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Abstract. This is an introduction to free manifolds, and to analysis on them. The space
RN has no free analogue, but the unit sphere does have a free analogue, SN−1

R,+ . More

generally, we can talk about submanifolds X ⊂ SN−1
R,+ , which under suitable assumptions

have a Laplace operator ∆. We discuss here the basics of free manifolds, then the
Laplace equation ∆f = 0 in this setting, and then various free analogues of the main
PDE of physics. The mathematics is quite interesting, suggesting the existence of a free
electrodynamics theory, conjecturally related to questions in QCD.



Preface

As you surely know, the main question in theoretical physics is that of improving the
Standard Model for elementary particles, which dates back to the 1970s. Although there
have been many discoveries recently in quantum physics, sometimes accompanied by new
engineering feats, the truth remains that our basic knowledge of quantum theory goes
back to that old model. And as long as we remain unable to improve that model, our
flagship quantum technologies, such as nuclear power, will basically remain stuck.

You probably know too that theoretical physicists are not alone in struggling with
this question, because large branches of mathematics are trying to solve this problem too.
Indeed, this is certainly true for many people doing PDE or probability, who often get
involved, openly, into such questions. As for pure mathematics, that is not as pure as it
might seem, because its main architects from the 70s and 80s, such as Atiyah, Connes,
Jones and others, were having precisely these Standard Model questions in mind.

The aim of the present book is to present one of the many speculations that can be
made, in connection with such questions. Importantly, while not yet really connected to
physics, these speculations are quite fresh, going back to the 2010s and early 2020s, and
so are a sort of a “start-up” operation, whose potential remains to be determined.

The starting point is the start of quantum mechanics, as we know it from Heisenberg
and others. As you zoom down, to the level of protons, electrons and neutrons, things
become noncommutative. And this leads to the natural idea that, maybe, if we zoom
further down, things might perhaps drastically simplify, and become free.

At the first glance, this might sound like a worthless, wild speculation. However, there
is in fact increasing evidence for this. To start with, linguistically at least, it is known
since 1973 that quarks are subject to “asymptotic freedom”, and whether that famous
freedom is the same as mathematical freeness, remains to be determined.

More concretely now, Connes and collaborators have done a lot of work on the Stan-
dard Model in their noncommutative geometry formulation, and one of the features of
their formalism is that it allows the construction of a “free gauge group” of the Standard
Model. Via some standard twisting results, acting on the QED part is S+

4 , and acting on
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4 PREFACE

the QCD part is S+
9 . This is quite interesting, suggesting that QED and QCD, suitably

twisted, might be some sort of Yang-Mills theories based on S+
4 , S

+
9 , respectively.

Another approach, with the theory here going back to work of Yang-Baxter, Faddeev
and the Leningrad School, then Drinfeld-Jimbo, and especially Jones and others, is via
statistical mechanics and lattice models. Again, this leads to quantum groups, which are
traditionally deformed with the help of a parameter q ∈ C, but which can be as well
undeformed, and rather free, depending on which precise model you are looking at.

Yet another approach, and facet of the problem, which is the one that we will describe
in this book, is via some sort of “reverse engineering”. Indeed, let us temporarily forget
about physics. Mathematically then, a free sphere SN−1

R,+ is not hard to construct, and
afterwards you can simply go ahead with mathematics, developed without thinking much:
free manifolds, free Laplace operator, free harmonic functions, free PDE. In short, free
everything, and the question which appears at the end, coming from free PDE, is whether
that new mathematics corresponds to some sort of “free physics”, and then, importantly,
whether that free physics is true physics, at very small scales, or not.

This sounds quite reasonable, and we will have here a look, at all this. The conjecture
at the end will be that there should be a kind of “free electrodynamics” theory, very
related to QCD. However, a bit as before with the above-mentioned other approaches,
this remains just a facet of the problem. Further advancing, and then putting all the
pieces of the puzzle together, remains of course an open problem.

Many thanks go to my colleagues who contributed to the theory discussed here.
Thanks as well to my sister Valeria, who’s a mathematician like me, but doing hard-
line PDE, and I will certainly find a way to talk about her exciting work with Luis, in this
book. Finally, many thanks to my PDE colleagues in Cergy, and cats at home, nothing
better as work environment, than being surrounded by various apex predators.

Cergy, February 2025

Teo Banica
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Part I

Free space



Plain talking
Take us so far

Broken down cars
Like strung out old stars



CHAPTER 1

Free spheres

1a. Free tori

Welcome to freeness. We will be interested in this book in developing free geometry
and analysis, with the hope that all this might be related to physics, at very small scales,
quarks or below. Before anything, all this is well-known to be complicated business, and
technically, it is an open problem. So, we will use a trick, developing first as much free
geometry and analysis as we can, hard work done in the dark, a bit like miners working
in a mine, and only afterwards, towards the end of the book, we will go to the surface,
and look at all this under the light of true physics, see if we have some diamonds or not.
With diamond meaning free PDE having an interesting physical meaning.

In short, expect a lot of mathematics, at least to start with, correct as mathematics
usually comes, but not necessarily very logical, also as mathematics usually comes.

Helping with writing, however, will be my cat assistant, who knows some physics.
Usually cats won’t tell, at that level of wisdom you admire this world as it was created,
with bigger animals eating smaller animals, evolution and so on. However, I have my own
tricks, and although I’m very slow, and with a lame diet by his standards, cat ranks me
somewhere higher than dogs and bears, and is sometimes willing to help.

And good news, cat is here, so let’s ask him how to get started:

Cat 1.1. Normally for high speed physics and freeness, you need to be fast and free
yourself. But yes, do some math, and start with what you know.

Thanks cat, I was kind of expecting this, but the advice at the end is really helpful. I
was twisting my mind with looking for a free analogue of RN , for developing afterwards
free geometry and analysis inside, sort of a nice program, as any mathematician would
do. But, as cat says, let’s better relax, and start with what we know.

So, what’s free? The simplest free object in mathematics is the free group FN :

Definition 1.2. The free group FN is the infinite group

FN =
〈
g1, . . . , gN

∣∣∣ ∅〉
generated by N variables g1, . . . , gN , with no relations between them.
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12 1. FREE SPHERES

This might look a bit abstract, but no worries, FN has some interesting mathematics,
coming right away, if you have some knowledge in discrete groups, and know how to look
for interesting questions. For instance if you want to draw the Cayley graph of FN , whose
vertices are the elements of FN , with edges h − k drawn when h = g±1

i k for some i, you
will end up with an interesting picture, which at N = 2 looks like this:

•

• • •

• •

• • • • •

• •

• • •

•
And this type of graph certainly has interesting mathematics. One good question

for instance is that of computing the number of length 2k loops based at the root. An-
other question, which is in fact equivalent, via moments, is that of computing the Kesten
measure of FN , which is that of the following variable in the group algebra of FN :

χ = g1 + . . .+ gN

All this looks very good, we most likely have here our first object of free geometry,
the above graph, regarded as some sort of “manifold”, and mathematically speaking, this
manifold is as good and interesting as manifolds can get. However, before going ahead
with loops and Kesten, let’s ask the cat, who’s still around. Not that I need help with
math, but sometimes a piece of recognition from a fellow physics colleague, for a bright
idea like this, can bring pleasure. To my surprise, however, cat answers:

Cat 1.3. You got it wrong with your math, that graph is not continuous, even by alien
standards. It’s the dual of FN which is a free manifold.

Thanks cat, and interesting remark, indeed. In fact, I was too quick in developing free
geometry, and forgot to think at classical geometry first. Here, if there is an interesting
formula in relation with free groups and manifolds, this is the following formula, with
TN = TN being the usual torus, and with ZN being the free abelian group:

TN = ẐN

Thus, getting back now to our free group FN , which is the free analogue of ZN , it is its

dual F̂N which is a free manifold, and more specifically the free analogue of TN . Which
is a nice finding, so let us formulate our conclusions as follows:
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Definition 1.4. The free torus T+
N is the dual of the free group FN ,

T+
N = F̂N

in analogy with the fact that the usual torus TN = TN appears as

TN = ẐN

with on the right the group ZN being the free abelian group.

It is of course possible to formulate things more precisely, and we will be back to
this in a moment, but before that, isn’t this a bit too abstract? But the point here is
that no, at the level of questions to be solved, these remain the same, as for instance the
computation of the Kesten measure, which is now a “function” on the free torus:

χ ∈ C(T+
N)

In fact, this function is the main character of T+
N , regarded as a compact quantum

group, and so our Kesten problem suddenly becomes something very conceptual, namely
the computation of the law of the main character of T+

N . Which is very nice.

Before getting into details regarding all this, recall that RN is as interesting as CN .
So, let us formulate as well the real version of Definition 1.4, as follows:

Definition 1.5. The free real torus, or free cube, T+
N is the dual

T+
N = L̂N

of the group LN = FN/ < g2i = 1 >, in analogy with the fact that the usual cube is

TN = ẐN
2

with on the right the group ZN
2 being the free real abelian group.

Here the “real” at the end stands for the fact that the generators must satisfy the
real reflection condition g2 = 1. As for the fact that “real torus = cube”, as stated, this
needs some thinking, and in the hope that, after such thinking, you will agree with me
that there is indeed a standard torus inside RN , and that is the unit cube.

As before with the free complex torus T+
N , there is some mathematics to be done with

the free real torus T+
N , for instance in relation with the law of χ = g1 + . . .+ gN .

Summarizing, all this sounds good, we have a beginning of free geometry, both real
and complex, worth developing, by knowing at least what the torus of each theory is. In

practice now, at the level of details, in order to talk about T+
N = F̂N and T+

N = L̂N we
need an extension of the usual Pontrjagin duality theory for the abelian groups, and this
is best done via operator algebras, and the related notion of compact quantum group.
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1b. Quantum spaces

In view of the above, in order to fully understand what happens, let us start with
operator algebras. You have probably already heard about infinite matrices, operators
and operator algebras, from Heisenberg, Schrödinger, Dirac and others. As a starting
point for this, we need a complex Hilbert space H, with the main example in mind being
the space H = L2(R3) of the wave functions of the electron. So, let us formulate:

Definition 1.6. A Hilbert space is a complex vector space H, given with a scalar
product < x, y >, satisfying the following conditions:

(1) < x, y > is linear in x, and antilinear in y.
(2) < x, y > =< y, x >, for any x, y.
(3) < x, x >> 0, for any x ̸= 0.
(4) H is complete with respect to the norm ||x|| = √< x, x >.

This looks nice and correct, with the remark that (4) assumes that you know about
Cauchy-Schwarz, but thinking well, I’m using here mathematicians’ convention for scalar
products, linear at left, and aren’t we supposed to do as Dirac and other physicists do,
with the scalar products linear at right. And making a decision here does not seem to be
an easy question, shall we trade the usefulness of Dirac’s bras and kets < x| and |y > for
mathematical simplicity, I mean what’s simple and linear must come first.

I’m afraid I will have to disturb again the cat. And cat says:

Cat 1.7. Bras and kets are made to interact, and love each other, and that vertical
bar is a bad idea, preventing the physics to happen.

Interesting remark, so if I understand well < x|y > being a bad idea, and I fully agree
with this because that vertical bar | slows down computations anyway, we are left with
< x, y >, and free to choose the linearity as we like. So, Definition 1.6 is correct.

Moving ahead, we need to talk about operators. Again, you might have heard of
these from Heisenberg, Schrödinger, Dirac and others, and with the theory being quite
complicated to read and digest, because these operators, while fortunately self-adjoint,
are unfortunately unbounded. However, cat who’s still around, declares:

Cat 1.8. Self-adjoint and unbounded operators are nice, but not fast enough. For fast
physics, you need non-self-adjoint, bounded operators.

Thanks cat, this sounds good, and again agrees with my mathematical intuition, the
bounded operators are the simplest, and who cares about self-adjointness, and I would be
even happier not to get into that, I prefer these bounded operators to be arbitrary.

So, bounded operators. These are in fact quite tricky to study, even when taken
arbitrary, and after some work, we can formulate, as a first theorem for our book:
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Theorem 1.9. The linear operators T : H → H which are bounded, meaning that

||T || = sup
||x||≤1

||Tx||

is finite, form a complex algebra B(H), having the following properties:

(1) B(H) is complete with respect to ||.||, so we have a Banach algebra.
(2) B(H) has an involution T → T ∗, given by < Tx, y >=< x, T ∗y >.

In addition, the norm and involution are related by the formula ||TT ∗|| = ||T ||2.

Proof. The fact that we have an algebra is clear, and the completness comes from
the fact that, assuming that {Tn} ⊂ B(H) is Cauchy, then {Tnx} is Cauchy for any
x ∈ H, so we can define the limit T = limn→∞ Tn by setting:

Tx = lim
n→∞

Tnx

Regarding T → T ∗, this comes from the fact that φ(x) =< Tx, y > being a linear
form φ : H → C, we must have φ(x) =< x, T ∗y >, for a certain vector T ∗y ∈ H. Thus
we have a well-defined involution T → T ∗, which stays inside B(H), because:

||T || = sup
||x||=1

sup
||y||=1

< Tx, y >

= sup
||y||=1

sup
||x||=1

< x, T ∗y >

= ||T ∗||
Regarding now the last assertion, observe first that we have:

||TT ∗|| ≤ ||T || · ||T ∗|| = ||T ||2

On the other hand, we have as well the following estimate:

||T ||2 = sup
||x||=1

| < Tx, Tx > |

= sup
||x||=1

| < x, T ∗Tx > |

≤ ||T ∗T ||
By replacing T → T ∗ we obtain from this ||T ||2 ≤ ||TT ∗||, so we are done. □

Observe that when H comes with an orthonormal basis {ei}i∈I , the linear map T →M
given by Mij =< Tej, ei > produces an embedding as follows:

B(H) ⊂MI(C)
Moreover, in this picture the operation T → T ∗ takes a very simple form, namely:

(M∗)ij =M ji

However, with examples like Schrödinger’s wave function space H = L2(R3) in mind,
it is better in general not to use bases, and accept Theorem 1.9 as stated.
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Moving ahead, the conditions found in Theorem 1.9 suggest formulating:

Definition 1.10. A C∗-algebra is a complex algebra A, having:

(1) A norm a→ ||a||, making it a Banach algebra.
(2) An involution a→ a∗, satisfying ||aa∗|| = ||a||2.

As basic examples, we have B(H) itself, as well as any norm closed ∗-subalgebra
A ⊂ B(H). It is possible to prove that any C∗-algebra appears in this way, but we will
not need in what follows this deep result, called GNS theorem after Gelfand, Naimark,
Segal. So, let us simply agree that, by definition, the C∗-algebras A are some sort of
“generalized operator algebras”, and their elements a ∈ A can be thought of as being
some kind of “generalized operators”, on some Hilbert space which is not present.

In practice, this vague idea is all that we need. Indeed, by taking some inspiration
from linear algebra, we can emulate spectral theory in our setting, as follows:

Theorem 1.11. Given a ∈ A, define its spectrum as being the set

σ(a) =
{
λ ∈ C

∣∣∣a− λ ̸∈ A−1
}

and its spectral radius ρ(a) as the radius of the smallest centered disk containing σ(a).

(1) The spectrum of a norm one element is in the unit disk.
(2) The spectrum of a unitary element (a∗ = a−1) is on the unit circle.
(3) The spectrum of a self-adjoint element (a = a∗) consists of real numbers.
(4) The spectral radius of a normal element (aa∗ = a∗a) is equal to its norm.

Proof. Our first claim is that for any polynomial f ∈ C[X], and more generally for
any rational function f ∈ C(X) having poles outside σ(a), we have:

σ(f(a)) = f(σ(a))

This indeed something well-known for the usual matrices. In the general case, assume
first that we have a polynomial, f ∈ C[X]. If we pick an arbitrary number λ ∈ C, and
write f(X)− λ = c(X − r1) . . . (X − rk), we have then, as desired:

λ /∈ σ(f(a)) ⇐⇒ f(a)− λ ∈ A−1

⇐⇒ c(a− r1) . . . (a− rk) ∈ A−1

⇐⇒ a− r1, . . . , a− rk ∈ A−1

⇐⇒ r1, . . . , rk /∈ σ(a)
⇐⇒ λ /∈ f(σ(a))
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Assume now that we are in the general case, f ∈ C(X). We pick λ ∈ C, we write
f = P/Q, and we set F = P − λQ. By using the above finding, we obtain, as desired:

λ ∈ σ(f(a)) ⇐⇒ F (a) /∈ A−1

⇐⇒ 0 ∈ σ(F (a))
⇐⇒ 0 ∈ F (σ(a))
⇐⇒ ∃µ ∈ σ(a), F (µ) = 0

⇐⇒ λ ∈ f(σ(a))

Regarding now the assertions in the statement, these basically follows from this:

(1) This comes from the following formula, valid when ||a|| < 1:

1

1− a
= 1 + a+ a2 + . . .

(2) Assuming a∗ = a−1, if we denote by D the unit disk, we have, by using (1):

||a|| = 1 =⇒ σ(a) ⊂ D

||a−1|| = 1 =⇒ σ(a−1) ⊂ D

On the other hand, by using the rational function f(z) = z−1, we have:

σ(a−1) ⊂ D =⇒ σ(a) ⊂ D−1

Now by putting everything together we obtain, as desired:

σ(a) ⊂ D ∩D−1 = T

(3) This follows from (2), by using the rational function f(z) = (z + it)/(z − it).
Indeed, for t >> 0 we have the following computation:(

a+ it

a− it

)∗

=
a− it
a+ it

=

(
a+ it

a− it

)−1

Thus the element f(a) is a unitary, and by using (2) its spectrum is contained in T.
We conclude from this that we have:

f(σ(a)) = σ(f(a)) ⊂ T

But this shows that we have σ(a) ⊂ f−1(T) = R, as desired.
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(4) We already know that we have ρ(a) ≤ ||a||, for any a ∈ A. For the reverse
inequality, when a is normal, we fix a number ρ > ρ(a). We have then:∫

|z|=ρ

zn

z − a
dz =

∫
|z|=ρ

∞∑
k=0

zn−k−1ak dz

=
∞∑
k=0

(∫
|z|=ρ

zn−k−1dz

)
ak

= an−1

By applying the norm and taking n-th roots we obtain from this formula:

ρ ≥ lim
n→∞

||an||1/n

When a = a∗ we have ||an|| = ||a||n for any exponent of type n = 2k, by using the
C∗-algebra condition ||aa∗|| = ||a||2, and by taking n-th roots we get, as desired:

ρ(a) ≥ ||a||

In the general normal case now, aa∗ = a∗a, we have an(an)∗ = (aa∗)n, and by using
this, along with the result for self-adjoints, applied to aa∗, we obtain:

ρ(a) ≥ lim
n→∞

||an||1/n

=
√

lim
n→∞

||an(an)∗||1/n

=
√

lim
n→∞

||(aa∗)n||1/n

=
√
ρ(aa∗)

=
√
||a||2

= ||a||

Thus, we are led to the conclusion in the statement. □

Generally speaking, Theorem 1.11 is all that you need for doing further operator
algebras, only military grade weapons there. As a main application, we have:

Theorem 1.12 (Gelfand). If X is a compact space, the algebra C(X) of continuous
functions f : X → C is a commutative C∗-algebra, with structure as follows:

(1) The norm is the usual sup norm, ||f || = supx∈X |f(x)|.
(2) The involution is the usual involution, f ∗(x) = f(x).

Conversely, any commutative C∗-algebra is of the form C(X), with its “spectrum” X =
Spec(A) appearing as the space of characters χ : A→ C.
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Proof. Given a commutative C∗-algebra A, we can define indeed X to be the set
of characters χ : A → C, with the topology making continuous all the evaluation maps
eva : χ→ χ(a). Then X is a compact space, and a→ eva is a morphism of algebras:

ev : A→ C(X)

We first prove that ev is involutive. We use the following formula:

a =
a+ a∗

2
− i · i(a− a

∗)

2

Thus it is enough to prove the equality eva∗ = ev∗a for self-adjoint elements a. But
this is the same as proving that a = a∗ implies that eva is a real function, which is in
turn true, because eva(χ) = χ(a) is an element of σ(a), contained in R. So, claim proved.
Also, since A is commutative, each element is normal, so ev is isometric:

||eva|| = ρ(a) = ||a||

It remains to prove that ev is surjective. But this follows from the Stone-Weierstrass
theorem, because ev(A) is a closed subalgebra of C(X), which separates the points. □

The Gelfand theorem suggests formulating the following definition:

Definition 1.13. Given a C∗-algebra A, not necessarily commutative, we write

A = C(X)

and call the abstract object X a “compact quantum space”.

This might look quite revolutionary, but in practice, this definition changes nothing
to what we have been doing so far, namely studying the C∗-algebras. So, we will keep
studying the C∗-algebras, but by using the above fancy quantum space terminology. For
instance whenever we have a morphism Φ : A→ B, we will write A = C(X), B = C(Y ),
and rather speak of the corresponding morphism ϕ : Y → X. And so on.

We will be back to all this later, including with a modification, the idea being that
the above definition is in fact quite naive, and needs a fix. More on this later.

Let us discuss now the other basic result regarding the C∗-algebras, namely the GNS
representation theorem. We will need some more spectral theory, as follows:

Proposition 1.14. For a normal element a ∈ A, the following are equivalent:

(1) a is positive, in the sense that σ(a) ⊂ [0,∞).
(2) a = b2, for some b ∈ A satisfying b = b∗.
(3) a = cc∗, for some c ∈ A.
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Proof. This is something very standard, as follows:

(1) =⇒ (2) Since our element a is normal the algebra < a > that is generates is
commutative, and by using the Gelfand theorem, we can set b =

√
a.

(2) =⇒ (3) This is trivial, because we can set c = b.

(3) =⇒ (1) We can proceed here by contradiction. By multiplying c by a suitable
element of < cc∗ >, we are led to the existence of an element d ̸= 0 satisfying −dd∗ ≥ 0.
By writing now d = x+ iy with x = x∗, y = y∗ we have:

dd∗ + d∗d = 2(x2 + y2) ≥ 0

Thus d∗d ≥ 0. But this contradicts the elementary fact that σ(dd∗), σ(d∗d) must
coincide outside {0}, which can be checked by explicit inversion. □

Here is now the GNS representation theorem, along with the idea of the proof:

Theorem 1.15 (GNS theorem). Let A be a C∗-algebra.

(1) A appears as a closed ∗-subalgebra A ⊂ B(H), for some Hilbert space H.
(2) When A is separable (usually the case), H can be chosen to be separable.
(3) When A is finite dimensional, H can be chosen to be finite dimensional.

Proof. Let us first discuss the commutative case, A = C(X). Our claim here is that
if we pick a probability measure on X, we have an embedding as follows:

C(X) ⊂ B(L2(X)) , f → (g → fg)

Indeed, given a function f ∈ C(X), consider the operator Tf (g) = fg, acting on
H = L2(X). Observe that Tf is indeed well-defined, and bounded as well, because:

||fg||2 =

√∫
X

|f(x)|2|g(x)|2dx ≤ ||f ||∞||g||2

Thus, f → Tf provides us with a C∗-algebra embedding C(X) ⊂ B(H), as claimed.
In general now, assuming that a linear form φ : A → C has some suitable positivity
properties, making it analogous to the integration functionals

∫
X

: A → C from the
commutative case, we can define a scalar product on A, by the following formula:

< a, b >= φ(ab∗)

By completing we obtain a Hilbert space H, and we have an embedding as follows:

A ⊂ B(H) , a→ (b→ ab)

Thus we obtain the assertion (1), and a careful examination of the construction A→
H, outlined above, shows that the assertions (2,3) are in fact proved as well. □
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Taking a break now from all this, mathematics endlessly building and self-replicating,
once started, like some sort of monster, shall we perhaps think a bit at the physical
meaning of all this. I am particularly concerned by the fact that our quantum spaces are
compact, if there is one good space for math and physics, that is RN , which is obviously
not compact, so shouldn’t be our quantum spaces not compact either.

This does not look like an obvious question, so time to ask the cat. And cat says:

Cat 1.16. The strong force is confined, expect mathematical freeness to be confined
too. As strange as this might sound, linguistically speaking.

Thanks cat, but this sounds a bit too deep, to the point that I cannot tell if it’s a
joke or not. In any case, I take it as an encouragement, so we’ll go for confinement and
compactness, as a continuation of the above, and may the strong force be with us.

So, getting back now to our operator algebra machinery, what’s next? Actually, now
that we have our definition for the quantum spaces, good time to get back towards Defi-
nitions 1.4 and 1.5. In order to understand what that free tori are, we will need:

Theorem 1.17. Let Γ be a discrete group, and consider the complex group algebra
C[Γ], with involution given by the fact that all group elements are unitaries, g∗ = g−1.

(1) The maximal C∗-seminorm on C[Γ] is a C∗-norm, and the closure of C[Γ] with
respect to this norm is a C∗-algebra, denoted C∗(Γ).

(2) When Γ is abelian, we have an isomorphism C∗(Γ) ≃ C(G), where G = Γ̂ is its
Pontrjagin dual, formed by the characters χ : Γ→ T.

Proof. All this is very standard, the idea being as follows:

(1) In order to prove the result, we must find a ∗-algebra embedding C[Γ] ⊂ B(H),
with H being a Hilbert space. For this purpose, consider the space H = l2(Γ), having
{h}h∈Γ as orthonormal basis. Our claim is that we have an embedding, as follows:

π : C[Γ] ⊂ B(H) , π(g)(h) = gh

Indeed, since π(g) maps the basis {h}h∈Γ into itself, this operator is well-defined,
bounded, and is an isometry. It is also clear from the formula π(g)(h) = gh that g →
π(g) is a morphism of algebras, and since this morphism maps the unitaries g ∈ Γ into
isometries, this is a morphism of ∗-algebras. Finally, the faithfulness of π is clear.

(2) Since Γ is abelian, the corresponding group algebra A = C∗(Γ) is commutative.
Thus, we can apply the Gelfand theorem, and we obtain A = C(X), with:

X = Spec(A)

But the spectrum X = Spec(A), consisting of the characters χ : C∗(Γ) → C, can be

identified with the Pontrjagin dual G = Γ̂, and this gives the result. □
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The above result suggests the following definition:

Definition 1.18. Given a discrete group Γ, the compact quantum space G given by

C(G) = C∗(Γ)

is called abstract dual of Γ, and is denoted G = Γ̂.

Good news, this definition is exactly what we need, in order to understand the meaning
of Definitions 1.4 and 1.5. To be more precise, we have the following result:

Theorem 1.19. The basic tori are all group duals, as follows,

T+
N

// T+
N

TN //

OO

TN

OO

=

L̂N
// F̂N

ZN
2

//

OO

TN

OO

where FN = Z∗N is the free group on N generators, and LN = Z∗N
2 is its real version.

Proof. The basic tori appear indeed as group duals, and together with the Fourier
transform identifications from Theorem 1.17 (2), this gives the result. □

Moving ahead, now that we have our formalism, we can start developing free geometry.
As a first objective, we would like to better understand the relation between the classical
and free tori. In order to discuss this, let us introduce the following notion:

Definition 1.20. Given a compact quantum space X, its classical version is the usual
compact space Xclass ⊂ X obtained by dividing C(X) by its commutator ideal:

C(Xclass) = C(X)/I , I =< [a, b] >

In this situation, we also say that X appears as a “liberation” of X.

In other words, the space Xclass appears as the Gelfand spectrum of the commutative
C∗-algebra C(X)/I. Observe in particular that Xclass is indeed a classical space.

In relation now with our tori, we have the following result:

Theorem 1.21. We have inclusions between the various tori, as follows,

T+
N

// T+
N

TN //

OO

TN

OO

and the free tori on top appear as liberations of the tori on the bottom.
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Proof. This is indeed clear from definitions, because commutativity of a group alge-
bra means precisely that the group in question is abelian. □

As a conclusion now to all this, we have a beginning of free geometry, both real and
complex, by knowing at least what the torus of each theory is. And with our construction
being definitely the good one, for the simple reason that the main problems in the analysis
of the free groups correspond in this way the main questions in our free geometry.

1c. Free spheres

In order to extend now the free geometries that we have, real and complex, let us
begin with the spheres. Following [11], we have the following notions:

Definition 1.22. We have free real and complex spheres, defined via

C(SN−1
R,+ ) = C∗

(
x1, . . . , xN

∣∣∣xi = x∗i ,
∑
i

x2i = 1

)

C(SN−1
C,+ ) = C∗

(
x1, . . . , xN

∣∣∣∑
i

xix
∗
i =

∑
i

x∗ixi = 1

)
where the symbol C∗ stands for universal enveloping C∗-algebra.

Here the fact that these algebras are indeed well-defined comes from the following
estimate, which shows that the biggest C∗-norms on these ∗-algebras are bounded:

||xi||2 = ||xix∗i || ≤

∣∣∣∣∣
∣∣∣∣∣∑

i

xix
∗
i

∣∣∣∣∣
∣∣∣∣∣ = 1

As a first result now, regarding the above free spheres, we have:

Theorem 1.23. We have embeddings of compact quantum spaces, as follows,

SN−1
R,+

// SN−1
C,+

SN−1
R

//

OO

SN−1
C

OO

and the spaces on top appear as liberations of the spaces on the bottom.
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Proof. The first assertion, regarding the inclusions, comes from the fact that at the
level of the associated C∗-algebras, we have surjective maps, as follows:

C(SN−1
R,+ )

��

C(SN−1
C,+ )

��

oo

C(SN−1
R ) C(SN−1

C )oo

For the second assertion, we must establish the following isomorphisms, where the
symbol C∗

comm stands for “universal commutative C∗-algebra generated by”:

C(SN−1
R ) = C∗

comm

(
x1, . . . , xN

∣∣∣xi = x∗i ,
∑
i

x2i = 1

)

C(SN−1
C ) = C∗

comm

(
x1, . . . , xN

∣∣∣∑
i

xix
∗
i =

∑
i

x∗ixi = 1

)
It is enough to establish the second isomorphism. So, consider the second universal

commutative C∗-algebra A constructed above. Since the standard coordinates on SN−1
C

satisfy the defining relations for A, we have a quotient map of as follows:

A→ C(SN−1
C )

Conversely, let us write A = C(S), by using the Gelfand theorem. The variables
x1, . . . , xN become in this way true coordinates, providing us with an embedding S ⊂ CN .
Also, the quadratic relations become

∑
i |xi|2 = 1, so we have S ⊂ SN−1

C . Thus, we have
a quotient map C(SN−1

C )→ A, as desired, and this gives all the results. □

1d. Algebraic manifolds

By using the free spheres constructed above, we can now formulate:

Definition 1.24. A real algebraic manifold X ⊂ SN−1
C,+ is a closed quantum subspace

defined, at the level of the corresponding C∗-algebra, by a formula of type

C(X) = C(SN−1
C,+ )

/〈
fi(x1, . . . , xN) = 0

〉
for certain family of noncommutative polynomials, as follows:

fi ∈ C < x1, . . . , xN >

We denote by C(X) the ∗-subalgebra of C(X) generated by the coordinates x1, . . . , xN .

As a basic example here, we have the free real sphere SN−1
R,+ . The classical spheres

SN−1
C , SN−1

R , and their real submanifolds, are covered as well by this formalism. At the
level of the general theory, we have the following version of the Gelfand theorem:
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Theorem 1.25. If X ⊂ SN−1
C,+ is an algebraic manifold, as above, we have

Xclass =
{
x ∈ SN−1

C

∣∣∣fi(x1, . . . , xN) = 0
}

and X appears as a liberation of Xclass.

Proof. This is something that we already met, in the context of the free spheres. In
general, the proof is similar, by using the Gelfand theorem. Indeed, if we denote by X ′

class

the manifold constructed in the statement, then we have a quotient map of C∗-algebras
as follows, mapping standard coordinates to standard coordinates:

C(Xclass)→ C(X ′
class)

Conversely now, from X ⊂ SN−1
C,+ we obtain Xclass ⊂ SN−1

C . Now since the relations
defining X ′

class are satisfied by Xclass, we obtain an inclusion Xclass ⊂ X ′
class. Thus, at

the level of algebras of continuous functions, we have a quotient map of C∗-algebras as
follows, mapping standard coordinates to standard coordinates:

C(X ′
class)→ C(Xclass)

Thus, we have constructed a pair of inverse morphisms, and we are done. □

Finally, once again at the level of the general theory, we have:

Definition 1.26. We agree to identify two real algebraic submanifolds X, Y ⊂ SN−1
C,+

when we have a ∗-algebra isomorphism between ∗-algebras of coordinates
f : C(Y )→ C(X)

mapping standard coordinates to standard coordinates.

We will see later the reasons for making this convention, coming from amenability.
Now back to the tori, as constructed before, we can see that these are examples of algebraic
manifolds, in the sense of Definition 1.24. In fact, we have the following result:

Theorem 1.27. The four main quantum spheres produce the main quantum tori

SN−1
R,+

// SN−1
C,+

SN−1
R

//

OO

SN−1
C

OO

→

T+
N

// T+
N

TN //

OO

TN

OO

via the formula T = S ∩ T+
N , with the intersection being taken inside SN−1

C,+ .

Proof. This comes from the above results, the situation being as follows:

(1) Free complex case. Here the formula in the statement reads T+
N = SN−1

C,+ ∩ T+
N .

But this is something trivial, because we have T+
N ⊂ SN−1

C,+ .



26 1. FREE SPHERES

(2) Free real case. Here the formula in the statement reads T+
N = SN−1

R,+ ∩ T+
N . But

this is clear as well, the real version of T+
N being T+

N .

(3) Classical complex case. Here the formula in the statement reads TN = SN−1
C ∩T+

N .
But this is clear as well, the classical version of T+

N being TN .

(4) Classical real case. Here the formula in the statement reads TN = SN−1
R ∩T+

N . But
this follows by intersecting the formulae from the proof of (2) and (3). □

1e. Exercises

Exercises:

Exercise 1.28.

Exercise 1.29.

Exercise 1.30.

Exercise 1.31.

Exercise 1.32.

Exercise 1.33.

Bonus exercise.



CHAPTER 2

Free rotations

2a. Quantum groups

In order to better understand the structure of SN−1
R,+ , SN−1

C,+ , we need to talk about free
rotations. Following Woronowicz [99], let us start with:

Definition 2.1. A Woronowicz algebra is a C∗-algebra A, given with a unitary matrix
u ∈MN(A) whose coefficients generate A, such that the formulae

∆(uij) =
∑
k

uik ⊗ ukj , ε(uij) = δij , S(uij) = u∗ji

define morphisms of C∗-algebras as follows,

∆ : A→ A⊗ A , ε : A→ C , S : A→ Aopp

called comultiplication, counit and antipode.

Obviously, this is something tricky, and we will see details in a moment, the idea being
that these are the axioms which best fit with what we want to do, in this book. Let us
also mention, technically, that ⊗ in the above can be any topological tensor product, and
with the choice of ⊗ being irrelevant, but more on this later. Also, Aopp is the opposite
algebra, with multiplication a · b = ba, and more on this later too.

We say that A is cocommutative when Σ∆ = ∆, where Σ(a ⊗ b) = b ⊗ a is the flip.
With this convention, we have the following key result, from Woronowicz [99]:

Proposition 2.2. The following are Woronowicz algebras:

(1) C(G), with G ⊂ UN compact Lie group. Here the structural maps are:

∆(φ) = (g, h)→ φ(gh) , ε(φ) = φ(1) , S(φ) = g → φ(g−1)

(2) C∗(Γ), with FN → Γ finitely generated group. Here the structural maps are:

∆(g) = g ⊗ g , ε(g) = 1 , S(g) = g−1

Moreover, we obtain in this way all the commutative/cocommutative algebras.

Proof. This is something very standard, the idea being as follows:

27
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(1) Given G ⊂ UN , we can set A = C(G), which is a Woronowicz algebra, together
with the matrix u = (uij) formed by coordinates of G, given by:

g =

u11(g) . . . u1N(g)
...

...
uN1(g) . . . uNN(g)


Conversely, if (A, u) is a commutative Woronowicz algebra, by using the Gelfand

theorem we can write A = C(X), with X being a certain compact space. The coordinates
uij give then an embedding X ⊂ MN(C), and since the matrix u = (uij) is unitary we
actually obtain an embedding X ⊂ UN , and finally by using the maps ∆, ε, S we conclude
that our compact subspace X ⊂ UN is in fact a compact Lie group, as desired.

(2) Consider a finitely generated group FN → Γ. We can set A = C∗(Γ), which is
by definition the completion of the complex group algebra C[Γ], with involution given by
g∗ = g−1, for any g ∈ Γ, with respect to the biggest C∗-norm, and we obtain a Woronowicz
algebra, together with the diagonal matrix formed by the generators of Γ:

u =

g1 0
. . .

0 gN


Conversely, if (A, u) is a cocommutative Woronowicz algebra, the Peter-Weyl theory

of Woronowicz, to be explained below, shows that the irreducible corepresentations of A
are all 1-dimensional, and form a group Γ, and so we have A = C∗(Γ), as desired. Thus,
theorem proved, modulo a representation theory discussion, to come soon. □

In general now, the structural maps ∆, ε, S have the following properties:

Proposition 2.3. Let (A, u) be a Woronowicz algebra.

(1) ∆, ε satisfy the usual axioms for a comultiplication and a counit, namely:

(∆⊗ id)∆ = (id⊗∆)∆

(ε⊗ id)∆ = (id⊗ ε)∆ = id

(2) S satisfies the antipode axiom, on the ∗-subalgebra generated by entries of u:

m(S ⊗ id)∆ = m(id⊗ S)∆ = ε(.)1

(3) In addition, the square of the antipode is the identity, S2 = id.

Proof. Observe first that the result holds in the case where A is commutative. In-
deed, by using Proposition 2.2 (1) we can write:

∆ = mt , ε = ut , S = it



2A. QUANTUM GROUPS 29

The 3 conditions in the statement come then by transposition from the basic 3 group
theory conditions satisfied by m,u, i, which are as follows, with δ(g) = (g, g):

m(m× id) = m(id×m)

m(id× u) = m(u× id) = id

m(id× i)δ = m(i× id)δ = 1

Observe also that the result holds as well in the case where A is cocommutative, by
using Proposition 2.2 (1). In the general case now, the proof goes as follows:

(1) We have the following computation:

(∆⊗ id)∆(uij) =
∑
l

∆(uil)⊗ ulj =
∑
kl

uik ⊗ ukl ⊗ ulj

We have as well the following computation, which gives the first formula:

(id⊗∆)∆(uij) =
∑
k

uik ⊗∆(ukj) =
∑
kl

uik ⊗ ukl ⊗ ulj

On the other hand, we have the following computation:

(id⊗ ε)∆(uij) =
∑
k

uik ⊗ ε(ukj) = uij

We have as well the following computation, which gives the second formula:

(ε⊗ id)∆(uij) =
∑
k

ε(uik)⊗ ukj = uij

(2) By using the fact that the matrix u = (uij) is unitary, we obtain:

m(id⊗ S)∆(uij) =
∑
k

uikS(ukj)

=
∑
k

uiku
∗
jk

= (uu∗)ij

= δij

We have as well the following computation, which gives the result:

m(S ⊗ id)∆(uij) =
∑
k

S(uik)ukj

=
∑
k

u∗kiukj

= (u∗u)ij

= δij

(3) Finally, the formula S2 = id holds as well on generators, and so in general too. □
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Let us record as well the following technical result:

Proposition 2.4. Given a Woronowicz algebra (A, u), we have ut = ū−1, so u is
biunitary, in the sense that it is unitary, with unitary transpose.

Proof. We have the following computation, based on the fact that u is unitary:

(uu∗)ij = δij =⇒
∑
k

S(uiku
∗
jk) = δij

=⇒
∑
k

ukju
∗
ki = δij

=⇒ (utū)ji = δij

Similarly, we have the following computation, once agan using the unitarity of u:

(u∗u)ij = δij =⇒
∑
k

S(u∗kiukj) = δij

=⇒
∑
k

u∗jkuik = δij

=⇒ (ūut)ji = δij

Thus, we are led to the conclusion in the statement. □

Summarizing, the Woronowicz algebras appear to have nice properties. In view of
Proposition 2.2 and Proposition 2.3, we can formulate the following definition:

Definition 2.5. Given a Woronowicz algebra A, we formally write

A = C(G) = C∗(Γ)

and call G compact quantum group, and Γ discrete quantum group.

When A is commutative and cocommutative, G and Γ are usual abelian groups, dual

to each other. In general, we still agree to write G = Γ̂,Γ = Ĝ, but in a formal sense. As
a final piece of general theory now, let us complement Definition 2.1 with:

Definition 2.6. Given two Woronowicz algebras (A, u) and (B, v), we write

A ≃ B

and identify the corresponding quantum groups, when we have an isomorphism

< uij >≃< vij >

of ∗-algebras, mapping standard coordinates to standard coordinates.

With this convention, which is in tune with our conventions for algebraic manifolds
from chapter 1, and more on this later, any compact or discrete quantum group corre-
sponds to a unique Woronowicz algebra, up to equivalence. Also, we can see now why in
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Definition 2.1 the choice of the exact topological tensor product ⊗ is irrelevant. Indeed,
no matter what tensor product ⊗ we use there, we end up with the same Woronowicz
algebra, and the same compact and discrete quantum groups, up to equivalence.

In practice, we will use in what follows the simplest such tensor product ⊗, which
is the maximal one, obtained as completion of the usual algebraic tensor product with
respect to the biggest C∗-norm. With the remark that this product is something rather
abstract, and so can be treated, in practice, as a usual algebraic tensor product.

Moving ahead now, let us call corepresentation of A any unitary matrix v ∈ Mn(A),
where A =< uij >, satisfying the same conditions are those satisfied by u, namely:

∆(vij) =
∑
k

vik ⊗ vkj , ε(vij) = δij , S(vij) = v∗ji

These corepresentations can be then thought of as corresponding to the finite di-
mensional unitary smooth representations of the underlying compact quantum group G.
Following Woronowicz [99], we have the following key result:

Theorem 2.7. Any Woronowicz algebra has a unique Haar integration functional,(∫
G

⊗id
)
∆ =

(
id⊗

∫
G

)
∆ =

∫
G

(.)1

which can be constructed by starting with any faithful positive form φ ∈ A∗, and setting∫
G

= lim
n→∞

1

n

n∑
k=1

φ∗k

where ϕ ∗ ψ = (ϕ⊗ ψ)∆. Moreover, for any corepresentation v ∈Mn(C)⊗ A we have(
id⊗

∫
G

)
v = P

where P is the orthogonal projection onto Fix(v) = {ξ ∈ Cn|vξ = ξ}.

Proof. Following [99], this can be done in 3 steps, as follows:

(1) Given φ ∈ A∗, our claim is that the following limit converges, for any a ∈ A:∫
φ

a = lim
n→∞

1

n

n∑
k=1

φ∗k(a)

Indeed, we can assume, by linearity, that a is the coefficient of a corepresentation:

a = (τ ⊗ id)v
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But in this case, an elementary computation shows that we have the following formula,
where Pφ is the orthogonal projection onto the 1-eigenspace of (id⊗ φ)v:(

id⊗
∫
φ

)
v = Pφ

(2) Since vξ = ξ implies [(id⊗ φ)v]ξ = ξ, we have Pφ ≥ P , where P is the orthogonal
projection onto the following fixed point space:

Fix(v) =
{
ξ ∈ Cn

∣∣∣vξ = ξ
}

The point now is that when φ ∈ A∗ is faithful, by using a standard positivity trick,
one can prove that we have Pφ = P . Assume indeed Pφξ = ξ, and let us set:

a =
∑
i

(∑
j

vijξj − ξi

)(∑
k

vikξk − ξi

)∗

We must prove that we have a = 0. Since v is biunitary, we have:

a =
∑
i

(∑
j

(
vijξj −

1

N
ξi

))(∑
k

(
v∗ikξ̄k −

1

N
ξ̄i

))

=
∑
ijk

vijv
∗
ikξj ξ̄k −

1

N
vijξj ξ̄i −

1

N
v∗ikξiξ̄k +

1

N2
ξiξ̄i

=
∑
j

|ξj|2 −
∑
ij

vijξj ξ̄i −
∑
ik

v∗ikξiξ̄k +
∑
i

|ξi|2

= ||ξ||2− < vξ, ξ > −< vξ, ξ >+ ||ξ||2

= 2(||ξ||2 −Re(< vξ, ξ >))

By using now our assumption Pφξ = ξ, we obtain from this:

φ(a) = 2φ(||ξ||2 −Re(< vξ, ξ >))

= 2(||ξ||2 −Re(< Pφξ, ξ >))

= 2(||ξ||2 − ||ξ||2)
= 0

Now since φ is faithful, this gives a = 0, and so vξ = ξ. Thus
∫
φ
is independent of φ,

and is given on coefficients a = (τ ⊗ id)v by the following formula:(
id⊗

∫
φ

)
v = P

(3) With the above formula in hand, the left and right invariance of
∫
G
=
∫
φ
is clear

on coefficients, and so in general, and this gives all the assertions. See [99]. □
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Consider the dense ∗-subalgebra A ⊂ A generated by the coefficients of the funda-
mental corepresentation u, and endow it with the following scalar product:

< a, b >=

∫
G

ab∗

We have then the following result, also due to Woronowicz [99]:

Theorem 2.8. We have the following Peter-Weyl type results:

(1) Any corepresentation decomposes as a sum of irreducible corepresentations.
(2) Each irreducible corepresentation appears inside a certain u⊗k.
(3) A =

⊕
v∈Irr(A)Mdim(v)(C), the summands being pairwise orthogonal.

(4) The characters of irreducible corepresentations form an orthonormal system.

Proof. All these results are from [99], the idea being as follows:

(1) Given a corepresentation v ∈Mn(A), consider its interwiner algebra:

End(v) =
{
T ∈Mn(C)

∣∣∣Tv = vT
}

It is elementary to see that this is a finite dimensional C∗-algebra, and we conclude
from this that we have a decomposition as follows:

End(v) =Mn1(C)⊕ . . .⊕Mnk
(C)

To be more precise, such a decomposition appears by writing the unit of our algebra
as a sum of minimal projections, as follows, and then working out the details:

1 = p1 + . . .+ pk

But this decomposition allows us to define subcorepresentations vi ⊂ v, which are
irreducible, so we obtain, as desired, a decomposition v = v1 + . . .+ vk.

(2) To any corepresentation v ∈ Mn(A) we associate its space of coefficients, given
by C(v) = span(vij). The construction v → C(v) is then functorial, in the sense that it
maps subcorepresentations into subspaces. Observe also that we have:

A =
∑

k∈N∗N

C(u⊗k)

Now given an arbitrary corepresentation v ∈ Mn(A), the corresponding coefficient
space is a finite dimensional subspace C(v) ⊂ A, and so we must have, for certain positive
integers k1, . . . , kp, an inclusion of vector spaces, as follows:

C(v) ⊂ C(u⊗k1 ⊕ . . .⊕ u⊗kp)

We deduce from this that we have an inclusion of corepresentations, as follows:

v ⊂ u⊗k1 ⊕ . . .⊕ u⊗kp

Thus, by using (1), we are led to the conclusion in the statement.
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(3) By using (1) and (2), we obtain a linear space decomposition as follows:

A =
∑

v∈Irr(A)

C(v) =
∑

v∈Irr(A)

Mdim(v)(C)

In order to conclude, it is enough to prove that for any two irreducible corepresenta-
tions v, w ∈ Irr(A), the corresponding spaces of coefficients are orthogonal:

v ̸∼ w =⇒ C(v) ⊥ C(w)

As a first observation, which follows from an elementary computation, for any two
corepresentations v, w we have a Frobenius type isomorphism, as follows:

Hom(v, w) ≃ Fix(v̄ ⊗ w)

Now let us set Pia,jb =
∫
G
vijw

∗
ab. According to Theorem 2.7, the matrix P is the

orthogonal projection onto the following vector space:

Fix(v ⊗ w̄) ≃ Hom(v̄, w̄) = {0}

Thus we have P = 0, and so C(v) ⊥ C(w), which gives the result.

(4) The algebra Acentral contains indeed all the characters, because we have:

Σ∆(χv) =
∑
ij

vji ⊗ vij = ∆(χv)

The fact that the characters span Acentral, and form an orthogonal basis of it, follow
from (3). Finally, regarding the norm 1 assertion, consider the following integrals:

Pik,jl =

∫
G

vijv
∗
kl

We know from Theorem 2.7 that these integrals form the orthogonal projection onto
Fix(v ⊗ v̄) ≃ End(v̄) = C1. By using this fact, we obtain the following formula:∫

G

χvχ
∗
v =

∑
ij

∫
G

viiv
∗
jj =

∑
i

1

N
= 1

Thus the characters have indeed norm 1, and we are done. □

We refer to Woronowicz [99] for full details on all the above, and for some applications
as well. Let us just record here the fact that in the cocommutative case, we obtain from
(4) that the irreducible corepresentations must be all 1-dimensional, and so that we must
have A = C∗(Γ) for some discrete group Γ, as mentioned in Proposition 2.2.

At a more technical level now, we have a number of more advanced results, from
Woronowicz [99], [100] and other papers, that must be known as well. We will present
them quickly, and for details you check my book [7]. First we have:



2B. FREE ROTATIONS 35

Theorem 2.9. Let Afull be the enveloping C
∗-algebra of A, and let Ared be the quotient

of A by the null ideal of the Haar integration. The following are then equivalent:

(1) The Haar functional of Afull is faithful.
(2) The projection map Afull → Ared is an isomorphism.
(3) The counit map ε : Afull → C factorizes through Ared.
(4) We have N ∈ σ(Re(χu)), the spectrum being taken inside Ared.

If this is the case, we say that the underlying discrete quantum group Γ is amenable.

Proof. This is well-known in the group dual case, A = C∗(Γ), with Γ being a usual
discrete group. In general, the result follows by adapting the group dual case proof:

(1) ⇐⇒ (2) This simply follows from the fact that the GNS construction for the
algebra Afull with respect to the Haar functional produces the algebra Ared.

(2) ⇐⇒ (3) Here =⇒ is trivial, and conversely, a counit map ε : Ared → C produces
an isomorphism Ared → Afull, via a formula of type (ε⊗ id)Φ.

(3) ⇐⇒ (4) Here =⇒ is clear, coming from ε(N −Re(χ(u))) = 0, and the converse
can be proved by doing some standard functional analysis. □

Yet another important result is Tannakian duality, as follows:

Theorem 2.10. The following operations are inverse to each other:

(1) The construction A → C, which associates to any Woronowicz algebra A the
tensor category formed by the intertwiner spaces Ckl = Hom(u⊗k, u⊗l).

(2) The construction C → A, which associates to a tensor category C the Woronowicz
algebra A presented by the relations T ∈ Hom(u⊗k, u⊗l), with T ∈ Ckl.

Proof. This is something quite deep, the idea being as follows:

(1) We have indeed a construction A → C as above, whose output is a tensor C∗-
subcategory with duals of the tensor C∗-category of Hilbert spaces.

(2) We have as well a construction C → A as above, simply by dividing the free
∗-algebra on N2 variables by the relations in the statement.

Regarding now the bijection claim, after some elementary algebra we are left with
proving CAC

⊂ C. But this latter inclusion can be proved indeed, by doing some algebra,
and using von Neumann’s bicommutant theorem, in finite dimensions. See [100]. □

2b. Free rotations

Good news, with the above general theory in hand, we can go back now to our free
geometry program, as developed in chapter 1, and substantially build on that. Indeed,
the point is that we can talk now about free rotations. Following Wang [89], we have:
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Theorem 2.11. The following constructions produce compact quantum groups,

C(O+
N) = C∗

(
(uij)i,j=1,...,N

∣∣∣u = ū, ut = u−1
)

C(U+
N ) = C∗

(
(uij)i,j=1,...,N

∣∣∣u∗ = u−1, ut = ū−1
)

which appear respectively as liberations of the groups ON and UN .

Proof. This first assertion follows from the elementary fact that if a matrix u = (uij)
is orthogonal or biunitary, then so must be the following matrices:

u∆ij =
∑
k

uik ⊗ ukj , uεij = δij , uSij = u∗ji

Indeed, the biunitarity of u∆ can be checked by a direct computation. Regarding now
the matrix uε = 1N , this is clearly biunitary. Also, regarding the matrix uS, there is
nothing to prove here either, because its unitarity its clear too. And finally, observe that
if u has self-adjoint entries, then so do the above matrices u∆, uε, uS.

Thus our claim is proved, and we can define morphisms ∆, ε, S as in Definition 2.1, by
using the universal properties of C(O+

N), C(U
+
N ). As for the second assertion, this follows

exactly as for the free spheres, by adapting the sphere proof from chapter 1. □

The basic properties of O+
N , U

+
N can be summarized as follows:

Theorem 2.12. The quantum groups O+
N , U

+
N have the following properties:

(1) The closed subgroups G ⊂ U+
N are exactly the N × N compact quantum groups.

As for the closed subgroups G ⊂ O+
N , these are those satisfying u = ū.

(2) We have liberation embeddings ON ⊂ O+
N and UN ⊂ U+

N , obtained by dividing the
algebras C(O+

N), C(U
+
N ) by their respective commutator ideals.

(3) We have as well embeddings L̂N ⊂ O+
N and F̂N ⊂ U+

N , where LN is the free
product of N copies of Z2, and where FN is the free group on N generators.

Proof. All these assertions are elementary, as follows:

(1) This is clear from definitions, with the remark that, in the context of Definition
2.1, the formula S(uij) = u∗ji shows that the matrix ū must be unitary too.

(2) This follows from the Gelfand theorem. To be more precise, this shows that we
have presentation results for C(ON), C(UN), similar to those in Theorem 2.11, but with
the commutativity between the standard coordinates and their adjoints added:

C(ON) = C∗
comm

(
(uij)i,j=1,...,N

∣∣∣u = ū, ut = u−1
)

C(UN) = C∗
comm

(
(uij)i,j=1,...,N

∣∣∣u∗ = u−1, ut = ū−1
)

Thus, we are led to the conclusion in the statement.
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(3) This follows indeed from (1) and from Proposition 2.2, with the remark that with
u = diag(g1, . . . , gN), the condition u = ū is equivalent to g2i = 1, for any i. □

The last assertion in Theorem 2.12 suggests the following construction:

Proposition 2.13. Given a closed subgroup G ⊂ U+
N , consider its “diagonal torus”,

which is the closed subgroup T ⊂ G constructed as follows:

C(T ) = C(G)
/〈

uij = 0
∣∣∣∀i ̸= j

〉
This torus is then a group dual, T = Λ̂, where Λ =< g1, . . . , gN > is the discrete group
generated by the elements gi = uii, which are unitaries inside C(T ).

Proof. Since u is unitary, its diagonal entries gi = uii are unitaries inside C(T ).
Moreover, from ∆(uij) =

∑
k uik ⊗ ukj we obtain, when passing inside the quotient:

∆(gi) = gi ⊗ gi

It follows that we have C(T ) = C∗(Λ), modulo identifying as usual the C∗-completions

of the various group algebras, and so that we have T = Λ̂, as claimed. □

With this notion in hand, Theorem 2.12 (3) reformulates as follows:

Theorem 2.14. The diagonal tori of the basic unitary groups are the basic tori:

O+
N

// U+
N

ON
//

OO

UN

OO

→

T+
N

// T+
N

TN //

OO

TN

OO

In particular, the basic unitary groups are all distinct.

Proof. This is something clear and well-known in the classical case, and in the free
case, this is a reformulation of Theorem 2.12 (3), which tells us that the diagonal tori of

O+
N , U

+
N , in the sense of Proposition 2.13, are the group duals L̂N , F̂N . □

There is an obvious relation here with the considerations from chapter 1, that we will
analyse later on. As a second result now regarding our free quantum groups, relating
them this time to the free spheres constructed in chapter 1, we have:
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Theorem 2.15. We have embeddings of algebraic manifolds as follows, obtained in
double indices by rescaling the coordinates, xij = uij/

√
N :

O+
N

// U+
N

ON
//

OO

UN

OO

→

SN2−1
R,+

// SN2−1
C,+

SN2−1
R

//

OO

SN2−1
C

OO

Moreover, the quantum groups appear from the quantum spheres via

G = S ∩ U+
N

with the intersection being computed inside the free sphere SN2−1
C,+ .

Proof. As explained in Theorem 2.12, the biunitarity of the matrix u = (uij) gives
an embedding of algebraic manifolds, as follows:

U+
N ⊂ SN2−1

C,+

Now since the relations defining ON , O
+
N , UN ⊂ U+

N are the same as those defining

SN2−1
R , SN2−1

R,+ , SN2−1
C ⊂ SN2−1

C,+ , this gives the result. □

Summarizing, we have now up and working some free rotation groups, which are
closely related to the free spheres and tori constructed in chapter 1.

2c. Quantum isometries

In order to further discuss now the relation with the spheres, which can only come via
some sort of “isometric actions”, let us start with the following standard fact:

Proposition 2.16. Given a closed subset X ⊂ SN−1
C , the formula

G(X) =
{
U ∈ UN

∣∣∣U(X) = X
}

defines a compact group of unitary matrices, or isometries, called affine isometry group
of X. For the spheres SN−1

R , SN−1
C we obtain in this way the groups ON , UN .

Proof. The fact that G(X) as defined above is indeed a group is clear, its compact-
ness is clear as well, and finally the last assertion is clear as well. In fact, all this works
for any closed subset X ⊂ CN , but we are not interested here in such general spaces. □

Observe that in the case of the real and complex spheres, the affine isometry group
G(X) leaves invariant the Riemannian metric, because this metric is equivalent to the
one inherited from CN , which is preserved by our isometries U ∈ UN .
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Thus, we could have constructed as well G(X) as being the group of metric isometries
of X, with of course some extra care in relation with the complex structure, as for the
complex sphere X = SN−1

C to produce G(X) = UN instead of G(X) = O2N . But, such
things won’t really work for the free spheres, and so are to be avoided.

The point now is that we have the following quantum analogue of Proposition 2.16,
which is a perfect analogue, save for the fact that X is now assumed to be algebraic, for
some technical reasons, which allows us to talk about quantum isometry groups:

Theorem 2.17. Given an algebraic manifold X ⊂ SN−1
C,+ , the category of the closed

subgroups G ⊂ U+
N acting affinely on X, in the sense that the formula

Φ(xi) =
∑
j

xj ⊗ uji

defines a morphism of C∗-algebras Φ : C(X) → C(X) ⊗ C(G), has a universal object,
denoted G+(X), and called affine quantum isometry group of X.

Proof. Assume indeed that our manifold X ⊂ SN−1
C,+ comes as follows:

C(X) = C(SN−1
C,+ )

/〈
fα(x1, . . . , xN) = 0

〉
In order to prove the result, consider the following variables:

Xi =
∑
j

xj ⊗ uji ∈ C(X)⊗ C(U+
N )

Our claim is that the quantum group in the statement G = G+(X) appears as:

C(G) = C(U+
N )
/〈

fα(X1, . . . , XN) = 0
〉

In order to prove this, pick one of the defining polynomials, and write it as follows:

fα(x1, . . . , xN) =
∑
r

∑
ir1...i

r
sr

λr · xir1 . . . xirsr

With Xi =
∑

j xj ⊗ uji as above, we have the following formula:

fα(X1, . . . , XN) =
∑
r

∑
ir1...i

r
sr

λr
∑

jr1 ...j
r
sr

xjr1 . . . xjrsr ⊗ ujr1 ir1 . . . ujrsr irsr

Since the variables on the right span a certain finite dimensional space, the relations
fα(X1, . . . , XN) = 0 correspond to certain relations between the variables uij. Thus, we
have indeed a closed subspace G ⊂ U+

N , with a universal map, as follows:

Φ : C(X)→ C(X)⊗ C(G)
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In order to show now that G is a quantum group, consider the following elements:

u∆ij =
∑
k

uik ⊗ ukj , uεij = δij , uSij = u∗ji

Consider as well the following elements, with γ ∈ {∆, ε, S}:

Xγ
i =

∑
j

xj ⊗ uγji

From the relations fα(X1, . . . , XN) = 0 we deduce that we have:

fα(X
γ
1 , . . . , X

γ
N) = (id⊗ γ)fα(X1, . . . , XN) = 0

Thus we can map uij → uγij for any γ ∈ {∆, ε, S}, and we are done. □

We can now formulate a result about spheres and rotations, as follows:

Theorem 2.18. The quantum isometry groups of the basic spheres are

SN−1
R,+

// SN−1
C,+

SN−1
R

//

OO

SN−1
C

OO

→

O+
N

// U+
N

ON
//

OO

UN

OO

modulo identifying, as usual, the various C∗-algebraic completions.

Proof. We have 4 results to be proved, the idea being as follows:

SN−1
C,+ . Let us first construct an action U+

N ↷ SN−1
C,+ . We must prove here that the

variables Xi =
∑

j xj ⊗ uji satisfy the defining relations for SN−1
C,+ , namely:∑

i

xix
∗
i =

∑
i

x∗ixi = 1

By using the biunitarity of u, we have the following computation:∑
i

XiX
∗
i =

∑
ijk

xjx
∗
k ⊗ ujiu∗ki =

∑
j

xjx
∗
j ⊗ 1 = 1⊗ 1

Once again by using the biunitarity of u, we have as well:∑
i

X∗
iXi =

∑
ijk

x∗jxk ⊗ u∗jiuki =
∑
j

x∗jxj ⊗ 1 = 1⊗ 1

Thus we have an action U+
N ↷ SN−1

C,+ , which gives G+(SN−1
C,+ ) = U+

N , as desired.
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SN−1
R,+ . Let us first construct an action O+

N ↷ SN−1
R,+ . We already know that the

variables Xi =
∑

j xj⊗uji satisfy the defining relations for SN−1
C,+ , so we just have to check

that these variables are self-adjoint. But this is clear from u = ū, as follows:

X∗
i =

∑
j

x∗j ⊗ u∗ji =
∑
j

xj ⊗ uji = Xi

Conversely, assume that we have an action G ↷ SN−1
R,+ , with G ⊂ U+

N . The variables
Xi =

∑
j xj ⊗ uji must be then self-adjoint, and the above computation shows that we

must have u = ū. Thus our quantum group must satisfy G ⊂ O+
N , as desired.

SN−1
C . The fact that we have an action UN ↷ SN−1

C is clear. Conversely, assume that

we have an action G ↷ SN−1
C , with G ⊂ U+

N . We must prove that this implies G ⊂ UN ,
and we will use a standard trick of Bhowmick-Goswami [11]. We have:

Φ(xi) =
∑
j

xj ⊗ uji

By multiplying this formula with itself we obtain:

Φ(xixk) =
∑
jl

xjxl ⊗ ujiulk

Φ(xkxi) =
∑
jl

xlxj ⊗ ulkuji

Since the variables xi commute, these formulae can be written as:

Φ(xixk) =
∑
j<l

xjxl ⊗ (ujiulk + uliujk) +
∑
j

x2j ⊗ ujiujk

Φ(xixk) =
∑
j<l

xjxl ⊗ (ulkuji + ujkuli) +
∑
j

x2j ⊗ ujkuji

Since the tensors at left are linearly independent, we must have:

ujiulk + uliujk = ulkuji + ujkuli

By applying the antipode to this formula, then applying the involution, and then
relabelling the indices, we succesively obtain:

u∗klu
∗
ij + u∗kju

∗
il = u∗iju

∗
kl + u∗ilu

∗
kj

uijukl + uilukj = ukluij + ukjuil

ujiulk + ujkuli = ulkuji + uliujk

Now by comparing with the original formula, we obtain from this:

uliujk = ujkuli
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In order to finish, it remains to prove that the coordinates uij commute as well with
their adjoints. For this purpose, we use a similar method. We have:

Φ(xix
∗
k) =

∑
jl

xjx
∗
l ⊗ ujiu∗lk

Φ(x∗kxi) =
∑
jl

x∗l xj ⊗ u∗lkuji

Since the variables on the left are equal, we deduce from this that we have:∑
jl

xjx
∗
l ⊗ ujiu∗lk =

∑
jl

xjx
∗
l ⊗ u∗lkuji

Thus we have ujiu
∗
lk = u∗lkuji, and so G ⊂ UN , as claimed.

SN−1
R . The fact that we have an action ON ↷ SN−1

R is clear. In what regards the

converse, this follows by combining the results that we already have, as follows:

G↷ SN−1
R =⇒ G↷ SN−1

R,+ , SN−1
C

=⇒ G ⊂ O+
N , UN

=⇒ G ⊂ O+
N ∩ UN = ON

Thus, we conclude that we have G+(SN−1
R ) = ON , as desired. □

2d. Haar integration

Let us discuss now the correspondence U → S. In the classical case the situation is
very simple, because the sphere S = SN−1 appears by rotating the point x = (1, 0, . . . , 0)
by the isometries in U = UN . Moreover, the stabilizer of this action is the subgroup
UN−1 ⊂ UN acting on the last N − 1 coordinates, and so the sphere S = SN−1 appears
from the corresponding rotation group U = UN as an homogeneous space, as follows:

SN−1 = UN/UN−1

In functional analytic terms, all this becomes even simpler, the correspondence U → S
being obtained, at the level of algebras of functions, as follows:

C(SN−1) ⊂ C(UN) , xi → u1i

In general now, the straightforward homogeneous space interpretation of S as above
fails. However, we can have some theory going by using the functional analytic viewpoint,
with an embedding xi → u1i as above. Let us start with the following result:
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Theorem 2.19. For the basic spheres, we have a diagram as follows,

C(S)
Φ //

α

��

C(S)⊗ C(U)

α⊗id

��
C(U)

∆ // C(U)⊗ C(U)

where on top Φ(xi) =
∑

j xj ⊗ uji, and on the left α(xi) = u1i.

Proof. The diagram in the statement commutes indeed on the standard coordinates,
the corresponding arrows being as follows, on these coordinates:

xi //

��

∑
j xj ⊗ uji

��
u1i //

∑
j u1j ⊗ uji

Thus by linearity and multiplicativity, the whole the diagram commutes. □

The point now is that, by further building on the above result, we obtain the desired
correspondence U → S, and some useful integration results as well.

At the level of the fine structure of the free spheres SN−1
R,+ , SN−1

C,+ now, we have some
obvious formal eigenspaces for the Laplace operator, and a Weingarten integration formula
as well, both coming from the representation theory of O+

N , U
+
N . Moreover, it is possible

to get beyond this, with a full construction of a Laplace operator.

Regarding other possible invariants, orientability does not work, the Dirac operator
does not exist, smoothness does not work either, and in what regards K-theory, with our
free objects we are a bit too far away from the traditional “reasonable” range of K-theory,
usually requiring amenability, or at least some form of K-amenability.

However, after some thinking, maybe including some physical thoughts too, in con-
nection with what is smoothness and is that wished or not, in the present situation, all
this is normal. So, no worries, and as we will soon discover, we will get away with the
tools that we have, namely Laplace operator and the Weingarten formula, which are not
that bad, technically speaking, for all the problems that we will choose to solve.
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2e. Exercises

Exercises:

Exercise 2.20.

Exercise 2.21.

Exercise 2.22.

Exercise 2.23.

Exercise 2.24.

Exercise 2.25.

Bonus exercise.



CHAPTER 3

Fine structure

3a. Diagrams, easiness

We have so far a beginning of free geometry, in the real case with a triple of basic
objects (SN−1

R,+ , O+
N , T

+
N ), and in the complex case with objects (SN−1

C,+ , U+
N ,T

+
N). This is

not bad, and our purpose in what follows will be that of expanding these two collections
of objects, from 3 items each, to 10, 100, 1000, or as many as we can, and the more the
merrier, in the name of pure mathematics, where new objects are always welcome.

This being said, what to start with? Leaving aside the tori, which are just duals of
discrete groups, and as old as modern mathematics, we face a choice between spheres
S, and rotation groups U . As a first observation, these two types of objects are closely
related, because in the classical case, given a sphere S, we can recover U as being its
isometry group, and conversely, given a group U , we can recover S just by rotating a
point. And, as seen in chapter 2, the situation is quite similar in the free case.

This being said, spheres S are not the same thing as rotation groups U , and we will
have to make a choice. Normally spheres S look a bit more important, but on the other
hand physics, or even mathematics, tell us that no matter what we want to do, of advanced
type, about either S or U , we will always end up in struggling with U .

So, we will go for U , and our goal in this chapter will be that of better understanding
O+

N , U
+
N , and also look for more free quantum groups, as many as we can find. And

regarding spheres S and other such manifolds, we will leave this for later. Sounds good,
doesn’t it? Before getting into this, however, let us check with physics and cat:

Cat 3.1. Gauge invariance gives you everything. But don’t forget to do some manifolds
too, all our kittens learn that, and it’s good learning.

Thanks cat, this is a pleasure to hear, and in tune with my mathematical intuition.
Getting started now, we would like to have a better understanding of the liberation
operations that we have, ON → O+

N and UN → U+
N , and also have more examples of

liberation operations of the same type, GN → G+
N . And then, once we will have enough

theory and examples, look for classification results for the free quantum groups {G+
N}.

45
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Let us start with the construction of more examples, which is certainly a very exciting
business, and leave the abstractions for later. Following Wang [89], we first have:

Proposition 3.2. Consider the symmetric group SN , viewed as permutation group of
the N coordinate axes of RN . The coordinate functions on SN ⊂ ON are given by

uij = χ
(
σ ∈ G

∣∣∣σ(j) = i
)

and the matrix u = (uij) that these functions form is magic, in the sense that its entries
are projections (p2 = p∗ = p), summing up to 1 on each row and each column.

Proof. The action of SN on the standard basis e1, . . . , eN ∈ RN being given by
σ : ej → eσ(j), this gives the formula of uij in the statement. As for the fact that the
matrix u = (uij) that these functions form is magic, this is clear. □

With a bit more effort, we obtain the following nice characterization of SN :

Proposition 3.3. The algebra of functions on SN has the following presentation,

C(SN) = C∗
comm

(
(uij)i,j=1,...,N

∣∣∣u = magic
)

and the multiplication, unit and inversion map of SN appear from the maps

∆(uij) =
∑
k

uik ⊗ ukj , ε(uij) = δij , S(uij) = uji

defined at the algebraic level, of functions on SN , by transposing.

Proof. The universal algebra A in the statement being commutative, by the Gelfand
theorem it must be of the form A = C(X), with X being a certain compact space. Now
since we have coordinates uij : X → R, we have an embedding X ⊂ MN(R). Also, since
we know that these coordinates form a magic matrix, the elements g ∈ X must be 0-1
matrices, having exactly one 1 entry on each row and each column, and so X = SN . Thus
we have proved the first assertion, and the second assertion is clear as well. □

Still following Wang [89], we can now liberate SN , as follows:

Theorem 3.4. The following universal C∗-algebra, with magic meaning as usual
formed by projections (p2 = p∗ = p), summing up to 1 on each row and each column,

C(S+
N) = C∗

(
(uij)i,j=1,...,N

∣∣∣u = magic
)

is a Woronowicz algebra, with comultiplication, counit and antipode given by:

∆(uij) =
∑
k

uik ⊗ ukj , ε(uij) = δij , S(uij) = uji

Thus the space S+
N is a compact quantum group, called quantum permutation group.
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Proof. As a first observation, the universal C∗-algebra in the statement is indeed
well-defined, because the conditions p2 = p∗ = p satisfied by the coordinates give:

||uij|| ≤ 1

In order to prove now that we have a Woronowicz algebra, we must construct maps
∆, ε, S given by the formulae in the statement. Consider the following matrices:

u∆ij =
∑
k

uik ⊗ ukj , uεij = δij , uSij = uji

Our claim is that, since u is magic, so are these three matrices. Indeed, regarding u∆,
its entries are idempotents, as shown by the following computation:

(u∆ij)
2 =

∑
kl

uikuil ⊗ ukjulj =
∑
kl

δkluik ⊗ δklukj = u∆ij

These elements are self-adjoint as well, as shown by the following computation:

(u∆ij)
∗ =

∑
k

u∗ik ⊗ u∗kj =
∑
k

uik ⊗ ukj = u∆ij

The row and column sums for the matrix u∆ can be computed as follows:∑
j

u∆ij =
∑
jk

uik ⊗ ukj =
∑
k

uik ⊗ 1 = 1

∑
i

u∆ij =
∑
ik

uik ⊗ ukj =
∑
k

1⊗ ukj = 1

Thus, u∆ is magic. Regarding now uε, uS, these matrices are magic too, and this for
obvious reasons. Thus, all our three matrices u∆, uε, uS are magic, so we can define ∆, ε, S
by the formulae in the statement, by using the universality property of C(S+

N). □

Our first task now is to make sure that Theorem 3.4 produces indeed a new quantum
group, which does not collapse to SN . Still following Wang [89], we have:

Theorem 3.5. We have an embedding SN ⊂ S+
N , given at the algebra level by:

uij → χ
(
σ ∈ SN

∣∣∣σ(j) = i
)

This is an isomorphism at N ≤ 3, but not at N ≥ 4, where S+
N is not classical, nor finite.

Proof. The fact that we have indeed an embedding as above follows from Proposition
3.3. Observe that in fact more is true, because our results above give:

C(SN) = C(S+
N)
/〈

ab = ba
〉

Thus, the inclusion SN ⊂ S+
N is a “liberation”, in the sense that SN is the classical

version of S+
N . We will often use this basic fact, in what follows. Regarding now the

second assertion, we can prove this in four steps, as follows:
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Case N = 2. The fact that S+
2 is indeed classical, and hence collapses to S2, is trivial,

because the 2× 2 magic matrices are as follows, with p being a projection:

U =

(
p 1− p

1− p p

)
Indeed, this shows that the entries of U commute. Thus C(S+

2 ) is commutative, and
so equals its biggest commutative quotient, which is C(S2). Thus, S

+
2 = S2.

Case N = 3. By using the same argument as in the N = 2 case, and the symmetries
of the problem, it is enough to check that u11, u22 commute. But this follows from:

u11u22 = u11u22(u11 + u12 + u13)

= u11u22u11 + u11u22u13

= u11u22u11 + u11(1− u21 − u23)u13
= u11u22u11

Indeed, by applying the involution to this formula, we obtain that we have as well
u22u11 = u11u22u11. Thus, we obtain u11u22 = u22u11, as desired.

Case N = 4. Consider the following matrix, with p, q being projections:

U =


p 1− p 0 0

1− p p 0 0
0 0 q 1− q
0 0 1− q q


This matrix is magic, and we can choose p, q ∈ B(H) as for the algebra < p, q > to be

noncommutative and infinite dimensional. We conclude that C(S+
4 ) is noncommutative

and infinite dimensional as well, and so S+
4 is non-classical and infinite, as claimed.

Case N ≥ 5. Here we can use the standard embedding S+
4 ⊂ S+

N , obtained at the level
of the corresponding magic matrices in the following way:

u→
(
u 0
0 1N−4

)
Indeed, with this in hand, the fact that S+

4 is a non-classical, infinite compact quantum
group implies that S+

N with N ≥ 5 has these two properties as well. □

With the above results in hand, we can introduce as well quantum reflections:

Theorem 3.6. The following constructions produce compact quantum groups,

C(H+
N) = C∗

(
(uij)i,j=1,...,N

∣∣∣uij = u∗ij, (u
2
ij) = magic

)
C(K+

N) = C∗
(
(uij)i,j=1,...,N

∣∣∣[uij, u∗ij] = 0, (uiju
∗
ij) = magic

)
which appear as liberations of the reflection groups HN = Z2 ≀ SN and KN = T ≀ SN .
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Proof. This can be proved in the usual way, with the first assertion coming from the
fact that if u satisfies the relations in the statement, then so do the matrices u∆, uε, uS,
and with the second assertion being trivial. Let us also mention that, in analogy with
HN = Z2 ≀ SN and KN = T ≀ SN , we have decomposition results as follows:

H+
N = Z2 ≀∗ S+

N , K+
N = T ≀∗ S+

N

To be more precise, here ≀∗ is a free wreath product, and these formulae can be
established a bit as in the classical case. For more on all this, we refer to [8]. □

All the above is very nice, and as a conclusion to all this, let us record the following
result, which collects and refines the various liberation statements formulated above:

Theorem 3.7. The quantum unitary and reflection groups are as follows,

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

==

and in this diagram, any face P ⊂ Q,R ⊂ S has the property P = Q ∩R.

Proof. The fact that we have inclusions as in the statement follows from the defini-
tion of the various quantum groups involved. As for the various intersection claims, these
follow as well from definitions. For some further details on all this, we refer to [8]. □

As a comment here, observe that the symmetric group SN and its free analogue S+
N ,

while certainly being very interesting objects, had not made the cut for appearing in
the above almighty cube, called “standard cube” in quantum algebra. However, this is
something quite natural, because SN and S+

N are objects on their own, neither real or
complex, and for practical purposes, like ours with our cube, these quantum groups must
be replaced with HN , H

+
N in the real case, and with KN , K

+
N in the free case.

Actually I’m not quite sure about this, time to ask the cat. Who says:

Cat 3.8. Do not worry, the high speed world is projective anyway, and it is better to
use reflections instead of permutations.

Thanks cat, not that I really understand what you say, but it fits with my purposes
and cube, which looks really cool. But I will keep this in mind, and discuss later the
relation between affine and projective geometry, in the free setting, that is promised.
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With this done, let us get now into the second question that we were having, namely
the conceptual understanding of the various liberation operations GN → G+

N . In order
to discuss this, we will need Tannakian duality, and Brauer type theorems. Let us start
with Tannakian duality. This is a rather abstract statement, as follows:

Theorem 3.9. The following operations are inverse to each other:

(1) The construction G → C, which associates to a closed subgroup G ⊂u U
+
N the

tensor category formed by the intertwiner spaces Ckl = Hom(u⊗k, u⊗l).
(2) The construction C → G, associating to a tensor category C the closed subgroup

G ⊂u U
+
N coming from the relations T ∈ Hom(u⊗k, u⊗l), with T ∈ Ckl.

Proof. We have indeed a construction G → CG, whose output is a subcategory of
the tensor C∗-category of finite dimensional Hilbert spaces, as follows:

(CG)kl = Hom(u⊗k, u⊗l)

We have as well a construction C → GC , obtained by setting:

C(GC) = C(U+
N )
/〈

T ∈ Hom(u⊗k, u⊗l)
∣∣∣∀k, l, ∀T ∈ Ckl

〉
Regarding now the bijection claim, some elementary algebra shows that C = CGC

implies G = GCG
, and that C ⊂ CGC

is automatic. Thus we are left with proving:

CGC
⊂ C

But this latter inclusion can be proved indeed, by doing some algebra, and using von
Neumann’s bicommutant theorem, in finite dimensions. □

The above result is something quite abstract, yet powerful. We will see applications
of it in a moment, in the form of Brauer theorems for SN , ON , UN and S+

N , O
+
N , U

+
N , and

other quantum groups. In order to formulate these Brauer theorems, let us start with:

Definition 3.10. Let P (k, l) be the set of partitions between an upper row of k points,
and a lower row of l points. A collection of sets

D =
⊔
k,l

D(k, l)

with D(k, l) ⊂ P (k, l) is called a category of partitions when it has the following properties:

(1) Stability under the horizontal concatenation, (π, σ)→ [πσ].
(2) Stability under the vertical concatenation, (π, σ)→ [σπ].
(3) Stability under the upside-down turning, π → π∗.
(4) Each set P (k, k) contains the identity partition || . . . ||.
(5) The sets P (∅, ◦•) and P (∅, •◦) both contain the semicircle ∩.
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As a basic example, we have the category of all partitions P itself. Other basic
examples are the category of pairings P2, and the categories NC,NC2 of noncrossing
partitions, and pairings. We have as well the category P2 of pairings which are “matching”,
in the sense that they connect ◦ − ◦, • − • on the vertical, and ◦ − • on the horizontal,
and its subcategory NC2 ⊂ P2 consisting of the noncrossing matching pairings.

There are many other examples, and we will be back to this, gradually, in what follows.
Regarding now the relation with the Tannakian categories, this comes from:

Proposition 3.11. Each partition π ∈ P (k, l) produces a linear map

Tπ : (CN)⊗k → (CN)⊗l

given by the following formula, with e1, . . . , eN being the standard basis of CN ,

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

and with the Kronecker type symbols δπ ∈ {0, 1} depending on whether the indices fit or
not. The assignement π → Tπ is categorical, in the sense that we have

Tπ ⊗ Tσ = T[πσ] , TπTσ = N c(π,σ)T[σπ ] , T ∗
π = Tπ∗

where c(π, σ) are certain integers, coming from the erased components in the middle.

Proof. The concatenation axiom follows from the following computation:

(Tπ ⊗ Tσ)(ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

=
∑
j1...jq

∑
l1...ls

δπ

(
i1 . . . ip
j1 . . . jq

)
δσ

(
k1 . . . kr
l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

=
∑
j1...jq

∑
l1...ls

δ[πσ]

(
i1 . . . ip k1 . . . kr
j1 . . . jq l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

= T[πσ](ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

As for the composition and involution axioms, their proof is similar. □

In relation now with quantum groups, we have the following result:

Theorem 3.12. Each category of partitions D = (D(k, l)) produces a family of com-
pact quantum groups G = (GN), one for each N ∈ N, via the formula

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

which produces a Tannakian category, and so a closed subgroup GN ⊂u U
+
N .
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Proof. Let call Ckl the spaces on the right. By using the axioms in Definition 3.10,
and the categorical properties of the operation π → Tπ, from Proposition 3.11, we see that
C = (Ckl) is a Tannakian category. Thus Theorem 3.9 applies, and gives the result. □

We can now formulate a key definition, as follows:

Definition 3.13. A compact quantum group GN is called easy when we have

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

for any colored integers k, l, for a certain category of partitions D ⊂ P .

In other words, a compact quantum group is called easy when its Tannakian category
appears in the simplest possible way: from a category of partitions. The terminology is
quite natural, because Tannakian duality is basically our only serious tool. In relation
now with the orthogonal, unitary and symmetric quantum groups, here is the result:

Theorem 3.14. The basic quantum permutation and rotation groups,

S+
N

// O+
N

// U+
N

SN
//

OO

ON
//

OO

UN

OO

are all easy, the corresponding categories of partitions being as follows,

NC

��

NC2
oo

��

NC2oo

��
P P2
oo P2

oo

with 2 standing for pairings, NC for noncrossing, and calligraphic for matching.

Proof. This is something quite fundamental, the proof being as follows:

(1) The quantum group U+
N is defined via the following relations:

u∗ = u−1 , ut = ū−1

But, by doing some elementary computations, these relations tell us precisely that the
following two operators must be in the associated Tannakian category C:

Tπ : π = ∩
◦• ,

∩
•◦

Thus, the associated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< ∩
◦• ,

∩
•◦ >= NC2
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(2) The subgroup O+
N ⊂ U+

N is defined by imposing the following relations:

uij = ūij

Thus, the following operators must be in the associated Tannakian category C:

Tπ : π = |◦• , |•◦
We conclude that the Tannakian category is C = span(Tπ|π ∈ D), with:

D =< NC2, |◦•, |•◦ >= NC2

(3) The subgroup UN ⊂ U+
N is defined via the following relations:

[uij, ukl] = 0 , [uij, ūkl] = 0

Thus, the following operators must be in the associated Tannakian category C:

Tπ : π = /\◦◦◦◦ , /\
◦•
•◦

Thus the associated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< NC2, /\◦◦◦◦, /\
◦•
•◦ >= P2

(4) In order to deal now with ON , we can simply use the following formula:

ON = O+
N ∩ UN

At the categorical level, this tells us that ON is indeed easy, coming from:

D =< NC2,P2 >= P2

(5) We know that the subgroup S+
N ⊂ O+

N appears as follows:

C(S+
N) = C(O+

N)
/〈

u = magic
〉

In order to interpret the magic condition, consider the fork partition:

Y ∈ P (2, 1)
Given a corepresentation u, we have the following formulae:

(TY u
⊗2)i,jk =

∑
lm

(TY )i,lm(u
⊗2)lm,jk = uijuik

(uTY )i,jk =
∑
l

uil(TY )l,jk = δjkuij

We conclude that we have the following equivalence:

TY ∈ Hom(u⊗2, u) ⇐⇒ uijuik = δjkuij,∀i, j, k
The condition on the right being equivalent to the magic condition, we obtain:

C(S+
N) = C(O+

N)
/〈

TY ∈ Hom(u⊗2, u)
〉
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Thus S+
N is indeed easy, the corresponding category of partitions being:

D =< Y >= NC

(6) Finally, in order to deal with SN , we can use the following formula:

SN = S+
N ∩ON

At the categorical level, this tells us that SN is indeed easy, coming from:

D =< NC,P2 >= P

Thus, we are led to the conclusions in the statement. □

Moving ahead, we can upgrade what we have into a cube result, as follows:

Theorem 3.15. The basic quantum unitary and reflection groups,

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

<<

are all easy, and the corresponding categories of partitions form an intersection diagram.

Proof. The precise claim is that the categories are as follows, with Peven being the
category of partitions having even blocks, and with Peven(k, l) ⊂ Peven(k, l) consisting of
the partitions satisfying #◦ = #• in each block, when flattening the partition:

NCeven

zz

��

NC2

��

oo

��

NCeven

��

NC2

��

oo

Peven

zz

P2

��

oo

Peven P2
oo

But this is something that we already know for the right face, from Theorem 3.14,
and in what regards the left face, the proof here is similar, by using the results for SN , S

+
N

from that same Theorem 3.14. As for the last assertion, this is something trivial. □

The above results are something quite deep, and we will see in what follows countless
applications of them. As a first such application, rather philosophical, we have:
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Theorem 3.16. The constructions GN → G+
N with G = O,U, S,H,K are easy quan-

tum group liberations, in the sense that they come from the construction

D → D ∩NC

at the level of the associated categories of partitions.

Proof. This is clear indeed from Theorem 3.14 and Theorem 3.15, and from the
following trivial equalities, connecting the categories found there:

NC2 = P2 ∩NC , NC2 = P2 ∩NC

NC = P ∩NC

NCeven = Peven ∩NC , NCeven = Peven ∩NC
Thus, we are led to the conclusion in the statement. □

The above result is quite nice, because the various constructions GN → G+
N that we

made so far, although natural, were something quite ad-hoc. Now all this is no longer
ad-hoc, and the next time that we will have to liberate a subgroup GN ⊂ UN , we know
what the recipe is, namely check if GN is easy, and if so, simply define G+

N ⊂ U+
N as being

the easy quantum group coming from the category D = DG ∩NC.

3b. Uniformity, characters

In general, the study of the free quantum groups, in the “easy” sense explained above,
is something quite complex. In order to cut a bit from complexity, we will use:

Proposition 3.17. For an easy quantum group G = (GN), coming from a category
of partitions D ⊂ P , the following conditions are equivalent:

(1) GN−1 = GN ∩ U+
N−1, via the embedding U+

N−1 ⊂ U+
N given by u→ diag(u, 1).

(2) GN−1 = GN ∩ U+
N−1, via the N possible diagonal embeddings U+

N−1 ⊂ U+
N .

(3) D is stable under the operation which consists in removing blocks.

Proof. We use the general easiness theory, as explained above:

(1) ⇐⇒ (2) This is something standard, coming from the inclusion SN ⊂ GN , which
makes everything SN -invariant. The result follows as well from the proof of (1) ⇐⇒ (3)
below, which can be converted into a proof of (2) ⇐⇒ (3), in the obvious way.

(1) ⇐⇒ (3) Given a subgroup K ⊂ U+
N−1, with fundamental corepresentation u,

consider the N ×N matrix v = diag(u, 1). Our claim is that for any π ∈ P (k) we have:

ξπ ∈ Fix(v⊗k) ⇐⇒ ξπ′ ∈ Fix(v⊗k′), ∀π′ ∈ P (k′), π′ ⊂ π
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In order to prove this, we must study the condition on the left. We have:

ξπ ∈ Fix(v⊗k) ⇐⇒ (v⊗kξπ)i1...ik = (ξπ)i1...ik ,∀i
⇐⇒

∑
j

(v⊗k)i1...ik,j1...jk(ξπ)j1...jk = (ξπ)i1...ik ,∀i

⇐⇒
∑
j

δπ(j1, . . . , jk)vi1j1 . . . vikjk = δπ(i1, . . . , ik),∀i

Now let us recall that our corepresentation has the special form v = diag(u, 1). We
conclude from this that for any index a ∈ {1, . . . , k}, we must have:

ia = N =⇒ ja = N

With this observation in hand, if we denote by i′, j′ the multi-indices obtained from
i, j obtained by erasing all the above ia = ja = N values, and by k′ ≤ k the common
length of these new multi-indices, our condition becomes:∑

j′

δπ(j1, . . . , jk)(v
⊗k′)i′j′ = δπ(i1, . . . , ik),∀i

Here the index j is by definition obtained from j′ by filling with N values. In order
to finish now, we have two cases, depending on i, as follows:

Case 1. Assume that the index set {a|ia = N} corresponds to a certain subpartition
π′ ⊂ π. In this case, the N values will not matter, and our formula becomes:∑

j′

δπ(j
′
1, . . . , j

′
k′)(v

⊗k′)i′j′ = δπ(i
′
1, . . . , i

′
k′)

Case 2. Assume now the opposite, namely that the set {a|ia = N} does not correspond
to a subpartition π′ ⊂ π. In this case the indices mix, and our formula reads:

0 = 0

Thus, we are led to ξπ′ ∈ Fix(v⊗k′), for any subpartition π′ ⊂ π, as claimed. Thus
our claim is proved, and with this in hand, the result follows from Tannakian duality. □

Based on the above result, let us formulate the following definition:

Definition 3.18. An easy quantum group G = (GN), coming from a category of
partitions D ⊂ P , is called uniform when we have, for any N ∈ N:

GN−1 = GN ∩ U+
N−1

Equivalently, D must be stable under the operation which consists in removing blocks.

For classification purposes the uniformity axiom is something very natural and useful,
substantially cutting from complexity, and we have the following result:
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Theorem 3.19. The classical and free uniform orthogonal easy quantum groups are

H+
N

// O+
N

S+
N

//

>>

B+
N

>>

HN
//

OO

ON

OO

SN

OO

==

// BN

OO

<<

with BN , B
+
N being the classical and quantum bistochastic groups.

Proof. There are several things to be proved, the idea being as follows:

(1) We first recall that the bistochastic group BN ⊂ ON consists of the orthogonal
matrices whose entries sum up to 1 on each row, or equivalently, sum up to 1 on each
column. Thus, if we denote by ξ ∈ CN the all-one vector, we have:

BN =
{
U ∈ ON

∣∣∣Uξ = ξ
}

Based on this, we can construct a free analogue of BN as follows, and the fact that
we obtain indeed a quantum group follows exactly as for O+

N , U
+
N :

C(B+
N) = C(O+

N)
/〈

uξ = ξ
〉

(2) Since the relation uξ = ξ reads T| ∈ Fix(u), with | ∈ P (0, 1) being the singleton
partition, we conclude that BN , B

+
N are easy, coming from the categories P12, NC12 of

singletons and pairings, and noncrossing singletons and pairings. Thus, all the quantum
groups in the statement are easy, the corresponding categories of partitions being:

NCeven

}}

��

NC2

~~

oo

��

NC

��

NC12

��

oo

Peven

}}

P2

~~

oo

P P12
oo

(3) Regarding now the classification, consider an easy quantum group SN ⊂ GN ⊂ ON .
This must come from a category P2 ⊂ D ⊂ P , and if we assume G = (GN) to be uniform,
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then D is uniquely determined by the subset L ⊂ N consisting of the sizes of the blocks
of the partitions in D. Our claim is that the admissible sets are as follows:

– L = {2}, producing ON .

– L = {1, 2}, producing BN .

– L = {2, 4, 6, . . .}, producing HN .

– L = {1, 2, 3, . . .}, producing SN .

(4) Indeed, in one sense, this follows from our easiness results for ON , BN , HN , SN . In
the other sense now, assume that L ⊂ N is such that the set PL consisting of partitions
whose sizes of the blocks belong to L is a category of partitions. We know from the axioms
of the categories of partitions that the semicircle ∩ must be in the category, so we have
2 ∈ L. We claim that the following conditions must be satisfied as well:

k, l ∈ L, k > l =⇒ k − l ∈ L

k ∈ L, k ≥ 2 =⇒ 2k − 2 ∈ L
(5) Indeed, we will prove that both conditions follow from the axioms of the categories

of partitions. Let us denote by bk ∈ P (0, k) the one-block partition:

bk =

{
⊓⊓ . . . ⊓
1 2 . . . k

}
For k > l, we can write bk−l in the following way:

bk−l =


⊓⊓ . . . . . . . . . . . . ⊓
1 2 . . . l l + 1 . . . k
⊔⊔ . . . ⊔ | . . . |

1 . . . k − l


In other words, we have the following formula:

bk−l = (b∗l ⊗ |⊗k−l)bk

Since all the terms of this composition are in PL, we have bk−l ∈ PL, and this proves
our first claim. As for the second claim, this can be proved in a similar way, by capping
two adjacent k-blocks with a 2-block, in the middle.

(6) With these conditions in hand, we can conclude in the following way:

Case 1. Assume 1 ∈ L. By using the first condition with l = 1 we get:

k ∈ L =⇒ k − 1 ∈ L
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This condition shows that we must have L = {1, 2, . . . ,m}, for a certain number
m ∈ {1, 2, . . . ,∞}. On the other hand, by using the second condition we get:

m ∈ L =⇒ 2m− 2 ∈ L
=⇒ 2m− 2 ≤ m

=⇒ m ∈ {1, 2,∞}
The case m = 1 being excluded by the condition 2 ∈ L, we reach to one of the two

sets producing the groups SN , BN .

Case 2. Assume 1 /∈ L. By using the first condition with l = 2 we get:

k ∈ L =⇒ k − 2 ∈ L
This condition shows that we must have L = {2, 4, . . . , 2p}, for a certain number

p ∈ {1, 2, . . . ,∞}. On the other hand, by using the second condition we get:

2p ∈ L =⇒ 4p− 2 ∈ L
=⇒ 4p− 2 ≤ 2p

=⇒ p ∈ {1,∞}
Thus L must be one of the two sets producing ON , HN , and we are done. In the free

case, S+
N ⊂ GN ⊂ O+

N , the situation is quite similar, the admissible sets being once again
the above ones, producing this time O+

N , B
+
N , H

+
N , S

+
N . □

When removing the uniformity axiom things become more complicated, as follows:

Theorem 3.20. The classical and free orthogonal easy quantum groups are

H+
N

// O+
N

S ′+
N

==

B′+
N

==

S+
N

//

==

B+
N

==

HN
//

OO

ON

OO

S ′
N

<<

B′
N

<<

SN

OO

<<

// BN

OO

<<

with S ′
N = SN × Z2, B

′
N = BN × Z2, and with S ′+

N ,B
′+
N being their liberations, where B′+

N

stands for the two possible such liberations, B′+
N ⊂ B′′+

N .

Proof. The idea here is that of jointly classifying the “classical” categories of parti-
tions P2 ⊂ D ⊂ P , and the “free” ones NC2 ⊂ D ⊂ NC:
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(1) At the classical level this leads, via a study which is quite similar to that from the
proof of Theorem 3.19, to 2 more groups, namely S ′

N , B
′
N .

(2) At the free level we obtain 3 more quantum groups, S ′+
N , B

′+
N , B

′′+
N , with the in-

clusion B′+
N ⊂ B′′+

N , which is something a bit surprising, being best thought of as coming
from an inclusion B′

N ⊂ B′′
N , which happens to be an isomorphism. □

It is possible to obtain similar results in the general unitary case, first with a quite
simple statement, regarding the uniform case, and then with something more complicated,
regarding the non-uniform case. We refer here to the paper of Tarrago-Weber [80].

Importantly, the uniformity assumption has some interesting analytic consequences,
making the link with the Bercovici-Pata bijection [19]. In order to discuss this, we first
need to know how to integrate on the easy quantum groups, and we have here:

Theorem 3.21. Assuming that a closed subgroup G ⊂ U+
N is easy, coming from a

category of partitions D ⊂ P , we have the Weingarten formula∫
G

ue1i1j1 . . . u
ek
ikjk

=
∑

π,σ∈D(k)

δπ(i)δσ(j)WkN(π, σ)

where δ ∈ {0, 1} are the usual Kronecker type symbols, and where the Weingarten matrix
WkN = G−1

kN is the inverse of the Gram matrix GkN(π, σ) = N |π∨σ|.

Proof. We know from the general theory in chapter 1 that the integrals in the state-
ment form altogether the orthogonal projection P k onto the following space:

Fix(u⊗k) = span
(
ξπ

∣∣∣π ∈ D(k)
)

In order to prove the result, consider the following linear map:

E(x) =
∑

π∈D(k)

< x, ξπ > ξπ

By a standard linear algebra computation, it follows that we have P = WE, where W
is the inverse on Fix(u⊗k) of the restriction of E. But this restriction is the linear map
given by GkN , and so W is the linear map given by WkN , and this gives the result. □

In relation now with characters, we have the following moment formula:

Proposition 3.22. The moments of truncated characters are given by the formula∫
G

(u11 + . . .+ uss)
k = Tr(WkNGks)

where GkN and WkN = G−1
kN are the associated Gram and Weingarten matrices.
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Proof. We have indeed the following computation:∫
G

(u11 + . . .+ uss)
k =

s∑
i1=1

. . .

s∑
ik=1

∫
ui1i1 . . . uikik

=
∑

π,σ∈D(k)

WkN(π, σ)
s∑

i1=1

. . .

s∑
ik=1

δπ(i)δσ(i)

=
∑

π,σ∈D(k)

WkN(π, σ)Gks(σ, π)

= Tr(WkNGks)

Thus, we have obtained the formula in the statement. □

With the above general theory in hand, we can now formulate our character results
for the main examples of uniform easy quantum groups, as follows:

Theorem 3.23. For the main quantum rotation and reflection groups,

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

<<

the corresponding truncated characters follow with N →∞ the laws

Bt Γt

βt γt

Bt Gt

bt gt

which are the main limiting laws in classical and free probability.
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Proof. We know from Theorem 3.15 that the above quantum groups are all easy,
coming from the following categories of partitions:

NCeven

zz

��

NC2

��

oo

��

NCeven

��

NC2

��

oo

Peven

zz

P2

��

oo

Peven P2
oo

Now by using Proposition 3.22, we obtain the following formula:

lim
N→∞

∫
GN

χk
t =

∑
π∈D(k)

t|π|

But this gives the laws in the statement, via some standard calculus. □

3c. Temperley-Lieb

All the above is sweet, and there are many other things that can be said, along the
same lines, about the liberation operations GN → G+

N , using easiness and partitions. This
being said, we are rather interested in free quantum groups, so we do not need partitions
with crossings, and this leads us to a quite puzzling question, as follows:

Question 3.24. Among the many objects which are in bijection with the noncrossing
partitions, which are the most adapted to the study of the free quantum groups?

To be more precise here, in order to give you a taste on what this question is about,
you have surely heard for instance about the Catalan numbers:

Ck =
1

k + 1

(
2k

k

)
These Catalan numbers count the partitions in NC(k), but they count as well a zillion

other interesting things, just ask and any expert in combinatorics will probably get you
stuck for 1 hour in the coffee room, in explaining you all this, and our problem is, among
these zillion things, what are the best for the study of free quantum groups.

This does not look obvious, and so time to ask the cat. And cat says:

Cat 3.25. You’re getting old, double the strings as to have Temperley-Lieb diagrams,
as in the heyday of free quantum group theory.
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Thanks cat, and yes indeed, age does not help much with knowledge and memory, in
fact Question 3.24 is something that I already thought about, some 30 years ago, when
developing the basic theory of free quantum groups. Following Temperley-Lieb, who by
the way were first-class physicists, and then Jones, who was a first-class physicist too,
and many others, including myself when younger, not to forget cat of course, we will of
course go for this, doubling strings and using Temperley-Lieb diagrams.

Let us start with the following result, which is well-known:

Proposition 3.26. We have a bijection NC(k) ≃ NC2(2k), as follows:

(1) The application NC(k)→ NC2(2k) is the “fattening” one, obtained by doubling
all the legs, and doubling all the strings as well.

(2) Its inverse NC2(2k) → NC(k) is the “shrinking” application, obtained by col-
lapsing pairs of consecutive neighbors.

Proof. The fact that the above two operations are indeed inverse to each other is
clear, by drawing pictures, and computing the corresponding compositions. □

With the above result in hand, we can axiomatize the free quantum groups, in terms
of Temperley-Lieb diagrams NC2, and say many interesting things about them, based on
the work of Jones and others on subfactor theory and planar algebras [64].

We can compute representations and their fusion rules, Cayley graphs, growth expo-
nents, laws of characters and more, by using diagrams, and more specifically Temperley-
Lieb diagrams NC2, which are quite often the most adapted, to our questions.

As a basic example for what can be done here, regarding O+
N , we have:

Theorem 3.27. The irreducible representations of O+
N with N ≥ 2 can be labelled by

positive integers, rk with k ∈ N, the fusion rules for these representations are

rk ⊗ rl = r|k−l| + r|k−l|+2 + . . .+ rk+l

and the dimensions are dim rk = (qk+1 − q−k−1)/(q − q−1), with q + q−1 = N .

Proof. The idea is to skilfully recycle the well-known proof for SU2. Our claim is
that we can construct, by recurrence on k ∈ N, a sequence r0, r1, r2, . . . of irreducible,
self-adjoint and distinct representations of O+

N , satisfying:

r0 = 1 , r1 = u , rk−1 ⊗ r1 = rk−2 + rk

In order to do so, we can use the formula rk−2⊗r1 = rk−3+rk−1 and Frobenius duality,
and we conclude there exists a certain representation rk such that:

rk−1 ⊗ r1 = rk−2 + rk



64 3. FINE STRUCTURE

As a first observation, rk is self-adjoint, because its character is a certain polynomial
with integer coefficients in χ, which is self-adjoint. In order to prove now that rk is
irreducible, and non-equivalent to r0, . . . , rk−1, let us split as before u

⊗k, as follows:

u⊗k = ckrk + ck−2rk−2 + ck−4rk−4 + . . .

The point now is that we have the following equalities and inequalities:

Ck =
∑
i

c2i ≤ dim(End(u⊗k)) ≤ |NC2(k, k)| = Ck

Indeed, the equality at left is clear as before, then comes a standard inequality, then
an inequality coming from easiness, then a standard equality. Thus, we have equality,
so rk is irreducible, and non-equivalent to rk−2, rk−4, . . . Moreover, rk is not equivalent to
rk−1, rk−3, . . . either, by using the same argument as for SU2, and the end of the proof is
exactly as for SU2. As for dimensions, by recurrence we obtain, with q + q−1 = N :

dim rk = qk + qk−2 + . . .+ q−k+2 + q−k

But this gives the dimension formula in the statement, and we are done. □

It is possible to use similar methods for the other main examples of free quantum
groups, and do many other things, in relation with the Temperley-Lieb algebra.

3d. Meander determinants

We discuss now, following Di Francesco [40] and others, the computation of the Gram
determinants for the free quantum groups, which is a very interesting question, related to
many things. But let us start with SN and other classical groups. We will need:

Definition 3.28. The Möbius function of any lattice, and so of P , is given by

µ(π, σ) =


1 if π = σ

−
∑

π≤τ<σ µ(π, τ) if π < σ

0 if π ̸≤ σ

with the construction being performed by recurrence.

As an illustration here, for P (2) = {||,⊓}, we have by definition:

µ(||, ||) = µ(⊓,⊓) = 1

Also, || < ⊓, with no intermediate partition in between, so we obtain:

µ(||,⊓) = −µ(||, ||) = −1
Finally, we have ⊓ ̸≤ ||, and so we have as well the following formula:

µ(⊓, ||) = 0

We will need the Möbius inversion formula, which can be formulated as follows:



3D. MEANDER DETERMINANTS 65

Theorem 3.29. The inverse of the adjacency matrix of P (k), given by

Ak(π, σ) =

{
1 if π ≤ σ

0 if π ̸≤ σ

is the Möbius matrix of P , given by Mk(π, σ) = µ(π, σ).

Proof. This is well-known, coming from the fact that Ak is upper triangular. Indeed,
when inverting, we are led into the recurrence for µ, from Definition 3.28. □

As an illustration, for P (2) the formula M2 = A−1
2 appears as follows:(

1 −1
0 1

)
=

(
1 1
0 1

)−1

Now back to our Gram matrix considerations, we have the following result:

Proposition 3.30. The Gram matrix of the vectors ξπ with π ∈ P (k),

Gπσ = N |π∨σ|

decomposes as a product of upper/lower triangular matrices, Gk = AkLk, where

Lk(π, σ) =

{
N(N − 1) . . . (N − |π|+ 1) if σ ≤ π

0 otherwise

and where Ak is the adjacency matrix of P (k).

Proof. We have indeed the following computation:

Gk(π, σ) = N |π∨σ|

= #
{
i1, . . . , ik ∈ {1, . . . , N}

∣∣∣ ker i ≥ π ∨ σ
}

=
∑

τ≥π∨σ

#
{
i1, . . . , ik ∈ {1, . . . , N}

∣∣∣ ker i = τ
}

=
∑

τ≥π∨σ

N(N − 1) . . . (N − |τ |+ 1)

According now to the definition of Ak, Lk, this formula reads:

Gk(π, σ) =
∑
τ≥π

Lk(τ, σ)

=
∑
τ

Ak(π, τ)Lk(τ, σ)

= (AkLk)(π, σ)

Thus, we are led to the formula in the statement. □
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As an illustration for the above result, at k = 2 we have P (2) = {||,⊓}, and the above
decomposition G2 = A2L2 appears as follows:(

N2 N
N N

)
=

(
1 1
0 1

)(
N2 −N 0
N N

)
We are led in this way to the following formula, due to Lindstöm:

Theorem 3.31. The determinant of the Gram matrix Gk is given by

det(Gk) =
∏

π∈P (k)

N !

(N − |π|)!

with the convention that in the case N < k we obtain 0.

Proof. If we order P (k) as usual, with respect to the number of blocks, and then
lexicographically, Ak is upper triangular, and Lk is lower triangular. Thus, we have:

det(Gk) = det(Ak) det(Lk)

= det(Lk)

=
∏
π

Lk(π, π)

=
∏
π

N(N − 1) . . . (N − |π|+ 1)

Thus, we are led to the formula in the statement. □

Let us discuss as well the case of the orthogonal group ON . Here the combinatorics is
that of the Young diagrams. We denote by |.| the number of boxes, and we use quantity
fλ, which gives the number of standard Young tableaux of shape λ. We have then:

Theorem 3.32. The determinant of the Gram matrix of ON is given by

det(GkN) =
∏

|λ|=k/2

fN(λ)
f2λ

where the quantities on the right are fN(λ) =
∏

(i,j)∈λ(N + 2j − i− 1).

Proof. For the group ON the Gram matrix is diagonalizable, as follows:

GkN =
∑

|λ|=k/2

fN(λ)P2λ

Here 1 =
∑
P2λ is the standard partition of unity associated to the Young diagrams

having k/2 boxes, and the coefficients fN(λ) are those in the statement. Now since we
have Tr(P2λ) = f 2λ, this gives the formula in the statement. □

In order to deal now with O+
N , S

+
N , we will need the following fact:
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Proposition 3.33. The Gram matrices of NC2(2k) ≃ NC(k) are related by

G2k,n(π, σ) = nk(∆−1
knGk,n2∆−1

kn )(π
′, σ′)

where π → π′ is the shrinking operation, and ∆kn is the diagonal of Gkn.

Proof. In the context of the bijection from Proposition 3.26, we have:

|π ∨ σ| = k + 2|π′ ∨ σ′| − |π′| − |σ′|
We therefore have the following formula, valid for any n ∈ N:

n|π∨σ| = nk+2|π′∨σ′|−|π′|−|σ′|

Thus, we are led to the formula in the statement. □

Now back to O+
N , S

+
N , let us begin with some examples. We first have:

Proposition 3.34. The first Gram matrices and determinants for O+
N are

det

(
N2 N
N N2

)
= N2(N2 − 1)

det


N3 N2 N2 N2 N
N2 N3 N N N2

N2 N N3 N N2

N2 N N N3 N2

N N2 N2 N2 N3

 = N5(N2 − 1)4(N2 − 2)

with the matrices being written by using the lexicographic order on NC2(2k).

Proof. The formula at k = 2, where NC2(4) = {⊓⊓,
⋂
∩ }, is clear from definitions.

At k = 3 however, things are tricky. The partitions here are as follows:

NC(3) = {|||,⊓|,⊓| , |⊓,⊓⊓}
The Gram matrix and its determinant are, according to Theorem 3.31:

det


N3 N2 N2 N2 N
N2 N2 N N N
N2 N N2 N N
N2 N N N2 N
N N N N N

 = N5(N − 1)4(N − 2)

By using Proposition 3.33, the Gram determinant of NC2(6) is given by:

det(G6N) =
1

N2
√
N
×N10(N2 − 1)4(N2 − 2)× 1

N2
√
N

= N5(N2 − 1)4(N2 − 2)

Thus, we have obtained the formula in the statement. □
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In general, such tricks won’t work, because NC(k) is strictly smaller than P (k) at
k ≥ 4. However, following Di Francesco [40], we have the following result:

Theorem 3.35. The determinant of the Gram matrix for O+
N is given by

det(GkN) =

[k/2]∏
r=1

Pr(N)dk/2,r

where Pr are the Chebycheff polynomials, given by

P0 = 1 , P1 = X , Pr+1 = XPr − Pr−1

and dkr = fkr − fk,r+1, with fkr being the following numbers, depending on k, r ∈ Z,

fkr =

(
2k

k − r

)
−
(

2k

k − r − 1

)
with the convention fkr = 0 for k /∈ Z.

Proof. This is something quite technical, obtained by using a decomposition as fol-
lows of the Gram matrix GkN , with the matrix TkN being lower triangular:

GkN = TkNT
t
kN

Thus, a bit as in the proof of the Lindstöm formula, we obtain the result, but the
problem lies however in the construction of TkN , which is non-trivial. See [40]. □

With this in hand, we have as well a similar formula for S+
N , obtained from Theorem

3.35 via Proposition 3.33. For the other free quantum groups, the computations can be
done as well. For more on all this, we refer to [40] and related papers.

3e. Exercises

Exercises:

Exercise 3.36.

Exercise 3.37.

Exercise 3.38.

Exercise 3.39.

Exercise 3.40.

Exercise 3.41.

Bonus exercise.



CHAPTER 4

Free space

4a. Projective space

We discuss in this chapter several things that can be done, going beyond the sphere
setting. First we will discuss free projective geometry, which is by definition compact,
and so can be developed in full generality, without norm restrictions. Then, at the end of
the chapter, we will go back to the affine setting, with some further results.

As a first topic that we would like to discuss, which historically speaking, was at the
beginning of everything, we have the following remarkable isomorphism:

PO+
N = PU+

N

In order to get started, let us first discuss the classical case, and more specifically the
precise relation between the orthogonal group ON , and the unitary group UN . Contrary
to the passage RN → CN , or to the passage SN−1

R → SN−1
C , which are both elementary,

the passage ON → UN cannot be understood directly. In order to understand this passage
we must pass through the corresponding Lie algebras, a follows:

Theorem 4.1. The passage ON → UN appears via Lie algebra complexification,

ON → oN → un → UN

with the Lie algebra uN being a complexification of the Lie algebra oN .

Proof. This is something rather philosophical, and advanced as well, that we will
not really need here, the idea being as follows:

(1) The unitary and orthogonal groups UN , ON are both Lie groups, in the sense
that they are smooth manifolds. The corresponding Lie algebras uN , oN , which are by
definition the respective tangent spaces at 1, can be computed by differentiating the
equations defining UN , ON , with the conclusion being as follows:

uN =
{
A ∈MN(C)

∣∣∣A∗ = −A
}

oN =
{
B ∈MN(R)

∣∣∣Bt = −B
}

(2) This was for the correspondences UN → uN and ON → oN . In the other sense,
the correspondences uN → UN and oN → ON appear by exponentiation, the result here

69
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stating that, around 1, the unitary matrices can be written as U = eA, with A ∈ uN , and
the orthogonal matrices can be written as U = eB, with B ∈ oN .

(3) In view of all this, in order to understand the passage ON → UN it is enough to
understand the passage oN → uN . But, in view of the above formulae for oN , uN , this is
basically an elementary linear algebra problem. Indeed, let us pick an arbitrary matrix
A ∈MN(C), and write it as follows, with B,C ∈MN(R):

A = B + iC

In terms of B,C, the equation A∗ = −A defining the Lie algebra uN reads:

Bt = −B , Ct = C

(4) As a first observation, we must have B ∈ oN . Regarding now C, let us decompose
this matrix as follows, with D being its diagonal, and C ′ being the reminder:

C = D + C ′

The matrix C ′ being symmetric with 0 on the diagonal, by swithcing all the signs
below the main diagonal we obtain a certain matrix C ′

− ∈ oN . Thus, we have decomposed
A ∈ uN as follows, with B,C ′ ∈ oN , and with D ∈MN(R) being diagonal:

A = B + iD + iC ′
−

(5) As a conclusion now, we have shown that we have a direct sum decomposition of
real linear spaces as follows, with ∆ ⊂MN(R) being the diagonal matrices:

uN ≃ oN ⊕∆⊕ oN

Thus, we can stop our study here, and say that we have reached the conclusion in the
statement, namely that uN appears as a “complexification” of oN . □

As before with many other things, that we will not really need in what follows, this
was just an introduction to the subject. More can be found in any Lie group book. In
the free case now, the situation is much simpler, and we have:

Theorem 4.2. The passage O+
N → U+

N appears via free complexification,

U+
N = Õ+

N

where the free complexification of a pair (G, u) is the pair (G̃, ũ) with

C(G̃) =< zuij >⊂ C(T) ∗ C(G) , ũ = zu

where z ∈ C(T) is the standard generator, given by x→ x for any x ∈ T.
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Proof. We have embeddings as follows, with the first one coming by using the counit,
and with the second one coming from the universality property of U+

N :

O+
N ⊂ Õ+

N ⊂ U+
N

We must prove that the embedding on the right is an isomorphism, and there are
several ways of doing this, all instructive, as follows:

(1) If we denote by v, u the fundamental corepresentations of O+
N , U

+
N , we have:

Fix(v⊗k) = span
(
ξπ

∣∣∣π ∈ NC2(k)
)

Fix(u⊗k) = span
(
ξπ

∣∣∣π ∈ NC2(k))
Moreover, the above vectors ξπ are known to be linearly independent at N ≥ 2, and

so the above results provide us with bases, and we obtain:

dim(Fix(v⊗k)) = |NC2(k)| , dim(Fix(u⊗k)) = |NC2(k)|
Now since integrating the character of a corepresentation amounts in counting the

fixed points, the above two formulae can be rewritten as follows:∫
O+

N

χk
v = |NC2(k)| ,

∫
U+
N

χk
u = |NC2(k)|

But this shows, via standard free probability theory, that χv must follow the Winger
semicircle law γ1, and that χu must follow the Voiculescu circular law Γ1:

χv ∼ γ1 , χu ∼ Γ1

On the other hand, by [87], when freely multiplying a semicircular variable by a Haar

unitary we obtain a circular variable. Thus, the main character of Õ+
N is circular:

χzv ∼ Γ1

Now by forgetting about circular variables and free probability, the conclusion is that

the inclusion Õ+
N ⊂ U+

N preserves the law of the main character:

law(χzv) = law(u)

Thus by Peter-Weyl we obtain that the inclusion Õ+
N ⊂ U+

N must be an isomorphism,
modulo the usual equivalence relation for quantum groups.

(2) A version of the above proof, not using any prior free probability knowledge, makes
use of the easiness property of O+

N , U
+
N only, namely:

Hom(v⊗k, v⊗l) = span
(
ξπ

∣∣∣π ∈ NC2(k, l)
)

Hom(u⊗k, u⊗l) = span
(
ξπ

∣∣∣π ∈ NC2(k, l))
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Indeed, let us look at the following inclusions of quantum groups:

O+
N ⊂ Õ+

N ⊂ U+
N

At the level of the associated Hom spaces we obtain reverse inclusions, as follows:

Hom(v⊗k, v⊗l) ⊃ Hom((zv)⊗k, (zv)⊗l) ⊃ Hom(u⊗k, u⊗l)

The spaces on the left and on the right are known from easiness, the result being that
these spaces are as follows:

span
(
Tπ

∣∣∣π ∈ NC2(k, l)
)
⊃ span

(
Tπ

∣∣∣π ∈ NC2(k, l))
Regarding the spaces in the middle, these are obtained from those on the left by “col-

oring”, so we obtain the same spaces as those on the right. Thus, by Tannakian duality,

our embedding Õ+
N ⊂ U+

N is an isomorphism, modulo the usual equivalence relation. □

As an interesting consequence of the above result, we have:

Theorem 4.3. We have an identification as follows,

PO+
N = PU+

N

modulo the usual equivalence relation for compact quantum groups.

Proof. As before, we have several proofs for this result, as follows:

(1) This follows from Theorem 4.2, because we have:

PU+
N = PÕ+

N = PO+
N

(2) We can deduce this as well directly. With notations as before, we have:

Hom
(
(v ⊗ v)k, (v ⊗ v)l

)
= span

(
Tπ

∣∣∣π ∈ NC2((◦•)k, (◦•)l)
)

Hom
(
(u⊗ ū)k, (u⊗ ū)l

)
= span

(
Tπ

∣∣∣π ∈ NC2((◦•)k, (◦•)l))
The sets on the right being equal, we conclude that the inclusion PO+

N ⊂ PU+
N pre-

serves the corresponding Tannakian categories, and so must be an isomorphism. □

As a conclusion, the passage O+
N → U+

N is something much simpler than the passage
ON → UN , with this ultimately coming from the fact that the combinatorics of O+

N , U
+
N

is something much simpler than the combinatorics of ON , UN . In addition, all this leads
as well to the interesting conclusion that the free projective geometry does not fall into
real and complex, but is rather unique and “scalarless”. We will be back to this.

Let us discuss now the projective spaces. Our starting point is the following functional
analytic description of the real and complex projective spaces PN−1

R , PN−1
C :
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Proposition 4.4. We have presentation results as follows,

C(PN−1
R ) = C∗

comm

(
(pij)i,j=1,...,N

∣∣∣p = p̄ = pt = p2, T r(p) = 1
)

C(PN−1
C ) = C∗

comm

(
(pij)i,j=1,...,N

∣∣∣p = p∗ = p2, T r(p) = 1
)

for the algebras of continuous functions on the real and complex projective spaces.

Proof. We use the fact that the projective spaces PN−1
R , PN−1

C can be respectively
identified with the spaces of rank one projections in MN(R),MN(C). With this picture
in mind, it is clear that we have arrows←. In order to construct now arrows→, consider
the universal algebras on the right, AR, AC . These algebras being both commutative, by
the Gelfand theorem we can write, with XR, XC being certain compact spaces:

AR = C(XR) , AC = C(XC)

Now by using the coordinate functions pij, we conclude that XR, XC are certain spaces
of rank one projections in MN(R),MN(C). In other words, we have embeddings:

XR ⊂ PN−1
R , XC ⊂ PN−1

C

By transposing we obtain arrows →, as desired. □

The above result suggests the following definition:

Definition 4.5. Associated to any N ∈ N is the following universal algebra,

C(PN−1
+ ) = C∗

(
(pij)i,j=1,...,N

∣∣∣p = p∗ = p2, T r(p) = 1
)

whose abstract spectrum is called “free projective space”.

Observe that, according to our presentation results for the real and complex projective
spaces PN−1

R and PN−1
C , we have embeddings of compact quantum spaces, as follows:

PN−1
R ⊂ PN−1

C ⊂ PN−1
+

Our first goal will be that of explaining why, in analogy with the uniqueness of the
quantum group PO+

N = PU+
N , the free projective space PN−1

+ is unique, and scalarless.

Let us first discuss the relation with the spheres. Given a closed subset X ⊂ SN−1
R,+ ,

its projective version is by definition the quotient space X → PX determined by the fact
that C(PX) ⊂ C(X) is the subalgebra generated by the following variables:

pij = xixj

In order to discuss the relation with the spheres, it is convenient to neglect the material
regarding the complex and hybrid cases, the projective versions of such spheres bringing
nothing new. Thus, we are left with the 3 real spheres, and we have:
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Theorem 4.6. The projective versions of the 3 real spheres are as follows,

SN−1
R

//

��

SN−1
R,∗

//

��

SN−1
R,+

��

PN−1
R

// PN−1
C

// PN−1
+

modulo the standard equivalence relation for the quantum algebraic manifolds.

Proof. The assertion at left is true by definition. For the assertion at right, we
have to prove that the variables pij = zizj over the free sphere SN−1

R,+ satisfy the defining

relations for C(PN−1
+ ), from Definition 4.5, namely:

p = p∗ = p2 , T r(p) = 1

We first have the following computation:

(p∗)ij = p∗ji = (zjzi)
∗ = zizj = pij

We have as well the following computation:

(p2)ij =
∑
k

pikpkj =
∑
k

ziz
2
kzj = zizj = pij

Finally, we have as well the following computation:

Tr(p) =
∑
k

pkk =
∑
k

z2k = 1

Regarding now PSN−1
R,∗ = PN−1

C , the inclusion “⊂” follows from abcd = cbad = cbda.
In the other sense now, the point is that we have a matrix model, as follows:

π : C(SN−1
R,∗ )→M2(C(S

N−1
C )) , xi →

(
0 zi
z̄i 0

)
But this gives the missing inclusion “⊃”, and we are done. See [11]. □

In addition to the above result, let us mention that, as already discussed above, passing
to the complex case brings nothing new. This is because the projective version of the free
complex sphere is equal to the free projective space constructed above:

PSN−1
C,+ = PN−1

+

And the same goes for the “hybrid” spheres. For details on all this, we refer to [8].

Following [12], we can axiomatize our various projective spaces, as follows:
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Definition 4.7. A monomial projective space is a closed subset P ⊂ PN−1
+ obtained

via relations of type

pi1i2 . . . pik−1ik = piσ(1)iσ(2)
. . . piσ(k−1)iσ(k)

, ∀(i1, . . . , ik) ∈ {1, . . . , N}k

with σ ranging over a certain subset of the infinite symmetric group

S∞ =
⋃
k∈2N

Sk

which is stable under the operation σ → |σ|.

Here the stability under the operation σ → |σ| means that if the above relation
associated to σ holds, then the following relation, associated to |σ|, must hold as well:

pi0i1 . . . pikik+1
= pi0iσ(1)

piσ(2)iσ(3)
. . . piσ(k−2)iσ(k−1)

piσ(k)ik+1

As an illustration, the basic projective spaces are all monomial:

Proposition 4.8. The 3 projective spaces are all monomial, with the permutations

◦ ◦

◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
producing respectively the spaces PN−1

R , PN−1
C , and with no relation needed for PN−1

+ .

Proof. We must divide the algebra C(PN−1
+ ) by the relations associated to the dia-

grams in the statement, as well as those associated to their shifted versions, given by:

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦
(1) The basic crossing, and its shifted version, produce the following relations:

pab = pba

pabpcd = pacpbd
Now by using these relations several times, we obtain the following formula:

pabpcd = pacpbd = pcapdb = pcdpab

Thus, the space produced by the basic crossing is classical, P ⊂ PN−1
C . By using one

more time the relations pab = pba we conclude that we have P = PN−1
R , as claimed.

(2) The fattened crossing, and its shifted version, produce the following relations:

pabpcd = pcdpab

pabpcdpef = padpebpcf
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The first relations tell us that the projective space must be classical, P ⊂ PN−1
C . Now

observe that with pij = ziz̄j, the second relations read:

zaz̄bzcz̄dzez̄f = zaz̄dzez̄bzcz̄f

Since these relations are automatic, we have P = PN−1
C , and we are done. □

Following [12], we can now formulate our classification result, as follows:

Theorem 4.9. The basic projective spaces, namely

PN−1
R ⊂ PN−1

C ⊂ PN−1
+

are the only monomial ones.

Proof. We follow the proof from the affine case. Let Rσ be the collection of relations
associated to a permutation σ ∈ Sk with k ∈ 2N, as in Definition 4.7. We fix a monomial
projective space P ⊂ PN−1

+ , and we associate to it subsets Gk ⊂ Sk, as follows:

Gk =

{
{σ ∈ Sk|Rσ hold over P} (k even)

{σ ∈ Sk|R|σ hold over P} (k odd)

As in the affine case, we obtain in this way a filtered group G = (Gk), which is
stable under removing outer strings, and under removing neighboring strings. Thus the
computations from the affine case apply, and show that we have only 3 possible situations,
corresponding to the 3 projective spaces in Proposition 4.8. See [12]. □

Let us discuss now similar results for the projective quantum groups. Given a closed
subgroup G ⊂ O+

N , its projective version G→ PG is by definition given by the fact that
C(PG) ⊂ C(G) is the subalgebra generated by the following variables:

wij,ab = uiaujb

In the classical case we recover in this way the usual projective version:

PG = G/(G ∩ ZN
2 )

We have the following key result:

Theorem 4.10. The quantum group O∗
N is the unique intermediate easy quantum

group ON ⊂ G ⊂ O+
N . Moreover, in the non-easy case, the following happen:

(1) The group inclusion TON ⊂ UN is maximal.
(2) The group inclusion PON ⊂ PUN is maximal.
(3) The quantum group inclusion ON ⊂ O∗

N is maximal.

Proof. The first assertion comes by classifying the categories of pairings, and then:

(1) This can be obtained by using standard Lie group methods.

(2) This follows from (1), by taking projective versions.

(3) This follows from (2), via standard algebraic lifting results. □
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Our claim now is that, under suitable assumptions, PUN is the only intermediate
object PON ⊂ G ⊂ PO+

N . In order to formulate a precise statement here, we will need:

Definition 4.11. A projective category of pairings is a collection of subsets

NC2(2k, 2l) ⊂ E(k, l) ⊂ P2(2k, 2l)

stable under the usual categorical operations, and satisfying σ ∈ E =⇒ |σ| ∈ E.
As basic examples for this notion, we have the following projective categories of pair-

ings, where P ∗
2 is the category of matching pairings:

NC2 ⊂ P ∗
2 ⊂ P2

This follows indeed from definitions. Now with the above notion in hand, we can
formulate the following projective analogue of the notion of easiness:

Definition 4.12. An intermediate compact quantum group

PON ⊂ H ⊂ PO+
N

is called projectively easy when its Tannakian category

span(NC2(2k, 2l)) ⊂ Hom(v⊗k, v⊗l) ⊂ span(P2(2k, 2l))

comes via via the following formula, using the standard π → Tπ construction,

Hom(v⊗k, v⊗l) = span(E(k, l))

for a certain projective category of pairings E = (E(k, l)).

Thus, we have a projective notion of easiness. Observe that, given an easy quantum
group ON ⊂ G ⊂ O+

N , its projective version PON ⊂ PG ⊂ PO+
N is projectively easy in

our sense. In particular the basic projective quantum groups PON ⊂ PUN ⊂ PO+
N are

all projectively easy in our sense, coming from the categories NC2 ⊂ P ∗
2 ⊂ P2.

We have in fact the following general result, from [12]:

Theorem 4.13. We have a bijective correspondence between the affine and projective
categories of partitions, given by the operation

G→ PG

at the level of the corresponding affine and projective easy quantum groups.

Proof. The construction of correspondence D → E is clear, simply by setting:

E(k, l) = D(2k, 2l)

Indeed, due to the axioms in Definition 4.11, the conditions in Definition 4.12 are
satisfied. Conversely, given E = (E(k, l)) as in Definition 4.12, we can set:

D(k, l) =

{
E(k, l) (k, l even)

{σ : |σ ∈ E(k + 1, l + 1)} (k, l odd)
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Our claim is that D = (D(k, l)) is a category of partitions. Indeed:

(1) The composition action is clear. Indeed, when looking at the numbers of legs
involved, in the even case this is clear, and in the odd case, this follows from:

|σ, |σ′ ∈ E =⇒ |στ ∈ E
=⇒ σ

τ ∈ D
(2) For the tensor product axiom, we have 4 cases to be investigated, depending on

the parity of the number of legs of σ, τ , as follows:

– The even/even case is clear.

– The odd/even case follows from the following computation:

|σ, τ ∈ E =⇒ |στ ∈ E
=⇒ στ ∈ D

– Regarding now the even/odd case, this can be solved as follows:

σ, |τ ∈ E =⇒ |σ|, |τ ∈ E
=⇒ |σ||τ ∈ E
=⇒ |στ ∈ E
=⇒ στ ∈ D

– As for the remaining odd/odd case, here the computation is as follows:

|σ, |τ ∈ E =⇒ ||σ|, |τ ∈ E
=⇒ ||σ||τ ∈ E
=⇒ στ ∈ E
=⇒ στ ∈ D

(3) Finally, the conjugation axiom is clear from definitions. It is also clear that both
compositions D → E → D and E → D → E are the identities, as claimed. As for the
quantum group assertion, this is clear as well from definitions. □

Now back to uniqueness issues, we have here the following result, also from [12]:

Theorem 4.14. We have the following results:

(1) O∗
N is the only intermediate easy quantum group ON ⊂ G ⊂ O+

N .
(2) PUN is the only intermediate projectively easy quantum group PON ⊂ G ⊂ PO+

N .

Proof. The idea here is as follows:

(1) The assertion regarding ON ⊂ O∗
N ⊂ O+

N is from [14], and this is something that
we already know, explained in chapter 3.

(2) The assertion regarding PON ⊂ PUN ⊂ PO+
N follows from the classification result

in (1), and from the duality in Theorem 4.13. □
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Summarizing, we have analogues of the various affine classification results, with the
remark that everything becomes simpler in the projective setting.

Our next goal will be that of finding projective versions of the quantum isometry
group results that we have in the affine setting. We use the following action formalism,
which is quite similar to the affine action formalism introduced in chapter 2:

Definition 4.15. Consider a closed subgroup of the free orthogonal group, G ⊂ O+
N ,

and a closed subset of the free real sphere, X ⊂ SN−1
R,+ .

(1) We write G↷ X when we have a morphism of C∗-algebras, as follows:

Φ : C(X)→ C(X)⊗ C(G)

Φ(zi) =
∑
a

za ⊗ uai

(2) We write PG↷ PX when we have a morphism of C∗-algebras, as follows:

Φ : C(PX)→ C(PX)⊗ C(PG)

Φ(zizj) =
∑
a

zazb ⊗ uaiubj

Observe that the above morphisms Φ, if they exist, are automatically coaction maps.
Observe also that an affine action G ↷ X produces a projective action PG ↷ PX. Let
us also mention that given an algebraic subset X ⊂ SN−1

R,+ , it is routine to prove that there

exist indeed universal quantum groups G ⊂ O+
N acting as (1), and as in (2). We have the

following result, from [11] and related papers, with respect to the above notions:

Theorem 4.16. The quantum isometry groups of basic spheres and projective spaces,

SN−1
R

//

��

SN−1
R,∗

//

��

SN−1
R,+

��

PN−1
R

// PN−1
C

// PN−1
+

are the following affine and projective quantum groups,

ON
//

��

O∗
N

//

��

O+
N

��
PON

// PUN
// PO+

N

with respect to the affine and projective action notions introduced above.
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Proof. The fact that the 3 quantum groups on top act affinely on the corresponding
3 spheres is known since [11], and is elementary, explained before. By restriction, the 3
quantum groups on the bottom follow to act on the corresponding 3 projective spaces.
We must prove now that all these actions are universal. At right there is nothing to prove,
so we are left with studying the actions on SN−1

R , SN−1
R,∗ and on PN−1

R , PN−1
C .

PN−1
R . Consider the following projective coordinates:

pij = zizj , wij,ab = uaiubj

In terms of these projective coordinates, the coaction map is given by:

Φ(pij) =
∑
ab

pab ⊗ wij,ab

Thus, we have the following formulae:

Φ(pij) =
∑
a<b

pab ⊗ (wij,ab + wij,ba) +
∑
a

paa ⊗ wij,aa

Φ(pji) =
∑
a<b

pab ⊗ (wji,ab + wji,ba) +
∑
a

paa ⊗ wji,aa

By comparing these two formulae, and then by using the linear independence of the
variables pab = zazb for a ≤ b, we conclude that we must have:

wij,ab + wij,ba = wji,ab + wji,ba

Let us apply now the antipode to this formula. For this purpose, observe that:

S(wij,ab) = S(uaiubj)

= S(ubj)S(uai)

= ujbuia

= wba,ji

Thus by applying the antipode we obtain:

wba,ji + wab,ji = wba,ij + wab,ij

By relabelling, we obtain the following formula:

wji,ba + wij,ba = wji,ab + wij,ab

Now by comparing with the original relation, we obtain:

wij,ab = wji,ba

But, with wij,ab = uaiubj, this formula reads:

uaiubj = ubjuai

Thus G ⊂ ON , and it follows that we have PG ⊂ PON , as claimed.
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PN−1
C . Consider a coaction map, written as follows, with pab = zaz̄b:

Φ(pij) =
∑
ab

pab ⊗ uaiubj

The idea here will be that of using the following formula:

pabpcd = padpcb

We have the following formulae:

Φ(pijpkl) =
∑
abcd

pabpcd ⊗ uaiubjuckudl

Φ(pilpkj) =
∑
abcd

padpcb ⊗ uaiudluckubj

The terms at left being equal, and the last terms at right being equal too, we deduce
that, with [a, b, c] = abc− cba, we must have the following formula:∑

abcd

uai[ubj, uck, udl]⊗ pabpcd = 0

Now since the quantities pabpcd = zaz̄bzcz̄d at right depend only on the numbers
|{a, c}|, |{b, d}| ∈ {1, 2}, and this dependence produces the only possible linear relations
between the variables pabpcd, we are led to 2× 2 = 4 equations, as follows:

(1) uai[ubj, uak, ubl] = 0, ∀a, b.
(2) uai[ubj, uak, udl] + uai[udj, uak, ubl] = 0, ∀a, ∀b ̸= d.

(3) uai[ubj, uck, ubl] + uci[ubj, uak, ubl] = 0, ∀a ̸= c, ∀b.
(4) uai[ubj, uck, udl]+uai[udj, uck, ubl]+uci[ubj, uak, udl]+uci[udj, uak, ubl] = 0, ∀a ̸= c, b ̸=

d.

We will need in fact only the first two formulae. Since (1) corresponds to (2) at
b = d, we conclude that (1,2) are equivalent to (2), with no restriction on the indices. By
multiplying now this formula to the left by uai, and then summing over i, we obtain:

[ubj, uak, udl] + [udj, uak, ubl] = 0

We use now the antipode/relabel trick from [11]. By applying the antipode we obtain:

[uld, uka, ujb] + [ulb, uka, ujd] = 0

By relabelling we obtain the following formula:

[udl, uak, ubj] + [udj, uak, ubl] = 0

Now by comparing with the original relation, we obtain:

[ubj, uak, udl] = [udj, uak, ubl] = 0

Thus G ⊂ O∗
N , and it follows that we have PG ⊂ PUN , as desired. □
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The above results can be probably improved. As an example, let us say that a closed
subgroup G ⊂ U+

N acts projectively on PX when we have a coaction map as follows:

Φ(zizj) =
∑
ab

zazb ⊗ uaiu∗bj

The above proof can be adapted, by putting ∗ signs where needed, and Theorem 4.16
still holds, in this setting. However, establishing general universality results, involving
arbitrary subgroups H ⊂ PO+

N , looks like a quite non-trivial question.

4b. Grassmannians

In order to develop free projective geometry, a first piece of work is that of developing
a theory of free Grassmannians, free flag manifolds, and free Stiefel manifolds. To be
more precise, the definition of the free Grassmannians is straightforward, as follows, and
the definition of the free flag manifolds and free Stiefel manifolds is very similar:

C(Gr+LN) = C∗
(
(pij)i,j=1,...,N

∣∣∣p = p∗ = p2, T r(p) = L
)

Most of the arguments from the affine case carry over in the projective setting. We
will be back to this later, with nmore details, in Part II of the present book.

We would like to end this discussion with something refreshing, namely a preliminary
study of the free analogue of P 2

R. We recall that the projective space PN−1
R is the space

of lines in RN passing through the origin, the basic examples being as follows:

(1) At N = 2 each such a line, in R2 passing through the origin, corresponds to 2
opposite points on the unit circle T ⊂ R2. Thus, P 1

R corresponds to the upper semicircle
of T, with the endpoints identified, and so we obtain a circle, P 1

R = T.

(2) At N = 3 the situation is similar, with P 2
R corresponding to the upper hemisphere

of the sphere S2
R ⊂ R3, with the points on the equator identified via x = −x. Topologically

speaking, we can deform if we want the upper hemisphere into a square, with the equator
becoming the boundary of this square, and in this picture, the x = −x identification
corresponds to the “identify opposite edges, with opposite orientations” folding method
for the square, leading to a space P 2

R which is obviously not embeddable into R3.

In what follows we will be interested in the free analogue P 2
+ of this projective space

P 2
R. Our main motivation comes from the fact that, according to the work of Bhowmick-

D’Andrea-Dabrowski [20], later on continued with Das [21], the quantum isometry group
PO+

3 = PU+
3 of the free projective space P 2

+ acts on the quark part of the Standard Model
spectral triple, in Chamseddine-Connes formulation [26], [27].
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We recall that the free projective space is defined by the following formula:

C(PN−1
+ ) = C∗

(
(pij)i,j=1,...,N

∣∣∣p = p∗ = p2, T r(p) = 1
)

Let us first discuss, as a warm-up, the 2D case. Here the above matrix of projective
coordinates is as follows, with a = a∗, b = b∗, a+ b = 1:

p =

(
a c
c∗ b

)
We have the following computation:

p2 =

(
a c
c∗ b

)(
a c
c∗ b

)
=

(
a2 + cc∗ ac+ cb
c∗a+ bc∗ c∗c+ b2

)
Thus, the equations to be satisfied are as follows:

a2 + cc∗ = a

b2 + c∗c = b

ac+ cb = c

c∗a+ bc∗ = c∗

The 4th equation is the conjugate of the 3rd equation, so we remove it. By using
a+ b = 1, the remaining equations can be written as:

cc∗ = c∗c = ab

ac+ ca = 0

We have several explicit models for this, using the spheres S1
R,+ and S1

C,+, as well as

the first row spaces of O+
2 and U+

2 , which ultimately lead us to SU2 and S̄U2. These
models are known to be all equivalent under Haar, and the question is whether they are
identical. Thus, we must do computations as above in all models, and compare. These
are all interesting questions, whose precise answers are not known, so far.

In the 3D case now, that of projective space P 2
+, that we are mainly interested in here,

the matrix of coordinates is as follows, with r, s, t self-adjoint, r + s+ t = 1:

p =

 r a b
a∗ s c
b∗ c∗ t


The square of this matrix is given by:

p2 =

 r a b
a∗ s c
b∗ c∗ t

 r a b
a∗ s c
b∗ c∗ t
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We obtain the following formula:

p2 =

 r2 + aa∗ + bb∗ ra+ as+ bc∗ rb+ ac+ bt
a∗r + sa∗ + cb∗ a∗a+ s2 + cc∗ a∗b+ sc+ ct
b∗r + c∗a∗ + tb∗ b∗a+ c∗s+ tc∗ b∗b+ c∗c+ t2


On the diagonal, the equations for p2 = p are as follows:

aa∗ + bb∗ = r − r2

a∗a+ cc∗ = s− s2

b∗b+ c∗c = t− t2

On the off-diagonal upper part, the equations for p2 = p are as follows:

ra+ as+ bc∗ = a

rb+ ac+ bt = b

a∗b+ sc+ ct = c

On the off-diagonal lower part, the equations for p2 = p are those above, conjugated.
Thus, we have 6 equations. The first problem is that of using r + s + t = 1, in order to
make these equations look better. Again, many interesting questions here.

4c. Lifting questions

The are many interesting lifting questions, between affine and projective geometry,
with all sorts of half-liberations involved when lifting, and also within affine geometry
itself, in connection with the free analogue of the stereographic projection.

So, what is RN
+? There are several approaches to this problem, and in each case we are

looking for a triple (A,∆, h) consisting of an operator algebra A, typically a non-unital
C∗-algebra, then a comultiplication ∆, understood to come accompanied by maps ε, S
too, and then a Haar integration functional h. As a starting point, we have:

1. Products. Using RN = (R)N . At the algebra level we have C0(RN) = C0(R)⊗N ,
and this suggests setting C0(RN

+ ) = C0(R)∗N . Thus we have a well-defined algebra A,
and we have a comultiplication ∆ too. The problem is with the Haar integration h. Our
belief is that this problem can be solved by using suitable N × N matrix models, with
our algebra A appearing on the diagonal. This looks quite tricky.

2. Polar coordinates. Using [0,∞) × SN−1
R → RN . At the algebra level we have

C0(RN) ⊂ C0[0,∞)⊗C(SN−1
R ), and the very first question is that of understanding what

the subalgebra C0(RN) exactly is. Since the quotient map [0,∞) × SN−1
R → RN , given

by (r, x) → rx, has the property 0x = 0y for any x, y, this suggests that C0(RN) ⊂
C0[0,∞) ⊗ C(SN−1

R ) consists of functions such that f(0, x) does not depend on x. It is
not very clear what this means, algebrically. Once this difficulty solved, we can probably
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go ahead and construct something similar in the free case, C0(RN
+ ) ⊂ C0[0,∞)∗C(SN−1

R,+ ),
then look for a comultiplication ∆, and a Haar functional h.

2b. An alternative approach here would be by using RN −{0} = (0,∞)×SN−1
R . Here

we have at the algebra level C0(RN − {0}) = C0(0,∞) ⊗ C(SN−1
R ), so at least we have

a clearly defined algebra, that we can generalize right away to the free settting, in the
form of something of type C0(RN

+ − {0}) = C0(0,∞) ∗ C(SN−1
R,+ ). However, we cannot

really investigate the ∆ problem in this setting, so we run once again into a difficulty,
namely constructing the correct lifts C0(RN) and C0(RN

+ ). This being said, the question
of investigating the Haar functional h seems to make sense, even in this “−{0}” setting,
meaning without solving the lifting problem. This is actually quite unclear.

2c. Yet another alternative approach would be by using PN−1
R instead of SN−1

R .
The first question here is that of understanding the precise relation between the spaces
R × PN−1

R and RN , which is probably something well-known, but looks quite geometric
and tricky. Assuming this geometric problem solved, we can probably have C0(RN) con-
structed afterwards in terms of C0(R)⊗C(PN−1

R ), and then at the free level, we can have
C0(RN

+ ) constructed in terms of C0(R) ∗ C(PN−1
R,+ ), and then look for ∆, and for h.

2d. In fact, in modern terms, we are looking for a “free suspension of the free sphere”.

3. Compactification. Using RN = SN
R −{∞}. To be more precise, we want to use the

fact that SN
R appears as the 1-point compactification of RN , with the isomorphism being

the standard stereographic projection map. This might look like a weird idea, because it
is not group-theoretical at all, the main feature of the stereographic projection being the
fact that it is conformal, preserving angles, and so useful in geometry, but not in group
theory. This being said, this is an idea to be explored too, especially since the formula
for h should be not that complicated, and here are some preliminary computations:

Let us start with some abstract considerations. The 1-point compactification of RN is
indeed the sphere SN

R , and for precise formulae and everything, to be given later, the best
is to say that the 1-point compactification of RN = RN × {0} ⊂ RN+1 is the unit sphere
SN
R ⊂ RN+1, with the convention that the point which is added is∞ = (1, 0, . . . , 0). Also,

we make the convention that the coordinates on RN+1 are denoted x0, . . . , xN .

In functional analysis terms, we have a diagram as follows, with all horizontal maps
being inclusions, with the bar on C0(RN) standing for unitization, and with the 0 subscript
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to C(SN
R ) standing for taking the ideal generated by the first coordinate x0:

C0(RN) // C̄0(RN) // Cb(RN)

C(SN
R )0 // C(SN

R )

In view of our motivations, this is not bad, because in the free case we can normally
talk as well about the ideal C(SN

R,+)0 ⊂ C(SN
R,+) generated by the first coordinate x0. The

problem is whether we can declare this ideal to be C0(RN
+ ), with a ∆ and h.

In order to comment on this, let us do some computations, in the classical case. We
first need the precise formulae of the isomorphism RN ≃ SN

R −{∞}, obtained in practice by
identifying RN = RN×{0} ⊂ RN+1 with the unit sphere SN

R ⊂ RN+1, with the convention
that the point which is added is ∞ = (1, 0, . . . , 0), via the stereographic projection. That
is, we need the precise formulae of two inverse maps, as follows:

Φ : RN → SN
R − {∞}

Ψ : SN
R − {∞} → RN

In one sense we must have Φ(v) = t(0, v)+(1− t)(1, 0), with t ∈ (0, 1) being such that
||Φ(v)|| = 1. The equation here is (1− t)2+ t2||v||2 = 1, which simplifies to t2(1+ ||v||2) =
2t, with solution t = 2

1+||v||2 , and so the formula of Φ is as follows:

Φ(v) = (1, 0) +
2

1 + ||v||2
(−1, v)

In the other sense we must have (0,Ψ(c, x)) = α(c, x) + (1 − α)(1, 0) for a certain
α ∈ R, and from αc+ 1− α = 0 we get α = 1

1−c
, so the formula of Ψ is as follows:

Ψ(c, x) =
x

1− c

Here, as before, and in what follows too, we use RN+1 = R×RN , with the coordinate
of R denoted x0, and with the coordinates of RN denoted x1, . . . , xN .

Let us discuss now the ∆ problematics. We can transport the group structure of RN

to a group structure on SN
R − {∞}, as follows:

p · q = Φ(Ψ(p) + Ψ(q))
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In view of the above formulae of Φ,Ψ, the multiplication on SN
R −{∞} that we obtain

is given by the following formula:

(c, x) · (d, y) = Φ(Ψ(c, x) + Ψ(d, y))

= Φ

(
x

1− c
+

y

1− d

)
= (1, 0) +

2

1 + t

(
−1, x

1− c
+

y

1− d

)
Here the parameter t is given by the following formula:

t =
∣∣∣∣∣∣ x

1− c
+

y

1− d

∣∣∣∣∣∣2
Now by transposing, we obtain a comultiplication map as follows, with C(SN

R )0 ⊂
C(SN

R ) being the ideal generated by the first coordinate x0:

∆ : C(SN
R )0 → C(SN

R )0 ⊗ C(SN
R )0

f →
[
(c, x), (d, y)→ f((c, x) · (d, y))

]
The problem is that of slowly working out the details of this map ∆, on various

products of coordinates and so on, and see if we can get a decent formula for ∆ out of
this, and then if this formula has a free generalization or not.

Let us discuss now the Haar problematics, which is the point where we wanted to get,
where things might get simpler. As before with ∆, we can transport the Haar integration
over RN into an integration over SN

R − {∞}, according to the following formula:∫
SN
R −{∞}

f(x) =

∫
RN

f(Φ(v))dv

In practice, according to the above formula of Φ, the precise formula is:∫
SN
R −{∞}

f(x) =

∫
RN

f

(
(1, 0) +

2

1 + ||v||2
(−1, v)

)
dv

Passed the details of this formula, which might look quite complicated, the transport
of the Haar integration over RN into an integration over SN

R − {∞} looks like something
quite simple. Indeed, the measure on SN

R − {∞} should not be that far from the usual
Haar measure of SN

R , with just a density added on the x0 direction, and this because both
measures, the transported one on SN

R −{∞}, and the Haar one on SN
R , are invariant under

the action of ON , acting on the coordinates x1, . . . , xN .
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In short, we should have a formula as follows, with on the right the integration being
the usual Haar one on SN

R , and with φ : [−1, 1]→ (0,∞) being a certain density:∫
SN
R −{∞}

f(x) =

∫
SN
R

f(x)φ(x0)dx

Assuming all this understood, and φ explicitely computed, the extension to the free
case would be probably quite routine, our conjecture being that the integration on RN

+ ,
in a “free stereographic picture”, should be just a modification of the usual Weingarten
formula for SN

R,+, via a horizontal density ψ : [−1, 1] → (0,∞), appearing as the free
version of φ : [−1, 1]→ (0,∞), in the sense of the Bercovici-Pata bijection.

4d. Sums of squares

Another way of “escaping” from spheres, in the affine setting, is via various sums
of squares, chosen to be more complicated than those defining the spheres. In order to
discuss this, let us first study the compact hypersurfaces X ⊂ RN

+ . These hypersurfaces
fit into the C∗-algebra formalism, their definition being as follows:

Definition 4.17. A real compact hypersurface in N variables, denoted Xf ⊂ RN
+ , is

the abstract spectrum of a universal C∗-algebra of the following type,

C(Xf ) = C∗
(
x1, . . . , xN

∣∣∣xi = x∗i , f(x1, . . . , xN) = 0
)

with the noncommutative polynomial f ∈ R < x1, . . . , xN > being such the maximal
C∗-norm on the complex ∗-algebra C < x1, . . . , xN > /(f) is bounded.

As a first result here, coming from the Gelfand theorem, we have:

Theorem 4.18. In order for Xf to exist, the real algebraic manifold

X×
f =

{
x ∈ RN

∣∣∣f(x1, . . . , xN) = 0
}

must be compact. In addition, in this case we have ||xi||× ≤ ||xi||, for any i.

Proof. Assuming that Xf exists, the Gelfand theorem shows that the algebra of
continuous functions on the manifold X×

f in the statement appears as:

C(X×
f ) = C(Xf )

/〈
[xi, xj] = 0

〉
Thus we have an embedding of compact quantum spaces X×

f ⊂ Xf , and the norm
estimate is clear as well, because such embeddings increase the norms. □

Let us first discuss the quadratic case. We have here:
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Theorem 4.19. Given a quadratic polynomial f ∈ R < x1, . . . , xN >, written as

f =
∑
ij

Aijxixj +
∑
i

Bixi + C

the following conditions are equivalent:

(1) Xf exists.
(2) X×

f is compact.

(3) The symmetric matrix Q = A+At

2
is positive or negative.

Proof. The implication (1) =⇒ (2) being known from Theorem 4.18, and the
implication (2) ⇐⇒ (3) being well-known, we are left with proving (3) =⇒ (1). As a
first remark here, by applying the adjoint, our manifold Xf is defined by:{∑

ij Aijxixj +
∑

iBixi + C = 0∑
ij Aijxjxi +

∑
iBixi + C = 0

In terms of P = A−At

2
and Q = A+At

2
, these equations can be written as:{∑

ij Pijxixj = 0∑
ij Qijxixj +

∑
iBixi + C = 0

Let us first examine the second equation. When regarding x as a column vector, and
B as a row vector, this equation becomes an equality of 1× 1 matrices, as follows:

xtQx+Bx+ C = 0

Now let us assume that Q is positive or negative. Up to a sign change, we can assume
Q > 0. We can write Q = UDU t, with D = diag(di) and di > 0, and with U ∈ ON . In
terms of the vector y = U tx, and with E = BU , our equation becomes:

ytDy + Ey + C = 0

By reverting back to sums and indices, this equation reads:∑
i

diy
2
i +

∑
i

eiyi + C = 0

Now by making squares, this equation takes the following form:∑
i

di

(
yi +

ei
2di

)2

= c

By positivity, we deduce that we have the following estimate:∥∥∥∥yi + ei
2di

∥∥∥∥2 ≤ |c|di
Thus our hypersurface Xf is well-defined, and we are done. □
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We have in fact the following result:

Theorem 4.20. Up to linear changes of coordinates, the free compact quadrics in RN
+

are the empty set, the point, the standard free sphere SN−1
R,+ , defined by∑

i

x2i = 1

and some intermediate spheres SN−1
R ⊂ S ⊂ SN−1

R,+ , which can be explicitly characterized.
Moreover, for all these free quadrics, we have ||xi|| = ||xi||×, for any i.

Proof. We use the computations from the proof of Theorem 4.19. The first equation
there, making appear the matrix P = A−At

2
, is as follows:∑

ij

Pijxixj = 0

As for the second equation, up to a linear change of the coordinates, this reads:∑
i

z2i = c

At c < 0 we obtain the empty set. At c = 0 we must have z = 0, and depending on
whether the first equation is satisfied or not, we obtain either a point, or the empty set.
At c > 0 now, we can assume by rescaling c = 1, and our second equation reads:

Xf ⊂ SN−1
R,+

As a conclusion, the solutions here are certain subspaces S ⊂ SN−1
R,+ which appear

via equations of type
∑

ij Pijxixj = 0, with P ∈ MN(R) being antisymmetric, and with
x1, . . . , xN appearing via z1, . . . , zN via a linear change of variables. Now observe that
when redoing the above computation with X×

f at the place of Xf , we obtain Xf = SN−1
R ,

and this, because the equations
∑

ij Pijxixj = 0 are trivial for commuting variables. We

conclude that our subspaces S ⊂ SN−1
R,+ must satisfy:

SN−1
R ⊂ S ⊂ SN−1

R,+

Thus, we are left with investigating which such subspaces can indeed be solutions.
Observe that both the extreme cases can appear as solutions, as shown by:

X2x2+y2+ 3
2
xy+ 1

2
yx = S1

R

X2x2+y2+xy+yx = S1
R,+

Finally, the last assertion is clear for the empty set and for the point, and for the
remaining hypersurfaces, this follows from SN−1

R ⊂ S ⊂ SN−1
R,+ . □

Here is now yet another version of Theorem 4.19:
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Theorem 4.21. Given M real linear functions L1, . . . , LM in N noncommuting vari-
ables x1, . . . , xN , the following are equivalent:

(1)
∑

k Lk(x1, . . . , xN)
2 = 1 defines a compact hypersurface in RN .

(2)
∑

k Lk(x1, . . . , xN)
2 = 1 defines a compact quantum hypersurface.

(3) The matrix formed by the coefficients of L1, . . . , LM has rank N .

Proof. The equivalence (1) ⇐⇒ (2) follows from the equivalence (1) ⇐⇒ (2) in
Theorem 4.19, because the surfaces under investigation are quadrics. As for the equiva-
lence (2) ⇐⇒ (3), this is well-known. More precisely, our equation read:

1 =
∑
k

Lk(x1, . . . , xN)
2

=
∑
k

∑
i

Lkixi
∑
j

Lkjxj

=
∑
ij

(LtL)ijxixj

Thus, in the context of Theorem 4.19, the underlying square matrix A ∈ MN(R) is
given by A = LtL. It follows that we have Q = A = LtL, and so the condition Q > 0 is
equivalent to LtL being invertible, and so to L to have rank N , as claimed. □

In order to construct more examples, we will need the following basic fact:

Proposition 4.22. In a C∗-algebra we have

||x||p ≤ 1 =⇒ ||x|| ≤ 1

for any self-adjoint element x.

Proof. With n ∈ N being such that 2n ≥ p, we have:

||x||2n = ||x2||2n−1

= . . . = ||x2n|| ≤ ||xp|| · ||x2n−p|| ≤ 1 · ||x||2n−p

Thus, we obtain ||x||p ≤ 1, and so ||x|| ≤ 1, as desired. □

As an application, we have the following construction:

Proposition 4.23. Given integers pi ∈ N, the equation∑
i

x2pii = 1

defines a noncommutative hypersurface.

Proof. This follows indeed from Proposition 4.22, by positivity. □

More generally, we have the following result, covering our various examples, so far:
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Theorem 4.24. Given M real linear functions L1, . . . , LM in N noncommuting vari-
ables x1, . . . , xN , and exponents p1, . . . , pM ∈ N, the equation∑

k

Lk(x1, . . . , xN)
2pi = 1

defines a quantum hypersurface, provided that the M×N matrix formed by the coefficients
of L1, . . . , LM has rank N .

Proof. By positivity, imposing the above equation leads to:

||Lk(x1, . . . , xN)|| ≤ 1 , ∀k
We are therefore left with the problem of uniformly bounding the norms ||xi||, and

normally we can proceed here exactly as in the classical case. □

More generally now, we have the following result:

Theorem 4.25. General construction of hypersurfaces, via equations of type∑
k

LkL
∗
k = 1

with Lk ∈ R < x1, . . . , xN >, improving the construction from Theorem 4.24.

Proof. This does not look obvious at all. As usual, there are some norm estimates
to be worked out too, in relation with the basic inequality ||xi||× ≤ ||xi||. □

Going beyond the above looks like a non-trivial question.

4e. Exercises

Exercises:

Exercise 4.26.

Exercise 4.27.

Exercise 4.28.

Exercise 4.29.

Exercise 4.30.

Exercise 4.31.

Bonus exercise.



Part II

Free manifolds



In the midnight hour
She cried more, more, more

With a rebel yell
She cried more, more, more



CHAPTER 5

Free manifolds

5a. Quotient spaces

Let us begin with some generalities regarding the quotient spaces, and more general
homogeneous spaces. Regarding the quotients, we have the following construction:

Proposition 5.1. Given a quantum subgroup H ⊂ G, with associated quotient map
ρ : C(G)→ C(H), if we define the quotient space X = G/H by setting

C(X) =
{
f ∈ C(G)

∣∣∣(ρ⊗ id)∆f = 1⊗ f
}

then we have a coaction map as follows,

Φ : C(X)→ C(X)⊗ C(G)

obtained as the restriction of the comultiplication of C(G). In the classical case, we obtain
in this way the usual quotient space X = G/H.

Proof. Observe that the linear subspace C(X) ⊂ C(G) defined in the statement is
indeed a subalgebra, because it is defined via a relation of type φ(f) = ψ(f), with both
φ, ψ being morphisms of algebras. Observe also that in the classical case we obtain the
algebra of continuous functions on the quotient space X = G/H, because:

(ρ⊗ id)∆f = 1⊗ f ⇐⇒ (ρ⊗ id)∆f(h, g) = (1⊗ f)(h, g),∀h ∈ H,∀g ∈ G
⇐⇒ f(hg) = f(g),∀h ∈ H,∀g ∈ G
⇐⇒ f(hg) = f(kg),∀h, k ∈ H,∀g ∈ G

Regarding now the construction of Φ, observe that for f ∈ C(X) we have:

(ρ⊗ id⊗ id)(∆⊗ id)∆f = (ρ⊗ id⊗ id)(id⊗∆)∆f

= (id⊗∆)(ρ⊗ id)∆f
= (id⊗∆)(1⊗ f)
= 1⊗∆f

Thus the condition f ∈ C(X) implies ∆f ∈ C(X)⊗C(G), and this gives the existence
of Φ. Finally, the other assertions are all clear. □

As an illustration, in the group dual case we have:

95
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Proposition 5.2. Assume that G = Γ̂ is a discrete group dual.

(1) The quantum subgroups of G are H = Λ̂, with Γ→ Λ being a quotient group.

(2) For such a quantum subgroup Λ̂ ⊂ Γ̂, we have Γ̂/Λ̂ = Θ̂, where:

Θ = ker(Γ→ Λ)

Proof. This is well-known, the idea being as follows:

(1) In one sense, this is clear. Conversely, since the algebra C(G) = C∗(Γ) is cocom-
mutative, so are all its quotients, and this gives the result.

(2) Consider a quotient map r : Γ → Λ, and denote by ρ : C∗(Γ) → C∗(Λ) its
extension. Consider a group algebra element, written as follows:

f =
∑
g∈Γ

λg · g ∈ C∗(Γ)

We have then the following computation:

f ∈ C(Γ̂/Λ̂) ⇐⇒ (ρ⊗ id)∆(f) = 1⊗ f
⇐⇒

∑
g∈Γ

λg · r(g)⊗ g =
∑
g∈Γ

λg · 1⊗ g

⇐⇒ λg · r(g) = λg · 1,∀g ∈ Γ

⇐⇒ supp(f) ⊂ ker(r)

But this means that we have Γ̂/Λ̂ = Θ̂, with Θ = ker(Γ→ Λ), as claimed. □

Given two compact quantum spaces X, Y , we say that X is a quotient space of Y
when we have an embedding of C∗-algebras α : C(X) ⊂ C(Y ). We have:

Definition 5.3. We call a quotient space G→ X homogeneous when

∆(C(X)) ⊂ C(X)⊗ C(G)

where ∆ : C(G)→ C(G)⊗ C(G) is the comultiplication map.

In other words, an homogeneous quotient space G → X is a quantum space coming
from a subalgebra C(X) ⊂ C(G), which is stable under the comultiplication. The relation
with the quotient spaces from Proposition 5.1 is as follows:

Theorem 5.4. The following results hold:

(1) The quotient spaces X = G/H are homogeneous.
(2) In the classical case, any homogeneous space is of type G/H.
(3) In general, there are homogeneous spaces which are not of type G/H.
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Proof. Once again these results are well-known, the proof being as follows:

(1) This is clear from Proposition 5.1.

(2) Consider a quotient map p : G → X. The invariance condition in the statement
tells us that we must have an action G↷ X, given by:

g(p(g′)) = p(gg′)

Thus, we have the following implication:

p(g′) = p(g′′) =⇒ p(gg′) = p(gg′′), ∀g ∈ G
Now observe that the following subset H ⊂ G is a subgroup:

H =
{
g ∈ G

∣∣∣p(g) = p(1)
}

Indeed, g, h ∈ H implies that we have:

p(gh) = p(g) = p(1)

Thus we have gh ∈ H, and the other axioms are satisfied as well. Our claim now is
that we have an identification X = G/H, obtained as follows:

p(g)→ Hg

Indeed, the map p(g) → Hg is well-defined and bijective, because p(g) = p(g′) is
equivalent to p(g−1g′) = p(1), and so to Hg = Hg′, as desired.

(3) Given a discrete group Γ and an arbitrary subgroup Θ ⊂ Γ, the quotient space

Γ̂ → Θ̂ is homogeneous. Now by using Proposition 5.2, we can see that if Θ ⊂ Γ is not

normal, the quotient space Γ̂→ Θ̂ is not of the form G/H. □

With the above formalism in hand, let us try now to understand the general properties
of the homogeneous spaces G→ X, in the sense of Theorem 5.4. We have:

Proposition 5.5. Assume that a quotient space G→ X is homogeneous.

(1) We have a coaction map as follows, obtained as restriction of ∆:

Φ : C(X)→ C(X)⊗ C(G)
(2) We have the following implication:

Φ(f) = f ⊗ 1 =⇒ f ∈ C1
(3) We have as well the following formula:(

id⊗
∫
G

)
Φf =

∫
G

f

(4) The restriction of
∫
G
is the unique unital form satisfying:

(τ ⊗ id)Φ = τ(.)1
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Proof. These results are all elementary, the proof being as follows:

(1) This is clear from definitions, because ∆ itself is a coaction.

(2) Assume that f ∈ C(G) satisfies ∆(f) = f ⊗ 1. By applying the counit we obtain:

(ε⊗ id)∆f = (ε⊗ id)(f ⊗ 1)

We conclude from this that we have f = ε(f)1, as desired.

(3) The formula in the statement, (id ⊗
∫
G
)Φf =

∫
G
f , follows indeed from the left

invariance property of the Haar functional of C(G), namely:(
id⊗

∫
G

)
∆f =

∫
G

f

(4) We use here the right invariance of the Haar functional of C(G), namely:(∫
G

⊗id
)
∆f =

∫
G

f

Indeed, we obtain from this that tr = (
∫
G
)|C(X) is G-invariant, in the sense that:

(tr ⊗ id)Φf = tr(f)1

Conversely, assuming that τ : C(X)→ C satisfies (τ ⊗ id)Φf = τ(f)1, we have:(
τ ⊗

∫
G

)
Φ(f) =

∫
G

(τ ⊗ id)Φ(f)

=

∫
G

(τ(f)1)

= τ(f)

On the other hand, we can compute the same quantity as follows:(
τ ⊗

∫
G

)
Φ(f) = τ

(
id⊗

∫
G

)
Φ(f)

= τ(tr(f)1)

= tr(f)

Thus we have τ(f) = tr(f) for any f ∈ C(X), and this finishes the proof. □

Summarizing, we have a notion of noncommutative homogeneous space, which per-
fectly covers the classical case. In general, however, the group dual case shows that our
formalism is more general than that of the quotient spaces G/H.

We discuss now an extra issue, of analytic nature. The point indeed is that for one
of the most basic examples of actions, namely O+

N ↷ SN−1
R,+ , the associated morphism

α : C(X) → C(G) is not injective. The same is true for other basic actions, in the free
setting. In order to include such examples, we must relax our axioms:
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Definition 5.6. An extended homogeneous space over a compact quantum group G
consists of a morphism of C∗-algebras, and a coaction map, as follows,

α : C(X)→ C(G)

Φ : C(X)→ C(X)⊗ C(G)
such that the following diagram commutes

C(X)
Φ //

α

��

C(X)⊗ C(G)

α⊗id

��
C(G)

∆ // C(G)⊗ C(G)

and such that the following diagram commutes as well,

C(X)
Φ //

α

��

C(X)⊗ C(G)

id⊗
∫

��
C(G)

∫
(.)1

// C(X)

where
∫

is the Haar integration over G. We write then G→ X.

As a first observation, when the morphism α is injective we obtain an homogeneous
space in the previous sense. The examples with α not injective, which motivate the above
formalism, include the standard action O+

N ↷ SN−1
R,+ , and the standard action U+

N ↷ SN−1
C,+ .

Here are a few general remarks on the above axioms:

Proposition 5.7. Assume that we have morphisms of C∗-algebras

α : C(X)→ C(G)

Φ : C(X)→ C(X)⊗ C(G)
satisfying the coassociativity condition (α⊗ id)Φ = ∆α.

(1) If α is injective on a dense ∗-subalgebra A ⊂ C(X), and Φ(A) ⊂ A⊗C(G), then
Φ is automatically a coaction map, and is unique.

(2) The ergodicity type condition (id ⊗
∫
)Φ =

∫
α(.)1 is equivalent to the existence

of a linear form λ : C(X)→ C such that (id⊗
∫
)Φ = λ(.)1.

Proof. This is something elementary, the idea being as follows:

(1) Assuming that we have a dense ∗-subalgebra A ⊂ C(X) as in the statement,
satisying Φ(A) ⊂ A⊗ C(G), the restriction Φ|A is given by:

Φ|A = (α|A ⊗ id)−1∆α|A
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This restriction and is therefore coassociative, and unique. By continuity, the mor-
phism Φ itself follows to be coassociative and unique, as desired.

(2) Assuming (id⊗
∫
)Φ = λ(.)1, we have:(

α⊗
∫ )

Φ = λ(.)1

On the other hand, we have as well the following formula:(
α⊗

∫ )
Φ =

(
id⊗

∫ )
∆α =

∫
α(.)1

Thus we obtain λ =
∫
α, as claimed. □

Given an extended homogeneous space G → X in our sense, with associated map
α : C(X)→ C(G), we can consider the image of this latter map:

α : C(X)→ C(Y ) ⊂ C(G)

Equivalently, at the level of the associated noncommutative spaces, we can factorize
the corresponding quotient map G→ Y ⊂ X. With these conventions, we have:

Proposition 5.8. Consider an extended homogeneous space G→ X.

(1) Φ(f) = f ⊗ 1 =⇒ f ∈ C1.
(2) tr =

∫
α is the unique unital G-invariant form on C(X).

(3) The image space obtained by factorizing, G→ Y , is homogeneous.

Proof. We have several assertions to be proved, the idea being as follows:

(1) This follows indeed from (id⊗
∫
)Φ(f) =

∫
α(f)1, which gives f =

∫
α(f)1.

(2) The fact that tr =
∫
α is indeed G-invariant can be checked as follows:

(tr ⊗ id)Φf = (∫ α⊗ id)Φf
= (∫ ⊗id)∆αf
= ∫ α(f)1
= tr(f)1

As for the uniqueness assertion, this follows as before.
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(3) The condition (α⊗ id)Φ = ∆α, together with the fact that i is injective, allows us
to factorize ∆ into a morphism Ψ, as follows:

C(X)
Φ //

α

��

C(X)⊗ C(G)

α⊗id

��
C(Y )

Ψ //

i

��

C(Y )⊗ C(G)

i⊗id

��
C(G)

∆ // C(G)⊗ C(G)

Thus the image space G→ Y is indeed homogeneous, and we are done. □

Finally, we have the following result:

Theorem 5.9. Let G→ X be an extended homogeneous space, and construct quotients
X → X ′, G → G′ by performing the GNS construction with respect to

∫
α,
∫
. Then α

factorizes into an inclusion α′ : C(X ′)→ C(G′), and we have an homogeneous space.

Proof. We factorize G → Y ⊂ X as above. By performing the GNS construction
with respect to

∫
iα,
∫
i,
∫
, we obtain a diagram as follows:

C(X)
p //

α

��

C(X ′)

α′

��

tr′

''
C(Y )

q //

i

��

C(Y ′)

i′

��

C

C(G)
r // C(G′)

∫ ′

77

Indeed, with tr =
∫
α, the GNS quotient maps p, q, r are defined respectively by:

ker p =
{
f ∈ C(X)

∣∣∣tr(f ∗f) = 0
}

ker q =
{
f ∈ C(Y )

∣∣∣ ∫(f ∗f) = 0
}

ker r =
{
f ∈ C(G)

∣∣∣ ∫(f ∗f) = 0
}
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Next, we can define factorizations i′, α′ as above. Observe that i′ is injective, and that
α′ is surjective. Our claim now is that α′ is injective as well. Indeed:

α′p(f) = 0 =⇒ qα(f) = 0

=⇒
∫
α(f ∗f) = 0

=⇒ tr(f ∗f) = 0

=⇒ p(f) = 0

We conclude that we have X ′ = Y ′, and this gives the result. □

5b. Partial isometries

Our task now will be that of finding a suitable collection of “free homogeneous spaces”,
generalizing at the same time the free spheres S, and the free unitary groups U . This
can be done at several levels of generality, and central here is the construction of the free
spaces of partial isometries, which can be done in fact for any easy quantum group. In
order to explain this, let us start with the classical case. We have here:

Definition 5.10. Associated to any integers L ≤M,N are the spaces

OL
MN =

{
T : E → F isometry

∣∣∣E ⊂ RN , F ⊂ RM , dimRE = L
}

UL
MN =

{
T : E → F isometry

∣∣∣E ⊂ CN , F ⊂ CM , dimCE = L
}

where the notion of isometry is with respect to the usual real/complex scalar products.

As a first observation, at L =M = N we obtain the groups ON , UN :

ON
NN = ON , UN

NN = UN

Another interesting specialization is L = M = 1. Here the elements of O1
1N are the

isometries T : E → R, with E ⊂ RN one-dimensional. But such an isometry is uniquely
determined by T−1(1) ∈ RN , which must belong to SN−1

R . Thus, we have O1
1N = SN−1

R .
Similarly, in the complex case we have U1

1N = SN−1
C , and so our results here are:

O1
1N = SN−1

R , U1
1N = SN−1

C

Yet another interesting specialization is L = N = 1. Here the elements of O1
1N are the

isometries T : R→ F , with F ⊂ RM one-dimensional. But such an isometry is uniquely
determined by T (1) ∈ RM , which must belong to SM−1

R . Thus, we have O1
M1 = SM−1

R .
Similarly, in the complex case we have U1

M1 = SM−1
C , and so our results here are:

O1
M1 = SM−1

R , U1
M1 = SM−1

C

In general, the most convenient is to view the elements of OL
MN , U

L
MN as rectangular

matrices, and to use matrix calculus for their study. We have indeed:
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Proposition 5.11. We have identifications of compact spaces

OL
MN ≃

{
U ∈MM×N(R)

∣∣∣UU t = projection of trace L
}

UL
MN ≃

{
U ∈MM×N(C)

∣∣∣UU∗ = projection of trace L
}

with each partial isometry being identified with the corresponding rectangular matrix.

Proof. We can indeed identify the partial isometries T : E → F with their corre-
sponding extensions U : RN → RM , U : CN → CM , obtained by setting UE⊥ = 0. Then,
we can identify these latter maps U with the corresponding rectangular matrices. □

As an illustration, at L =M = N we recover in this way the usual matrix description
of ON , UN . Also, at L = M = 1 we obtain the usual description of SN−1

R , SN−1
C , as row

spaces over the corresponding groups ON , UN . Finally, at L = N = 1 we obtain the usual
description of SN−1

R , SN−1
C , as column spaces over the corresponding groups ON , UN .

Now back to the general case, observe that the isometries T : E → F , or rather their
extensions U : KN → KM , with K = R,C, obtained by setting UE⊥ = 0, can be composed
with the isometries of KM ,KN , according to the following scheme:

KN B∗
// KN U // KM A // KM

B(E) //

OO

E
T //

OO

F //

OO

A(F )

OO

With the identifications in Proposition 5.11 made, the precise statement here is:

Proposition 5.12. We have action maps as follows, which are both transitive,

OM ×ON ↷ OL
MN , (A,B)U = AUBt

UM × UN ↷ UL
MN , (A,B)U = AUB∗

whose stabilizers are respectively OL ×OM−L ×ON−L and UL × UM−L × UN−L.

Proof. We have indeed action maps as in the statement, which are transitive. Let
us compute now the stabilizer G of the following point:

U =

(
1 0
0 0

)
Since (A,B) ∈ G satisfy AU = UB, their components must be of the following form:

A =

(
x ∗
0 a

)
, B =

(
x 0
∗ b

)
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Now since A,B are unitaries, these matrices follow to be block-diagonal, and so:

G =

{
(A,B)

∣∣∣A =

(
x 0
0 a

)
, B =

(
x 0
0 b

)}
The stabilizer of U is parametrized by triples (x, a, b) belonging to OL×OM−L×ON−L

and UL × UM−L × UN−L, and we are led to the conclusion in the statement. □

Finally, let us work out the quotient space description of OL
MN , U

L
MN . We have here:

Theorem 5.13. We have isomorphisms of homogeneous spaces as follows,

OL
MN = (OM ×ON)/(OL ×OM−L ×ON−L)

UL
MN = (UM × UN)/(UL × UM−L × UN−L)

with the quotient maps being given by (A,B)→ AUB∗, where U = (10
0
0).

Proof. This is just a reformulation of Proposition 5.12, by taking into account the
fact that the fixed point used in the proof there was U = (10

0
0). □

Once again, the basic examples here come from the cases L =M = N and L =M = 1.
At L =M = N the quotient spaces at right are respectively:

ON , UN

At L =M = 1 the quotient spaces at right are respectively:

ON/ON−1 , UN/UN−1

In fact, in the general L =M case we obtain the following spaces:

OM
MN = ON/ON−M , UM

MN = UN/UN−M

Similarly, the examples coming from the cases L = M = N and L = N = 1 are
particular cases of the general L = N case, where we obtain the following spaces:

ON
MN = ON/OM−N , UN

MN = UN/UM−N

Summarizing, we have here some basic homogeneous spaces, unifying the spheres with
the rotation groups. The point now is that we can liberate these spaces, as follows:

Definition 5.14. Associated to any integers L ≤M,N are the algebras

C(OL+
MN) = C∗

(
(uij)i=1,...,M,j=1,...,N

∣∣∣u = ū, uut = projection of trace L
)

C(UL+
MN) = C∗

(
(uij)i=1,...,M,j=1,...,N

∣∣∣uu∗, ūut = projections of trace L
)

with the trace being by definition the sum of the diagonal entries.
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Observe that the above universal algebras are indeed well-defined, as it was previously
the case for the free spheres, and this due to the trace conditions, which read:∑

ij

uiju
∗
ij =

∑
ij

u∗ijuij = L

We have inclusions between the various spaces constructed so far, as follows:

OL+
MN

// UL+
MN

OL
MN

//

OO

UL
MN

OO

At the level of basic examples now, at L = M = 1 and at L = N = 1 we obtain the
following diagrams, showing that our formalism covers indeed the free spheres:

SN−1
R,+

// SN−1
C,+

SN−1
R

//

OO

SN−1
C

OO
SM−1
R,+

// SM−1
C,+

SM−1
R

//

OO

SM−1
C

OO

We have as well the following result, in relation with the free rotation groups:

Proposition 5.15. At L =M = N we obtain the diagram

O+
N

// U+
N

ON
//

OO

UN

OO

consisting of the groups ON , UN , and their liberations.

Proof. We recall that the various quantum groups in the statement are constructed
as follows, with the symbol × standing once again for “commutative” and “free”:

C(O×
N) = C∗

×

(
(uij)i,j=1,...,N

∣∣∣u = ū, uut = utu = 1
)

C(U×
N ) = C∗

×

(
(uij)i,j=1,...,N

∣∣∣uu∗ = u∗u = 1, ūut = utū = 1
)
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On the other hand, according to Proposition 5.11 and to Definition 5.14, we have the
following presentation results:

C(ON×
NN) = C∗

×

(
(uij)i,j=1,...,N

∣∣∣u = ū, uut = projection of trace N
)

C(UN×
NN ) = C∗

×

(
(uij)i,j=1,...,N

∣∣∣uu∗, ūut = projections of trace N
)

We use now the standard fact that if p = aa∗ is a projection then q = a∗a is a
projection too. We use as well the following formulae:

Tr(uu∗) = Tr(utū) , T r(ūut) = Tr(u∗u)

We therefore obtain the following formulae:

C(ON×
NN) = C∗

×

(
(uij)i,j=1,...,N

∣∣∣u = ū, uut, utu = projections of trace N
)

C(UN×
NN ) = C∗

×

(
(uij)i,j=1,...,N

∣∣∣uu∗, u∗u, ūut, utū = projections of trace N
)

Now observe that, in tensor product notation, the conditions at right are all of the
form (tr ⊗ id)p = 1. Thus, p must be follows, for the above conditions:

p = uu∗, u∗u, ūut, utū

We therefore obtain that, for any faithful state φ, we have (tr ⊗ φ)(1 − p) = 0. It
follows from this that the following projections must be all equal to the identity:

p = uu∗, u∗u, ūut, utū

But this leads to the conclusion in the statement. □

Regarding now the homogeneous space structure of OL×
MN , U

L×
MN , the situation here is

a bit more complicated in the free case than in the classical case, due to a number of
algebraic and analytic issues. We first have the following result:

Proposition 5.16. The spaces UL×
MN have the following properties:

(1) We have an action U×
M × U

×
N ↷ UL×

MN , given by uij →
∑

kl ukl ⊗ aki ⊗ b∗lj.
(2) We have a map U×

M × U
×
N → UL×

MN , given by uij →
∑

r≤L ari ⊗ b∗rj.
Similar results hold for the spaces OL×

MN , with all the ∗ exponents removed.

Proof. In the classical case, consider the following action and quotient maps:

UM × UN ↷ UL
MN , UM × UN → UL

MN

The transposes of these two maps are as follows, where J = (10
0
0):

φ → ((U,A,B)→ φ(AUB∗))

φ → ((A,B)→ φ(AJB∗))

But with φ = uij we obtain precisely the formulae in the statement. The proof in the
orthogonal case is similar. Regarding now the free case, the proof goes as follows:
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(1) Assuming uu∗u = u, let us set:

Uij =
∑
kl

ukl ⊗ aki ⊗ b∗lj

We have then the following computation:

(UU∗U)ij =
∑
pq

∑
klmnst

uklu
∗
mnust ⊗ akia∗mqasq ⊗ b∗lpbnpb∗tj

=
∑
klmt

uklu
∗
mlumt ⊗ aki ⊗ b∗tj

=
∑
kt

ukt ⊗ aki ⊗ b∗tj

= Uij

Also, assuming that we have
∑

ij uiju
∗
ij = L, we obtain:∑

ij

UijU
∗
ij =

∑
ij

∑
klst

uklu
∗
st ⊗ akia∗si ⊗ b∗ljbtj

=
∑
kl

uklu
∗
kl ⊗ 1⊗ 1

= L

(2) Assuming uu∗u = u, let us set:

Vij =
∑
r≤L

ari ⊗ b∗rj

We have then the following computation:

(V V ∗V )ij =
∑
pq

∑
x,y,z≤L

axia
∗
yqazq ⊗ b∗xpbypb∗zj

=
∑
x≤L

axi ⊗ b∗xj

= Vij

Also, assuming that we have
∑

ij uiju
∗
ij = L, we obtain:∑

ij

VijV
∗
ij =

∑
ij

∑
r,s≤L

aria
∗
si ⊗ b∗rjbsj

=
∑
l≤L

1

= L

By removing all the ∗ exponents, we obtain as well the orthogonal results. □
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Let us examine now the relation between the above maps. In the classical case, given
a quotient space X = G/H, the associated action and quotient maps are given by:{

a : X ×G→ X : (Hg, h)→ Hgh

p : G→ X : g → Hg

Thus we have a(p(g), h) = p(gh). In our context, a similar result holds:

Theorem 5.17. With G = GM ×GN and X = GL
MN , where GN = O×

N , U
×
N , we have

G×G m //

p×id

��

G

p

��
X ×G a // X

where a, p are the action map and the map constructed in Proposition 5.16.

Proof. At the level of the associated algebras of functions, we must prove that the
following diagram commutes, where Φ, α are morphisms of algebras induced by a, p:

C(X)
Φ //

α

��

C(X ×G)

α⊗id

��
C(G)

∆ // C(G×G)

When going right, and then down, the composition is as follows:

(α⊗ id)Φ(uij) = (α⊗ id)
∑
kl

ukl ⊗ aki ⊗ b∗lj

=
∑
kl

∑
r≤L

ark ⊗ b∗rl ⊗ aki ⊗ b∗lj

On the other hand, when going down, and then right, the composition is as follows,
where F23 is the flip between the second and the third components:

∆π(uij) = F23(∆⊗∆)
∑
r≤L

ari ⊗ b∗rj

= F23

(∑
r≤L

∑
kl

ark ⊗ aki ⊗ b∗rl ⊗ b∗lj

)
Thus the above diagram commutes indeed, and this gives the result. □
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5c. Partial permutations

Let us discuss now some discrete extensions of the above constructions. We have:

Definition 5.18. Associated to a partial permutation, σ : I ≃ J with I ⊂ {1, . . . , N}
and J ⊂ {1, . . . ,M}, is the real/complex partial isometry

Tσ : span
(
ei

∣∣∣i ∈ I)→ span
(
ej

∣∣∣j ∈ J)
given on the standard basis elements by Tσ(ei) = eσ(i).

Let SL
MN be the set of partial permutations σ : I ≃ J as above, with range I ⊂

{1, . . . , N} and target J ⊂ {1, . . . ,M}, and with L = |I| = |J |. We have:

Proposition 5.19. The space of partial permutations signed by elements of Zs,

HsL
MN =

{
T (ei) = wieσ(i)

∣∣∣σ ∈ SL
MN , wi ∈ Zs

}
is isomorphic to the quotient space

(Hs
M ×Hs

N)/(H
s
L ×Hs

M−L ×Hs
N−L)

via a standard isomorphism.

Proof. This follows by adapting the computations in the proof of Proposition 5.12
and Theorem 5.13. Indeed, we have an action map as follows, which is transitive:

Hs
M ×Hs

N → HsL
MN , (A,B)U = AUB∗

Consider now the following point:

U =

(
1 0
0 0

)
The stabilizer of this point follows to be the following group:

Hs
L ×Hs

M−L ×Hs
N−L

To be more precise, this group is embedded via:

(x, a, b)→
[(
x 0
0 a

)
,

(
x 0
0 b

)]
But this gives the result. □

In the free case now, the idea is similar, by using inspiration from the construction of
the quantum group Hs+

N = Zs ≀∗ S+
N . The result here is as follows:

Proposition 5.20. The compact quantum space HsL+
MN associated to the algebra

C(HsL+
MN ) = C(UL+

MN)
/〈

uiju
∗
ij = u∗ijuij = pij = projections, usij = pij

〉
has an action map, and is the target of a quotient map, as in Theorem 5.17.



110 5. FREE MANIFOLDS

Proof. We must show that if the variables uij satisfy the relations in the statement,
then these relations are satisfied as well for the following variables:

Uij =
∑
kl

ukl ⊗ aki ⊗ b∗lj , Vij =
∑
r≤L

ari ⊗ b∗rj

We use the fact that the standard coordinates aij, bij on the quantum groups Hs+
M , Hs+

N

satisfy the following relations, for any x ̸= y on the same row or column of a, b:

xy = xy∗ = 0

We obtain, by using these relations, the following formula:

UijU
∗
ij =

∑
klmn

uklu
∗
mn ⊗ akia∗mi ⊗ b∗ljbmj =

∑
kl

uklu
∗
kl ⊗ akia∗ki ⊗ b∗ljblj

On the other hand, we have as well the following formula:

VijV
∗
ij =

∑
r,t≤L

aria
∗
ti ⊗ b∗rjbtj =

∑
r≤L

aria
∗
ri ⊗ b∗rjbrj

In terms of the projections xij = aija
∗
ij, yij = bijb

∗
ij, pij = uiju

∗
ij, we have:

UijU
∗
ij =

∑
kl

pkl ⊗ xki ⊗ ylj , VijV
∗
ij =

∑
r≤L

xri ⊗ yrj

By repeating the computation, we conclude that these elements are projections. Also,
a similar computation shows that U∗

ijUij, V
∗
ijVij are given by the same formulae. Finally,

once again by using the relations of type xy = xy∗ = 0, we have:

U s
ij =

∑
krlr

uk1l1 . . . uksls ⊗ ak1i . . . aksi ⊗ b∗l1j . . . b
∗
lsj =

∑
kl

uskl ⊗ aski ⊗ (b∗lj)
s

On the other hand, we have as well the following formula:

V s
ij =

∑
rl≤L

ar1i . . . arsi ⊗ b∗r1j . . . b
∗
rsj =

∑
r≤L

asri ⊗ (b∗rj)
s

Thus the conditions of type usij = pij are satisfied as well, and we are done. □

Let us discuss now the general case. We have the following result:

Proposition 5.21. The various spaces GL
MN constructed so far appear by imposing

to the standard coordinates of UL+
MN the relations∑

i1...is

∑
j1...js

δπ(i)δσ(j)u
e1
i1j1

. . . uesisjs = L|π∨σ|

with s = (e1, . . . , es) ranging over all the colored integers, and with π, σ ∈ D(0, s).
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Proof. According to the various constructions above, the relations defining the quan-
tum space GL

MN can be written as follows, with σ ranging over a family of generators,
with no upper legs, of the corresponding category of partitions D:∑

j1...js

δσ(j)u
e1
i1j1

. . . uesisjs = δσ(i)

We therefore obtain the relations in the statement, as follows:∑
i1...is

∑
j1...js

δπ(i)δσ(j)u
e1
i1j1

. . . uesisjs =
∑
i1...is

δπ(i)
∑
j1...js

δσ(j)u
e1
i1j1

. . . uesisjs

=
∑
i1...is

δπ(i)δσ(i)

= L|π∨σ|

As for the converse, this follows by using the relations in the statement, by keeping π
fixed, and by making σ vary over all the partitions in the category. □

In the general case now, where G = (GN) is an arbitary uniform easy quantum group,
we can construct spaces GL

MN by using the above relations, and we have:

Theorem 5.22. The spaces GL
MN ⊂ UL+

MN constructed by imposing the relations∑
i1...is

∑
j1...js

δπ(i)δσ(j)u
e1
i1j1

. . . uesisjs = L|π∨σ|

with π, σ ranging over all the partitions in the associated category, having no upper legs,
are subject to an action map/quotient map diagram, as in Theorem 5.17.

Proof. We proceed as in the proof of Proposition 5.20. We must prove that, if the
variables uij satisfy the relations in the statement, then so do the following variables:

Uij =
∑
kl

ukl ⊗ aki ⊗ b∗lj , Vij =
∑
r≤L

ari ⊗ b∗rj

Regarding the variables Uij, the computation here goes as follows:∑
i1...is

∑
j1...js

δπ(i)δσ(j)U
e1
i1j1

. . . U es
isjs

=
∑
i1...is

∑
j1...js

∑
k1...ks

∑
l1...ls

ue1k1l1 . . . u
es
ksls
⊗ δπ(i)δσ(j)ae1k1i1 . . . a

es
ksis
⊗ (beslsjs . . . b

e1
l1j1

)∗

=
∑
k1...ks

∑
l1...ls

δπ(k)δσ(l)u
e1
k1l1

. . . uesksls

= L|π∨σ|
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For the variables Vij the proof is similar, as follows:∑
i1...is

∑
j1...js

δπ(i)δσ(j)V
e1
i1j1

. . . V es
isjs

=
∑
i1...is

∑
j1...js

∑
l1,...,ls≤L

δπ(i)δσ(j)a
e1
l1i1

. . . aeslsis ⊗ (beslsjs . . . b
e1
l1j1

)∗

=
∑

l1,...,ls≤L

δπ(l)δσ(l)

= L|π∨σ|

Thus we have constructed an action map, and a quotient map, as in Proposition 5.20,
and the commutation of the diagram in Theorem 5.17 is then trivial. □

5d. Integration results

Let us discuss now the integration over the various noncommutative spaces constructed
so far, and notably over the spaces GL

MN , which are quite general. We first have:

Definition 5.23. The integration functional of GL
MN is the composition∫

GL
MN

: C(GL
MN)→ C(GM ×GN)→ C

of the representation uij →
∑

r≤L ari ⊗ b∗rj with the Haar functional of GM ×GN .

Observe that in the case L = M = N we obtain the integration over GN . Also, at
L =M = 1, or at L = N = 1, we obtain the integration over the sphere.

In the general case now, we first have the following result:

Proposition 5.24. The integration functional of GL
MN has the invariance property(∫

GL
MN

⊗ id

)
Φ(x) =

∫
GL

MN

x

with respect to the coaction map, namely:

Φ(uij) =
∑
kl

ukl ⊗ aki ⊗ b∗lj

Proof. We restrict the attention to the orthogonal case, the proof in the unitary case
being similar. We must check the following formula:(∫

GL
MN

⊗ id

)
Φ(ui1j1 . . . uisjs) =

∫
GL

MN

ui1j1 . . . uisjs
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Let us compute the left term. This is given by:

X =

(∫
GL

MN

⊗ id

)∑
kxlx

uk1l1 . . . uksls ⊗ ak1i1 . . . aksis ⊗ b∗l1j1 . . . b
∗
lsjs

=
∑
kxlx

∑
rx≤L

ak1i1 . . . aksis ⊗ b∗l1j1 . . . b
∗
lsjs

∫
GM

ar1k1 . . . arsks

∫
GN

b∗r1l1 . . . b
∗
rsls

=
∑
rx≤L

∑
kx

ak1i1 . . . aksis

∫
GM

ar1k1 . . . arsks ⊗
∑
lx

b∗l1j1 . . . b
∗
lsjs

∫
GN

b∗r1l1 . . . b
∗
rsls

By using now the invariance property of the Haar functionals of GM , GN , we obtain:

X =
∑
rx≤L

(∫
GM

⊗ id

)
∆(ar1i1 . . . arsis)⊗

(∫
GN

⊗ id

)
∆(b∗r1j1 . . . b

∗
rsjs)

=
∑
rx≤L

∫
GM

ar1i1 . . . arsis

∫
GN

b∗r1j1 . . . b
∗
rsjs

=

(∫
GM

⊗
∫
GN

)∑
rx≤L

ar1i1 . . . arsis ⊗ b∗r1j1 . . . b
∗
rsjs

But this gives the formula in the statement, and we are done. □

We will prove now that the above functional is in fact the unique positive unital
invariant trace on C(GL

MN). For this purpose, we will need the Weingarten formula:

Theorem 5.25. We have the Weingarten type formula∫
GL

MN

ui1j1 . . . uisjs =
∑
πστν

L|π∨τ |δσ(i)δν(j)WsM(π, σ)WsN(τ, ν)

where the matrices on the right are given by WsM = G−1
sM , with GsM(π, σ) =M |π∨σ|.

Proof. We make use of the usual quantum group Weingarten formula, that we know
from chapters 2-3. By using this formula for GM , GN , we obtain:∫

GL
MN

ui1j1 . . . uisjs =
∑

l1...ls≤L

∫
GM

al1i1 . . . alsis

∫
GN

b∗l1j1 . . . b
∗
lsjs

=
∑

l1...ls≤L

∑
πσ

δπ(l)δσ(i)WsM(π, σ)
∑
τν

δτ (l)δν(j)WsN(τ, ν)

=
∑
πστν

( ∑
l1...ls≤L

δπ(l)δτ (l)

)
δσ(i)δν(j)WsM(π, σ)WsN(τ, ν)

The coefficient being L|π∨τ |, we obtain the formula in the statement. □
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We can now derive an abstract characterization of the integration, as follows:

Theorem 5.26. The integration of GL
MN is the unique positive unital trace

C(GL
MN)→ C

which is invariant under the action of the quantum group GM ×GN .

Proof. We use a standard method, from [11], the point being to show that we have
the following ergodicity formula:(

id⊗
∫
GM

⊗
∫
GN

)
Φ(x) =

∫
GL

MN

x

We restrict the attention to the orthogonal case, the proof in the unitary case being
similar. We must verify that the following holds:(

id⊗
∫
GM

⊗
∫
GN

)
Φ(ui1j1 . . . uisjs) =

∫
GL

MN

ui1j1 . . . uisjs

By using the Weingarten formula, the left term can be written as follows:

X =
∑
k1...ks

∑
l1...ls

uk1l1 . . . uksls

∫
GM

ak1i1 . . . aksis

∫
GN

b∗l1j1 . . . b
∗
lsjs

=
∑
k1...ks

∑
l1...ls

uk1l1 . . . uksls
∑
πσ

δπ(k)δσ(i)WsM(π, σ)
∑
τν

δτ (l)δν(j)WsN(τ, ν)

=
∑
πστν

δσ(i)δν(j)WsM(π, σ)WsN(τ, ν)
∑
k1...ks

∑
l1...ls

δπ(k)δτ (l)uk1l1 . . . uksls

By using now the summation formula in Theorem 5.25, we obtain:

X =
∑
πστν

L|π∨τ |δσ(i)δν(j)WsM(π, σ)WsN(τ, ν)

Now by comparing with the Weingarten formula for GL
MN , this proves our claim.

Assume now that τ : C(GL
MN)→ C satisfies the invariance condition. We have:

τ

(
id⊗

∫
GM

⊗
∫
GN

)
Φ(x) =

(
τ ⊗

∫
GM

⊗
∫
GN

)
Φ(x)

=

(∫
GM

⊗
∫
GN

)
(τ ⊗ id)Φ(x)

=

(∫
GM

⊗
∫
GN

)
(τ(x)1)

= τ(x)
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On the other hand, according to the formula established above, we have as well:

τ

(
id⊗

∫
GM

⊗
∫
GN

)
Φ(x) = τ(tr(x)1)

= tr(x)

Thus we obtain τ = tr, and this finishes the proof. □

As a main application of the above results, we have:

Proposition 5.27. For a sum of coordinates of the following type,

χE =
∑

(ij)∈E

uij

with the coordinates not overlapping on rows and columns, we have∫
GL

MN

χs
E =

∑
πστν

K |π∨τ |L|σ∨ν|WsM(π, σ)WsN(τ, ν)

where K = |E| is the cardinality of the indexing set.

Proof. With K = |E|, we can write E = {(α(i), β(i))}, for certain embeddings:

α : {1, . . . , K} ⊂ {1, . . . ,M}
β : {1, . . . , K} ⊂ {1, . . . , N}

In terms of these maps α, β, the moment in the statement is given by:

Ms =

∫
GL

MN

(∑
i≤K

uα(i)β(i)

)s

By using the Weingarten formula, we can write this quantity as follows:

Ms

=

∫
GL

MN

∑
i1...is≤K

uα(i1)β(i1) . . . uα(is)β(is)

=
∑

i1...is≤K

∑
πστν

L|σ∨ν|δπ(α(i1), . . . , α(is))δτ (β(i1), . . . , β(is))WsM(π, σ)WsN(τ, ν)

=
∑
πστν

( ∑
i1...is≤K

δπ(i)δτ (i)

)
L|σ∨ν|WsM(π, σ)WsN(τ, ν)

But, as explained before, in the proof of Theorem 5.25, the coefficient on the left in
the last formula is C = K |π∨τ |. We therefore obtain the formula in the statement. □

At a more concrete level now, we have the following conceptual result, making the
link with the Bercovici-Pata bijection [19]:
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Theorem 5.28. In the context of the liberation operations

OL
MN → OL+

MN , UL
MN → UL+

MN , HsL
MN → HsL+

MN

the laws of the sums of non-overlapping coordinates,

χE =
∑

(ij)∈E

uij

are in Bercovici-Pata bijection, in the

|E| = κN,L = λN,M = µN

regime and N →∞ limit.

Proof. This follows indeed from the formula in Proposition 5.27. □

5e. Exercises

Exercises:

Exercise 5.29.

Exercise 5.30.

Exercise 5.31.

Exercise 5.32.

Exercise 5.33.

Exercise 5.34.

Bonus exercise.



CHAPTER 6

Affine spaces

6a. Affine spaces

We discuss now an abstract extension of the constructions of manifolds that we have
so far. The idea will be that of looking at certain classes of algebraic manifolds X ⊂ SN−1

C,+ ,
which are homogeneous spaces, of a certain special type. We have:

Definition 6.1. An affine homogeneous space over a closed subgroup G ⊂ U+
N is a

closed subset X ⊂ SN−1
C,+ , such that there exists an index set I ⊂ {1, . . . , N} such that

α(xi) =
1√
|I|

∑
j∈I

uji , Φ(xi) =
∑
j

xj ⊗ uji

define morphisms of C∗-algebras, satisfying the following condition,(
id⊗

∫
G

)
Φ =

∫
G

α(.)1

called ergodicity condition for the action.

As a basic example, O+
N → SN−1

R,+ is indeed affine in our sense, with I = {1}. The

same goes for U+
N → SN−1

C,+ , which is affine as well, also with I = {1}. Observe also that

the 1/
√
|I| constant appearing above is the correct one, because:

∑
i

(∑
j∈I

uji

)(∑
k∈I

uki

)∗

=
∑
i

∑
j,k∈I

ujiu
∗
ki

=
∑
j,k∈I

(uu∗)jk

= |I|

As a first general result about such spaces, we have:

Proposition 6.2. Consider an affine homogeneous space X, as above.

(1) The coaction condition (Φ⊗ id)Φ = (id⊗∆)Φ is satisfied.
(2) We have as well the formula (α⊗ id)Φ = ∆α.

117
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Proof. The coaction condition is clear. For the second formula, we first have:

(α⊗ id)Φ(xi) =
∑
k

α(xk)⊗ uki

=
1√
|I|

∑
k

∑
j∈I

ujk ⊗ uki

On the other hand, we have as well the following computation:

∆α(xi) =
1√
|I|

∑
j∈I

∆(uji)

=
1√
|I|

∑
j∈I

∑
k

ujk ⊗ uki

Thus, by linearity, multiplicativity and continuity, we obtain the result. □

As a second result regarding such spaces, which closes the discussion in the case where
α is injective, which is something that happens in many cases, we have:

Theorem 6.3. When α is injective we must have X = Xmin
G,I , where:

C(Xmin
G,I ) =

〈
1√
|I|

∑
j∈I

uji

∣∣∣i = 1, . . . , N

〉
⊂ C(G)

Moreover, Xmin
G,I is affine homogeneous, for any G ⊂ U+

N , and any I ⊂ {1, . . . , N}.

Proof. The first assertion is clear from definitions. Regarding now the second asser-
tion, consider the variables in the statement:

Xi =
1√
|I|

∑
j∈I

uji ∈ C(G)

In order to prove that we have Xmin
G,I ⊂ SN−1

C,+ , observe first that we have:∑
i

XiX
∗
i =

1

|I|
∑
i

∑
j,k∈I

ujiu
∗
ki

=
1

|I|
∑
j,k∈I

(uu∗)jk

= 1
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On the other hand, we have as well the following computation:∑
i

X∗
iXi =

1

|I|
∑
i

∑
j,k∈I

u∗jiuki

=
1

|I|
∑
j,k∈I

(ūut)jk

= 1

Thus Xmin
G,I ⊂ SN−1

C,+ . Finally, observe that we have:

∆(Xi) =
1√
|I|

∑
j∈I

∑
k

ujk ⊗ uki

=
∑
k

Xk ⊗ uki

Thus we have indeed a coaction map, given by Φ = ∆. As for the ergodicity condition,
namely (id⊗

∫
G
)∆ =

∫
G
(.)1, this holds as well, by definition of the integration functional∫

G
. Thus, our axioms for affine homogeneous spaces are indeed satisfied. □

Now back to the general case, we have the following key result:

Proposition 6.4. The ergodicity condition, namely(
id⊗

∫
G

)
Φ =

∫
G

α(.)1

is equivalent to the condition

(Px⊗k)i1...ik =
1√
|I|k

∑
j1...jk∈I

Pi1...ik,j1...jk , ∀k,∀i1, . . . , ik

where P is the matrix formed by the Peter-Weyl integrals of exponent k,

Pi1...ik,j1...jk =

∫
G

ue1j1i1 . . . u
ek
jkik

and where (x⊗k)i1...ik = xe1i1 . . . x
ek
ik
.

Proof. We have the following computation:(
id⊗

∫
G

)
Φ(xe1i1 . . . x

ek
ik
) =

∑
j1...jk

xe1j1 . . . x
ek
jk

∫
G

ue1j1i1 . . . u
ek
jkik

=
∑
j1...jk

Pi1...ik,j1...jk(x
⊗k)j1...jk

= (Px⊗k)i1...ik
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On the other hand, we have as well the following computation:∫
G

α(xe1i1 . . . x
ek
ik
) =

1√
|I|k

∑
j1...jk∈I

∫
G

ue1j1i1 . . . u
ek
jkik

=
1√
|I|k

∑
j1...jk∈I

Pi1...ik,j1...jk

But this gives the formula in the statement, and we are done. □

As a consequence, we have the following result:

Theorem 6.5. We must have X ⊂ Xmax
G,I , as subsets of SN−1

C,+ , where:

C(Xmax
G,I ) = C(SN−1

C,+ )
/〈

(Px⊗k)i1...ik =
1√
|I|k

∑
j1...jk∈I

Pi1...ik,j1...jk

∣∣∀k,∀i1, . . . ik〉

Moreover, Xmax
G,I is affine homogeneous, for any G ⊂ U+

N , and any I ⊂ {1, . . . , N}.

Proof. Let us first prove that we have an action G ↷ Xmax
G,I . We must show here

that the variables Xi =
∑

j xj ⊗ uji satisfy the defining relations for Xmax
G,I . We have:

(PX⊗k)i1...ik =
∑
l1...lk

Pi1...ik,l1...lk(X
⊗k)l1...lk

=
∑
l1...lk

Pi1...ik,l1...lk

∑
j1...jk

xe1j1 . . . x
ek
jk
⊗ ue1j1l1 . . . u

ek
jklk

=
∑
j1...jk

xe1j1 . . . x
ek
jk
⊗ (u⊗kP t)j1...jk,i1...ik

Since by Peter-Weyl the transpose of Pi1...ik,j1...jk =
∫
G
ue1j1i1 . . . u

ek
jkik

is the orthogonal

projection onto Fix(u⊗k), we have u⊗kP t = P t. We therefore obtain:

(PX⊗k)i1...ik =
∑
j1...jk

Pi1...ik,j1...jkx
e1
j1
. . . xekjk

= (Px⊗k)i1...ik

=
1√
|I|k

∑
j1...jk∈I

Pi1...ik,j1...jk

Thus we have an action G ↷ Xmax
G,I , and since this action is ergodic by Proposition

6.4, we have an affine homogeneous space, as claimed. □

We can now merge the results that we have, and we obtain:
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Theorem 6.6. Given a closed quantum subgroup G ⊂ U+
N , and a set I ⊂ {1, . . . , N},

if we consider the following C∗-subalgebra and the following quotient C∗-algebra,

C(Xmin
G,I ) =

〈
1√
|I|

∑
j∈I

uji

∣∣∣i = 1, . . . , N

〉
⊂ C(G)

C(Xmax
G,I ) = C(SN−1

C,+ )
/〈

(Px⊗k)i1...ik =
1√
|I|k

∑
j1...jk∈I

Pi1...ik,j1...jk

∣∣∣∀k,∀i1, . . . ik〉
then we have maps as follows,

G→ Xmin
G,I ⊂ Xmax

G,I ⊂ SN−1
C,+

the space G → Xmax
G,I is affine homogeneous, and any affine homogeneous space G → X

appears as an intermediate space Xmin
G,I ⊂ X ⊂ Xmax

G,I .

Proof. This follows indeed from the various results that we have, namely Theorem
6.3 and Theorem 6.5, regarding the minimal and maximal constructions. □

At the level of the general theory, based on Definition 6.1, we will need as well:

Theorem 6.7. Assuming that G→ X is an affine homogeneous space, with index set
I ⊂ {1, . . . , N}, the Haar integration functional

∫
X
=
∫
G
α is given by∫

X

xe1i1 . . . x
ek
ik

=
∑

π,σ∈D

KI(π)(ξσ)i1...ikWkN(π, σ)

where {ξπ|π ∈ D} is a basis of Fix(u⊗k), WkN = G−1
kN with GkN(π, σ) =< ξπ, ξσ > is the

associated Weingarten matrix, and KI(π) =
1√
|I|k
∑

j1...jk∈I(ξπ)j1...jk .

Proof. By using the Weingarten formula for the quantum group G, in its abstract
form, coming from Peter-Weyl theory, we have:∫

X

xe1i1 . . . x
ek
ik

=
1√
|I|k

∑
j1...jk∈I

∫
G

ue1j1i1 . . . u
ek
jkik

=
1√
|I|k

∑
j1...jk∈I

∑
π,σ∈D

(ξπ)j1...jk(ξσ)i1...ikWkN(π, σ)

But this gives the formula in the statement, and we are done. □

With this discussed, let us go back now to the “minimal vs maximal” discussion, in
analogy with the group algebras. Here is a natural example of an intermediate space
Xmin

G,I ⊂ X ⊂ Xmax
G,I , which will be of interest for us, in what follows:
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Theorem 6.8. Given a closed quantum subgroup G ⊂ U+
N , and a set I ⊂ {1, . . . , N},

if we consider the following quotient algebra

C(Xmed
G,I ) = C(SN−1

C,+ )
/〈∑

j1...jk

ξj1...jkx
e1
j1
. . . xekjk =

1√
|I|k

∑
j1...jk∈I

ξj1...jk

∣∣∣∀k,∀ξ ∈ Fix(u⊗k)

〉
we obtain in this way an affine homogeneous space G→ XG,I .

Proof. We know from Theorem 6.5 that Xmax
G,I ⊂ SN−1

C,+ is constructed by imposing

to the standard coordinates the conditions Px⊗k = P I , where:

Pi1...ik,j1...jk =

∫
G

ue1j1i1 . . . u
ek
jkik

P I
i1...ik

=
1√
|I|k

∑
j1...jk∈I

Pi1...ik,j1...jk

According to the Weingarten integration formula for G, we have:

(Px⊗k)i1...ik =
∑
j1...jk

∑
π,σ∈D

(ξπ)j1...jk(ξσ)i1...ikWkN(π, σ)x
e1
j1
. . . xekjk

P I
i1...ik

=
1√
|I|k

∑
j1...jk∈I

∑
π,σ∈D

(ξπ)j1...jk(ξσ)i1...ikWkN(π, σ)

Thus Xmed
G,I ⊂ Xmax

G,I , and the other assertions are standard as well. □

We can now put everything together, as follows:

Theorem 6.9. Given a closed subgroup G ⊂ U+
N , and a subset I ⊂ {1, . . . , N}, the

affine homogeneous spaces over G, with index set I, have the following properties:

(1) These are exactly the intermediate subspaces Xmin
G,I ⊂ X ⊂ Xmax

G,I on which G acts
affinely, with the action being ergodic.

(2) For the minimal and maximal spaces Xmin
G,I and Xmax

G,I , as well as for the inter-

mediate space Xmed
G,I constructed above, these conditions are satisfied.

(3) By performing the GNS construction with respect to the Haar integration func-
tional

∫
X
=
∫
G
α we obtain the minimal space Xmin

G,I .

We agree to identify all these spaces, via the GNS construction, and denote them XG,I .

Proof. This follows indeed by combining the various results above. □

6b. Basic examples

Let us discuss now some basic examples of affine homogeneous spaces, namely those
coming from the classical groups, and those coming from group duals. We will need:
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Proposition 6.10. Assuming that a closed subset X ⊂ SN−1
C,+ is affine homogeneous

over a classical group, G ⊂ UN , then X itself must be classical, X ⊂ SN−1
C .

Proof. We use the well-known fact that, since the standard coordinates uij ∈ C(G)
commute, the corepresentation u◦◦•• = u⊗2 ⊗ ū⊗2 has the following fixed vector:

ξ =
∑
ij

ei ⊗ ej ⊗ ei ⊗ ej

With k = ◦ ◦ • • and with this vector ξ, the ergodicity formula reads:∑
ij

xixjx
∗
ix

∗
j =

1√
|I|4

∑
i,j∈I

1

= 1

By using this formula, along with
∑

i xix
∗
i =

∑
i x

∗
ixi = 1, we obtain:∑

ij

(xixj − xjxi)(x∗jx∗i − x∗ix∗j)

=
∑
ij

xixjx
∗
jx

∗
i − xixjx∗ix∗j − xjxix∗jx∗i + xjxix

∗
ix

∗
j

= 1− 1− 1 + 1

= 0

We conclude that for any i, j the following commutator vanishes:

[xi, xj] = 0

By using now this commutation relation, plus once again the relations defining the
free sphere SN−1

C,+ , we have as well the following computation:∑
ij

(xix
∗
j − x∗jxi)(xjx∗i − x∗ixj)

=
∑
ij

xix
∗
jxjx

∗
i − xix∗jx∗ixj − x∗jxixjx∗i + x∗jxix

∗
ixj

=
∑
ij

xix
∗
jxjx

∗
i − xix∗ix∗jxj − x∗jxjxix∗i + x∗jxix

∗
ixj

= 1− 1− 1 + 1

= 0

Thus we have [xi, x
∗
j ] = 0 as well, and so X ⊂ SN−1

C , as claimed. □

We can now formulate the result in the classical case, as follows:



124 6. AFFINE SPACES

Theorem 6.11. In the classical case, G ⊂ UN , there is only one affine homogeneous
space, for each index set I = {1, . . . , N}, namely the quotient space

X = G/(G ∩ CI
N)

where CI
N ⊂ UN is the group of unitaries fixing the following vector,

ξI =
1√
|I|

(δi∈I)i

which generalizes the complex bistochastic group, CN ⊂ UN .

Proof. Consider an affine homogeneous space G → X. We know from Proposition
6.10 that X is classical. We will first prove that we have X = Xmin

G,I , and then we will

prove that Xmin
G,I equals the quotient space in the statement.

(1) We use the well-known fact that the functional E = (id ⊗
∫
G
)Φ is the projection

onto the fixed point algebra of the action, given by:

C(X)Φ =
{
f ∈ C(X)

∣∣∣Φ(f) = f ⊗ 1
}

Thus our ergodicity condition, namely E =
∫
G
α(.)1, shows that we must have:

C(X)Φ = C1

But in the classical case the condition Φ(f) = f ⊗ 1 reformulates as:

f(gx) = f(x) , ∀g ∈ G, x ∈ X

Thus, we recover in this way the usual ergodicity condition, stating that whenever a
function f ∈ C(X) is constant on the orbits of the action, it must be constant. Now
observe that for an affine action, the orbits are closed. Thus an affine action which is
ergodic must be transitive, and we deduce from this that we have:

X = Xmin
G,I

(2) We know that the inclusion C(X) ⊂ C(G) comes via:

xi =
1√
|I|

∑
j∈I

uji

Thus, the quotient map p : G→ X ⊂ SN−1
C is given by the following formula:

p(g) =

(
1√
|I|

∑
j∈I

gji

)
i
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In particular, the image of the unit matrix 1 ∈ G is the following vector:

p(1) =

(
1√
|I|

∑
j∈I

δji

)
i

=

(
1√
|I|
δi∈I

)
i

= ξI

But this gives the quotient space result in the statement.

(3) Finally, regarding the last assertion, stating that our group CI
N ⊂ UN generalizes

the complex bishochastic group CN ⊂ UN , this is more of a comment, coming from
definitions. Indeed, CN consists by definition of the unitary matrices g ∈ UN which are
bistochastic, meaning having the same sums on rows and columns. But this bistochasticity
condition is equivalent to the following condition, with ξ being the all-1 vector:

gξ = ξ

Thus, our group CI
N ⊂ UN generalizes indeed the group CN ⊂ UN , as claimed. □

Let us discuss now the group dual case. For simplifying, we will discuss the case of the
“diagonal” embeddings only. Given a finitely generated discrete group Γ =< g1, . . . , gN >,
we can consider the following “diagonal” embedding:

Γ̂ ⊂ U+
N , uij = δijgi

With this convention, we have the following result:

Theorem 6.12. In the group dual case, G = Γ̂ with Γ =< g1, . . . , gN >, we have

X = Γ̂I : ΓI =< gi|i ∈ I >⊂ Γ

for any affine homogeneous space X, when identifying full and reduced group algebras.

Proof. Assume indeed that we have an affine homogeneous space G→ X. In terms
of the rescaled coordinates hi =

√
|I|xi, our axioms for α,Φ read:

α(hi) = δi∈Igi , Φ(hi) = hi ⊗ gi
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As for the ergodicity condition, this translates as follows:(
id⊗

∫
G

)
Φ(he1i1 . . . h

ep
ip
) =

∫
G

α(h
ep
i1
. . . h

ep
ip
)

⇐⇒
(
id⊗

∫
G

)
(he1i1 . . . h

ep
ip
⊗ ge1i1 . . . g

ep
ip
) =

∫
G

δi1∈I . . . δip∈Ig
e1
i1
. . . g

ep
ip

⇐⇒ δge1i1 ...g
ep
ip

,1h
e1
i1
. . . h

ep
ip

= δge1i1 ...g
ep
ip

,1δi1∈I . . . δip∈I

⇐⇒
[
ge1i1 . . . g

ep
ip

= 1 =⇒ he1i1 . . . h
ep
ip

= δi1∈I . . . δip∈I

]
Now observe that from gig

∗
i = g∗i gi = 1 we obtain in this way:

hih
∗
i = h∗ihi = δi∈I

Thus the elements hi vanish for i /∈ I, and are unitaries for i ∈ I. We conclude that

we have X = Λ̂, where Λ =< hi|i ∈ I > is the group generated by these unitaries. In
order to finish now the proof, our claim is that for indices ix ∈ I we have:

ge1i1 . . . g
ep
ip

= 1 ⇐⇒ he1i1 . . . h
ep
ip

= 1

Indeed, =⇒ comes from the ergodicity condition, as processed above, and⇐= comes
from the existence of the morphism α, which is given by α(hi) = gi, for i ∈ I. □

Let us go back now to the general case, and discuss a number of further axiomatization
issues, based on the examples that we have. We will need the following result:

Proposition 6.13. The closed subspace CI+
N ⊂ U+

N defined via

C(CI+
N ) = C(U+

N )
/
⟨uξI = ξI⟩

where ξI =
1√
|I|
(δi∈I)i, is a compact quantum group.

Proof. We must check Woronowicz’s axioms, and the proof goes as follows:

(1) Let us set Uij =
∑

k uik ⊗ ukj. We have then:

(UξI)i =
1√
|I|

∑
j∈I

Uij

=
1√
|I|

∑
j∈I

∑
k

uik ⊗ ukj

=
∑
k

uik ⊗ (uξI)k
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Since the vector ξI is by definition fixed by u, we obtain:

(UξI)i =
∑
k

uik ⊗ (ξI)k

=
1√
|I|

∑
k∈I

uik ⊗ 1

= (uξI)i ⊗ 1

= (ξI)i ⊗ 1

Thus we can define indeed a comultiplication map, by ∆(uij) = Uij.

(2) In order to construct the counit map, ε(uij) = δij, we must prove that the identity
matrix 1 = (δij)ij satisfies 1ξI = ξI . But this is clear.

(3) In order to construct the antipode, S(uij) = u∗ji, we must prove that the adjoint
matrix u∗ = (u∗ji)ij satisfies u

∗ξI = ξI . But this is clear from uξI = ξI . □

Based on the computations that we have so far, we can formulate:

Theorem 6.14. Given a closed quantum subgroup G ⊂ U+
N and a set I ⊂ {1, . . . , N},

we have a quotient map and an inclusion map as follows:

G/(G ∩ CI+
N )→ Xmin

G,I ⊂ Xmax
G,I

These maps are both isomorphisms in the classical case. In general, they are both proper.

Proof. Consider the quantum group H = G ∩ CI+
N , which is by definition such that

at the level of the corresponding algebras, we have:

C(H) = C(G)
/
⟨uξI = ξI⟩

In order to construct a quotient map G/H → Xmin
G,I , we must check that the defining

relations for C(G/H) hold for the standard generators xi ∈ C(Xmin
G,I ). But if we denote

by ρ : C(G)→ C(H) the quotient map, then we have, as desired:

(id⊗ ρ)∆xi = (id⊗ ρ)

(
1√
|I|

∑
j∈I

∑
k

uik ⊗ ukj

)
=

∑
k

uik ⊗ (ξI)k

= xi ⊗ 1

In the classical case, Theorem 6.11 shows that both the maps in the statement are
isomorphisms. For the group duals, however, these maps are not isomorphisms, in general.
This follows indeed from Theorem 6.12, and from some basic computations. □

We discuss now a number of further examples. We will need:
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Proposition 6.15. Given a compact matrix quantum group G = (G, u), the pair

Gt = (G, ut)

where (ut)ij = uji, is a compact matrix quantum group as well.

Proof. The construction of the comultiplication is as follows, where Σ is the flip:

∆t[(ut)ij] =
∑
k

(ut)ik ⊗ (ut)kj ⇐⇒ ∆t(uji) =
∑
k

uki ⊗ ujk

⇐⇒ ∆t = Σ∆

As for the corresponding counit and antipode, these can be simply taken to be (ε, S),
and the axioms of Woronowicz are then satisfied. □

We will need as well the following result, which is standard too:

Proposition 6.16. Given closed subgroups G ⊂ U+
N and H ⊂ U+

M , with fundamental
corepresentations u = (uij) and v = (vab), their product is a closed subgroup

G×H ⊂ U+
NM

with fundamental corepresentation wia,jb = uij ⊗ vab.

Proof. Our claim is that the corresponding structural maps are as follows:

∆(α⊗ β) = ∆(α)13∆(β)24

ε(α⊗ β) = ε(α)ε(β)

S(α⊗ β) = S(α)S(β)

Indeed, the verification for the comultiplication goes as follows:

∆(wia,jb) = ∆(uij)13∆(vab)24

=
∑
kc

uik ⊗ vac ⊗ ukj ⊗ vcb

=
∑
kc

wia,kc ⊗ wkc,jb

For the counit, we have the following computation:

ε(wia,jb) = ε(uij)ε(vab)

= δijδab

= δia,jb
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As for the antipode, here we have the following computation:

S(wia,jb) = S(uij)S(vab)

= v∗bau
∗
ji

= (ujivba)
∗

= w∗
jb,ia

We refer to Wang’s paper [89] for more details regarding this construction. □

We will need one more ingredient, which is a definition, as follows:

Definition 6.17. We call a closed quantum subgroup G ⊂ U+
N self-transpose when we

have an automorphism T : C(G)→ C(G) given by T (uij) = uji.

With the above notions and general theory in hand, let us go back to the affine
homogeneous spaces. As a first result here, any closed subgroup G ⊂ U+

N appears as an
affine homogeneous space over an appropriate quantum group, as follows:

Theorem 6.18. Given a closed subgroup G ⊂ U+
N , we have an identification

Xmin
G,I ≃ G

given at the level of standard coordinates by xij =
1√
N
uij, where:

(1) G = Gt ×G ⊂ U+
N2, with coordinates wia,jb = uji ⊗ uab.

(2) I ⊂ {1, . . . , N}2 is the diagonal set, I = {(k, k)|k = 1, . . . , N}.
In the self-transpose case we can choose as well G = G×G, with wia,jb = uij ⊗ uab.

Proof. As a first observation, our closed subgroup G ⊂ U+
N appears as an algebraic

submanifold of the free complex sphere on N2 variables, as follows:

G ⊂ SN2−1
C,+ , xij =

1√
N
uij

Let us construct now the affine homogeneous space structure. Our claim is that, with
G = Gt ×G and I = {(k, k)} as in the statement, the structural maps are:

α = ∆ , Φ = (Σ⊗ id)∆(2)

Indeed, in what regards α = ∆, this is given by the following formula:

α(uij) =
∑
k

uik ⊗ ukj =
∑
k

wkk,ij

Thus, by dividing by
√
N , we obtain the usual affine homogeneous space formula:

α(xij) =
1√
|I|

∑
k

wkk,ij
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Regarding now Φ = (Σ⊗ id)∆(2), the formula here is as follows:

Φ(uij) = (Σ⊗ id)
∑
kl

uik ⊗ ukl ⊗ ulj

=
∑
kl

ukl ⊗ uik ⊗ ulj

=
∑
kl

ukl ⊗ wkl,ij

Thus, by dividing by
√
N , we obtain the usual affine homogeneous space formula:

Φ(xij) =
∑
kl

xkl ⊗ wkl,ij

The ergodicity condition being clear as well, this gives the first assertion. Regarding
now the second assertion, assume that we are in the self-transpose case, and so that we
have an automorphism T : C(G)→ C(G) given by T (uij) = uji. With wia,jb = uij ⊗ uab,
the modified map α = (T ⊗ id)∆ is then given by the following formula:

α(uij) = (T ⊗ id)
∑
k

uik ⊗ ukj

=
∑
k

uki ⊗ ukj

=
∑
k

wkk,ij

As for the modified map Φ = (id⊗ T ⊗ id)(Σ⊗ id)∆(2), this is given by:

Φ(uij) = (id⊗ T ⊗ id)
∑
kl

ukl ⊗ uik ⊗ ulj

=
∑
kl

ukl ⊗ uki ⊗ ulj

=
∑
kl

ukl ⊗ wkl,ij

Thus we have the correct affine homogeneous space formulae, and once again the
ergodicity condition being clear as well, this gives the result. □

Let us discuss now the generalization of the above result. We have:

Definition 6.19. Given a closed subgroup G ⊂ U+
N and an integer M ≤ N we set

C(GMN) =
〈
uij

∣∣∣i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}〉 ⊂ C(G)

and we call row space of G the underlying quotient space G→ GMN .
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As a basic example here, at M = N we obtain the quantum group G itself. Also, at
M = 1 we obtain the space whose coordinates are those on the first row of coordinates
on G. Finally, in the case of the basic quantum unitary and reflection groups, these are
particular cases of the partial isometry spaces discussed in chapter 5.

Given GN ⊂ U+
N and an integer M ≤ N , we can consider the quantum group GM =

GN ∩ U+
M , with the intersection taken inside U+

N , and with U+
M ⊂ U+

N given by:

u = diag(v, 1N−M)

Observe that we have a quotient map C(GN) → C(GM), given by uij → vij. With
these conventions, we have the following extension of Theorem 6.18:

Theorem 6.20. Given a closed subgroup GN ⊂ U+
N , we have an identification

Xmin
G,I ≃ GMN

given at the level of standard coordinates by xij =
1√
M
uij, where:

(1) G = Gt
M ×GN ⊂ U+

NM , where GM = GN ∩ U+
M , with coordinates as follows:

wia,jb = uji ⊗ vab

(2) I ⊂ {1, . . . ,M} × {1, . . . , N} is the diagonal set, namely:

I =
{
(k, k)

∣∣∣k = 1, . . . ,M
}

In the self-transpose case we can choose as well G = GM ×GN , with wia,jb = uij ⊗ vab.

Proof. Consider the row space X = GMN constructed in Definition 6.19, with its
standard row space coordinates, namely:

xij =
1√
M
uij

In order to prove the result, we have to show that this space coincides with the
space Xmin

G,I constructed in the statement, with its standard coordinates. For this pur-
pose, consider the following composition of morphisms, where in the middle we have the
comultiplication, and at left and right we have the canonical maps:

C(X) ⊂ C(GN)→ C(GN)⊗ C(GN)→ C(GM)⊗ C(GN)
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The standard coordinates are then mapped as follows:

xij =
1√
M
uij

→ 1√
M

∑
k

uik ⊗ ukj

→ 1√
M

∑
k≤M

uik ⊗ vkj

=
1√
M

∑
k≤M

wkk,ij

Thus we obtain the standard coordinates on the space Xmin
G,I , as claimed. Finally, the

last assertion is standard as well, by suitably modifying the above morphism. □

6c. Integration results

In the easy case, we have the following result:

Proposition 6.21. When G ⊂ U+
N is easy, coming from a category of partitions D,

the space XG,I ⊂ SN−1
C,+ appears by imposing the relations∑

i1...ik

δπ(i1 . . . ik)x
e1
i1
. . . xekik = |I||π|−k/2, ∀k,∀π ∈ D(k)

where D(k) = D(0, k), and where |.| denotes the number of blocks.

Proof. We know by easiness that Fix(u⊗k) is spanned by the vectors ξπ = Tπ, with
π ∈ D(k). But these latter vectors are given by:

ξπ =
∑
i1...ik

δπ(i1 . . . ik)ei1 ⊗ . . .⊗ eik

We deduce that XG,I ⊂ SN−1
C,+ appears by imposing the following relations:∑

i1...ik

δπ(i1 . . . ik)x
e1
i1
. . . xekik =

1√
|I|k

∑
j1...jk∈I

δπ(j1 . . . jk), ∀k,∀π ∈ D(k)

Now since the sum on the right equals |I||π|, this gives the result. □

More generally, it is interesting to work out what happens when G is a product of
easy quantum groups, and the index set I appears as follows, for a certain set J :

I = {(c, . . . , c)|c ∈ J}

The result here, in its most general form, is as follows:



6C. INTEGRATION RESULTS 133

Theorem 6.22. For a product of easy quantum groups G = G
(1)
N1
× . . .×G(s)

Ns
, and with

I = {(c, . . . , c)|c ∈ J}, the space XG,I ⊂ SN−1
C,+ appears via the relations∑

i1...ik

δπ(i1 . . . ik)x
e1
i1
. . . xekik = |J ||π1∨...∨πs|−k/2

for any k ∈ N and any partition of type π ∈ D(1)(k) × . . . × D(s)(k), where D(r) ⊂ P is

the category of partitions associated to G
(r)
Nr
⊂ U+

Nr
, and where

π1 ∨ . . . ∨ πs ∈ P (k)
is the partition obtained by superposing π1, . . . , πs.

Proof. Since we are in a direct product situation, a basis for Fix(u⊗k) is provided
by the vectors ρπ = ξπ1 ⊗ . . .⊗ ξπs associated to the following partitions:

π = (π1, . . . , πs) ∈ D(1)(k)× . . .×D(s)(k)

We conclude that the space XG,I ⊂ SN−1
C,+ appears by imposing the following relations

to the standard coordinates:∑
i1...ik

δπ(i1 . . . ik)x
e1
i1
. . . xekik =

1√
|I|k

∑
j1...jk∈I

δπ(j1 . . . jk), ∀k,∀π ∈ D(1)(k)× . . .×D(s)(k)

Since the conditions j1, . . . , jk ∈ I read j1 = (l1, . . . , l1), . . . , jk = (lk, . . . , lk), for
certain elements l1, . . . lk ∈ J , the sums on the right are given by:∑

j1...jk∈I

δπ(j1 . . . jk) =
∑

l1...lk∈J

δπ(l1, . . . , l1, . . . . . . , lk, . . . , lk)

=
∑

l1...lk∈J

δπ1(l1 . . . lk) . . . δπs(l1 . . . lk)

=
∑

l1...lk∈J

δπ1∨...∨πs(l1 . . . lk)

Now since the sum on the right equals |J ||π1∨...∨πs|, this gives the result. □

We can now discuss probabilistic aspects. We first have:

Proposition 6.23. The moments of the variable

χT =
∑
i≤T

xi...i

are given by the following formula,∫
X

χk
T ≃

1√
Mk

∑
π∈D(1)(k)∩...∩D(s)(k)

(
TM

N

)|π|

in the Ni →∞ limit, ∀i, where M = |I|, and N = N1 . . . Ns.
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Proof. We have the following formula:

π(xi1...is) =
1√
M

∑
c∈J

ui1c ⊗ . . .⊗ uisc

For the variable in the statement, we therefore obtain:

π(χT ) =
1√
M

∑
i≤T

∑
c∈J

uic ⊗ . . .⊗ uic

Now by raising to the power k and integrating, we obtain:∫
X

χk
T =

1√
Mk

∑
i1...ik≤T

∑
c1...ck∈J

∫
G(1)

ui1c1 . . . uikck . . . . . .

∫
G(s)

ui1c1 . . . uikck

=
1√
Mk

∑
ic

∑
πσ

δπ1(i)δσ1(c)W
(1)
kN1

(π1, σ1) . . . δπs(i)δσs(c)W
(s)
kNs

(πs, σs)

=
1√
Mk

∑
πσ

T |π1∨...∨πs|M |σ1∨...∨σs|W
(1)
kN1

(π1, σ1) . . .W
(s)
kNs

(πs, σs)

We use now the standard fact that the Weingarten functions are concentrated on the
diagonal. Thus in the limit we must have πi = σi for any i, and we obtain:∫

X

χk
T ≃ 1√

Mk

∑
π

T |π1∨...∨πs|M |π1∨...∨πs|N
−|π1|
1 . . . N−|πs|

s

≃ 1√
Mk

∑
π∈D(1)∩...∩D(s)

T |π|M |π|(N1 . . . Ns)
−|π|

=
1√
Mk

∑
π∈D(1)∩...∩D(s)

(
TM

N

)|π|

But this gives the formula in the statement, and we are done. □

As a consequence, we have the following result:

Theorem 6.24. In the context of a liberation operation for quantum groups

G(i) → G(i)+

the laws of the variables
√
MχT are in Bercovici-Pata bijection, in the Ni →∞ limit.

Proof. Assume indeed that we have easy quantum groups G(1), . . . , G(s), with free
versions G(1)+, . . . , G(s)+. At the level of the categories of partitions, we have:⋂

i

(
D(i) ∩NC

)
=

(⋂
i

D(i)

)
∩NC
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Since the intersection of Hom-spaces is the Hom-space for the generated quantum
group, we deduce that at the quantum group level, we have:

< G(1)+, . . . , G(s)+ >=< G(1), . . . , G(s) >+

Thus the result follows from Proposition 6.23, and from the Bercovici-Pata bijection
result for truncated characters for this latter liberation operation. □

6d. Tannakian duality

As a starting point here, we have the following simple fact:

Proposition 6.25. Any affine homogeneous space XG,I ⊂ SN−1
C,+ is algebraic, with∑

i1...ik

ξi1...ikx
e1
i1
. . . xekik =

1√
|I|k

∑
b1...bk∈I

ξb1...bk ∀k,∀ξ ∈ Fix(u⊗k)

as defining relations. Moreover, we can use vectors ξ belonging to a basis of Fix(u⊗k).

Proof. This follows indeed from the various results above. □

In order to reach to a more categorical description of XG,I , the idea will be that of
using Frobenius duality. We use colored indices, and we denote by k → k̄ the operation
on the colored indices which consists in reversing the index, and switching all the colors.
Also, we agree to identify the linear maps T : (CN)⊗k → (CN)⊗l with the corresponding
rectangular matrices T ∈MN l×Nk(C), written T = (Ti1...il,j1...jk). With these conventions,
the precise formulation of Frobenius duality that we will need is as follows:

Proposition 6.26. We have an isomorphism of complex vector spaces

T ∈ Hom(u⊗k, u⊗l) ↔ ξ ∈ Fix(u⊗l ⊗ u⊗k̄)

given by the following formulae,

Ti1...il,j1...jk = ξi1...iljk...j1 , ξii...ilj1...jk = Ti1...il,jk...j1

and called Frobenius duality.

Proof. This is a well-known result, which follows from the general theory in [99]. To
be more precise, given integers K,L ∈ N, consider the following standard isomorphism,
which in matrix notation makes T = (TIJ) ∈ML×K(C) correspond to ξ = (ξIJ):

T ∈ L(C⊗K ,C⊗L) ↔ ξ ∈ C⊗L+K

Given now two arbitrary corepresentations v ∈ MK(C(G)) and w ∈ ML(C(G)), the
abstract Frobenius duality result established by Woronowicz in [99] states that the above
isomorphism restricts into an isomorphism of vector spaces, as follows:

T ∈ Hom(v, w) ↔ ξ ∈ Fix(w ⊗ v̄)
In our case, we can apply this result with v = u⊗k and w = u⊗l. Since, according to

our conventions, we have v̄ = u⊗k̄, this gives the isomorphism in the statement. □
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With the above result in hand, we can enhance the construction of XG,I , as follows:

Theorem 6.27. Any affine homogeneous space XG,I is algebraic, with∑
i1...il

∑
j1...jk

Ti1...il,j1...jkx
e1
i1
. . . xelil (x

f1
j1
. . . xfkjk )

∗ =
1√
|I|k+l

∑
b1...bl∈I

∑
c1...ck∈I

Tb1...bl,c1...ck

for any k, l, and any T ∈ Hom(u⊗k, u⊗l), as defining relations.

Proof. We must prove that the relations in the statement are satisfied, over XG,I .
We know from Proposition 6.25 that, with k → lk̄, the following relation holds:∑

i1...il

∑
j1...jk

ξi1...iljk...j1x
e1
i1
. . . xelil x

f̄k
jk
. . . xf̄1j1 =

1√
|I|k+l

∑
b1...bl∈I

∑
c1...ck∈I

ξb1...blck...c1

In terms of the matrix Ti1...il,j1...jk = ξi1...iljk...j1 from Proposition 6.26, we obtain:∑
i1...il

∑
j1...jk

Ti1...il,j1...jkx
e1
i1
. . . xelil x

f̄k
jk
. . . xf̄1j1 =

1√
|I|k+l

∑
b1...bl∈I

∑
c1...ck∈I

Tb1...bl,c1...ck

But this gives the formula in the statement, and we are done. □

The above results suggest the following notion:

Definition 6.28. Given a submanifold X ⊂ SN−1
C,+ and a subset I ⊂ {1, . . . , N}, we

say that X is I-affine when C(X) is presented by relations of type∑
i1...il

∑
j1...jk

Ti1...il,j1...jkx
e1
i1
. . . xelil (x

f1
j1
. . . xfkjk )

∗ =
1√
|I|k+l

∑
b1...bl∈I

∑
c1...ck∈I

Tb1...bl,c1...ck

with the operators T belonging to certain linear spaces

F (k, l) ⊂MN l×Nk(C)

which altogether form a tensor category F = (F (k, l)).

According to Theorem 6.27, any affine homogeneous spaceXG,I is an I-affine manifold,
with the corresponding tensor category being the one associated to the quantum group
G ⊂ U+

N which produces it, formed by the following linear spaces:

F (k, l) = Hom(u⊗k, u⊗l)

Let us study now the quantum isometry groups G+(X) of the manifolds X ⊂ SN−1
C,+

which are I-affine, in the above sense. We have here the following result:

Proposition 6.29. For an I-affine manifold X ⊂ SN−1
C,+ we have

G ⊂ G+(X)

where G ⊂ U+
N is the Tannakian dual of the associated tensor category F .
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Proof. We recall from chapter 5 that the relations defining G+(X) are those express-
ing the vanishing of the following quantities:

P (X1, . . . , XN) =
∑
r

αr

∑
jr1 ...j

r
s(r)

uir1jr1 . . . uirs(r)jrs(r) ⊗ xjr1 . . . xjrs(r)

In the case of an I-affine manifold, the defining relations are those from Definition
6.28, with the corresponding polynomials P being indexed by the elements of F . But
the vanishing of the associated relations P (X1, . . . , XN) = 0 corresponds precisely to the
Tannakian relations defining G ⊂ U+

N , and so we obtain G ⊂ G+(X), as claimed. □

We have now all the needed ingredients, and we can prove:

Theorem 6.30. Assuming that an algebraic manifold X ⊂ SN−1
C,+ is I-affine, with

associated tensor category F , the following happen:

(1) We have an inclusion G ⊂ G+(X), where G is the Tannakian dual of F .
(2) X is an affine homogeneous space, X = XG,I , over this quantum group G.

Proof. In the context of Definition 6.28, the tensor category F there gives rise, by
the Tannakian duality of Woronowicz [100], to a quantum group G ⊂ U+

N . What is left
is to construct the affine space morphisms α,Φ, and the proof here goes as follows:

(1) Construction of α. We want to construct a morphism, as follows:

α : C(X)→ C(G) , xi → Xi =
1√
|I|

∑
j∈I

uij

In view of Definition 6.28, we must therefore prove that we have:∑
i1...il

∑
j1...jk

Ti1...il,j1...jkX
e1
i1
. . . Xel

il
(Xf1

j1
. . . Xfk

jk
)∗ =

1√
|I|k+l

∑
b1...bl∈I

∑
c1...ck∈I

Tb1...bl,c1...ck

By replacing the variables Xi by their above values, we want to prove that:∑
i1...il

∑
j1...jk

∑
r1...rl∈I

∑
s1...sk∈I

Ti1...il,j1...jku
e1
i1r1

. . . uelilrl(u
f1
j1s1

. . . ufkjksk)
∗ =

∑
b1...bl∈I

∑
c1...ck∈I

Tb1...bl,c1...ck

Now observe that from the relation T ∈ Hom(u⊗k, u⊗l) we obtain:∑
i1...il

∑
j1...jk

Ti1...il,j1...jku
e1
i1r1

. . . uelilrl(u
f1
j1s1

. . . ufkjksk)
∗ = Tr1...rl,s1...sk

Thus, by summing over indices ri ∈ I and si ∈ I, we obtain the desired formula.

(2) Construction of Φ. We want to construct a morphism, as follows:

Φ : C(X)→ C(G)⊗ C(X) , xi → Xi =
∑
j

uij ⊗ xj

But this is precisely the coaction map constructed in Proposition 6.29.
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(3) Proof of the ergodicity. If we go back to the general theory developed before, we
see that the ergodicity condition is equivalent to a number of Tannakian conditions, which
are automatic in our case. Thus, the ergodicity condition is automatic. □

The above result, based on the notion of I-affine manifold, remains quite theoretical.
In order to further advance, let us formulate:

Definition 6.31. Given a submanifold X ⊂ SN−1
C,+ and a subset I ⊂ {1, . . . , N}, we

let FX,I(k, l) ⊂MN l×Nk(C) be the linear space of linear maps T such that∑
i1...il

∑
j1...jk

Ti1...il,j1...jkx
e1
i1
. . . xelil (x

f1
j1
. . . xfkjk )

∗ =
1√
|I|k+l

∑
b1...bl∈I

∑
c1...ck∈I

Tb1...bl,c1...ck

holds over X. We say that X is I-saturated when

FX,I = (FX,l(k, l))

is a tensor category, and the collection of the above relations presents C(X).

Observe that any I-saturated manifold is automatically I-affine. The known results
seem to suggest that the converse of this fact should hold. We do not have a proof of this
fact, but we would like to present a few observations on this subject. First, we have:

Proposition 6.32. The linear spaces FX,I(k, l) ⊂MN l×Nk(C) are as follows:

(1) They contain the units.
(2) They are stable by conjugation.
(3) They satisfy the Frobenius duality condition.

Proof. All these assertions are elementary, as follows:

(1) Consider indeed the unit map. The associated relation is:∑
i1...ik

xe1i1 . . . x
ek
ik
(xe1i1 . . . x

ek
ik
)∗ = 1

But this relation holds indeed, due to the defining relations for SN−1
C,+ .

(2) We have indeed the following sequence of equivalences:

T ∗ ∈ FX,I(l, k)

⇐⇒
∑
i1...il

∑
j1...jk

T ∗
j1...jk,i1...il

xf1j1 . . . x
fk
jk
(xe1i1 . . . x

el
il
)∗ =

1√
|I|k+l

∑
b1...il∈I

∑
c1...ck∈I

T ∗
c1...ck,b1...bl

⇐⇒
∑
i1...il

∑
j1...jk

Ti1...il,j1...jkx
e1
i1
. . . xelil (x

f1
j1
. . . xfkjk )

∗ =
1√
|I|k+l

∑
b1...bl∈I

∑
c1...ck∈I

Tb1...bl,c1...ck

⇐⇒ T ∈ FX,I(k, l)

(3) We have indeed a correspondence T ∈ FX,I(k, l) ↔ ξ ∈ FX,I(∅, lk̄), given by the
usual formulae for the Frobenius isomorphism. □



6D. TANNAKIAN DUALITY 139

Based on the above result, we can now formulate our observations, as follows:

Theorem 6.33. Given a closed subgroup G ⊂ U+
N , and an index set I ⊂ {1, . . . , N},

consider the corresponding affine homogeneous space XG,I ⊂ SN−1
C,+ .

(1) XG,I is I-saturated precisely when the collection of spaces FX,I = (FX,I(k, l)) is
stable under compositions, and under tensor products.

(2) We have FX,I = F precisely when we have∑
j1...jl∈I

(∑
i1...il

ξi1...ilu
e1
i1j1

. . . ueliljl − ξj1...jl
)
= 0

=⇒
∑
i1...il

ξi1...ilu
e1
i1j1

. . . ueliljl − ξj1...jl = 0

for any choice of the indices j1, . . . , jl.

Proof. We use the fact, from Theorem 6.27, that with F (k, l) = Hom(u⊗k, u⊗l), we
have inclusions of vector spaces F (k, l) ⊂ FX,I(k, l). Moreover, once again by Theorem
6.27, the relations coming from the elements of the category formed by the spaces F (k, l)
present XG,I . Thus, the relations coming from the elements of FX,I present XG,I as well.
With this observation in hand, our assertions follow from Proposition 6.32:

(1) According to Proposition 6.32 (1,2) the unit and conjugation axioms are satisfied,
so the spaces FX,I(k, l) form a tensor category precisely when the remaining axioms,
namely the composition and the tensor product one, are satisfied. Now by assuming that
these two axioms are satisfied, X follows to be I-saturated, by the above observation.

(2) Since we already have inclusions in one sense, the equality FX,I = F from the
statement means that we must have inclusions in the other sense, as follows:

FX,I(k, l) ⊂ F (k, l)

By using now Proposition 6.32 (3), it is enough to discuss the case k = 0. And here,
assuming that we have ξ ∈ FX,L(0, l), the following condition must be satisfied:∑

i1...il

ξi1...ilx
e1
i1
. . . xelil =

∑
j1...jl∈I

ξj1...jl

By applying now the morphism α : C(XG,I)→ C(G), we deduce that we have:∑
i1...il

ξi1...il
∑

j1...jl∈I

ue1i1j1 . . . u
el
iljl

=
∑

j1...jl∈I

ξj1...jl

Now recall that F (0, l) = Fix(u⊗l) consists of the vectors ξ satisfying:∑
i1...il

ξi1...ilu
e1
i1j1

. . . ueliljl = ξj1...jl ,∀j1, . . . , jl

We are therefore led to the conclusion in the statement. □



140 6. AFFINE SPACES

6e. Exercises

Exercises:

Exercise 6.34.

Exercise 6.35.

Exercise 6.36.

Exercise 6.37.

Exercise 6.38.

Exercise 6.39.

Bonus exercise.



CHAPTER 7

Projective freeness

7a. Projective spaces

This chapter is an introduction to projective geometry, in our sense. As a first topic
that we would like to discuss, we have the following remarkable isomorphism:

PO+
N = PU+

N

In order to get started, let us first discuss the classical case. We have here:

Theorem 7.1. The passage ON → UN appears via Lie algebra complexification,

ON → oN → un → UN

with the Lie algebra uN being a complexification of the Lie algebra oN .

Proof. This is something rather philosophical, and advanced as well, that we will
not really need here, the idea being as follows:

(1) The unitary and orthogonal groups UN , ON are both Lie groups, in the sense
that they are smooth manifolds. The corresponding Lie algebras uN , oN , which are by
definition the respective tangent spaces at 1, can be computed by differentiating the
equations defining UN , ON , with the conclusion being as follows:

uN =
{
A ∈MN(C)

∣∣∣A∗ = −A
}

oN =
{
B ∈MN(R)

∣∣∣Bt = −B
}

(2) This was for the correspondences UN → uN and ON → oN . In the other sense,
the correspondences uN → UN and oN → ON appear by exponentiation, the result here
stating that, around 1, the unitary matrices can be written as U = eA, with A ∈ uN , and
the orthogonal matrices can be written as U = eB, with B ∈ oN .

(3) In view of all this, in order to understand the passage ON → UN it is enough to
understand the passage oN → uN . But, in view of the above formulae for oN , uN , this is
basically an elementary linear algebra problem. Indeed, let us pick an arbitrary matrix
A ∈MN(C), and write it as follows, with B,C ∈MN(R):

A = B + iC

141
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In terms of B,C, the equation A∗ = −A defining the Lie algebra uN reads:

Bt = −B , Ct = C

(4) As a first observation, we must have B ∈ oN . Regarding now C, let us decompose
this matrix as follows, with D being its diagonal, and C ′ being the reminder:

C = D + C ′

The matrix C ′ being symmetric with 0 on the diagonal, by swithcing all the signs
below the main diagonal we obtain a certain matrix C ′

− ∈ oN . Thus, we have decomposed
A ∈ uN as follows, with B,C ′ ∈ oN , and with D ∈MN(R) being diagonal:

A = B + iD + iC ′
−

(5) As a conclusion now, we have shown that we have a direct sum decomposition of
real linear spaces as follows, with ∆ ⊂MN(R) being the diagonal matrices:

uN ≃ oN ⊕∆⊕ oN

Thus, we can stop our study here, and say that we have reached the conclusion in the
statement, namely that uN appears as a “complexification” of oN . □

In the free case now, the situation is much simpler, and we have:

Theorem 7.2. The passage O+
N → U+

N appears via free complexification,

U+
N = Õ+

N

where the free complexification of a pair (G, u) is the pair (G̃, ũ) with

C(G̃) =< zuij >⊂ C(T) ∗ C(G) , ũ = zu

where z ∈ C(T) is the standard generator, given by x→ x for any x ∈ T.

Proof. We have embeddings as follows, with the first one coming by using the counit,
and with the second one coming from the universality property of U+

N :

O+
N ⊂ Õ+

N ⊂ U+
N

We must prove that the embedding on the right is an isomorphism, and there are
several ways of doing this, all instructive, as follows:

(1) If we denote by v, u the fundamental corepresentations of O+
N , U

+
N , we have:

Fix(v⊗k) = span
(
ξπ

∣∣∣π ∈ NC2(k)
)

Fix(u⊗k) = span
(
ξπ

∣∣∣π ∈ NC2(k))
Moreover, the above vectors ξπ are known to be linearly independent at N ≥ 2, and

so the above results provide us with bases, and we obtain:

dim(Fix(v⊗k)) = |NC2(k)| , dim(Fix(u⊗k)) = |NC2(k)|
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Now since integrating the character of a corepresentation amounts in counting the
fixed points, the above two formulae can be rewritten as follows:∫

O+
N

χk
v = |NC2(k)| ,

∫
U+
N

χk
u = |NC2(k)|

But this shows, via standard free probability theory, that χv must follow the Winger
semicircle law γ1, and that χu must follow the Voiculescu circular law Γ1:

χv ∼ γ1 , χu ∼ Γ1

On the other hand, by [87], when freely multiplying a semicircular variable by a Haar

unitary we obtain a circular variable. Thus, the main character of Õ+
N is circular:

χzv ∼ Γ1

Now by forgetting about circular variables and free probability, the conclusion is that

the inclusion Õ+
N ⊂ U+

N preserves the law of the main character:

law(χzv) = law(u)

Thus by Peter-Weyl we obtain that the inclusion Õ+
N ⊂ U+

N must be an isomorphism,
modulo the usual equivalence relation for quantum groups.

(2) A version of the above proof, not using any prior free probability knowledge, makes
use of the easiness property of O+

N , U
+
N only, namely:

Hom(v⊗k, v⊗l) = span
(
ξπ

∣∣∣π ∈ NC2(k, l)
)

Hom(u⊗k, u⊗l) = span
(
ξπ

∣∣∣π ∈ NC2(k, l))
Indeed, let us look at the following inclusions of quantum groups:

O+
N ⊂ Õ+

N ⊂ U+
N

At the level of the associated Hom spaces we obtain reverse inclusions, as follows:

Hom(v⊗k, v⊗l) ⊃ Hom((zv)⊗k, (zv)⊗l) ⊃ Hom(u⊗k, u⊗l)

The spaces on the left and on the right are known from easiness, the result being that
these spaces are as follows:

span
(
Tπ

∣∣∣π ∈ NC2(k, l)
)
⊃ span

(
Tπ

∣∣∣π ∈ NC2(k, l))
Regarding the spaces in the middle, these are obtained from those on the left by “col-

oring”, so we obtain the same spaces as those on the right. Thus, by Tannakian duality,

our embedding Õ+
N ⊂ U+

N is an isomorphism, modulo the usual equivalence relation. □

As an interesting consequence of the above result, we have:
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Theorem 7.3. We have an identification as follows,

PO+
N = PU+

N

modulo the usual equivalence relation for compact quantum groups.

Proof. As before, we have several proofs for this result, as follows:

(1) This follows from Theorem 7.2, because we have:

PU+
N = PÕ+

N = PO+
N

(2) We can deduce this as well directly. With notations as before, we have:

Hom
(
(v ⊗ v)k, (v ⊗ v)l

)
= span

(
Tπ

∣∣∣π ∈ NC2((◦•)k, (◦•)l)
)

Hom
(
(u⊗ ū)k, (u⊗ ū)l

)
= span

(
Tπ

∣∣∣π ∈ NC2((◦•)k, (◦•)l))
The sets on the right being equal, we conclude that the inclusion PO+

N ⊂ PU+
N pre-

serves the corresponding Tannakian categories, and so must be an isomorphism. □

As a conclusion, the passage O+
N → U+

N is something much simpler than the passage
ON → UN , with this ultimately coming from the fact that the combinatorics of O+

N , U
+
N

is something much simpler than the combinatorics of ON , UN . In addition, all this leads
as well to the interesting conclusion that the free projective geometry does not fall into
real and complex, but is rather unique and “scalarless”. We will be back to this.

Let us discuss now the projective spaces. We first have:

Proposition 7.4. We have presentation results as follows,

C(PN−1
R ) = C∗

comm

(
(pij)i,j=1,...,N

∣∣∣p = p̄ = pt = p2, T r(p) = 1
)

C(PN−1
C ) = C∗

comm

(
(pij)i,j=1,...,N

∣∣∣p = p∗ = p2, T r(p) = 1
)

for the algebras of continuous functions on the real and complex projective spaces.

Proof. We use the fact that the projective spaces PN−1
R , PN−1

C can be respectively
identified with the spaces of rank one projections in MN(R),MN(C). With this picture
in mind, it is clear that we have arrows←. In order to construct now arrows→, consider
the universal algebras on the right, AR, AC . These algebras being both commutative, by
the Gelfand theorem we can write, with XR, XC being certain compact spaces:

AR = C(XR) , AC = C(XC)

Now by using the coordinate functions pij, we conclude that XR, XC are certain spaces
of rank one projections in MN(R),MN(C). In other words, we have embeddings:

XR ⊂ PN−1
R , XC ⊂ PN−1

C

By transposing we obtain arrows →, as desired. □
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The above result suggests the following definition:

Definition 7.5. Associated to any N ∈ N is the following universal algebra,

C(PN−1
+ ) = C∗

(
(pij)i,j=1,...,N

∣∣∣p = p∗ = p2, T r(p) = 1
)

whose abstract spectrum is called “free projective space”.

Observe that, according to our presentation results for the real and complex projective
spaces PN−1

R and PN−1
C , we have embeddings of compact quantum spaces, as follows:

PN−1
R ⊂ PN−1

C ⊂ PN−1
+

Let us first discuss the relation with the spheres. Given a closed subset X ⊂ SN−1
R,+ ,

its projective version is by definition the quotient space X → PX determined by the fact
that C(PX) ⊂ C(X) is the subalgebra generated by the following variables:

pij = xixj

In order to discuss the relation with the spheres, it is convenient to neglect the material
regarding the complex and hybrid cases, the projective versions of such spheres bringing
nothing new. Thus, we are left with the 3 real spheres, and we have:

Proposition 7.6. The projective versions of the 3 real spheres are as follows,

SN−1
R

//

��

SN−1
R,∗

//

��

SN−1
R,+

��

PN−1
R

// PN−1
C

// PN−1
+

modulo the standard equivalence relation for the quantum algebraic manifolds.

Proof. The assertion at left is true by definition. For the assertion at right, we
have to prove that the variables pij = zizj over the free sphere SN−1

R,+ satisfy the defining

relations for C(PN−1
+ ), from Definition 7.5, namely:

p = p∗ = p2 , T r(p) = 1

We first have the following computation:

(p∗)ij = p∗ji = (zjzi)
∗ = zizj = pij

We have as well the following computation:

(p2)ij =
∑
k

pikpkj =
∑
k

ziz
2
kzj = zizj = pij



146 7. PROJECTIVE FREENESS

Finally, we have as well the following computation:

Tr(p) =
∑
k

pkk =
∑
k

z2k = 1

Regarding now PSN−1
R,∗ = PN−1

C , the inclusion “⊂” follows from abcd = cbad = cbda.
In the other sense now, the point is that we have a matrix model, as follows:

π : C(SN−1
R,∗ )→M2(C(S

N−1
C )) , xi →

(
0 zi
z̄i 0

)
But this gives the missing inclusion “⊃”, and we are done. See [11]. □

In addition to the above result, let us mention that, as already discussed above, passing
to the complex case brings nothing new. This is because the projective version of the free
complex sphere is equal to the free projective space constructed above:

PSN−1
C,+ = PN−1

+

And the same goes for the “hybrid” spheres. For details on all this, we refer to chapters
5-6. In what regards now the tori, we have here the following result:

Proposition 7.7. The projective versions of the 3 real tori are as follows,

TN //

��

T ∗
N

//

��

T+
N

��
PTN // PTN

// PT+
N

modulo the standard equivalence relation for the quantum algebraic manifolds.

Proof. This follows indeed by using the same arguments as for the spheres. □

In what regards the orthogonal groups, we have here the following result:

Proposition 7.8. The projective versions of the 3 orthogonal groups are

ON
//

��

O∗
N

//

��

O+
N

��
PON

// PUN
// PO+

N

modulo the standard equivalence relation for the compact quantum groups.

Proof. This follows by using the same arguments as for spheres, or tori. □

Finally, in what regards the reflection groups, we have here the following result:
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Proposition 7.9. The projective versions of the 3 reflection groups are

HN
//

��

H∗
N

//

��

H+
N

��
PHN

// PKN
// PH+

N

modulo the standard equivalence relation for the compact quantum groups.

Proof. This follows indeed by using the same arguments as before. □

As a conclusion to this, in the projective geometry setting, we have 3 projective
quadruplets, whose construction and main properties can be summarized as follows:

Theorem 7.10. We have projective quadruplets (P, PT, PU, PK) as follows,

(1) A classical real quadruplet, as follows,

PN−1
R PTN

PON PHN

(2) A classical complex quadruplet, as follows,

PN−1
C PTN

PUN PKN

(3) A free quadruplet, as follows,

PN−1
+ PT+

N

PO+
N PH+

N

which appear as projective versions of the main 3 real quadruplets.
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Proof. This follows indeed from the results that already have. To be more precise,
the details, that we will we need in what comes next, are as follows:

(1) Consider the classical affine real quadruplet, which is as follows:

SN−1
R TN

ON HN

The projective version of this quadruplet is then the quadruplet in (1).

(2) Consider the half-classical affine real quadruplet, which is as follows:

SN−1
R,∗ T ∗

N

O∗
N H∗

N

The projective version of this quadruplet is then the quadruplet in (2).

(3) Consider the free affine real quadruplet, which is as follows:

SN−1
R,+ T+

N

O+
N H+

N

The projective version of this quadruplet is then the quadruplet in (3). □

7b. The threefold way

Getting back now to our general projective geometry program, we would like to have
axiomatization and classification results for such quadruplets. In order to do this, follow-
ing [12], we can axiomatize our various projective spaces, as follows:

Definition 7.11. A monomial projective space is a closed subset P ⊂ PN−1
+ obtained

via relations of type

pi1i2 . . . pik−1ik = piσ(1)iσ(2)
. . . piσ(k−1)iσ(k)

, ∀(i1, . . . , ik) ∈ {1, . . . , N}k

with σ ranging over a certain subset of
⋃

k∈2N Sk, which is stable under σ → |σ|.
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Observe the similarity with the corresponding monomiality notion for the spheres,
from before. The only subtlety in the projective case is the stability under the operation
σ → |σ|, which in practice means that if the above relation associated to σ holds, then
the following relation, associated to |σ|, must hold as well:

pi0i1 . . . pikik+1
= pi0iσ(1)

piσ(2)iσ(3)
. . . piσ(k−2)iσ(k−1)

piσ(k)ik+1

As an illustration, the basic projective spaces are all monomial:

Proposition 7.12. The 3 projective spaces are all monomial, with the permutations

◦ ◦

◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
producing respectively the spaces PN−1

R , PN−1
C , and with no relation needed for PN−1

+ .

Proof. We must divide the algebra C(PN−1
+ ) by the relations associated to the dia-

grams in the statement, as well as those associated to their shifted versions, given by:

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦
(1) The basic crossing, and its shifted version, produce the following relations:

pab = pba

pabpcd = pacpbd

Now by using these relations several times, we obtain the following formula:

pabpcd = pacpbd = pcapdb = pcdpab

Thus, the space produced by the basic crossing is classical, P ⊂ PN−1
C . By using one

more time the relations pab = pba we conclude that we have P = PN−1
R , as claimed.

(2) The fattened crossing, and its shifted version, produce the following relations:

pabpcd = pcdpab

pabpcdpef = padpebpcf

The first relations tell us that the projective space must be classical, P ⊂ PN−1
C . Now

observe that with pij = ziz̄j, the second relations read:

zaz̄bzcz̄dzez̄f = zaz̄dzez̄bzcz̄f

Since these relations are automatic, we have P = PN−1
C , and we are done. □

Following [12], we can now formulate our classification result, as follows:
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Theorem 7.13. The basic projective spaces, namely

PN−1
R ⊂ PN−1

C ⊂ PN−1
+

are the only monomial ones.

Proof. We follow the proof from the affine case. Let Rσ be the collection of relations
associated to a permutation σ ∈ Sk with k ∈ 2N, as in Definition 7.11. We fix a monomial
projective space P ⊂ PN−1

+ , and we associate to it subsets Gk ⊂ Sk, as follows:

Gk =

{
{σ ∈ Sk|Rσ hold over P} (k even)

{σ ∈ Sk|R|σ hold over P} (k odd)

As in the affine case, we obtain in this way a filtered group G = (Gk), which is
stable under removing outer strings, and under removing neighboring strings. Thus the
computations in chapter 13 apply, and show that we have only 3 possible situations,
corresponding to the 3 projective spaces in Proposition 7.12. □

Let us discuss now similar results for the projective quantum groups. Given a closed
subgroup G ⊂ O+

N , its projective version G→ PG is by definition given by the fact that
C(PG) ⊂ C(G) is the subalgebra generated by the following variables:

wij,ab = uiaujb

In the classical case we recover in this way the usual projective version:

PG = G/(G ∩ ZN
2 )

We have the following key result:

Theorem 7.14. The quantum group O∗
N is the unique intermediate easy quantum

group ON ⊂ G ⊂ O+
N . Moreover, in the non-easy case, the following happen:

(1) The group inclusion TON ⊂ UN is maximal.
(2) The group inclusion PON ⊂ PUN is maximal.
(3) The quantum group inclusion ON ⊂ O∗

N is maximal.

Proof. This is something that we discussed before, the idea being that the first
assertion comes by classifying the categories of pairings, and then:

(1) This can be obtained by using standard Lie group methods.

(2) This follows from (1), by taking projective versions.

(3) This follows from (2), via standard algebraic lifting results. □

Our claim now is that, under suitable assumptions, PUN is the only intermediate
object PON ⊂ G ⊂ PO+

N . In order to formulate a precise statement here, we first recall
the following notion, that we have already heavily used in this book:
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Definition 7.15. A collection of sets D =
⊔

k,lD(k, l) with

D(k, l) ⊂ P (k, l)

is called a category of partitions when it has the following properties:

(1) Stability under the horizontal concatenation, (π, σ)→ [πσ].
(2) Stability under vertical concatenation (π, σ)→ [σπ], with matching middle symbols.
(3) Stability under the upside-down turning ∗, with switching of colors, ◦ ↔ •.
(4) Each set P (k, k) contains the identity partition || . . . ||.
(5) The sets P (∅, ◦•) and P (∅, •◦) both contain the semicircle ∩.

The above definition is something inspired from the axioms of Tannakian categories,
and going hand in hand with it is the following definition:

Definition 7.16. An intermediate compact quantum group

ON ⊂ G ⊂ O+
N

is called easy when the corresponding Tannakian category

span(NC2(k, l)) ⊂ Hom(u⊗k, u⊗l) ⊂ span(P2(k, l))

comes via the following formula, using the standard π → Tπ construction,

Hom(u⊗k, u⊗l) = span(D(k, l))

from a certain collection of sets of pairings D = (D(k, l)).

As a key remark here, by “saturating” the sets D(k, l), we can assume that the col-
lection D = (D(k, l)) is a category of pairings, in the sense that it is stable under vertical
and horizontal concatenation, upside-down turning, and contains the semicircle.

In the projective case now, following [12], let us formulate:

Definition 7.17. A projective category of pairings is a collection of subsets

NC2(2k, 2l) ⊂ E(k, l) ⊂ P2(2k, 2l)

stable under the usual categorical operations, and satisfying σ ∈ E =⇒ |σ| ∈ E.

As basic examples here, we have the following projective categories of pairings, where
P ∗
2 is the category of matching pairings:

NC2 ⊂ P ∗
2 ⊂ P2

This follows indeed from definitions. Now with the above notion in hand, we can
formulate the following projective analogue of the notion of easiness:
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Definition 7.18. An intermediate compact quantum group

PON ⊂ H ⊂ PO+
N

is called projectively easy when its Tannakian category

span(NC2(2k, 2l)) ⊂ Hom(v⊗k, v⊗l) ⊂ span(P2(2k, 2l))

comes via via the following formula, using the standard π → Tπ construction,

Hom(v⊗k, v⊗l) = span(E(k, l))

for a certain projective category of pairings E = (E(k, l)).

Thus, we have a projective notion of easiness. Observe that, given an easy quantum
group ON ⊂ G ⊂ O+

N , its projective version PON ⊂ PG ⊂ PO+
N is projectively easy in

our sense. In particular the basic projective quantum groups PON ⊂ PUN ⊂ PO+
N are

all projectively easy in our sense, coming from the categories NC2 ⊂ P ∗
2 ⊂ P2.

We have in fact the following general result, from [12]:

Theorem 7.19. We have a bijective correspondence between the affine and projective
categories of partitions, given by the operation

G→ PG

at the level of the corresponding affine and projective easy quantum groups.

Proof. The construction of correspondence D → E is clear, simply by setting:

E(k, l) = D(2k, 2l)

Indeed, due to the axioms in Definition 7.15, the conditions in Definition 7.17 are
satisfied. Conversely, given E = (E(k, l)) as in Definition 7.17, we can set:

D(k, l) =

{
E(k, l) (k, l even)

{σ : |σ ∈ E(k + 1, l + 1)} (k, l odd)

Our claim is that D = (D(k, l)) is a category of partitions. Indeed:

(1) The composition action is clear. Indeed, when looking at the numbers of legs
involved, in the even case this is clear, and in the odd case, this follows from:

|σ, |σ′ ∈ E =⇒ |στ ∈ E
=⇒ σ

τ ∈ D

(2) For the tensor product axiom, we have 4 cases to be investigated, depending on
the parity of the number of legs of σ, τ , as follows:

– The even/even case is clear.
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– The odd/even case follows from the following computation:

|σ, τ ∈ E =⇒ |στ ∈ E
=⇒ στ ∈ D

– Regarding now the even/odd case, this can be solved as follows:

σ, |τ ∈ E =⇒ |σ|, |τ ∈ E
=⇒ |σ||τ ∈ E
=⇒ |στ ∈ E
=⇒ στ ∈ D

– As for the remaining odd/odd case, here the computation is as follows:

|σ, |τ ∈ E =⇒ ||σ|, |τ ∈ E
=⇒ ||σ||τ ∈ E
=⇒ στ ∈ E
=⇒ στ ∈ D

(3) Finally, the conjugation axiom is clear from definitions. It is also clear that both
compositions D → E → D and E → D → E are the identities, as claimed. As for the
quantum group assertion, this is clear as well from definitions. □

Now back to uniqueness issues, we have here the following result, also from [12]:

Theorem 7.20. We have the following results:

(1) O∗
N is the only intermediate easy quantum group, as follows:

ON ⊂ G ⊂ O+
N

(2) PUN is the only intermediate projectively easy quantum group, as follows:

PON ⊂ G ⊂ PO+
N

Proof. The idea here is as follows:

(1) The assertion regarding ON ⊂ O∗
N ⊂ O+

N is well-known, and this is something that
we already know, explained in the above.

(2) The assertion regarding PON ⊂ PUN ⊂ PO+
N follows from the classification result

in (1), and from the duality in Theorem 7.19. □

Summarizing, we have analogues of the various affine classification results, with the
remark that everything becomes simpler in the projective setting.
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7c. Projective geometry

We have so far projective analogues of the various affine classification results. In view
of this, our next goal will be that of finding projective versions of the quantum isometry
group results that we have in the affine setting. We use the following action formalism,
which is quite similar to the affine action formalism introduced in chapter 2:

Definition 7.21. Consider a closed subgroup of the free orthogonal group, G ⊂ O+
N ,

and a closed subset of the free real sphere, X ⊂ SN−1
R,+ .

(1) We write G↷ X when we have a morphism of C∗-algebras, as follows:

Φ : C(X)→ C(X)⊗ C(G)

Φ(zi) =
∑
a

za ⊗ uai

(2) We write PG↷ PX when we have a morphism of C∗-algebras, as follows:

Φ : C(PX)→ C(PX)⊗ C(PG)

Φ(zizj) =
∑
a

zazb ⊗ uaiubj

Observe that the above morphisms Φ, if they exist, are automatically coaction maps.
Observe also that an affine action G ↷ X produces a projective action PG ↷ PX. Let
us also mention that given an algebraic subset X ⊂ SN−1

R,+ , it is routine to prove that there

exist indeed universal quantum groups G ⊂ O+
N acting as (1), and as in (2). We have the

following result, from [11] and related papers, with respect to the above notions:

Theorem 7.22. The quantum isometry groups of basic spheres and projective spaces,

SN−1
R

//

��

SN−1
R,∗

//

��

SN−1
R,+

��

PN−1
R

// PN−1
C

// PN−1
+

are the following affine and projective quantum groups,

ON
//

��

O∗
N

//

��

O+
N

��
PON

// PUN
// PO+

N

with respect to the affine and projective action notions introduced above.
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Proof. The fact that the 3 quantum groups on top act affinely on the corresponding
3 spheres is known since [11], and is elementary, explained before. By restriction, the 3
quantum groups on the bottom follow to act on the corresponding 3 projective spaces.
We must prove now that all these actions are universal. At right there is nothing to prove,
so we are left with studying the actions on SN−1

R , SN−1
R,∗ and on PN−1

R , PN−1
C .

PN−1
R . Consider the following projective coordinates:

pij = zizj , wij,ab = uaiubj

In terms of these projective coordinates, the coaction map is given by:

Φ(pij) =
∑
ab

pab ⊗ wij,ab

Thus, we have the following formulae:

Φ(pij) =
∑
a<b

pab ⊗ (wij,ab + wij,ba) +
∑
a

paa ⊗ wij,aa

Φ(pji) =
∑
a<b

pab ⊗ (wji,ab + wji,ba) +
∑
a

paa ⊗ wji,aa

By comparing these two formulae, and then by using the linear independence of the
variables pab = zazb for a ≤ b, we conclude that we must have:

wij,ab + wij,ba = wji,ab + wji,ba

Let us apply now the antipode to this formula. For this purpose, observe that:

S(wij,ab) = S(uaiubj)

= S(ubj)S(uai)

= ujbuia

= wba,ji

Thus by applying the antipode we obtain:

wba,ji + wab,ji = wba,ij + wab,ij

By relabelling, we obtain the following formula:

wji,ba + wij,ba = wji,ab + wij,ab

Now by comparing with the original relation, we obtain:

wij,ab = wji,ba

But, with wij,ab = uaiubj, this formula reads:

uaiubj = ubjuai

Thus G ⊂ ON , and it follows that we have PG ⊂ PON , as claimed.
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PN−1
C . Consider a coaction map, written as follows, with pab = zaz̄b:

Φ(pij) =
∑
ab

pab ⊗ uaiubj

The idea here will be that of using the following formula:

pabpcd = padpcb

We have the following formulae:

Φ(pijpkl) =
∑
abcd

pabpcd ⊗ uaiubjuckudl

Φ(pilpkj) =
∑
abcd

padpcb ⊗ uaiudluckubj

The terms at left being equal, and the last terms at right being equal too, we deduce
that, with [a, b, c] = abc− cba, we must have the following formula:∑

abcd

uai[ubj, uck, udl]⊗ pabpcd = 0

Now since the quantities pabpcd = zaz̄bzcz̄d at right depend only on the numbers
|{a, c}|, |{b, d}| ∈ {1, 2}, and this dependence produces the only possible linear relations
between the variables pabpcd, we are led to 2× 2 = 4 equations, as follows:

(1) uai[ubj, uak, ubl] = 0, ∀a, b.
(2) uai[ubj, uak, udl] + uai[udj, uak, ubl] = 0, ∀a, ∀b ̸= d.

(3) uai[ubj, uck, ubl] + uci[ubj, uak, ubl] = 0, ∀a ̸= c, ∀b.
(4) uai[ubj, uck, udl]+uai[udj, uck, ubl]+uci[ubj, uak, udl]+uci[udj, uak, ubl] = 0, ∀a ̸= c, b ̸=

d.

We will need in fact only the first two formulae. Since (1) corresponds to (2) at
b = d, we conclude that (1,2) are equivalent to (2), with no restriction on the indices. By
multiplying now this formula to the left by uai, and then summing over i, we obtain:

[ubj, uak, udl] + [udj, uak, ubl] = 0

We use now a standard antipode/relabel trick. By applying the antipode we obtain:

[uld, uka, ujb] + [ulb, uka, ujd] = 0

By relabeling we obtain the following formula:

[udl, uak, ubj] + [udj, uak, ubl] = 0

Now by comparing with the original relation, we obtain:

[ubj, uak, udl] = [udj, uak, ubl] = 0

Thus G ⊂ O∗
N , and it follows that we have PG ⊂ PUN , as desired. □
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The above results can be probably improved. As an example, let us say that a closed
subgroup G ⊂ U+

N acts projectively on PX when we have a coaction map as follows:

Φ(zizj) =
∑
ab

zazb ⊗ uaiu∗bj

The above proof can be adapted, by putting ∗ signs where needed, and Theorem 7.22
still holds, in this setting. However, establishing general universality results, involving
arbitrary subgroups H ⊂ PO+

N , looks like a quite non-trivial question.

Let us discuss now the axiomatization question for the projective quadruplets of type
(P, PT, PU, PK). We recall that we first have a classical real quadruplet, as follows:

PN−1
R PTN

PON PHN

We have then a classical complex quadruplet, which can be thought of as well as being
a real half-classical quadruplet, which is as follows:

PN−1
C PTN

PUN PKN

Finally, we have a free quadruplet, which can be thought of as being the same time
real and complex, which is as follows:

PN−1
+ PT+

N

PO+
N PH+

N

The question is that of axiomatizing these quadruplets.
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To be more precise, in analogy with what happens in the affine case, the problem is
that of establishing correspondences as follows:

P //

�� !!

PToo

��}}
PU

OO ==

// PKoo

aa OO

Modulo this problem, which is for the moment open, things are potentially quite nice,
because we seem to have only 3 geometries, namely real, complex and free. Generally
speaking, we are led in this way into several questions:

(1) We first need functoriality results for the operations < ,> and ∩, in relation with
taking the projective version, and taking affine lifts, as to deduce most of our 7 axioms,
in their obvious projective formulation, from the affine ones.

(2) Then, we need quantum isometry results in the projective setting, for the projective
spaces themselves, and for the projective tori, either established ad-hoc, or by using the
affine results. For the projective spaces, this was done above.

(3) We need as well some further functoriality results, in order to axiomatize the
intermediate objects that we are dealing, the problem here being whether we want to use
projective objects, or projective versions, perhaps saturated, of affine objects.

(4) Modulo this, things are quite clear, with the final result being the fact that we
have only 3 projective geometries. Technically, the proof should be using the fact that,
in the easy setting, PON ⊂ PUN ⊂ PO+

N are the only possible unitary groups.

7d. Small dimensions

We would like to end this chapter with something refreshing, namely a preliminary
study of the free analogue of P 2

R. We recall that the projective space PN−1
R is the space

of lines in RN passing through the origin, the basic examples being as follows:

(1) At N = 2 each such a line, in R2 passing through the origin, corresponds to 2
opposite points on the unit circle T ⊂ R2. Thus, P 1

R corresponds to the upper semicircle
of T, with the endpoints identified, and so we obtain a circle, P 1

R = T.

(2) At N = 3 the situation is similar, with P 2
R corresponding to the upper hemisphere

of the sphere S2
R ⊂ R3, with the points on the equator identified via x = −x. Topologically

speaking, we can deform if we want the upper hemisphere into a square, with the equator
becoming the boundary of this square, and in this picture, the x = −x identification
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corresponds to the “identify opposite edges, with opposite orientations” folding method
for the square, leading to a space P 2

R which is obviously not embeddable into R3.

We recall that the free projective space is defined by the following formula:

C(PN−1
+ ) = C∗

(
(pij)i,j=1,...,N

∣∣∣p = p∗ = p2, T r(p) = 1
)

Let us first discuss, as a warm-up, the 2D case. Here the above matrix of projective
coordinates is as follows, with a = a∗, b = b∗, a+ b = 1:

p =

(
a c
c∗ b

)
We have the following computation:

p2 =

(
a c
c∗ b

)(
a c
c∗ b

)
=

(
a2 + cc∗ ac+ cb
c∗a+ bc∗ c∗c+ b2

)
Thus, the equations to be satisfied are as follows:

a2 + cc∗ = a

b2 + c∗c = b

ac+ cb = c

c∗a+ bc∗ = c∗

The 4th equation is the conjugate of the 3rd equation, so we remove it. By using
a+ b = 1, the remaining equations can be written as:

cc∗ = c∗c = ab

ac+ ca = 0

We have several explicit models for this, using the spheres S1
R,+ and S1

C,+, as well as

the first row spaces of O+
2 and U+

2 , which ultimately lead us to SU2 and S̄U2. These
models are known to be all equivalent under Haar, and the question is whether they are
identical. Thus, we must do computations as above in all models, and compare. These
are all interesting questions, whose precise answers are not known, so far.

In the 3D case now, that of projective space P 2
+, that we are mainly interested in here,

the matrix of coordinates is as follows, with r, s, t self-adjoint, r + s+ t = 1:

p =

 r a b
a∗ s c
b∗ c∗ t
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The square of this matrix is given by:

p2 =

 r a b
a∗ s c
b∗ c∗ t

 r a b
a∗ s c
b∗ c∗ t


We obtain the following formula:

p2 =

 r2 + aa∗ + bb∗ ra+ as+ bc∗ rb+ ac+ bt
a∗r + sa∗ + cb∗ a∗a+ s2 + cc∗ a∗b+ sc+ ct
b∗r + c∗a∗ + tb∗ b∗a+ c∗s+ tc∗ b∗b+ c∗c+ t2


On the diagonal, the equations for p2 = p are as follows:

aa∗ + bb∗ = r − r2

a∗a+ cc∗ = s− s2

b∗b+ c∗c = t− t2

On the off-diagonal upper part, the equations for p2 = p are as follows:

ra+ as+ bc∗ = a

rb+ ac+ bt = b

a∗b+ sc+ ct = c

On the off-diagonal lower part, the equations for p2 = p are those above, conjugated.
Thus, we have 6 equations. The first problem is that of using r + s + t = 1, in order to
make these equations look better. Again, many interesting questions here.

7e. Exercises

Exercises:

Exercise 7.23.

Exercise 7.24.

Exercise 7.25.

Exercise 7.26.

Exercise 7.27.

Exercise 7.28.

Bonus exercise.



CHAPTER 8

Matrix models

8a. Matrix models

You can model everything with random matrices, the saying in analysis goes. We
have already seen an instance of this phenomenon in chapter 9, when talking about half-
liberation. To be more precise, for certain manifolds X ⊂ SN−1

C,∗ , we have constructed
embeddings of algebras of the following type, with Y being a certain classical manifold,
and T1, . . . , TN ∈M2(C(Y )) being certain suitable antidiagonal 2× 2 matrices:

π : C(X) ⊂M2(C(Y )) , xi → Ti

These models, which are quite powerful, were used afterwards in order to establish
several non-trivial results on the original half-classical manifolds X ⊂ SN−1

C,∗ . Indeed, some
knowledge and patience helping, any computation inside the target algebraM2(C(Y )) can
only be fun and doable, and produce results about X ⊂ SN−1

C,∗ itself.

We discuss here, following [10], modeling questions for general manifolds X ⊂ SN−1
C,+ ,

by using the same idea, suitably modified and generalized, as to cover most of the mani-
folds that we are interested in. Let us start with a broad definition, as follows:

Definition 8.1. A model for a real algebraic manifold X ⊂ SN−1
C,+ is a morphism of

C∗-algebras of the following type,

π : C(X)→ B

with B being a C∗-algebra, called target of the model. We say that the model is faithful if
π is faithful, in the usual sense.

Obviously, this is something too broad, because we can simply take B = C(X), and
we have in this way our faithful model, which is of course something unuseful:

id : C(X)→ C(X)

Thus, we must suitably restrict the class of target algebras B that we use, to algebras
that we know well. However, this is something quite tricky, because if we want our model
to be faithful, we cannot use simple algebras like the algebras M2(C(Y )) used in the
half-classical setting. In short, we are running into some difficulties here, of functional
analytic nature, and a systematic discussion of all this is needed.

161
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As a first objective, let us try to understand if an arbitrary manifold X ⊂ SN−1
C,+ can

be modelled by using familiar variables such as usual matrices, or operators. The answer
here is yes, when using operators on a separable Hilbert space, with this coming from the
GNS representation theorem, that we know from chapter 1, which is as follows:

Theorem 8.2. Any C∗-algebra A appears as closed ∗-algebra of operators on a Hilbert
space, A ⊂ B(H), in the following way:

(1) In the commutative case, where A = C(X), we can set H = L2(X), with respect
to some probability measure on X, and use the embedding g → (g → fg).

(2) In general, we can set H = L2(A), with respect to some faithful positive trace
tr : A→ C, and then use a similar embedding, a→ (b→ ab).

Proof. This is something that we already know, from chapter 1, coming from basic
measure theory and functional analysis, the idea being as follows:

(1) In the commutative case, where A = C(X) by the Gelfand theorem, we can pick
a probability measure on X, and then we have an embedding as follows:

C(X) ⊂ B(L2(X)) , f → (g → fg)

(2) In general, assuming that a linear form φ : A→ C has suitable positivity proper-
ties, we can define a scalar product on A, by the following formula:

< a, b >= φ(ab∗)

By completing we obtain a Hilbert space H, and we have a representation as follows,
called GNS representation of our algebra with respect to the linear form φ:

A→ B(H) , a→ (b→ ab)

Moreover, when φ : A → C has suitable faithfulness properties, making it analogous
to the integration functionals

∫
X

: A → C from the commutative case, with respect to
faithful probability measures on X, this representation is faithful, as desired. □

Now back to our questions, the above result tells us that we have:

Theorem 8.3. Given an algebraic manifold X ⊂ SN−1
C,+ , coming via

C(X) = C(SN−1
C,+ )

/〈
fα(x1, . . . , xN) = 0

〉
we have a morphism of C∗-algebras as follows,

π : C(X)→ B(H) , xi → Ti

whenever the operators Ti ∈ B(H) satisfy the following relations:∑
i

TiT
∗
i =

∑
i

T ∗
i Ti = 1 , fα(T1, . . . , TN) = 0

Moreover, we can always find a Hilbert space H and operators {Ti} such that π is faithful.
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Proof. Here the first assertion is more of an empty statement, explaining the def-
inition of the algebra C(X), via generators and relations, and the second assertion is
something non-trivial, coming as a consequence of the GNS theorem. □

In practice now, all this is a bit too general, and not very useful. We need a good
family of target algebras B, that we understand well. And here, we can use:

Definition 8.4. A random matrix C∗-algebra is an algebra of type

B =MK(C(T ))

with T being a compact space, and K ∈ N being an integer.

The terminology here comes from the fact that, in practice, the space T usually comes
with a probability measure on it, which makes the elements of B “random matrices”.
Observe that we can write our random matrix algebra as follows:

B =MK(C)⊗ C(T )
Thus, the random matrix algebras appear by definition as tensor products of the

simplest types of C∗-algebras that we know, namely the full matrix algebras,MK(C) with
K ∈ N, and the commutative algebras, C(T ), with T being a compact space. Getting
back now to our modelling questions for manifolds, we can formulate:

Definition 8.5. A matrix model for a noncommutative algebraic manifold

X ⊂ SN−1
C,+

is a morphism of C∗-algebras of the following type,

π : C(X)→MK(C(T ))

with T being a compact space, and K ∈ N being an integer.

As a first observation, when X happens to be classical, we can take K = 1 and T = X,
and we have a faithful model for our manifold, namely:

id : C(X)→M1(C(X))

In general, we cannot use K = 1, and the smallest value K ∈ N doing the job, if any,
will correspond somehow to the “degree of noncommutativity” of our manifold.

Before getting into this, we would like to clarify a few abstract issues. As mentioned
above, the algebras of type B = MK(C(T )) are called random matrix C∗-algebras. The
reason for this is the fact that most of the interesting compact spaces T come by definition
with a natural probability measure of them. Thus, B is a subalgebra of the bigger algebra
B′′ =MK(L

∞(T )), usually known as a “random matrix algebra”.

This perspective is quite interesting for us, because most of our examples of manifolds
X ⊂ XN−1

C,+ appear as homogeneous spaces, and so are measured spaces too. Thus, we
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can further ask for our models C(X)→MK(C(T )) to extend into models of the following
type, which can be of help in connection with integration problems:

L∞(X)→MK(L
∞(T ))

In short, time now to talk about L∞-functions, in the noncommutative setting.

8b. Operator algebras

In order to discuss all this, we will need some basic von Neumann algebra theory,
coming as a complement to the basic C∗-algebra theory from chapter 1. Let us start with
a key result in functional analysis, as follows:

Proposition 8.6. For an operator algebra A ⊂ B(H), the following are equivalent:

(1) A is closed under the weak operator topology, making each of the linear maps
T →< Tx, y > continuous.

(2) A is closed under the strong operator topology, making each of the linear maps
T → Tx continuous.

In the case where these conditions are satisfied, A is closed under the norm topology.

Proof. There are several statements here, the proof being as follows:

(1) It is clear that the norm topology is stronger than the strong operator topology,
which is in turn stronger than the weak operator topology. At the level of the subsets
S ⊂ B(H) which are closed things get reversed, in the sense that weakly closed implies
strongly closed, which in turn implies norm closed. Thus, we are left with proving that
for any algebra A ⊂ B(H), strongly closed implies weakly closed.

(2) But this latter fact is something standard, which can be proved via an amplification
trick. Consider the Hilbert space obtained by summing n times H with itself:

K = H ⊕ . . .⊕H
The operators over K can be regarded as being square matrices with entries in B(H),

and in particular, we have a representation π : B(H)→ B(K), as follows:

π(T ) =

T . . .
T


Assume now that we are given an operator T ∈ Ā, with the bar denoting the weak

closure. We have then, by using the Hahn-Banach theorem, for any x ∈ K:

T ∈ Ā =⇒ π(T ) ∈ π(A)
=⇒ π(T )x ∈ π(A)x

=⇒ π(T )x ∈ π(A)x
||.||
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Now observe that the last formula tells us that for any x = (x1, . . . , xn), and any ε > 0,
we can find S ∈ A such that the following holds, for any i:

||Sxi − Txi|| < ε

Thus T belongs to the strong operator closure of A, as desired. □

In the above the terminology, while standard, is a bit confusing, because the norm
topology is stronger than the strong operator topology. As a solution, we agree in what
follows to call the norm topology “strong”, and the weak and strong operator topologies
“weak”, whenever these two topologies coincide. With this convention, the algebras from
Proposition 8.6 are those which are weakly closed, and we can formulate:

Definition 8.7. A von Neumann algebra is a ∗-algebra of operators

A ⊂ B(H)

which is closed under the weak topology.

As basic examples, we have the algebra B(H) itself, then the singly generated von
Neumann algebras, A =< T >, with T ∈ B(H), and then the multiply generated von
Neumann algebras, namely A =< Ti >, with Ti ∈ B(H). At the level of the general
results, we first have the bicommutant theorem of von Neumann, as follows:

Theorem 8.8. For a ∗-algebra A ⊂ B(H), the following are equivalent:

(1) A is weakly closed, so it is a von Neumann algebra.
(2) A equals its algebraic bicommutant A′′, taken inside B(H).

Proof. Since the commutants are automatically weakly closed, it is enough to show
that weakly closed implies A = A′′. For this purpose, we will prove something a bit more
general, stating that given a ∗-algebra of operators A ⊂ B(H), the following holds, with
A′′ being the bicommutant inside B(H), and with Ā being the weak closure:

A′′ = Ā

We prove this equality by double inclusion, as follows:

“⊃” Since any operator commutes with the operators that it commutes with, we have
a trivial inclusion S ⊂ S ′′, valid for any set S ⊂ B(H). In particular, we have:

A ⊂ A′′

Our claim now is that the algebra A′′ is closed, with respect to the strong operator
topology. Indeed, assuming that we have Ti → T in this topology, we have:

Ti ∈ A′′ =⇒ STi = TiS, ∀S ∈ A′

=⇒ ST = TS, ∀S ∈ A′

=⇒ T ∈ A
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Thus our claim is proved, and together with Proposition 8.6, which allows us to pass
from the strong to the weak operator topology, this gives the desired inclusion:

Ā ⊂ A′′

“⊂” Here we must prove that we have the following implication, valid for any T ∈
B(H), with the bar denoting as usual the weak operator closure:

T ∈ A′′ =⇒ T ∈ Ā

For this purpose, we use the same amplification trick as in the proof of Proposition
8.5. Consider the Hilbert space obtained by summing n times H with itself:

K = H ⊕ . . .⊕H

The operators over K can be regarded as being square matrices with entries in B(H),
and in particular, we have a representation π : B(H)→ B(K), as follows:

π(T ) =

T . . .
T


The idea will be that of doing the computations in this representation. First, in this

representation, the image of our algebra A ⊂ B(H) is given by:

π(A) =


T . . .

T

∣∣∣T ∈ A


We can compute the commutant of this image, exactly as in the usual scalar matrix
case, and we obtain the following formula:

π(A)′ =


S11 . . . S1n

...
...

Sn1 . . . Snn

∣∣∣Sij ∈ A′


We conclude from this that, given an operator T ∈ A′′ as above, we have:T . . .

T

 ∈ π(A)′′
In other words, the conclusion of all this is that we have:

T ∈ A′′ =⇒ π(T ) ∈ π(A)′′

Now given a vector x ∈ K, consider the orthogonal projection P ∈ B(K) on the norm
closure of the vector space π(A)x ⊂ K. Since the subspace π(A)x ⊂ K is invariant under
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the action of π(A), so is its norm closure inside K, and we obtain from this:

P ∈ π(A)′

By combining this with what we found above, we conclude that we have:

T ∈ A′′ =⇒ π(T )P = Pπ(T )

Now since this holds for any x ∈ K, we conclude that any T ∈ A′′ belongs to the
strong operator closure of A. By using now Proposition 8.5, which allows us to pass from
the strong to the weak operator closure, we conclude that we have A′′ ⊂ Ā, as desired. □

In order to develop now some general theory, let us start by investigating the finite
dimensional case. Here the ambient operator algebra is B(H) =MN(C), and any subspace
A ⊂ B(H) is automatically closed, for all 3 topologies from Proposition 8.6. Thus, we
are left with the question of investigating the ∗-algebras of usual matrices A ⊂ MN(C).
But this is a purely algebraic question, whose answer is as follows:

Theorem 8.9. The ∗-algebras A ⊂MN(C) are exactly the algebras of the form

A =Mn1(C)⊕ . . .⊕Mnk
(C)

depending on parameters k ∈ N and n1, . . . , nk ∈ N satisfying

n1 + . . .+ nk = N

embedded into MN(C) via the obvious block embedding, twisted by a unitary U ∈ UN .

Proof. We have two assertions to be proved, the idea being as follows:

(1) Given numbers n1, . . . , nk ∈ N satisfying n1 + . . . + nk = N , we have an obvious
embedding of ∗-algebras, via matrix blocks, as follows:

Mn1(C)⊕ . . .⊕Mnk
(C) ⊂MN(C)

In addition, we can twist this embedding by a unitary U ∈ UN , as follows:

M → UMU∗

(2) In the other sense now, consider an arbitrary ∗-algebra of the N × N matrices,
A ⊂MN(C). Let us first look at the center of this algebra, which given by:

Z(A) = A ∩ A′

It is elementary to prove that this center, as an algebra, is of the following form:

Z(A) ≃ Ck

Consider now the standard basis e1, . . . , ek ∈ Ck, and let p1, . . . , pk ∈ Z(A) be the
images of these vectors via the above identification. In other words, these elements
p1, . . . , pk ∈ A are central minimal projections, summing up to 1:

p1 + . . .+ pk = 1
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The idea is then that this partition of the unity will eventually lead to the block
decomposition of A, as in the statement. We prove this in 4 steps, as follows:

Step 1. We first construct the matrix blocks, our claim here being that each of the
following linear subspaces of A are non-unital ∗-subalgebras of A:

Ai = piApi

But this is clear, with the fact that each Ai is closed under the various non-unital
∗-subalgebra operations coming from the projection equations p2i = p∗i = pi.

Step 2. We prove now that the above algebras Ai ⊂ A are in a direct sum position,
in the sense that we have a non-unital ∗-algebra sum decomposition, as follows:

A = A1 ⊕ . . .⊕ Ak

As with any direct sum question, we have two things to be proved here. First, by
using the formula p1+ . . .+pk = 1 and the projection equations p2i = p∗i = pi, we conclude
that we have the needed generation property, namely:

A1 + . . .+ Ak = A

As for the fact that the sum is indeed direct, this follows as well from the formula
p1 + . . .+ pk = 1, and from the projection equations p2i = p∗i = pi.

Step 3. Our claim now, which will finish the proof, is that each of the ∗-subalgebras
Ai = piApi constructed above is a full matrix algebra. To be more precise here, with
ni = rank(pi), our claim is that we have isomorphisms, as follows:

Ai ≃Mni
(C)

In order to prove this claim, recall that the projections pi ∈ A were chosen central
and minimal. Thus, the center of each of the algebras Ai reduces to the scalars:

Z(Ai) = C
But this shows, either via a direct computation, or via the bicommutant theorem, that

the each of the algebras Ai is a full matrix algebra, as claimed.

Step 4. We can now obtain the result, by putting together what we have. Indeed, by
using the results from Step 2 and Step 3, we obtain an isomorphism as follows:

A = A1 ⊕ . . .⊕ Ak ≃Mn1(C)⊕ . . .⊕Mnk
(C)

Moreover, a careful look at the isomorphisms established in Step 3 shows that at the
global level, of the algebra A itself, the above isomorphism comes by twisting the standard
multimatrix embedding Mn1(C)⊕ . . .⊕Mnk

(C) ⊂MN(C), discussed in the beginning of
the proof, (1) above, by a certain unitary U ∈ UN . Thus, we obtain the result. □

As an application of Theorem 8.9, clarifying the relation with linear algebra, or oper-
ator theory in finite dimensions, we have the following result:
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Proposition 8.10. Given an operator T ∈ B(H) in finite dimensions, H = CN , the
von Neumann algebra A =< T > that it generates inside B(H) =MN(C) is

A =Mr1(C)⊕ . . .⊕Mrk(C)

with the sizes of the blocks r1, . . . , rk ∈ N coming from the spectral theory of the associated
matrix M ∈MN(C). In the normal case TT ∗ = T ∗T , this decomposition comes from

T = UDU∗

with D ∈MN(C) diagonal, and with U ∈ UN unitary.

Proof. This is something standard, by using the basic linear algebra theory and
spectral theory for the usual matrices M ∈MN(C). □

Let us get now to infinite dimensions, with Proposition 8.10 as our main source of
inspiration. We have here the following result:

Theorem 8.11. Given an operator T ∈ B(H) which is normal,

TT ∗ = T ∗T

the von Neumann algebra A =< T > that it generates inside B(H) is

< T >= L∞(σ(T ))

with σ(T ) being its spectrum, formed of numbers λ ∈ C such that T − λ is not invertible.

Proof. This is something standard as well, by using the spectral theory for the
normal operators T ∈ B(H), coming from chapter 1. □

More generally, along the same lines, we have the following result, dealing this time
with commuting families of normal operators:

Theorem 8.12. Given operators Ti ∈ B(H) which are normal, and which commute,
the von Neumann algebra A =< Ti > that these operators generates inside B(H) is

< Ti >= L∞(X)

with X being a certain measured space, associated to the family {Ti}.

Proof. This is again routine, by using this time the spectral theory for the families
of commuting normal operators Ti ∈ B(H). See for instance Blackadar. □

As an interesting abstract consequence of this, we have:

Theorem 8.13. The commutative von Neumann algebras are the algebras of type

A = L∞(X)

with X being a measured space.
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Proof. We have two assertions to be proved, the idea being as follows:

(1) In one sense, we must prove that given a measured space X, we can realize the
commutative algebra A = L∞(X) as a von Neumann algebra, on a certain Hilbert space
H. But this is something that we already know, coming from the multiplicity operators
Tf (g) = fg from the proof of the GNS theorem, the representation being as follows:

L∞(X) ⊂ B(L2(X))

(2) In the other sense, given a commutative von Neumann algebra A ⊂ B(H), we
must construct a certain measured space X, and an identification A = L∞(X). But this
follows from Theorem 8.12, because we can write our algebra as follows:

A =< Ti >

To be more precise, A being commutative, any element T ∈ A is normal. Thus, we
can pick a basis {Ti} ⊂ A, and then we have A =< Ti > as above, with Ti ∈ B(H) being
commuting normal operators. Thus Theorem 8.12 applies, and gives the result. □

Moving ahead now, we can combine Proposition 8.8 with Theorem 8.13, and by build-
ing along the lines of Theorem 8.9, but this time in infinite dimensions, we are led to the
following statement, due to Murray-von Neumann and Connes:

Theorem 8.14. Given a von Neumann algebra A ⊂ B(H), if we write its center as

Z(A) = L∞(X)

then we have a decomposition as follows, with the fibers Ax having trivial center:

A =

∫
X

Ax dx

Moreover, the factors, Z(A) = C, can be basically classified in terms of the II1 factors,
which are those satisfying dimA =∞, and having a faithful trace tr : A→ C.

Proof. This is something that we know to hold in finite dimensions, as a consequence
of Theorem 8.9. In general, this is something heavy, the idea being as follows:

(1) This is von Neumann’s reduction theory main result, whose statement is already
quite hard to understand, and whose proof uses advanced functional analysis.

(2) This is heavy, due to Murray-von Neumann and Connes, the idea being that the
other factors can be basically obtained via crossed product constructions. □

All this is certainly quite advanced, taking substantial time to be fully understood.
For general reading on von Neumann algebras we recommend the book of Blackadar, but
be aware tough that, while being at the same time well-written, condensed and reasonably
thick, that book is only an introduction to Theorem 8.14. So, if we want to learn the
full theory, with the complete proof of Theorem 8.14, you will have to go, every now and
then, through the original papers of Murray-von Neumann and Connes.
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Now back to work, and our noncommutative geometry questions, as a first application
of the above, we can extend our noncommutative space setting, as follows:

Theorem 8.15. Consider the category of “noncommutative measure spaces”, having
as objects the pairs (A, tr) consisting of a von Neumann algebra with a faithful trace, and
with the arrows reversed, which amounts in writing A = L∞(X) and tr =

∫
X
.

(1) The category of usual measured spaces embeds into this category, and we obtain
in this way the objects whose associated von Neumann algebra is commutative.

(2) Each C∗-algebra given with a trace produces as well a noncommutative measure
space, by performing the GNS construction, and taking the weak closure.

(3) In what regards the finitely generated group duals, or more generally the compact
matrix quantum groups, the corresponding identification is injective.

(4) Even more generally, for noncommutative algebraic manifolds having an inte-
gratiuon functional, like the spheres, the identification is injective.

Proof. This is clear indeed from the basic properties of the GNS construction, from
Theorem 8.2, and from the general theory from Theorem 8.14. □

Before getting back to matrix models, we would like to formulate the following result,
in relation with our axiomatization questions discussed in the above:

Theorem 8.16. In the context of noncommutative geometries coming from quadruplets
(S, T, U,K), we have von Neumann algebras, with traces, as follows,

L∞(S) //

�� ##

L∞(T )oo

��{{
L∞(U)

OO ;;

// L∞(K)oo

cc OO

with L∞(S) ⊂ L∞(U) being obtained by taking the first row algebra.

Proof. This follows indeed from the various results that we already have, from above,
by using the general formalism from Theorem 8.15. □

This statement, which is quite interesting, philosophically speaking, raises the ques-
tion of axiomatizing, or rather re-axiomatizing, the quadruplets (S, T, U,K) that we are
interested in directly in terms of the associated von Neumann algebras, as above. Indeed,
in view of our general quantum mechanics motivations, we are after all mostly interested
in integrating over our quantum manifolds, and so with this is mind, the von Neumann
algebra formalism seems to be the one which is best adapted to our questions.

However, this is wrong. The above result is something theoretical, because it assumes
the existence of Haar measures on our spaces S, T, U,K, which itself is something coming
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as a theorem. Thus, while all this is nice, the good way of doing things is with C∗-algebras,
as we did before. And the von Neumann algebras from Theorem 8.16 remain something
more advanced and specialized, coming afterwards.

As a side comment here, and for ending with some physics, the question “does the
algebra or the Hilbert space come first” is a well-known one in quantum mechanics, basi-
cally leading to 2 different schools of thought. We obviously adhere here to the “algebra
comes first” school. But let us not get here into this, perhaps enough controversies dis-
cussed, so far in this book. For more on this, get to know about the Bohr vs Einstein
debate, which is the mother of all debates, in quantum mechanics.

8c. Matrix truncations

In relation now with the modelling questions that we are interested in here, with all
the above operator algebra material digested, we can now go ahead with our program,
and discuss von Neumann algebraic extensions. We have the following result:

Theorem 8.17. Given a matrix model π : C(X)→ MK(C(T )), with both X,T being
assumed to have integration functionals, the following are equivalent:

(1) π is stationary, in the sense that
∫
X
= (tr ⊗ ∫T )π.

(2) π produces an inclusion π′ : Cred(X) ⊂MK(X(T )).
(3) π produces an inclusion π′′ : L∞(X) ⊂MK(L

∞(T )).

Moreover, in the quantum group case, these conditions imply that π is faithful.

Proof. This is standard functional analysis, as follows:

(1) Consider the following diagram, with all the solid arrows being by definition the
canonical maps between the algebras concerned:

MK(C(T )) // MK(L
∞(T ))

C(X)

π

OO

// Cred(X) //

π′

``

L∞(X)

π′′

OO

(2) With this picture in hand, the implications (1) ⇐⇒ (2) ⇐⇒ (3) between the
conditions (1,2,3) in the statement are all clear, coming from the basic properties of the
GNS construction, and of the von Neumann algebras, explained in the above.

(3) As for the last assertion, this is something more subtle, coming from the fact that
if L∞(G) is of type I, as required by (3), then G must be coamenable. □
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The above result raises a number of interesting questions, notably in what regards the
extension of the last assertion, to the case of more general homogeneous spaces.

Before going further, we would like to record as well the following key result regarding
the matrix models, valid so far in the quantum group case only:

Theorem 8.18. Consider a matrix model π : C(G) → MK(C(T )) for a closed sub-
group G ⊂ U+

N , with T being assumed to be a compact probability space.

(1) There exists a smallest subgroup G′ ⊂ G, producing a factorization of type:

π : C(G)→ C(G′)→MK(C(T ))

The algebra C(G′) is called Hopf image of π.
(2) When π is inner faithful, in the sense that G = G′, we have the formula∫

G

= lim
k→∞

k∑
r=1

φ∗r

where φ = (tr ⊗ ∫T )π, and ϕ ∗ ψ = (ϕ⊗ ψ)∆.

Proof. All this is well-known, but quite specialized, the idea being as follows:

(1) This follows by dividing the algebra C(G) by a suitable ideal, namely the Hopf
ideal generated by the kernel of the matrix model map π : C(G)→MK(C(T )).

(2) This follows by suitably adapting Woronowicz’s proof for the existence and formula
of the Haar integration functional from [99], to the matrix model situation. □

The above result is quite important, for a number of reasons. Indeed, as a main
application of it, while the existence of a faithful matrix model π : C(G) ⊂ MK(C(T ))
forces the C∗-algebra C(G) to be of type I, and so G to be coamenable, as already
mentioned in the proof of Theorem 8.17, there is no known restriction coming from the
existence of an inner faithful model π : C(G)→MK(C(T )).

In the general manifold setting, talking about such things is in general not possible,
unless our manifold X has some extra special structure, as for instance being an homoge-
neous space, in the spirit of the various such spaces discussed in chapters 5-6. However,
in practice, such a theory has not been developed yet.

Let us go back now to our basic notion of a matrix model, from Definition 8.5, and
develop some more general theory, in that setting. We first have:

Proposition 8.19. A 1× 1 model for a manifold X ⊂ SN−1
C,+ must come from a map

p : T → Xclass ⊂ X

and π is faithful precisely when X = Xclass, and when p is surjective.
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Proof. According to our conventions, a 1 × 1 model for a manifold X ⊂ SN−1
C,+ is

simply a morphism of algebras π : C(X)→ C(T ). Now since C(T ) is commutative, this
morphism must factorize through the abelianization of C(X), as follows:

π : C(X)→ C(Xclass)→ C(T )

Thus, our morphism π must come by transposition from a map p, as claimed. □

Following [10], in order to generalize the above trivial fact, we can use:

Definition 8.20. Let X ⊂ SN−1
C,+ . We define a closed subspace X(K) ⊂ X by

C(X(K)) = C(X)/JK

where JK is the common null space of matrix representations of C(X), of size L ≤ K,

JK =
⋂
L≤K

⋂
π:C(X)→ML(C)

ker(π)

and we call X(K) the “part of X which is realizable with K ×K models”.

As a basic example here, the first such space, at K = 1, is the classical version:

X(1) = Xclass

Observe that we have embeddings of quantum spaces, as follows:

X(1) ⊂ X(2) ⊂ X(3) . . . . . . ⊂ X

As a first result now on these spaces, we have the following well-known fact:

Theorem 8.21. The increasing union of compact quantum spaces

X(∞) =
⋃
K≥1

X(K)

equals X precisely when the algebra C(X) is residually finite dimensional.

Proof. This is something well-known. We refer to Chirvasitu for a discussion on this
topic, in the context of the quantum groups, and to [10] for more. □

Getting back now to the case K <∞, we first have, following [10]:

Proposition 8.22. Consider an algebraic manifold X ⊂ SN−1
C,+ .

(1) Given a closed subspace Y ⊂ X ⊂ SN−1
C,+ , we have Y ⊂ X(K) precisely when any

irreducible representation of C(Y ) has dimension ≤ K.
(2) In particular, we have X(K) = X precisely when any irreducible representation

of C(X) has dimension ≤ K.
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Proof. This follows from general C∗-algebra theory, as follows:

(1) If any irreducible representation of C(Y ) has dimension ≤ K, then we have
Y ⊂ X(K), because the irreducible representations of a C∗-algebra separate its points.
Conversely, assuming Y ⊂ X(K), it is enough to show that any irreducible representation
of the algebra C(X(K)) has dimension ≤ K. But this is once again well-known.

(2) This follows indeed from (1). □

The connection with the previous considerations comes from:

Theorem 8.23. If X ⊂ SN−1
C,+ has a faithful matrix model

C(X)→MK(C(T ))

then we have X = X(K).

Proof. This follows from the above and from the standard representation theory for
the C∗-algebras. For full details on all this, we refer as before to [10]. □

We can now discuss the universal K ×K-matrix model, constructed as follows:

Theorem 8.24. Given X ⊂ SN−1
C,+ algebraic, the category of its K×K matrix models,

with K ≥ 1 being fixed, has a universal object as follows:

πK : C(X)→MK(C(TK))

That is, given a model ρ : C(X)→MK(C(T )), we have a diagram of type

C(X)
π //

ρ &&

MK(C(TK))

ww
MK(C(T ))

where the map on the right is unique, and arises from a continuous map T → TK.

Proof. Consider the universal commutative C∗-algebra generated by elements xij(a),
with 1 ≤ i, j ≤ K and a ∈ O(X), subject to the following relations:

xij(a+ λb) = xij(a) + λxij(b)

xij(ab) =
∑
k

xik(a)xkj(b)

xij(1) = δij

xij(a)
∗ = xji(a

∗)

This algebra is indeed well-defined because of the following relations:∑
l

∑
k

xik(z
∗
l )xki(zl) = 1
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Now let TK be the spectrum of this algebra. Since X is algebraic, we have:

π : C(X)→MK(C(TK)) , π(zk) = (xij(zk))

By construction of TK and π, we have the universal matrix model. See [10]. □

Still following [10], as an illustration for the above, we have:

Proposition 8.25. Let X ⊂ SN−1
C,+ with X algebraic and Xclass ̸= ∅, and let

π : C(X)→MK(C(TK))

be the universal matrix model. Then we have

C(X(K)) = C(X)/Ker(π)

and hence X = X(K) if and only if X has a faithful K ×K-matrix model.

Proof. We have to prove that Ker(π) = JK , the latter ideal being the intersection
of the kernels of all matrix representations as follows, with L ≤ K:

C(X)→ML(C)
For a ̸∈ Ker(π), we see that a ̸∈ JK by evaluating at an appropriate element of

TK . Conversely, assume that we are given a ∈ Ker(π). Let ρ : C(X) → ML(C) be a
representation with L ≤ K, and let ε : C(X)→ C be a representation. We can extend ρ
to a representation ρ′ : C(X)→MK(C) by letting, for any b ∈ C(X):

ρ′(b) =

(
ρ(b) 0
0 ε(b)IK−L

)
The universal property of the universal matrix model yields that ρ′(a) = 0, since

π(a) = 0. Thus ρ(a) = 0. We therefore have a ∈ JK , and Ker(π) ⊂ JK , and the first
statement is proved. The last statement follows from the first one. See [10]. □

Next, we have the following result, also from [10]:

Proposition 8.26. Let X ⊂ SN−1
C,+ be algebraic, and satisfying:

Xclass ̸= ∅
Then X(K) is algebraic as well.

Proof. We keep the notations above, and consider the following map:

π0 : O(X)→MK(C(TK)) , zl → (xij(zl))

This induces a ∗-algebra map, as follows:

π̃0 : C
∗(O(X)/Ker(π0))→MK(C(TK))

We need to show that π̃0 is injective. For this purpose, observe that the universal
model factorizes as follows, where p is canonical surjection:

π : C(X)
p→ C∗(O(X)/Ker(π0))

π̃0→MK(C(TK))
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We therefore obtain Ker(π) = Ker(p), and we conclude that:

C(X(K)) = C(X)/Ker(p) = C∗(O(X)/Ker(π0))

Thus X(K) is indeed algebraic. Since O(X)/Ker(π0) is isomorphic to a ∗-subalgebra
of MK(C(TK)), it satisfies the standard Amitsur-Levitski polynomial identity:

S2K(x1, . . . , x2K) = 0

By density, so does C∗(O(X)/Ker(π0)). Thus any irreducible representation of the
algebra C∗(O(X)/Ker(π0)) has dimension ≤ K. Consider now an element as follows:

a ∈ C∗(O(X)/Ker(π0))

Assuming a ̸= 0 we can, by the same reasoning as in the previous proof, find a
representation as follows, such that ρ(a) ̸= 0:

ρ : C∗(O(X)/Ker(π0))→MK(C)
Indeed, a given algebra map ε : C(X)→ C induces an algebra map as follows:

C(TK)→ C , xij(a)→ δijε(a)

But this map enables us to extend representations, as before. By construction the
universal model space yields an algebra map as follows:

MK(C(TK))→MK(C)
The composition with π̃0p = π is then ρp, so π̃0(a) ̸= 0, and π̃0 is injective. □

Summarizing, we have proved the following result:

Theorem 8.27. Let X ⊂ SN−1
C,+ be algebraic, satisfying Xclass ̸= ∅. Then we have an

increasing sequence of algebraic submanifolds

Xclass = X(1) ⊂ X(2) ⊂ X(3) ⊂ . . . . . . ⊂ X

where X(K) is given by the fact that

C(X(K)) ⊂MK(C(TK))

is obtained by factorizing the universal matrix model.

Proof. This follows indeed from the above results. See [10]. □

There are many other things that can be said about the above matrix truncations
X(K), and we refer here to [10] and related papers. However, the main problem remains
that of suitably fine-tuning this theory, as to make it compatible with the theory of matrix
models for the Woronowicz algebras, which itself is something quite advanced, and rather
satisfactory. To be more precise here, the situation is as follows:

(1) As a first observation, when taking as input a quantum group, X = G, the
above truncation procedure does not produce a quantum group at K ≥ 2, because the
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compultiplication ∆ does not factorize. Thus, Theorem 8.27 as stated remains something
a bit orthogonal to what is known about the matrix models for quantum groups.

(2) Conversely, as already said before, the main results on the matrix models for
quantum groups regard the notion of inner faithfulness from Theorem 8.18. And such
results cannot extend to general manifolds X ⊂ SN−1

C,+ , unless we are dealing with special
classes of homogeneous spaces, in the spirit of those discussed in chapters 5-6.

Summarizing, many things to be done. The main problem is probably that of talking
about inner faithful models for affine homogeneous spaces, but the general theory here
is unknown, at least so far. Finally, let us mention that, in the quantum group setting,
the known theory of matrix models was heavily inspired by the work of Jones [62], [63],
[64], in connection with general problems in statistical mechanics, and in what regards
the extension of this to the case of more general homogeneous spaces, or other algebraic
manifolds, the motivations remain a bit too advanced to be fully understood.

8d. Half-liberation

As a nice illustration for the above modeling theory, let us discuss now the half-
liberation operation, which is connected to X(2), as a continuation of the material from
above. We first restrict the attention to the real case. Let us start with:

Definition 8.28. The half-classical version of a manifold X ⊂ SN−1
R,+ is given by:

C(X∗) = C(X)
/〈

abc = cba
∣∣∣∀a, b, c ∈ {xi}〉

We say that X is half-classical when X = X∗.

Observe the obvious similarity with the construction of the classical version. In fact,
philosophically, this definition is some sort of “next level” definition for the classical
version, assuming that you managed, via some sort of yoga, to be as familiar with half-
commutation, abc = cba, as you are with usual commutation, ab = ba.

In order to understand now the structure of X∗, we can use an old matrix model
method, which goes back to Bichon and Dubois-Violette, and then to Bichon [23]. This
is based on the following observation, that we already met in the above:

Proposition 8.29. For any z ∈ CN , the matrices

Xi =

(
0 zi
z̄i 0

)
are self-adjoint, and half-commute.
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Proof. The matrices Xi are indeed self-adjoint, and their products are given by:

XiXj =

(
0 zi
z̄i 0

)(
0 zj
z̄j 0

)
=

(
ziz̄j 0
0 z̄izj

)
Also, we have as well the following formula:

XiXjXk =

(
ziz̄j 0
0 z̄izj

)(
0 zk
z̄k 0

)
=

(
0 ziz̄jzk

z̄izj z̄k 0

)
Now since this latter quantity is symmetric in i, k, we obtain from this that we have

the half-commutation formula XiXjXk = XkXjXi, as desired. □

The idea now will be that of using the matrices in Proposition 8.29 in order to model
the coordinates of arbitrary half-classical manifolds. In order to connect the algebra of
the classical coordinates zi to that of the noncommutative coordinates Xi, we will need:

Definition 8.30. Given a noncommutative polynomial f ∈ R < x1, . . . , xN > in N
variables, we define a usual polynomial in 2N variables

f ◦ ∈ R[z1, . . . , zN , z̄1, . . . , z̄N ]
according to the formula

f = xi1xi2xi3xi4 . . . =⇒ f ◦ = zi1 z̄i2zi3 z̄i4 . . .

in the monomial case, and then by extending this correspondence, by linearity.

As a basic example here, the polynomial defining the free real sphere SN−1
R,+ produces

in this way the polynomial defining the complex sphere SN−1
C :

f = x21 + . . .+ x2N =⇒ f ◦ = |z1|2 + . . .+ |zN |2

Also, given a polynomial f ∈ R < x1, . . . , xN >, we can decompose it into its even and
odd parts, f = g + h, by putting into g/h the monomials of even/odd length. Observe
that with z = (z1, . . . , zN), these odd and even parts are given by:

g(z) =
f(z) + f(−z)

2
, h(z) =

f(z)− f(−z)
2

With these conventions, we have the following result:

Proposition 8.31. Given a manifold X, coming from a family of noncommutative
polynomials {fα} ⊂ R < x1, . . . , xN >, we have a morphism algebras

π : C(X)→M2(C) , π(xi) =

(
0 zi
z̄i 0

)
precisely when z = (z1, . . . , zN) ∈ CN belongs to the real algebraic manifold

Y =
{
z ∈ CN

∣∣∣g◦α(z1, . . . , zN) = h◦α(z1, . . . , zN) = 0,∀α
}

where fα = gα + hα is the even/odd decomposition of fα.
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Proof. Let Xi be the matrices in the statement. In order for xi → Xi to define a
morphism of algebras, these matrices must satisfy the equations defining X. Thus, the
space Y in the statement consists of the points z = (z1, . . . , zN) ∈ CN satisfying:

fα(X1, . . . , XN) = 0 , ∀α

Now observe that the matrices Xi in the statement multiply as follows:

Xi1Xj1 . . . XikXjk =

(
zi1 z̄j1 . . . zik z̄jk 0

0 z̄i1zj1 . . . z̄ikzjk

)

Xi1Xj1 . . . XikXjkXik+1
=

(
0 zi1 z̄j1 . . . zik z̄jkzik+1

z̄i1zj1 . . . z̄ikzjk z̄ik+1
0

)
We therefore obtain, in terms of the even/odd decomposition fα = gα + hα:

fα(X1, . . . , XN) =

g◦α(z1, . . . , zN) h◦α(z1, . . . , zN)

h◦α(z1, . . . , zN) g◦α(z1, . . . , zN)


Thus, we obtain the equations for Y from the statement. □

As a first consequence, of theoretical interest, a necessary condition for X to exist is
that the manifold Y ⊂ CN constructed above must be compact, and we will be back to
this later. In order to discuss now modelling questions, we will need as well:

Definition 8.32. Assuming that we are given a manifold Z, appearing via

C(Z) = C∗
(
z1, . . . , zN

∣∣∣fα(z1, . . . , zN) = 0
)

we define the projective version of Z to be the quotient space Z → PZ corresponding to
the subalgebra C(PZ) ⊂ C(Z) generated by the variables xij = ziz

∗
j .

The relation with the half-classical manifolds comes from the fact that the projective
version of a half-classical manifold is classical. Indeed, from abc = cba we obtain:

ab · cd = (abc)d

= (cba)d

= c(bad)

= c(dab)

= cd · ab

Finally, let us call as before “matrix model” any morphism of unital C∗-algebras
f : A → B, with target algebra B = MK(C(Y )), with K ∈ N, and Y being a compact
space. With these conventions, following Bichon [23], we have the following result:
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Theorem 8.33. Given a half-classical manifold X which is symmetric, in the sense
that all its defining polynomials fα are even, its universal 2× 2 antidiagonal model,

π : C(X)→M2(C(Y ))

where Y is the manifold constructed in Proposition 8.31, is faithful. In addition, the
construction X → Y is such that X exists precisely when Y is compact.

Proof. We can proceed as in [23]. Indeed, the universal model π in the statement
induces, at the level of projective versions, a certain representation:

C(PX)→M2(C(PY ))

By using the multiplication formulae from the proof of Proposition 8.31, the image of
this representation consists of diagonal matrices, and the upper left components of these
matrices are the standard coordinates of PY . Thus, we have an isomorphism:

PX ≃ PY

We can conclude then by using a grading trick. See [23]. □

As a first observation, this result shows that when X is symmetric, we have X∗ ⊂ X(2).
Going beyond this observation is an interesting problem.

In what follows, we will rather need a more detailed version of the above result. For
this purpose, we can use the following definition:

Definition 8.34. Associated to any compact manifold Y ⊂ CN is the real compact
half-classical manifold [Y ], having as coordinates the following variables,

Xi =

(
0 zi
z̄i 0

)
where z1, . . . , zN are the standard coordinates on Y . In other words, [Y ] is given by the
fact that C([Y ]) ⊂M2(C(Y )) is the algebra generated by these matrices.

Here the fact that the manifold [Y ] is indeed half-classical follows from the results
above. As for the fact that [Y ] is indeed algebraic, this follows from Theorem 8.33. Now
with this notion in hand, we can reformulate Theorem 8.33, as follows:

Theorem 8.35. The symmetric half-classical manifolds X appear as follows:

(1) We have X = [Y ], for a certain conjugation-invariant subspace Y ⊂ CN .
(2) PX = P [Y ], and X is maximal with this property.
(3) In addition, we have an embedding C([X]) ⊂ C(X)⋊ Z2.

Proof. This follows from Theorem 8.33, with the embedding in (3) being constructed
as in [23], by xi = zi ⊗ τ , where τ is the standard generator of Z2. See [23]. □



182 8. MATRIX MODELS

And this is all, on this subject. In the unitary case things are a bit more complicated,
and in connection with this, there are also some higher analogues of the above developed,
using K ×K matrix models. We refer to [10], [23] for more on these topics.
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