rather in (k− 1, k+1). Moreover, more
is true, in the sense that, by thinking a bit, we see that the flipped bad paths are precisely
those ending in (k − 1, k + 1). Thus, we can count these flipped bad paths, and so the
bad paths, and so the good paths too, and so good news, we are done.

(7) To finish now, by putting everything together, we have:

C ′
k =

(
2k

k

)
−
(

2k

k − 1

)
=

(
2k

k

)
− k

k + 1

(
2k

k

)
=

1

k + 1

(
2k

k

)
Thus, we are led to the formula in the statement. □

Still with me, I hope, after all this delicate counting work. And with the comment
that all this was in fact the tip of the iceberg, with the Catalan numbers being involved
in many other things, which are all interesting, and good to know. More on this later in
this chapter, and then later in this book, on several occasions.
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To conclude now this opening section, good work done for the day, with some inter-
esting theorems, and as a summary of our findings so far, let us record:

Conclusion 3.10. The following happen, in relation with partitions:

(1) The noncrossing partitions π ∈ NC(k) are simpler objects than the arbitrary
partitions π ∈ P (k), potentially leading to interesting mathematics.

(2) And with this coming from the fact that, as we can see when practically drawing
partitions, there is less topology involved in NC(k) than in P (k).

To be more precise, all this is of course quite subjective, with (1) coming by comparing
Proposition 3.4, which is ugly, with Theorem 3.8, and with Theorem 3.9 too, which are
both beautiful, and with (2), which certainly contradicts our instant intuition, but go
draw some partitions first, coming from Conclusion 3.5 and Thought 3.6.

Of course, I can hear you screaming, what is the point with all these subjective com-
ments. In answer, despite the formal simplicity of both P (k) and NC(k), we are in fact
into uncharted territory, not far from quantum mechanics. And love, hate, and subjec-
tiveness in general can only help, a bit in the same way as in quantum mechanics.

But probably the best here, in connection with formal mathematics vs subjectivity, is
to quote Hermann Weyl, one of the best mathematicans and physicists ever:

Weyl 3.11. Among the correct and the beautiful, I always chose the beautiful.

Finally, also in relation with this, a big, modern conjecture in physics is that at
very small scales, somewhere between quarks and the Planck scale, with both ends not
excluded, free geometry, coming from NC(k), rules, and produces via thermodynamic
limits the higher theories, including our usual, continuous geometry, coming from P (k).

In short, Conclusion 3.10 is something quite deep, and if looking for a good prize in
mathematics or physics, simply work some more on that. But more on all this later.

Looking at what we did so far with the Catalan numbers, and looking for more oc-
currences of these numbers, we are led to some sort of combinatorial wonderland. Many
things can be said here, and for the purposes of our present book, let us record:

Theorem 3.12. The Catalan numbers Ck count:

(1) The noncrossing partitions of 1, . . . , k.
(2) The noncrossing pairings of 1, . . . , 2k.
(3) The length 2k loops on N, based at 0.
(4) The length 2k Dyck paths in the plane.
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Proof. All this is standard combinatorics, the idea being as follows:

(1) This is something that we know well from the above, standing for us, with the
approach that we used here, as a definition for the Catalan numbers Ck.

(2) This is something quite surprising, having no crossing counterpart, in the sense
that the pairings P2(2k) of the set {1, . . . , 2k} are by no means related to the partitions
P (k) of the set {1, . . . , k}, hope we agree on this. However, by some kind of magic,
when restricting the attention to the noncrossing partitions, all this works. In order to
understand this phenomenon, let us begin with some examples. Let us set:

C ′
k = |NC2(2k)|

We have then C ′
1 = 1, C ′

2 = 2, coming from the following noncrossing pairings:

∩ , ∩∩ , ⋒

At k = 3 now, we have C ′
3 = 5, the noncrossing pairings being as follows:

∩ ∩ ∩ , ∩⋒ , ⋒∩, ,
⋂
∩∩ , ⋒

⋂
And then C ′

4 = 14, C ′
5 = 42 so on, we obtain the Catalan numbers. In order now to

prove this, we have two choices. First, we can try to establish a bijection as follows:

NC(k) ≃ NC2(2k)

However, we will leave this for later, because this bijection will be in fact so important
for us, that it is worth a separate treatment, with a dedicated theorem, coming with full
details, comments, examples, pictures and so on. In the meantime, we can establish as
well C ′

k = Ck by recurrence, as follows. In order to construct a noncrossing pairing of
{1, . . . , 2k + 2} we must choose a partner x for the first number, 1, and then pair in a
noncrossing way the 2k elements left, by avoiding the string 1− x. Thus, we have:

C ′
k =

∑
a+b=k

C ′
aC

′
b

Since the initial data is C ′
1 = 1, C ′

2 = 2, we conclude that we have, as claimed:

C ′
k = Ck

(3) This is something interesting too, which will end up in clarifying our probability
work, started with Theorem 3.5. To begin with, some examples. If we denote by C ′′

k the
number of 2k loops on N, based at 0, we first have C ′′

1 = 1, the only loop here being:

0− 1− 0

Then we have C ′′
2 = 2, due to two possible loops, namely:

0− 1− 0− 1− 0

0− 1− 2− 1− 0
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Then we have C ′′
3 = 5, the possible loops here being as follows:

0− 1− 0− 1− 0− 1− 0

0− 1− 0− 1− 2− 1− 0

0− 1− 2− 1− 0− 1− 0

0− 1− 2− 1− 2− 1− 0

0− 1− 2− 3− 2− 1− 0

And then C ′′
4 = 14, C ′′

5 = 42 so on, we obtain the Catalan numbers. In order now to
formally prove this, we can either establish a bijection with the partitions in (1), or with
the pairings in (2), or pull out a formal proof, by showing that our numbers satisfy:

C ′′
k =

∑
a+b=k

C ′′
aC

′′
b

But all three proofs work, and we will leave them as an instructive exercise.

(4) In what regards the Dyck paths, we already know from Theorem 3.10 that these
are counted by the Catalan numbers, so done. However, if looking for some good exercises
in combinatorics, prove that these Dyck paths are in bijection with the partitions in (1),
and also with the pairings in (2), and also with the paths on N in (3). Enjoy. □

Getting back now to our philosophical considerations, regarding the creation of sets
and mathematics, starting with ∅, what we have in Theorem 3.12 is quite exciting, sug-
gesting a rivalry between noncrossing partitions and pairings. So, let us formulate:

Question 3.13. What is the correct object among:

(1) The set NC(k) of noncrossing partitions of {1, . . . , k}.
(2) The set NC2(2k) of noncrossing pairings of {1, . . . , 2k}.

Here the term “correct” should be taken in the sense of Weyl 3.11, meaning poten-
tially more conceptual, potentially more useful, and in a word, since we cannot rely on
mathematics that we don’t have yet, simply meaning more beautiful.

In order to deal with this question, let us first understand the bijection between our
sets, which was something left open in the proof of Theorem 3.12. We have here:

Theorem 3.14. We have a bijection as follows,

NC(k) ≃ NC2(2k)

obtained by fattening the partitions, and by shrinking the pairings.
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Proof. This is something self-explanatory, and in order to see how this works, let us
discuss an example. Consider a noncrossing partition, say the one in Definition 3.7:

1 2 3 4 5 6 7 8

Now let us “fatten” this partition, by doubling everything, as follows:

11′ 22′ 33′ 44′ 55′ 66′ 77′ 88′

We can see emerging here a noncrossing pairing, and by relabeling the points 1, . . . , 16,
and properly redrawing the picture, what we have is indeed a noncrossing pairing:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

As for the reverse operation, that is obviously obtained by “shrinking” our pairing, by
collapsing pairs of consecutive neighbors, that is, by identifying 1 = 2, then 3 = 4, then
5 = 6, and so on. Thus, we are led to the conclusion in the statement. □

With this done, let us get back to Question 3.13, which remains to be answered.

Not an easy choice, but remembering from Conclusion 3.5 and Thought 3.6 that we
hate crossings, which after all appear when drawing any partition π ∈ NC(k)−NC12(k),
with 12 standing here for “singletons and pairings”, we have a naive answer, as follows:

Answer 3.15. Pairings are better than partitions, because they are easier to draw,
therefore suggesting that they contain less complex information.

However, all this remains subjective, and since switching from partitions to pairings
can amount in an earthquake, hitting all the mathematics that we did so far in this book,
let us doublecheck our answer, by some alternative means.

And here, thinking a bit, the best is to go to the usual, crossing partitions. And good
news, we have here the following result, which is something quite conceptual:
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Theorem 3.16. The number of pairings of {1, . . . , k} is zero when k is odd, and is

|P2(k)| = k!!

when k is even, with k!! = (k − 1)(k − 3) . . . Also, the moments of the normal law are

g1 =
1√
2π

e−x2/2dx : Mk(g1) = |P2(k)|

and more generally, the moments of the normal law of parameter t > 0 are

gt =
1√
2πt

e−x2/2tdx : Mk(gt) =
∑

π∈P2(k)

t|π|

with |.| standing as usual for the number of blocks.

Proof. There are several things going on here, the idea being as follows:

(1) First, in what regards the count, assuming that k is even, in order to construct
a pairing of {1, . . . , k} we must choose a partner for 1, and use a pairing of the k − 2
elements left. Thus, we are led by recurrence to the formula in the statement, namely:

|P2(k)| = (k − 1)(k − 3)(k − 5) . . .

(2) Regarding the moments of the standard normal law g1, the odd ones vanish because
the density is even, and the even ones can be computed as follows:

Mk =
1√
2π

∫
R
xke−x2/2dx

=
1√
2π

∫
R
(xk−1)

(
−e−x2/2

)′
dx

=
1√
2π

∫
R
(k − 1)xk−2e−x2/2dx

= (k − 1)× 1√
2π

∫
R
xk−2e−x2/2dx

= (k − 1)Mk−2

Thus by recurrence, we are led to the formula in the statement.

(3) Finally, regarding the moments of the normal law gt with t > 0, we can get them
either from (2) via a change of variable, or by redoing the computation, which gives:

Mk = t(k − 1)Mk−2

Thus, we are led to the following formula for these moments:

Mk = tk/2|P2(k)|



3A. PARTITIONS 51

But this can be reformulated more fancily as in the statement, as to make the link with
what we have in Theorem 3.5, the point being that the number of blocks of any π ∈ P2(k)
is of course |π| = k/2. Thus, we are led to the conclusions in the statement. □

All the above is quite exciting, and time now to face the truth. We got it all wrong
with our partitions, be them crossing or noncrossing, the good objects are obviously the
pairings, and more specifically, the noncrossing pairings. Let us record this, as follows:

Conclusion 3.17. The correct hierarchy of the various sets of partitions is

NC2(k)

zz ##
NC(k)

$$

P2(k)

{{
P (k)

with NC2(k) being the king, for a multitude of reasons, explained above.

To be more precise here, the “multitude of reasons” evoked above include the primary
school drawing of our partitions, the mathematical count of these partitions, and also the
probabilistic aspects of these partitions, with in each case NC2(k), sometimes helped by
its close subordinates, namely NC(k) and P2(k), clearly beating P (k).

What to do now, in view of all this? As always when it comes to discovering new
things, blowing up previous mathematics that you did, with sweat and tears, relax and
enjoy. There are actually 3 things to be done, in relation with all this, namely:

(1) Rewrite what we know about Catalan numbers, with NC2(k) coming first.

(2) Explore further algebraic properties of NC2(k), by playing with pairings.

(3) Have done as well the probabillistic aspects of NC2(k), and of NC(k) too.

In what follows we will leave (1) as a thought exercise, with this being just a matter
of meditating a bit at what we did in this chapter, and how this reorganizes with NC2(k)
coming first. Regarding (2), we will certainly jump on this, and develop this next. As for
(3), no hurry here, and we will leave this for the end of this chapter. With the good news,
coming in advance, that we will reach in this way to the central laws in random matrix
theory, namely those of Wigner and Marchenko-Pastur, and with this providing us with
some solid evidence that we are on our way in doing some good physics, with all this.
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3b.

3c.

3d.

3e. Exercises

Exercises:

Exercise 3.18.

Exercise 3.19.

Exercise 3.20.

Exercise 3.21.

Exercise 3.22.

Exercise 3.23.

Exercise 3.24.

Exercise 3.25.

Bonus exercise.



CHAPTER 4

Algebras

4a. Algebras

In order to further advance, the idea is to use the obvious algebraic operation on the
pairings in NC2(k), obtained by superposing such pairings. This leads to some interesting
diagrams, known as “meanders”, and here is an illustrating example:

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

However, we can in fact do better than this. Remember category theory, telling us
that for conceptual mathematics, we need objects, and arrows between them? We can do
this in our context, by formulating first the following definition:

Definition 4.1. We denote by NC2(k, l) the set of noncrossing pairings between an
upper row of k points, and a lower row of l points, with for instance

1 2 3 4 5

1 2 3 4 5 6 7 8 9

being an element of NC2(5, 9). With the remark that at k = 0 we obtain the former
NC2(l), and that at l = 0 we obtain the former NC2(k), written upside down.

53
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Observe that we have NC2(k, l) = ∅ when k + l is odd. As another key remark, the
above definition brings in fact nothing new, combinatorially speaking, because we can
always rotate the upper legs, say via ↷, as to reach to a diagram in NC2(k + l). As an
illustration, the rotated version of the pairing in Definition 4.1 looks as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Thus, no need for new counting results of anything, we are ready to go with more
algebra. Now with the above definition in hand, we can formulate:

Definition 4.2. The Temperley-Lieb category TL◦
N has the positive integers N as

objects, with the space of arrows k → l being the formal span

TL◦
N(k, l) = span(NC2(k, l))

and with the composition of arrows appearing by composing the pairings, in the obvious
way, with the rule ⃝ = N , for the closed loops that might appear.

This definition is something quite subtle, hiding several non-trivial things, and is worth
a detailed discussion, our comments about it being as follows:

(1) First of all, our scalars in this book will be complex numbers, λ ∈ C, and the
“formal span” in the above must be understood in this sense, namely abstract complex
vector space spanned by the elements of NC2(k, l). Of course it is possible to use an
arbitrary field, at least at this stage of things, but remember that we are interested in
quantum mechanics, and related mathematics, where the field of scalars is C.

(2) Regarding the composition of arrows, this is by obvious vertical concatenation,
with the convention, for here and for the rest of this book, that things go “from up to
down”. And with this convention coming from pure laziness, why pushing things from
left to right, when we can have gravity work for us, pulling them from up to down:

up

��
down

(3) Less poetically, this “from up to down” convention is also useful for purely math-
ematical purposes, because the left-right direction will be reserved for the intervention of
sums Σ and scalars λ ∈ C, while the up-down direction will be reserved for “action”. But
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of course, you might argue that this is a bit poetical, too. To which I will answer, give
up with your cool and poetry, and your math will soon become some total garbage.

(4) More seriously now, let us discuss what happens with the closed circles, when
concatenating. As an example here, let us consider the meander pictured before:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

According to our conventions, this meander appears as the product πσ ∈ NC2(0, 0)
between the upper pairing σ ∈ NC2(0, 16) and the lower pairing π ∈ NC2(16, 0). But,
what is the value of this product? We have two loops appearing, namely:

1− 2− 9− 10− 15− 14− 11− 8− 3− 12− 13− 16

4− 5− 6− 7

Thus, according to Definition 4.2, the value of this meander is N2, with one N for
each of the above loops, and with these two values of N multiplying each other.

(5) The same discussion applies to an arbitrary composition πσ ∈ NC2(k,m) between
an upper pairing σ ∈ NC2(k, l) and a lower pairing π ∈ NC2(l,m), with a certain number
of loops appearing in this way, each contributing with a multiplicative factor N .

(6) Finally, in Definition 4.2 the value of the circle N = ⃝ can be pretty much
anything, but due to some positivity reasons to become clear later, we will assume in
what follows N ∈ [1,∞). Also, we will call this parameter N the “index”, with the
precise reasons for calling this index to become clear later, too, as this books develops.

With all this discussed, what is next? More category theory I guess, and matter of
having a theorem formulated too, instead of definitions only, let us formulate:

Theorem 4.3. The Temperley-Lieb category TL◦
N is a tensor ∗-category, with:

(1) Composition of arrows: by vertical concatenation.
(2) Tensoring of arrows: by horizontal concatenation.
(3) Star operation: by turning the arrows upside-down.



56 4. ALGEBRAS

Proof. This is more of a definition, disguised as a theorem. To be more precise, we
already know about (1), from Definition 4.2, and we can talk as well about (2) and (3),
constructed as above, with (2) using of course multiplicativity with respect to the scalars,
and with (3) using antimultiplicativity with respect to the scalars:(∑

i

λiπi

)
⊗

(∑
j

µjσj

)
=
∑
ij

λiµjπi ⊗ σj

(∑
i

λiπi

)∗

=
∑
i

λ̄iπ
∗
i

And the point now is that our three operations are compatible with each other via all
sorts of compatibility formulae, which are all clear from definitions, with the conclusion
being that what we have a tensor ∗-category, as stated. We will leave the details here,
basically amounting in figuring out what a tensor ∗-category exactly is, as an exercise. □

In order to further understand the category TL◦
N , let us focus on its diagonal part,

formed by the End spaces of various objects. With the convention that these End spaces
embed into each other by adding bars at right, this is a graded algebra, as follows:

TLN =
⋃
k≥0

TL◦
N(k, k)

Moreover, for further fine-tuning our study, let us actually focus on the individual
components of this graded algebra. These components will play a key role in what follows,
and they are worth a dedicated definition, and new notation and name, as follows:

Definition 4.4. The Temperley-Lieb algebra TLN(k) is the formal span

TLN(k) = span(NC2(k, k))

with multiplication coming by concatenating, with the rule ⃝ = N .

In other words, TLN(k) appears as the formal span of the noncrossing pairings between
an upper row of k points, and a lower row of k points, with multiplication coming by
concatenating, with ⃝ = N . As an example, here is a basis element of TLN(8):

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
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Getting back now to what we know about TL◦
N , from Theorem 4.3, the tensor product

operation makes sense in the context of the diagonal algebra TLN , but does not apply to
its individual components TLN(k). However, the involution is useful, and we have:

Theorem 4.5. The Temperley-Lieb algebra TLN(k) is a ∗-algebra, with involution
coming by turning the diagrams upside-down.

Proof. This is something trivial, which follows from Theorem 4.3, and can be verified
as well directly, and we will leave this as an instructive exercise. □

There are many things that we can do, as a continuation of the above. First, we
can further study the Temperley-Lieb algebra TLN(k), for instance with a multimatrix
decomposition for it, and also with a study of its natural trace tr : TLN(k)→ C, obtained
by “closing” the diagrams in the obvious way. We will leave all this for later.

Also, we can do many algebraic and topological things with TLN(k), such as working
out a number of selected Brauer theorems, for groups or quantum groups, or constructing
some selected knot invariants. Again, we will leave all this for later in this book.

For the end of this chapter, however, let us do something analytic, that was left open
in the above. We would like to solve the following question:

Question 4.6. We know that P2(k) corresponds to the normal laws gt, and that P (k)
corresponds to the Poisson laws pt. What about NC2(k) and NC(k)?

Observe that this is related indeed to the Temperley-Lieb algebra TLN , because we
can define the Poincaré series of this graded algebra as follows:

f(z) =
∑
k≥0

dim(TLN(k))z
k

=
∑
k≥0

|NC2(k, k)|zk

=
∑
k≥0

|NC2(2k)|zk

=
∑
k≥0

|NC(k)|zk

Thus, we can reformulate Question 4.6 in a more fancy way, as follows:

Question 4.7. What are the measures π1, γ1 having the Poincaré series

f(z) =
∑
k≥0

dim(TLN(k))z
k

and its version g(z) = f(z2) as Stieltjes transforms? What about πt, γt, with t > 0?
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Here we are assuming a bit of familiarity with advanced algebra and probability, but
clarifying this fancy blurb being not a pressing issue, we can always do this later in this
book, no worries for that, let us get back now to work, and do some computations. We
have the following result, in the spirit of the results from chapter 3:

Theorem 4.8. The moments of the Wigner semicircle law are

γ1 =
1

2π

√
4− x2dx : Mk(γ1) = |NC2(k)|

and the moments of the Marchenko-Pastur law are

π1 =
1

2π

√
4x−1 − 1 dx : Mk(π1) = |NC(k)|

and in addition, we have suitable t > 0 analogues of both these results.

Proof. This follows as usual, via calculus, the idea being as follows:

(1) Regarding the two moment formulae in the statement, these both follow by doing
some standard calculus, which shows that the moments in question satisfy the needed
recurrence formulae, and we will leave the proofs here as an instructive exercise.

(2) Alternatively, and answering a question that you surely have in mind, you can also
come upon the measures in the statement via the Stieltjes inversion formula, which states
that the density of a real probability measure µ can be recaptured from its sequence of
moments {Mk}k≥0 by setting G(ξ) = ξ−1 +M1ξ

−2 +M2ξ
−3 + . . . , and then:

dµ(x) = lim
t↘0
− 1

π
Im (G(x+ it)) · dx

(3) So, exercise for you to work out all this, Stieltjes inversion at t = 1, as to reach
to γ1, π1, and then at general t > 0 too, with the desired moment formula for γt, πt being
the usual one, namely Mk =

∑
π∈D(k) t

|π|, with D = NC2, NC respectively. □

Let us discuss now the positivity of the trace, first for the Temperley-Lieb algebra,
following Di Francesco, and then in more general situations, following Jones.

Let us begin with some standard combinatorics, as follows:

Definition 4.9. Let P (k) be the set of partitions of {1, . . . , k}, and π, σ ∈ P (k).

(1) We write π ≤ σ if each block of π is contained in a block of σ.
(2) We let π ∨ σ ∈ P (k) be the partition obtained by superposing π, σ.

Also, we denote by |.| the number of blocks of the partitions π ∈ P (k).

As an illustration here, at k = 2 we have P (2) = {||,⊓}, and we have:

|| ≤ ⊓
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Also, at k = 3 we have P (3) = {|||,⊓|,⊓| , |⊓,⊓⊓}, and the order relation is as follows:

||| ≤ ⊓| , ⊓| , |⊓ ≤ ⊓⊓

In relation with our linear independence questions, the idea will be that of using:

Proposition 4.10. The Gram matrix of the vectors ξπ is given by the formula

< ξπ, ξσ >= N |π∨σ|

where ∨ is the superposition operation, and |.| is the number of blocks.

Proof. According to the formula of the vectors ξπ, we have:

< ξπ, ξσ > =
∑
i1...ik

δπ(i1, . . . , ik)δσ(i1, . . . , ik)

=
∑
i1...ik

δπ∨σ(i1, . . . , ik) = N |π∨σ|

Thus, we have obtained the formula in the statement. □

In order to study the Gram matrixGk(π, σ) = N |π∨σ|, and more specifically to compute
its determinant, we will use several standard facts about the partitions. We have:

Definition 4.11. The Möbius function of any lattice, and so of P , is given by

µ(π, σ) =


1 if π = σ

−
∑

π≤τ<σ µ(π, τ) if π < σ

0 if π ̸≤ σ

with the construction being performed by recurrence.

As an illustration here, for P (2) = {||,⊓}, we have by definition:

µ(||, ||) = µ(⊓,⊓) = 1

Also, || < ⊓, with no intermediate partition in between, so we obtain:

µ(||,⊓) = −µ(||, ||) = −1

Finally, we have ⊓ ̸≤ ||, and so we have as well the following formula:

µ(⊓, ||) = 0

Thus, as a conclusion, we have computed the Möbius matrix M2(π, σ) = µ(π, σ) of
the lattice P (2) = {||,⊓}, the formula being as follows:

M2 =

(
1 −1
0 1

)
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Back to the general case now, the main interest in the Möbius function comes from
the Möbius inversion formula, which states that the following happens:

f(σ) =
∑
π≤σ

g(π) =⇒ g(σ) =
∑
π≤σ

µ(π, σ)f(π)

In linear algebra terms, the statement and proof of this formula are as follows:

Theorem 4.12. The inverse of the adjacency matrix of P (k), given by

Ak(π, σ) =

{
1 if π ≤ σ

0 if π ̸≤ σ

is the Möbius matrix of P , given by Mk(π, σ) = µ(π, σ).

Proof. This is well-known, coming for instance from the fact that Ak is upper trian-
gular. Indeed, when inverting, we are led into the recurrence from Definition 4.11. □

As an illustration, for P (2) the formula M2 = A−1
2 appears as follows:(

1 −1
0 1

)
=

(
1 1
0 1

)−1

Now back to our Gram matrix considerations, we have the following key result:

Proposition 4.13. The Gram matrix of the vectors ξπ with π ∈ P (k),

Gπσ = N |π∨σ|

decomposes as a product of upper/lower triangular matrices, Gk = AkLk, where

Lk(π, σ) =

{
N(N − 1) . . . (N − |π|+ 1) if σ ≤ π

0 otherwise

and where Ak is the adjacency matrix of P (k).

Proof. We have the following computation, based on Proposition 4.10:

Gk(π, σ) = N |π∨σ|

= #
{
i1, . . . , ik ∈ {1, . . . , N}

∣∣∣ ker i ≥ π ∨ σ
}

=
∑

τ≥π∨σ

#
{
i1, . . . , ik ∈ {1, . . . , N}

∣∣∣ ker i = τ
}

=
∑

τ≥π∨σ

N(N − 1) . . . (N − |τ |+ 1)
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According now to the definition of Ak, Lk, this formula reads:

Gk(π, σ) =
∑
τ≥π

Lk(τ, σ)

=
∑
τ

Ak(π, τ)Lk(τ, σ)

= (AkLk)(π, σ)

Thus, we are led to the formula in the statement. □

As an illustration for the above result, at k = 2 we have P (2) = {||,⊓}, and the above
decomposition G2 = A2L2 appears as follows:(

N2 N
N N

)
=

(
1 1
0 1

)(
N2 −N 0

N N

)
We are led in this way to the following formula, due to Lindstöm:

Theorem 4.14. The determinant of the Gram matrix Gk is given by

det(Gk) =
∏

π∈P (k)

N !

(N − |π|)!

with the convention that in the case N < k we obtain 0.

Proof. If we order P (k) as usual, with respect to the number of blocks, and then
lexicographically, Ak is upper triangular, and Lk is lower triangular. Thus, we have:

det(Gk) = det(Ak) det(Lk)

= det(Lk)

=
∏
π

Lk(π, π)

=
∏
π

N(N − 1) . . . (N − |π|+ 1)

Thus, we are led to the formula in the statement. □

Let us discuss now the case of the orthogonal group ON . Here the combinatorics is
that of the Young diagrams. We denote by |.| the number of boxes, and we use quantity
fλ, which gives the number of standard Young tableaux of shape λ. We have then:

Theorem 4.15. The determinant of the Gram matrix of ON is given by

det(GkN) =
∏

|λ|=k/2

fN(λ)
f2λ

where the quantities on the right are fN(λ) =
∏

(i,j)∈λ(N + 2j − i− 1).
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Proof. This follows from some technical results of Zinn-Justin. Indeed, it is known
from there that the Gram matrix is diagonalizable, as follows:

GkN =
∑

|λ|=k/2

fN(λ)P2λ

To be more precise, here 1 =
∑

P2λ is the standard partition of unity associated to
the Young diagrams having k/2 boxes, and the coefficients fN(λ) are by definition those
in the statement. Now since we have Tr(P2λ) = f 2λ, this gives the result. □

For the free orthogonal and symmetric groups, coming from noncrossing pairings and
partitions, the results, by Di Francesco [22], are substantially more complicated.

In order to discuss this, we will need the following standard fact, in relation with the
fattening and shrinking of noncrossing partitions, that we met in chapter 3:

Proposition 4.16. The Gram matrices of the sets of partitions

NC2(2k) ≃ NC(k)

are related by the following formula,

G2k,n(π, σ) = nk(∆−1
knGk,n2∆−1

kn )(π
′, σ′)

where π → π′ is the shrinking operation, and ∆kn is the diagonal of Gkn.

Proof. In the context of the bijection NC2(2k) ≃ NC(k), we have:

|π ∨ σ| = k + 2|π′ ∨ σ′| − |π′| − |σ′|
We therefore have the following formula, valid for any n ∈ N:

n|π∨σ| = nk+2|π′∨σ′|−|π′|−|σ′|

Thus, we are led to the formula in the statement. □

Now back to our explicit computation questions, let us begin our study with some
examples. We first have the following result, which is elementary:

Proposition 4.17. The first Gram matrices and determinants for O+
N are

det

(
N2 N
N N2

)
= N2(N2 − 1)

det


N3 N2 N2 N2 N
N2 N3 N N N2

N2 N N3 N N2

N2 N N N3 N2

N N2 N2 N2 N3

 = N5(N2 − 1)4(N2 − 2)

with the matrices being written by using the lexicographic order on NC2(2k).
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Proof. The formula at k = 2, where NC2(4) = {⊓⊓,
⋂
∩ }, is clear from definitions.

At k = 3 however, things are tricky. The partitions here are as follows:

NC(3) = {|||,⊓|,⊓| , |⊓,⊓⊓}

The Gram matrix and its determinant are, according to Theorem 4.14:

det


N3 N2 N2 N2 N
N2 N2 N N N
N2 N N2 N N
N2 N N N2 N
N N N N N

 = N5(N − 1)4(N − 2)

By shrinking the partitions into pairings, we obtain, for NC2(6):

det(G6N) =
1

N2
√
N
×N10(N2 − 1)4(N2 − 2)× 1

N2
√
N

= N5(N2 − 1)4(N2 − 2)

Thus, we have obtained the formula in the statement. □

In general, following Di Francesco [22], we have the following result:

Theorem 4.18. The determinant of the Gram matrix for O+
N is given by

det(GkN) =

[k/2]∏
r=1

Pr(N)dk/2,r

where Pr are the Chebycheff polynomials, given by

P0 = 1 , P1 = X , Pr+1 = XPr − Pr−1

and dkr = fkr − fk,r+1, with fkr being the following numbers, depending on k, r ∈ Z,

fkr =

(
2k

k − r

)
−
(

2k

k − r − 1

)
with the convention fkr = 0 for k /∈ Z.

Proof. This is something quite technical, obtained by using a decomposition as fol-
lows of the Gram matrix GkN , with the matrix TkN being lower triangular:

GkN = TkNT
t
kN

Thus, a bit as in the proof of the Lindstöm formula, we obtain the result, but the
problem lies however in the construction of TkN , which is non-trivial. See [22]. □

Regarding S+
N , we have here the following formula, also from Di Francesco [22]:
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Theorem 4.19. The determinant of the Gram matrix for S+
N is given by

det(GkN) = (
√
N)ak

k∏
r=1

Pr(
√
N)dkr

where Pr are the Chebycheff polynomials, given by

P0 = 1 , P1 = X , Pr+1 = XPr − Pr−1

and dkr = fkr − fk,r+1, with fkr being the following numbers, depending on k, r ∈ Z,

fkr =

(
2k

k − r

)
−
(

2k

k − r − 1

)
with the convention fkr = 0 for k /∈ Z, and where ak =

∑
π∈P(k)(2|π| − k).

Proof. This follows indeed from Theorem 4.18, by fattening the pairings. □

4b.

4c.

4d.

4e. Exercises

Exercises:

Exercise 4.20.

Exercise 4.21.

Exercise 4.22.

Exercise 4.23.

Exercise 4.24.

Exercise 4.25.

Exercise 4.26.

Exercise 4.27.

Bonus exercise.
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Knot invariants



The stars shine so bright
But they’re fading after dawn

There is magic
In Kingston Town



CHAPTER 5

Knots and links

5a. Knots and links

Leaving the graphs and related topological spaces aside, let us focus now on the
simplest objects of topology, which are the knots. Knots are something very familiar,
from the real life, and mathematically, it is most convenient to define them as follows:

Definition 5.1. A knot is a smooth closed curve in R3,

γ : T→ R3

regarded modulo smooth transformations of R3.

Observe that our knots are by definition oriented. The reverse knot z → γ(z−1) can
be isomorphic or not to the original knot z → γ(z), and we will discuss this in a moment.
At the level of examples, we first have the unknot, represented as follows:

..

For typographical reasons, it is most convenient to represent our knots by squarish
diagrams, with these being far easier to type in Latex, the computer program used for
writing math books, with the unknot for instance being represented as follows:

OO

The unknot is already a quite interesting mathematical object, suggesting a lot of
exciting mathematical questions, for the most quite difficult, as follows:

67
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Questions 5.2. In relation with the unknot:

(1) Given a closed curve in R3, say given via its algebraic equations, can we decide
if it is tied or not?

(2) Perhaps simpler, given the 2D picture of a knot, can we decide if the knot is tied
or not?

(3) Experience with cables and ropes shows that a random closed curve is usually tied.
But, can we really prove this?

Obviously, difficult questions, and as you can see, knot theory is not an easy thing.
But do not worry, we will manage to find our way through this jungle, and even come up
with some mathematics for it. Going ahead now with examples, as the simplest possible
true knot, meaning tied knot, we have the trefoil knot, which looks as follows:

|

OO

| −

We also have the opposite trefoil knot, obtained by reversing the orientation, whose
picture is identical to that of the trefoil knot, save for the orientation of the arrow:

oo

|

| −

As before with the unknot, while the trefoil knot might look quite trivial, when it
comes to formal mathematics regarding it, we are quickly led into delicate questions. Let
us formulate a few intuitive observations about it, as follows:

Fact 5.3. In relation with the trefoil knot:

(1) This knot is indeed tied, that is, not isomorphic to the unknot.
(2) The trefoil knot and its opposite knot are not isomorphic.

To be more precise, here (1) is something which definitely holds, as we know it from
real life, but if looking for a formal proof for this, based on Definition 5.1, we will certainly
run into troubles. As for (2), here again we are looking for troubles, because when playing
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with two trefoil knots, made from rope, with opposite arrows marked on them, we certainly
see that our two beasts are not identical, but go find a formal proof for that.

In short, as before with the unknot, modesty. For the moment, let us keep exploring
the subject, by recording as Questions and Facts things that we see and feel, but cannot
prove yet, mathematically, based on Definition 5.1 alone, due to a lack of tools.

Getting back now to Definition 5.1, as stated, it is convenient to allow, in relation
with certain mathematical questions, links in our discussion:

Definition 5.4. A link is a collection of disjoint knots in R3, taken as usual oriented,
and regarded as usual up to isotopy.

As before with the knots, which can be truly knotted or not, there is a discussion here
with respect to the links, which can be truly linked or not, and with orientation involved
too. Drawing some pictures here, with some basic examples, is very instructive, the idea
being that two or several basic unknots can be linked in many possible ways. For instance,
as simplest non-trivial link, made of two unknots, which are indeed linked, we have:

|

OO

|

OO

By reversing the orientation of one unknot, we have as well the following link:

��

|

|

OO

This was for the story of two linked unknots, which is easily seen to stop here, with the
above two links, but when trying to link N unknots, with N = 3, 4, 5, . . . , many things
can happen. Which leads us into the following philosophical question:

Question 5.5. Mathematically speaking, which are simpler to enumerate,

(1) Usual knots, that is, links with one component,
(2) Or links with several components, all being unknots,

and this, in order to have some business started, for the links?
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And with this being probably enough, as preliminary experimental work, time now to
draw some conclusions. Obviously, what we have so far, namely Questions 5.2, Fact 5.3
and Question 5.5, is extremely interesting, at the core of everything that can be called
“geometry”. And by further thinking a bit, at how knots and links can be tied, in so
many fascinating ways, we are led to the following philosophical conclusion:

Conclusion 5.6. Knots and links are to geometry and topology what prime numbers
are to number theory.

Very nice all this, we are now certainly motivated for studying the knots and links,
and time for some mathematics. But the question is, how to get started?

In view of the above, this is not an easy question. Fortunately, graph theory comes to
the rescue, via to the following simple fact, which will be our starting point:

Fact 5.7. The plane projection of a knot or link is something similar to an oriented
graph with 4-valent vertices, except for the fact that we have some extra data at the vertices,
telling us, about the 2 strings crossing there, which goes up and which goes down.

Based on this, let us try to construct some knot invariants. A natural idea is that of
defining the invariant on the 2D picture of the knot, that is, on a plane projection of the
knot, and then proving that the invariant is indeed independent on the chosen plane.

This method rests on the following technical result, which is well-known:

Theorem 5.8. Two pictures correspond to plane projections of the same knot or link
precisely when they differ by a sequence of Reidemeister moves, namely:

(1) Moves of type I, given by ∝ ↔ |.
(2) Moves of type II, given by )( ↔ )(.
(3) Moves of type III, given by △ ↔ ▽.

Proof. This is something very standard, as follows:

(1) To start with, the Reidemeister moves of type I are by definition as follows:

|

←→
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(2) Regarding the Reidemeister moves of type II, these are by definition as follows:

−
←→

−

(3) As for the Reidemeister moves of type III, these are by definition as follows:

| |

− ←→ −

| |

(4) This was for the precise statement of the theorem, and in what regards now the
proof, this is somewhat clear from definitions, and in practice, this can be done by some
sort of cut and paste procedure, or recurrence if you prefer, easy exercise for you. □

At a more advanced level now, we will need the following key observation, making the
connection with group theory, and algebra in general, due to Alexander:

Theorem 5.9. Any knot or link can be thought of as being the closure of a braid,

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

with the braids forming a group Bk, called braid group.

Proof. Again, this is something quite self-explanatory, as follows:
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(1) Consider indeed the braids with k strings, with the convention that things go from
up to down. For instance the braid in the statement should be thought of as being:

◦ ◦

��

◦

��

◦ ◦

���� ��
◦ ◦ ◦ ◦ ◦

But, with this convention, braids become some sort of permutations of {1, . . . , k},
which are decorated at the level of crossings, with for instance the above braid corre-
sponding to the following permutation of {1, 2, 3, 4, 5}, with due decorations:

1 2

��

3

��

4 5

���� ��
1 2 3 4 5

In any case, we can see in this picture that Bk is indeed a group, with composition
law similar to that of the permutations in Sk, that is, going from up to down.

(2) Moreover, we can also see in this picture that we have a surjective group morphism
Bk → Sk, obtained by forgetting the decorations, at the level of crossings. For instance
the braid pictured above is mapped in this way to the following permutation in S5:

1

��

2

��

3

��

4

��

5

��
1 2 3 4 5

It is possible to do some more algebra here, in relation with the morphism Bk → Sk,
but we will not need this in what follows. We will keep in mind, from the above, the fact
that “braids are not exactly permutations, but they compose like permutations”.

(3) Regarding now the closure operation in the statement, this consists by definition
in adding semicircles at right, which makes our braid into a certain oriented link. As an
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illustration, the closure of the braid pictured above is the following link:

|| "" ��"" ||

(4) This was for the precise statement of the theorem, and in what regards now the
proof, this can be done by some sort of cut and paste procedure, or recurrence if you
prefer. As before with Theorem 5.8, we will leave this as an easy exercise for you. □

Many interesting things can be said about the braid group Bk, as for instance:

Theorem 5.10. The braid group Bk has the following properties:

(1) It is generated by variables g1, . . . , gk−1, with the following relations:

gigi+1gi = gi+1gigi+1 , gigj = gjgi for |i− j| ≥ 2

(2) It is the homotopy group of X = (Ck − ∆)/Sk, with ∆ ⊂ Ck standing for the
points z satisfying zi = zj for some i ̸= j.

Proof. These are things that we will not really need here, as follows:

(1) In order to prove this assertion, due to Artin, consider the following braids:

◦ ◦ ◦ ◦ ◦ ◦
g1 = . . .

◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦

g2 = . . .

◦ ◦ ◦ ◦ ◦ ◦
...

◦ ◦ ◦ ◦ ◦ ◦

gk−1 = . . .

◦ ◦ ◦ ◦ ◦ ◦
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We have then gigj = gjgi, for |i− j| ≥ 2. As for the relation gigi+1gi = gi+1gigi+1, by
translation it is enough to check this at i = 1. And here, we first have:

◦ ◦ ◦ ◦ ◦ ◦
. . .

◦ ◦ ◦ ◦ ◦ ◦
g1g2g1 = . . .

◦ ◦ ◦ ◦ ◦ ◦
. . .

◦ ◦ ◦ ◦ ◦ ◦
On the other hand, we have as well the following computation:

◦ ◦ ◦ ◦ ◦ ◦
. . .

◦ ◦ ◦ ◦ ◦ ◦
g2g1g2 = . . .

◦ ◦ ◦ ◦ ◦ ◦
. . .

◦ ◦ ◦ ◦ ◦ ◦
Now since the above two pictures are identical, up to isotopy, we have g1g2g1 = g2g1g2,

as desired. Thus, the braid group Bk is indeed generated by elements g1, . . . , gk−1 with
the relations in the statement, and in what regards now the proof of universality, this can
only be something quite routine, and we will leave this as an instructive exercise.

(2) This is something quite self-explanatory, based on the general homotopy group
material from chapter 1, and we will leave this as an easy exercise for you.

(3) Finally, before leaving the subject, let us mention that the Artin relations in (1)
are something very useful, in order to construct explicit matrix representations of Bk. For
instance, it can be shown that the braid group Bk is linear, and well, we will leave this
as usual as an exercise for you, meaning either solve it, or look it up. □

Getting back now to knots and links, a quick comparison between our main results so
far, namely Theorem 5.8 due to Reidemeister, and then Theorem 5.9 due to Alexander,
suggests the following question, whose answer will certainly advance us:

Question 5.11. What is the analogue of the Reidemeister theorem, in the context of
braids? That is, when do two braids produce, via closing, the same link?

And this is, and we insist, a very good question, because assuming that we have
an answer to it, no need afterwards to bother with plane projections, decorated graphs,
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Reidemeister moves, and amateurish topology in general, it will be all about groups and
algebra. Which groups and algebra questions, you guessed right, we will eat them raw.

In answer now, we have the following theorem, due to Markov:

Theorem 5.12. Two elements of the full braid group, obtained as the increasing union
of the various braid groups, with embeddings given by β → β |,

B∞ =
∞⊔
k=1

Bk

produce the same link, via closing, when one can pass from one to another via:

(1) Conjugation: β → αβα−1.
(2) Markov move: β → g±1

k β.

Proof. This is a version of the Reidemeister theorem, the idea being as follows:

(1) To start with, it is clear that conjugating a braid, β → αβα−1, will produce the
same link after closing, because we can pull the α, α−1 to the right, in the obvious way,
and there on the right, these α, α−1 will annihilate, according to αα−1 = 1.

(2) Regarding now the Markov move from the statement, with β ∈ Bk ⊂ Bk+1 and
with g1, . . . , gk ∈ Bk+1 being the standard Artin generators, from Theorem 5.10 and its
proof, this is the tricky move, which is worth a proof. Taking k = 3 for an illustration,
and representing β ∈ B3 by a box, the link obtained by closing g4β is as follows, which is
obviously the same link as the one obtained by closing β, and the same goes for g−1

4 β:

(3) Thus, the links produced by braids are indeed invariant under the two moves in the
statement. As for the proof of the converse, this comes from the Reidemeister theorem,
applied in the context of the Alexander theorem, or perhaps simpler, by reasoning directly,
a bit as in the proof of the Reidemeister theorem. We will leave this as an exercise. □
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5b.

5c.

5d.

5e. Exercises

Exercises:

Exercise 5.13.

Exercise 5.14.

Exercise 5.15.

Exercise 5.16.

Exercise 5.17.

Exercise 5.18.

Exercise 5.19.

Exercise 5.20.

Bonus exercise.



CHAPTER 6

Jones polynomial

6a. Jones polynomial

As explained before, the Markov theorem is exactly what we need, in order to refor-
mulate everything in terms of groups and algebra. To be more precise, looking now more
in detail at what the Markov theorem exactly says, we are led to the following strategy:

Strategy 6.1. In order to construct numeric invariants for knots and links:

(1) We must map B∞ somewhere, and then apply the trace.
(2) And if the trace is preserved by Markov moves, it’s a win.

You get the point, if we are do (1) then, by using the trace property tr(ab) = tr(ba) of
the trace, we will have tr(β) = tr(αβα−1), in agreement with what the Markov theorem
first requires. And if we do (2) too, whatever that condition exactly means, and more
on this in a moment, we will have as well tr(β) = tr(g±1

k β), in agreement with what the
Markov theorem fully requires, so we will have our invariant for knots and links.

This sound very good, but before getting into details, let us be a bit megalomaniac,
and add two more ambitious points to our war plan, as follows:

Addendum 6.2. Our victory will be total, with a highly reliable invariant, if:

(1) The representation and trace are faithful as possible.
(2) And they depend, if possible, on several parameters.

Here (1) and (2) are obviously related, because the more parameters we have in (2),
the more chances for our constructions in (1) to be faithful will be. In short, what we are
wishing here for is an invariant which distinguishes well between various knots and links,
and this can only come via a mixture of faithfulness, and parameters involved.

So long for the plan, and in practice now, getting back to what Strategy 6.1 says, we
are faced right away with a problem, coming from the fact that B∞ is not that easy to
represent. You might actually already know this, if you have struggled a bit with the
exercise that I left for you, at the end of the previous chapter. So, we are led to:

Question 6.3. How to represent the braid group B∞?

77
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So, this was the question that Reidemeister, Alexander, Markov, Artin and the others
were fighting with, a long time ago, in the first half of the 20th century. Quite surprisingly,
the answer to it came very late, in the 80s, from Jones [57], with inspiration from operator
algebras, and more specifically, from his previous paper [56] about subfactors.

Retrospectively looking at all this, what really matters in Jones’ answer to Question
6.3 is the algebra constructed by Temperley and Lieb, in the context of questions from
statistical mechanics. But then, by looking even more retrospectively at all this, we
can even say that the answer to Question 6.3 comes from nothing at all, meaning basic
category theory. So, this will be our approach in what follows, with our answer being:

Answer 6.4. Thinking well, B∞ is self-represented, without help from the outside.

So, ready for some category theory? We first need objects, and our set of objects will
be the good old N. As for the arrows, somehow in relation with topology and braids, we
will choose something very simple too, with our definition being as follows:

Definition 6.5. The Temperley-Lieb category TLN has the positive integers N as
objects, with the space of arrows k → l being the formal span

TLN(k, l) = span(NC2(k, l))

of noncrossing pairings between an upper row of k points, and a lower row of l points

1 2 3 4 5

1 2 3 4 5 6 7 8 9

and with the composition of arrows appearing by composing the pairings, in the obvious
way, with the rule ⃝ = N , for the closed loops that might appear.

This definition is something quite subtle, hiding several non-trivial things, and is worth
a detailed discussion, our comments about it being as follows:

(1) First of all, our scalars in this chapter will be complex numbers, λ ∈ C, and the
“formal span” in the above must be understood in this sense, namely abstract complex
vector space spanned by the elements of NC2(k, l). Of course it is possible to use an
arbitrary field, at least at this stage of things, but remember that we are interested in
quantum mechanics, and related mathematics, where the field of scalars is C.

(2) Regarding the composition of arrows, this is by vertical concatenation, with our
usual convention that things go “from up to down”. And with this coming from care for
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our planet, and for entropy at the galactic level, I mean why pushing things from left to
right, when we can have gravity work for us, pulling them from up to down:

up

��
down

(3) Less poetically, this “from up to down” convention is also useful for purely math-
ematical purposes, because the left-right direction will be reserved for the intervention of
sums Σ and scalars λ ∈ C, while the up-down direction will be reserved for “action”.

(4) Let us discuss now what happens with the closed circles, when concatenating. As
an example, let us consider a full capping of noncrossing pairings, also called meander:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

According to our conventions, this meander appears as the product πσ ∈ NC2(0, 0)
between the upper pairing σ ∈ NC2(0, 16) and the lower pairing π ∈ NC2(16, 0). But,
what is the value of this product? We have two loops appearing, namely:

1− 2− 9− 10− 15− 14− 11− 8− 3− 12− 13− 16

4− 5− 6− 7

Thus, according to Definition 6.5, the value of this meander is N2, with one N for
each of the above loops, and with these two values of N multiplying each other.

(5) The same discussion applies to an arbitrary composition πσ ∈ NC2(k,m) between
an upper pairing σ ∈ NC2(k, l) and a lower pairing π ∈ NC2(l,m), with a certain number
of loops appearing in this way, each contributing with a multiplicative factor N .

(6) Finally, in Definition 6.5 the value of the circle N = ⃝ can be pretty much
anything, but due to some positivity reasons to become clear later, we will assume in
what follows N ∈ [1,∞). Also, we will call this parameter N the “index”, with the
precise reasons for calling this index to become clear later, too, as this book develops.
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With all this discussed, what is next? More category theory I guess, and matter of
having a theorem formulated too, instead of definitions only, let us formulate:

Theorem 6.6. The Temperley-Lieb category TLN is a tensor ∗-category, with:
(1) Composition of arrows: by vertical concatenation.
(2) Tensoring of arrows: by horizontal concatenation.
(3) Star operation: by turning the arrows upside-down.

Proof. This is more of a definition, disguised as a theorem. To be more precise, we
already know about (1), from Definition 6.5, and we can talk as well about (2) and (3),
constructed as above, with (2) using of course multiplicativity with respect to the scalars,
and with (3) using antimultiplicativity with respect to the scalars:(∑

i

λiπi

)
⊗

(∑
j

µjσj

)
=
∑
ij

λiµjπi ⊗ σj

(∑
i

λiπi

)∗

=
∑
i

λ̄iπ
∗
i

And the point now is that our three operations are compatible with each other via all
sorts of compatibility formulae, which are all clear from definitions, with the conclusion
being that what we have a tensor ∗-category, as stated. We will leave the details here,
basically amounting in figuring out what a tensor ∗-category exactly is, as an exercise. □

In order to further understand the category TLN , let us focus on its diagonal part,
formed by the End spaces of various objects. With the convention that these End spaces
embed into each other by adding bars at right, this is a graded algebra, as follows:

∆TLN =
⋃
k≥0

TLN(k, k)

Moreover, for further fine-tuning our study, let us actually focus on the individual
components of this graded algebra. These components will play a key role in what follows,
and they are worth a dedicated definition, and new notation and name, as follows:

Definition 6.7. The Temperley-Lieb algebra TLN(k) is the formal span

TLN(k) = span(NC2(k, k))

with multiplication coming by concatenating, with the rule ⃝ = N .

In other words, TLN(k) appears as the formal span of the noncrossing pairings between
an upper row of k points, and a lower row of k points, with multiplication coming by
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concatenating, with ⃝ = N . As an example, here is a basis element of TLN(8):

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Getting back now to what we know about TLN , from Theorem 6.6, the tensor product
operation makes sense in the context of the diagonal algebra ∆TLN , but does not apply
to its individual components TLN(k). However, the involution is useful, and we have:

Proposition 6.8. The Temperley-Lieb algebra TLN(k) is a ∗-algebra, with involution
coming by turning the diagrams upside-down.

Proof. This is something trivial, which follows from Theorem 6.6, and can be verified
as well directly, and we will leave this as an instructive exercise. □

Getting back now to knots and links, we first have to make the connection between
braids and Temperley-Lieb diagrams. But this can be done as follows:

Theorem 6.9. The following happen:

(1) We have a braid group representation Bk → TLN(k), mapping standard genera-
tors to standard generators.

(2) We have a trace tr : TLN(k) → C, obtained by closing the diagrams, which is
positive, and has a suitable Markov invariance property.

Proof. Again, this is something quite intuitive, with the generators in (1) being by
definition the standard ones, on both sides, and with the closing operation in (2) being
similar to the one for braids, from chapter 5. To be more precise:

(1) The idea here is to map the Artin generators of the braid group to suitable modi-
fications of the following Temperley-Lieb diagrams, called Jones projections:

◦ ◦ ◦ ◦ ◦ ◦
e1 = . . .

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦
e2 = . . .

◦ ◦ ◦ ◦ ◦ ◦
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...

◦ ◦ ◦ ◦ ◦ ◦

ek−1 = . . .

◦ ◦ ◦ ◦ ◦ ◦

As a first observation, these diagrams satisfy e2i = Nei, with N =⃝ being as usual the
value of the circle, so it is rather the rescaled versions fi = ei/N which are projections, but
we will not bother with this, and use our terminology above. Next, our Jones projections
certainly satisfy the Artin relations eiej = ejei, for |i − j| ≥ 2. Our claim now is that
is that we have as well the formula eiei±1ei = ei. Indeed, by translation it is enough to
check eiei+1ei = ei at i = 1, and this follows from the following computation:

◦ ◦ ◦ ◦ ◦ ◦
. . .

◦ ◦ ◦ ◦ ◦ ◦
e1e2e1 = . . . = e1

◦ ◦ ◦ ◦ ◦ ◦
. . .

◦ ◦ ◦ ◦ ◦ ◦

As for the verification of the relation e2e1e2 = e2, this is similar, as follows:

◦ ◦ ◦ ◦ ◦ ◦
. . .

◦ ◦ ◦ ◦ ◦ ◦
e2e1e2 = . . . = e2

◦ ◦ ◦ ◦ ◦
. . .

◦ ◦ ◦ ◦ ◦ ◦

Now with the relations eiei±1ei = ei in hand, let us try to reach to the Artin relations
gigi+1gi = gi+1gigi+1. For this purpose, let us set gi = tei − 1. We have then:

gigi+1gi = (tei − 1)(tei+1 − 1)(tei − 1)

= t3ei − t2(Nei + eiei+1 + ei+1ei) + t(2ei + ei+1)− 1

= t(t2 −Nt+ 2)ei + tei+1 − t2(eiei+1 + ei+1ei)
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On the other hand, we have as well the following computation:

gi+1gigi+1 = (tei+1 − 1)(tei − 1)(tei+1 − 1)

= t3ei+1 − t2(Nei+1 + eiei+1 + ei+1ei) + t(2ei+1 + ei)− 1

= t(t2 −Nt+ 2)ei+1 + tei − t2(eiei+1 + ei+1ei)

Thus with t2 −Nt+ 1 = 0 we have a representation Bk → TLN(k), as desired.

(2) This is something more subtle, especially in what regards the positivity properties
of the trace tr : TLN(k)→ C, which requires a bit more mathematics. So, no hurry with
this, and we will discuss all this, and applications, in the remainder of this chapter. □

Now back to the knots and links, we have all the needed ingredients. Indeed, we can
now put everything together, and we obtain, following Jones:

Theorem 6.10. We can define the Jones polynomial of an oriented knot or link as
being the image of the corresponding braid producing it via the map

tr : Bk → TLN(k)→ C

with the following change of variables:

N = q1/2 + q−1/2

We obtain a Laurent polynomial in q1/2, which is an invariant, up to planar isotopy.

Proof. There is a long story here, the idea being as follows:

(1) To start with, the result follows indeed by combining the above ingredients, the
idea being that the various algebraic properties of tr : TLN(k) → C are exactly what
is needed for the above composition, up to a normalization, to be invariant under the
Reidemeister moves of type I, II, III, and so to produce indeed a knot invariant.

(2) More specifically, the result follows from Theorem 6.6, combined with what we
have in Theorem 6.9, which is now fully proved, with the positivity part coming from
chapter 4, and with the change of variables N = q1/2 + q−1/2 in the statement coming
from the equation t2 −Nt+ 1 = 0 that we found in the proof of Theorem 6.9.

(3) As an illustration for how this works, consider first the unknot:

OO

For this knot, or rather unknot, the corresponding Jones polynomial is:

V = 1
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(4) Next, let us look at the link formed by two unlinked unknots:

OO OO

For this link, or rather unlink, the corresponding Jones polynomial is:

V = −q−1/2 − q1/2

(5) Next, let us look at the link formed by two linked unknots, namely:

|

OO

|

OO

For this link, the corresponding Jones polynomial is given by:

V = q1/2 + q5/2

(6) Finally, let us look at the trefoil knot, which is as follows:

|

OO

| −

For this knot, the corresponding Jones polynomial is as follows:

V = q + q3 − q4

Observe that, as previously for the unknot, this is a Laurent polynomial in q. This is
part of a more general phenomenon, the point being that for knots, or more generally for
links having an odd number of components, we get a Laurent polynomial in q.

(7) In practice now, far more things can be said, about this. For instance the change
of variables N = q1/2+q−1/2 in the statement is something well-known in planar algebras,
and with all this being related to operator algebras and subfactor theory. More on this
later in this book, when discussing subfactors and planar algebras.
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(8) From a purely topological perspective, however, nothing beats the skein relation
interpretation of the Jones polynomial VL(q), which is as follows, with L+, L−, L0 being
knots, or rather links, differing at exactly 1 crossing, in the 3 possible ways:

q−1VL+ − qVL− = (q1/2 + q−1/2)VL0

To be more precise, here are the conventions for L+, L−, L0, that you need to know,
in order to play with the above formula, and compute Jones polynomials at wish:

��

66

L+ :

DD

L+ :

��

L0 :

((

As for the proof of the above formula, this comes from our definition of the Jones
polynomial, because thinking well, “unclosing” links as to get braids, and then closing
Temperley-Lieb diagrams as to get scalars, as required by the construction of VL(q),
seemingly is some sort of identity operation, but the whole point comes from the fact that
the Artin braids g1, . . . , gk−1 and the Jones projections e1, . . . , ek−1 differ precisely by a
crossing being replaced by a non-crossing. Exercise for you, to figure out all this.

(9) In short, up to you to learn all this, in detail, and its generalizations too, with link
polynomials defined more generally via relations of the following type:

xPL+ + yPL− + zPL0 = 0

Equivalently, we can define these more general invariants by using various versions of
the Temperley-Lieb algebra. As usual, check here the papers of Jones [56], [57], [58].

(10) With the comment here that, among all these invariants, Jones polynomial in-
cluded, the first came, historially, the Alexander polynomial. However, from a modern
point of view, the Alexander polynomial is something more complicated than the Jones
polynomial, which remains the central invariant of knots and links.

(11) As another comment, with all this pure mathematics digested, physics strikes
back, via a very interesting relation with statistical mechanics, happening in 2D as well,
the idea being that “interactions happen at crossings”, and it is these interactions that
produce the knot invariant, as a kind of partition function. See Jones [59], [60].

(12) Quite remarkably, the above invariants can be directly understood in 3D as well,
in a purely geometric way, with elegance, and no need for 2D projection. But this is a
more complicated story, involving ideas from quantum field theory. See Witten [98]. □
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6b.

6c.

6d.

6e. Exercises

Exercises:

Exercise 6.11.

Exercise 6.12.

Exercise 6.13.

Exercise 6.14.

Exercise 6.15.

Exercise 6.16.

Exercise 6.17.

Exercise 6.18.

Bonus exercise.
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Exercise 7.1.

Exercise 7.2.

Exercise 7.3.

Exercise 7.4.
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Exercise 7.7.

Exercise 7.8.

Bonus exercise.
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Mechanical aspects

8a. Mechanical aspects

8b.

8c.
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Exercises:

Exercise 8.1.

Exercise 8.2.

Exercise 8.3.

Exercise 8.4.

Exercise 8.5.

Exercise 8.6.

Exercise 8.7.

Exercise 8.8.

Bonus exercise.
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Part III

Diagram algebras



Bahama, bahama mama
Got the biggest house in town bahama mama

Bahama, bahama mama
But her trouble’s getting down bahama mama



CHAPTER 9

Group theory

9a. Group theory

Generally speaking, no matter on what we want to do with our group, we must
compute the spaces Fix(v⊗k). It is technically convenient to slightly enlarge the class
of spaces to be computed, by talking about Tannakian categories, as follows:

Definition 9.1. The Tannakian category associated to a closed subgroup G ⊂v UN is
the collection CG = (CG(k, l)) of vector spaces

CG(k, l) = Hom(v⊗k, v⊗l)

where the representations v⊗k with k = ◦ • • ◦ . . . colored integer, defined by

v⊗∅ = 1 , v⊗◦ = v , v⊗• = v̄

and multiplicativity, v⊗kl = v⊗k ⊗ v⊗l, are the Peter-Weyl representations.

Let us make a summary of what we have so far, regarding these spaces CG(k, l). In
order to formulate our result, let us start with the following definition:

Definition 9.2. Let H be a finite dimensional Hilbert space. A tensor category over
H is a collection C = (C(k, l)) of linear spaces

C(k, l) ⊂ L(H⊗k, H⊗l)

satisfying the following conditions:

(1) S, T ∈ C implies S ⊗ T ∈ C.
(2) If S, T ∈ C are composable, then ST ∈ C.
(3) T ∈ C implies T ∗ ∈ C.
(4) C(k, k) contains the identity operator.
(5) C(∅, k) with k = ◦•, •◦ contain the operator R : 1→

∑
i ei ⊗ ei.

(6) C(kl, lk) with k, l = ◦, • contain the flip operator Σ : a⊗ b→ b⊗ a.

Here the tensor power Hilbert spaces H⊗k, with k = ◦ • • ◦ . . . being a colored integer,
are defined by the following formulae, and multiplicativity:

H⊗∅ = C , H⊗◦ = H , H⊗• = H̄ ≃ H

With these conventions, we have the following result, summarizing our knowledge on
the subject, coming from the results established in the above:
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Theorem 9.3. For a closed subgroup G ⊂v UN , the associated Tannakian category

CG(k, l) = Hom(v⊗k, v⊗l)

is a tensor category over the Hilbert space H = CN .

Proof. We know that the fundamental representation v acts on the Hilbert space
H = CN , and that its conjugate v̄ acts on the Hilbert space H̄ = CN . Now by multi-
plicativity we conclude that any Peter-Weyl representation v⊗k acts on the Hilbert space
H⊗k, and so that we have embeddings as in Definition 9.2, as follows:

CG(k, l) ⊂ L(H⊗k, H⊗l)

Regarding now the fact that the axioms (1-6) in Definition 9.2 are indeed satisfied,
this is something that we basically already know. To be more precise, (1-4) are clear, and
(5) follows from the fact that each element g ∈ G is a unitary, which gives:

R ∈ Hom(1, g ⊗ ḡ) , R ∈ Hom(1, ḡ ⊗ g)

As for (6), this is something trivial, coming from the fact that the matrix coefficients
g → gij and their complex conjugates g → ḡij commute with each other. □

Our purpose now will be that of showing that any closed subgroup G ⊂ UN is uniquely
determined by its Tannakian category CG = (CG(k, l)). This result, known as Tannakian
duality, is something quite deep, and extremely useful. Indeed, the idea is that what
we would have here is a “linearization” of G, allowing us to do combinatorics, and to
ultimately reach to concrete and powerful results, regarding G itself. We first have:

Theorem 9.4. Given a tensor category C = (C(k, l)) over a finite dimensional Hilbert
space H ≃ CN , the following construction,

GC =
{
g ∈ UN

∣∣∣Tg⊗k = g⊗lT , ∀k, l, ∀T ∈ C(k, l)
}

produces a closed subgroup GC ⊂ UN .

Proof. This is something elementary, with the fact that the closed subset GC ⊂ UN

constructed in the statement is indeed stable under the multiplication, unit and inversion
operation for the unitary matrices g ∈ UN being clear from definitions. □

We can now formulate the Tannakian duality result, as follows:

Theorem 9.5. The above Tannakian constructions

G→ CG , C → GC

are bijective, and inverse to each other.

Proof. This is something quite technical, obtained by doing some abstract algebra,
and for details here, we refer to the Tannakian duality literature. The whole subject is
actually, in modern times, for the most part of quantum algebra, and you can consult
here various quantum group papers and books, for details on the above. □
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In order to reach now to more concrete things, following Brauer, we have:

Definition 9.6. Let P (k, l) be the set of partitions between an upper colored integer
k, and a lower colored integer l. A collection of subsets

D =
⊔
k,l

D(k, l)

with D(k, l) ⊂ P (k, l) is called a category of partitions when it has the following properties:

(1) Stability under the horizontal concatenation, (π, σ)→ [πσ].
(2) Stability under vertical concatenation (π, σ)→ [σπ], with matching middle symbols.
(3) Stability under the upside-down turning ∗, with switching of colors, ◦ ↔ •.
(4) Each set P (k, k) contains the identity partition || . . . ||.
(5) The sets P (∅, ◦•) and P (∅, •◦) both contain the semicircle ∩.
(6) The sets P (k, k̄) with |k| = 2 contain the crossing partition /\.

There are many examples of such categories, as for instance the category of all pairings
P2, or of all matching pairings P2. We will be back to examples in a moment.

Let us formulate as well the following definition:

Definition 9.7. Given a partition π ∈ P (k, l) and an integer N ∈ N, we can construct
a linear map between tensor powers of CN ,

Tπ : (CN)⊗k → (CN)⊗l

by the following formula, with e1, . . . , eN being the standard basis of CN ,

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

and with the coefficients on the right being Kronecker type symbols,

δπ

(
i1 . . . ik
j1 . . . jl

)
∈ {0, 1}

whose values depend on whether the indices fit or not.

To be more precise, we put the indices of i, j on the legs of π, in the obvious way. In
case all the blocks of π contain equal indices of i, j, we set δπ(

i
j) = 1. Otherwise, we set

δπ(
i
j) = 0. The relation with the Tannakian categories comes from:

Proposition 9.8. The assignement π → Tπ is categorical, in the sense that

Tπ ⊗ Tν = T[πν] , TπTν = N c(π,ν)T[νπ ] , T ∗
π = Tπ∗

where c(π, ν) are certain integers, coming from the erased components in the middle.
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Proof. This is something elementary, the computations being as follows:

(1) The concatenation axiom can be checked as follows:

(Tπ ⊗ Tν)(ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

=
∑
j1...jq

∑
l1...ls

δπ

(
i1 . . . ip
j1 . . . jq

)
δν

(
k1 . . . kr
l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

=
∑
j1...jq

∑
l1...ls

δ[πν]

(
i1 . . . ip k1 . . . kr
j1 . . . jq l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

= T[πν](ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

(2) The composition axiom can be checked as follows:

TπTν(ei1 ⊗ . . .⊗ eip)

=
∑
j1...jq

δν

(
i1 . . . ip
j1 . . . jq

) ∑
k1...kr

δπ

(
j1 . . . jq
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

=
∑
k1...kr

N c(π,ν)δ[νπ ]

(
i1 . . . ip
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

= N c(π,ν)T[νπ ](ei1 ⊗ . . .⊗ eip)

(3) Finally, the involution axiom can be checked as follows:

T ∗
π (ej1 ⊗ . . .⊗ ejq)

=
∑
i1...ip

< T ∗
π (ej1 ⊗ . . .⊗ ejq), ei1 ⊗ . . .⊗ eip > ei1 ⊗ . . .⊗ eip

=
∑
i1...ip

δπ

(
i1 . . . ip
j1 . . . jq

)
ei1 ⊗ . . .⊗ eip

= Tπ∗(ej1 ⊗ . . .⊗ ejq)

Summarizing, our correspondence is indeed categorical. □

In relation now with the groups, we have the following result:

Theorem 9.9. Each category of partitions D = (D(k, l)) produces a family of compact
groups G = (GN), with GN ⊂v UN , via the formula

Hom(v⊗k, v⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

and the Tannakian duality correspondence.
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Proof. Given an integer N ∈ N, consider the correspondence π → Tπ constructed in
Definition 9.7, and then the collection of linear spaces in the statement, namely:

C(k, l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

According to Proposition 9.8, and to our axioms for the categories of partitions, from
Definition 9.6, this collection of spaces C = (C(k, l)) satisfies the axioms for the Tannakian
categories, from Definition 9.2. Thus the Tannakian duality result, Theorem 9.5, applies,
and provides us with a closed subgroup GN ⊂v UN such that:

C(k, l) = Hom(v⊗k, v⊗l)

Thus, we are led to the conclusion in the statement. □

We can now formulate a key definition, as follows:

Definition 9.10. A closed subgroup G ⊂v UN is called easy when we have

Hom(v⊗k, v⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

for any colored integers k, l, for a certain category of partitions D ⊂ P .

The notion of easiness goes back to the results of Brauer regarding the orthogonal
group ON , and the unitary group UN , which can be formulated as follows:

Theorem 9.11. We have the following results:

(1) UN is easy, coming from the category of matching pairings P2.
(2) ON is easy too, coming from the category of all pairings P2.

Proof. This is something very standard, the idea being as follows:

(1) The group UN being defined via the relations v∗ = v−1, vt = v̄−1, the associated
Tannakian category is C = span(Tπ|π ∈ D), with:

D =< ∩
◦• , ∩

•◦ >= P2

(2) The group ON ⊂ UN being defined by imposing the relations vij = v̄ij, the associ-
ated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< P2, |◦•, |•◦ >= P2

Thus, we are led to the conclusion in the statement. □

Beyond this, a first natural question is that of computing the easy group associated
to the category P itself, and we have here the following Brauer type theorem:

Theorem 9.12. The symmetric group SN , regarded as group of unitary matrices,

SN ⊂ ON ⊂ UN

via the permutation matrices, is easy, coming from the category of all partitions P .
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Proof. Consider the easy group G ⊂ ON coming from the category of all partitions
P . Since P is generated by the one-block partition Y ∈ P (2, 1), we have:

C(G) = C(ON)
/〈

TY ∈ Hom(v⊗2, v)
〉

The linear map associated to Y is given by the following formula:

TY (ei ⊗ ej) = δijei

Thus, the relation defining the above group G ⊂ ON reformulates as follows:

TY ∈ Hom(v⊗2, v) ⇐⇒ vijvik = δjkvij,∀i, j, k
In other words, the elements vij must be projections, and these projections must be

pairwise orthogonal on the rows of v = (vij). We conclude that G ⊂ ON is the subgroup of
matrices g ∈ ON having the property gij ∈ {0, 1}. Thus we have G = SN , as claimed. □

Many other things can be said, along these lines.
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My girl, my girl, don’t lie to me
Tell me where did you sleep last night

In the pines, in the pines where the sun don’t ever shine
I would shiver the whole night through
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