DE FINETTI THEOREMS FOR EASY QUANTUM GROUPS

TEODOR BANICA(!), STEPHEN CURRAN, AND ROLAND SPEICHER(®)

ABSTRACT. We study sequences of noncommutative random variables which are invariant under “quantum
transformations” coming from an orthogonal quantum group satisfying the “easiness” condition axiomatized
in our previous paper. For 10 easy quantum groups, we obtain de Finetti type theorems characterizing the
joint distribution of any infinite quantum invariant sequence. In particular, we give a new and unified
proof of the classical results of de Finetti and Freedman for the easy groups Sy, On, which is based on the
combinatorial theory of cumulants. We also recover the free de Finetti theorem of Kostler and Speicher,
and the characterization of operator-valued free semicircular families due to Curran. We consider also finite
sequences, and prove an approximation result in the spirit of Diaconis and Freedman.

INTRODUCTION

In the study of probabilistic symmetries, the classical groups S,, and O,, play central roles. De Finetti’s
fundamental theorem states that an infinite sequence of random variables whose joint distribution is in-
variant under finite permutations must be conditionally independent and identically distributed. In [20],
Freedman considered sequences of real-valued random variables whose joint distribution is invariant under
orthogonal transformations, and proved that any infinite sequence with this property must form a condi-
tionally independent Gaussian family with mean zero and common variance. Although these results fail for
finite sequences, approximation results may still be obtained (see [17, 18]). For a thorough treatment of
probabilistic symmetries, the reader is referred to the recent text of Kallenberg [23].

The free analogues S, and O, of the permutation and orthogonal groups were constructed by Wang in
[32, 33]. These are compact quantum groups in the sense of Woronowicz [35]. In [25], Kostler and Speicher
discovered that de Finetti’s theorem has a natural free analogue: an infinite sequence of noncommutative
random variables has a joint distribution which is invariant under “quantum permutations” coming from
St if and only if the variables are freely independent and identically distributed with amalgamation, i.e.,
with respect to a conditional expectation. This was further studied in [13], where this result was extended
to more general sequences and an approximation result was given for finite sequences. The free analogue
of Freedman’s result was obtained in [14], where it was shown that an infinite sequence of self-adjoint
noncommutative random variables has a joint distribution which is invariant under “quantum orthogonal
transformations” if and only if the variables form an operator-valued free semicircular family with mean zero
and common variance.

In this paper, we present a unified approach to de Finetti theorems by using the “easiness” formalism
from [7]. Stated roughly, a quantum group S,, C G C O is called easy if its tensor category is spanned by
certain partitions coming from the tensor category of S,. This might look of course to be a quite technical
condition. However, we feel that this provides a good framework for understanding certain probabilistic
and representation theory aspects of orthogonal quantum groups. There are 14 natural examples of easy
quantum groups, listed as follows:

(1) Groups: Oy, Sy, Hy,, By, S, Bl
(2) Free versions: O,F, S HF Bt S+ B/t
(3) Half-liberations: OF, H.
Except for H}, which was found in [5], these are all described in [7]. The 4 “primed” versions above are
rather trivial modifications of their “unprimed” versions, corresponding to taking a product with a copy

2000 Mathematics Subject Classification. 46L53 (46L54, 60G09, 46L65).

Key words and phrases. Quantum invariance, Gaussian distribution, Rayleigh distribution, semicircle law.
t Research supported by ANR grants “Galoisint” and “Granma”.

1 Research supported by a Discovery grant from NSERC.



2 T. BANICA, S. CURRAN, AND R. SPEICHER

of Zs. We will focus then on the remaining 10 examples in this paper, from which similar results for the
“primed” versions may be easily deduced.

As explained in [7, 5], our motivating belief is that “any result which holds for S,,, O, should have a
suitable extension to all easy quantum groups”. This is of course a quite vague statement, whose target is
formed by several results at the borderline of representation theory and probability. This paper represents
the first application of this philosophy.

If G is an easy quantum group, there is a natural notion of G-invariance for a sequence of noncommutative
random variables, which agrees with the usual definition when G is a classical group. Our main result is the
following de Finetti type theorem, which characterizes the joint distributions of infinite G-invariant sequences
for the 10 natural easy quantum groups discussed above:

Theorem 1. Let (x;);cn be a sequence of self-adjoint random variables in a W*-probability space (M, ¢), and
suppose that the sequence is G-invariant, where G is one of O, S, H,B,0*, H*, O, ST HT,BT. Assume
that M s generated as a von Neumann algebra by {z; : i € N}. Then there is a W*-subalgebra 1 C B C M
and a p-preserving conditional expectation E : M — B such that the following hold:

(1) Free case:
(a) If G = ST, then (x;)ien are freely independent and identically distributed with amalgamation
over B.
(b) If G=HT, then (x;);en are freely independent, and have even and identical distributions, with
amalgamation over B.
(c) If G = O7, then (x;)ien form a B-valued free semicircular family with mean zero and common
variance.
(d) If G = BT, then (x;)ien form a B-valued free semicircular family with common mean and
variance.
(2) Half-liberated case: Suppose that x;xjxy, = xpx;x; for any i,j,k € N.
(a) If G = H*, then (x;);en are conditionally half-independent and identically distributed given B.
(b) If G = O*, then (x;)ien are conditionally half-independent, and have symmetrized Rayleigh
distributions with common variance, given B.
(3) Classical case: Suppose that (x;);en commute.
(a) If G =S, then (x;);en are conditionally independent and identically distributed given B.
(b) If G = H, then (x;);en are conditionally independent, and have even and identical distributions,
given B.
(¢) If G = O, then (x;)ien are conditionally independent, and have Gaussian distributions with
mean zero and common variance, given B.
(d) If G = B, then (x;)ien are conditionally independent, and have Gaussian distributions with
common mean and variance, given B.

The notion of half-independence, appearing in (2) above, will be introduced in Section 2. The basic
example of a half-independent family of noncommutative random variables is (x;)er,

_ (0 &

where (&)ics are independent, complex-valued random variables and E[€'E; | = 0 unless n = m (see Exam-
ple 2.4 and Proposition 2.8). Note that in particular, if (§;);cy are independent and identically distributed
complex Gaussian random variables, then x; has a symmetrized Rayleigh distribution (@-5)1/ 2 and we ob-
tain the joint distribution in (2) corresponding to the half-liberated orthogonal group O*. Since the complex
Gaussian distribution is known to be characterized by unitary invariance, this appears to be closely related
to the connection between U,, and O} observed in [8, 5].

Let us briefly outline the proof of Theorem 1, to be presented in Section 5. We define von Neumann
subalgebras B,, C M cousisting of “functions” of the variables (z;);en which are invariant under “quantum
transformations” of z1,...,x, coming from the quantum group G,. The G-invariant subalgebra B is
defined as the intersection of the nested sequence B,, (note that if G = S, then B corresponds to the classical
exchangeable subalgebra). There are natural conditional expectations onto B,, given by “averaging” over G,,,
i.e., integrating with respect to the Haar state on the compact quantum group G,. By using an explicit
formula for the Haar states on easy quantum groups from [7], and a noncommutative reversed martingale
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convergence argument, we obtain a simple combinatorial formula for computing joint moments with respect
to the conditional expectation onto the G-invariant subalgebra. What emerges from these computations is
a moment-cumulant formula, and Theorem 1 follows from the characterizations of these joint distributions
by the structure of their cumulants. Note that in particular, we obtain a new proof of de Finetti’s classical
result for S;, which is based on cumulants. This method also allows us to give certain approximation results
for finite sequences, which will be explained in Section 4.

The paper is organized as follows. Section 1 contains preliminaries. Here we collect the basic notions from
the combinatorial theory of classical and free probability. We also recall some basic notions and results from
[7] about the class of “easy” quantum groups. In Section 2, we introduce half-independence and develop its
basic combinatorial theory. In Section 3, we recall the Weingarten formula from [7] for computing integrals
on easy quantum groups, and give a new estimate on the asymptotic behavior of these integrals. This will
be essential to the proofs of our main results, and we believe that this estimate will also find applications
to other problems involving easy quantum groups. In Section 4, we define quantum invariance for finite
sequences, prove a converse to Theorem 1, and give approximate de Finetti type results. Section 5 contains
the proof of Theorem 1, and a discussion of the situation for unbounded random variables in the classical
and half-liberated cases. Section 6 contains concluding remarks.

1. BACKGROUND AND NOTATION

Noncommutative probability. We begin by recalling the basic notions of noncommutative probability
spaces and distributions of random variables. For further details see the texts [31, 26].

Definition 1.1.

(1) A noncommutative probability space is a pair (A, ), where A is a unital algebra over C, and ¢ :
A — C is a linear functional such that ¢(1) = 1. Elements in a noncommutative probability space
(A, ) will be called noncommutative random variables, or simply random variables.

(2) A W*-probability space (M, ¢) is a von Neumann algebra M together with a faithful normal state
. We will not assume that ¢ is a trace.

Example 1.2. Let (,%, 1) be a (classical) probability space.
(1) The pair (L*°(u), E) is a W*-probability space, where L (1) is the algebra of bounded ¥-measurable
random variables, and E is the expectation functional E(f) = [ f dp.
(2) Let
Lip)= () L(w
1<p<oo
be the algebra of random variables with finite moments of all orders. Then (L(u),E) is a noncom-
mutative probability space.
The joint distribution of a sequence (Xi,...,X,) of (classical) random variables can be defined as the
linear functional on Cy(R™) determined by

f=E[f(Xy,..., X0

In the noncommutative context, it is generally not possible to make sense of f(x1,...,z,) for f € C,(R"™)
if the random variables x1, ..., %, do not commute. Instead, we work with an algebra of noncommutative
polynomials.

Notation 1.3. Let I be a nonempty set. We let 9?1 denote the algebra C(t; : i € I) of noncommutative
polynomials, with generators indexed by the set I. Note that &?; is spanned by 1 and monomials of the
form ¢;, -+ t;,, for k € Nand iy,...,4p € I. If I = {1,...,n}, we set &, = &1, and if I = N we denote
Poo = Pr.

Given a family (x;);er of noncommutative random variables in a noncommutative probability space (A, ¢),
there is a unique unital homomorphism ev, : &#; — A which sends ¢; to x; for each ¢ € I. We also denote
this map by p — p(x).

Definition 1.4. Let (z;);cr be a family of random variables in the noncommutative probability space (A, ¢).
The joint distribution of (x;);cr is the linear functional ¢, : #; — C defined by

vz(p) = p(p(x)).
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Note that the joint distribution of (z;);cs is determined by the collection of joint moments

@I(til o 'tik) = @(mil T mik)’
for k € Nand 4y,...,1 € I.
Remark 1.5. In the classical de Finetti’s theorem, the independence which occurs is only after conditioning.

Likewise the free de Finetti’s theorem is a statement about freeness with amalgamation. Both of these
concepts may be expressed in terms of operator-valued probability spaces, which we now recall.

Definition 1.6. An operator-valued probability space (A, E : A — B) consists of a unital algebra A, a
subalgebra 1 € B C A, and a conditional expectation F : A — B, i.e. F is a linear map such that E[1] =1
and

E[blabg} = blE[a]bg
for all b1,by € B and a € A.
Example 1.7. Let (©,%, 1) be a probability space, and let F C ¥ be a o-subalgebra. Let A = L% (u),

and let B = L*(u|7) be the subalgebra of bounded, F-measurable functions on €. Then (A, E[-|F]) is an
operator-valued probability space.

To define the joint distribution of a family (x;);cr in an operator-valued probability space (A, E : A — B),
we will use the algebra B(t; : i € I) of noncommutative polynomials with coefficients in B. This algebra is
spanned by monomials of the form bot;, - - -t;, bk, for k € N, by, ..., b € B and 41,...,i; € I. There is a
unique homomorphism from B(t; : i € I) into A which acts as the identity on B and sends ¢; to x;, which
we denote by p — p(x).

Definition 1.8. Let (A4, E : A — B) be an operator-valued probability space, and let (z;);c; be a family in
A. The B-valued joint distribution of the family (x;);cs is the linear map E, : B(¢t; : ¢ € I) — B defined by

Ex(p) = Elp(z)].
Observe that the joint distribution is determined by the B-valued joint moments
E,[botiy - - - ti,bk] = Elboxi, - - - 4, bk]
for bg,...,br € B and i1,...,i; € I. Observe that if B commutes with the variables (z;);cr, then
Elbows, - @i, bk = bo -+ b Elai, -+ 4],

so that the B-valued joint distribution is determined simply by the collection of moments E[z;, - - - z;, | for
Tyt € 1.

Definition 1.9. Let (x;);es be a family in the operator-valued probability space (A, E : A — B).

(1) If the algebra generated by B and {z; : i € I} is commutative, then the variables are called condi-
tionally independent given B if

Elpi(zi,) - pre(zi,)] = Elp1(x4,)] - Elpk(w4,)]

whenever iy, ..., are distinct and py, ..., px are polynomials in B(t).
(2) The variables (z;);cs are called free with amalgamation over B, or free with respect to E, if

Elpi(xi,) - pr(rs,)] =0

whenever 41,...,4; € I are such that 4; # i;4q for 1 <1 < k, and py,...,px € B(t) are such that
Elpi(z;,)] =0for 1 <1< k.

Remark 1.10. Voiculescu first defined freeness with amalgamation, and developed its basic theory in [30].
Conditional independence and freeness with amalgamation also have rich combinatorial theories, which we
now recall. In the free case this is due to Speicher [29], see also the text [26].

Definition 1.11.

(1) A partition 7 of a set S is a collection of disjoint, non-empty sets V1, ..., V. such that V1U---UV,. = S.
WVi,...,V, are called the blocks of 7, and we set || = r. The collection of partitions of S will be
denoted P(S), or in the case that S = {1,...,k} by P(k).
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(2) Given w,0 € P(S), we say that m < ¢ if each block of 7 is contained in a block of . There is a least
element of P(S) which is larger than both 7 and o, which we denote by 7V o.

(3) If S is ordered, we say that m € P(S) is noncrossing if whenever V, W are blocks of 7 and s1 < t; <
So < to are such that s1,s2 € V and t1,t5 € W, then V = W. The set of noncrossing partitions of
S is denoted by NC(S), or by NC(k) in the case that S = {1,...,k}.

(4) The noncrossing partitions can also be defined recursively, a partition 7 € P(.S) is noncrossing if and
only if it has a block V' which is an interval, such that =\ V is a noncrossing partition of S\ V.

(5) Given i1,...,i in some index set I, we denote by keri the element of P(k) whose blocks are the
equivalence classes of the relation

s~ 1t & ’L's = it~
Note that if 7 € P(k), then m < keri is equivalent to the condition that whenever s and ¢ are in the
same block of 7, iy must equal ;.
Definition 1.12. Let (A, E : A — B) be an operator-valued probability space.
(1) A B-functional is a n-linear map p : A" — B such that
p(boaiby,azbs ..., anby,) = bop(as,brag, ..., bn_1a,)by

for all bg,...,b, € B and ai,...,a,. Equivalently, p is a linear map from A®5" to B, where the
tensor product is taken with respect to the natural B — B-bimodule structure on A.

(2) Suppose that B is commutative. For k € N let p*) be a B-functional. Given 7 € P(n), we define a
B-functional p(™ : A" — B by the formula

pa, ... an) = H p(M)a,. .., an],
Ver

where if V = (i; <... <) is a block of 7 then
p(M)ax, ... an] = ps(aiy,...,a:).

If B is noncommutative, there is no natural order in which to compute the product appearing in the above
formula for p(™. However, the nesting property of noncrossing partitions allows for a natural definition of
p'™) for = € NC(n), which we now recall from [29].

Definition 1.13. Let (A, E : A — B) be an operator-valued probability space, and for k € N let p(*) :
AF — B be a B-functional. Given m € NC(n), define a B-functional p(™) : A" — B recursively as follows:

(1) If m = 1,, is the partition containing only one block, define p(™ = p().
(2) Otherwise, let V.= {l+1,...,l+ s} be an interval of = and define

p(W)[alw B 7an] = p(ﬂ—\V)[ala ceeyQape p(S)(aH‘l? .. '7a’l+3)5al+s+17' .. 7an]
for ai,...,a, € A.

Example 1.14. Let
m={{1,8,9,10},{2,7},{3,4,5},{6}} € NC(10),

1 2 3 4 5 6 7 8 9 10

L

then the corresponding p(™ is given by
par, ... a10) = pM (a1 - pP(az - pP(as, as, a5), )M (ag) - az), as, ag, aro).

Definition 1.15. Let (A, E : A — B) be an operator-valued probability space, and let (z;);c; be a family
of random variables in A.
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(1) The operator-valued classical cumulants c(;) : A¥ — B are the B-functionals defined by the classical
moment-cumulant formula

Elay---a,) = Z cg)[al,...,an].

TEP(n)
Note that the right hand side of the equation is equal to ng) [a1,...,an] plus lower order terms, and
hence cg) can be solved for recursively.

(2) The operator-valued free cumulants Ii(Ek) : A¥ — B are the B-functionals defined by the free moment-
cumulant formula

Elai,...,a,) = Z ng)[al,...,an].
TeENC(n)

As above, this equation can be solved recursively for ng).

While the definitions of conditional independence and freeness with amalgamation given above appear at

first to be quite different, they have very similar expressions in terms of cumulants. In the free case, the
following theorem is due to Speicher [29].

Theorem 1.16. Let (A, E : A — B) be an operator-valued probability space, and (x;);cr a family of random
variables in A.

(1) If the algebra generated by B and (x;);cs is commutative, then the variables are conditionally inde-
pendent given B if and only if

C(En) [boxil bl, e ,Jiinbn} = O

whenever there are 1 < k,l < n such that iy # i;.
(2) The variables are free with amalgamation over B if and only if

K9 bowi,br, .., wi, by] = 0
whenever there are 1 < k,l < n such that iy # i;.
Note that the condition in (1) is equivalent to the statement that if 7 € P(n), then

C(Eﬂ-) [bol'ilbl, ey (Elnbn} =0

unless m < keri, and likewise in (2) for m € NC(n). Stronger characterizations of the joint distribution of
(z4)ier can be given by specifying what types of partitions may contribute nonzero cumulants.

Theorem 1.17. Let (A, E : A — B) be an operator-valued probability space, and let (z;)icr be a family of
random variables in A.

(1) Suppose that B and (x;):c1 generate a commutative algebra. The B-valued joint distribution of (x;)icr
has the property corresponding to D in the table below if and only if for any m € P(n)

C(Eﬂ-) [boxilbl, ey zinbn} =0
unless m € D(n) and m < keri.
Partitions D Joint distribution
P: All partitions Independent

Py, : Partitions with even block sizes | Independent and even
Py : Partitions with block size < 2 Independent Gaussian
Py : Pair partitions Independent centered Gaussian

(2) The B-valued joint distribution of (x;);cr has the property corresponding to D in the the table below
if and only if for any m € NC(n)

H(Eﬂ-) [bo.fcilbl, e ,l‘inbn] = O

unless m € D(n) and m < keri.
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Noncrossing partitions D Joint distribution

NC': Noncrossing partitions Freely independent

NC}: Noncrossing partitions with even block sizes | Freely independent and even

NCy: Noncrossing partitions with block size < 2 Freely independent semicircular

NC5: Noncrossing pair partitions Freely independent centered semicircular

Proof. These results are well-known. In the classical case, note that the results for P,, P, are equivalent to
the Wick formula for computing moments of independent Gaussian families. In the free case, see [29, 26]. O

Remark 1.18. Tt is clear from the definitions that the classical and free cumulants can be solved for from the
joint moments. In fact, a combinatorial formula for the cumulants in terms of the moments can be given.
First we recall the definition of the Mobius function on a partially ordered set.

Definition 1.19. Let (P, <) be a finite partially ordered set. The Mébius function up : P x P — Z is
defined by

0, p£yq
pp(p,q) =4 1, p=q.
14+ Y (D) (s ) €PLip < < << g}, p<yg

Theorem 1.20. Let (A, E : A — B) be an operator-valued probability space, and let (z;)icr be a family of
random variables. Define the B-valued moment functionals E™) by

E™Jay,...,a,] = Elay - - - ay).
(1) Suppose that B is commutative. Then for any o € P(n) and ay,...,an € A we have
(o)

cp'lar, ..., an] = Z ,up(n)(w,a)E(’T)[al,...,an].
mTE€P(n)

<o

(2) For any o € NC(n) and ay,...,a, € A we have

K(Ea)[ala"'aan] = Z MNC(n)(Tr7U)E(Tr)[a/17"'7an]-
TeNC(n)
<o
Proof. This follows from the Mdbius inversion formula, see [29, 26]. |

Easy quantum groups. We will now briefly recall some notions and results from [7].

Consider a compact group G C O,,. By the Stone-Weierstrauss theorem, C(G) is generated by the n?
coordinate functions w;; sending a matrix in G to its (¢,j) entry. The structure of G as a compact group
is captured by the commutative Hopf C*-algebra C(G) together with comultiplication, counit and antipode
determined by

Auiy) = Zuik ® Ugj,
=1

e(uiz) = dij,

S(uig) = wji-
Dropping the condition of commutativity we obtain the following definition, adapted from the fundamental
paper of Woronowicz [35].

Definition 1.21. An orthogonal Hopf algebra is a unital C*-algebra A generated by n? self-adjoint elements
u;j, such that the following conditions hold:

(1) The inverse of u = (u;;) € M,(A) is the transpose u’ = (u;;).

(2) A(uij) =Y ik ® ug; determines a morphism A: A - A® A.

(3) €(uj) = d;; defines a morphism € : A — C.

(4) S(uij) = uj; defines a morphism S : A — AP,
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It follows from the definitions that A, ¢, .S satisfy the usual Hopf algebra axioms. If A is an orthogonal
Hopf algebra, we use the heuristic formula “A = C(G)”, where G is an compact orthogonal quantum group.
Of course if A is noncommutative then G cannot exist as a concrete object, and all statements about G must
be interpreted in terms of the Hopf algebra A.

The following two examples, constructed by Wang in [32, 33], are fundamental to our considerations.

Definition 1.22.
(1) A,(n) is the universal C*-algebra generated by n? self-adjoint elements u;;, such that u = (u;;) €
M, (Ay(n)) is orthogonal.
(2) As(n) is the universal C*-algebra generated by n? projections u;;, such that the sum along any row
or column of u = (u;;) € M,(As(n)) is the identity.

As discussed above, we use the notations A,(n) = C(O;), As(n) = C(S,5), and call O;f and S, the free
orthogonal group and free permutation group, respectively.

We now recall the “easiness” condition from [7] for a compact orthogonal quantum group S, C G C
O;F. Let u,v be the fundamental representations of G, S,, on C", respectively. By functoriality, the space
Hom(u®*, u®!) of intertwining operators is contained in Hom(v®*, v®!) for any k,l. But the Hom-spaces for
v are well-known: they are spanned by operators T, with 7 belonging to the set P(k,[) of partitions between

k upper and [ lower points. Explicitly, if eq, ..., e, denotes the standard basis of C™, then the formula for
T, is given by
T‘ﬂ'(eil ®"'®e’ik) = Z Or (;1;) €j; @ €.
J1,--01

Here the § symbol appearing on the right hand side is 1 when the indices “fit”, i.e. if each block of 7 contains
equal indices, and 0 otherwise.

It follows from the above discussion that Hom(u®*,u®!) consists of certain linear combinations of the
operators Ty, with m € P(k,1). We call G “easy” if these spaces are spanned by partitions.

Definition 1.23. A compact orthogonal quantum group S,, C G C O;! is called easy if for each k,l € N,
there exist sets D(k,1) C P(k,l) such that Hom(u®* u®') = span(T}, : 7 € D(k,1)). If we have D(k,l) C
NC(k,l) for each k,l € N, we say that G is a free quantum group.

There are four natural examples of classical groups which are easy:

Group Partitions

Permutation group S, P: All partitions

Orthogonal group O, P5: Pair partitions
Hyperoctahedral group H,, | Pj: Partitions with even block sizes
Bistochastic group B, P,: Partitions with block size < 2

There are also the 2 trivial modifications S), = S, X Zy and B], = B,, X Zg, and it was shown in [7] that
these 6 examples are the only ones.

There is a one-to-one correspondence between classical easy groups and free quantum groups, which on a
combinatorial level corresponds to restricting to noncrossing partitions:

Quantum group | Partitions

Sk NC': All noncrossing partitions

o, NC(C5: Noncrossing pair partitions

HY NC}: Noncrossing partitions with even block sizes
B NCy: Noncrossing partitions with block size < 2

There are also free versions of S/, B/,, constructed in [7].

In general the class of easy quantum groups appears to be quite rigid (see [5] for a discussion here).
However, two more examples can be obtained as “half-liberations”. The idea is that instead of removing
the commutativity relations from the generators u;; of C'(G) for a classical easy group G, which would
produce C'(G™), we instead require that the the generators “half-commute”, i.e. abc = cba for a,b,c € {u;;}.
More precisely, we define C(G*) = C(G*)/I, where I is the ideal generated by the relations abc = cba
for a,b,c € {u;;}. For G = S,,S,,, Bn, B], we have G* = G, however for O,,, H,, we obtain new quantum
groups O}, H*. The corresponding partition categories Es, E}, consist of all pair partitions, respectively all
partitions, which are balanced in the sense that each block contains as many odd as even legs.



DE FINETTI THEOREMS 9

2. HALF INDEPENDENCE

In this section we introduce a new kind of independence which appears in the de Finetti theorems for
the half-liberated quantum groups H* and O*. To define this notion, we require that the variables have a
certain degree of commutativity.

Definition 2.1. Let (z;);er be a family of noncommutative random variables. We say that the variables
half-commute if

TiZjT = TpTjLq
for all 4,4,k € 1.

Observe that if (x;);cr half-commute, then in particular 7 commutes with z; for any i, j € I.

Definition 2.2. Let (A, F : A — B) be an operator-valued probability space, and suppose that B is
contained in the center of A. Let (z;);cs be a family of random variables in .4 which half-commute. We say
that (z;);cr are conditionally half-independent given B, or half-independent with respect to E, if the following
conditions are satisfied:
(1) The variables (z2);c; are conditionally independent given B.
(2) For any 41,...,4 € I, we have
Elzi, -2, ] =0
unless for each ¢ € I the set of 1 < j < k such that ¢; = ¢ contains as many odd as even numbers,
i.e., unless keri is balanced.
If B = C, then the variables are simply called half-independent.

Remark 2.3. As a first remark, we note that half-independence is defined only between random variables
and not at the level of algebras, in contrast with classical and free independence. In fact, it is known from
[28] there are no other good notions of independence between unital algebras other than classical and free.

The conditions may appear at first to be somewhat artificial, but are motivated by the following natural
example.

Example 2.4. Let (,%, 1) be a (classical) probability space, and let L(u) denote the algebra of complex-
valued random variables on 2 with finite moments of all orders.

(1) Let (&;)ser be a family of independent random variables in L(u). Suppose that for each i € I, the
distribution of &; is such that
B¢ =0
unless n = m. Define random variables z; in (Ms(L(u)),E o tr) by

_ (0 &

A simple computation shows that the variables (z;);c; half-commute. Since

o} = |&[* I,
it is clear that (z?);cs are independent with respect to E o tr. Moreover, the assumption on the
distributions of the &; clearly implies that E[tr[z;, - - - z;,]] = 0 unless k is even and keri is balanced.

So (z;)ier are half-independent.
Observe also that the distribution of z; is equal to that of (£;;)'/2, where the square root is chosen
such that the distribution is even. We call this the squeezed version of the complex distribution &;
(ct. [7]).
(2) Of particular interest is the case that the (&;);cr have complex Gaussian distributions. Here the
distribution of x; is the squeezed version of the complex Gaussian &;, which is a symmetrized Rayleigh
distribution.

Remark 2.5. We will show in Proposition 2.8 below that any half-independent family can be modelled as in
the example above. First we will show that, as for classical and free independence, the joint distribution of
a family of half-independent random variables (x;);cr is determined by the distributions of x; for i € I. Tt is
convenient to first introduce the following family of permutations which are related to the half-commutation
relation.
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Definition 2.6. We say that a permutation w € S,, preserves parity if w(i) =4 (mod 2) for 1 <i < n.

The collection of parity preserving partitions in S,, clearly form a subgroup, which is simply S({1,3,...})x
S({2,4,...}). Moreover, this subgroup is generated by the transpositions (i i +2) for 1 < ¢ < n —2. It
follows that if (x;);c; half-commute, then

LTjy v

1 Li

n = Tigay " Tign)

whenever w € §,, preserves parity.

Lemma 2.7. Let (A,E : A — B) be an operator-valued probability space such that B is contained in
the center of A. Suppose that (x;);er is a family of random variables in A which are conditionally half-
independent given B. Then the B-valued joint distribution of (x;)ier is uniquely determined by the B-valued
distributions of x; fori e I.

Proof. Let i1,...,1; € I. We know that

E[xil xlk] =0
unless we have that for each ¢ € I, the set of 1 < j < k such that ¢; = ¢ has as many odd as even elements.
So suppose that this the case. By the remark above, we know that z;, ---x;, = Tigy  Tigg whenever
w € Sy is parity preserving. With an appropriate choose of w, it follows that

2(k 2(km
xll.xlk:mjl( 1),1/-]7(71 )
for some j1,...,Jm € I and kq,...,k,, € N such that k = 2(k; + -+ + k). Since the joint distribution of

(22);¢1 is clearly determined by the distributions of x; for i € I, the result follows. ]

Proposition 2.8. Let (z;)ic; be a half-commuting family of random variables in a W*-probability space
(M, ) which are half-independent. Then there are independent complez-valued random variables (&;)icr

such that E[§PEM] = 0 unless n = m, and such that (z;);er has the same joint distribution as the family

(yi)iEI;
_ (0 &
Yi = (51 0) .

Proof. Let (X;)ier be a family of independent random variables such that X; has the same distribution as ;.
Let (U;)ier be a family of independent Haar unitary random variables which are independent from (X;)¢7,
and let & = U; X;. Then (§;);cs are independent and

E[¢/&"] = EIX M EUFTE"] = Snmep(a]").
From Example 2.4, the variables (y;);cr defined by

_ (0 &
yi—(gi O)

are half-independent, and y; has the same distribution as x; for each ¢ € I. By Lemma 2.7, (y;);cr has the
same joint distribution as (z;);er. O

Remark 2.9. We have stated our results in the scalar case B = C for simplicity, but note that with suitable
modifications, Example 2.4 and Proposition 2.8 apply equally well to conditionally half-independent families.

We will now develop a combinatorial theory for half-independence, based on the family E} of balanced
partitions.

Definition 2.10. Let (A, E : A — B) be an operator-valued probability space, and suppose that B is
contained in the center of A. Let (z;);c; be a family of random-variables in A, and suppose that

E[l‘il tee l‘ik] =0
for any odd k and 4y,...,i; € I. Define the half-liberated cumulants vg) by the half-liberated moment-
cumulant formula

E[IL’“IIZ%] = Z ’)’(Eﬂ)[ﬂ}il,...,’l}ik],
TFEE;L(IC)
w<keri
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(m)

where v/ [@i,, ..., ;] is defined, as in the classical case, by the formula
i 14
Y i) = [Tl
Ver

Observe that both sides of the moment-cumulant formula above are equal to zero for odd values of k,

and for even values the right hand side is equal to 7g€) [y, -2 ] plus products of lower ordered terms

and hence ’ygﬂ) may be solved for recursively. As in the free and classical cases, we may apply the Mobius
inversion formula to obtain the following equation for fygr), m € Ep(k):

’yg)(xil,...,xik): Z uEh(k)(a,ﬂ)E(“)[xil,...,:rik].

oc€E (k)
o<m

Theorem 2.11. Let (A, E : A — B) be an operator-valued probability space, and suppose that B is contained
in the center of A. Suppose (x;)ien s a family of variables in A which half-commute. Then the following
conditions are equivalent:

(1) (z4)ien are half-independent with respect to E.
(2) Elxyy - 24,,) = 0 whenever k is odd, and

’ygr)[xil,...,xik] =0

for any ™ € Ey (k) such that m £ keri.

Proof. First suppose that condition (2) holds. From the moment-cumulant formula, we have

E[xhxlk]: Z ’Ygr)[xil7"'7xik]

TrEEh(k)

w<keri
for any k € N and iy,...,i;r € I. Observe that if keri is not balanced then there is no = € E} (k) such that
7 < keri, so it follows that E[x;, ---x;,] = 0. It remains to show that (z7);c; are independent. Choose

ky,...,kn € N, distinct 41,...,4,, € I and let k = 2(ky + - + k). Let 7 € Ej(k) be the partition with
blocks {1,...,2ki},..., {2(k1+ -+ km-1)+1,...,2k}. Then

2k 2km L
E[xgl 1){E( )]: Z ’V(E)[xiu'-'7xi1axi2a”')ximv""mim}

tm
TeEE (k‘)
T<T

H Z ’Ygr)[.’lﬁij,...,xij]

1<j<m neEy(2k;)

[T B2,

1<j<m

so that (22);c are independent and hence (z;);c; are half-independent.

The implication (1)=-(2) actually follows from (2)=-(1). Indeed, suppose that (x;);cs are half-independent.
Consider the algebra A" = B(y; : i € I)/{y;y;yx = yry;y:) of polynomials in half-commuting indeterminates
(yi)ier and coefficients in B. Define a conditional expectation E’ : A" — B by

El[ynylk]: Z 7(Eﬂ)[‘rl1vaxlk]
wEER (k)
w<keri
(It is easy to see that E’ is well-defined, i.e., compatible with the half-commutation relations). Since the
half-liberated cumulants are uniquely determined by the moment-cumulant formula, it follows that

(m) — ’y](fﬂ)[winu-awikL m < keri
YE! [yi17 7yik] = ) .
0, otherwise

By the first part, it follows that (y;);er are half-independent with respect to E’. Since y; has the same
B-valued distribution as x;, it follows from Lemma 2.7 that (y;);e; have the same joint distribution as
(zi)icr- It then follows from the moment-cumulant formula that these families have the same half-liberated

cumulants, and hence yg) [y, .-, x4,] = 0 unless 7 < keri. O
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Recall that (centered) Gaussian and semicircular distributions are characterized by the property that
their non-vanishing cumulants are those corresponding to pair and noncrossing pair partitions, respectively.
We will now show that for half-independence, it is the symmetrized Rayleigh distribution which has this
property. This follows from the considerations in [7], but we include here a direct proof.

Proposition 2.12. Let x be a random variable in (A, ) which has an even distribution. Then x has a
symmetrized Rayleigh distribution if and only if

VO, 2] =0

for any m € Ep(k) such that m ¢ Es(k).

Proof. Since the distribution of = is determined uniquely by its half-liberated cumulants, it suffices to show
that if the cumulants have the stated property then x has a symmetrized Rayleigh distribution. Suppose
that this is the case, then

o(zF) = Z A, ..., ]

e B> (k)
= O [z, 2]#{r € Ea(k)}.

It is easy to see that the number of partitions in E5(k) is m! if k = 2m is even and is zero if k is odd. Since
these agree with the moments of a symmetrized Rayleigh distribution, the result follows. (]

3. WEINGARTEN ESTIMATE

It is a fundamental result of Woronowicz [35] that if G is a compact orthogonal quantum group, then
there is a unique state [ : C(G) — C, called the Haar state, which is left and right invariant in the sense
that

(J@IAf) = [(f) Lo = 1d® [A(f),  (f€CG)).
If G C O, is a compact group, then the Haar state on C(G) is given by integrating against the Haar measure
on G.

One quite useful aspect of the easiness condition for a compact orthogonal quantum group is that it leads

to a combinatorial Weingarten formula for computing the Haar state, which we now recall from [7].

Definition 3.1. Let D(k) C P(k) be a collection of partitions. For n € N, define the Gram matric
(Grn(m,0))x,0en(k) by the formula

Gin(m,0) = nl™v7l,
Ggn, is invertible for n sufficiently large (see Proposition 3.4), define the Weingarten matriz Wy, to be its
inverse.

Theorem 3.2. Let G C O be an easy quantum group and let D(k) C P(0,k) be the corresponding collection
of partitions having no upper points. If Gy, is invertible, then

/Uml g = > Wia(m, o).

m,oeD(k)

w<keri

o<kerj
Remark 3.3. The statement of the theorem above is from [7], but goes back to work of Weingarten [34] and
was developed in a series of papers [11, 12, 2, 3]. Note that this reduces the problem of evaluating integrals
over G to computing the entries of the Weingarten matrix. We will now give an estimate on the asymptotic
behavior of Wy, as n — oco. This unifies and extends the estimates given in [2] and [15] for OT,ST.

Proposition 3.4. Let k € N and D(k) C P(k). For n sufficiently large, the Gram matriz Gy, is invertible.
Moreover, the entries of the Weingarten matric Wy, = G,;} satisfy the following:
(1) Win(m,0) = O(nlmvel=Irl=lely,
(2) If * < o, then
nlﬂ‘Wkn(Tﬁ 0) = KD(k) (7Ta U) + O(nil)a
where [ip ) is the Mobius function on the partially ordered set D(k) under the restriction of the order on
P(k).
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Proof. We use a standard method from [11, 12], further developed in [2, 3, 13].
First note that
Gin = 0,71+ Bin)©,/7,

where
| 7] _
n T=0
Orn(m,0) = ’
kn(T, 7) {O T # o,
0 ™ =0,
Bin(m,0) = q | o_lxltlo]
n 2 T # 0.

Note that the entries of By, are O(n’l/ 2), it follows that for n sufficiently large 1 + By, is invertible and
(14 Bin) ™' =1= B+ > (1) B
1>1

Gr, is then invertible, and

—|m| —
. N+ 1-1/2 pl+1n-1/2 n ) mT=0
Wkn(ﬂ-vo) - l§>1( 1) (Gkn Bkn @kn )(77’0-) + {_nﬂ-\/aﬂo" T # o :
Now for [ > 1 we have
OB Y mo) = Y altltmvesbe el =l -lo]
vi,...,y€D(k)
rAn A Fute

So to prove (1), it suffices to show that if v4,...,v; € D(k), then
[TV |+ Visl+--+ Vo <|nVoao|+ ||+ + |l
We will use the fact that P(k) is a semi-modular lattice ([10, §1.8, Example 9]): If v, 7 € P(k) then
v+ 7| <|lvVvT|+ v AT
We will now prove the claim by induction on [, for [ = 1 we may apply the formula above to find
[mVu|+lvVveol <|(rVvr)VwVao)|+|(mVv)A(r Vo)
<|rVoao|+|v.
Now let [ > 1, by induction we have
[TV + i Vel + -+ vV < |mVuyl+ |+ -+ |yl

Also |y Vol <|rVo|l+ |y|— |7V, and the result follows.
To prove (2), suppose 7,0 € D(k) and 7 < ¢. The terms which contribute to order | in the expansion
come from sequences vy, ...,v; € D(k) such that m # 14 # -+ # v # 0 and

[m V|4 + Vol =lo|+ ||+ + |l

Since |7 V| < |1, 1 Vel < |val,..., |l Vo| <o, it follows that each of these must be an equality, which
implies 7 < 11 < -+ <y < 0. Conversely, any v1,...,v € D(k) such that 7 < v; < -+ < v < o clearly
satisfy this equation. Therefore the coefficient of =™l in Wy, (7, o) is

1, T=0
{—1 + 32 (D (v, u) eDR) ir<wn <<y <o}, T<o
which is precisely ppx)(m, o). |

Recall that the free, half-liberated and classical cumulants are obtained from moment functionals by using
the Moébius functions on NC, Ej, and P, respectively. To show that this is compatible with Proposition 3.4,
we will need the following result.

Proposition 3.5.
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(1) IfD = NC7NCQ,NCb7NCh, then

KD (k) (m,0) = HNC(k) (m,0)
for all m,0 € D(k).
(2) If D = Ey, Es, then
MD(k)(ﬂ'y o) = KE, (k) (m,0)
for all m,0 € D(k).
(3) If D = P, Py, Py, Py, then
D) (T, 0) = pp( (7, 0)
for all m,0 € D(k).
Proof. Let @ = NC, E},, P according to cases (1), (2), (3). It is easy to see in each case that D(k) is closed
under taking intervals in Q(k), i.e., if w1, 72 € D(k), 0 € Q(k) and m; < 0 < w3 then o € D(k). The result
now follows immediately from the definition of the Mobius function. O

4. FINITE QUANTUM INVARIANT SEQUENCES

We begin this section by defining the notion of quantum invariance for a sequence of noncommutative
random variables under “transformations” coming from an orthogonal quantum group G, C O;'.
Let &, = C(t1,...,tn), and let oy, : &, = P, @ C(G,,) be the unique unital homomorphism such that

n
O[n(tj) = Ztl (24 Ugyj -
i=1

It is easily verified that «,, is an action of G, i.e.,
(id® A) o a, = (v, ®id) 0 vy,
and
(id®e€)oay, =id.
Definition 4.1. Let (z1,...,2,) be a sequence of random variables in a noncommutative probability space
(B, p). We say that the joint distribution of this sequence is invariant under G,, or that the sequence is
G -invariant, if the distribution functional ¢, : &, — C is invariant under the coaction «,,, i.e.
(pz ®@id)an(p) = @ (p)
for all p € &,,. More explicitly, the sequence (z1,...,2,) is Gy-invariant if
oy, xi )l = D, o(@i m g, i,
1<idy,.. ik <n
as an equality in C(G,,), for all k e Nand 1 < ji,...,j5r < n.

Remark 4.2. Suppose that G,, C O,, is a compact group. By evaluating both sides of the above equation at
g € G, we see that a sequence (z1,...,2,) is Gp-invariant if and only if

@) xp) = > Gig o G P, i)
1<iy,..ig<n

foreachk € N, 1 <ji,...,jx <nandg = (gi;) € Gy, which coincides with the usual notion of G,,-invariance
for a sequence of classical random variables.

We will now prove a converse to Theorem 1, which holds for finite sequences and in a purely algebraic
context. The proof is adapted from the method of [25, Proposition 3.1].

Proposition 4.3. Let (A, ) be a noncommutative probability space, 1 € B C A a unital subalgebra and

E : A — B a conditional expectation which preserves p. Let (x1,...,x,) be a sequence in A.
(1) Free case:
(a) Ifx1,...,x, are freely independent and identically distributed with amalgamation over B, then
the sequence is S, -invariant.
(b) If x1,...,x, are freely independent and identically distributed with amalgamation over B, and

have even distributions with respect to E, then the sequence is H,' -invariant.
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(¢) If x1,..., 2y are freely independent and identically distributed with amalgamation over B, and
have semicircular distributions with respect to E, then the sequence is B, -invariant.
(d) If x1,...,x, are freely independent and identically distributed with amalgamation over B, and

have centered semicircular distributions with respect to E, then the sequence is O, -invariant.
(2) Half-liberated case: Suppose that (x1,...,x,) half-commute, and that B is central in A.
(a) If x1,...,x, are half-independent and identically distributed given B, then the sequence is H} -
tmvariant.
(b) If x1,...,x, are half-independent and identically distributed given B, and have symmetrized
Rayleigh distributions with respect to E, then the sequence is O} -invariant.

(3) Suppose that B and x1,...,x, generate a commutative algebra.

(a) Ifz,...,z, are conditionally independent and identically distributed given B, then the sequence
is Sy, -invariant.

(b) If z1,...,xn are conditionally independent and identically distributed given B, and have even
distributions with respect to E, then the sequence is H,-invariant.

(¢) Ifxy,...,x, are conditionally independent and identically distributed given B, and have Gauss-
ian distributions with respect to E, then the sequence is B, -invariant.

(d) Ifxi,...,x, are conditionally independent and identically distributed given B, and have centered

Gaussian distributions with respect to E, then the sequence is Oy, -invariant.

Proof. Suppose that the joint distribution of (zi,...,z,) satisfies one of the conditions specified in the
statement of the proposition, and let D be the partition family associated to the corresponding easy quantum
group. By Propositions 1.17 and 2.11, and the moment-cumulant formulae, for any k € Nand 1 < jq,...,jk <
n we have

Z (i - xik)uiljl T Wi, = Z (p(E['le T 'Tjk])uiljl T Wi gy,

1<dy,...ik<n 1<iy,...,ik<n

Z Z @(S(EW) [1‘1, e ’xl])uiljl © Wiy

1<iy,...,ix<n WED(k)

m<keri
_ ()
= > e m)) D Wirgy " Wigjy s
reD(k) 1<is,..in<n
w<keri

where ¢ denotes the free, half-liberated or classical cumulants in cases (1), (2) and (3) respectively. It follows
from the considerations in [7], or by direct computation, that if # € D(k) then

lew@,), m™<kerj
Z WUiyjy = Wiggp =

herwise -
1<in,..ip<n 0, otherwise

w<keri
Applying this above, we find

S el mi U g, = Y 6 o)) lee,)

1<iy,...,ixk<n meD(k)
m<kerj

= (), z5.) @),
which completes the proof. O
Remark 4.4. To prove the approximation result for finite sequences, we will require more analytic structure.
Throughout the rest of the section, we will assume that G,, C O} is a compact quantum group, (M, ¢) is a

W*-probability space and (x1,...,%,) is a sequence of self-adjoint random variables in M. We denote the
von Neumann algebra generated by (z1,...,2,) by M,, and define the G,,-invariant subalgebra by

By =W ({p(z) :p € Z3}),
where &% denotes the fixed point algebra of the action a,, i.e.,

P =1{pe€ Py an(p) =p® 1o}
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We now begin the technical preparations for our approximation result. First we will need to extend the
action «, to the von Neumann algebra context. L>°(G,,) will denote the von Neumann algebra obtained by
taking the weak closure of m,(C(G},)), where 7, is the GNS representation of C(G,,) on the GNS Hilbert
space L*(G,,) for the Haar state. L>(G,,) is a Hopf von Neumann algebra, with the natural structure induced

from C(Gy).

Proposition 4.5. Suppose that (z1,...,x,) is Gp-invariant. Then there is a right coaction &, : M, —
M, ® L*>(G,,) determined by

an(p(x)) = (evy @ mn)an (p)
forp € 2,. Moreover, the fixed point algebra of &, is precisely the G, -invariant subalgebra B, .

Proof. This follows from [13, Theorem 3.3], after identifying the GNS representation of &2, for the state @,
with the homomorphism ev,, : &, — M,. O

There is a natural conditional expectation E,, : M, — B, given by integrating the coaction &, with
respect to the Haar state, i.e.,
E,m] = (id® [)a,(m).
By using the Weingarten calculus, we can give a simple combinatorial formula for the moment functionals
with respect to E,, if G,, is one of the easy quantum groups under consideration. In the half-liberated case,
we must first show that B,, is central in M,,.

Lemma 4.6. Suppose that (z1,...,x,) half-commute. If HY C G,, then the Gy -invariant subalgebra B, is
contained in the center of M,,.

Proof. Since the G,-invariant subalgebra is clearly contained in the H;-invariant subalgebra, it suffices to
prove the result for G,, = H}. Observe that the representation of G,, on the subspace of &, consisting of
homogeneous noncommutative polynomials of degree k, given by the restriction of «,,, is naturally identified
with u®*, where u is the fundamental representation of G,,. As discussed in Section 1, Fix(u®¥) is spanned
by the operators T} for w € Ej (k). It follows that the fixed point algebra of «,, is spanned by

Dr = Z iy - Liys

1<iy,...in<n

w<keri
for k € Nand 7 € Ep(k). Therefore B, is generated by p, (), for k € Nand 7 € Ep(k). Recall from Section 2
that if w € S is a parity preserving permutation, then x;, - &, = ;. =~ Ti, forany 1 <iy, ..., 15 <n.

It follows that pr(x) = py(x)(x), where w(m) is given by the usual action of permutations on set partitions.
Now if m € Ep(k), it is easy to see that there is a parity preserving permutation w € Sy such that

wm)={1,...,2k1),..., 2%k + -+ k1) +1,....2(k1 +...+ k))}

is an interval partition. We then have

o (2) = P (2) = (Z ) (Z )

ir=1 =1
Since xf is central in M, for 1 < ¢ < n, the result follows. O
Proposition 4.7. Suppose that (z1,...,2,) is Gp-invariant, and that one of the following conditions is
satisfied:

(1) G, is a free quantum group O}, S}t Hf or B;f.

(2) Gy, is a half-liberated quantum group O} or H} and (x1,...,x,) half-commute.

(3) G, is an easy group Oy, Sy, Hy, or B, and (x1,...,2,) commute.
Then for any m in the partition category D(k) for the easy quantum group G, and any by, ..., by € By, we
have

1
E™[boxiby,. .. x1b] = T Z bow;, - - - wi, by,

1§i1,...,ik§n
w<keri

which holds if n is sufficiently large that the Gram matrix Gy, is invertible.
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Proof. We prove this by induction on the number of blocks of 7. First suppose that m = 1 is the partition
with only one block. Then

Eﬁlk)[bofrlbl, -y 2] = Eplboxy -+ 210y
= > bo:ch"'xikbk/uill"'uikl’
1<iy,...,ix<n

where we have used the fact that by, . . ., by are fixed by the coaction &,,. Applying the Weingarten integration
formula in Proposition 3.2, we have

En[boxl "'Ilbk] = E bOIil zzkbk E Wkn(ﬂ,a)
1<iy,...ixk<n o,m€D(k)
w<keri
E < § Wkn 7T U ) E bO-Til B -T'Lkbk
weD(k) “oeD(k 1<iy,...,ixr<n
mw<keri

Observe that Gy, (0, 1) = nloVl = n for any o € D(k). Tt follows that for any = € D(k), we have
Z Win(m, o) Z Win(m,0)Grn (0o, 11)
oceD(k) oceD(k)
= 0r1,-
Applying this above, we find

En[bol'l s xlbk] = Z n715ﬂk Z bo(Eil s xikbk

meD(k) 1<i1,..,0k<n
w<keri

1 n
== bow;- - wibg,
i3

as desired.
If condition (2) or (3) is satisfied, then the general case follows from the formula
E{ boaibr, ..., x1bg] = by -+ by H E,(V)[xy,...,21],
Ven

where in the half-liberated case we are applying the previous lemma. The one thing we must check here is
that if 7 € D(k) and V is a block of 7 with s elements, then 1, € D(s). This is easily verified, in each case,
for D = P, PQ, P}L, Pb, Eh, EQ.

Suppose now that condition (1) is satisfied. Let = € D(k). Since 7 is noncrossing, 7 contains an interval
V={l+1,...,l+s+1}. We then have

E,SLW) [boﬂ?lbh e ,l‘1bk] = Eéw\v)[boxlbl, ey En[l'lbl+1 e x1b1+s]x1, ey $1bk]

To apply induction, we must check that 7\ V € D(k — s) and 1, € D(s). Indeed, this is easily verified for
NC,NC5, NCy, and NCjp. Applying induction, we have

1
E{ boarbr, ..., x1b] = =T Z bozi, -+ by (En[xlblﬂ : "flbl+s}>33iz+s T by
n 1<, iy,
Ugstlyte<N
(m\V)<keri

1 1 «
= 1 Z boxi, -+ - by (n ;mibl-i—l a $¢bz+s> Tip,, o Ti b

C1<idy, e,
st lseik <N
(m\V)<keri

1
T > bowi, @i b,

1§i1,...,ik§n
w<keri

which completes the proof. O
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We are now prepared to prove the approximation result for finite sequences.

Theorem 4.8. Suppose that (x1,...,xy) is Gn-invariant, and that one of the following conditions is satisfied:
(1) G, is a free quantum group O}, S}, Hf or B;f.
(2) G, is a half-liberated quantum group O or HY and (x1,...,2,) half-commute.
(3) G, is an easy group Oy, Sy, Hy, or B, and (x1,...,2,) commute.
Let (y1,...,yn) be a sequence of By,-valued random variables with B,,-valued joint distribution determined as
follows:
e G = O7v: Free semicircular, centered with same variance as x1.
e G = ST: Freely independent, y; has same distribution as x.
e G = H™T: Preely independent, y; has same distribution as x1.
o G = BT: Free semicircular, same mean and variance as ;.
o G = O*: Half-liberated Gaussian, same variance as xj.
o G = H*: Half-independent, y; has same distribution as 1.
o G = O: Independent Gaussian, centered with same variance as x1.
e G = S: Independent, y; has same distribution as x1.
e G = H: Independent, y; has same distribution as xi.
e (G = B: Independent Gaussian, same mean and variance as xi.

If1<j1,...,0k <n and by, ...,b € By, then

1[I [1bol - - - 1B,

CL(G
| En[boz, - - 25,br] — Elboys, - - y5.bil || < #

where C(G) is a universal constant which depends only on k and the easy quantum group G.

Proof. First we note that it suffices to prove the statement for n sufficiently large, in particular we will
assume throughout that n is sufficiently large for the Gram matrix Gk, to be invertible.
Let 1 < j1,...,5k <nand by,...,b; € B,. We have

Enlboxy, - ap bl = ) boi, "'fﬂikbk/uum Uiy
1<iy,.oyig<n.
= g boxi, - -+ i, by E Wi (7, 0)

1<iy,..,ix<n m,0€D(k)
m<keri
o<kerj

E E Wkn T, O’ E bowil . '«Tz‘kbk-
oceD(k) meD(k) 1<iy,..,ixg<n
o<kerj m<keri
On the other hand, it follows from the assumptions on (yi,...,¥y,) and the various moment-cumulant for-

mulae that

E[bOyjl yjkbk Z f boxlb1, e ,ZElbk}

oceD(k)
o<kerj

where £ denotes the relevant free, classical or half-liberated cumulants. The right hand side can be expanded,
via Mobius inversion, in terms of expectation functionals E™ [box1b1, ..., x1b;] where 7 is a partition in
NC, Ey, P according to cases (1), (2), (3), and m < o for some o € D(k). Now if # ¢ D(k) then we claim
that this expectation functional is zero. Indeed this is only possible if D = NC5, NC},, P>, Py, and 7 has
a block with an odd number of legs. But it is easy to see that in these cases x; has an even distribution
with respect to E,, and therefore Eff) [box1b1,...,z1b;] = 0 as claimed. This observation, together with
Proposition 3.5, allows to to rewrite the above equation as

Elboyj, - -yibil = Y > ppy(m o) B [bowiby, ..., w1b]

oceD(k) meD(k)
o<lkerj =n<co
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Applying Lemma 4.7, we have

Elboyj, --yibl = Y Y ppwmaon ™ N by, i, by

oceD(k) meD(k) 1<iy,...,ix<n
o<kerj n<o mw<keri

Comparing these two equations, we find that

Eynlboxj, - - - x;5,01] — Elboyy, - - - ¥, 0k]

Z Z (Win(m,0) = ppge (T, a)n_‘”‘) Z boxi, - - i, b

ceD(k) meD(k) 1<iy,...,ix<n
o<kerj w<keri

Now since 1, ...,z, are identically distributed with respect to the faithful state ¢, it follows that these
variables have the same norm. Therefore

S bowi, e wi b

1<iy,..., ik <n
w<keri

< ™| [boll - 1o

for any m € D(k). Combining this with former equation, we have

| Enlboz;, - - - 5,bx] — Elboy;, "'yjkbk]H

< > Waa(m, o)™ = ppgy ()|l [*[[boll - - - [0k -
aGD(k)ﬂED(k
o<kerj
Setting
Cr(G) =sup n - Z Wi (7, 0)n |7 ‘—,uD( y(m,0)l,
neN o,meD(k)
which is finite by Proposition 3.4, completes the proof. |

5. INFINITE QUANTUM INVARIANT SEQUENCES

In this section we will prove Theorem 1. Throughout this section, we will assume that G is one of the
easy quantum groups O, S, H, B,O* H* Ot ST H* or Bt. We will make use of the inclusions G,, < G,
for n < m, which correspond to the Hopf algebra morphisms wy, ., : C(Gy,) — C(G,,) determined by

an(ul): > lél’jén .
’ / 5ij]-C(Gn)> max{i,j} >n

The existence of w;, ,,, may be verified in each case by using the universal relations of C(G,,).
We begin by extending the notion of G,,-invariance to infinite sequences.

Definition 5.1. Let (z;);en be a sequence in a noncommutative probability space (A, ). We say that
the joint distribution of (z;);en is invariant under G, or that the sequence is G-invariant, if (z1,...,2,) is
G p-invariant for each n € N.

This means that the joint distribution functional of (z1,...,z,) is invariant under the action o, : &, —
P, ®C(Gy,) for each n € N. It will be convenient to extend these actions to P, = C(t; : i € N), by defining
Bn: P = Poo ® C(G,,) to be the unique unital homomorphism such that

n .
Bo(t;) = Do ti ® gy, 1.§j§7l.
tj®lee,), J>n
It is clear that 3,, is an action of GG,,, moreover we have the relations
(ld o2 wn,m) o ﬂm = ﬂn

and
(tn ®id) 0 apy = B © Ly,
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where ¢, : &, — P is the natural inclusion. Using these compatibilities, it is not hard to see that a
sequence (x;);en is G-invariant if and only if the joint distribution functional ¢, : ., — C is invariant
under 3, for each n € N.

Throughout the rest of the section, (M, ) will be a W*-probability space and (z;);en a sequence of
self-adjoint random variables in (M, ¢). We will assume that M is generated as a von Neumann algebra by
{x; i € N}. L?(M, ) will denote the GNS Hilbert space, with inner product (m;,ms) = ¢(mjmsz). The
strong topology on M will be taken with respect to the faithful representation on L?(M, ). We set

B, =W*({p(z) : p € L}),
where ngg is the fixed point algebra of the action [,. Since

(id ® wn,n+1) © 6n+1 = Bn7
it follows that B, 11 C B, for all n > 1. We then define the G-invariant subalgebra by
B=()B.
n>1

Remark 5.2. If (x;)ien is G-invariant, then as in Proposition 4.5, for each n € N there is a right coaction
Brn: M — M ® L*(G),) determined by

En(p(m)) = (eVz ® 7Tn)/Bn(p)

for p € &, and moreover the fixed point algebra of Bn is By,. For each n € N, there is then a ¢-preserving
conditional expectation E,, : M — B, given by integrating the action 3,, i.e.

Ep[m] = (id® [)Bn(m)
for m € M. By taking the limit as n — 0o, we obtain a @-preserving conditional expectation onto the
G-invariant subalgebra.

Proposition 5.3. Suppose that (z;);en is G-invariant. Then:

(1) For any m € M, the sequence E,[m] converges in | |2 and the strong topology to a limit E[m] in B.
Moreover, E is a p-preserving conditional expectation of M onto B.
(2) Fixme NC(k) and my,...,my € M, then

E(”)[ml R mk] = lim Eﬁf)[ml R mk],
n—oo
with convergence in the strong topology.

Proof. This follows from [14, Proposition 4.7]. Note that (1) is just a simple noncommutative reversed
martingale convergence theorem. More sophisticated convergence theorems for noncommutative martingales
have been obtained, see e.g., [21, 22]. O

We are now prepared to prove Theorem 1.

Proof of Theorem 1. Let ji,...,jr € N and by, ...,bx € B. As in the proof of Theorem 4.8, we have

Elboxj, - -z, by] = nh_{r;() E,nboxj, - - 4,0k
= lim E E Wkn(ﬂ'7 0’) E boxil tee xikbk
n—o00
ceD(k) mreD(k) 1<i1,...,ix<n
o<kerj w<keri
= lim E E Kok (T, U)nflﬂ E boxs, -+ - i, br.
n—o00 ] i
oceD(k) meD(k) 1<iy,..,ix<n
o<kerj n<o m<ker i

By Proposition 4.7, and using the compatibility
(Zn ® ld) o an - En Ofna
where 7, : W*(z1,...,x,) — M is the obvious inclusion and &, is as in the previous section, we have

E[b0$j1 Ty bk] = nh—>nolo Z Z ND(k) (7‘(, U)E,r(lﬂ') [boxlbl, e ,$1bk].

oceD(k) meD(k)
o<lkerj =w<o
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By (2) of Proposition 5.3, we obtain

E[bol'jl e l‘jkbk} = Z Z ,UD(k)(ﬂ'v O')E(W) [b01‘1b1, e ,l‘lbk].
oeD(k) meD(k)
o<kerj w<o
As discussed in the proof of Theorem 4.8, we can replace the sum of expectation functionals by cumulants
to obtain
E[b()l’jl e xjkbk] = Z 52‘7) [b()l’lbl, e ,l’lbk],

oceD(k)
o<kerj

where £ denotes the relevant free, half-liberated or classical cumulants. Since the cumulants are determined
by the moment-cumulant formulae, we find that

¢ bozaby,. .., a1be], o € D(k) and o < kerj

(o) boxi b C b =
€p [boxj b1, ... 2, by 0, otherwise

The result then follows from the characterizations of these joint distributions in terms of cumulants given in
Theorem 1.17 and Propositions 2.11 and 2.12. O

Remark 5.4. For simplicity, we have restricted to elements of a von Neumann algebra, i.e., bounded random
variables, in the statement of Theorem 1. However, for the easy quantum groups O, B and O* the result
implies that the variables must have unbounded distributions. In the classical setting, the boundedness
assumption can be easily replaced by the condition that x; has finite moments of all orders. The key
differences are as follows:
First, in the classical case one can replace the uniform bound in Theorem 4.8 by the LP estimate
< GG
n

p =

|En[xj1"'xjk] _E[yj1"'yjk]| |1'1|I;kv

where | |, denotes the LP-norm. The proof is identical, except that one uses Holder’s identity |x;, - - - x4, |p <
|x1|§k for any 1 <iy,...,ip <n.

Secondly, Proposition 5.3 is replaced by a standard LP reversed martingale convergence theorem (the
statement for expectation functionals requiring another application of Hélder).

With these technical modifications, the proof of Theorem 1 shows that any infinite B (resp. O) invariant
sequence of classical random variables with finite moments of all orders has the same joint moments with
respect to B as a conditionally i.i.d. (centered) Gaussian family. But this is sufficient to determine the joint
distribution with respect to B, since the Gaussian distribution is characterized by its moments.

Likewise, the result for O* still holds if (x;);en are of the form in Example 2.4, where |§;| has finite
moments of all orders. The details are left to the reader.

6. CONCLUDING REMARKS

We have seen in this paper that the “easiness” condition from [7] provides a good framework for the study
of de Finetti type theorems for orthogonal quantum groups.

A first natural question is what happens in the unitary case. For the classical unitary group U,, it is
well known that an infinite sequence of complex-valued random variables is unitarily invariant if and only if
they are conditionally i.i.d. centered complex Gaussians. For the free unitary group U,! this is considered in
[14], where it is shown that an infinite sequence of noncommutative random variables is quantum unitarily
invariant if and only if they form an operator-valued free circular family with mean zero and common variance.
However, the study and classification of easy quantum groups seems to be a quite difficult combinatorial
problem in the unitary case, we refer to the concluding section of [7] for a discussion here.

In addition to the 14 easy quantum groups discussed in this paper, there are also two infinite series Hff)
and H,[f], s = 2,3,...,00, which are related to the complex reflection groups H,; = Zs;1S,. These are
described in [5], with the conjectural conclusion that the class of easy quantum groups consists of the 14
examples discussed in this paper, and a multi-parameter “hyperoctahedral series” unifying H,(LS) and H,[f].
It is a natural question whether there are de Finetti type results for this series, with corresponding notions
of “independence”, and we plan to return to this question after completing the construction.
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A third question is whether the approximation result in Theorem 4.8 can be strengthened. The main
tool that we have available at this time, namely the Weingarten formula, is only suitable for estimates on
the joint moments. In [17], Diaconis and Freedman give refined estimates on the variation norm between
the distribution of the coordinates (u11,...,u1x) on S, (resp. O,) and an independent Bernoulli (resp.
Gaussian) distribution. This is used to prove finite de Finetti type results, where the approximations hold
in variation norm. It is known from [2, 3] that the coordinates (uj1,...,u1x) on S;7 and O;f converge in
moments to freely independent Bernoulli and semicircular distributions, and it is a natural question whether
these converge in a stronger sense. For k = 1, it is known from [4] that the distribution of n'/?uy; in C(O;)
“superconverges” (in the sense of [9]) to the semicircle law, but nothing is currently known for k& > 1.

Another question is whether the results of Aldous [1] for invariant arrays of random variables have suitable
extensions to easy quantum groups. We will consider this problem first for free quantum groups, in a
forthcoming paper [16].

Another basic symmetry for a sequence of classical random variables is spreadability, i.e. invariance under
taking subsequences. Ryll-Nardzewski proved in [27] that de Finetti’s theorem in fact holds under this
apparently weaker condition. A free analogue of this condition, and of Ryll-Nardzewski’s theorem, has been
obtained in [15].

Finally, there is the general question of applying our “S,,O,, philosophy” to other situations. In [6], we
have developed a global approach, using the “easiness” formalism, to the fundamental stochastic eigenvalue
computations of Diaconis and Shahshahani [19].
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