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Abstract. This is a joint introduction to basic mechanics and vector mathematics. We
start with a discussion on what happens in 1 dimension, namely the basics of calculus,
and some physics too, followed by a similar discussion in 2 dimensions, featuring this
time plane vectors, complex numbers, and more advanced physics. Then we go on a
lengthy discussion on what happens in 3 dimensions, namely standard vector calculus,
standard classical mechanics, and the basics of electromagnetism too. Following Einstein,
we discuss then 4 dimensions, and curved spacetime. Finally, we go beyond classical
mechanics and small dimensions, with a brief introduction to quantum mechanics.



Preface

How many dimensions do we live in? Good question, and if you ask about this a kid, a
good physics graduate, a bad physics graduate, Pac-Man, a Green little man from Mars,
an artist, an old senator, an atomic bomb, or a black hole, the answer might differ.

For us, mathematicians, this question is of particular importance, because depending
on the number of dimensions N ∈ N, and I’m using here N as something approximate,
we will have to adapt our mathematics, as for that to be something truly useful.

You would say, for most of basic math, N = 1, or perhaps N = 2, motivated by angles
and trigonometry, which are certainly something very useful, will do. And this is indeed
the case, with the bulk of basic math being indeed developed by using N = 1, 2. And
with the story with N = 1, 2 being not over here, because, a bit as Pac-Man teaches us,
there are many levels of knowledge here, and you can even spend your whole life, as a
mathematican, working on N = 1, 2. In fact, for the story, and agreeing this time with
old senator’s answer, we even have colleagues in math spending their lives on N = 0.

But let us get now to what the kid says, N = 3. Very reasonable answer, and at the
mathematical level, things start getting quite complicated here. A good knowledge of the
vector formalism, which was not really needed at N = 2, say due to the complex numbers,
which do the job at N = 2, while technically counting as N = 1, is now required.

Among others, vectors in 3 dimensions are subject to the vector product x × y, best
understood and computed by using some determinants and the right-hand rule. And with
this, we are most likely into some complicated mixture of linear algebra, and physics.

Things however do not stop here, because when asking a physics graduate, the answer
will most likely be a certain N ∈ {4, 5, . . . ,∞}, which can vary with the graduate in
question. To be more precise, N = 4 or higher is something well-established, coming from
Einstein, who taught us that space R3 and time R are related, and so that we have to
look at spacetime, which is a curved version of R4. Then, the quite plausible possibility of
N =∞, when looking at very small scales, came from quantum mechanics, as developed
by Heisenberg and others. And finally, 4 < N < ∞ is more complicated and modern
physics business, typically with the bigger the N <∞, the fancier the theory.

3



4 PREFACE

So, this was for the story of dimensionality of mathematics, in relation with physics,
and although I never personally checked with the Green little men from Mars, I am pretty
much sure that they use N ∈ N ∪ {∞} too. As for the artists, atomic bombs and black
holes, their respective answers when asked were “love”, “hey” and “yumm”, most likely
some advanced versions of our usual N =∞ from mathematics.

We will discuss here, in this book, such things, with a joint introduction to basic
mechanics, and physics and forces in general, and vector mathematics. We will discuss as
well, at the end, some more tricky forces, and their mathematical modeling.

Many thanks to my cats, for precious help with the preparation of the present book,
projecting from meow to various N ≤ ∞ values being a quite easy task, for them.

Cergy, May 2025

Teo Banica
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Part I

One dimension



So ya thought ya
Might like to go to the show

To feel the warm thrill of confusion
That space cadet glow



CHAPTER 1

Real numbers

1a. Numbers

We denote by N the set of positive integers, N = {0, 1, 2, 3, . . .}, with N standing
for “natural”. Quite often in computations we will need negative numbers too, and
we denote by Z the set of all integers, Z = {. . . ,−2,−1, 0, 1, 2, . . .}, with Z standing
from “zahlen”, which is German for “numbers”. Finally, there are many questions in
mathematics involving fractions, or quotients, which are called rational numbers:

Definition 1.1. The rational numbers are the quotients of type

r =
a

b
with a, b ∈ Z, and b ̸= 0, identified according to the usual rule for quotients, namely:

a

b
=
c

d
⇐⇒ ad = bc

We denote the set of rational numbers by Q, standing for “quotients”.

Observe that we have inclusions N ⊂ Z ⊂ Q. The integers add and multiply according
to the rules that you know well. As for the rational numbers, these add according to the
usual rule for quotients, which is as follows, and death penalty for forgetting it:

a

b
+
c

d
=
ad+ bc

bd
Also, the rational numbers multiply according to the usual rule for quotients, namely:

a

b
· c
d
=
ac

bd
Beyond rationals, we have the real numbers, whose set is denoted R, and which include

beasts such as
√
3 = 1.73205 . . . or π = 3.14159 . . . But more on these later. For the

moment, let us see what can be done with integers, and their quotients. As a first
theorem, solving a problem which often appears in real life, we have:

Theorem 1.2. The number of possibilities of choosing k objects among n objects is(
n

k

)
=

n!

k!(n− k)!
called binomial number, where n! = 1 · 2 · 3 . . . (n− 2)(n− 1)n, called “factorial n”.
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12 1. REAL NUMBERS

Proof. Imagine a set consisting of n objects. We have n possibilities for choosing
our 1st object, then n−1 possibilities for choosing our 2nd object, out of the n−1 objects
left, and so on up to n−k+1 possibilities for choosing our k-th object, out of the n−k+1
objects left. Since the possibilities multiply, the total number of choices is:

N = n(n− 1) . . . (n− k + 1)

= n(n− 1) . . . (n− k + 1) · (n− k)(n− k − 1) . . . 2 · 1
(n− k)(n− k − 1) . . . 2 · 1

=
n(n− 1) . . . 2 · 1

(n− k)(n− k − 1) . . . 2 · 1

=
n!

(n− k)!
But is this correct. Normally a mathematical theorem coming with mathematical

proof is guaranteed to be 100% correct, and if in addition the proof is truly clever, like
the above proof was, with that fraction trick, the confidence rate jumps up to 200%.

This being said, never knows, so let us doublecheck, by taking for instance n = 3, k = 2.
Here we have to choose 2 objects among 3 objects, and this is something easily done,
because what we have to do is to dismiss one of the objects, and N = 3 choices here, and
keep the 2 objects left. Thus, we have N = 3 choices. On the other hand our genius math
computation gives N = 3!/1! = 6, which is obviously the wrong answer.

So, where is the mistake? Thinking a bit, the number N that we computed is in fact
the number of possibilities of choosing k ordered objects among n objects. Thus, we must
divide everything by the number M of orderings of the k objects that we chose:(

n

k

)
=
N

M

In order to compute now the missing numberM , imagine a set consisting of k objects.
There are k choices for the object to be designated #1, then k − 1 choices for the object
to be designated #2, and so on up to 1 choice for the object to be designated #k. We
conclude that we have M = k(k − 1) . . . 2 · 1 = k!, and so:(

n

k

)
=
n!/(n− k)!

k!
=

n!

k!(n− k)!
And this is the correct answer, because, well, that is how things are. In case you

doubt, at n = 3, k = 2 for instance we obtain 3!/2!1! = 3, which is correct. □

All this is quite interesting, and in addition to having some exciting mathematics going
on, and more on this in a moment, we have as well some philosophical conclusions. For-
mulae can be right or wrong, and as the above shows, good-looking, formal mathematical
proofs can be right or wrong too. So, what to do? Here is my advice:
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Advice 1.3. Always doublecheck what you’re doing, regularly, and definitely at the
end, either with an alternative proof, or with some numerics.

This is something very serious. Unless you’re doing something very familiar, that
you’re used to for at least 5-10 years or so, like doing additions and multiplications for
you, or some easy calculus for me, formulae and proofs that you can come upon are by
default wrong. In order to make them correct, and ready to use, you must check and
doublecheck and correct them, helped by alternative methods, or numerics.

Which brings us into the question on whether mathematics is an exact science or not.
Not clear. Chemistry for instance is an exact science, because findings of type “a mixture
of water and salt cannot explode” look rock-solid. Same for biology, with findings of type
“crocodiles eat fish” being rock-solid too. In what regards mathematics however, and
theoretical physics too, things are always prone to human mistake.

And for ending this discussion, you might ask then, what about engineering? After
all, this is mathematics and physics, which is usually 100% correct, because most of the
bridges, buildings and other things built by engineers don’t collapse. Well, this is because
engineers follow, and in a truly maniac way, the above Advice 1.3. You won’t declare a
project for a bridge, building, engine and so on final and correct, ready for production,
until you checked and doublechecked it with 10 different methods or so, won’t you.

Back to work now, as an important adding to Theorem 1.2, we have:

Convention 1.4. By definition, 0! = 1.

This convention comes, and no surprise here, from Advice 1.3. Indeed, we obviously
have

(
n
n

)
= 1, but if we want to recover this formula via Theorem 1.2 we are a bit in

trouble, and so we must declare that 0! = 1, as for the following computation to work:(
n

n

)
=

n!

n!0!
=

n!

n!× 1
= 1

Going ahead now with more mathematics and less philosophy, with Theorem 1.2
complemented by Convention 1.4 being in final form (trust me), we have:

Theorem 1.5. We have the binomial formula

(a+ b)n =
n∑

k=0

(
n

k

)
akbn−k

valid for any two numbers a, b ∈ Q.

Proof. We have to compute the following quantity, with n terms in the product:

(a+ b)n = (a+ b)(a+ b) . . . (a+ b)
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When expanding, we obtain a certain sum of products of a, b variables, with each such
product being a quantity of type akbn−k. Thus, we have a formula as follows:

(a+ b)n =
n∑

k=0

Cka
kbn−k

In order to finish, it remains to compute the coefficients Ck. But, according to our
product formula, Ck is the number of choices for the k needed a variables among the n
available a variables. Thus, according to Theorem 1.2, we have:

Ck =

(
n

k

)
We are therefore led to the formula in the statement. □

Theorem 1.5 is something quite interesting, so let us doublecheck it with some numer-
ics. At small values of n we obtain the following formulae, which are all correct:

(a+ b)0 = 1

(a+ b)1 = a+ b

(a+ b)2 = a2 + 2ab+ b2

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4

(a+ b)5 = a5 + 5a4b+ 10a3b2 + 10a2b3 + 5a4b+ b5

...

Now observe that in these formulae, say for memorization purposes, the powers of the
a, b variables are something very simple, that can be recovered right away. What matters
are the coefficients, which are the binomial coefficients

(
n
k

)
, which form a triangle. So, it

is enough to memorize this triangle, and this can be done by using:

Theorem 1.6. The Pascal triangle, formed by the binomial coefficients
(
n
k

)
,

1

1 , 1

1 , 2 , 1

1 , 3 , 3 , 1

1 , 4 , 6 , 4 , 1

1 , 5 , 10 , 10 , 5 , 1
...

has the property that each entry is the sum of the two entries above it.
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Proof. In practice, the theorem states that the following formula holds:(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
There are many ways of proving this formula, all instructive, as follows:

(1) Brute-force computation. We have indeed, as desired:(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(n− 1)!

(k − 1)!(n− k)!
+

(n− 1)!

k!(n− k − 1)!

=
(n− 1)!

(k − 1)!(n− k − 1)!

(
1

n− k
+

1

k

)
=

(n− 1)!

(k − 1)!(n− k − 1)!
· n

k(n− k)

=

(
n

k

)
(2) Algebraic proof. We have the following formula, to start with:

(a+ b)n = (a+ b)n−1(a+ b)

By using the binomial formula, this formula becomes:

n∑
k=0

(
n

k

)
akbn−k =

[
n−1∑
r=0

(
n− 1

r

)
arbn−1−r

]
(a+ b)

Now let us perform the multiplication on the right. We obtain a certain sum of terms
of type akbn−k, and to be more precise, each such akbn−k term can either come from the(
n−1
k−1

)
terms ak−1bn−k multiplied by a, or from the

(
n−1
k

)
terms akbn−1−k multiplied by b.

Thus, the coefficient of akbn−k on the right is
(
n−1
k−1

)
+
(
n−1
k

)
, as desired.

(3) Combinatorics. Let us count k objects among n objects, with one of the n objects
having a hat on top. Obviously, the hat has nothing to do with the count, and we obtain(
n
k

)
. On the other hand, we can say that there are two possibilities. Either the object

with hat is counted, and we have
(
n−1
k−1

)
possibilities here, or the object with hat is not

counted, and we have
(
n−1
k

)
possibilities here. Thus

(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
, as desired. □

There are many more things that can be said about binomial coefficients, with all
sorts of interesting formulae, but the idea is always the same, namely that in order to find
such formulae you have a choice between algebra and combinatorics, and that when it
comes to proofs, the brute-force computation method is useful too. In practice, the best
is to master all 3 techniques. Among others, because of Advice 1.3. You will have in this
way 3 different methods, for making sure that your formulae are correct indeed.
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1b. Real numbers

All the above was very nice, but remember that we are here for doing science and
physics, and more specifically for mathematically understanding the numeric variables
x, y, z, . . . coming from real life. Such variables can be lengths, volumes, pressures and so
on, which vary continuously with time, and common sense dictates that there is little to
no chance for our variables to be rational, x, y, z, . . . /∈ Q. In fact, we will even see soon a
theorem, stating that the probability for such a variable to be rational is exactly 0. Or,
to put it in a dramatic way, “rational numbers don’t exist in real life”.

You are certainly familiar with the real numbers, but let us review now their definition,
which is something quite tricky. As a first goal, we would like to construct a number
x =
√
2 having the property x2 = 2. But how to do this? Let us start with:

Proposition 1.7. There is no number r ∈ Q+ satisfying r2 = 2. In fact, we have

Q+ =
{
p ∈ Q+

∣∣∣p2 < 2
}⊔{

q ∈ Q+

∣∣∣q2 > 2
}

with this being a disjoint union.

Proof. In what regards the first assertion, assuming that r = a/b with a, b ∈ N prime
to each other satisfies r2 = 2, we have a2 = 2b2, so a ∈ 2N. But by using again a2 = 2b2

we obtain b ∈ 2N, contradiction. As for the second assertion, this is obvious. □

It looks like we are a bit stuck. We can’t really tell who
√
2 is, and the only piece of

information about
√
2 that we have comes from the knowledge of the rational numbers

satisfying p2 < 2 or q2 > 2. To be more precise, the picture that emerges is:

Conclusion 1.8. The number
√
2 is the abstract beast which is bigger than all ratio-

nals satisfying p2 < 2, and smaller than all positive rationals satisfying q2 > 2.

This does not look very good, but you know what, instead of looking for more clever
solutions to our problem, what about relaxing, or being lazy, or coward, or you name it,
and taking Conclusion 1.8 as a definition for

√
2. This is actually something not that bad,

and leads to the following “lazy” definition for the real numbers:

Definition 1.9. The real numbers x ∈ R are formal cuts in the set of rationals,

Q = Q≤x ⊔Q>x

with such a cut being by definition subject to the following condition:

p ∈ Q≤x , q ∈ Q>x =⇒ p < q

These numbers add and multiply by adding and multiplying the corresponding cuts.



1B. REAL NUMBERS 17

This might look quite original, but believe me, there is some genius behind this defi-
nition. As a first observation, we have an inclusion Q ⊂ R, obtained by identifying each
rational number r ∈ Q with the obvious cut that it produces, namely:

Q≤r =
{
p ∈ Q

∣∣∣p ≤ r
}

, Q>r =
{
q ∈ Q

∣∣∣q > r
}

As a second observation, the addition and multiplication of real numbers, obtained
by adding and multiplying the corresponding cuts, in the obvious way, is something very
simple. To be more precise, in what regards the addition, the formula is as follows:

Q≤x+y = Q≤x +Q≤y

As for the multiplication, the formula here is similar, namely Q≤xy = Q≤xQ≤y, up to
some mess with positives and negatives, which is quite easy to untangle, and with this
being a good exercise. We can also talk about order between real numbers, as follows:

x ≤ y ⇐⇒ Q≤x ⊂ Q≤y

But let us perhaps leave more abstractions for later, and go back to more concrete
things. As a first success of our theory, we can formulate the following theorem:

Theorem 1.10. The equation x2 = 2 has two solutions over the real numbers, namely
the positive solution, denoted

√
2, and its negative counterpart, which is −

√
2.

Proof. By using x→ −x, it is enough to prove that x2 = 2 has exactly one positive
solution

√
2. But this is clear, because

√
2 can only come from the following cut:

Q≤
√
2 = Q−

⊔{
p ∈ Q+

∣∣∣p2 ≤ 2
}

, Q>
√
2 =

{
q ∈ Q+

∣∣∣q2 > 2
}

Thus, we are led to the conclusion in the statement. □

More generally, the same method works in order to extract the square root
√
r of any

number r ∈ Q+, or even of any number r ∈ R+, and we have the following result:

Theorem 1.11. The solutions of ax2 + bx+ c = 0 with a, b, c ∈ R are

x1,2 =
−b±

√
b2 − 4ac

2a

provided that b2 − 4ac ≥ 0. In the case b2 − 4ac < 0, there are no solutions.
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Proof. We can write our equation in the following way:

ax2 + bx+ c = 0 ⇐⇒ x2 +
b

a
x+

c

a
= 0

⇐⇒
(
x+

b

2a

)2

− b2

4a2
+
c

a
= 0

⇐⇒
(
x+

b

2a

)2

=
b2 − 4ac

4a2

⇐⇒ x+
b

2a
= ±
√
b2 − 4ac

2a

Thus, we are led to the conclusion in the statement. □

Summarizing, we have a nice definition for the real numbers, that we can certainly
do some math with. However, for anything more advanced we are in need of the decimal
writing for the real numbers. The result here is as follows:

Theorem 1.12. The real numbers x ∈ R can be written in decimal form,

x = ±a1 . . . an.b1b2b3 . . . . . .

with ai, bi ∈ {0, 1, . . . , 9}, with the convention . . . b999 . . . = . . . (b+ 1)000 . . .

Proof. This is something quite non-trivial, assuming that you already have some
familiarity with such things, for the rational numbers. The idea is as follows:

(1) First of all, our precise claim is that any x ∈ R can be written in the form in the
statement, with the integer ±a1 . . . an and then each of the digits b1, b2, b3, . . . providing
the best approximation of x, at that stage of the approximation.

(2) Moreover, we have a second claim as well, namely that any expression of type
x = ±a1 . . . an.b1b2b3 . . . . . . corresponds to a real number x ∈ R, and that with the
convention . . . b999 . . . = . . . (b+ 1)000 . . . , the correspondence is bijective.

(3) In order to prove now these two assertions, our first claim is that we can restrict
the attention to the case x ∈ [0, 1), and with this meaning of course 0 ≤ x < 1, with
respect to the order relation for the reals discussed in the above.

(4) Getting started now, let x ∈ R, coming from a cut Q = Q≤x ⊔Q>x. Since the set
Q≤x ∩ Z consists of integers, and is bounded from above by any element q ∈ Q>x of your
choice, this set has a maximal element, that we can denote [x]:

[x] = max (Q≤x ∩ Z)

It follows from definitions that [x] has the usual properties of the integer part, namely:

[x] ≤ x < [x] + 1
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Thus we have x = [x]+y with [x] ∈ Z and y ∈ [0, 1), and getting back now to what we
want to prove, namely (1,2) above, it is clear that it is enough to prove these assertions
for the remainder y ∈ [0, 1). Thus, we have proved (3), and we can assume x ∈ [0, 1).

(5) So, assume x ∈ [0, 1). We are first looking for a best approximation from below of
type 0.b1, with b1 ∈ {0, . . . , 9}, and it is clear that such an approximation exists, simply
by comparing x with the numbers 0.0, 0.1, . . . , 0.9. Thus, we have our first digit b1, and
then we can construct the second digit b2 as well, by comparing x with the numbers
0.b10, 0.b11, . . . , 0.b19. And so on, which finishes the proof of our claim (1).

(6) In order to prove now the remaining claim (2), let us restrict again the attention,
as explained in (4), to the case x ∈ [0, 1). First, it is clear that any expression of type
x = 0.b1b2b3 . . . defines a real number x ∈ [0, 1], simply by declaring that the corresponding
cut Q = Q≤x ⊔Q>x comes from the following set, and its complement:

Q≤x =
⋃
n≥1

{
p ∈ Q

∣∣∣p ≤ 0.b1 . . . bn

}
(7) Thus, we have our correspondence between real numbers as cuts, and real numbers

as decimal expressions, and we are left with the question of investigating the bijectivity
of this correspondence. But here, the only bug that happens is that numbers of type
x = . . . b999 . . ., which produce reals x ∈ R via (6), do not come from reals x ∈ R via (5).
So, in order to finish our proof, we must investigate such numbers.

(8) So, consider an expression of type . . . b999 . . . Going back to the construction in
(6), we are led to the conclusion that we have the following equality:

Q≤...b999... = Q≤...(b+1)000...

Thus, at the level of the real numbers defined as cuts, we have:

. . . b999 . . . = . . . (b+ 1)000 . . .

But this solves our problem, because by identifying . . . b999 . . . = . . . (b+1)000 . . . the
bijectivity issue of our correspondence is fixed, and we are done. □

The above theorem was of course quite difficult, but this is how things are. You
might perhaps say why bothering with cuts, and not taking x = ±a1 . . . an.b1b2b3 . . . . . .
as definition for the real numbers. Well, this is certainly possible, but when it comes to
summing such numbers, or making products, or proving basic things such as the existence
of
√
2, things become fairly complicated with the decimal writing picture. So, all the above

is not as stupid as it seems. And we will come back anyway to all this later, with a 3rd
picture for the real numbers, involving scary things like ε and δ, and it will be up to you
to decide, at that time, which picture is the one that you prefer.

Moving on, we made the claim in the beginning of this chapter that “in real life, real
numbers are never rational”. Here is a theorem, justifying this claim:
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Theorem 1.13. The probability for a real number x ∈ R to be rational is 0.

Proof. This is something quite tricky, the idea being as follows:

(1) Before starting, let us point out the fact that probability theory is something quite
tricky, with probability 0 not necessarily meaning that the event cannot happen, but
rather meaning that “better not count on that”. For instance according to my compu-
tations the probability of you winning 1 billion at the lottery is 0, but you are of course
free to disagree, and prove me wrong, by playing every day at the lottery.

(2) With this discussion made, and extrapolating now from finance and lottery to
our question regarding real numbers, your possible argument of type “yes, but if I pick
x ∈ R to be x = 3/2, I have proof that the probability for x ∈ Q is nonzero” is therefore
dismissed. Thus, our claim as stated makes sense, so let us try now to prove it.

(3) By translation, it is enough to prove that the probability for a real number x ∈ [0, 1]
to be rational is 0. For this purpose, let us write the rational numbers r ∈ [0, 1] in the
form of a sequence r1, r2, r3 . . . , with this being possible say by ordering our rationals
r = a/b according to the lexicographic order on the pairs (a, b):

Q ∩ [0, 1] =
{
r1, r2, r3, . . .

}
Let us also pick a number c > 0. Since the probability of having x = r1 is certainly

smaller than c/2, then the probability of having x = r2 is certainly smaller than c/4, then
the probability of having x = r3 is certainly smaller than c/8 and so on, the probability
for x to be rational satisfies the following inequality:

P ≤ c

2
+
c

4
+
c

8
+ . . .

= c

(
1

2
+

1

4
+

1

8
+ . . .

)
= c

Here we have used the well-known formula 1
2
+ 1

4
+ 1

8
+ . . . = 1, which comes by dividing

[0, 1] into half, and then one of the halves into half again, and so on, and then saying in
the end that the pieces that we have must sum up to 1. Thus, we have indeed P ≤ c, and
since the number c > 0 was arbitrary, we obtain P = 0, as desired. □

As a comment here, all the above is of course quite tricky, and a bit bordeline in respect
to what can be called “rigorous mathematics”. But we will be back to this, namely general
probability theory, and in particular meaning of the mysterious formula P = 0, countable
sets, infinite sums and so on, on several occasions, throughout this book.

Moving ahead now, let us construct now some more real numbers. We already know
about

√
2 and other numbers of the same type, namely roots of polynomials, and our

knowledge here being quite decent, no hurry with this, we will be back to it later. So, let
us get now into π and trigonometry. To start with, we have the following result:
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Theorem 1.14. The following two definitions of π are equivalent:

(1) The length of the unit circle is L = 2π.
(2) The area of the unit disk is A = π.

Proof. In order to prove this theorem let us cut the unit disk as a pizza, into N
slices, and forgetting about gastronomy, leave aside the rounded parts:

◦ ◦

◦ ◦ ◦

◦ ◦

The area to be eaten can be then computed as follows, where H is the height of the
slices, S is the length of their sides, and P = NS is the total length of the sides:

A = N × HS

2

=
HP

2

≃ 1× L
2

Thus, with N →∞ we obtain that we have A = L/2, as desired. □

In what regards now the precise value of π, the above picture at N = 6 shows that
we have π > 3, but not by much. The precise figure is π = 3.14159 . . . , but we will come
back to this later, once we will have appropriate tools for dealing with such questions. It
is also possible to prove that π is irrational, π /∈ Q, but this is not trivial either.

Let us end this discussion about real numbers with some trigonometry. There are
many things that can be said, that you certainly know, the basics being as follows:

Theorem 1.15. The following happen:

(1) We can talk about angles x ∈ R, by using the unit circle, in the usual way, and
in this correspondence, the right angle has a value of π/2.

(2) Associated to any x ∈ R are numbers sinx, cosx ∈ R, constructed in the usual
way, by using a triangle. These numbers satisfy sin2 x+ cos2 x = 1.

Proof. There are certainly things that you know, the idea being as follows:

(1) The formula L = 2π from Theorem 1.14 shows that the length of a quarter of the
unit circle is l = π/2, and so the right angle has indeed this value, π/2.
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(2) As for sin2 x+cos2 x = 1, called Pythagoras’ theorem, this comes from the following
picture, consisting of two squares and four identical triangles, as indicated:

◦ ◦ ◦

◦

sinx◦

◦ ◦ cosx

1

◦

Indeed, when computing the area of the outer square, we obtain:

(sinx+ cosx)2 = 1 + 4× sinx cosx

2

Now when expanding we obtain sin2 x+ cos2 x = 1, as claimed. □

It is possible to say many more things about angles and sinx, cosx, and also talk about
some supplementary quantities, such as tanx = sinx/ cosx. But more on this later, once
we will have some appropriate tools, beyond basic geometry, in order to discuss this.

1c. Convergence

We already met, on several occasions, infinite sequences or sums, and their limits.
Time now to clarify all this. Let us start with the following definition:

Definition 1.16. We say that a sequence {xn}n∈N ⊂ R converges to x ∈ R when:

∀ε > 0,∃N ∈ N,∀n ≥ N, |xn − x| < ε

In this case, we write limn→∞ xn = x, or simply xn → x.

This might look quite scary, at a first glance, but when thinking a bit, there is nothing
scary about it. Indeed, let us try to understand, how shall we translate xn → x into
mathematical language. The condition xn → x tells us that “when n is big, xn is close
to x”, and to be more precise, it tells us that “when n is big enough, xn gets arbitrarily
close to x”. But n big enough means n ≥ N , for some N ∈ N, and xn arbitrarily close to
x means |xn − x| < ε, for some ε > 0. Thus, we are led to the above definition.

As a basic example for all this, we have:

Proposition 1.17. We have 1/n→ 0.

Proof. This is obvious, but let us prove it by using Definition 1.16. We have:∣∣∣∣ 1n − 0

∣∣∣∣ < ε ⇐⇒ 1

n
< ε ⇐⇒ 1

ε
< n

Thus we can take N = [1/ε] + 1 in Definition 1.16, and we are done. □
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There are many other examples, and more on this in a moment. Going ahead with
more theory, let us complement Definition 1.16 with:

Definition 1.18. We write xn →∞ when the following condition is satisfied:

∀K > 0,∃N ∈ N,∀n ≥ N, xn > K

Similarly, we write xn → −∞ when the same happens, with xn < −K at the end.

Again, this is something very intuitive, coming from the fact that xn → ∞ can only
mean that xn is arbitrarily big, for n big enough. As a basic illustration, we have:

Proposition 1.19. We have n2 →∞.

Proof. As before, this is obvious, but let us prove it using Definition 1.18. We have:

n2 > K ⇐⇒ n >
√
K

Thus we can take N = [
√
K] + 1 in Definition 1.18, and we are done. □

We can unify and generalize Proposition 1.17 and Proposition 1.19, as follows:

Proposition 1.20. We have the following convergence, with n→∞:

na →


0 (a < 0)

1 (a = 0)

∞ (a > 0)

Proof. This follows indeed by using the same method as in the proof of Proposition
1.17 and Proposition 1.19, first for a rational, and then for a real as well. □

We have some general results about limits, summarized as follows:

Theorem 1.21. The following happen:

(1) The limit limn→∞ xn, if it exists, is unique.
(2) If xn → x, with x ∈ (−∞,∞), then xn is bounded.
(3) If xn is increasing or descreasing, then it converges.
(4) Assuming xn → x, any subsequence of xn converges to x.

Proof. All this is elementary, coming from definitions:

(1) Assuming xn → x, xn → y we have indeed, for any ε > 0, for n big enough:

|x− y| ≤ |x− xn|+ |xn − y| < 2ε

(2) Assuming xn → x, we have |xn − x| < 1 for n ≥ N , and so, for any k ∈ N:

|xk| < 1 + |x|+ sup (|x1|, . . . , |xn−1|)
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(3) By using x → −x, it is enough to prove the result for increasing sequences. But
here we can construct the limit x ∈ (−∞,∞] in the following way:⋃

n∈N

(−∞, xn) = (−∞, x)

(4) This is clear from definitions. □

Here are as well some general rules for computing limits:

Theorem 1.22. The following happen, with the conventions∞+∞ =∞,∞·∞ =∞,
1/∞ = 0, and with the conventions that ∞−∞ and ∞ · 0 are undefined:

(1) xn → x implies λxn → λx.
(2) xn → x, yn → y implies xn + yn → x+ y.
(3) xn → x, yn → y implies xnyn → xy.
(4) xn → x with x ̸= 0 implies 1/xn → 1/x.

Proof. All this is again elementary, coming from definitions:

(1) This is something which is obvious from definitions.

(2) This follows indeed from the following estimate:

|xn + yn − x− y| ≤ |xn − x|+ |yn − y|

(3) This follows indeed from the following estimate:

|xnyn − xy| = |(xn − x)yn + x(yn − y)|
≤ |xn − x| · |yn|+ |x| · |yn − y|

(4) This is again clear, by estimating 1/xn − 1/x, in the obvious way. □

As an application of the above rules, we have the following useful result:

Proposition 1.23. The n→∞ limits of quotients of polynomials are given by

lim
n→∞

apn
p + ap−1n

p−1 + . . .+ a0
bqnq + bq−1nq−1 + . . .+ b0

= lim
n→∞

apn
p

bqnq

with the limit on the right being ±∞, 0, ap/bq, depending on the values of p, q.

Proof. The first assertion comes from the following computation:

lim
n→∞

apn
p + ap−1n

p−1 + . . .+ a0
bqnq + bq−1nq−1 + . . .+ b0

= lim
n→∞

np

nq
· ap + ap−1n

−1 + . . .+ a0n
−p

bq + bq−1n−1 + . . .+ b0n−q

= lim
n→∞

apn
p

bqnq

As for the second assertion, this comes from Proposition 1.20. □
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Getting back now to theory, some sequences which obviously do not converge, like for
instance xn = (−1)n, have however “2 limits instead of 1”. So let us formulate:

Definition 1.24. Given a sequence {xn}n∈N ⊂ R, we let

lim inf
n→∞

xn ∈ [−∞,∞] , lim sup
n→∞

xn ∈ [−∞,∞]

to be the smallest and biggest limit of a subsequence of (xn).

Observe that the above quantities are defined indeed for any sequence xn. For instance,
for xn = (−1)n we obtain −1 and 1. Also, for xn = n we obtain ∞ and ∞. And so on.
Of course, and generalizing the xn = n example, if xn → x we obtain x and x.

Going ahead with more theory, here is a key result:

Theorem 1.25. A sequence xn converges, with finite limit x ∈ R, precisely when

∀ε > 0,∃N ∈ N,∀m,n ≥ N, |xm − xn| < ε

called Cauchy condition.

Proof. In one sense, this is clear. In the other sense, we can say for instance that
the Cauchy condition forces the decimal writings of our numbers xn to coincide more and
more, with n→∞, and so we can construct a limit x = limn→∞ xn, as desired. □

The above result is quite interesting, and as an application, we have:

Theorem 1.26. R is the completion of Q, in the sense that it is the space of Cauchy
sequences over Q, identified when the virtual limit is the same, in the sense that:

xn ∼ yn ⇐⇒ |xn − yn| → 0

Moreover, R is complete, in the sense that it equals its own completion.

Proof. Let us denote the completion operation by X → X̄ = CX/ ∼, where CX is
the space of Cauchy sequences over X, and ∼ is the above equivalence relation. Since by
Theorem 1.25 any Cauchy sequence (xn) ∈ CQ has a limit x ∈ R, we obtain Q̄ = R. As
for the equality R̄ = R, this is clear again by using Theorem 1.25. □

1d. Sums, series

With the above understood, we are now ready to get into some truly interesting
mathematics. Let us start with the following definition:

Definition 1.27. Given numbers x0, x1, x2, . . . ∈ R, we write
∞∑
n=0

xn = x

with x ∈ [−∞,∞] when limk→∞
∑k

n=0 xn = x.
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As before with the sequences, there is some general theory that can be developed for
the series, and more on this in a moment. As a first, basic example, we have:

Theorem 1.28. We have the “geometric series” formula

∞∑
n=0

xn =
1

1− x

valid for any |x| < 1. For |x| ≥ 1, the series diverges.

Proof. Our first claim, which comes by multiplying and simplifying, is that:

k∑
n=0

xn =
1− xk+1

1− x

But this proves the first assertion, because with k →∞ we get:

k∑
n=0

xn → 1

1− x

As for the second assertion, this is clear as well from our formula above. □

Less trivial now is the following result, due to Riemann:

Theorem 1.29. We have the following formula:

1 +
1

2
+

1

3
+

1

4
+ . . . =∞

In fact,
∑

n 1/n
a converges for a > 1, and diverges for a ≤ 1.

Proof. We have to prove several things, the idea being as follows:

(1) The first assertion comes from the following computation:

1 +
1

2
+

1

3
+

1

4
+ . . . = 1 +

1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ . . .

≥ 1 +
1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ . . .

= 1 +
1

2
+

1

2
+

1

2
+ . . .

= ∞

(2) Regarding now the second assertion, we have that at a = 1, and so at any a ≤ 1.
Thus, it remains to prove that at a > 1 the series converges. Let us first discuss the case
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a = 2, which will prove the convergence at any a ≥ 2. The trick here is as follows:

1 +
1

4
+

1

9
+

1

16
+ . . . ≤ 1 +

1

3
+

1

6
+

1

10
+ . . .

= 2

(
1

2
+

1

6
+

1

12
+

1

20
+ . . .

)
= 2

[(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+

(
1

4
− 1

5

)
. . .

]
= 2

(3) It remains to prove that the series converges at a ∈ (1, 2), and here it is enough
to deal with the case of the exponents a = 1 + 1/p with p ∈ N. We already know how to
do this at p = 1, and the proof at p ∈ N will be based on a similar trick. We have:

∞∑
n=0

1

n1/p
− 1

(n+ 1)1/p
= 1

Let us compute, or rather estimate, the generic term of this series. By using the
formula ap − bp = (a− b)(ap−1 + ap−2b+ . . .+ abp−2 + bp−1), we have:

1

n1/p
− 1

(n+ 1)1/p
=

(n+ 1)1/p − n1/p

n1/p(n+ 1)1/p

=
1

n1/p(n+ 1)1/p[(n+ 1)1−1/p + . . .+ n1−1/p]

≥ 1

n1/p(n+ 1)1/p · p(n+ 1)1−1/p

=
1

pn1/p(n+ 1)

≥ 1

p(n+ 1)1+1/p

We therefore obtain the following estimate for the Riemann sum:
∞∑
n=0

1

n1+1/p
= 1 +

∞∑
n=0

1

(n+ 1)1+1/p

≤ 1 + p
∞∑
n=0

(
1

n1/p
− 1

(n+ 1)1/p

)
= 1 + p

Thus, we are done with the case a = 1 + 1/p, which finishes the proof. □

Here is another tricky result, this time about alternating sums:
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Theorem 1.30. We have the following convergence result:

1− 1

2
+

1

3
− 1

4
+ . . . <∞

However, when rearranging terms, we can obtain any x ∈ [−∞,∞] as limit.

Proof. Both the assertions follow from Theorem 1.29, as follows:

(1) We have the following computation, using the Riemann criterion at a = 2:

1− 1

2
+

1

3
− 1

4
+ . . . =

(
1− 1

2

)
+

(
1

3
− 1

4

)
+ . . .

=
1

2
+

1

12
+

1

30
+ . . .

<
1

12
+

1

22
+

1

32
+ . . .

< ∞
(2) We have the following formulae, coming from the Riemann criterion at a = 1:

1

2
+

1

4
+

1

6
+

1

8
+ . . . =

1

2

(
1 +

1

2
+

1

3
+

1

4
+ . . .

)
=∞

1 +
1

3
+

1

5
+

1

7
+ . . . ≥ 1

2
+

1

4
+

1

6
+

1

8
+ . . . =∞

Thus, both these series diverge. The point now is that, by using this, when rearranging
terms in the alternating series in the statement, we can arrange for the partial sums to
go arbitrarily high, or arbitrarily low, and we can obtain any x ∈ [−∞,∞] as limit. □

Back now to the general case, we first have the following statement:

Theorem 1.31. The following hold, with the converses of (1) and (2) being wrong,
and with (3) not holding when the assumption xn ≥ 0 is removed:

(1) If
∑

n xn converges then xn → 0.
(2) If

∑
n |xn| converges then

∑
n xn converges.

(3) If
∑

n xn converges, xn ≥ 0 and xn/yn → 1 then
∑

n yn converges.

Proof. This is a mixture of trivial and non-trivial results, as follows:

(1) We know that
∑

n xn converges when Sk =
∑k

n=0 xn converges. Thus by Cauchy
we have xk = Sk−Sk−1 → 0, and this gives the result. As for the simplest counterexample
for the converse, this is 1 + 1

2
+ 1

3
+ 1

4
+ . . . =∞, coming from Theorem 1.29.

(2) This follows again from the Cauchy criterion, by using:

|xn + xn+1 + . . .+ xn+k| ≤ |xn|+ |xn+1|+ . . .+ |xn+k|
As for the simplest counterexample for the converse, this is 1− 1

2
+ 1

3
− 1

4
+ . . . <∞,

coming from Theorem 1.30, coupled with 1 + 1
2
+ 1

3
+ 1

4
+ . . . =∞ from (1).
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(3) Again, the main assertion here is clear, coming from, for n big:

(1− ε)xn ≤ yn ≤ (1 + ε)xn

In what regards now the failure of the result, when the assumption xn ≥ 0 is removed,
this is something quite tricky, the simplest counterexample being as follows:

xn =
(−1)n√

n
, yn =

1

n
+

(−1)n√
n

To be more precise, we have yn/xn → 1, so xn/yn → 1 too, but according to the above-
mentioned results from (1,2), modified a bit,

∑
n xn converges, while

∑
n yn diverges. □

Summarizing, we have some useful positive results about series, which are however
quite trivial, along with various counterexamples to their possible modifications, which
are non-trivial. Staying positive, here are some more positive results:

Theorem 1.32. The following happen, and in all cases, the situtation where c = 1 is
indeterminate, in the sense that the series can converge or diverge:

(1) If |xn+1/xn| → c, the series
∑

n xn converges if c < 1, and diverges if c > 1.

(2) If n
√
|xn| → c, the series

∑
n xn converges if c < 1, and diverges if c > 1.

(3) With c = lim supn→∞
n
√
|xn|,

∑
n xn converges if c < 1, and diverges if c > 1.

Proof. Again, this is a mixture of trivial and non-trivial results, as follows:

(1) Here the main assertions, regarding the cases c < 1 and c > 1, are both clear by
comparing with the geometric series

∑
n c

n. As for the case c = 1, this is what happens
for the Riemann series

∑
n 1/n

a, so we can have both convergent and divergent series.

(2) Again, the main assertions, where c < 1 or c > 1, are clear by comparing with the
geometric series

∑
n c

n, and the c = 1 examples come from the Riemann series.

(3) Here the case c < 1 is dealt with as in (2), and the same goes for the examples at
c = 1. As for the case c > 1, this is clear too, because here xn → 0 fails. □

Finally, generalizing the first assertion in Theorem 1.30, we have:

Theorem 1.33. If xn ↘ 0 then
∑

n(−1)nxn converges.

Proof. We have the
∑

n(−1)nxn =
∑

k yk, where:

yk = x2k − x2k+1

But, by drawing for instance the numbers xi on the real line, we see that yk are positive
numbers, and that

∑
k yk is the sum of lengths of certain disjoint intervals, included in

the interval [0, x0]. Thus we have
∑

k yk ≤ x0, and this gives the result. □

All this was a bit theoretical, and as something more concrete now, we have:
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Theorem 1.34. We have the following convergence(
1 +

1

n

)n

→ e

where e = 2.71828 . . . is a certain number.

Proof. This is something quite tricky, as follows:

(1) Our first claim is that the following sequence is increasing:

xn =

(
1 +

1

n

)n

In order to prove this, we use the following arithmetic-geometric inequality:

1 +
∑n

i=1

(
1 + 1

n

)
n+ 1

≥ n+1

√√√√1 ·
n∏

i=1

(
1 +

1

n

)
In practice, this gives the following inequality:

1 +
1

n+ 1
≥
(
1 +

1

n

)n/(n+1)

Now by raising to the power n+ 1 we obtain, as desired:(
1 +

1

n+ 1

)n+1

≥
(
1 +

1

n

)n

(2) Normally we are left with proving that xn is bounded from above, but this is
non-trivial, and we have to use a trick. Consider the following sequence:

yn =

(
1 +

1

n

)n+1

We will prove that this sequence yn is decreasing, and together with the fact that we
have xn/yn → 1, this will give the result. So, this will be our plan.

(3) In order to prove now that yn is decreasing, we use, a bit as before:

1 +
∑n

i=1

(
1− 1

n

)
n+ 1

≥ n+1

√√√√1 ·
n∏

i=1

(
1− 1

n

)
In practice, this gives the following inequality:

1− 1

n+ 1
≥
(
1− 1

n

)n/(n+1)
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Now by raising to the power n+ 1 we obtain from this:(
1− 1

n+ 1

)n+1

≥
(
1− 1

n

)n

The point now is that we have the following inversion formulae:(
1− 1

n+ 1

)−1

=

(
n

n+ 1

)−1

=
n+ 1

n
= 1 +

1

n(
1− 1

n

)−1

=

(
n− 1

n

)−1

=
n

n− 1
= 1 +

1

n− 1

Thus by inverting the inequality that we found, we obtain, as desired:(
1 +

1

n

)n+1

≤
(
1 +

1

n− 1

)n

(4) But with this, we can now finish. Indeed, the sequence xn is increasing, the
sequence yn is decreasing, and we have xn < yn, as well as:

yn
xn

= 1 +
1

n
→ 1

Thus, both sequences xn, yn converge to a certain number e, as desired.

(5) Finally, regarding the numerics for our limiting number e, we know from the above
that we have xn < e < yn for any n ∈ N, which reads:(

1 +
1

n

)n

< e <

(
1 +

1

n

)n+1

Thus e ∈ [2, 3], and with a bit of patience, or a computer, we obtain e = 2.71828 . . .
We will actually come back to this question later, with better methods. □

We should mention that there are many other ways of getting into e. For instance it
is possible to prove that we have the following formula, which is a bit more conceptual
than the formula in Theorem 1.34, and also with the convergence being very quick:

∞∑
n=0

1

n!
= e

Importantly, all this not the end of the story with e. For instance, in relation with
the first formula that we found, from Theorem 1.34, we have, more generally:(

1 +
x

n

)n
→ ex
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Also, in relation with the second formula, from above, we have, more generally:
∞∑
n=0

xn

n!
= ex

To be more precise, these latter two formulae are something that we know at x = 1.
The case x = 0 is trivial, the case x = −1 follows from the case x = 1, via some simple
manipulations, and with a bit more work, we can get these formulae for any x ∈ N, and
then for any x ∈ Z. However, the general case x ∈ R is quite tricky, requiring a good
knowledge of the theory of real functions. We will be back to this later.

1e. Exercises

Exercises:

Exercise 1.35.

Exercise 1.36.

Exercise 1.37.

Exercise 1.38.

Exercise 1.39.

Exercise 1.40.

Exercise 1.41.

Exercise 1.42.

Bonus exercise.



CHAPTER 2

Motion basics

2a. Collisions

Good news, with what that we know we can do some physics, in 1 dimension. Let us
begin with a discussion of the usual motion, in the absence of forces. That is something
very simple, with the motion being linear, the bodies traveling at constant speed, namely
their initial speed. And there is no acceleration to worry about.

However, interesting things happen when such objects collide, and we have:

Fact 2.1. In the context of general linear motion, in the case of a collision between
two bodies, m1,m2 travelling at speeds v1, v2, the total momentum of the system

p = m1v1 +m2v2

is conserved. The same happens of course without collision either, and also for systems
of N bodies, with N ∈ N arbitrary, with all sorts of collisions allowed between them.

As a first comment, is this really physics, or just some abstraction? We know that
gravity is everywhere, and that the very existence of m1,m2 leads to their gravity, and so
to the negation of the general linear motion setting above. However, two trains colliding is
certainly physics, and even scary physics, and this has nothing to do with gravity. Thus,
what we have here is a true physics principle, dealing with real-life situations.

In order to understand now what is going on, consider two objects as in Fact 2.1,
bound for collision:

◦m1 →v1 ←v2 ◦m2

We know from real life that two things can happen, in this situation. The first case is
that of an inelastic, also called plastic collision, where m1,m2 decide when meeting that
they love each other, and pursue their journey as a couple, m = m1 +m2:

•m →v

Of course, who really knows what really happens during a plastic collision, at the
microscopic level, but assuming somehow that no energy or something is dissipated, during
that hot encounter, Fact 2.1 holds indeed, and allows us to do the math.

And the math, coming from the conservation of momentum, is as follows:

33
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Proposition 2.2. In the context of a plastic collision between two bodies,

m = m1 +m2 , v =
m1v1 +m2v2
m1 +m2

are the mass and speed of the resulting body.

Proof. This follows straight from Fact 2.1, because the momentum of m = m1 +m2

equals the sum of the initial momenta of m1,m2, and is therefore given by:

mv = m1v1 +m2v2

Thus, we are led to the speed formula in the statement. □

The second case now, that can happen as well, is that of an elastic collision. So,
consider as before two objects bound for collision:

◦m1 →v1 ←v2 ◦m2

The elastic collision is then the case opposed to love, with our two bodies meeting,
comparing their mi, vi, then exchanging some speed depending on that, via a few quick
fists, and then either keeping traveling forward, but slower, or going backwards:

•m1 →v′1
◦m2 →v′2

←v′1
◦m1 ←v′2

•m2

←v′1
◦m1 ◦m2 →v′2

In the above pictures, the winner, which was m1 in the first case, and m2 in the second
case, was awarded a black belt. As for the third case, that is some sort of draw.

Getting back now to the conservation of momentum, from Fact 2.1, it is pretty much
clear that what we have there won’t allow us to do the math. To be more precise, we
can get from there only 1 equation, which is not enough for computing the output data.
Fortunately, in the case of elastic collisions, Fact 2.1 can be complemented with:

Fact 2.3. In the context of general linear motion, in the case of an elastic collision
between two bodies, m1,m2 traveling at speeds v1, v2, the total energy of the system

E =
m1v

2
1

2
+
m2v

2
2

2

is conserved. The same happens of course without collision either, and also for systems
of N bodies, with N ∈ N arbitrary, with multi-elastic collisions allowed between them.

Again, as in the case of the plastic collisions, who really knows what really happens
during an elastic collision, at the microscopic level, but again, assuming that no things
are lost, during that event, Fact 2.3 holds indeed, and allows us to do the math.
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As another comment, while the formula of the momentum p = mv from Fact 2.3 was
something quite simple and intuitive, the above formula of the energy E = mv2/2 is
obviously something more subtle. We will be back to this, later.

Going ahead now, let us first investigate, just out of curiosity, what happens to the
energy during a plastic collision. The result here, contradicting our previous guess that
the moment conservation comes somehow from “no energy lost”, is as follows:

Theorem 2.4. In the context of a plastic collision between two bodies, we have:

E < E1 + E2

That is, some of the initial energy gets dissipated during the collision.

Proof. We use the equations found in Proposition 2.2, namely:

m = m1 +m2 , v =
m1v1 +m2v2
m1 +m2

According to our definition of energy, from Fact 2.3, the initial energy is:

E1 + E2 =
m1v

2
1 +m2v

2
2

2

As for the final energy, this is given by the following formula:

E =
mv2

2
=

(m1v1 +m2v2)
2

2(m1 +m2)

So, let us compute now the difference between these two quantities. We obtain:

E1 + E2 − E =
(m1 +m2)(m1v

2
1 +m2v

2
2)− (m1v1 +m2v2)

2

2(m1 +m2)

=
m1m2(v

2
1 + v22 − 2v1v2)

2(m1 +m2)

=
m1m2(v1 − v2)2

2(m1 +m2)

≥ 0

Thus E1+E2 ≥ E, and since a collision cannot happen when the inital speeds are the
same, v1 = v2, the equality case cannot happen, and so E1 + E2 > E, as stated. □

Moving ahead now, and back to the elastic collisions, the two conservation principles
that we have, namely Fact 2.1 and Fact 2.3, allow us to do the math. In order to discuss
this, consider our usual picture of an elastic collision, as follows:

◦m1 →v1 ←v2 ◦m2



36 2. MOTION BASICS

Depending on the resulting fight, we can have either a win or m1 or m2, or a draw.
Abstractly however, we can simply say that we are in a draw situation, the picture being
as follows, with the convention that we do not know yet the directions of v′1, v

′
2:

←v′1
◦m1 ◦m2 →v′2

With these conventions made, the precise result is as follows:

Proposition 2.5. In the context of an elastic collision between two bodies,

v′1 =
(m1 −m2)v1 + 2m2v2

m1 +m2

v′2 =
(m2 −m1)v2 + 2m1v1

m1 +m2

are the resulting speeds of the two bodies.

Proof. According to our momentum and energy conservation principles from Fact
2.1 and Fact 2.3, the resulting speeds v′1, v

′
2 satisfy the following two equations:

m1v1 +m2v2 = m1v
′
1 +m2v

′
2

m1v
2
1 +m2v

2
2 = m1v

′2
1 +m2v

′2
2

Now observe that these equations can be written as follows:

m1(v1 − v′1) = m2(v
′
2 − v2)

m1(v
2
1 − v′21 ) = m2(v

′2
2 − v22)

By dividing the second equation by the first one, our system becomes:

m1(v1 − v′1) = m2(v
′
2 − v2)

v1 + v′1 = v′2 + v2

And by doing now the math, we are led to the formulae in the statement. □

We have in fact a better formulation of Proposition 2.5, as follows:

Theorem 2.6. In the context of an elastic collision between two bodies, the resulting
speeds of the two bodies are

v′1 = v1 +
q

m1

, v′2 = v2 −
q

m2

where q ∈ R is the individual change of momentum, given by(
1

m1

+
1

m2

)
q = 2(v2 − v1)

from the perspective of m1, and from the opposite perspective of m2.



2B. ROCKETS 37

Proof. From the perspective of Proposition 2.5, we have done some quick algebra
there, without really knowing what we’re doing, leading to the following formulae:

v′1 =
(m1 −m2)v1 + 2m2v2

m1 +m2

v′2 =
(m2 −m1)v2 + 2m1v1

m1 +m2

Now observe that these two formulae can be alternatively written as follows:

v′1 = v1 +
2m2(v2 − v1)
m1 +m2

v′2 = v2 +
2m1(v1 − v2)
m1 +m2

But this leads to the formulae in the statement, and to that conclusion about q. □

We will be back to collisions in chapter 4, when talking about basic thermodynamics,
in 1 dimension, and then later on several occasions, in 2 or 3 dimensions.

2b. Rockets

As a main application now of the general theory developed above, and in relation with
gravity as well, we can use momentum for beating gravity, as follows:

Theorem 2.7. We can build rockets, by ejecting mass from a body

. . . . . . •M →
with the body moving in the opposite direction to the ejection direction.

Proof. The functioning principle of rockets is clear indeed from the conservation of
the momentum principle, because ejecting mass to the left will move us to the right. As
for the precise math of this, this can be worked out too, the idea being as follows:

(1) Let us first study the case of a single ejection. We begin with M at rest:

•M
Now let us eject to the left a mass m, with speed s. The situation becomes:

←s ◦m •M−m →v

By conservation of momentum we have (M −m)v = ms, and so:

v =
ms

M −m
(2) Let us study now a double ejection. At the first stage, we have as above, by

labelling now the ejection data with a 1 index, standing for stage 1 of the ejection:

←s1 ◦m1 •M−m1 →v1
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At the second stage now, that of ejecting a mass m2, with speed s2, with the observa-
tion that the ejection speed s2 is only relative to M , the situation becomes:

←s1 ◦m1 ←s2−v1 ◦m2 •M−m1−m2 →v2

Neglecting the first ejection, the conservation of momentum tells us that:

(M −m1 −m2)v2 −m2(s2 − v1) = (M −m1)v1

But this equation can be written in the following way:

(M −m1 −m2)v2 = (M −m1 −m2)v1 +m2s2

By using now (1) for the value of v1, the speed after the second ejection is given by:

v2 = v1 +
m2s2

M −m1 −m2

=
m1s1

M −m1

+
m2s2

M −m1 −m2

(3) In the general case now, that of a multiple ejection, of masses m1, . . . ,mk with
respective speeds s1, . . . , sk, the same idea applies, and gives as eventual speed:

vk =
m1s1

M −m1

+
m2s2

M −m1 −m2

+ . . .+
mksk

M −m1 − . . .−mk

In the particular case where the ejection mass m is constant, we obtain:

vk =
ms1

M −m
+

ms2
M − 2m

+ . . .+
msk

M − km
Also, in the particular case where the ejection speed s is constant, we obtain:

vk =

(
m1

M −m1

+
m2

M −m1 −m2

+ . . .+
mk

M −m1 − . . .−mk

)
s

And in the case where both the mass m and speed s are constant, we obtain:

vk =

(
m

M −m
+

m

M − 2m
+ . . .+

m

M − km

)
s

(4) Let us work out now the asymptotics. For simplifying we will assume that we are
in the last case, that of a constant ejection mass m and speed s, although modifications
of our argument will apply as well more generally. With m = εM , we have:

vk =

(
ε

1− ε
+

ε

1− 2ε
+ . . .+

ε

1− kε

)
s

We will assume that ε is small, and that k ∈ N is such that the total ejection mass,
or rather the fraction kε = r ∈ (0, 1) of this total ejection mass, compared to the initial
mass M of our rocket, is fixed. Thus, we want to compute vk in the following regime:

ε =
r

k
, k →∞
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Now remember the definition of the integral, as the area below the graph of the
function, which is approximable by the Riemann method by usual rectangles. In the
particular case of the function 1/x, this picture gives us the following formula:∫ 1

1−r

1

x
≃ 1

k

(
1

1− ε
+

1

1− 2ε
+ . . .+

1

1− kε

)
Thus, the final velocity we are interested in is given by the following formula:

v = εs

(
1

1− ε
+

1

1− 2ε
+ . . .+

1

1− kε

)
=

rs

k

(
1

1− ε
+

1

1− 2ε
+ . . .+

1

1− kε

)
≃ rs

∫ 1

1−r

1

x

= −r log(1− r)s

(5) As an illustration here, assume that our rocket has shrinked, from a continuous
ejection process at speed s, up to mass M/e, with e ≃ 2.718 being the usual constant
from analysis. In this case we have r = 1− 1/e, and the velocity reached is given by:

v = −
(
1− 1

e

)
log

(
1

e

)
s =

(
1− 1

e

)
s ≃ 0.632s

There are of course many other things that can be said here, and in particular we have
some interesting questions related to the best strategy to be followed, in order to beat a
given force F , such as gravity, or several such forces. More on this later. □

We have done some math in the above, and for future reference, let us record:

Theorem 2.8. For a rocket having initial mass M , and functioning by ejecting pieces
of mass m at a constant speed s, the speed reached after k ejections is:

v =

(
m

M −m
+

m

M − 2m
+ . . .+

m

M − km

)
s

In the m = εM , kε = r ∈ (0, 1) and k →∞ regime we have

v ≃ −r log(1− r)s

which represents the velocity after the rocket has shrinked to mass (1 − r)M . Moreover,
this latter conclusion holds under the sole assumption that s is constant.

Proof. Here the two formulae in the statement are our two main formulae, selected
from the proof of Theorem 2.7. As for the last assertion, recall also from the proof of
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Theorem 2.7 that, assuming only that s is constant, the formula of the velocity is:

v =

(
m1

M −m1

+
m2

M −m1 −m2

+ . . .+
mk

M −m1 − . . .−mk

)
s

The point now is that, assuming that the ejection pieces m1, . . . ,mk, instead of being
all equal to a certainm, are at least of comparable size, the Riemann integration arguments
from the end of the proof of Theorem 2.7 will apply as well, and give the result. □

Let us record as well the continuous version of the above result:

Theorem 2.9. For a rocket with initial mass M , ejecting at speed s = s(x), with x
being the fraction of the already ejected mass, the speed reached at x = r is:

v = r

∫ 1

1−r

s

x
dx

In particular, when the ejection speed is constant s ∈ R, we have v = −r log(1− r)s.

Proof. Again, this is something which follows from the above. To be more precise,
the last assertion follows from Theorem 2.8, or from the first assertion. Regarding now
the first assertion, recall from the proof of Theorem 2.7 that the discrete formula is:

vk =
ms1

M −m
+

ms2
M − 2m

+ . . .+
msk

M − km
We can now proceed as in the proof of Theorem 2.7, and with m = εM as there, and

then with kε = r ∈ (0, 1) fixed and k →∞ as there as well, we obtain:

vk = ε

(
s1

1− ε
+

s2
1− 2ε

+ . . .+
sk

1− kε

)
=

r

k

(
s1

1− ε
+

s2
1− 2ε

+ . . .+
sk

1− kε

)
≃ r

∫ 1

1−r

s

x
dx

Thus, we are led to the conclusion in the statement. □

As already mentioned, more on this later, when talking about gravity, and trying to
beat it with such devices. In particular, we will be back to the above computations, and
fine-tune the choice of the ejection method, depending on the problem to be solved.

Finally, let us mention that the above result remains a bit theoretical, because if you
are a space engineer, one of your main concerns, besides of course beating gravity, is that
of beating atmospheric drag too. More on this, later in this book.
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2c. Free falls

Let us start with something immensely important, in the history of science:

Fact 2.10. Newton invented calculus for formulating the laws of motion as

v = ẋ , a = v̇

where x, v, a are the position, speed and acceleration, and the dots are time derivatives.

To be more precise, the variable in Newton’s physics is time t ∈ R, playing the role of
the variable x ∈ R that we have used in the above. And we are looking at a particle whose
position is described by a function x = x(t). Then, it is quite clear that the speed of this
particle should be described by the first derivative v = x′(t), and that the acceleration of
the particle should be described by the second derivative a = v′(t) = x′′(t).

Getting now to the real thing, forces, we will first talk about gravity. We have:

Theorem 2.11. The equation of a gravitational free fall, in 1 dimension, is

ẍ = −GM
x2

with M being the attracting mass, and G ≃ 6.674× 10−11 being a constant.

Proof. Assume indeed that we have a free falling object, in 1 dimension:

◦m

��
•M

In order to reach to calculus as we know it, we must peform a rotation, as to have all
this happening on the Ox axis. By doing this, and assuming that M is fixed at 0, our
picture becomes as follows, with the attached numbers being now the coordinates:

•0 ◦xoo

Now comes the physics. The gravitational force exterted by M , which is fixed in our
formalism, on the object m which moves, is subject to the following equations:

F = −G · Mm

x2
, F = ma , a = v̇ , v = ẋ

To be more precise, in the first equationG ≃ 6.674×10−11 is the gravitational constant,
in usual SI units, and the sign is − because F is attractive. The second equation is
something standard and very intuitive, and the last two equations are those from Fact
2.10. Now observe that, with the above data for F , the equation F = ma reads:

−G · Mm

x2
= mẍ

Thus, by simplifying, we are led to the equation in the statement. □
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2d. N bodies

At a more advanced level, that of several bodies, let us start with:

Definition 2.12. Associated to a system of bodies M1, . . . ,Mk, located at positions
c1, . . . , ck ∈ R is their center of mass, located at the following position:

c =

∑
i ciMi∑
iMi

A single body of mass
∑

iMi located there, at the center of mass, and with M1, . . . ,Mk

being erased, will be called average of the system formed by M1, . . . ,Mk.

Let us start with some basic mathematics of the center of mass, as constructed above.
To be kept in mind first is:

Proposition 2.13. The center of mass is not a center of gravity, in the sense that
the gravity there is not necessarily 0. For instance the center of mass of a dumbell is

•M1 −−−−−−︸ ︷︷ ︸
M2d

M1+M2

⋆cm −−−−−−−−−︸ ︷︷ ︸
M1d

M1+M2

◦M2

while the center of gravity, which is the unique point where the gravity is 0, is:

•M1 −−−−−−−−−︸ ︷︷ ︸
√

M1d√
M1+

√
M2

⋆cg −−−−−−︸ ︷︷ ︸
√

M2d√
M1+

√
M2

◦M2

Proof. There are several assertions here, the idea being as follows:

(1) Regarding the dumbell, pictured above with M1 > M2, the formula for the center
of mass is clear from definitions. Regarding now the center of gravity, the formula there
can be found by doing the math, and it works, because the acceleration there is:

a = − GM1( √
M1d√

M1+
√
M2

)2 +
GM2( √
M2d√

M1+
√
M2

)2 = 0

(2) Getting now to systemsM1, . . . ,Mk with k ≥ 3, things here are more complicated.
Let us first look at the simplest case, that of 3 bodies on a line, at distinct positions.
Here, by obvious reasons, we have 2 centers of gravity, as follows:

•M1 −− ⋆x1−− •M2 −− ⋆x2−− •M3

More generally, again by obvious reasons, a system of aligned bodies M1, . . . ,Mk has
k − 1 centers of gravity, one in between each pair of consecutive bodies. □

Moving ahead, and looking for an easier question, let us still examine the gravity of a
rigid object, formed by fixed bodies M1, . . . ,Mk, but at a distance. We have here:
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Theorem 2.14. Consider a rigid object, consisting of fixed bodies M1, . . . ,Mk, located
at positions c1, . . . , ck ∈ R3. The corresponding gravitation force, F = −∇V with

V = −
∑
i

GmMi

|x− ci|

can be approximated by the force coming from the center of mass, Fc = −∇V with

Vc = −
Gm

∑
iMi

|x− c|
at order zero, when x >> ci. The correction term can be computed as well.

Proof. We have several assertions here, the idea being as follows:

(1) The first assertion, F ≃ Fc when x >> ci, is something clear, and with this not
even needing c to be the center of mass. Indeed, with V, Vc as above, we have:

V = −
∑
i

GmMi

|x− ci|
≃ −

∑
i

GmMi

|x− c|
= Vc

(2) Regarding now the correction term, the error to be estimated is:

V − Vc = −
∑
i

GmMi

|x− ci|
+
Gm

∑
iMi

|x− c|

=
∑
i

GmMi

(
1

|x− c|
− 1

|x− ci|

)
Thus, we are led to the conclusions in the statement. □

Before going ahead and leaving this subject, let us mention that an interesting gen-
eralization of the above comes when considering a “true” rigid body, made of matter
arranged according to a certain density function ρ inside it. We will not go into details
here, and instead let us just formulate a basic statement, as follows:

Theorem 2.15. Consider a rigid body, made of matter arranged according to a certain
density function ρ inside it. Its gravitational force is then F = −∇V with

V = −
∫
Gmρ(z)

|x− z|
dz

and can be approximated by the force coming from the center of mass, Fc = −∇V with

Vc = −
Gm

∫
ρ(z)dz∣∣x− ∫ uρ(u)du∣∣ dz

at order zero, when m is far away. The correction term can be computed as well.
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Proof. Here the formulae in the statement, which are perfectly similar to those in
Theorem 2.14, can be obtained via the usual philosophy “replace sums by integrals”.
Observe in particular the formula of the center of mass, producing Vc, namely:

c =

∫
uρ(u)du

As for the last assertion, this can only hold too, by proceeding as in the proof of
Theorem 2.14, and replacing everywhere at the end the sums by integrals. □

Finally, let us discuss energy conservation questions. Let us formulate:

Definition 2.16. An inertial frame is a frame where all basic formulae, namely

|F | = Gm1m2

(x1 − x2)2
, F = ma , a = v̇ , v = ẋ , F12 = −F21

hold, with the last formula standing for Newton’s action-reaction principle.

To be more precise here, the first 4 formulae are something that we have been heavily
using, so far in this book. As for the last formula, also called Newton’s third law, this
expresses the fact that when an object 1 acts on an object 2, say via gravity, with force
F12, then object 2 acts as well on object 1, with force F21 = −F12.

In relation with our present considerations, we have the following basic examples:

Proposition 2.17. In the context of the 2-body problem, the basic frames of type

λ1M1 + λ2M2

are all non-inertial, including the center of mass frame.

Proof. Since our definition of an inertial frame was something quite informal, so will
be this proof. We want to check whether the forces between M1,M2 satisfy:

F12 = −F21 =
GM1M2(x1 − x2)
|x1 − x2|3

(1) In the case of the frame centered at M1, the formula F12 = −F21 certainly does
not hold, because the acceleration of M1 is in this case 0̈ = 0, and so no force acting upon
it, at least from our calculus viewpoint. The same holds for the frame centered at M2.

(2) In the case now where we have parameters λ1, λ2 satisfying λ1 + λ2 = 0, the
positions of M1,M2 are given by the following formulae:

z1 = −λ1x , z2 = λ2x

Thus the forces acting upon M1,M2, computed according to calculus, are:

F21 = −M1λ1ẍ , F12 = −M2λ2ẍ
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Thus, in order to have F12 = −F21, the parameters λ1, λ2 satisfy M1λ1 = M2λ2. But
these are exactly the parameters of the center of mass.

(3) But the center of mass frame is not inertial either, because due to the fact that
we performed a dilation, the magnitude of F12 = −F21 is not the correct one. □

In what regards the conservation of energy, here we have the following result:

Theorem 2.18. With a suitable potential formalism, the total energy

E =
∑
i

Ti + Vi

of a system of bodies M1, . . . ,Mk is conserved. Also, the individual energy

E ′ = T ′ +
∑
i

V ′
i

of an extra body m added is conserved as well, again with a suitable formalism.

Proof. There are several questions here, the idea being as follows:

(1) In what regards T =
∑

i Ti we have, exactly as in the 2-body problem:

Ṫ =
∑
i ̸=j

< vi, Fji >

=
∑
i ̸=j

< vi,−∇Vji >

= −
∑
i ̸=j

V̇ji

(2) With this in hand, we can group pairs of terms, and we are led to the conclusion
in the statement, with the remark that all the potentials appearing are time-dependent.

(3) In what regards now the second assertion, this is not exactly something of the same
nature as the first assertion, becase assuming that by some kind of miracle we would have
a theory where all the bodies conserve their energy, the total energy of the system would
be trivially conserved too, just by summing, and this does not look normal. So, getting
now to the second assertion as formulated, we have, by computing as in (1) above:

Ṫ ′ = −
∑
i

V̇ ′
i

(4) Thus, we are led to the conclusion in the statement, with the problem however
that all the potentials appearing there are now time-dependent. □
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2e. Exercises

Exercises:

Exercise 2.19.

Exercise 2.20.

Exercise 2.21.

Exercise 2.22.

Exercise 2.23.

Exercise 2.24.

Exercise 2.25.

Exercise 2.26.

Bonus exercise.



CHAPTER 3

Functions, calculus

3a. Derivatives

The idea of calculus is very simple. We are interested in functions f : R → R, and
we already know that when f is continuous at a point x, we can write an approximation
formula as follows, for the values of our function f around that point x:

f(x+ t) ≃ f(x)

The problem is now, how to improve this? And a bit of thinking at all this suggests
to look at the slope of f at the point x. Which leads us into the following notion:

Definition 3.1. A function f : R→ R is called differentiable at x when

f ′(x) = lim
t→0

f(x+ t)− f(x)
t

called derivative of f at that point x, exists.

As a first remark, in order for f to be differentiable at x, that is to say, in order for
the above limit to converge, the numerator must go to 0, as the denominator t does:

lim
t→0

[f(x+ t)− f(x)] = 0

Thus, f must be continuous at x. However, the converse is not true, a basic coun-
terexample being f(x) = |x| at x = 0. Let us summarize these findings as follows:

Proposition 3.2. If f is differentiable at x, then f must be continuous at x. However,
the converse is not true, a basic counterexample being f(x) = |x|, at x = 0.

Proof. The first assertion is something that we already know, from the above. As
for the second assertion, regarding f(x) = |x|, this is something quite clear on the picture
of f , but let us prove this mathematically, based on Definition 3.1. We have:

lim
t↘0

|0 + t| − |0|
t

= lim
t↘0

t− 0

t
= 1

On the other hand, we have as well the following computation:

lim
t↗0

|0 + t| − |0|
t

= lim
t↗0

−t− 0

t
= −1

Thus, the limit in Definition 3.1 does not converge, so we have our counterexample. □

47
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Generally speaking, the last assertion in Proposition 3.2 should not bother us much,
because most of the basic continuous functions are differentiable, and we will see examples
in a moment. Before that, however, let us recall why we are here, namely improving the
basic estimate f(x+ t) ≃ f(x). We can now do this, using the derivative, as follows:

Theorem 3.3. Assuming that f is differentiable at x, we have:

f(x+ t) ≃ f(x) + f ′(x)t

In other words, f is, approximately, locally affine at x.

Proof. Assume indeed that f is differentiable at x, and let us set, as before:

f ′(x) = lim
t→0

f(x+ t)− f(x)
t

By multiplying by t, we obtain that we have, once again in the t→ 0 limit:

f(x+ t)− f(x) ≃ f ′(x)t

Thus, we are led to the conclusion in the statement. □

All this is very nice, and before developing more theory, let us work out some examples.
As a first illustration, the derivatives of the power functions are as follows:

Theorem 3.4. We have the differentiation formula

(xp)′ = pxp−1

valid for any exponent p ∈ R.

Proof. We can do this in three steps, as follows:

(1) In the case p ∈ N we can use the binomial formula, which gives, as desired:

(x+ t)p =
n∑

k=0

(
p

k

)
xp−ktk

= xp + pxp−1t+ . . .+ tp

≃ xp + pxp−1t

(2) Let us discuss now the general case p ∈ Q. We write p = m/n, with m ∈ Z and
n ∈ N. In order to do the computation, we use the following formula:

an − bn = (a− b)(an−1 + an−2b+ . . .+ bn−1)
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We set in this formula a = (x+ t)m/n and b = xm/n. We obtain, as desired:

(x+ t)m/n − xm/n =
(x+ t)m − xm

(x+ t)m(n−1)/n + . . .+ xm(n−1)/n

≃ (x+ t)m − xm

nxm(n−1)/n

≃ mxm−1t

nxm(n−1)/n

=
m

n
· xm−1−m+m/n · t

=
m

n
· xm/n−1 · t

(3) In the general case now, where p ∈ R is real, we can use a similar argument.
Indeed, given any integer n ∈ N, we have the following computation:

(x+ t)p − xp =
(x+ t)pn − xpn

(x+ t)p(n−1) + . . .+ xp(n−1)

≃ (x+ t)pn − xpn

nxp(n−1)

Now observe that we have the following estimate, with [.] being the integer part:

(x+ t)[pn] ≤ (x+ t)pn ≤ (x+ t)[pn]+1

By using the binomial formula on both sides, for the integer exponents [pn] and [pn]+1
there, we deduce that with n >> 0 we have the following estimate:

(x+ t)pn ≃ xpn + pnxpn−1t

Thus, we can finish our computation started above as follows:

(x+ t)p − xp ≃ pnxpn−1t

nxpn−p
= pxp−1t

But this gives (xp)′ = pxp−1, which finishes the proof. □

Here are some further computations, for other basic functions that we know:

Theorem 3.5. We have the following results:

(1) (sinx)′ = cosx.
(2) (cosx)′ = − sinx.
(3) (ex)′ = ex.
(4) (log x)′ = x−1.

Proof. This is quite tricky, as always when computing derivatives, as follows:
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(1) Regarding sin, the computation here goes as follows:

(sinx)′ = lim
t→0

sin(x+ t)− sinx

t

= lim
t→0

sinx cos t+ cosx sin t− sinx

t

= lim
t→0

sinx · cos t− 1

t
+ cosx · sin t

t
= cos x

Here we have used the fact, which is clear on pictures, by drawing the trigonometric
circle, that we have sin t ≃ t for t ≃ 0, plus the fact, which follows from this and from
Pythagoras, sin2+cos2 = 1, that we have as well cos t ≃ 1− t2/2, for t ≃ 0.

(2) The computation for cos is similar, as follows:

(cosx)′ = lim
t→0

cos(x+ t)− cosx

t

= lim
t→0

cosx cos t− sinx sin t− cosx

t

= lim
t→0

cosx · cos t− 1

t
− sinx · sin t

t
= − sinx

(3) For the exponential, the derivative can be computed as follows:

(ex)′ =

(
∞∑
k=0

xk

k!

)′

=
∞∑
k=0

kxk−1

k!

= ex

(4) As for the logarithm, the computation here is as follows, using log(1 + y) ≃ y for
y ≃ 0, which follows from ey ≃ 1 + y that we found in (3), by taking the logarithm:

(log x)′ = lim
t→0

log(x+ t)− log x

t

= lim
t→0

log(1 + t/x)

t

=
1

x

Thus, we are led to the formulae in the statement. □

Speaking exponentials, we can now formulate a nice result about them:
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Theorem 3.6. The exponential function, namely

ex =
∞∑
k=0

xk

k!

is the unique power series satisfying f ′ = f and f(0) = 1.

Proof. Consider indeed a power series satisfying f ′ = f and f(0) = 1. Due to
f(0) = 1, the first term must be 1, and so our function must look as follows:

f(x) = 1 +
∞∑
k=1

ckx
k

According to our differentiation rules, the derivative of this series is given by:

f(x) =
∞∑
k=1

kckx
k−1

Thus, the equation f ′ = f is equivalent to the following equalities:

c1 = 1 , 2c2 = c1 , 3c3 = c2 , 4c4 = c3 , . . .

But this system of equations can be solved by recurrence, as follows:

c1 = 1 , c2 =
1

2
, c3 =

1

2× 3
, c4 =

1

2× 3× 4
, . . .

Thus we have ck = 1/k!, leading to the conclusion in the statement. □

Observe that the above result leads to a more conceptual explanation for the number
e itself. To be more precise, e ∈ R is the unique number satisfying:

(ex)′ = ex

Let us work out now some general results. We have here the following statement:

Theorem 3.7. We have the following formulae:

(1) (f + g)′ = f ′ + g′.
(2) (fg)′ = f ′g + fg′.
(3) (f ◦ g)′ = (f ′ ◦ g) · g′.

Proof. All these formulae are elementary, the idea being as follows:
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(1) This follows indeed from definitions, the computation being as follows:

(f + g)′(x) = lim
t→0

(f + g)(x+ t)− (f + g)(x)

t

= lim
t→0

(
f(x+ t)− f(x)

t
+
g(x+ t)− g(x)

t

)
= lim

t→0

f(x+ t)− f(x)
t

+ lim
t→0

g(x+ t)− g(x)
t

= f ′(x) + g′(x)

(2) This follows from definitions too, the computation, by using the more convenient
formula f(x+ t) ≃ f(x) + f ′(x)t as a definition for the derivative, being as follows:

(fg)(x+ t) = f(x+ t)g(x+ t)

≃ (f(x) + f ′(x)t)(g(x) + g′(x)t)

≃ f(x)g(x) + (f ′(x)g(x) + f(x)g′(x))t

Indeed, we obtain from this that the derivative is the coefficient of t, namely:

(fg)′(x) = f ′(x)g(x) + f(x)g′(x)

(3) Regarding compositions, the computation here is as follows, again by using the
more convenient formula f(x+ t) ≃ f(x) + f ′(x)t as a definition for the derivative:

(f ◦ g)(x+ t) = f(g(x+ t))

≃ f(g(x) + g′(x)t)

≃ f(g(x)) + f ′(g(x))g′(x)t

Indeed, we obtain from this that the derivative is the coefficient of t, namely:

(f ◦ g)′(x) = f ′(g(x))g′(x)

Thus, we are led to the conclusions in the statement. □

We can of course combine the above formulae, and we obtain for instance:

Theorem 3.8. The derivatives of fractions are given by:(
f

g

)′

=
f ′g − fg′

g2

In particular, we have the following formula, for the derivative of inverses:(
1

f

)′

= − f
′

f 2

In fact, we have (fp)′ = pfp−1, for any exponent p ∈ R.
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Proof. This statement is written a bit upside down, and for the proof it is better to
proceed backwards. To be more precise, by using (xp)′ = pxp−1 and Theorem 3.7 (3), we
obtain the third formula. Then, with p = −1, we obtain from this the second formula.
And finally, by using this second formula and Theorem 3.7 (2), we obtain:(

f

g

)′

=

(
f · 1

g

)′

= f ′ · 1
g
+ f

(
1

g

)′

=
f ′

g
− fg′

g2

=
f ′g − fg′

g2

Thus, we are led to the formulae in the statement. □

With the above formulae in hand, we can do all sorts of computations for other basic
functions that we know, including tanx, or arctanx:

Theorem 3.9. We have the following formulae,

(tanx)′ =
1

cos2 x
, (arctanx)′ =

1

1 + x2

and the derivatives of the remaining trigonometric functions can be computed as well.

Proof. For tan, we have the following computation:

(tanx)′ =

(
sinx

cosx

)′

=
sin′ x cosx− sinx cos′ x

cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x

As for arctan, we can use here the following computation:

(tan ◦ arctan)′(x) = tan′(arctanx) arctan′(x)

=
1

cos2(arctanx)
arctan′(x)

Indeed, since the term on the left is simply x′ = 1, we obtain from this:

arctan′(x) = cos2(arctanx)
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On the other hand, with t = arctanx we know that we have tan t = x, and so:

cos2(arctanx) = cos2 t =
1

1 + tan2 t
=

1

1 + x2

Thus, we are led to the formula in the statement, namely:

(arctanx)′ =
1

1 + x2

As for the last assertion, we will leave this as an exercise. □

At the theoretical level now, further building on Theorem 3.3, we have:

Theorem 3.10. The local minima and maxima of a differentiable function f : R→ R
appear at the points x ∈ R where:

f ′(x) = 0

However, the converse of this fact is not true in general.

Proof. The first assertion follows from the formula in Theorem 3.3, namely:

f(x+ t) ≃ f(x) + f ′(x)t

Indeed, let us rewrite this formula, more conveniently, in the following way:

f(x+ t)− f(x) ≃ f ′(x)t

Now saying that our function f has a local maximum at x ∈ R means that there exists
a number ε > 0 such that the following happens:

f(x+ t) ≥ f(x) , ∀t ∈ [−ε, ε]

We conclude that we must have f ′(x)t ≥ 0 for sufficiently small t, and since this small
t can be both positive or negative, this gives, as desired:

f ′(x) = 0

Similarly, saying that our function f has a local minimum at x ∈ R means that there
exists a number ε > 0 such that the following happens:

f(x+ t) ≤ f(x) , ∀t ∈ [−ε, ε]

Thus f ′(x)t ≤ 0 for small t, and this gives, as before, f ′(x) = 0. Finally, in what
regards the converse, the simplest counterexample here is the following function:

f(x) = x3

Indeed, we have f ′(x) = 3x2, and in particular f ′(0) = 0. But our function being
clearly increasing, x = 0 is not a local maximum, nor a local minimum. □

As an important consequence of Theorem 3.10, we have:
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Theorem 3.11. Assuming that f : [a, b]→ R is differentiable, we have

f(b)− f(a)
b− a

= f ′(c)

for some c ∈ (a, b), called mean value property of f .

Proof. In the case f(a) = f(b), the result, called Rolle theorem, states that we have
f ′(c) = 0 for some c ∈ (a, b), and follows from Theorem 3.10. Now in what regards our
statement, due to Lagrange, this follows from Rolle, applied to the following function:

g(x) = f(x)− f(b)− f(a)
b− a

· x

Indeed, we have g(a) = g(b), due to our choice of the constant on the right, so we get
g′(c) = 0 for some c ∈ (a, b), which translates into the formula in the statement. □

In practice, Theorem 3.10 can be used in order to find the maximum and minimum
of any differentiable function, and this method is best recalled as follows:

Algorithm 3.12. In order to find the minimum and maximum of f : [a, b]→ R:
(1) Compute the derivative f ′.
(2) Solve the equation f ′(x) = 0.
(3) Add a, b to your set of solutions.
(4) Compute f(x), for all your solutions.
(5) Compute the min/max of all these f(x) values.
(6) Then this is the min/max of your function.

Needless to say, all this is very interesting, and powerful. The general problem in
any type of applied mathematics is that of finding the minimum or maximum of some
function, and we have now an algorithm for dealing with such questions. Very nice.

3b. Second derivatives

The derivative theory that we have is already quite powerful, and can be used in order
to solve all sorts of interesting questions, but with a bit more effort, we can do better.
Indeed, at a more advanced level, we can come up with the following notion:

Definition 3.13. We say that f : R→ R is twice differentiable if it is differentiable,
and its derivative f ′ : R→ R is differentiable too. The derivative of f ′ is denoted

f ′′ : R→ R
and is called second derivative of f .

You might probably wonder why coming with this definition, which looks a bit abstract
and complicated, instead of further developing the theory of the first derivative, which
looks like something very reasonable and useful. Good point, and answer to this coming
in a moment. But before that, let us get a bit familiar with f ′′. We first have:
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Interpretation 3.14. The second derivative f ′′(x) ∈ R is the number which:

(1) Expresses the growth rate of the slope f ′(z) at the point x.
(2) Gives us the acceleration of the function f at the point x.
(3) Computes how much different is f(x), compared to f(z) with z ≃ x.
(4) Tells us how much convex or concave is f , around the point x.

So, this is the truth about the second derivative, making it clear that what we have
here is a very interesting notion. In practice now, (1) follows from the usual interpretation
of the derivative, as both a growth rate, and a slope. Regarding (2), this is some sort
of reformulation of (1), using the intuitive meaning of the word “acceleration”, with the
relevant physics equations, due to Newton, being as follows:

v = ẋ , a = v̇

Regarding now (3) in the above, this is something more subtle, of statistical nature,
that we will clarify with some mathematics, in a moment. As for (4), this is something
quite subtle too, that we will again clarify with some mathematics, in a moment.

In practice now, let us first compute the second derivatives of the functions that we
are familiar with, see what we get. The result here, which is perhaps not very enlightening
at this stage of things, but which certainly looks technically useful, is as follows:

Proposition 3.15. The second derivatives of the basic functions are as follows:

(1) (xp)′′ = p(p− 1)xp−2.
(2) sin′′ = − sin.
(3) cos′′ = − cos.
(4) exp′ = exp.
(5) log′(x) = −1/x2.

Also, there are functions which are differentiable, but not twice differentiable.

Proof. We have several assertions here, the idea being as follows:

(1) Regarding the various formulae in the statement, these all follow from the various
formulae for the derivatives established before, as follows:

(xp)′′ = (pxp−1)′ = p(p− 1)xp−2

(sinx)′′ = (cosx)′ = − sinx

(cosx)′′ = (− sinx)′ = − cosx

(ex)′′ = (ex)′ = ex

(log x)′′ = (−1/x)′ = −1/x2

Of course, this is not the end of the story, because these formulae remain quite opaque,
and must be examined in view of Interpretation 3.14, in order to see what exactly is going
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on. Also, we have tan and the inverse trigonometric functions too. In short, plenty of
good exercises here, for you, and the more you solve, the better your calculus will be.

(2) Regarding now the counterexample, recall first that the simplest example of a
function which is continuous, but not differentiable, was f(x) = |x|, the idea behind this
being to use a “piecewise linear function whose branches do not fit well”. In connection
now with our question, piecewise linear will not do, but we can use a similar idea, namely
“piecewise quadratic function whose branches do not fit well”. So, let us set:

f(x) =

{
ax2 (x ≤ 0)

bx2 (x ≥ 0)

This function is then differentiable, with its derivative being:

f ′(x) =

{
2ax (x ≤ 0)

2bx (x ≥ 0)

Now for getting our counterexample, we can set a = −1, b = 1, so that f is:

f(x) =

{
−x2 (x ≤ 0)

x2 (x ≥ 0)

Indeed, the derivative is f ′(x) = 2|x|, which is not differentiable, as desired. □

Getting now to theory, we first have the following key result:

Theorem 3.16. Any twice differentiable function f : R→ R is locally quadratic,

f(x+ t) ≃ f(x) + f ′(x)t+
f ′′(x)

2
t2

with f ′′(x) being as usual the derivative of the function f ′ : R→ R at the point x.

Proof. Assume indeed that f is twice differentiable at x, and let us try to construct
an approximation of f around x by a quadratic function, as follows:

f(x+ t) ≃ a+ bt+ ct2

We must have a = f(x), and we also know from Theorem 3.3 that b = f ′(x) is the
correct choice for the coefficient of t. Thus, our approximation must be as follows:

f(x+ t) ≃ f(x) + f ′(x)t+ ct2

In order to find the correct choice for c ∈ R, observe that the function t → f(x + t)
matches with t→ f(x)+ f ′(x)t+ ct2 in what regards the value at t = 0, and also in what
regards the value of the derivative at t = 0. Thus, the correct choice of c ∈ R should be
the one making match the second derivatives at t = 0, and this gives:

f ′′(x) = 2c
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We are therefore led to the formula in the statement, namely:

f(x+ t) ≃ f(x) + f ′(x)t+
f ′′(x)

2
t2

In order to prove now that this formula holds indeed, we will use L’Hôpital’s rule,
which states that the 0/0 type limits can be computed as follows:

f(x)

g(x)
≃ f ′(x)

g′(x)

Observe that this formula holds indeed, as an application of Theorem 3.3. Now by
using this, if we denote by φ(t) ≃ P (t) the formula to be proved, we have:

φ(t)− P (t)
t2

≃ φ′(t)− P ′(t)

2t

≃ φ′′(t)− P ′′(t)

2

=
f ′′(x)− f ′′(x)

2
= 0

Thus, we are led to the conclusion in the statement. □

The above result substantially improves Theorem 3.3, and there are many applications
of it. As a first such application, justifying Interpretation 3.14 (3), we have the following
statement, which is a bit heuristic, but we will call it however Proposition:

Proposition 3.17. Intuitively speaking, the second derivative f ′′(x) ∈ R computes
how much different is f(x), compared to the average of f(z), with z ≃ x.

Proof. As already mentioned, this is something a bit heuristic, but which is good to
know. Let us write the formula in Theorem 3.17, as such, and with t→ −t too:

f(x+ t) ≃ f(x) + f ′(x)t+
f ′′(x)

2
t2

f(x− t) ≃ f(x)− f ′(x)t+
f ′′(x)

2
t2

By making the average, we obtain the following formula:

f(x+ t) + f(x− t)
2

≃ f(x) +
f ′′(x)

2
t2

But this is what our statement says, save for some uncertainties regarding the aver-
aging method, and for the precise value of I(t2/2). We will leave this for later. □

Back to rigorous mathematics, we can improve as well Theorem 3.10, as follows:
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Theorem 3.18. The local minima and local maxima of a twice differentiable function
f : R→ R appear at the points x ∈ R where

f ′(x) = 0

with the local minima corresponding to the case f ′(x) ≥ 0, and with the local maxima
corresponding to the case f ′′(x) ≤ 0.

Proof. The first assertion is something that we already know. As for the second
assertion, we can use the formula in Theorem 3.16, which in the case f ′(x) = 0 reads:

f(x+ t) ≃ f(x) +
f ′′(x)

2
t2

Indeed, assuming f ′′(x) ̸= 0, it is clear that the condition f ′′(x) > 0 will produce a
local minimum, and that the condition f ′′(x) < 0 will produce a local maximum. □

As before with Theorem 3.10, the above result is not the end of the story with the
mathematics of the local minima and maxima, because things are undetermined when:

f ′(x) = f ′′(x) = 0

For instance the functions ±xn with n ∈ N all satisfy this condition at x = 0, which
is a minimum for the functions of type x2m, a maximum for the functions of type −x2m,
and not a local minimum or local maximum for the functions of type ±x2m+1.

There are some comments to be made in relation with Algorithm 3.12 as well. Nor-
mally that algorithm stays strong, because Theorem 3.18 can only help in relation with
the final steps, and is it worth it to compute the second derivative f ′′, just for getting rid
of roughly 1/2 of the f(x) values to be compared. However, in certain cases, this method
proves to be useful, so Theorem 3.18 is good to know, when applying that algorithm.

3c. Taylor formula

Back now to the general theory of the derivatives, and their theoretical applications,
we can further develop our basic approximation method, at order 3, at order 4, and so
on, the ultimate result on the subject, called Taylor formula, being as follows:

Theorem 3.19. Any function f : R→ R can be locally approximated as

f(x+ t) =
∞∑
k=0

f (k)(x)

k!
tk

where f (k)(x) are the higher derivatives of f at the point x.

Proof. Consider the function to be approximated, namely:

φ(t) = f(x+ t)
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Let us try to best approximate this function at a given order n ∈ N. We are therefore
looking for a certain polynomial in t, of the following type:

P (t) = a0 + a1t+ . . .+ ant
n

The natural conditions to be imposed are those stating that P and φ should match
at t = 0, at the level of the actual value, of the derivative, second derivative, and so on
up the n-th derivative. Thus, we are led to the approximation in the statement:

f(x+ t) ≃
n∑

k=0

f (k)(x)

k!
tk

In order to prove now that this approximation holds indeed, we can use L’Hôpital’s
rule, applied several times, as in the proof of Theorem 3.16. To be more precise, if we
denote by φ(t) ≃ P (t) the approximation to be proved, we have:

φ(t)− P (t)
tn

≃ φ′(t)− P ′(t)

ntn−1

≃ φ′′(t)− P ′′(t)

n(n− 1)tn−2

...

≃ φ(n)(t)− P (n)(t)

n!

=
f (n)(x)− f (n)(x)

n!
= 0

Thus, we are led to the conclusion in the statement. □

Here is a related interesting statement, inspired from the above proof:

Proposition 3.20. For a polynomial of degree n, the Taylor approximation

f(x+ t) ≃
n∑

k=0

f (k)(x)

k!
tk

is an equality. The converse of this statement holds too.

Proof. By linearity, it is enough to check the equality in question for the monomials
f(x) = xp, with p ≤ n. But here, the formula to be proved is as follows:

(x+ t)p ≃
p∑

k=0

p(p− 1) . . . (p− k + 1)

k!
xp−ktk

We recognize the binomial formula, so our result holds indeed. As for the converse,
this is clear, because the Taylor approximation is a polynomial of degree n. □
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As a basic application of the Taylor series, we have:

Theorem 3.21. We have the following formulae,

sinx =
∞∑
l=0

(−1)l x2l+1

(2l + 1)!
, cosx =

∞∑
l=0

(−1)l x
2l

(2l)!

as well as the following formulae,

ex =
∞∑
k=0

xk

k!
, log(1 + x) =

∞∑
k=0

(−1)k+1x
k

k

as Taylor series, and in general as well, with |x| < 1 needed for log.

Proof. There are several statements here, the proofs being as follows:

(1) Regarding sin and cos, we can use here the following formulae:

(sinx)′ = cosx , (cosx)′ = − sinx

Thus, we can differentiate sin and cos as many times as we want to, so we can compute
the corresponding Taylor series, and we obtain the formulae in the statement.

(2) Regarding exp and log, here the needed formulae, which lead to the formulae in
the statement for the corresponding Taylor series, are as follows:

(ex)′ = ex

(log x)′ = x−1

(xp)′ = pxp−1

(3) Finally, the fact that the formulae in the statement extend beyond the small t
setting, coming from Taylor series, is something standard too. □

As another application of the Taylor formula, we can now improve the binomial for-
mula, which was actually our main tool so far, in the following way:

Theorem 3.22. We have the following generalized binomial formula, with p ∈ R,

(x+ t)p =
∞∑
k=0

(
p

k

)
xp−ktk

with the generalized binomial coefficients being given by the formula(
p

k

)
=
p(p− 1) . . . (p− k + 1)

k!

valid for any |t| < |x|. With p ∈ N, we recover the usual binomial formula.
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Proof. It is customary to divide everything by x, which is the same as assuming
x = 1. The formula to be proved is then as follows, under the assumption |t| < 1:

(1 + t)p =
∞∑
k=0

(
p

k

)
tk

Let us discuss now the validity of this formula, depending on p ∈ R:
(1) Case p ∈ N. According to our definition of the generalized binomial coefficients,

we have
(
p
k

)
= 0 for k > p, so the series is stationary, and the formula to be proved is:

(1 + t)p =

p∑
k=0

(
p

k

)
tk

But this is the usual binomial formula, which holds for any t ∈ R.
(2) Case p = −1. Here we can use the following formula, valid for |t| < 1:

1

1 + t
= 1− t+ t2 − t3 + . . .

But this is exactly our generalized binomial formula at p = −1, because:(
−1
k

)
=

(−1)(−2) . . . (−k)
k!

= (−1)k

(3) Case p ∈ −N. This is a continuation of our study at p = −1, which will finish the
study at p ∈ Z. With p = −m, the generalized binomial coefficients are:(

−m
k

)
=

(−m)(−m− 1) . . . (−m− k + 1)

k!

= (−1)km(m+ 1) . . . (m+ k − 1)

k!

= (−1)k (m+ k − 1)!

(m− 1)!k!

= (−1)k
(
m+ k − 1

m− 1

)
Thus, our generalized binomial formula at p = −m reads:

1

(1 + t)m
=

∞∑
k=0

(−1)k
(
m+ k − 1

m− 1

)
tk

But this is something which holds indeed, and not difficult to prove.

(4) General case, p ∈ R. As we can see, things escalate quickly, so we will skip the
next step, p ∈ Q, and discuss directly the case p ∈ R. Consider the following function:

f(x) = xp
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The derivatives at x = 1 are then given by the following formula:

f (k)(1) = p(p− 1) . . . (p− k + 1)

Thus, the Taylor approximation at x = 1 is as follows:

f(1 + t) =
∞∑
k=0

p(p− 1) . . . (p− k + 1)

k!
tk

But this is exactly our generalized binomial formula, so we are done with the case
where t is small. With a bit more care, we obtain that this holds for any |t| < 1, and we
will leave this as an instructive exercise, and come back to it, later in this book. □

3d. Integrals

Let us discuss now the integration of functions, and its relation with differentiability.
To start with, we have something very simple, as follows:

Definition 3.23. The integral of a continuous function f : [a, b]→ R, denoted∫ b

a

f(x)dx

is the area below the graph of f , signed + where f ≥ 0, and signed − where f ≤ 0.

Here it is of course understood that the area in question can be computed, and with
this being something quite subtle, that we will get into later.

Getting now to the computation of integrals, we can use here:

Theorem 3.24. We have the Riemann integration formula,∫ b

a

f(x)dx = (b− a)× lim
N→∞

1

N

N∑
k=1

f

(
a+

b− a
N
· k
)

which can serve as a definition for the integral.

Proof. This is standard, by drawing rectangles. We have indeed the following for-
mula, which can stand as a definition for the signed area below the graph of f :∫ b

a

f(x)dx = lim
N→∞

1

N

N∑
k=1

b− a
N
· f
(
a+

b− a
N
· k
)

Thus, we are led to the formula in the statement. □

Observe that the above formula suggests that
∫ b

a
f(x)dx is the length of the interval

[a, b], namely b − a, times the average of f on the interval [a, b]. Thinking a bit, this is
indeed something true, with no need for Riemann sums, coming directly from Definition
3.23, because area means side times average height. Thus, we can formulate:
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Theorem 3.25. The integral of a function f : [a, b]→ R is given by∫ b

a

f(x)dx = (b− a)× A(f)

where A(f) is the average of f over the interval [a, b].

Proof. As explained above, this is clear from Definition 3.23, via some geometric
thinking. Alternatively, this is something which certainly comes from Theorem 3.24. □

Going ahead with more interpretations of the integral, we have:

Theorem 3.26. We have the Monte Carlo integration formula,∫ b

a

f(x)dx = (b− a)× lim
N→∞

1

N

N∑
k=1

f(xi)

with x1, . . . , xN ∈ [a, b] being random.

Proof. We recall from Theorem 3.24 that the idea is that we have a formula as
follows, with the points x1, . . . , xN ∈ [a, b] being uniformly distributed:∫ b

a

f(x)dx = (b− a)× lim
N→∞

1

N

N∑
k=1

f(xi)

But this works as well when the points x1, . . . , xN ∈ [a, b] are randomly distributed,
for somewhat obvious reasons, and this gives the result. □

Finally, here is one more useful interpretation of the integral:

Theorem 3.27. The integral of a function f : [a, b]→ R is given by∫ b

a

f(x)dx = (b− a)× E(f)

where E(f) is the expectation of f , regarded as random variable.

Proof. This is just some sort of fancy reformulation of Theorem 3.26, the idea being
that what we can “expect” from a random variable is of course its average. We will be
back to this later in this book, when systematically discussing probability theory. □

Still at the general level, let us record as well the following result:

Theorem 3.28. Given a continuous function f : [a, b]→ R, we have

∃c ∈ [a, b] ,

∫ b

a

f(x)dx = (b− a)f(c)

with this being called mean value property.
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Proof. Our claim is that this follows from the following trivial estimate:

min(f) ≤ f ≤ max(f)

Indeed, by integrating this over [a, b], we obtain the following estimate:

(b− a)min(f) ≤
∫ b

a

f(x)dx ≤ (b− a)max(f)

Since f must takes all values on [min(f),max(f)], we get a c ∈ [a, b] such that:∫ b

a
f(x)dx

b− a
= f(c)

Thus, we are led to the conclusion in the statement. □

All this was theory, and getting now to the real thing, explicit computation of the
integrals, we have here the following result, called fundamental theorem of calculus:

Theorem 3.29. Given a continuous function f : [a, b]→ R, if we set

F (x) =

∫ x

a

f(s)ds

then F ′ = f . That is, the derivative of the integral is the function itself.

Proof. This follows from the Riemann integration picture, and more specifically,
from the mean value property. Indeed, we have:

F (x+ t)− F (x)
t

=
1

t

∫ x+t

x

f(x)dx

On the other hand, our function f being continuous, by using the mean value property,
we can find a number c ∈ [x, x+ t] such that:

1

t

∫ x+t

x

f(x)dx = f(x)

Thus, putting our formulae together, we conclude that we have:

F (x+ t)− F (x)
t

= f(c)

Now with t → 0, no matter how the number c ∈ [x, x + t] varies, one thing that we
can be sure about is that we have c→ x. Thus, by continuity of f , we obtain:

lim
t→0

F (x+ t)− F (x)
t

= f(x)

But this means exactly that we have F ′ = f , and we are done. □

We have as well the following result, also called fundamental theorem of calculus:
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Theorem 3.30. Given a function F : R→ R, we have∫ b

a

F ′(x)dx = F (b)− F (a)

for any interval [a, b].

Proof. As already mentioned, this is something which follows from Theorem 3.29,
and is in fact equivalent to it. Indeed, consider the following function:

G(s) =

∫ s

a

F ′(x)dx

By using Theorem 3.29 we have G′ = F ′, and so our functions F,G differ by a constant.
But with s = a we have G(a) = 0, and so the constant is F (a), and we get:

F (s) = G(s) + F (a)

Now with s = b this gives F (b) = G(b) + F (a), which reads:

F (b) =

∫ b

a

F ′(x)dx+ F (a)

Thus, we are led to the conclusion in the statement. □

As an illustration for this, solving some concrete integration problems, we have:

Theorem 3.31. We have the following integration formulae,∫ b

a

xpdx =
bp+1 − ap+1

p+ 1
,

∫ b

a

1

x
dx = log

(
b

a

)
∫ b

a

sinx dx = cos a− cos b ,

∫ b

a

cosx dx = sin b− sin a∫ b

a

exdx = eb − ea ,

∫ b

a

log x dx = b log b− a log a− b+ a

all obtained, in case you ever forget them, via the fundamental theorem of calculus.

Proof. We already know some of these formulae, but the best is to do everything,
using the fundamental theorem of calculus. The computations go as follows:

(1) With F (x) = xp+1 we have F ′(x) = pxp, and we get, as desired:∫ b

a

pxp dx = bp+1 − ap+1

(2) Observe first that the formula (1) does not work at p = −1. However, here we can
use F (x) = log x, having as derivative F ′(x) = 1/x, which gives, as desired:∫ b

a

1

x
dx = log b− log a = log

(
b

a

)
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(3) With F (x) = cos x we have F ′(x) = − sinx, and we get, as desired:∫ b

a

− sinx dx = cos b− cos a

(4) With F (x) = sinx we have F ′(x) = cos x, and we get, as desired:∫ b

a

cosx dx = sin b− sin a

(5) With F (x) = ex we have F ′(x) = ex, and we get, as desired:∫ b

a

ex dx = eb − ea

(6) This is something more tricky. We are looking for a function satisfying:

F ′(x) = log x

This does not look doable, but fortunately the answer to such things can be found on
the internet. But, what if the internet connection is down? So, let us think a bit, and try
to solve our problem. Speaking logarithm and derivatives, what we know is:

(log x)′ =
1

x

But then, in order to make appear log on the right, the idea is quite clear, namely
multiplying on the left by x. We obtain in this way the following formula:

(x log x)′ = 1 · log x+ x · 1
x
= log x+ 1

We are almost there, all we have to do now is to substract x from the left, as to get:

(x log x− x)′ = log x

But this this formula in hand, we can go back to our problem, and we get the result. □

Getting back now to theory, inspired by the above, let us formulate:

Definition 3.32. Given f , we call primitive of f any function F satisfying:

F ′ = f

We denote such primitives by
∫
f , and also call them indefinite integrals.

Observe that the primitives are unique up to an additive constant, in the sense that if
F is a primitive, then so is F +c, for any c ∈ R, and conversely, if F,G are two primitives,
then we must have G = F + c, for some c ∈ R, with this latter fact coming from the
standard fact that the derivative vanishes when the function is constant.
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As for the convention at the end, F =
∫
f , this comes from the fundamental theorem

of calculus, which can be written as follows, by using this convention:∫ b

a

f(x)dx =

(∫
f

)
(b)−

(∫
f

)
(a)

By the way, observe that there is no contradiction here, coming from the indeterminacy
of
∫
f . Indeed, when adding a constant c ∈ R to the chosen primitive

∫
f , when conputing

the above difference the c quantities will cancel, and we will obtain the same result.

We can now reformulate Theorem 3.31 in a more digest form, as follows:

Theorem 3.33. We have the following formulae for primitives,∫
xp =

xp+1

p+ 1
,

∫
1

x
= log x∫

sinx = − cosx ,

∫
cosx = sinx∫

ex = ex ,

∫
log x = x log x− x

allowing us to compute the corresponding definite integrals too.

Proof. Here the various formulae in the statement follow from Theorem 3.31, and
the last assertion comes from the integration formula given after Definition 3.32. □

Getting back now to theory, we have the following key result:

Theorem 3.34. We have the formula∫
f ′g +

∫
fg′ = fg

called integration by parts.

Proof. This follows by integrating the Leibnitz formula, namely:

(fg)′ = f ′g + fg′

Indeed, with our convention for primitives, this gives the formula in the statement. □

It is then possible to pass to usual integrals, and we obtain a formula here as well, as
follows, also called integration by parts, with the convention [φ]ba = φ(b)− φ(a):∫ b

a

f ′g +

∫ b

a

fg′ =
[
fg
]b
a



3D. INTEGRALS 69

In practice, the most interesting case is that when fg vanishes on the boundary {a, b}
of our interval, leading to the following formula:∫ b

a

f ′g = −
∫ b

a

fg′

Examples of this usually come with [a, b] = [−∞,∞], and more on this later. Now
still at the theoretical level, we have as well the following result:

Theorem 3.35. We have the change of variable formula∫ b

a

f(x)dx =

∫ d

c

f(φ(t))φ′(t)dt

where c = φ−1(a) and d = φ−1(b).

Proof. This follows with f = F ′, from the following differentiation rule, that we
know from before, and whose proof is something elementary:

(Fφ)′(t) = F ′(φ(t))φ′(t)

Indeed, by integrating between c and d, we obtain the result. □

As a main application now of our theory, in relation with advanced calculus, and more
specifically with the Taylor formula, we have:

Theorem 3.36. Given a function f : R→ R, we have the formula

f(x+ t) =
n∑

k=0

f (k)(x)

k!
tk +

∫ x+t

x

f (n+1)(s)

n!
(x+ t− s)n ds

called Taylor formula with integral formula for the remainder.

Proof. This is something which looks a bit complicated, so we will first do some
verifications, and then we will go for the proof in general:

(1) At n = 0 the formula in the statement is as follows, and certainly holds, due to

the fundamental theorem of calculus, which gives
∫ x+t

x
f ′(s)ds = f(x+ t)− f(x):

f(x+ t) = f(x) +

∫ x+t

x

f ′(s)ds

(2) At n = 1, the formula in the statement becomes more complicated, as follows:

f(x+ t) = f(x) + f ′(x)t+

∫ x+t

x

f ′′(s)(x+ t− s)ds

As a first observation, this formula holds indeed for the linear functions, where we
have f(x+ t) = f(x) + f ′(x)t, and f ′′ = 0. So, let us try f(x) = x2. Here we have:

f(x+ t)− f(x)− f ′(x)t = (x+ t)2 − x2 − 2xt = t2
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On the other hand, the integral remainder is given by the same formula, namely:∫ x+t

x

f ′′(s)(x+ t− s)ds = 2

∫ x+t

x

(x+ t− s)ds

= 2t(x+ t)− 2

∫ x+t

x

sds

= 2t(x+ t)− ((x+ t)2 − x2)
= 2tx+ 2t2 − 2tx− t2

= t2

(3) Still at n = 1, let us try now to prove the formula in the statement, in general.
Since what we have to prove is an equality, this cannot be that hard, and the first thought
goes towards differentiating. But this method works indeed, and we obtain the result.

(4) In general, the proof is similar, by differentiating, the computations being similar
to those at n = 1, and we will leave this as an instructive exercise. □

3e. Exercises

Exercises:

Exercise 3.37.

Exercise 3.38.

Exercise 3.39.

Exercise 3.40.

Exercise 3.41.

Exercise 3.42.

Exercise 3.43.

Exercise 3.44.

Bonus exercise.



CHAPTER 4

Waves and heat

4a. Elasticity, waves

Back to physics, we would like to talk now about waves, which are something funda-
mental. In fact, each major branch of physics is guided by its own wave equation. In
practice, and coming a bit in advance, the truth about waves is as follows:

Fact 4.1. Waves can be of many types, and basically fall into two classes:

(1) Mechanical waves, such as the usual water waves, but also the sound waves, or
the seismic waves. In all these cases, the wave propagates mechanically, via a
certain medium, which can be solid, liquid or gaseous.

(2) Electromagnetic waves, coming via a more complicated mechanism, namely an
accelerating charge in the context of electromagnetism. These are the radio waves,
microwaves, IR, visible light, UV, X-rays and γ-rays.

Quite remarkably, the behavior of all the above waves is basically described by the
same wave equation, which looks as follows, and details on this later:

φ̈ = v2∆φ

Getting to work now, in 1 dimension, to start with, the situation is as follows:

Theorem 4.2. The wave equation in 1 dimension is

φ̈ = v2φ′′

with the dot denoting time derivatives, and v > 0 being the propagation speed.

Proof. We can reach to the above equation via a suitable model, as follows:

(1) In order to understand the propagation of the waves, let us model the space, which
is R for us, as a network of balls, with springs between them, as follows:

· · · ××× • ××× • ××× • ××× • ××× • ××× · · ·

(2) Now let us send an impulse, and see how balls will be moving. For this purpose,
we zoom on one ball. The situation here is as follows, l being the spring length:

· · · · · · •φ(x−l) ××× •φ(x) ××× •φ(x+l) · · · · · ·
71
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We have two forces acting at x. First is the Newton motion force, mass times accel-
eration, which is as follows, with m being the mass of each ball:

Fn = m · φ̈(x)
And second is the Hooke force, displacement of the spring, times spring constant.

Since we have two springs at x, this is as follows, k being the spring constant:

Fh = F r
h − F l

h

= k(φ(x+ l)− φ(x))− k(φ(x)− φ(x− l))
= k(φ(x+ l)− 2φ(x) + φ(x− l))

We conclude that the equation of motion, in our model, is as follows:

m · φ̈(x) = k(φ(x+ l)− 2φ(x) + φ(x− l))
(3) Now let us take the limit of our model, as to reach to continuum. For this purpose

we will assume that our system consists of N >> 0 balls, having a total mass M , and
spanning a total distance L. Thus, our previous infinitesimal parameters are as follows,
with K being the spring constant of the total system, which is of course lower than k:

m =
M

N
, k = KN , l =

L

N

With these changes, our equation of motion found in (2) reads:

φ̈(x) =
KN2

M
(φ(x+ l)− 2φ(x) + φ(x− l))

(4) Now observe that this equation can be written, more conveniently, as follows:

φ̈(x) =
KL2

M
· φ(x+ l)− 2φ(x) + φ(x− l)

l2

With N →∞, and therefore l→ 0, we obtain in this way:

φ̈(x) =
KL2

M
· d

2φ

dx2
(x)

Thus, we are led to the conclusion in the statement. □

In order to reach now to some further insight into our spring models above, we must
get deeper into elasticity. Indeed, the Hooke law that we used has behind it some trivial
elasticity, of “linear” type, and understanding all this, and further modifying our models,
according to what elasticity theory exactly says, is certainly an interesting question.

Observe that all this can only lead us too into a better understanding of the fact that
the propagation speed is finite, v < c. Indeed, the Hooke law is something static, and for
better understanding what happens dynamically, we must certainly go into elasticity.

As a starting point for all this, we have the following result:
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Theorem 4.3. The wave equation can be understood as well directly, as a wave prop-
agating through a linear elastic medium, via stress.

Proof. Assume indeed that we have a bar of length L, made of linear elastic material.
The stiffness of the bar is then the following quantity, with A being the cross-sectional
area, and with E being the Young modulus of the material:

K =
EA

L

Now when sending a pulse, this propagates as follows, M being the total mass:

φ̈ =
EAL

M
· φ′′(x)

Bur since V = AL is the volume, with ρ =M/V being the density, we have:

φ̈ =
E

ρ
· φ′′(x)

Thus, as a conclusion, the wave propagates with speed v =
√
E/ρ. □

As mentioned in the beginning of this chapter, the next question which appears is
that of understanding how exactly the various mechanical waves propagate through solids,
liquids and gases, and what corrections to the wave equation are needed, in each case.
We will discuss this later in this book, after learning some thermodynamics.

4b. D’Alembert formula

With a bit of mathematical work, we can in fact fully solve the 1D wave equation. In
order to explain this, we will need a standard calculus result, as follows:

Proposition 4.4. The derivative of a function of type

φ(x) =

∫ h(x)

g(x)

f(s)ds

is given by the formula φ′(x) = f(h(x))h′(x)− f(g(x))g′(x).

Proof. Consider a primitive of the function that we integrate, F ′ = f . We have:

φ(x) =

∫ h(x)

g(x)

f(s)ds

=

∫ h(x)

g(x)

F ′(s)ds

= F (h(x))− F (g(x))
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By using now the chain rule for derivatives, we obtain from this:

φ′(x) = F ′(h(x))h′(x)− F ′(g(x))g′(x)

= f(h(x))h′(x)− f(g(x))g′(x)
Thus, we are led to the formula in the statement. □

Now back to the 1D waves, the result here, due to d’Alembert, is as follows:

Theorem 4.5. The solution of the 1D wave equation φ̈ = v2φ′′ with initial value
conditions φ(x, 0) = f(x) and φ̇(x, 0) = g(x) is given by the d’Alembert formula:

φ(x, t) =
f(x− vt) + f(x+ vt)

2
+

1

2v

∫ x+vt

x−vt

g(s)ds

Moreover, in the context of our previous lattice model discretizations, what happens is
more or less that the above d’Alembert integral gets computed via Riemann sums.

Proof. There are several things going on here, the idea being as follows:

(1) Let us first check that the d’Alembert solution is indeed a solution of the wave
equation φ̈ = v2φ′′. The first time derivative is computed as follows:

φ̇(x, t) =
−vf ′(x− vt) + vf ′(x+ vt)

2
+

1

2v
(vg(x+ vt) + vg(x− vt))

The second time derivative is computed as follows:

φ̈(x, t) =
v2f ′′(x− vt) + v2f(x+ vt)

2
+
vg′(x+ vt)− vg′(x− vt)

2
Regarding now space derivatives, the first one is computed as follows:

φ′(x, t) =
f ′(x− vt) + f ′(x+ vt)

2
+

1

2v
(g′(x+ vt)− g′(x− vt))

As for the second space derivative, this is computed as follows:

φ′′(x, t) =
f ′′(x− vt) + f ′′(x+ vt)

2
+
g′′(x+ vt)− g′′(x− vt)

2v

Thus we have indeed φ̈ = v2φ′′. As for the initial conditions, φ(x, 0) = f(x) is clear
from our definition of φ, and φ̇(x, 0) = g(x) is clear from our above formula of φ̇.

(2) Conversely now, we can simply solve our equation, which among others will dou-
blecheck the computations in (1). Let us make the following change of variables:

ξ = x− vt , η = x+ vt

With this change of variables, which is quite tricky, mixing space and time variables,
our wave equation φ̈ = v2φ′′ reformulates in a very simple way, as follows:

d2φ

dξdη
= 0
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But this latter equation tells us that our new ξ, η variables get separated, and we
conclude from this that the solution must be of the following special form:

φ(x, t) = F (ξ) +G(η) = F (x− vt) +G(x+ vt)

Now by taking into account the intial conditions φ(x, 0) = f(x) and φ̇(x, 0) = g(x),
and then integrating, we are led to the d’Alembert formula. Finally, in what regards the
last assertion, we will leave the study here as an instructive exercise. □

4c. Gases, pressure

We must first talk about gases. Let us start with the following basic fact, which was
the beginning of everything, going back to work of Boyle, Charles, Avogardo, Gay-Lussac,
Clapeyron and others from the 17th, 18th and 19th centuries, and with final touches from
Maxwell, Boltzmann, Gibbs and others, in the late 19th and early 20th centuries:

Fact 4.6. The ideal gases satisfy the equation PV = kT , where:

(1) V is the volume of the gas, independently of the shape of the container used.
(2) P is the pressure of the gas, measured with a manometer.
(3) T is the temperature of the has, measured with a thermometer.
(4) k is a constant, depending on the gas.

That is, PV = kT basically tells us that “pressure and temperature are the same thing”.

At the first glance, for instance if you are a mathematician not used to this, this looks
more like a joke. Why not defining then P = T or vice-versa, you would say, and what is
the point with that long list of distinguished gentlemen having worked hard on this.

Error. The point indeed comes from the following:

Explanation 4.7. In the equation of state PV = kT , as formulated above, the pres-
sure P and the temperature T appear more precisely as follows,

(1) The manometer read comes from the gas molecules pushing a piston, so P is a
statistical quantity, coming from the statistics of the molecular speeds,

(2) The thermometer read is something even more complicated, and T is as well a
statistical quantity, coming from the statistics of the molecular speeds,

so PV = kT is something non-trivial, telling us that the mathematical machinery produc-
ing P, T , via manometer and thermometer, out of the molecular speeds, is the same.

Hope you got my point, and getting back now to historical details, Boyle, Charles,
Avogardo, Gay-Lussac, Clapeyron, joined by Clausius, Carnot, Joule, Lord Kelvin and
others, first observed PV = kT , and then reached to a good understanding of what
this means, via an axiomatization of P and T . Later Maxwell started to look into the
molecular speeds and their statistics, then Boltzmann came with a tough mathematical
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computation, proving PV = kT , and then, even later, Gibbs and others further built on
all this, by formalizing modern thermodynamics, in the form that is still used today.

But probably too much talking, let us get to work. As a first result now, dealing with
pressure only, and for the gases without collisions between molecules, we have:

Theorem 4.8. The pressure P and volume V of a gas having point molecules, with
no collisions between them, satisfy

PV = 2K

where K is the total kinetic energy K of the gas.

Proof. We want to compute the pressure P on the right wall. Since there are no
collisions, we can assume by linearity that our gas has 1 molecule, having mass m and
traveling at speed v. Our molecule hits the right wall at every ∆t = 2L/v interval, with
its change of momentum being ∆p = 2mv. We obtain:

P =
F

L2
=

∆p

L2∆t
=

2mv

L2 · 2L/v
=
mv2

L3
=

2K

V

Thus, we are led to the conclusion in the statement. □

Going ahead now with the real problem, namely finding models for the piston, and
then doing some math afterwards, we have several choices here. First we have:

Model 4.9 (Spring model). The piston has a spring on its back, with the energy
E = mv2/2 of each incoming molecule being converted, over a certain period of time
∆t > 0, into internal energy Es of the spring, until the molecule comes to a stop, and
then released back as identical kinetic energy E = mv2/2, over the same period of time
∆t > 0, of that molecule bouncing back, with speed of same magnitude ||v||.

In other words, we are proposing here a model for the piston which is similar to the
one which can be found inside the usual, real-life manometers. The functioning is as
follows, with ⋆ standing for our displacement measuring devices:

= = = = = =
|| ◦ ◦ ◦ | ⋆
|| ◦ ◦ ◦ |×××××××||
|| ◦ ◦ ◦ | ||

= = = = = =

This model surely stands, and certainly brings some fresh air into our physics. Indeed,
what we have been doing so far assumes that the collisions with the piston are elastic and
instantaneous, ∆t = 0, and the problem now is about fine-tuning our theory using collision
times ∆t > 0, as above. In addition, the model can be further complicated afterwards,
say allowing for some friction on the vertical, which amounts in allowing heat diffusion at
the piston, having something to do with the temperature T of the gas.
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As a variation of this model, again inspired by usual manometers, the spring used
above is just a flexible solid, so why not using instead a liquid, or even a gas. We are
led in this way to the following scheme, with • standing our favorite lab fluid, and with
⋆ standing as usual for our measurement devices, now floating inside this fluid:

= = = = = =
|| ◦ ◦ ◦ | ⋆ • ||
|| ◦ ◦ ◦ | • • ||
|| ◦ ◦ ◦ | • • ||

= = = = = =

To be more precise, assuming for instance that • is another gas, initially at lower
pressure than the gas to be studied ◦, the piston will certainly start moving to the right,
and then after some time, start to stabilize, with an interesting jiggling to be studied.

But do we really have some lab gas •, that we know well. Not really, at this point of
our story. So we are led into liquids, which are a bit more similar to the solid springs in
Model 4.5, but do we really know about compression of liquids, and the answer here is
not either. So, we will not use such fluid models, and keep them in mind for later.

As a second main model now, which is intuitive and viable as well, we have:

Model 4.10 (Cooking pot model). The cylinder and piston, functioning now verti-
cally, work as a cooking pot with cover. That is, the gas is cooking inside the pot, the
cover has a certain weight M >> m and is subject to an acceleration g > 0, not affecting
the gas itself, and the molecules m collide elastically with the cover M , assumed to travel
frictionless on the vertical only, making it jiggle, around an average height L.

This model looks quite interesting, and here is the picture, with handles attached, for
easy transportation inside the lab, and with ⋆ standing for our measuring devices:

⋆
|| − − − ||

= || ◦ ◦ ◦ || =
|| ◦ ◦ ◦ ||
|| ◦ ◦ ◦ ||

= = =

The same general comments as for the spring model apply, with this model being
something preliminary, which can be subject to further improvements. However, there are
two notable differences with the spring model. First, in this cooking model the collisions
are still assumed to be instantaneous, ∆t = 0, and so we have less physics to care about.
And also, speaking simplicity, our cooking pot model is purely gravitational, and so no
need to go into springs and their functioning, we’re just ready to go.

Finally, as a third main model, we have something hybrid, as follows:
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Model 4.11 (Oscillator model). The cylinder and piston, functioning vertically, work
as a cooking pot with harmonic oscillator cover. That is, the gas is cooking inside the
pot, the cover has a certain weight M >> m and is subject to an acceleration g > 0, not
affecting the gas itself, and is attached as well to a spring, freely moving as a harmonic
oscillator, and the molecules m collide elastically with the cover M , assumed to travel
frictionless on the vertical only, making it jiggle, around an average height L.

This model looks again interesting, and here is the picture, somewhat hybrid between
our previous 2 models, with ⋆ standing as usual for our measuring devices:

= =
|| ×

× ||
|| ⋆ ×

× ||
|| ×

× ||
|| − − − ||
|| ◦ ◦ ◦ ||
|| ◦ ◦ ◦ ||
|| ◦ ◦ ◦ ||

= = =

The same general comments as for the spring and cooking pot models apply, with this
model being something preliminary, which can be subject to further improvements.

Here is now our first result, regarding the cooking pot model:

Theorem 4.12. The following happen, for a gas having N point molecules, with no
collisions between them, cooking in a pot with cover, as in Model 4.10:

(1) In the usual regime, N >> 0, the cover mass M and the acceleration g must be
subject to the formula dLMg = 2K, with d, L,K being as before.

(2) At N = 1, that is to say, when cooking a single molecule, the cover will bounce
up and fall, perfectly in tune with the molecule, which keeps its speed ||v||.

(3) At N = 2 however, when cooking two molecules, the initial speeds v1, v2 of these
molecules, even when taken equal, will change over time, due to the cover.

(4) Even worse, at N = 2 the system will exhibit chaotic behavior, and this for all
choices of the initial data. And the same will happen at any N ≥ 2.

Proof. There are many things to be done here, the idea being as follows:

(1) The molecular force acting on the cover, upwards, is given by the following formula,
A being the area of the cover:

F = PA =
2KA

V
=

2K

L
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But this force must cancel F ′ =Mg, pointing downwards, so we have:

2K

L
=Mg =⇒ LMg = 2K

(2) Let us cook now a single molecule, N = 1. The process here will take place in 4
steps, as follows:

– The molecule, with mass m and upwards speed v, meets the cover, with mass M
and downwards speed w, and has an elastic collision with it. Since we want our molecule
to simply switch its speed after the collision, v → −v, we must assume Mw = mv.

– In the second step, which is also infinitesimal, our molecule is now travelling down-
wards with speed v, and the cover is now traveling upwards with speed w.

– In the third step, the cover travels upwards during some time tc, until getting to a
halt, under the influence of g. As for the molecule, this travels downwards, during some
time tm, until reaching the bottom of the pot, for an elastic collision there.

– Finally, in the fourth step, the cover falls during time tc, under the influence of g,
until reaching its initial height L, with its intial downwards speed w. As for the molecule,
this reaches to the initial height L, with its upwards speed v, in time tm.

(3) In order now to have a cycle, we must have tc = tm, as for the whole picture of
our cycle to look as follows, over this common traveling time tc = tm:

��

⃝M

ε ''

OO

⃝M ↓w ⃝M ↑w
77

⃝M ↓w

��

•m ↑v •m ↓v •m ↑v

L

•m ↕v

OO

(4) But traveling times are easy to compute. In what regards the molecule, its trav-
elling time during half of the full cycle is given by:

tm =
L

v
As for the cover, its equation of movement, with respect to the origin taken at height

L, is x = wt− gt2/2. We have x = 0 at t = 0, of course, and then again at t = 2w/g, and
so the travelling time of the cover during half of the full cycle is given by:

tc =
w

g
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Thus, our cycle condition tc = tm amounts in saying that we must have gL = vw, and
so to conclude, our machinery works well when the following conditions are satisfied:

Mw = mv , Lg = vw

Observe that when multiplying these two equations, as to get rid of the initial cover
speed w, we obtain the following equation, which is the one found in (1) above:

LMg = mv2 = 2K

(5) At N = 2 now, when cooking two molecules, some interesting things happen. To
be more precise, our claim is that the initial speeds v1, v2 of these two molecules, even
when taken equal in magnitude initially, will change over time, due to the cover.

Indeed, in the context of the analysis done in (2-4), a second molecule, hitting the
cover after the first one, will hit this cover travelling either upwards or downwards, and in
both cases at a speed of different magnitude, w′ ̸= w. Thus, when assuming for instance
v1 = v2 initially, this second collision will be no longer between objects having equal,
opposite momenta, and so the speed v2, instead of simply getting reversed, v2 → −v2,
will get modified, into something of type v2 → −v′2 with v′2 < v2. And so on.

(6) To be more precise, let us show now that there is no possible configuration of the
initial parameters as to have a perfect cycle. There are two possible cases. The first case
is where the second coming molecule hits the cover during its upwards travel:

33

⃝M ↑w′ ⃝M ↑w′′

��

��
ε ◦m ↑v2 ◦m ↓v2
OO

⃝M ↓w ⃝M ↑w

99

⃝M ↓w

��

•m ↑v1 •m ↓v1 •m ↑v1

L

◦m ↑v2 ◦m ↑v2 ◦m ↑v2
•m ↕v1 •m ↕v1

OO

But this certainly won’t work, because the collision between the cover and the second
molecule cannot happen as indicated, on top, due to obvious momentum reasons.
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(7) The other case, which is perhaps more realistic, is that when the second coming
molecule hits the cover during its downwards travel, as follows:

**

44

⃝M ↓w′ ⃝M ↑w′

��

��
ε ◦m ↑v2 ◦m ↓v2
OO

⃝M ↓w ⃝M ↑w

BB

⃝M ↓w

��

•m ↑v1 •m ↓v1 •m ↑v1

L

◦m ↑v2 ◦m ↑v2 ◦m ↑v2
•m ↕v1 •m ↕v1

OO

Here both the collisions will perform fine, as indicated, provided that the equal and
opposite momenta conditions for them are satisfied, namely:

Mw = mv1 , Mw′ = mv2

However, there is a bug at the level of time. On one hand we must have v2 > v1,
since the second molecule has to travel 2ε more than the first one, during the whole cycle.
And on the other hand we must have v2 < v1 due to the above collision equations, since
w′ < w. Thus, contradiction, and this second configuration is ruled out too.

(8) Moving ahead now, the next problem is that of understanding how the speeds
w, v1, v2 will modify over the time. Assuming, to start with, that we still want to have some
sort of cycle, with the positions of the two molecules and of the cover being unchanged
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after the cycle, but with the speeds modified, the picture of the problem as follows:

⃝M ↓?β ⃝M ↑?γ

��

��
ε ◦m ↑v2 ◦m ↓v′2
OO

⃝M ↓w ⃝M ↑α

AA

⃝M ↓w′

��

•m ↑v1 •m ↓v′1 •m ↑v′1

L

◦m ↑v2 ◦m ↑v2 ◦m ↑v′2
δ

CC

  
•m|v′1 •m|v′1

OO

To be more precise, things evolve as indicated, with the upper question marks standing
for the fact that we want to deal with all possible orientations there, but we have chosen
some orientations, as indicated, for doing our computations, with the convention β, γ ∈ R.
As for the | signs on the bottom, near the speeds v′1, these stand for the orientations of
these speeds v′1 > 0, which are irrelevant at that exact moment. And finally, as new
parameter we have the distance δ > 0 between the second molecule and the bottom.

(9) Getting now to equations, there are many of them. First we have the two collision
equations, momentum and energy, which after simplification for energy are:

M(w − α) = m(v′1 − v1) , M(β − γ) = m(v′2 − v2)

w + α = v1 + v′1 , β + γ = v2 + v′2

We have then two equations relating the speeds of M , left to middle, and middle to
right, which can be obtained by conservation of energy, and are as follows:

α2 − β2 = w′2 − γ2 = 2gε

We have then equations regarding the partial times t1, t2 of our two-step cycle, viewed
from the perspective of the second molecule, and of the first molecule, as follows:

t1 =
L− δ + ε

v2
, t2 =

L+ δ + ε

v′2
, t1 + t2 =

2L

v′1

And finally we have degree 2 equations for t1, t2 from the perspective of the cover,
which are as follows, with the ± sign standing for upwards vs downwards collision:

t1 =
α±

√
α2 − 2εg

g
, t2 =

γ +
√
γ2 + 2εg

g
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Looking at these equations, they don’t look that bad. The first 6 equations, all
regarding speeds, can be used in order to compute α, β, γ and w′, v′1, v

′
2 in terms of w, v1, v2.

And then we have 5 equations for t1, t2, which can be used for computing t1, t2, and then
for finding what exact conditions must the intial data m,M, g, L, δ, w, v1, v2 satisfy, as for
the positions of our 3 objects to be the same in the end as in the beginning.

(10) We can only conclude from all this that things are quite chaotic at N = 2, and
consequently, at N ≥ 3 too. With the comment however that with N >> 0 something
interesting must certainly happen, because after all at N = ∞ we have equilibrium, as
explained in (1). But we are here with our math on the thin edge between equilibrium
and chaos, and such things are reputed to be difficult, so we will just stop here. □

Let us discuss now the spring model. Our result here, quite modest, is as follows:

Theorem 4.13. For the spring model, the statistics is basically that of

PV = 2K

that we already know. More, of chaotic type, can be said via advanced elasticity.

Proof. Here the first assertion follows from the above discussion, by recycling the
computations from the proof of Theorem 4.8, using the Hooke law, namely:

F = kx

Indeed, we can incorporate this law into our previous computations either directly, or
by using a potential energy argument. As for the second assertion, this is something quite
plausible in view of Theorem 4.12, and we will not get into details here. □

Let us turn now into our third model, the oscillator one. We have here:

Theorem 4.14. For the oscillator model, the statistics is basically that of

PV = 2K

but some N <∞ phenomena, of rather chaotic type, can be observed as well.

Proof. This follows indeed by doing some computations. □

4d. Heat diffusion

We can talk about the heat equation in 1D, as follows:

Theorem 4.15. The heat equation in 1 dimension is

φ̇ = αφ′′

where α > 0 is the thermal diffusivity of the medium.
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Proof. As before with the wave equation, this is not exactly a theorem, but rather
what comes out of experiments, but we can justify this mathematically, as follows:

(1) As an intuitive explanation for this equation, since the second derivative φ′′ com-
putes the average value of a function φ around a point, minus the value of φ at that point,
as we know from chapter 1, the heat equation as formulated above tells us that the rate
of change φ̇ of the temperature of the material at any given point must be proportional,
with proportionality factor α > 0, to the average difference of temperature between that
given point and the surrounding material. Which sounds reasonable.

(2) In practice now, we can use, a bit like before for the wave equation, a lattice model
as follows, with distance l > 0 between the neighbors:

◦x−l
l ◦x

l ◦x+l

In order to model now heat diffusion, we have to implement the intuitive mechanism
explained above, and in practice, this leads to a condition as follows, expressing the change
of the temperature φ, over a small period of time δ > 0:

φ(x, t+ δ) = φ(x, t) +
αδ

l2

∑
x∼y

[φ(y, t)− φ(x, t)]

But this leads, via manipulations as before, to φ̇(x, t) = α · φ′′(x, t), as claimed. □

4e. Exercises

Exercises:

Exercise 4.16.

Exercise 4.17.

Exercise 4.18.

Exercise 4.19.

Exercise 4.20.

Exercise 4.21.

Exercise 4.22.

Exercise 4.23.

Bonus exercise.
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Two dimensions



Farewell the ashtray girl
Forbidden snowflake

Beware this troubled world
Watch out for earthquakes



CHAPTER 5

Vector calculus

5a. The plane

Vectors in the plane. Many things can be said here.

5b. Linear maps

The transformations of the plane R2 that we are interested in are as follows:

Definition 5.1. A map f : R2 → R2 is called affine when it maps lines to lines,

f(tx+ (1− t)y) = tf(x) + (1− t)f(y)

for any x, y ∈ R2 and any t ∈ R. If in addition f(0) = 0, we call f linear.

As a first observation, our “maps lines to lines” interpretation of the equation in
the statement assumes that the points are degenerate lines, and this in order for our
interpretation to work when x = y, or when f(x) = f(y). Also, what we call line is not
exactly a set, but rather a dynamic object, think trajectory of a point on that line. We
will be back to this later, once we will know more about such maps.

Here are some basic examples of symmetries, all being linear in the above sense:

Proposition 5.2. The symmetries with respect to Ox and Oy are:(
x

y

)
→
(
x

−y

)
,

(
x

y

)
→
(
−x
y

)
The symmetries with respect to the x = y and x = −y diagonals are:(

x

y

)
→
(
y

x

)
,

(
x

y

)
→
(
−y
−x

)
All these maps are linear, in the above sense.

Proof. The fact that all these maps are linear is clear, because they map lines to
lines, in our sense, and they also map 0 to 0. As for the explicit formulae in the statement,
these are clear as well, by drawing pictures for each of the maps involved. □

Here are now some basic examples of rotations, once again all being linear:

87
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Proposition 5.3. The rotations of angle 0◦ and of angle 90◦ are:(
x

y

)
→
(
x

y

)
,

(
x

y

)
→
(
−y
x

)
The rotations of angle 180◦ and of angle 270◦ are:(

x

y

)
→
(
−x
−y

)
,

(
x

y

)
→
(
y

−x

)
All these maps are linear, in the above sense.

Proof. As before, these rotations are all linear, for obvious reasons. As for the
formulae in the statement, these are clear as well, by drawing pictures. □

Here are some basic examples of projections, once again all being linear:

Proposition 5.4. The projections on Ox and Oy are:(
x

y

)
→
(
x

0

)
,

(
x

y

)
→
(
0

y

)
The projections on the x = y and x = −y diagonals are:(

x

y

)
→ 1

2

(
x+ y

x+ y

)
,

(
x

y

)
→ 1

2

(
x− y
y − x

)
All these maps are linear, in the above sense.

Proof. Again, these projections are all linear, and the formulae are clear as well,
by drawing pictures, with only the last 2 formulae needing some explanations. In what
regards the projection on the x = y diagonal, the picture here is as follows:

◦

OO

•

◦ •

__

◦ ◦ ◦ //

But this gives the result, since the 45◦ triangle shows that this projection leaves
invariant x+ y, so we can only end up with the average (x+ y)/2, as double coordinate.
As for the projection on the x = −y diagonal, the proof here is similar. □

Finally, we have the translations, which are as follows:

Proposition 5.5. The translations are exactly the maps of the form(
x

y

)
→
(
x+ p

y + q

)
with p, q ∈ R, and these maps are all affine, in the above sense.
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Proof. A translation f : R2 → R2 is clearly affine, because it maps lines to lines.
Also, such a translation is uniquely determined by the following vector:

f

(
0

0

)
=

(
p

q

)
To be more precise, f must be the map which takes a vector

(
x
y

)
, and adds this vector(

p
q

)
to it. But this gives the formula in the statement. □

Summarizing, we have many interesting examples of linear and affine maps. Let us
develop now some general theory, for such maps. As a first result, we have:

Theorem 5.6. For a map f : R2 → R2, the following are equivalent:

(1) f is linear in our sense, mapping lines to lines, and 0 to 0.
(2) f maps sums to sums, f(x+ y) = f(x) + f(y), and satisfies f(λx) = λf(x).

Proof. This is something which comes from definitions, as follows:

(1) =⇒ (2) We know that f satisfies the following equation, and f(0) = 0:

f(tx+ (1− t)y) = tf(x) + (1− t)f(y)
By setting y = 0, and by using our assumption f(0) = 0, we obtain, as desired:

f(tx) = tf(x)

As for the first condition, regarding sums, this can be established as follows:

f(x+ y) = f

(
2 · x+ y

2

)
= 2f

(
x+ y

2

)
= 2 · f(x) + f(y)

2
= f(x) + f(y)

(2) =⇒ (1) Conversely now, assuming that f satisfies f(x + y) = f(x) + f(y) and
f(λx) = λf(x), then f must map lines to lines, as shown by:

f(tx+ (1− t)y) = f(tx) + f((1− t)y)
= tf(x) + (1− t)f(y)

Also, we have f(0) = f(2 · 0) = 2f(0), which gives f(0) = 0, as desired. □

The above result is very useful, and in practice, we will often use the condition (2)
there, somewhat as a new definition for the linear maps.

Let us record this finding as an upgrade of our formalism, as follows:
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Definition 5.7 (upgrade). A map f : R2 → R2 is called:

(1) Linear, when it satisfies f(x+ y) = f(x) + f(y) and f(λx) = λf(x).
(2) Affine, when it is of the form f = g + x, with g linear, and x ∈ R2.

All this is very nice, and there are some further things that can be said, but getting to
business, Definition 5.7 is what we need. Indeed, we have the following powerful result,
stating that the linear/affine maps f : R2 → R2 are fully described by 4/6 parameters:

Theorem 5.8. The linear maps f : R2 → R2 are precisely the maps of type

f

(
x

y

)
=

(
ax+ by

cx+ dy

)
and the affine maps f : R2 → R2 are precisely the maps of type

f

(
x

y

)
=

(
ax+ by

cx+ dy

)
+

(
p

q

)
with the conventions from Definition 5.7 for such maps.

Proof. Assuming that f is linear in the sense of Definition 5.7, we have:

f

(
x

y

)
= f

((
x

0

)
+

(
0

y

))
= f

(
x

0

)
+ f

(
0

y

)
= f

(
x

(
1

0

))
+ f

(
y

(
0

1

))
= xf

(
1

0

)
+ yf

(
0

1

)
Thus, we obtain the formula in the statement, with a, b, c, d ∈ R being given by:

f

(
1

0

)
=

(
a

c

)
, f

(
0

1

)
=

(
b

d

)
In the affine case now, we have as extra piece of data a vector, as follows:

f

(
0

0

)
=

(
p

q

)
Indeed, if f : R2 → R2 is affine, then the following map is linear:

f −
(
p

q

)
: R2 → R2

Thus, by using the formula in (1) we obtain the result. □
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Moving ahead now, Theorem 5.8 is all that we need for doing some non-trivial math-
ematics, and so in practice, that will be our “definition” for the linear and affine maps.
In order to simplify now all that, which might be a bit complicated to memorize, the idea
will be to put our parameters a, b, c, d into a matrix, in the following way:

Definition 5.9. A matrix A ∈M2(R) is an array as follows:

A =

(
a b
c d

)
These matrices act on the vectors in the following way,(

a b
c d

)(
x

y

)
=

(
ax+ by

cx+ dy

)
the rule being “multiply the rows of the matrix by the vector”.

The above multiplication formula might seem a bit complicated, at a first glance, but
it is not. Here is an example for it, quickly worked out:(

1 2
5 6

)(
3

1

)
=

(
1 · 3 + 2 · 1
5 · 3 + 6 · 1

)
=

(
5

21

)
As already mentioned, all this comes from our findings from Theorem 5.8. Indeed,

with the above multiplication convention for matrices and vectors, we can turn Theorem
5.8 into something much simpler, and better-looking, as follows:

Theorem 5.10. The linear maps f : R2 → R2 are precisely the maps of type

f(v) = Av

and the affine maps f : R2 → R2 are precisely the maps of type

f(v) = Av + w

with A being a 2× 2 matrix, and with v, w ∈ R2 being vectors, written vertically.

Proof. With the above conventions, the formulae in Theorem 5.8 read:

f

(
x

y

)
=

(
a b
c d

)(
x

y

)
f

(
x

y

)
=

(
a b
c d

)(
x

y

)
+

(
p

q

)
But these are exactly the formulae in the statement, with:

A =

(
a b
c d

)
, v =

(
x

y

)
, w =

(
p

q

)
Thus, we have proved our theorem. □

Before going further, let us discuss some examples. First, we have:
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Proposition 5.11. The symmetries with respect to Ox and Oy are given by:(
1 0
0 −1

)(
x

y

)
,

(
−1 0
0 1

)(
x

y

)
The symmetries with respect to the x = y and x = −y diagonals are given by:(

0 1
1 0

)(
x

y

)
,

(
0 −1
−1 0

)(
x

y

)
Proof. According to Proposition 5.2, the above transformations map

(
x
y

)
to:(

x

−y

)
,

(
−x
y

)
,

(
y

x

)
,

(
−y
−x

)
But this gives the formulae in the statement, by guessing in each case the matrix

which does the job, in the obvious way. □

Regarding now the basic rotations, we have here:

Proposition 5.12. The rotations of angle 0◦ and of angle 90◦ are given by:(
1 0
0 1

)(
x

y

)
,

(
0 −1
1 0

)(
x

y

)
The rotations of angle 180◦ and of angle 270◦ are given by:(

−1 0
0 −1

)(
x

y

)
,

(
0 1
−1 0

)(
x

y

)
Proof. As before, but by using Proposition 5.3, the vector

(
x
y

)
maps to:(

x

y

)
,

(
−y
x

)
,

(
−x
−y

)
,

(
y

−x

)
But this gives the formulae in the statement, as before by guessing the matrix. □

Finally, regarding the basic projections, we have here:

Proposition 5.13. The projections on Ox and Oy are given by:(
1 0
0 0

)(
x

y

)
,

(
0 0
0 1

)(
x

y

)
The projections on the x = y and x = −y diagonals are given by:

1

2

(
1 1
1 1

)(
x

y

)
,

1

2

(
1 −1
−1 1

)(
x

y

)
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Proof. As before, but according now to Proposition 5.4, the vector
(
x
y

)
maps to:(

x

0

)
,

(
0

y

)
,

1

2

(
x+ y

x+ y

)
,

1

2

(
x− y
y − x

)
But this gives the formulae in the statement, as before by guessing the matrix. □

Let us discuss now the computation of the arbitrary symmetries, rotations and pro-
jections. We begin with the rotations, whose formula is a must-know:

Theorem 5.14. The rotation of angle t ∈ R is given by the matrix

Rt =

(
cos t − sin t
sin t cos t

)
depending on t ∈ R taken modulo 2π.

Proof. The rotation being linear, it must correspond to a certain matrix:

Rt =

(
a b
c d

)
We can guess this matrix, via its action on the basic coordinate vectors

(
1
0

)
and

(
0
1

)
.

A quick picture shows that we must have:(
a b
c d

)(
1
0

)
=

(
cos t
sin t

)
Also, by paying attention to positives and negatives, we must have:(

a b
c d

)(
0
1

)
=

(
− sin t
cos t

)
Guessing now the matrix is not complicated, because the first equation gives us the

first column, and the second equation gives us the second column:(
a

c

)
=

(
cos t
sin t

)
,

(
b

d

)
=

(
− sin t
cos t

)
Thus, we can just put together these two vectors, and we obtain our matrix. □

Regarding now the symmetries, the formula here is as follows:

Theorem 5.15. The symmetry with respect to the Ox axis rotated by an angle t/2 ∈ R
is given by the matrix

St =

(
cos t sin t
sin t − cos t

)
depending on t ∈ R taken modulo 2π.
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Proof. As before, we can guess the matrix via its action on the basic coordinate
vectors

(
1
0

)
and

(
0
1

)
. A quick picture shows that we must have:(

a b
c d

)(
1
0

)
=

(
cos t
sin t

)
Also, by paying attention to positives and negatives, we must have:(

a b
c d

)(
0
1

)
=

(
sin t
− cos t

)
Guessing now the matrix is not complicated, because we must have:(

a

c

)
=

(
cos t
sin t

)
,

(
b

d

)
=

(
sin t
− cos t

)
Thus, we can just put together these two vectors, and we obtain our matrix. □

Finally, regarding the projections, the formula here is as follows:

Theorem 5.16. The projection on the Ox axis rotated by an angle t/2 ∈ R is given
by the matrix

Pt =
1

2

(
1 + cos t sin t
sin t 1− cos t

)
depending on t ∈ R taken modulo 2π.

Proof. We will need here some trigonometry, and more precisely the formulae for
the duplication of the angles. Regarding the sine, the formula here is:

sin(2t) = 2 sin t cos t

Regarding the cosine, we have here 3 equivalent formulae, as follows:

cos(2t) = cos2 t− sin2 t

= 2 cos2 t− 1

= 1− 2 sin2 t

Getting back now to our problem, some quick pictures, using similarity of triangles,
and then the above trigonometry formulae, show that we must have:

Pt

(
1
0

)
= cos

t

2

(
cos t

2

sin t
2

)
=

1

2

(
1 + cos t
sin t

)

Pt

(
0
1

)
= sin

t

2

(
cos t

2

sin t
2

)
=

1

2

(
sin t

1− cos t

)
Now by putting together these two vectors, and we obtain our matrix. □
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In order to formulate now our second theorem, dealing with compositions of maps, let
us make the following multiplication convention, between matrices and matrices:(

a b
c d

)(
p q
r s

)
=

(
ap+ br aq + bs
cp+ dr cq + ds

)
This might look a bit complicated, but as before, in what was concerning multiplying

matrices and vectors, the idea is very simple, namely “multiply the rows of the first matrix
by the columns of the second matrix”. With this convention, we have:

Theorem 5.17. If we denote by fA : R2 → R2 the linear map associated to a matrix
A, given by the formula

fA(v) = Av

then we have the following multiplication formula for such maps:

fAfB = fAB

That is, the composition of linear maps corresponds to the multiplication of matrices.

Proof. We want to prove that we have the following formula, valid for any two
matrices A,B ∈M2(R), and any vector v ∈ R2:

A(Bv) = (AB)v

For this purpose, let us write our matrices and vector as follows:

A =

(
a b
c d

)
, B =

(
p q
r s

)
, v =

(
x

y

)
The formula that we want to prove becomes:(

a b
c d

)[(
p q
r s

)(
x

y

)]
=

[(
a b
c d

)(
p q
r s

)](
x

y

)
But this is the same as saying that:(

a b
c d

)(
px+ qy

rx+ sy

)
=

(
ap+ br aq + bs
cp+ dr cq + ds

)(
x

y

)
And this latter formula does hold indeed, because on both sides we get:(

apx+ aqy + brx+ bsy

cpx+ cqy + drx+ dsy

)
Thus, we have proved the result. □
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As a verification for the above result, let us compose two rotations. The computation
here is as follows, yieding a rotation, as it should, and of the correct angle:

RsRt =

(
cos s − sin s
sin s cos s

)(
cos t − sin t
sin t cos t

)
=

(
cos s cos t− sin s sin t − cos s sin t− sin t cos s
sin s cos t+ cos s sin t − sin s sin t+ cos s cos t

)
=

(
cos(s+ t) − sin(s+ t)
sin(s+ t) cos(s+ t)

)
= Rs+t

We will be back to this, with many applications, in what follows.

5c. Higher dimensions

We are now ready to discuss 3 and more dimensions. Before doing so, let us point out
however that the maps of type f : R3 → R2, or f : R → R2, and so on, are not covered
by our results. Since there are many interesting such maps, say obtained by projecting
and then rotating, and so on, we will be interested here in the maps f : RN → RM .

A bit of thinking suggests that such maps should come from the M × N matrices.
Indeed, this is what happens at M = N = 2, of course, and M = N = 3 too. But this
happens as well at N = 1, because a linear map f : R → RM can only be something of
the form f(λ) = λv, with v ∈ RM . But v ∈ RM means that v is a M × 1 matrix. So, let
us start with the product rule for such matrices, which is as follows:

Definition 5.18. We can multiply the M ×N matrices with N ×K matrices, a11 . . . a1N
...

...
aM1 . . . aMN

 b11 . . . b1K
...

...
bN1 . . . bNK


the product being the M ×K matrix given by the following formula,

a11b11 + . . .+ a1NbN1 . . . . . . a11b1K + . . .+ a1NbNK
...

...
...

...
aM1b11 + . . .+ aMNbN1 . . . . . . aM1b1K + . . .+ aMNbNK


obtained via the usual rule “multiply rows by columns”.

Observe that this formula generalizes all the multiplication rules that we have been
using so far, between various types of matrices and vectors. Thus, in practice, we can
simply forget all the previous multiplication rules, and simply memorize this one.
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In case the above formula looks hard to memorize, here is an alternative formulation
of it, which is simpler and more powerful, by using the standard algebraic notation for
the matrices, A = (Aij), that we will heavily use, in what follows:

Proposition 5.19. The matrix multiplication is given by formula

(AB)ij =
∑
k

AikBkj

with Aij standing for the entry of A at row i and column j.

Proof. This is indeed just a shorthand for the formula in Definition 5.18, by following
the rule there, namely “multiply the rows of A by the columns of B”. □

As an illustration for the power of the convention in Proposition 5.19, we have:

Proposition 5.20. We have the following formula, valid for any matrices A,B,C,

(AB)C = A(BC)

provided that the sizes of our matrices A,B,C fit.

Proof. We have the following computation, using indices as above:

((AB)C)ij =
∑
k

(AB)ikCkj =
∑
kl

AilBlkCkj

On the other hand, we have as well the following computation:

(A(BC))ij =
∑
l

Ail(BC)lj =
∑
kl

AilBlkCkj

Thus we have (AB)C = A(BC), and we have proved our result. □

We can now talk about linear maps between spaces of arbitrary dimension, generalizing
what we have been doing so far. The main result here is as follows:

Theorem 5.21. Consider a map f : RN → RM .

(1) f is linear when it is of the form f(v) = Av, with A ∈MM×N(R).
(2) f is affine when f(v) = Av + w, with A ∈MM×N(R) and w ∈ RM .
(3) We have the composition formula fAfB = fAB, whenever the sizes fit.

Proof. We already know that this happens at M = N = 2. In general, the proof is
similar, by doing some elementary computations. □

As a first example here, we have the identity matrix, acting as the identity:1 0
. . .

0 1

x1
...
xN

 =

x1
...
xN
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We have as well the null matrix, acting as the null map:0 . . . 0
...

...
0 . . . 0

x1
...
xN

 =

0
...
0


Here is now an important result, providing us with many examples:

Proposition 5.22. The diagonal matrices act as follows:λ1 0
. . .

0 λN

x1
...
xN

 =

 λ1x1
...

λNxN


Proof. This is clear, indeed, from definitions. □

As a more specialized example now, we have:

Proposition 5.23. The flat matrix, which is as follows,

IN =

1 . . . 1
...

...
1 . . . 1


acts via N times the projection on the all-one vector.

Proof. The flat matrix acts in the following way:1 . . . 1
...

...
1 . . . 1

x1
...
xN

 =

x1 + . . .+ xN
...

x1 + . . .+ xN


Thus, in terms of the matrix P = IN/N , we have the following formula:

P

x1
...
xN

 =
x1 + . . .+ xN

N

1
...
1


Since the linear map f(x) = Px satisfies f 2 = f , and since Im(f) consists of the

scalar multiples of the all-one vector ξ ∈ RN , we conclude that f is a projection on Rξ.
Also, with the standard scalar product convention < x, y >=

∑
xiyi, we have:

< f(x)− x, ξ > = < f(x), ξ > − < x, ξ >

=

∑
xi
N
×N −

∑
xi

= 0

Thus, our projection is an orthogonal projection, and we are done. □



5C. HIGHER DIMENSIONS 99

Let us develop now some general theory for the square matrices. We will need the
following standard result, regarding the changes of coordinates in RN :

Theorem 5.24. For a system {v1, . . . , vN} ⊂ RN , the following are equivalent:

(1) The vectors vi form a basis of RN , in the sense that each vector x ∈ RN can be
written in a unique way as a linear combination of these vectors:

x =
∑

λivi

(2) The following linear map associated to these vectors is bijective:

f : RN → RN , λ→
∑

λivi

(3) The matrix formed by these vectors, regarded as usual as column vectors,

P = [v1, . . . , vN ] ∈MN(R)

is invertible, with respect to the usual multiplication of the matrices.

Proof. Here the equivalence (1) ⇐⇒ (2) is clear from definitions, and the equiva-
lence (2) ⇐⇒ (3) is clear as well, because we have f(x) = Px. □

Getting back now to the matrices, as an important definition, we have:

Definition 5.25. Let A ∈ MN(R) be a square matrix. We say that v ∈ RN is an
eigenvector of A, with corresponding eigenvalue λ ∈ RN , when:

Av = λv

Also, we say that A is diagonalizable when RN has a basis formed by eigenvectors of A.

We will see in a moment examples of eigenvectors and eigenvalues, and of diagonaliz-
able matrices. However, even before seeing the examples, it is quite clear that these are
key notions. Indeed, for a matrix A ∈MN(R), being diagonalizable is the best thing that
can happen, because in this case, once the basis changed, A becomes diagonal.

To be more precise here, we have the following result:

Proposition 5.26. Assuming that A ∈MN(R) is diagonalizable, we have the formula

A =

λ1 . . .
λN


with respect to the basis {v1, . . . , vN} of RN consisting of eigenvectors of A.

Proof. This is clear from the definition of eigenvalues and eigenvectors, and from
the formula of linear maps associated to diagonal matrices, from Proposition 5.22. □
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Here is an equivalent form of the above result, which is often used in practice, when
we prefer not to change the basis, and stay with the usual basis of RN :

Theorem 5.27. Assuming that A ∈MN(R) is diagonalizable, with

v1, . . . , vN ∈ RN , λ1, . . . , λN ∈ R
as eigenvectors and corresponding eigenvalues, we have the formula

A = PDP−1

with the matrices P,D ∈MN(R) being given by the formulae

P = [v1, . . . , vN ] , D = diag(λ1, . . . , λN)

and respectively called passage matrix, and diagonal form of A.

Proof. This can be viewed in two possible ways, as follows:

(1) As already mentioned, with respect to the basis v1, . . . , vN ∈ RN formed by the
eigenvectors, our matrix A is given by:

A =

λ1 . . .
λN


But this corresponds precisely to the formula A = PDP−1 from the statement, with

P and its inverse appearing there due to our change of basis.

(2) We can equally establish the formula in the statement by a direct computation.
Indeed, we have Pei = vi, where {e1, . . . , eN} is the standard basis of RN , and so:

APei = Avi = λivi

On the other hand, once again by using Pei = vi, we have as well:

PDei = Pλiei = λiPei = λivi

Thus we have AP = PD, and so A = PDP−1, as claimed. □

Let us discuss now some basic examples, namely the rotations, symmetries and pro-
jections in 2 dimensions. The situation is very simple for the projections, as follows:

Proposition 5.28. The projection on the Ox axis rotated by an angle t/2 ∈ R,

Pt =
1

2

(
1 + cos t sin t
sin t 1− cos t

)
is diagonalizable, its diagonal form being as follows:

Pt ∼
(
1 0
0 0

)
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Proof. This is clear, because if we denote by L the line where our projection projects,
we can pick any vector v ∈ L, and this will be an eigenvector with eigenvalue 1, and then
pick any vector w ∈ L⊥, and this will be an eigenvector with eigenvalue 0. Thus, even
without computations, we are led to the conclusion in the statement. □

The computation for the symmetries is similar, as follows:

Proposition 5.29. The symmetry with respect to the Ox axis rotated by t/2 ∈ R,

St =

(
cos t sin t
sin t − cos t

)
is diagonalizable, its diagonal form being as follows:

St ∼
(
1 0
0 −1

)
Proof. This is once again clear, because if we denote by L the line with respect to

which our symmetry symmetrizes, we can pick any vector v ∈ L, and this will be an
eigenvector with eigenvalue 1, and then pick any vector w ∈ L⊥, and this will be an
eigenvector with eigenvalue −1. Thus, we are led to the conclusion in the statement. □

Regarding now the rotations, here the situation is different, as follows:

Proposition 5.30. The rotation of angle t ∈ [0, 2π), given by the formula

Rt =

(
cos t − sin t
sin t cos t

)
is diagonal at t = 0, π, and is not diagonalizable at t ̸= 0, π.

Proof. The first assertion is clear, because at t = 0, π the rotations are:

R0 =

(
1 0
0 1

)
, Rπ =

(
−1 0
0 −1

)
As for the rotations of angle t ̸= 0, π, these clearly cannot have eigenvectors. □

Finally, here is one more example, which is the most important of them all:

Theorem 5.31. The following matrix is not diagonalizable,

J =

(
0 1
0 0

)
because it has only 1 eigenvector.

Proof. The above matrix, called J en hommage to Jordan, acts as follows:(
0 1
0 0

)(
x

y

)
=

(
y

0

)
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Thus the eigenvector/eigenvalue equation Jv = λv reads:(
y

0

)
=

(
λx

λy

)
We have then two cases, depending on λ, as follows, which give the result:

(1) For λ ̸= 0 we must have y = 0, coming from the second row, and so x = 0 as well,
coming from the first row, so we have no nontrivial eigenvectors.

(2) As for the case λ = 0, here we must have y = 0, coming from the first row, and so
the eigenvectors here are the vectors of the form

(
x
0

)
. □

5d. Scalar products

In order to discuss some interesting examples of matrices, and their diagonalization,
in arbitrary dimensions, we will need the following standard fact:

Proposition 5.32. Consider the scalar product on RN , given by:

< x, y >=
∑
i

xiyi

We have then the following formula, valid for any vectors x, y and any matrix A,

< Ax, y >=< x,Aty >

with At being the transpose matrix.

Proof. By linearity, it is enough to prove the above formula on the standard basis
vectors e1, . . . , eN of RN . Thus, we want to prove that for any i, j we have:

< Aej, ei >=< ej, A
tei >

The scalar product being symmetric, this is the same as proving that:

< Aej, ei >=< Atei, ej >

On the other hand, for any matrix M we have the following formula:

Mij =< Mej, ei >

Thus, the formula to be proved simply reads:

Aij = (At)ji

But this precisely the definition of At, and we are done. □

With this, we can develop some theory. We first have:

Theorem 5.33. The orthogonal projections are the matrices satisfying:

P 2 = P t = P

These projections are diagonalizable, with eigenvalues 0, 1.
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Proof. It is obvious that a linear map f(x) = Px is a projection precisely when:

P 2 = P

In order now for this projection to be an orthogonal projection, the condition to be
satisfied can be written and then processed as follows:

< Px− Py, Px− x >= 0 ⇐⇒ < x− y, P tPx− P tx >= 0

⇐⇒ P tPx− P tx = 0

⇐⇒ P tP − P t = 0

Thus we must have P t = P tP . Now observe that by transposing, we have as well:

P = (P tP )t = P t(P t)t = P tP

Thus we must have P = P t, as claimed. Finally, regarding the diagonalization asser-
tion, this is clear by taking a basis of Im(f), which consists of 1-eigenvectors, and then
completing with 0-eigenvectors, which can be found inside the orthogonal of Im(f). □

Here is now a key computation of such projections:

Theorem 5.34. The rank 1 projections are given by the formula

Px =
1

||x||2
(xixj)ij

where the constant, namely

||x|| =
√∑

i

x2i

is the length of the vector.

Proof. Consider a vector y ∈ RN . Its projection on Rx must be a certain multiple
of x, and we are led in this way to the following formula:

Pxy =
< y, x >

< x, x >
x =

1

||x||2
< y, x > x

With this in hand, we can now compute the entries of Px, as follows:

(Px)ij = < Pxej, ei >

=
1

||x||2
< ej, x >< x, ei >

=
xjxi
||x||2

Thus, we are led to the formula in the statement. □

As an application, we can recover a result that we already know, namely:
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Proposition 5.35. In 2 dimensions, the rank 1 projections, which are the projections
on the Ox axis rotated by an angle t/2 ∈ [0, π), are given by the following formula:

Pt =
1

2

(
1 + cos t sin t
sin t 1− cos t

)
Together with the following two matrices, which are the rank 0 and 2 projections in R2,

0 =

(
0 0
0 0

)
, 1 =

(
1 1
1 1

)
these are all the projections in 2 dimensions.

Proof. The first assertion follows from the general formula in Theorem 5.34, by
plugging in the following vector, depending on a parameter s ∈ [0, π):

x =

(
cos s

sin s

)
We obtain in this way the following matrix, which with t = 2s is the one in the

statement, via some trigonometry:

P2s =

(
cos2 s cos s sin s

cos s sin s sin2 s

)
As for the second assertion, this is clear from the first one, because outside rank 1 we

can only have rank 0 or rank 2, corresponding to the matrices in the statement. □

Here is another interesting application, this time in N dimensions:

Proposition 5.36. The projection on the all-1 vector ξ ∈ RN is

Pξ =
1

N

1 . . . 1
...

...
1 . . . 1


with the all-1 matrix on the right being called the flat matrix.

Proof. As already pointed out in the proof of Proposition 5.23, the matrix in the
statement acts in the following way:

Pξ

x1
...
xN

 =
x1 + . . .+ xN

N

1
...
1


Thus Pξ is indeed a projection onto Rξ, and the fact that this projection is indeed

the orthogonal one follows either by a direct orthogonality computation, or by using the
general formula in Theorem 5.34, by plugging in the all-1 vector ξ. □

Let us discuss now, as a final topic of this chapter, the isometries of RN . We have
here the following general result:
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Theorem 5.37. The linear maps f : RN → RN which are isometries, in the sense
that they preserve the distances, are those coming from the matrices satisfying:

U t = U−1

These latter matrices are called orthogonal, and they form a set ON ⊂ MN(R) which is
stable under taking compositions, and inverses.

Proof. We have several things to be proved, the idea being as follows:

(1) We recall that we can pass from scalar products to distances, as follows:

||x|| =
√
< x, x >

Conversely, we can compute the scalar products in terms of distances, by using the
parallelogram identity, which is as follows:

||x+ y||2 − ||x− y||2 = ||x||2 + ||y||2 + 2 < x, y > −||x||2 − ||y||2 + 2 < x, y >

= 4 < x, y >

Now given a matrix U ∈ MN(R), we have the following equivalences, with the first
one coming from the above identities, and with the other ones being clear:

||Ux|| = ||x|| ⇐⇒ < Ux,Uy >=< x, y >

⇐⇒ < x,U tUy >=< x, y >

⇐⇒ U tUy = y

⇐⇒ U tU = 1

⇐⇒ U t = U−1

(2) The second assertion is clear from the definition of the isometries, and can be
established as well by using matrices, and the U t = U−1 criterion. □

As a basic illustration here, we have:

Theorem 5.38. The rotations and symmetries in the plane, given by

Rt =

(
cos t − sin t
sin t cos t

)
, St =

(
cos t sin t
sin t − cos t

)
are isometries. These are all the isometries in 2 dimensions.

Proof. We already know that Rt is the rotation of angle t. As for St, this is the
symmetry with respect to the Ox axis rotated by t/2 ∈ R. But this gives the result, since
the isometries in 2 dimensions are either rotations, or symmetries. □
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5e. Exercises

Exercises:

Exercise 5.39.

Exercise 5.40.

Exercise 5.41.

Exercise 5.42.

Exercise 5.43.

Exercise 5.44.

Exercise 5.45.

Exercise 5.46.

Bonus exercise.



CHAPTER 6

Basic mechanics

6a. The pendulum

Let us start our discussion with something very basic, namely:

Definition 6.1. A simple pendulum is a device of type

×

l

•m
consisting of a bob of mass m, attached to a rigid rod of length l.

In order to study the physics of the pendulum, which can easily lead to a lot of
complicated computations, when approached with bare hands, the most convenient is to
use the notion of energy. For a particle moving under the influence of a force F , the
position x, speed v and acceleration a are related by the following formulae:

v = ẋ , a = v̇ = ẍ , F = ma

The kinetic energy of our particle is then given by the following formula:

T =
mv2

2

By differentiating with respect to time t, we obtain the following formula:

Ṫ = mvv̇ = mva = Fv

Now by integrating, also with respect to t, this gives the following formula:

T =

∫
Fvdt =

∫
Fẋdt =

∫
Fdx

But this suggests to define the potential energy V by the following formula, up to a
constant, with the derivative being with respect to the space variable x:

V ′ = −F
107
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Indeed, we know from the above that we have T ′ = F , so if we define the total energy
to be E = T + V , then this total energy is constant, as shown by:

E ′ = T ′ + V ′ = 0

Very nice all this, and by getting back now to the pendulum from Definition 6.1, we
can have this understood with not many computations involved, as follows:

Theorem 6.2. For a pendulum starting with speed v from the equilibrium position,

×

l

•m v
//

the motion will be confined if v2 < 4gl, and circular if v2 > 4gl.

Proof. There are many ways of proving this result, along with working out several
other useful related formulae, for which we will refer to the proof below, and with a quite
elegant approach to this, using no computations or almost, being as follows:

(1) Let us first examine what happens when the bob has traveled an angular distance
θ > 0, with respect to the vertical. The picture here is as follows:

×

l

l

•m
•m

;;

The distance traveled is then x = lθ. As for the force acting, this is Ftotal = mg
oriented downwards, with the component alongside x being given by:

F = −||Ftotal|| sin θ
= −mg sin θ

= −mg sin
(x
l

)
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(2) But with this, we can compute the potential energy. With the convention that
this vanishes at the equilibrium position, V (0) = 0, we obtain the following formula:

V ′ = −F =⇒ V ′ = mg sin
(x
l

)
=⇒ V = mgl

(
1− cos

(x
l

))
=⇒ V = mgl(1− cos θ)

(3) Alternatively, in case this sounds too wizarding, we can compute the potential
energy in the old fashion, by letting the bob fall, the picture being as follows:

×

l

l

•
h��•

The height of the fall is then h = l− l cos θ, and since for this fall the force is constant,
F = −mg, we obtain the following formula for the potential energy:

V ′ = −F =⇒ V ′ = mg

=⇒ V = mgh

=⇒ V = mgl(1− cos θ)

Summarizing, one way or another we have our formula for the potential energy V .

(4) Now comes the discussion. The motion will be confined when the initial kinetic
energy, namely E = mv2/2, satisfies the following condition:

E < sup
θ
V = 2mgl ⇐⇒ mv2

2
< 2mgl

⇐⇒ v2 < 4gl

In this case, the motion will be confined between two angles −θ, θ, as follows:

×

l

l

l

•m •m
•m

cc ;;
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To be more precise here, the two extreme angles −θ, θ ∈ (−π, π) can be explicitly
computed, as being solutions of the following equation:

V = E ⇐⇒ mgl(1− cos θ) =
mv2

2

⇐⇒ 1− cos θ =
v2

2gl

(5) Regarding now the case v2 > 4gl, here the bob will certainly reach the upwards
position, with the speed w > 0 there being given by the following formula:

mw2

2
= E − 2mgl =⇒ mw2

2
=
mv2

2
− 2mgl

=⇒ w2 = v2 − 4gl

=⇒ w =
√
v2 − 4gl

Thus, with the convention in the statement for v, that is, going to the right, the
motion of the pendulum will be counterclockwise circular, and perpetual:

•

l

woo

__

nn

×

l

-- •m

??

v
//

(6) Finally, in the case v2 = 4gl, the bob will also reach the upwards position, but
with speed w = 0 there, and then, at least theoretically, will remain there:

•?

l

mm

×

l

•m

==

v
//

(7) Actually, it is quite interesting in this latter situation, v2 = 4gl, to further speculate
on what can happen, when making our problem more realistic. For instance, we can add
to our setting the assumption that when the bob is stuck on top, with speed 0, there is a
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33% chance for it to keep going, to the left, a 33% chance for it to come back, to the right,
and a 33% chance for it to remain stuck. In this case there are infinitely many possible
trajectories, which are best investigated by using probability. Welcome to chaos.

(8) As a final comment, yes I know that the figures in (7) don’t add up to 100%.
This is because there is as well a remaining 1% possibility, where a relativistic black
cat appears, with a continuous effect on the bob, via a paw slap, when on top, with
speed w′ ∈ (0.3c, 0.7c), with c being the speed of light. In this case, the set of possible
trajectories becomes uncountable, and is again best investigated by using probability. □

6b. Harmonic oscillators

Let us discuss now the motion of a particle near an equilibrium point. We have two
basic examples of such points provided by the pendulum, namely the downwards one,
which is stable, and the upwards one, which is unstable. But our discussion here will be
valid for any other types of particles moving, under the influence of forces.

As a first observation, our generalities about motion and energy provide us with:

Theorem 6.3. For a particle moving near an equilibrium point x = 0, the following
equivalent conditions must be satisfied, infinitesimally:

(1) The potential energy is V = kx2/2, when assuming V (0) = 0.
(2) The force acting on our particle is F = −kx.
(3) The equation of motion is mẍ+ kx = 0, with m being the mass.

Proof. This is something very standard, the idea being as follows:

(1) Let us start with some generalities regarding the potential energy V . Around any
given point, that we can choose by translation to be x = 0, we can write:

V (x) = V (0) + V ′(0)x+
V ′′(0)x2

2
+
V ′′′(0)x3

6
+ . . .

By definition of V , we can assume V (0) = 0. Regarding now the second term, this
vanishes too, because our condition of equilibrium reads:

V ′(0) = −F (0) = 0

Thus, with the above normalizations x = 0 and V (0) = 0 made, our general formula
above for V takes at equilibrium the following form, with k = V ′′(0):

V (x) =
kx2

2
+ . . .

Thus, we are led to the conclusion in the statement, provided that we are indeed in
the non-degenerate case, where k ̸= 0, which amounts in saying that F ′(0) ̸= 0.

(2) This follows indeed from (1), and from V ′ = −F .
(3) This follows indeed from (2), and from F = ma = mẍ. □
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The above result suggests formulating the following definition:

Definition 6.4. A harmonic oscillator is a particle moving as above, following

mẍ+ kx = 0

with k ̸= 0. In the case k > 0, we say that we have a simple harmonic oscillator.

There the last convention comes from the fact that our oscillator is unstable when
k < 0, and stable k > 0, and it is in this latter case that we are mostly interested in.
And with this, stability depending on the sign of k, coming either from some abstract
reasoning along the lines of Theorem 6.3, or from the explicit formulae below.

Very nice, so let us solve now the equation of motion. We have here:

Theorem 6.5. The solutions of the equation of motion mẍ+kx = 0 for the harmonic
oscillators are as follows:

(1) x = aept + be−pt with p =
√
−k/m, when k < 0.

(2) x = c coswt+ d sinwt with w =
√
k/m, when k > 0.

Proof. This is standard mathematics, as follows:

(1) Assume first that we are in the case k < 0. Here, with p =
√
−k/m as in the

statement, the equation of motion takes the following form:

ẍ = p2x

But the functions ept, e−pt being solutions of this equation, by linearity we obtain that
the solutions are exactly the linear combinations of these two functions, as claimed.

(2) Assume now that we are in the case k > 0. Here, with w =
√
k/m as in the

statement, the equation of motion takes the following form:

ẍ = −w2x

But the functions coswt, sinwt being solutions, by linearity we obtain that the solu-
tions are exactly the linear combinations of these two functions, as claimed. □

Observe that, as already mentioned above, the formulae that we obtained make it
clear that our oscillator is unstable when k < 0, and stable when k > 0. In fact, we have
the following simple consequences of the general formulae obtained above:

Proposition 6.6. The short and long time behavior of a harmonic oscillator, moving
according to mẍ+ kx = 0, are as follows:

(1) In the case k < 0, with x = aept + be−pt as above, we have x ≃ (a+ b)+ p(a− b)t
for t > 0 small, and x ≃ aept for t >> 0.

(2) In the case k > 0, with x = c coswt+ d sinwt as above, we have x ≃ c+ dwt for
t > 0 small, and there is no asymptotics for t >> 0.
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Proof. This is indeed standard mathematics based on Theorem 6.5, as follows:

(1) In the case k < 0, with x = aept + be−pt as in Theorem 6.5, in the t > 0 small
regime we have indeed the following estimate, coming from ez ≃ 1 + z:

x = aept + be−pt

≃ a(1 + pt) + b(1− pt)
= (a+ b) + p(a− b)t

As for the other estimate, namely x ≃ aept for t >> 0, this is clear.

(2) In the case k > 0, with x = c coswt + d sinwt as in Theorem 6.5, in the t > 0
small regime we have indeed the following estimate, coming from standard calculus:

x = c coswt+ d sinwt

≃ c(1 + o(t)) + dwt

≃ c+ dwt

As for the last assertion, regarding the lack of asymptotics at k > 0 in the t >> 0
regime, this is clear, because neither cos, nor sin have such asymptotics, and the same
happens for any linear combination of them, with non-trivial coefficients. Of course,
interesting exercice for you to figure out all this, abstractly, this being not hard. □

As a last piece of mathematics, using this time complex numbers, we have:

Theorem 6.7. The solutions of the equation mẍ + kx = 0 are as follows, regardless
of the sign of k, and with a, b, c, d ∈ C chosen as to have x ∈ R:

(1) x = aept + be−pt, with p =
√
−k/m.

(2) x = c coswt+ d sinwt, with w =
√
k/m.

Proof. This is standard complex number business, the idea being as follows:

(1) As before in the proof of Theorem 6.5 (1), but by using this time complex numbers,
we are led to the conclusion in the statement. With two remarks, namely:

– In the case k < 0 we have p ∈ R, and so a, b ∈ R, and we recover in this way
Theorem 6.5 (1) itself.

– As for the case k > 0, here we can write p = iw with w =
√
k/m ∈ R, and the

formula that we get, according to the above, is as follows:

x = aeiwt + be−iwt

Now in order to have x ∈ R, which is the same as saying that x = x̄, we need:

a = b̄
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Thus we can write a = c − id, b = c + id with c, d ∈ R, and with these substitutions
made, the solution found above takes the following form:

x = aeiwt + be−iwt

= (c− id)(coswt+ i sinwt) + (c+ id)(coswt− i sinwt)
= 2(c coswt+ d sinwt)

Thus at k > 0, up to a 2 factor, we obtain the formula from Theorem 6.5 (2).

(2) Things are similar here. Indeed, as before in the proof of Theorem 6.5 (2), we are
led to the conclusion in the statement, and with two remarks to be made, namely:

– In the case k > 0 we have w ∈ R, and so c, d ∈ R, and we recover in this way
Theorem 6.5 (2) itself.

– As for the case k < 0, here we can write w = −ip with p =
√
−k/m ∈ R, and the

formula that we get, according to the above, is as follows:

x = c coswt+ d sinwt

= c cos(−ipt) + d sin(−ipt)
= c cos(ipt)− d sin(ipt)

= c · e
i(ipt) + e−i(ipt)

2
− d · e

i(ipt) − e−i(ipt)

2i

= c · e
−pt + ept

2
− d · e

−pt − ept

2i

=
1

2

((
c+

d

i

)
ept +

(
c− d

i

)
e−pt

)
Now observe that in order to have x ∈ R, we must have c± d/i ∈ R. Thus c ∈ R, and

d = if with f ∈ R, and with this latter substitution made, and then aftwerwards with
the notations a = (c+ f)/2 and b = (c− f)/2, we obtain:

x =
1

2

(
(c+ f)ept + (c− f)e−pt

)
= aept + be−pt

Thus at k < 0, we obtain the formula from Theorem 6.5 (1). □

Many other things can be said about the harmonic oscillators, in complement to what
was said above, and we will be back to this, on a regular basis, in what follows.

6c. Kepler and Newton

Back to gravity, in two dimensions now, we first have the following result:
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Theorem 6.8. In the context of a free fall from distance x0 = R >> 0, with initial
velocity v0 = 0, the equation of the trajectory is

x ≃ R− gt2

2

with the constant being g = GM/R2, called gravity of M , at distance R from it.

Proof. We can use here the field equation for the gravity, namely:

f =
K

d2

This equation, with d = ||x||, describes the magnitude f of the acceleration a of our
moving object m. Now since a points towards 0, which is opposite to x, we have:

a = −K
d2
· x

||x||
= − Kx

||x||3

Moreover, since the acceleration a is by definition the second derivative of the position
vector x, the equation of motion of our object m is as follows:

ẍ = − Kx

||x||3

In one dimension now, things get simpler, and the equation of motion reads:

ẍ = −K
x2

Since we assumed R >> 0, we must look for a solution of type x ≃ R + ct2, with the
lack of the t term coming from v0 = 0. But with x ≃ R + ct2, our equation reads:

2c ≃ −K
R2

Now by multiplying by t2/2, and adding R, we obtain as solution:

x ≃ R− Kt2

2R2

Thus, we have indeed x ≃ R− gt2/2, with g being the following number:

g =
K

R2
=
GM

R2

We are therefore led to the conclusion in the statement. □

As an illustration for the above basic result, let us do a numeric terrestrial check,
based on it. The gravitational constant, the mass of the Earth, and the average radius of
the Earth are as follows, expressed as usual in meters and kilograms:

G = 6.674× 10−11 , M = 5.972× 1024 , R = 6.371× 106
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We obtain the following value for the number g computed above:

g =
6.674× 5.972

6.371× 6.371
× 10 = 9.819

Which is quite decent, when compared to the observed value, g = 9.806.

As a second toy example now for our 3D gravitation theory, which is more advanced,
lying somewhere between 1D and 2D, let us add an arbitrary initial speed v0 = v to the
above situation, which in addition is allowed to be a vector in R2, as follows:

◦m
↙v

•M
We obtain in this way the following generalization of Theorem 6.8:

Theorem 6.9. In the context of a free fall from distance x0 = R >> 0, with initial
plane velocity vector v0 = v, the equation of the trajectory is

x ≃ R + vt− gt2

2

where g = GM/R2 as usual, and with the quantities R, g in the above being regarded now
as vectors, pointing upwards. The approximate trajectory is a parabola.

Proof. We have several assertions here, the idea being as follows:

(1) Let us first discuss the simpler case where we are still in 1D, as in Theorem 6.8,
but with an initial velocity v0 = v added. In order to find the equation of motion, we can
just redo the computations from the proof of Theorem 6.8, with now looking for a general
solution of type x ≃ R + vt+ ct2, and we get, as stated above:

x ≃ R + vt− gt2

2

Alternatively, we can simply argue that, by linearity, what we have to do is to take
the solution x ≃ R− gt2/2 found in Theorem 6.8, and add an extra vt term to it.

(2) In the general 2D case now, where the initial velocity v0 = v is a vector in R2, the
same arguments apply, either by redoing the computations from the proof of Theorem
6.8, or simply by arguing that by linearity we can just take the solution x ≃ R − gt2/2
found there, and add an extra vt term to it. Thus, we have our solution.

(3) Let us study now the solution that we found. In standard (x, y) coordinates, with
v = (p, q), and with R, g being now back scalars, our solution looks as follows:

x = pt , y ≃ R + qt− gt2

2
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From the first equation we get t = x/p, and by substituting into the second:

y ≃ R +
qx

p
− gx2

2p2

We recognize here the approximate equation of a parabola, and we are done. □

Getting now to the real thing, astronomy, the result here, which is the pride of math-
ematics, physics, and human knowledge in general, is the following theorem:

Theorem 6.10 (Kepler, Newton). Planets and other celestial bodies move around the
Sun on conics, that is, on curves of type

C =
{
(x, y) ∈ R2

∣∣∣P (x, y) = 0
}

with P ∈ R[x, y] being of degree 2. The same is true for any body moving around another
body, provided that we are not in the situation of a free fall.

Proof. This is something very standard, the idea being as follows:

(1) The force of attraction between two bodies of masses M,m is given by:

||F || = G · Mm

d2

Here d is the distance between the two bodies, and G ≃ 6.674 × 10−11 is a constant.
Now assuming that M is fixed at 0 ∈ R3, the force exterted on m positioned at x ∈ R3,
regarded as a vector F ∈ R3, is given by the following formula:

F = −||F || · x

||x||
= −GMm

||x||2
· x

||x||
= −GMmx

||x||3

But F = ma = mẍ, with a = ẍ being the acceleration, second derivative of the
position, so the equation of motion of m, assuming that M is fixed at 0, is:

ẍ = −GMx

||x||3

(2) Obviously, the problem happens in 2 dimensions, and you can even find, as an
exercise, a formal proof of that, based on the above equation. Now here the most conve-
nient is to use standard x, y coordinates, and denote our point as z = (x, y). With this
change made, and by setting K = GM , the equation of motion becomes:

z̈ = − Kz

||z||3

In other words, in terms of the coordinates x, y, the equations are:

ẍ = − Kx

(x2 + y2)3/2
, ÿ = − Ky

(x2 + y2)3/2
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(3) Let us begin with a simple particular case, that of the circular solutions. To be
more precise, we are interested in solutions of the following type:

x = r cosαt , y = r sinαt

In this case we have ||z|| = r, so our equation of motion becomes:

z̈ = −Kz
r3

On the other hand, differentiating x, y leads to the following formula:

z̈ = (ẍ, ÿ) = −α2(x, y) = −α2z

Thus, we have a circular solution when the parameters r, α satisfy:

r3α2 = K

(4) In the general case now, the problem can be solved via some calculus. Let us write
indeed our vector z = (x, y) in polar coordinates, as follows:

x = r cos θ , y = r sin θ

We have then ||z|| = r, and our equation of motion becomes, as in (3):

z̈ = −Kz
r3

Let us differentiate now x, y. By using the standard calculus rules, we have:

ẋ = ṙ cos θ − r sin θ · θ̇

ẏ = ṙ sin θ + r cos θ · θ̇
Differentiating one more time gives the following formulae:

ẍ = r̈ cos θ − 2ṙ sin θ · θ̇ − r cos θ · θ̇2 − r sin θ · θ̈

ÿ = r̈ sin θ + 2ṙ cos θ · θ̇ − r sin θ · θ̇2 + r cos θ · θ̈
Consider now the following two quantities, appearing as coefficients in the above:

a = r̈ − rθ̇2 , b = 2ṙθ̇ + rθ̈

In terms of these quantities, our second derivative formulae read:

ẍ = a cos θ − b sin θ

ÿ = a sin θ + b cos θ

(5) We can now solve the equation of motion from (4). Indeed, with the formulae that
we found for ẍ, ÿ, our equation of motion takes the following form:

a cos θ − b sin θ = −K
r2

cos θ , a sin θ + b cos θ = −K
r2

sin θ
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But these two formulae can be written in the following way:(
a+

K

r2

)
cos θ = b sin θ ,

(
a+

K

r2

)
sin θ = −b cos θ

By making now the product, and assuming that we are in a non-degenerate case,
where the angle θ varies indeed, we obtain by positivity that we must have:

a+
K

r2
= b = 0

(6) We are almost there. Let us first examine the second equation, b = 0. Remember-
ing who b is, from (4), this equation can be solved as follows:

b = 0 ⇐⇒ 2ṙθ̇ + rθ̈ = 0

⇐⇒ θ̈

θ̇
= −2 ṙ

r

⇐⇒ (log θ̇)′ = (−2 log r)′

⇐⇒ log θ̇ = −2 log r + c

⇐⇒ θ̇ =
λ

r2

As for the first equation the we found, namely a +K/r2 = 0, remembering from (4)

that a was by definition given by a = r̈ − rθ̇2, this equation now becomes:

r̈ − λ2

r3
+
K

r2
= 0

(7) As a conclusion to all this, in polar coordinates, x = r cos θ, y = r sin θ, our
equations of motion are as follows, with λ being a constant, not depending on t:

r̈ =
λ2

r3
− K

r2
, θ̇ =

λ

r2

Even better now, by writing K = λ2/c, these equations read:

r̈ =
λ2

r2

(
1

r
− 1

c

)
, θ̇ =

λ

r2

(8) As an illustration, let us quickly work out the case of a circular motion, where r

is constant. Here r̈ = 0, so the first equation gives c = r. Also we have θ̇ = α, with:

α =
λ

r2

Assuming θ = 0 at t = 0, from θ̇ = α we obtain θ = αt, and so, as in (3) above:

x = r cosαt , y = r sinαt
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Observe also that the condition found in (3) is indeed satisfied:

r3α2 =
λ2

r
=
λ2

c
= K

(9) Back to the general case now, our claim is that we have the following formula, for
the distance r = r(t) as function of the angle θ = θ(t), for some ε, δ ∈ R:

r =
c

1 + ε cos θ + δ sin θ

Let us first check that this formula works indeed. With r being as above, and by using
our second equation found before, θ̇ = λ/r2, we have the following computation:

ṙ =
c(ε sin θ − δ cos θ)θ̇

(1 + ε cos θ + δ sin θ)2

=
λc(ε sin θ − δ cos θ)

r2(1 + ε cos θ + δ sin θ)2

=
λ(ε sin θ − δ cos θ)

c

Thus, the second derivative of the above function r is given, as desired, by:

r̈ =
λ(ε cos θ + δ sin θ)θ̇

c

=
λ2(ε cos θ + δ sin θ)

r2c

=
λ2

r2

(
1

r
− 1

c

)
(10) The above check was something quite informal, and now we must prove that our

formula is indeed the correct one. For this purpose, we use a trick. Let us write:

r(t) =
1

f(θ(t))

With the convention that dots mean as usual derivatives with respect to t, and that
the primes will denote derivatives with respect to θ = θ(t), we have:

ṙ = −f
′θ̇

f 2
= − f

′

f 2
· λ
r2

= −λf ′

By differentiating one more time with respect to t, we obtain:

r̈ = −λf ′′θ̇ = −λf ′′ · λ
r2

= −λ
2

r2
f ′′
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On the other hand, our equation for r̈ found in (7) reads:

r̈ =
λ2

r2

(
1

r
− 1

c

)
=
λ2

r2

(
f − 1

c

)
Thus, in terms of f = 1/r as above, our equation for r̈ simply reads:

f ′′ + f =
1

c
But this latter equation is elementary to solve. Indeed, both functions cos t, sin t satisfy

g” + g = 0, so any linear combination of them satisfies as well this equation. But the
solutions of f ′′ + f = 1/c being those of g′′ + g = 0 shifted by 1/c, we obtain:

f =
1 + ε cos θ + δ sin θ

c
Now by inverting, we obtain the formula announced in (9), namely:

r =
c

1 + ε cos θ + δ sin θ

(11) But this leads to the conclusion that the trajectory is a conic. Indeed, in terms
of the parameter θ, the formulae of the coordinates are:

x =
c cos θ

1 + ε cos θ + δ sin θ

y =
c sin θ

1 + ε cos θ + δ sin θ
But these are precisely the equations of conics in polar coordinates.

(12) To be more precise, in order to find the precise equation of the conic, observe
that the two functions x, y that we found above satisfy the following formula:

x2 + y2 =
c2(cos2 θ + sin2 θ)

(1 + ε cos θ + δ sin θ)2

=
c2

(1 + ε cos θ + δ sin θ)2

On the other hand, these two functions satisfy as well the following formula:

(εx+ δy − c)2 =
c2
(
ε cos θ + δ sin θ − (1 + ε cos θ + δ sin θ)

)2
(1 + ε cos θ + δ sin θ)2

=
c2

(1 + ε cos θ + δ sin θ)2

We conclude that our coordinates x, y satisfy the following equation:

x2 + y2 = (εx+ δy − c)2

But what we have here is an equation of a conic, as claimed. □
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The above was theory, and for further applications, here is a sort of “best of” the
formulae found in the proof of Theorem 6.10, which are all very useful in practice:

Theorem 6.11 (Kepler, Newton). In the context of a 2-body problem, with M fixed
at 0, and m starting its movement from Ox, the equation of motion of m, namely

z̈ = − Kz

||z||3

with K = GM , and z = (x, y), becomes in polar coordinates, x = r cos θ, y = r sin θ,

r̈ =
λ2

r2

(
1

r
− 1

c

)
, θ̇ =

λ

r2

for some λ, c ∈ R, related by λ2 = Kc. The value of r in terms of θ is given by

r =
c

1 + ε cos θ + δ sin θ

for some ε, δ ∈ R. At the level of the affine coordinates x, y, this means

x =
c cos θ

1 + ε cos θ + δ sin θ
, y =

c sin θ

1 + ε cos θ + δ sin θ

with θ = θ(t) being subject to θ̇ = λ2/r, as above. Finally, we have

x2 + y2 = (εx+ δy − c)2

which is a degree 2 equation, and so the resulting trajectory is a conic.

Proof. As already mentioned, this is a sort of “best of” the formulae found in the
proof of Theorem 6.10. And in the hope of course that we have not forgotten anything.
Finally, let us mention that the simplest illustration for this is the circular motion, and
for details on this, not included in the above, we refer to the proof of Theorem 6.10. □

As a first question, we would like to understand how the various parameters appearing
above, namely λ, c, ε, δ, which via some basic math can only tell us more about the shape
of the orbit, appear from the initial data. The formulae here are as follows:

Theorem 6.12. In the context of Theorem 6.11, and in polar coordinates, x = r cos θ,
y = r sin θ, the initial data is as follows, with R = r0:

r0 =
c

1 + ε
, θ0 = 0

ṙ0 = −
δ
√
K√
c

, θ̇0 =

√
Kc

R2

r̈0 =
εK

R2
, θ̈0 =

4δK

R2

The corresponding formulae for the affine coordinates x, y can be deduced from this. Also,
the various motion parameters c, ε, δ and λ =

√
Kc can be recovered from this data.
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Proof. We have several assertions here, the idea being as follows:

(1) As mentioned in Theorem 6.11, the object m begins its movement on Ox. Thus
we have θ0 = 0, and from this we get the formula of r0 in the statement.

(2) Regarding the initial speed now, the formula of θ̇0 follows from:

θ̇ =
λ

r2
=

√
Kc

r2

Also, in what concerns the radial speed, the formula of ṙ0 follows from:

ṙ =
c(ε sin θ − δ cos θ)θ̇

(1 + ε cos θ + δ sin θ)2

=
c(ε sin θ − δ cos θ)

c2/r2
·
√
Kc

r2

=

√
K(ε sin θ − δ cos θ)√

c

(3) Regarding now the initial acceleration, by using θ̇ =
√
Kc/r2 we find:

θ̈ = −2
√
Kc · 2rṙ

r3
= −4

√
Kc · ṙ
r2

In particular at t = 0 we obtain the formula in the statement, namely:

θ̈0 = −
4
√
Kc · ṙ0
R2

=
4
√
Kc

R2
· δ
√
K√
c

=
4δK

R2

(4) Also regarding acceleration, with λ =
√
Kc our main motion formula reads:

r̈ =
Kc

r2

(
1

r
− 1

c

)
In particular at t = 0 we obtain the formula in the statement, namely:

r̈0 =
Kc

R2

(
1

R
− 1

c

)
=
Kc

R2
· ε
c
=
εK

R2

(5) Finally, the last assertion is clear, and since the formulae look better anyway in
polar coordinates than in affine coordinates, we will not get into details here. □

With the above formulae in hand, which are a precious complement to Theorem 6.11,
we can do some reverse engineering at the level of parameters, and work out how various
inital speeds and accelerations lead to various types of conics. There are many things
that can be said here, and we refer here to any standard mechanics book.

Finally, a word about the 3-body problem. An interesting question here is how to
position a specialized scientific satellite, deep in space, and away from the dust and
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radiation of the usual orbits around the Earth, as to stay there, under the joint influence
of the gravity of the Sun M and of the Earth m. And there are 5 possible solutions here,
called Lagrange points L1-L5, whose positions with respect to M,m are as follows:

•L4

•L3 ⊛M •L1 ⊙m •L2

•L5

Moreover, and here comes another interesting point, L4, L5 are stable, in the sense
that a satellite installed there will really stay there, regardless of the various tiny little
things that might happen, like an asteroid passing by, while L1, L2, L3 are unstable, in
the sense that a satellite installed there will need constant tiny adjustments, in order to
really stay there. So, which one would you choose for installing your satellite?

You would probably say L4, L5, but this is precisely the wrong answer, because due to
their stability, these points attract a lot of asteroids and space garbage, and our satellite
will certainly not perform well there, in that crowd. So, with L4, L5 ruled out, and with
L3 ruled out too, being too far, the correct choices are L1, L2. But here, due to instability,
you still need to learn a lot more mechanics, for knowing how to do this, in practice.

6d. Conservative forces

Let us discuss now an important topic, namely the conservation of energy. The sim-
plest situation is that of a free fall with initial velocity v0 = 0, and we have here:

Proposition 6.13. In the context of a free fall from distance x0 = R >> 0, with
initial velocity v0 = 0, if we define the potential energy to be

V = mgx

then the total energy E = T + V , with T = mv2/2 as usual, is constant, E ≃ mgR.

Proof. We know that the equation of motion is as follows, with g = GM/R2:

x ≃ R− gt2

2
The kinetic energy, from now on to be denoted T , is then given by:

T ≃ mv2

2
=
mg2t2

2
Thus with V = mgx as in the statement, and then with E = T + V , we have:

E = T + V ≃ mgR

But this is a constant, and so we have our conservation principle, as desired. □



6D. CONSERVATIVE FORCES 125

We know that E ≃ mgR, but by some kind of miracle, do we actually have E = mgR?
Also, what is the meaning of V ? What about the meaning of E? What about adding
a suitable constant to V , and so to E too, will that make these quantities easier to
understand? These questions will be answered in due time. As a next result, we have:

Theorem 6.14. In the context of a free fall from distance x0 = R >> 0, with initial
velocity vector v0 ∈ R2, if we define the potential energy to be

V = m < g, x >

with g = GM/R2 being regarded as usual as a vector pointing upwards, then

E = T + V

with T = m||v||2/2 as usual, is constant, E ≃ T0 +mgR, with g now back scalar.

Proof. We can do this in two steps, first by adding an extra parameter to the com-
putation in Proposition 6.13, and then by adding another extra parameter:

(1) Let us first examine the 1D case, where v0 = s is a vector aligned to x, and so a
number. Here the equation of motion is as follows, with g = GM/R2 as usual:

x ≃ R + st− gt2

2
The speed being v ≃ s− gt, with V = mgx and E = T + V as above, we have:

E = T + V

≃ m(s− gt)2

2
+mg

(
R + st− gt2

2

)
=

ms2

2
+mgR

= T0 +mgR

(2) In the general case now, with v0 = s, the equation of motion is as before, with
R, g being now vectors pointing upwards, and if we write s = (a, b), then we have:

T ≃ m||s− gt||2

2

=
m((a− gt)2 + b2)

2

=
m(a2 + b2)

2
−magt+ mg2t2

2

= T0 −mg
(
at− gt2

2

)
With g vector pointing upwards, the last quantity is m < g, x − R >, so if we add

V = m < g, x >, we obtain T0 +mgR, with g,R being back scalars, as desired. □
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With the above done, let us get back to the real thing, 3D gravity. We are interested in
the general 2-body problem, where M is fixed at 0, and m moves under the gravitational
force of M . The above computations, coming from our “kinetic energy gets converted
into height, and vice versa” principle, suggest defining the potential energy as:

V ∼ ||x||

However, this is wrong, because in our formula V = mgx the quantity g = GM/R2

depends on the average height, which is the parameter R, no longer assumed to satisfy
R >> 0. In view of this, the correct formula for the potential energy should be:

V ∼ 1

||x||

In order now to find the constant, it is enough to rewrite V = mgx by getting rid of
the parameter g = GM/R2. We obtain in this way, with K = GM as usual:

V = mgx =
mGMx

R2
≃ mGM

||x||
=
Km

||x||

Thus, we have our formula for V , and the question now is if E = T+V is constant. And
the answer here is unfortunately no, due to some bizarre reasons, with rather E = T − V
appearing to be constant, or at least that’s what computations tend to suggest.

So, let us simply change the sign of V , and see what we get. We are led in this way
to the following remarkable result, which not only says that E is approximately constant,
as in our previous computations, but is actually a plain constant:

Theorem 6.15. In the context of the 2-body problem, with M fixed at 0 and with m
moving, if we define the kinetic and potential energy of m to be

T =
m||v||2

2
, V = −Km

||x||

with K = GM as usual, then the total energy E = T + V is constant.

Proof. The idea will be that of proving Ė = 0. We can do this as follows:

(1) In what regards the derivative of T , the computation here is something very simple,
coming straight from the formula ||v||2 =< v, v >, as follows:

Ṫ =
m(< v, v̇ > + < v̇, v >)

2
= m < v, v̇ >

= m < v, a >
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(2) In order to compute now the derivative of V , let us first compute the derivative of
the function f(x) = 1/||x||. Again by using ||x||2 =< x, x >, we obtain:

ḟ = −1

2
· < x, ẋ > + < ẋ, x >

< x, x >3/2

= − < x, ẋ >

< x, x >3/2

= −< x, v >

||x||3

(3) Thus, getting now to the potential energy V , we have the following formula:

V̇ =
Km < x, v >

||x||3

In order to further process this, remember the equation of motion of m, namely:

a = − Kx

||x||3

We will of course jump on this, as to get rid of ||x||3, and we finally obtain:

V̇ = −m < a, v >

(4) We are ready now to prove our result. Indeed, we have:

Ė = Ṫ + V̇ = m < v, a > −m < a, v >= 0

Now since the derivative vanishes, E is constant, as claimed. □

Nice all this, but we still have to understand the relation with Proposition 6.13 and
Theorem 6.14, with that sign of V mysteriously switching. And we have here the following
result, upgrading Proposition 6.13 and Theorem 6.14, and clarifying the whole thing:

Theorem 6.16. In the context of a free fall from distance x0 = R >> 0, with initial
velocity v0 = 0, if we define the kinetic and potential energy of m to be

T =
mv2

2
, V = −Km

x
with K = GM as usual, then the total energy E = T + V is constant. Moreover,

V ≃ mgx− 2mgR

with g = GM/R2, and so E ′ = T +mgx is appoximately constant, E ′ ≃ mgR. The same
happens for a free fall from x0 = R >> 0, with initial velocity vector v0 ∈ R2.

Proof. The first assertion is something that we know, coming from Theorem 6.15.
In order to clarify now the relation with Proposition 6.13, we first have:

V = −Km
x

= −GMm

x
= −mgR

2

x
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Now by writing x = R(1− ε), we obtain the estimate in the statement, namely:

V = −mgR
1− ε

≃ −mgR(1 + ε)

= mgR[(1− ε)− 2]

= mgx− 2mgR

Thus with V ′ = mgx we have V ≃ V ′ − 2mgR, and so E ′ = T + V ′ satisfies:

E ′ ≃ E + 2mgR

= E0 + 2mgR

= V0 + 2mgR

= mgR

Finally, the last assertion, which is a bit more general, follows in the same way. □

6e. Exercises

Exercises:

Exercise 6.17.

Exercise 6.18.

Exercise 6.19.

Exercise 6.20.

Exercise 6.21.

Exercise 6.22.

Exercise 6.23.

Exercise 6.24.

Bonus exercise.



CHAPTER 7

Complex numbers

7a. Complex numbers

Let us discuss now the complex numbers. There is a lot of magic here, and we will
carefully explain this material. Their definition is as follows:

Definition 7.1. The complex numbers are variables of the form

x = a+ ib

with a, b ∈ R, which add in the obvious way, and multiply according to the following rule:

i2 = −1

Each real number can be regarded as a complex number, a = a+ i · 0.

In other words, we consider variables as above, without bothering for the moment
with their precise meaning. Now consider two such complex numbers:

x = a+ ib , y = c+ id

The formula for the sum is then the obvious one, as follows:

x+ y = (a+ c) + i(b+ d)

As for the formula of the product, by using the rule i2 = −1, we obtain:

xy = (a+ ib)(c+ id)

= ac+ iad+ ibc+ i2bd

= ac+ iad+ ibc− bd
= (ac− bd) + i(ad+ bc)

Thus, the complex numbers as introduced above are well-defined. The multiplica-
tion formula is of course quite tricky, and hard to memorize, but we will see later some
alternative ways, which are more conceptual, for performing the multiplication.

The advantage of using the complex numbers comes from the fact that the equation
x2 = 1 has now a solution, x = i. In fact, this equation has two solutions, namely:

x = ±i
129
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This is of course very good news. More generally, we have the following result, regard-
ing the arbitrary degree 2 equations, with real coefficients:

Theorem 7.2. The complex solutions of ax2 + bx+ c = 0 with a, b, c ∈ R are

x1,2 =
−b±

√
b2 − 4ac

2a

with the square root of negative real numbers being defined as
√
−m = ±i

√
m

and with the square root of positive real numbers being the usual one.

Proof. We can write our equation in the following way:

ax2 + bx+ c = 0 ⇐⇒ x2 +
b

a
x+

c

a
= 0

⇐⇒
(
x+

b

2a

)2

− b2

4a2
+
c

a
= 0

⇐⇒
(
x+

b

2a

)2

=
b2 − 4ac

4a2

⇐⇒ x+
b

2a
= ±
√
b2 − 4ac

2a

Thus, we are led to the conclusion in the statement. □

We will see later that any degree 2 complex equation has solutions as well, and that
more generally, any polynomial equation, real or complex, has solutions. Moving ahead
now, we can represent the complex numbers in the plane, in the following way:

Proposition 7.3. The complex numbers, written as usual

x = a+ ib

can be represented in the plane, according to the following identification:

x =

(
a

b

)
With this convention, the sum of complex numbers is the usual sum of vectors.

Proof. Consider indeed two arbitrary complex numbers:

x = a+ ib , y = c+ id

Their sum is then by definition the following complex number:

x+ y = (a+ c) + i(b+ d)
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Now let us represent x, y in the plane, as in the statement:

x =

(
a

b

)
, y =

(
c

d

)

In this picture, their sum is given by the following formula:

x+ y =

(
a+ c

b+ d

)

But this is indeed the vector corresponding to x+ y, so we are done. □

Here we have assumed that you are a bit familiar with vector calculus. If not, no
problem, the idea is simply that vectors add by forming a parallelogram, as follows:

b+ d •x+y

d •y

b •x

• //

OO

c a a+ c

Observe that in our geometric picture from Proposition 7.3, the real numbers corre-
spond to the numbers on the Ox axis. As for the purely imaginary numbers, these lie on
the Oy axis, with the number i itself being given by the following formula:

i =

(
0

1

)
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As an illustration for this, let us record now a basic picture, with some key complex
numbers, namely 1, i,−1,−i, represented according to our conventions:

•i

OO

•−1 •1 //

•−i

You might perhaps wonder why I chose to draw that circle, connecting the numbers
1, i,−1,−i, which does not look very useful. More on this in a moment, the idea being
that that circle can be immensely useful, and coming in advance, some advice:

Advice 7.4. When drawing complex numbers, always begin with the coordinate axes
Ox,Oy, and with a copy of the unit circle.

We have so far a quite good understanding of their complex numbers, and their ad-
dition. In order to understand now the multiplication operation, we must do something
more complicated, namely using polar coordinates. Let us start with:

Definition 7.5. The complex numbers x = a+ ib can be written in polar coordinates,

x = r(cos t+ i sin t)

with the connecting formulae being as follows,

a = r cos t , b = r sin t

and in the other sense being as follows,

r =
√
a2 + b2 , tan t =

b

a

and with r, t being called modulus, and argument.

There is a clear relation here with the vector notation from Proposition 7.3, because
r is the length of the vector, and t is the angle made by the vector with the Ox axis. To
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be more precise, the picture for what is going on in Definition 7.5 is as follows:

b •x

• //

OO

r

t

a

As a basic example here, the number i takes the following form:

i = cos
(π
2

)
+ i sin

(π
2

)
The point now is that in polar coordinates, the multiplication formula for the complex

numbers, which was so far something quite opaque, takes a very simple form:

Theorem 7.6. Two complex numbers written in polar coordinates,

x = r(cos s+ i sin s) , y = p(cos t+ i sin t)

multiply according to the following formula:

xy = rp(cos(s+ t) + i sin(s+ t))

In other words, the moduli multiply, and the arguments sum up.

Proof. This follows from the following formulae, that we know well:

cos(s+ t) = cos s cos t− sin s sin t

sin(s+ t) = cos s sin t+ sin s cos t

Indeed, we can assume that we have r = p = 1, by dividing everything by these
numbers. Now with this assumption made, we have the following computation:

xy = (cos s+ i sin s)(cos t+ i sin t)

= (cos s cos t− sin s sin t) + i(cos s sin t+ sin s cos t)

= cos(s+ t) + i sin(s+ t)

Thus, we are led to the conclusion in the statement. □

As a last general topic regarding the complex numbers, let us discuss conjugation.
This is something quite tricky, complex number specific, as follows:
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Definition 7.7. The complex conjugate of x = a+ ib is the following number,

x̄ = a− ib

obtained by making a reflection with respect to the Ox axis.

As before with other such operations on complex numbers, a quick picture says it all.
Here is the picture, with the numbers x, x̄,−x,−x̄ being all represented:

•−x̄ •x

• //

OO

r

t

•−x •x̄

Observe that the conjugate of a real number x ∈ R is the number itself, x = x̄. In
fact, the equation x = x̄ characterizes the real numbers, among the complex numbers. At
the level of non-trivial examples now, we have the following formula:

ī = −i

There are many things that can be said about the conjugation of the complex numbers,
and here is a summary of basic such things that can be said:

Theorem 7.8. The conjugation operation x→ x̄ has the following properties:

(1) x = x̄ precisely when x is real.
(2) x = −x̄ precisely when x is purely imaginary.
(3) xx̄ = |x|2, with |x| = r being as usual the modulus.
(4) With x = r(cos t+ i sin t), we have x̄ = r(cos t− i sin t).
(5) We have the formula xy = x̄ȳ, for any x, y ∈ C.
(6) The solutions of ax2 + bx+ c = 0 with a, b, c ∈ R are conjugate.

Proof. These results are all elementary, the idea being as follows:

(1) This is something that we already know, coming from definitions.

(2) This is something clear too, because with x = a + ib our equation x = −x̄ reads
a+ ib = −a+ ib, and so a = 0, which amounts in saying that x is purely imaginary.
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(3) This is a key formula, which can be proved as follows, with x = a+ ib:

xx̄ = (a+ ib)(a− ib)
= a2 + b2

= |x|2

(4) This is clear indeed from the picture following Definition 7.7.

(5) This is something quite magic, which can be proved as follows:

(a+ ib)(c+ id) = (ac− bd) + i(ad+ bc)

= (ac− bd)− i(ad+ bc)

= (a− ib)(c− id)
However, what we have been doing here is not very clear, geometrically speaking,

and our formula is worth an alternative proof. Here is that proof, which after inspection
contains no computations at all, making it clear that the polar writing is the best:

r(cos s+ i sin s) · p(cos t+ i sin t)

= rp(cos(s+ t) + i sin(s+ t))

= rp(cos(−s− t) + i sin(−s− t))
= r(cos(−s) + i sin(−s)) · p(cos(−t) + i sin(−t))
= r(cos s+ i sin s) · p(cos t+ i sin t)

(6) This comes from the formula of the solutions, that we know from Theorem 7.2,
but we can deduce this as well directly, without computations. Indeed, by using our
assumption that the coefficients are real, a, b, c ∈ R, we have:

ax2 + bx+ c = 0 =⇒ ax2 + bx+ c = 0

=⇒ āx̄2 + b̄x̄+ c̄ = 0

=⇒ ax̄2 + bx̄+ c = 0

Thus, we are led to the conclusion in the statement. □

7b. Exponential writing

Welcome to complex analysis. Let us start with:

Definition 7.9. A complex function f : C→ C, or more generally f : X → C, with
X ⊂ C being a subset, is called continuous when, for any xn, x ∈ X:

xn → x =⇒ f(xn)→ f(x)

where the convergence of the sequences of complex numbers, xn → x, means by definition
that for n big enough, the quantity |xn − x| becomes arbitrarily small.
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Observe that in real coordinates, x = (a, b), the distances appearing in the definition
of the convergence xn → x are given by the following formula:

|xn − x| =
√
(an − a)2 + (bn − b)2

Thus xn → x in the complex sense means that (an, bn)→ (a, b) in the usual, intuitive
sense, with respect to the usual distance in the plane R2, and as a consequence, a function
f : C → C is continuous precisely when it is continuous, in an intuitive sense, when
regarded as function f : R2 → R2. But more on this, later in this book.

At the level of examples now, we have the following result:

Theorem 7.10. We can exponentiate the complex numbers, according to the formula

ex =
∞∑
k=0

xk

k!

and the function x→ ex is continuous, and satisfies ex+y = exey.

Proof. We must first prove that the series converges. But this follows from:

|ex| =

∣∣∣∣∣
∞∑
k=0

xk

k!

∣∣∣∣∣
≤

∞∑
k=0

∣∣∣∣xkk!
∣∣∣∣

=
∞∑
k=0

|x|k

k!

= e|x| <∞

Regarding the formula ex+y = exey, this follows too as in the real case, as follows:

ex+y =
∞∑
k=0

(x+ y)k

k!

=
∞∑
k=0

k∑
s=0

(
k

s

)
· x

syk−s

k!

=
∞∑
k=0

k∑
s=0

xsyk−s

s!(k − s)!
= exey
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Finally, the continuity of x→ ex comes at x = 0 from the following computation:

|et − 1| =

∣∣∣∣∣
∞∑
k=1

tk

k!

∣∣∣∣∣
≤

∞∑
k=1

∣∣∣∣ tkk!
∣∣∣∣

=
∞∑
k=1

|t|k

k!

= e|t| − 1

As for the continuity of x→ ex in general, this can be deduced now as follows:

lim
t→0

ex+t = lim
t→0

exet = ex lim
t→0

et = ex · 1 = ex

Thus, we are led to the conclusions in the statement. □

We will be back to more functions later. As an important fact, however, let us point
out that, contrary to what the above might suggest, everything does not always extend
trivally from the real to the complex case. For instance, we have:

Proposition 7.11. We have the following formula, valid for any |x| < 1,

1

1− x
= 1 + x+ x2 + . . .

but, unlike in the real case, the geometric meaning of this formula is quite unclear.

Proof. Here the formula in the statement holds indeed, by multiplying and cancelling
terms, and with the convergence being justified by the following estimate:∣∣∣∣∣

∞∑
n=0

xn

∣∣∣∣∣ ≤
∞∑
n=0

|x|n =
1

1− |x|

As for the last assertion, this is something quite informal. To be more precise, for
x = 1/2 our formula is clear, by cutting the interval [0, 2] into half, and so on:

1 +
1

2
+

1

4
+

1

8
+ . . . = 2

More generally, for x ∈ (−1, 1) the meaning of the formula in the statement is some-
thing quite clear and intuitive, geometrically speaking, by using a similar argument. How-
ever, when x is complex, and not real, we are led into a kind of mysterious spiral there,
and the only case where the formula is “obvious”, geometrically speaking, is that when
x = rw, with r ∈ [0, 1), and with w being a root of unity. To be more precise here, by
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anticipating a bit, assume that we have a number w ∈ C satisfying wN = 1, for some
N ∈ N. We have then the following formula, for our infinite sum:

1 + rw + r2w2 + . . . = (1 + rw + . . .+ rN−1wN−1)

+ (rN + rN+1w . . .+ r2N−1wN−1)

+ (r2N + r2N+1w . . .+ r3N−1wN−1)

+ . . .

Thus, by grouping the terms with the same argument, our infinite sum is:

1 + rw + r2w2 + . . . = (1 + rN + r2N + . . .)

+ (r + rN+1 + r2N+1 + . . .)w

+ . . .

+ (rN−1 + r2N−1 + r3N−1 + . . .)wN−1

But the sums of each ray can be computed with the real formula for geometric series,
that we know and understand well, and with an extra bit of algebra, we get:

1 + rw + r2w2 + . . . =
1

1− rN
+

rw

1− rN
+ . . .+

rN−1wN−1

1− rN

=
1

1− rN
(
1 + rw + . . .+ rN−1wN−1

)
=

1

1− rN
· 1− r

N

1− rw

=
1

1− rw
Summarizing, as claimed above, the geometric series formula can be understood, in

a purely geometric way, for variables of type x = rw, with r ∈ [0, 1), and with w being
a root of unity. In general, however, this formula tells us that the numbers on a certain
infinite spiral sum up to a certain number, which remains something quite mysterious. □

Getting back now to less mysterious mathematics, as an application, let us discuss the
final and most convenient writing of the complex numbers, which is as follows:

x = reit

The point with this formula comes from the following deep result:

Theorem 7.12. We have the following formula,

eit = cos t+ i sin t

valid for any t ∈ R.
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Proof. Our claim is that this follows from the formula of the complex exponential,
and for the following formulae for the Taylor series of cos and sin, that we know well:

cos t =
∞∑
l=0

(−1)l t
2l

(2l)!
, sin t =

∞∑
l=0

(−1)l t2l+1

(2l + 1)!

Indeed, let us first recall from Theorem 5.13 that we have the following formula, for
the exponential of an arbitrary complex number x ∈ C:

ex =
∞∑
k=0

xk

k!

Now let us plug x = it in this formula. We obtain the following formula:

eit =
∞∑
k=0

(it)k

k!

=
∑
k=2l

(it)k

k!
+
∑

k=2l+1

(it)k

k!

=
∞∑
l=0

(−1)l t
2l

(2l)!
+ i

∞∑
l=0

(−1)l t2l+1

(2l + 1)!

= cos t+ i sin t

Thus, we are led to the conclusion in the statement. □

Now back to our x = reit objectives, with the above theory in hand we can indeed use
from now on this notation, the complete statement being as follows:

Theorem 7.13. The complex numbers x = a+ ib can be written in polar coordinates,

x = reit

with the connecting formulae being

a = r cos t , b = r sin t

and in the other sense being

r =
√
a2 + b2 , tan t =

b

a

and with r, t being called modulus, and argument.

Proof. This is a reformulation of our previous Definition 7.5, by using the formula
eit = cos t+ i sin t from Theorem 7.12, and multiplying everything by r. □

With this in hand, we can now go back to the basics, namely the addition and multi-
plication of the complex numbers. We have the following result:
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Theorem 7.14. In polar coordinates, the complex numbers multiply as

reis · peit = rp ei(s+t)

with the arguments s, t being taken modulo 2π.

Proof. This is something that we already know, from Theorem 7.6, reformulated by
using the notations from Theorem 7.13. Observe that this follows as well directly, from
the fact that we have ea+b = eaeb, that we know from analysis. □

We can investigate as well more complicated operations, as follows:

Theorem 7.15. We have the following operations on the complex numbers, written
in polar form, as above:

(1) Inversion: (reit)−1 = r−1e−it.

(2) Square roots:
√
reit = ±

√
reit/2.

(3) Powers: (reit)a = raeita.

(4) Conjugation: reit = re−it.

Proof. This is something that we already know, but we can now discuss all this,
from a more conceptual viewpoint, the idea being as follows:

(1) We have indeed the following computation, using Theorem 7.14:

(reit)(r−1e−it) = rr−1 · ei(t−t)

= 1 · 1
= 1

(2) Once again by using Theorem 7.14, we have:

(±
√
reit/2)2 = (

√
r)2ei(t/2+t/2) = reit

(3) Given an arbitrary number a ∈ R, we can define, as stated:

(reit)a = raeita

Due to Theorem 7.14, this operation x→ xa is indeed the correct one.

(4) This comes from the fact, that we know from Theorem 7.8, that the conjugation
operation x→ x̄ keeps the modulus, and switches the sign of the argument. □

7c. Equations, roots

Getting back to algebra, recall from Theorem 7.2 that any degree 2 equation has 2
complex roots. We can in fact prove that any polynomial equation, of arbitrary degree
N ∈ N, has exactly N complex solutions, counted with multiplicities:
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Theorem 7.16. Any polynomial P ∈ C[X] decomposes as

P = c(X − a1) . . . (X − aN)
with c ∈ C and with a1, . . . , aN ∈ C.

Proof. The problem is that of proving that our polynomial has at least one root,
because afterwards we can proceed by recurrence. We prove this by contradiction. So,
assume that P has no roots, and pick a number z ∈ C where |P | attains its minimum:

|P (z)| = min
x∈C
|P (x)| > 0

Since Q(t) = P (z+ t)−P (z) is a polynomial which vanishes at t = 0, this polynomial
must be of the form ctk + higher terms, with c ̸= 0, and with k ≥ 1 being an integer. We
obtain from this that, with t ∈ C small, we have the following estimate:

P (z + t) ≃ P (z) + ctk

Now let us write t = rw, with r > 0 small, and with |w| = 1. Our estimate becomes:

P (z + rw) ≃ P (z) + crkwk

Now recall that we assumed P (z) ̸= 0. We can therefore choose w ∈ T such that cwk

points in the opposite direction to that of P (z), and we obtain in this way:

|P (z + rw)| ≃ |P (z) + crkwk|
= |P (z)|(1− |c|rk)

Now by choosing r > 0 small enough, as for the error in the first estimate to be small,
and overcame by the negative quantity −|c|rk, we obtain from this:

|P (z + rw)| < |P (z)|
But this contradicts our definition of z ∈ C, as a point where |P | attains its minimum.

Thus P has a root, and by recurrence it has N roots, as stated. □

Still talking polynomials and their roots, let us try now to understand what the ana-
logue of ∆ = b2 − 4ac is, for an arbitrary polynomial P ∈ C[X]. We will need:

Theorem 7.17. Given two polynomials P,Q ∈ C[X], written as follows,

P = c(X − a1) . . . (X − ak) , Q = d(X − b1) . . . (X − bl)
the following quantity, which is called resultant of P,Q,

R(P,Q) = cldk
∏
ij

(ai − bj)

is a polynomial in the coefficients of P,Q, with integer coefficients, and we have

R(P,Q) = 0

precisely when P,Q have a common root.



142 7. COMPLEX NUMBERS

Proof. Given P,Q ∈ C[X], we can certainly construct the quantity R(P,Q) in the
statement, and we have then R(P,Q) = 0 precisely when P,Q have a common root. The
whole point is that of proving that R(P,Q) is a polynomial in the coefficients of P,Q,
with integer coefficients. But this can be checked as follows:

(1) We can expand the formula of R(P,Q), and in what regards a1, . . . , ak, which are
the roots of P , we obtain in this way certain symmetric functions in these variables, which
will be therefore polynomials in the coefficients of P , with integer coefficients.

(2) We can then look what happens with respect to the remaining variables b1, . . . , bl,
which are the roots of Q. Once again what we have here are certain symmetric functions,
and so polynomials in the coefficients of Q, with integer coefficients.

(3) Thus, we are led to the conclusion in the statement, that R(P,Q) is a polynomial
in the coefficients of P,Q, with integer coefficients, and with the remark that the cldk

factor is there for these latter coefficients to be indeed integers, instead of rationals. □

All this might seem a bit complicated, and as an illustration, let us work out an
example. Consider the case of a polynomial of degree 2, and a polynomial of degree 1:

P = ax2 + bx+ c , Q = dx+ e

In order to compute the resultant, let us factorize our polynomials:

P = a(x− p)(x− q) , Q = d(x− r)

The resultant can be then computed as follows, by using the method above:

R(P,Q) = ad2(p− r)(q − r)
= ad2(pq − (p+ q)r + r2)

= cd2 + bd2r + ad2r2

= cd2 − bde+ ae2

Finally, observe that R(P,Q) = 0 corresponds indeed to the fact that P,Q have a
common root. Indeed, the root of Q is r = −e/d, and we have:

P (r) =
ae2

d2
− be

d
+ c

=
R(P,Q)

d2

Thus P (r) = 0 precisely when R(P,Q) = 0, as predicted by Theorem 7.17.

Good news, with the above resultant technology in hand, we can now talk about the
discriminant of any polynomial, as follows:
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Theorem 7.18. Given a polynomial P ∈ C[X], written as

P (X) = cXN + dXN−1 + . . .

its discriminant, defined as being the following quantity,

∆(P ) =
(−1)(

N
2 )

c
R(P, P ′)

is a polynomial in the coefficients of P , with integer coefficients, and

∆(P ) = 0

happens precisely when P has a double root.

Proof. This follows from Theorem 7.17, applied with P = Q, with the division by c
being indeed possible, under Z, and with the sign being there for various reasons, including
the compatibility with some well-known formulae, at small values of N ∈ N. □

As an illustration, let us see what happens in degree 2. Here we have:

P = aX2 + bX + c , P ′ = 2aX + b

Thus, the resultant is given by the following formula:

R(P, P ′) = ab2 − b(2a)b+ c(2a)2

= 4a2c− ab2

= −a(b2 − 4ac)

With the normalizations in Theorem 7.18 made, we obtain, as we should:

∆(P ) = b2 − 4ac

As another illustration, let us work out what happens in degree 3. Here the result,
which is useful and interesting, and is probably new to you, is as follows:

Theorem 7.19. The discriminant of a degree 3 polynomial,

P = aX3 + bX2 + cX + d

is the number ∆(P ) = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd.

Proof. We need to do some tough computations here. Let us first compute resultants.
Consider two polynomials, of degree 3 and degree 2, written as follows:

P = aX3 + bX2 + cX + d = a(X − p)(X − q)(X − r)

Q = eX2 + fX + g = e(X − s)(X − t)
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The resultant of these two polynomials is then given by:

R(P,Q) = a2e3(p− s)(p− t)(q − s)(q − t)(r − s)(r − t)
= a2 · e(p− s)(p− t) · e(q − s)(q − t) · e(r − s)(r − t)
= a2Q(p)Q(q)Q(r)

= a2(ep2 + fp+ g)(eq2 + fq + g)(er2 + fr + g)

By expanding, we obtain the following formula for this resultant:

R(P,Q)

a2
= e3p2q2r2 + e2f(p2q2r + p2qr2 + pq2r2)

+ e2g(p2q2 + p2r2 + q2r2) + ef 2(p2qr + pq2r + pqr2)

+ efg(p2q + pq2 + p2r + pr2 + q2r + qr2) + f 3pqr

+ eg2(p2 + q2 + r2) + f 2g(pq + pr + qr)

+ fg2(p+ q + r) + g3

Note in passing that we have 27 terms on the right, as we should, and with this kind
of check being mandatory, when doing such computations. Next, we have:

p+ q + r = − b
a

, pq + pr + qr =
c

a
, pqr = −d

a

By using these formulae, we can produce some more, as follows:

p2 + q2 + r2 = (p+ q + r)2 − 2(pq + pr + qr) =
b2

a2
− 2c

a

p2q + pq2 + p2r + pr2 + q2r + qr2 = (p+ q + r)(pq + pr + qr)− 3pqr = − bc
a2

+
3d

a

p2q2 + p2r2 + q2r2 = (pq + pr + qr)2 − 2pqr(p+ q + r) =
c2

a2
− 2bd

a2

By plugging now this data into the formula of R(P,Q), we obtain:

R(P,Q) = a2e3 · d
2

a2
− a2e2f · cd

a2
+ a2e2g

(
c2

a2
− 2bd

a2

)
+ a2ef 2 · bd

a2

+ a2efg

(
− bc
a2

+
3d

a

)
− a2f 3 · d

a

+ a2eg2
(
b2

a2
− 2c

a

)
+ a2f 2g · c

a
− a2fg2 · b

a
+ a2g3

Thus, we have the following formula for the resultant:

R(P,Q) = d2e3 − cde2f + c2e2g − 2bde2g + bdef 2 − bcefg + 3adefg

− adf 3 + b2eg2 − 2aceg2 + acf 2g − abfg2 + a2g3
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Getting back now to our discriminant problem, with Q = P ′, which corresponds to
e = 3a, f = 2b, g = c, we obtain the following formula:

R(P, P ′) = 27a3d2 − 18a2bcd+ 9a2c3 − 18a2bcd+ 12ab3d− 6ab2c2 + 18a2bcd

− 8ab3d+ 3ab2c2 − 6a2c3 + 4ab2c2 − 2ab2c2 + a2c3

By simplifying terms, and dividing by a, we obtain the following formula:

−∆(P ) = 27a2d2 − 18abcd+ 4ac3 + 4b3d− b2c2

But this gives the formula in the statement, and we are done. □

Still talking degree 3 equations, let us try to solve P = 0, with P = aX3+bX2+cX+d
as above. By linear transformations we can assume a = 1, b = 0, and then it is convenient
to write c = 3p, d = 2q. Thus, our equation becomes x3 + 3px + 2q = 0, and regarding
such equations, we have the following famous result, due to Cardano:

Theorem 7.20. For a normalized degree 3 equation, namely

x3 + 3px+ 2q = 0

the discriminant is ∆ = −108(p3 + q2). Assuming p, q ∈ R and ∆ < 0, the number

x =
3

√
−q +

√
p3 + q2 +

3

√
−q −

√
p3 + q2

is a real solution of our equation.

Proof. The formula of ∆ is clear from definitions, and with 108 = 4× 27. Now with
x as in the statement, by using (a+ b)3 = a3 + b3 + 3ab(a+ b), we have:

x3 =

(
3

√
−q +

√
p3 + q2 +

3

√
−q −

√
p3 + q2

)3

= −2q + 3
3

√
−q +

√
p3 + q2 · 3

√
−q −

√
p3 + q2 · x

= −2q + 3 3
√
q2 − p3 − q2 · x

= −2q − 3px

Thus, we are led to the conclusion in the statement. □

There are many more things that can be said about degree 3 equations, along these
lines, and we will certainly have an exercise about this, at the end of this chapter.

We kept the best for the end. As a last topic regarding the complex numbers, which
is something really beautiful, we have the roots of unity. Let us start with:

Theorem 7.21. The equation xN = 1 has N complex solutions, namely{
wk
∣∣∣k = 0, 1, . . . , N − 1

}
, w = e2πi/N

which are called roots of unity of order N .
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Proof. This follows from the general multiplication formula for complex numbers
from Theorem 7.14. Indeed, with x = reit our equation reads:

rNeitN = 1

Thus r = 1, and t ∈ [0, 2π) must be a multiple of 2π/N , as stated. □

As an illustration here, the roots of unity of small order, along with some of their
basic properties, which are very useful for computations, are as follows:

N = 1. Here the unique root of unity is 1.

N = 2. Here we have two roots of unity, namely 1 and −1.
N = 3. Here we have 1, then w = e2πi/3, and then w2 = w̄ = e4πi/3.

N = 4. Here the roots of unity, read as usual counterclockwise, are 1, i,−1,−i.
N = 5. Here, with w = e2πi/5, the roots of unity are 1, w, w2, w3, w4.

N = 6. Here a useful alternative writing is {±1,±w,±w2}, with w = e2πi/3.

N = 7. Here, with w = e2πi/7, the roots of unity are 1, w, w2, w3, w4, w5, w6.

N = 8. Here the roots of unity, read as usual counterclockwise, are the numbers
1, w, i, iw,−1,−w,−i,−iw, with w = eπi/4, which is also given by w = (1 + i)/

√
2.

The roots of unity are very useful variables, and have many interesting properties. As
a first application, we can now solve the ambiguity questions related to the extraction of
N -th roots, from Theorem 7.15, the statement being as follows:

Theorem 7.22. Any nonzero complex number, written as

x = reit

has exactly N roots of order N , which appear as

y = r1/Neit/N

multiplied by the N roots of unity of order N .

Proof. We must solve the equation zN = x, over the complex numbers. Since the
number y in the statement clearly satisfies yN = x, our equation is equivalent to:

zN = yN

Now observe that we can write this equation as follows:(
z

y

)N

= 1

We conclude that the solutions z appear by multiplying y by the solutions of tN = 1,
which are the N -th roots of unity, as claimed. □
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The roots of unity appear in connection with many other interesting questions, and
there are many useful formulae relating them, which are good to know. Here is a basic
such formula, very beautiful, to be used many times in what follows:

Theorem 7.23. The roots of unity, {wk} with w = e2πi/N , have the property

N−1∑
k=0

(wk)s = NδN |s

for any exponent s ∈ N, where on the right we have a Kronecker symbol.

Proof. The numbers in the statement, when written more conveniently as (ws)k with
k = 0, . . . , N − 1, form a certain regular polygon in the plane Ps. Thus, if we denote by
Cs the barycenter of this polygon, we have the following formula:

1

N

N−1∑
k=0

wks = Cs

Now observe that in the case N/| s our polygon Ps is non-degenerate, circling around
the unit circle, and having center Cs = 0. As for the case N |s, here the polygon is
degenerate, lying at 1, and having center Cs = 1. Thus, we have the following formula:

Cs = δN |s

Thus, we obtain the formula in the statement. □

As an interesting philosophical fact, regarding the roots of unity, and the complex
numbers in general, we can now solve the following equation, in a “uniform” way:

x1 + . . .+ xN = 0

With this being not a joke. Frankly, can you find some nice-looking family of real
numbers x1, . . . , xN satisfying x1 + . . . + xN = 0? Certainly not. But with complex
numbers we have now our answer, the sum of the N -th roots of unity being zero.

This was for our basic presentation of the complex numbers. We will be back to more
theory regarding them, and the roots of unity, later on. Among others, we will see later
some non-trivial applications of our above solution to x1 + . . .+ xN = 0.

7d. Plane curves

Recall from before that conics are at the core of everything, mathematics, physics,
life. But, what is next? A natural answer to this question comes from:

Definition 7.24. An algebraic curve in R2 is the vanishing set

C =
{
(x, y) ∈ R2

∣∣∣P (x, y) = 0
}

of a polynomial P ∈ R[X, Y ] of arbitrary degree.
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We already know well the algebraic curves in degree 2, which are the conics, and a first
problem is, what results from what we learned about conics have a chance to be relevant
to the arbitrary algebraic curves. And normally none, because the ellipses, parabolas and
hyperbolas are obviously very particular curves, having very particular properties.

Let us record however a useful statement here, as follows:

Proposition 7.25. The conics can be written in cartesian, polar, parametric or com-
plex coordinates, with the equations for the unit circle being

x2 + y2 = 1 , r = 1 , x = cos t , y = sin t , |z| = 1

and with the equations for ellipses, parabolas and hyperbolas being similar.

Proof. The equations for the circle are clear, those for ellipses can be found in the
above, and we will leave as an exercise those for parabolas and hyperbolas. □

As a true answer to our question now, coming this time from a very modest conic,
namely xy = 0, that we dismissed in the above as being “degenerate”, we have:

Theorem 7.26. The following happen, for curves C defined by polynomials P :

(1) In degree d = 2, curves can have singularities, such as xy = 0 at (0, 0).
(2) In general, assuming P = P1 . . . Pk, we have C = C1 ∪ . . . . . . ∪ Ck.
(3) A union of curves Ci ∪ Cj is generically non-smooth, unless disjoint.
(4) Due to this, we say that C is non-degenerate when P is irreducible.

Proof. All this is self-explanatory, the details being as follows:

(1) This is something obvious, just the story of two lines crossing.

(2) This comes from the following trivial fact, with the notation z = (x, y):

P1 . . . Pk(z) = 0 ⇐⇒ P1(z) = 0, or P2(z) = 0, . . . , or Pk(z) = 0

(3) This is something very intuitive, and it actually takes a bit of time to imagine a
situation where C1 ∩ C2 ̸= ∅, C1 ̸⊂ C2, C2 ̸⊂ C1, but C1 ∪ C2 is smooth. In practice
now, “generically” has of course a mathematical meaning, in relation with probability,
and our assertion does say something mathematical, that we are supposed to prove. But,
we will not insist on this, and leave this as an instructive exercise, precise formulation of
the claim, and its proof, in the case you are familiar with probability theory.

(4) This is just a definition, based on the above, that we will use in what follows. □

With degree 1 and 2 investigated, and our conclusions recorded, let us get now to
degree 3, see what new phenomena appear here. And here, to start with, we have the
following remarkable curve, well-known from calculus, because 0 is not a maximum or
minimum of the function x→ y, despite the derivative vanishing there:

x3 = y
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Also, in relation with set theory and logic, and with the foundations of mathematics
in general, we have the following curve, which looks like the empyset ∅:

(x− y)(x2 + y2 − 1) = 0

But, it is not about counterexamples to calculus, or about logic, that we want to talk
about here. As a first truly remarkable degree 3 curve, or cubic, we have the cusp:

Proposition 7.27. The standard cusp, which is the cubic given by

x3 = y2

has a singularity at (0, 0), with only 1 tangent line at that singularity.

Proof. The two branches of the cusp are indeed both tangent to Ox, because:

y′ = ±3

2

√
x =⇒ y′(0) = 0

Observe also that what happens for the cusp is different from what happens for xy = 0,
precisely because we have 1 line tangent at the singularity, instead of 2. □

As a second remarkable cubic, which gets the crown, and the right to have a Theorem
about it, we have the Tschirnhausen curve, which is as follows:

Theorem 7.28. The Tschirnhausen cubic, given by the following equation,

x3 = x2 − 3y2

makes the dream of xy = 0 come true, by self-intersecting, and being non-degenerate.

Proof. This is something self-explanatory, by drawing a picture, but there are several
other interesting things that can be said about this curve, as follows:

(1) Let us start with the curve written in polar coordinates as follows:

r cos3
(
θ

3

)
= a

With t = tan(θ/3), the equations of the coordinates are as follows:

x = a(1− 3t2) , y = at(3− t2)
Now by eliminating t, we reach to the following equation:

(a− x)(8a+ x)2 = 27ay2

(2) By translating horizontally by 8a, and changing signs of variables, we have:

x = 3a(3− t2) , y = at(3− t2)
Now by eliminating t, we reach to the following equation:

x3 = 9a(x2 − 3y2)

But with a = 1/9 this is precisely the equation in the statement. □
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In degree 4 now, quartics, we have enough dimensions for “improving” the cusp and
the Tschirnhausen curve. First we have the cardioid, which is as follows:

Proposition 7.29. The cardioid, which is a quartic, given in polar coordinates by

2r = a(1− cos θ)

makes the dream of x3 = y2 come true, by being a closed curve, with a cusp.

Proof. As before with the Tschirnhausen curve, this is something self-explanatory,
by drawing a picture, but there are several things that must be said, as follows:

(1) The cardioid appears by definition by rolling a circle of radius c > 0 around another
circle of same radius c > 0. With θ being the rolling angle, we have:

x = 2c(1− cos θ) cos θ

y = 2c(1− cos θ) sin θ

(2) Thus, in polar coordinates we get the equation in the statement, with a = 4c:

r = 2c(1− cos θ)

(3) Finally, in cartesian coordinates, the equation is as follows:

(x2 + y2)2 + 4cx(x2 + y2) = 4c2y2

Thus, what we have is indeed a degree 4 curve, as claimed. □

Still in degree 4, the crown gets to the Bernoulli lemniscate, which is as follows:

Theorem 7.30. The Bernoulli lemniscate, a quartic, which is given by

r2 = a2 cos 2θ

makes the dream of x3 = x2 − 3y2 come true, by being closed, and self-intersecting.

Proof. As usual, this is something self-explanatory, by drawing a picture, which
looks like ∞, but there are several other things that must be said, as follows:

(1) In cartesian coordinates, the equation is as follows, with a2 = 2c2:

(x2 + y2)2 = c2(x2 − y2)

(2) Also, we have the following nice complex reformulation of this equation:

|z + c| · |z − c| = c2

Thus, we are led to the conclusions in in the statement. □

In degree 5, in the lack of any spectacular quintic, let us record:
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Theorem 7.31. Unlike in degree 3, 4, where equations can be solved, by the Cardano
formula, in degree 5 this generically does not happen, an example being

x5 − x− 1 = 0

having Galois group S5, not solvable. Geometrically, this tells us that the intersection of
the quintic y = x5 − x− 1 with the line y = 0 cannot be computed.

Proof. Obviously off-topic, but with no good quintic available, and still a few more
minutes before the bell ringing, I had to improvise a bit, and tell you about this:

(1) As indicated, the degree 3 equations can be solved a bit like the degree 2 ones, but
with the formula, due to Cardano, being more complicated. With some square making
tricks, which are non-trivial either, the Cardano formula applies to degree 4 as well.

(2) In degree 5 or higher, none of this is possible. Long story here, the idea being
that in order for P = 0 to be solvable, the group Gal(P ) must be solvable, in the sense of
group theory. But, unlike S3, S4 which are solvable, S5 and higher are not solvable. □

Back now to our usual business, in degree 6, sextics, we first have here:

Proposition 7.32. The trefoil sextic, or Kiepert curve, which is given by

r3 = a3 cos 3θ

looks like a trefoil, closed curve, with a triple self-intersection.

Proof. As before, drawing a picture is mandatory. With z = reiθ we have:

r3 = a3 cos 3θ ⇐⇒ r3 cos 3θ =

(
r2

a

)3

⇐⇒ z3 + z̄3 = 2
(zz̄
a

)3
⇐⇒ (x+ iy)3 + (x− iy)3 = 2

(
x2 + y2

a

)3

⇐⇒ x3 − 3xy2 =

(
x2 + y2

a

)3

⇐⇒ (x2 + y2)3 = a3(x3 − 3xy2)

Thus, we have indeed a sextic, as claimed. □

We also have in degree 6 the most beautiful of curves them all, the Cayley sextic:

Theorem 7.33. The Cayley sextic, given in polar coordinates by

r = a cos3
(
θ

3

)
makes the dream of everyone come true, by looking like a self-intersecting heart.
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Proof. As before, picture mandatory. With z = reiθ and u = z1/3 we have:

r = a cos3
(
θ

3

)
⇐⇒ ar cos3

(
θ

3

)
= r2

⇐⇒ a

(
u+ ū

2

)3

= r2

⇐⇒ a(u3 + ū3 + 3uū(u+ ū)) = 8r2

⇐⇒ 3auū · u+ ū

2
= 4r2 − ax

⇐⇒ 27a3r6 · r
2

a
= (4r2 − ax)3

⇐⇒ 27a2(x2 + y2)2 = (4x2 + 4y2 − ax)3

Thus, we have indeed a sextic, as claimed. □

7e. Exercises

Exercises:

Exercise 7.34.

Exercise 7.35.

Exercise 7.36.

Exercise 7.37.

Exercise 7.38.

Exercise 7.39.

Exercise 7.40.

Exercise 7.41.

Bonus exercise.



CHAPTER 8

Light and heat

8a. Electrostatics

Let us develop now the basic mathematics for electrostatics. We first have:

Definition 8.1. Given charges q1, . . . , qk ∈ R located at positions x1, . . . , xk ∈ R3, we
define their electric field to be the vector function

E(x) = K
∑
i

qi(x− xi)
||x− xi||3

so that their force applied to a charge Q ∈ R positioned at x ∈ R3 is given by F = QE.

Observe the analogy with gravity, save for the fact that instead of masses m > 0 we
have now charges q ∈ R, and that at the level of constants, G gets replaced by K.

More generally, we will be interested in electric fields of various non-discrete config-
urations of charges, such as charged curves, surfaces and solid bodies. We have already
talked about such things in the above, in the gravitational context, but the discussion
there, involving the gravitational force of a solid body having non-trivial shape or density,
was something rather specialized.

In the electricity context, however, things like wires or metal sheets or solid bodies
coming in all sorts of shapes, tailored for their purpose, play a key role, so this extension
is essential. So, let us go ahead with:

Definition 8.2. The electric field of a charge configuration L ⊂ R3, with charge
density function ρ : L→ R, is the vector function

E(x) = K

∫
L

ρ(z)(x− z)
||x− z||3

dz

so that the force of L applied to a charge Q positioned at x is given by F = QE.

With the above definitions in hand, it is most convenient now to forget about the
charges, and focus on the study of the corresponding electric fields E.

These fields are by definition vector functions E : R3 → R3, with the convention that
they take ±∞ values at the places where the charges are located, and intuitively, are best
represented by their field lines, which are constructed as follows:

153
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Definition 8.3. The field lines of E : R3 → R3 are the oriented curves

γ ⊂ R3

pointing at every point x ∈ R3 at the direction of the field, E(x) ∈ R3.

As a basic example here, for one charge the field lines are the half-lines emanating
from its position, oriented according to the sign of the charge:

↖ ↑ ↗
← ⊕ →
↙ ↓ ↘

↘ ↓ ↙
→ ⊖ ←
↗ ↑ ↖

For two charges now, if these are of opposite signs, + and −, you get a picture that
you are very familiar with, namely that of the field lines of a bar magnet:

↗ ↗ → → → → ↘ ↘
↖ ↑ ↗ → → ↘ ↓ ↙
← ⊕ → → → → ⊖ ←
↙ ↓ ↘ → → ↗ ↑ ↖
↘ ↘ → → → → ↗ ↗

If the charges are +,+ or −,−, you get something of similar type, but repulsive this
time, with the field lines emanating from the charges being no longer shared:

← ↖ ↖ ↗ ↗ →
↑ ↗ ↖ ↑

← ⊕ ⊕ →
↓ ↘ ↙ ↓

← ↙ ↙ ↘ ↘ →
These pictures, and notably the last one, with +,+ charges, are quite interesting,

because the repulsion situation does not appear in the context of gravity. Thus, we can
only expect our geometry here to be far more complicated than that of gravity.

In general now, the first thing that can be said about the field lines is that, by defini-
tion, they do not cross. Thus, what we have here is some sort of oriented 1D foliation of
R3, in the sense that R3 is smoothly decomposed into oriented curves γ ⊂ R3.

The field lines, as constructed in Definition 8.3, obviously do not encapsulate the whole
information about the field, with the direction of each vector E(x) ∈ R3 being there, but
with the magnitude ||E(x)|| ≥ 0 of this vector missing. However, say when drawing,
when picking up uniformly radially spaced field lines around each charge, and with the
number of these lines proportional to the magnitude of the charge, and then completing
the picture, the density of the field lines around each point x ∈ R will give you then the
magnitude ||E(x)|| ≥ 0 of the field there, up to a scalar.
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Let us summarize these observations as follows:

Proposition 8.4. Given an electric field E : R3 → R3, the knowledge of its field lines
is the same as the knowledge of the composition

nE : R3 → R3 → S

where S ⊂ R3 is the unit sphere, and n : R3 → S is the rescaling map, namely:

n(x) =
x

||x||
However, in practice, when the field lines are accurately drawn, the density of the field
lines gives you the magnitude of the field, up to a scalar.

Proof. We have two assertions here, the idea being as follows:

(1) The first assertion is clear from definitions, with of course our usual convention
that the electric field and its problematics take place outside the locations of the charges,
which makes everything in the statement to be indeed well-defined.

(2) Regarding now the last assertion, which is of course a bit informal, this follows
from the above discussion. It is possible to be a bit more mathematical here, with a
definition, formula and everything, but we will not need this, in what follows. □

Let us introduce now a key definition, as follows:

Definition 8.5. The flux of an electric field E : R3 → R3 through a surface S ⊂ R3,
assumed to be oriented, is the quantity

ΦE(S) =

∫
S

< E(x), n(x) > dx

with n(x) being unit vectors orthogonal to S, following the orientation of S. Intuitively,
the flux measures the signed number of field lines crossing S.

Here by orientation of S we mean precisely the choice of unit vectors n(x) as above,
orthogonal to S, which must vary continuously with x. For instance a sphere has two
possible orientations, one with all these vectors n(x) pointing inside, and one with all
these vectors n(x) pointing outside. More generally, any surface has locally two possible
orientations, so if it is connected, it has two possible orientations. In what follows the
convention is that the closed surfaces are oriented with each n(x) pointing outside.

Regarding the last sentence of Definition 8.5, this is of course something informal,
meant to help, coming from the interpretation of the field lines from Proposition 8.4.
However, we will see later that this simple interpretation can be of great use.

As a first observation, we could have done of course the same thing with gravity
before, but these notions of field lines and flux are not very interesting, in that context.
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In the present setting, however, electric fields passing through metal sheets are a common
occurence, and all the above is important, for any application.

As a first illustration, let us do a basic computation, as follows:

Proposition 8.6. For a point charge q ∈ R at the center of a sphere S,

ΦE(S) =
q

ε0

where the constant is ε0 = 1/(4πK), independently of the radius of S.

Proof. Assuming that S has radius r, we have the following computation:

ΦE(S) =

∫
S

< E(x), n(x) > dx

=

∫
S

〈
Kqx

r3
,
x

r

〉
dx

=

∫
S

Kq

r2
dx

=
Kq

r2
× 4πr2

= 4πKq

Thus with ε0 = 1/(4πK) as above, we obtain the result. □

As a comment here, the constant ε0 = 1/(4πK) which appears in the above is the
permittivity of free space constant that we talked about before, when discussing units. In
what follows we will use this new constant instead of the Coulomb constant K.

More generally now, we have the following result:

Theorem 8.7. The flux of a field E through a sphere S is given by

ΦE(S) =
Qenc

ε0

where Qenc is the total charge enclosed by S, and ε0 = 1/(4πK).

Proof. This can be done in several steps, as follows:

(1) Before jumping into computations, let us do some manipulations. First, by dis-
cretizing the problem, we can assume that we are dealing with a system of point charges.
Moreover, by additivity, we can assume that we are dealing with a single charge. And if
we denote by q ∈ R this charge, located at v ∈ R3, we want to prove that we have the
following formula, where B ⊂ R3 denotes the ball enclosed by S:

ΦE(S) =
q

ε0
δv∈B
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(2) By linearity we can assume that we are dealing with the unit sphere S. Moreover,
by rotating we can assume that our charge q lies on the Ox axis, that is, that we have
v = (r, 0, 0) with r ≥ 0, r ̸= 1. The formula that we want to prove becomes:

ΦE(S) =
q

ε0
δr<1

(3) Let us start now the computation. With u = (x, y, z), we have:

ΦE(S) =

∫
S

< E(u), u > du

=

∫
S

〈
Kq(u− v)
||u− v||3

, u

〉
du

= Kq

∫
S

< u− v, u >
||u− v||3

du

= Kq

∫
S

1− < v, u >

||u− v||3
du

= Kq

∫
S

1− rx
(1− 2xr + r2)3/2

du

(4) In order to compute the above integral, we will use spherical coordinates for the
unit sphere S, which are as follows, with s ∈ [0, π] and t ∈ [0, 2π]:

x = cos s

y = sin s cos t

z = sin s sin t

The corresponding Jacobian is readily computed, as follows:

J =

∣∣∣∣∣∣
cos s − sin s 0

sin s cos t cos s cos t − sin s sin t
sin s sin t cos s sin t sin s cos t

∣∣∣∣∣∣
= sin s sin t

∣∣∣∣ cos s − sin s
sin s sin t cos s sin t

∣∣∣∣+ sin s cos t

∣∣∣∣ cos s − sin s
sin s cos t cos s cos t

∣∣∣∣
= sin s(sin2 t+ cos2 t)

∣∣∣∣cos s − sin s
sin s cos s

∣∣∣∣
= sin s



158 8. LIGHT AND HEAT

(5) With the above change of coordinates, our integral from (3) becomes:

ΦE(S) = Kq

∫
S

1− rx
(1− 2xr + r2)3/2

du

= Kq

∫ 2π

0

∫ π

0

1− r cos s
(1− 2r cos s+ r2)3/2

· sin s ds dt

= 2πKq

∫ π

0

(1− r cos s) sin s
(1− 2r cos s+ r2)3/2

ds

=
q

2ε0

∫ π

0

(1− r cos s) sin s
(1− 2r cos s+ r2)3/2

ds

(6) The point now is that the integral on the right can be computed with the change
of variables x = cos s. Indeed, we have dx = − sin s ds, and we obtain:∫ π

0

(1− r cos s) sin s
(1− 2r cos s+ r2)3/2

ds =

∫ 1

−1

1− rx
(1− 2rx+ r2)3/2

dx

=

[
x− r√

1− 2rx+ r2

]1
−1

=
1− r√

1− 2r + r2
− −1− r√

1 + 2r + r2

=
1− r
|1− r|

+ 1

= 2δr<1

Thus, we are led to the formula in the statement. □

As a comment here, at r = 1, which is normally avoided by our problematics, the
integral Ir computed in (5) above converges too, and can be evaluated as follows:

I1 =

[
x− 1√
2− 2x

]1
−1

=

[
−
√

1− x
2

]1
−1

= 1

Thus, we have the correct middle step between the 0, 2 values of the integral Ir, and
getting back now to the flux, at r = 1 we formally have ΦE(S) = q/(2ε0), which again is
the correct middle step between the 0, q/ε0 values of the flux.

Even more generally now, we have the following result, due to Gauss, which is the
foundation of advanced electrostatics, and of everything following from it, namely elec-
trodynamics, and then quantum mechanics, and particle physics:
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Theorem 8.8 (Gauss law). The flux of a field E through a surface S is given by

ΦE(S) =
Qenc

ε0

where Qenc is the total charge enclosed by S, and ε0 = 1/(4πK).

Proof. This basically follows from Theorem 8.7, or even from Proposition 8.6, by
adding to the results there a number of new ingredients, as follows:

(1) Our first claim is that given a closed surface S, with no charges inside, the flux
through it of any choice of external charges vanishes:

ΦE(S) = 0

This claim is indeed supported by the intuitive interpretation of the flux, as corre-
sponding to the signed number of field lines crossing S. Indeed, any field line entering as
+ must exit somewhere as −, and vice versa, so when summing we get 0.

(2) In practice now, in order to prove this rigorously, there are several ways. A first
argument, which is quite elementary, is the one used by Feynman in [34], based on the
fact that, due to F ∼ 1/d2, local deformations of S will leave invariant the flux, and so
in the end we are left with a rotationally invariant surface, where the result is clear.

(3) A second argument, which basically uses the same idea, but is perhaps a bit more
robust, is by redoing the computations in the proof of Theorem 8.7, by assuming this
time that the integration takes place on an arbitrary surface as follows:

Sλ =
{
λ(u)u

∣∣∣u ∈ S}
To be more precise, here λ : S → (0,∞) is a certain function, defining the surface,

whose derivatives will appear both in the construction of the normal vectors n(x) with
x = λ(u)u, and in the Jacobian of the change of variables x → u, and in the end, when
integrating over S as in the proof of Theorem 8.7, this function λ dissapears.

(4) A third argument, used by basically all electrodynamics books at the graduate
level, and by some undergraduate books too, is by using heavy calculus, namely partial
integration in 3D, and we will discuss this later, more in detail, a bit later.

(5) A fourth argument is by following the idea in (1), namely carefully axiomatizing
the field lines, and their relation with the field, and then obtaining ΦE(S) = 0 by using
the in-and-out trick in (1), as explained for instance by Griffiths in [44].

(6) To summmarize, we are led to the conclusion that given a closed surface S, with
no charges inside, the flux through it of any choice of external charges vanishes:

ΦE(S) = 0

(7) The point now is that, with this and Proposition 8.6 in hand, we can finish by using
a standard math trick. Let us assume indeed, by discretizing, that our system of charges
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is discrete, consisting of enclosed charges q1, . . . , qk ∈ R, and an exterior total charge Qext.
We can surround each of q1, . . . , qk by small disjoint spheres U1, . . . , Uk, chosen such that
their interiors do not touch S, and we have:

ΦE(S) = ΦE(S − ∪Ui) + ΦE(∪Ui)

= 0 + ΦE(∪Ui)

=
∑
i

ΦE(Ui)

=
∑
i

qi
ε0

=
Qenc

ε0

(8) To be more precise, in the above the union ∪Ui is a usual disjoint union, and
the flux is of course additive over components. As for the difference S − ∪Ui, this is by
definition the disjoint union of S with the disjoint union ∪(−Ui), with each −Ui standing
for Ui with orientation reversed, and since this difference has no enclosed charges, the flux
through it vanishes by (6). Finally, the end makes use of Proposition 8.6. □

8b. Magnetic fields

Just by feeding a light bulb with a battery, and looking at the cables, and playing a
bit with them, we are led to the following interesting conclusion:

Fact 8.9. Parallel electric currents in opposite directions repel, and parallel electric
currents in the same direction attract.

We can in fact say even more, by further playing with the cables, armed this time
with a compass. The conclusion is that each cable produces some kind of “magnetic
field” around it, which interestingly, is not oriented in the direction of the current, but is
rather orthogonal to it, given by the right-hand rule, as follows:

Fact 8.10 (Right-hand rule). An electric current produces a magnetic field B which
is orthogonal to it, whose direction is given by the right-hand rule,

⊖
↑
↑ ↑

↗
↗

↑
⊕

namely wrap your right hand around the cable, with the thumb pointing towards the direc-
tion of the current, and the movement of your wrist will give you the direction of B.
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This is something even more interesting than Fact 8.9. Indeed, not only moving
charges produce something new, that we’ll have to investigate, but they know well about
3D, and more specifically about orientation there, left and right, even if living in 1D.

And isn’t this amazing. Let us summarize this discussion with:

Fact 8.11. Charges are smart, they know about 3D, and about left and right.

With this discussed, let us go ahead and investigate the charge smartness, and more
specifically the magnetic fields discovered above. In order to evaluate the properties of
the magnetic fields B coming from electric currents, the simplest way is that of making
them act on exterior charges Q. And we have here the following formula:

Fact 8.12 (Lorentz force law). The magnetic force on a charge Q, moving with velocity
v in a magnetic field B, is as follows, with × being a vector product:

Fm = (v ×B)Q

In the presence of both electric and magnetic fields, the total force on Q is

F = (E + v ×B)Q

where E is the electric field.

Here the occurrence of the vector product × is not surprising, due to the fact that the
right-hand rule appears both in Fact 8.10, and in the definition of ×. In fact, the Lorentz
force law is just a fancy reformulation of Fact 8.10, telling us that, once the magnetic fields
B duly axiomatized, and with this being a remaining problem, their action on exterior
charges Q will be proportional to the charge, Fm ∼ Q, and with the orientation and
magnitude coming from the 3D of the right-hand rule in Fact 8.10.

As an interesting application of the Lorentz force law, we have:

Theorem 8.13. Magnetic forces do not work.

Proof. This might seem quite surprising, but the math is there, as follows:

dWm = < Fm, dx >

= < (v ×B)Q, v dt >

= Q < v ×B, v > dt

= 0

Thus, we are led to the conclusion in the statement. □

Moving ahead now, let us talk axiomatization of electric currents, including units. We
have here the following definition, clarifying our previous discussion about coulombs:
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Definition 8.14. The electric currents I are measured in amperes, given by:

1A = 1C/s

As a consequence, the coulomb is given by 1C = 1A× 1s.

With this notion in hand, let us keep building the math and physics of magnetism.
So, assume that we are dealing with an electric current I, producing a magnetic field B.
In this context, the Lorentz force law from Fact 8.12 takes the following form:

Fm =

∫
(dx×B)I

The current being typically constant along the wire, this reads:

Fm = I

∫
dx×B

We can deduce from this the following result:

Theorem 8.15. The volume current density J satisfies

< ∇, J >= −ρ̇
called continuity equation.

Proof. We have indeed the following computation, for any surface S enclosing a
volume V , based on the Lorentz force law, and on the overall chage conservation:∫

V

< ∇, J > =

∫
S

< J, n(x) > dx

= − d

dt

∫
V

ρ

= −
∫
V

ρ̇

Thus, we are led to the conclusion in the statement. □

Moving ahead now, let us formulate the following definition:

Definition 8.16. The realm of magnetostatics is that of the steady currents,

ρ̇ = 0 , J̇ = 0

in analogy with electrostatics, dealing with fixed charges.

As a first observation, for steady currents the continuity equation reads:

< ∇, J >= 0

We have here a bit of analogy between electrostatics and magnetostatics, and with
this in mind, let us look for equations for the magnetic field B. We have:
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Fact 8.17 (Biot-Savart law). The magnetic field of a steady line current is given by

B =
µ0

4π

∫
I × x
||x||3

where µ0 is a certain constant, called the magnetic permeability of free space.

This law not only gives us all we need, for studying steady currents, and we will talk
about this in a moment, with math and everything, but also makes an amazing link with
the Coulomb force law, due to the following fact, which is also part of it:

Fact 8.18 (Biot-Savart, continued). The electric permittivity of free space ε0 and the
magnetic permeability of free space µ0 are related by the formula

ε0µ0 =
1

c2

where c is as usual the speed of light.

This is something truly remarkable, and very deep, that will have numerous conse-
quences, in what follows, be that for investigating phenomena like radiation, or for making
the link with Einstein’s relativity theory, both crucially involving c.

But, first of all, this is certainly an invitation to rediscuss units and constants, as a
continuation of our previous discussion on this topic. In what regards the units, we won’t
be impressed by the ampere, and keep using the coulomb, as a main unit:

Conventions 8.19. We keep using standard units, namely meters, kilograms, sec-
onds, along with the coulomb, defined by the following exact formula

1C =
5× 1018

0.801 088 317
e

with e being minus the charge of the electron, which in practice means:

1C ≃ 6.241× 1018 e

We will also use the ampere, defined as 1A = 1C/s, for measuring currents.

In what regards constants, however, time to do some cleanup. We have been boycotting
for some time already the Coulomb constant K, and using instead ε0 = 1/(4πK), due to
the ubiquitous 4π factor, first appearing as the area of the unit sphere, A = 4π, in the
computation for the Gauss law for the unit sphere.

Together with Fact 8.18, this suggests using the numbers ε0, µ0 as our new constants,
by always keeping in mind ε0µ0 = 1/c2, and by having of course the speed of light c as
constant too, and we are led in this way into the following conventions:
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Conventions 8.20. We use from now on as constants the electric permittivity of free
space ε0 and the magnetic permeability of free space µ0, given by

ε0 = 8.854 187 8128(13)× 10−12

µ0 = 1.256 637 062 12(19)× 10−6

as well as the speed of light, given by the following exact formula,

c = 299 792 458

which are related by ε0µ0 = 1/c2, and with the Coulomb constant being K = 1/(4πε0).

Observe in passing that we are not messing up our figures, which can be quite often
the case in this type of situation, because according to our data, and by truncating instead
of rounding, as busy theoretical physicists usually do, we have:

ε0µ0c
2 = 8.854× 1.256× 2.9972 × 1016−12−6 = 0.998

Getting back now to theory and math, the Biot-Savart law has as consequence:

Theorem 8.21. We have the following formula:

< ∇, B >= 0

That is, the divergence of the magnetic field vanishes.

Proof. We recall that the Biot-Savart law tells us that the magnetic field B of a
steady line current I is given by the following formula:

B =
µ0

4π

∫
I × x
||x||3

By applying the divergence operator to this formula, we obtain:

< ∇, B > =
µ0

4π

∫ 〈
∇, I × x
||x||3

〉
=

µ0

4π

∫ 〈
∇× J, x

||x||3

〉
−
〈
∇× x

||x||3
, J

〉
=

µ0

4π

∫ 〈
0,

x

||x||3

〉
− ⟨0, J⟩

= 0

Thus, we are led to the conclusion in the statement. □

Regarding now the curl, we have here a similar result, as follows:

Theorem 8.22 (Ampère law). We have the following formula,

∇×B = µ0J

computing the curl of the magnetic field.
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Proof. Again, we use the Biot-Savart law, telling us that the magnetic field B of a
steady line current I is given by the following formula:

B =
µ0

4π

∫
I × x
||x||3

By applying the curl operator to this formula, we obtain:

∇×B =
µ0

4π

∫
∇× I × x

||x||3

=
µ0

4π

∫ 〈
∇, x

||x||3

〉
J− < ∇, J > x

||x||3

=
µ0

4π

∫
4πδx · J −

µ0

4π
· 0

= µ0

∫
δx · J

= µ0J

Thus, we are led to the conclusion in the statement. □

As a conclusion to all this, the equations of magnetostatics are as follows:

Theorem 8.23. The equations of magnetostatics are

< ∇, B >= 0 , ∇×B = µ0J

with the second equation being the Ampère law.

Proof. This follows indeed from the above discussion, and more specifically from
Theorem 8.21 and Theorem 8.22, which both follow from the Biot-Savart law. □

8c. Light, optics

To start with, we can talk about waves in N dimensions, as follows:

Theorem 8.24. The wave equation in RN is as follows,

φ̈ = v2∆φ

with v > 0 being the propagation speed of the wave, and with ∆ given by

∆φ =
N∑
i=1

d2φ

dx2i

being the Laplace operator, playing the role of a numeric second derivative.
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Proof. We can use here a lattice model as before in 1D, as follows:

(1) In 2 dimensions, to start with, the same argument as before carries on. Indeed,
we can use a lattice model as follows, with all the edges standing for small springs:

• • • •

• • • •

• • • •

As before in one dimension, we send an impulse, and we zoom on one ball. The
situation here is as follows, with l being the spring length:

•φ(x,y+l)

•φ(x−l,y) •φ(x,y) •φ(x+l,y)

•φ(x,y−l)

We have two forces acting at (x, y). First is the Newton motion force, mass times
acceleration, which is as follows, with m being the mass of each ball:

Fn = m · φ̈(x, y)

And second is the Hooke force, displacement of the spring, times spring constant.
Since we have four springs at (x, y), this is as follows, k being the spring constant:

Fh = F r
h − F l

h + F u
h − F d

h

= k(φ(x+ l, y)− φ(x, y))− k(φ(x, y)− φ(x− l, y))
+ k(φ(x, y + l)− φ(x, y))− k(φ(x, y)− φ(x, y − l))
= k(φ(x+ l, y)− 2φ(x, y) + φ(x− l, y))
+ k(φ(x, y + l)− 2φ(x, y) + φ(x, y − l))

We conclude that the equation of motion, in our model, is as follows:

m · φ̈(x, y) = k(φ(x+ l, y)− 2φ(x, y) + φ(x− l, y))
+ k(φ(x, y + l)− 2φ(x, y) + φ(x, y − l))

(2) Now let us take the limit of our model, as to reach to continuum. For this purpose
we will assume that our system consists of B2 >> 0 balls, having a total mass M , and
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spanning a total area L2. Thus, our previous infinitesimal parameters are as follows, with
K being the spring constant of the total system, taken to be equal to k:

m =
M

B2
, k = K , l =

L

B

With these changes, our equation of motion found in (3) reads:

φ̈(x, y) =
KB2

M
(φ(x+ l, y)− 2φ(x, y) + φ(x− l, y))

+
KB2

M
(φ(x, y + l)− 2φ(x, y) + φ(x, y − l))

Now observe that this equation can be written, more conveniently, as follows:

φ̈(x, y) =
KL2

M
× φ(x+ l, y)− 2φ(x, y) + φ(x− l, y)

l2

+
KL2

M
× φ(x, y + l)− 2φ(x, y) + φ(x, y − l)

l2

With N →∞, and therefore l→ 0, we obtain in this way:

φ̈(x, y) =
KL2

M

(
d2φ

dx2
+
d2φ

dy2

)
(x, y)

As a conclusion to this, we are led to the following wave equation in two dimensions,
with v =

√
K/M · L being the propagation speed of our wave:

φ̈(x, y) = v2
(
d2φ

dx2
+
d2φ

dy2

)
(x, y)

But we recognize at right the Laplace operator, and we are done. As before in 1D,
there is of course some discussion to be made here, arguing that our spring model in (1)
is indeed the correct one. But do not worry, experiments confirm our findings.

(3) In 3 dimensions now, which is the case of the main interest, corresponding to our
real-life world, the same argument carries over, and the wave equation is as follows:

φ̈(x, y, z) = v2
(
d2φ

dx2
+
d2φ

dy2
+
d2φ

dz2

)
(x, y, z)

(4) Finally, the same argument, namely a lattice model, carries on in arbitrary N
dimensions, and the wave equation here is as follows:

φ̈(x1, . . . , xN) = v2
N∑
i=1

d2φ

dx2i
(x1, . . . , xN)

Thus, we are led to the conclusion in the statement. □
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Light is the wave predicted by electrodynamics, traveling in vacuum at the maximum
possible speed, c, and with an important extra property being that it depends on a real
positive parameter, that can be called, upon taste, frequency, wavelength, or color. And
in what regards the creation of light, the mechanism here is as follows:

Fact 8.25. An accelerating or decelerating charge produces electromagnetic radiation,
called light, whose frequency and wavelength can be explicitely computed.

This phenomenon can be observed is a variety of situations, such as the usual light
bulbs, where electrons get decelerated by the filament, acting as a resistor, or in usual fire,
which is a chemical reaction, with the electrons moving around, as they do in any chemical
reaction, or in more complicated machinery like nuclear plants, particle accelerators, and
so on, leading there to all sorts of eerie glows, of various colors.

Getting back now to Fact 8.25, in its general form, as stated above, this is something
which can be deduced via some math, based on the Maxwell equations.

Moving ahead, let us go back to the wave equation φ̈ = v2∆φ from Theorem 8.24,
and try to understand its simplest solutions. In 1D, we know that we have:

Theorem 8.26. The 1D wave equation has as basic solutions the functions

φ(x) = A cos(kx− wt+ δ)

with A being called amplitude, kx−wt+δ being called the phase, k being the wave number,
w being the angular frequency, and δ being the phase constant. We have

λ =
2π

k
, T =

2π

kv
, ν =

1

T
, w = 2πν

relating the wavelength λ, period T , frequency ν, and angular frequency w. Moreover, any
solution of the wave equation appears as a linear combination of such basic solutions.

Proof. There are several things going on here, the idea being as follows:

(1) Our first claim is that the function φ in the statement satisfies indeed the wave
equation, with speed v = w/k. For this purpose, observe that we have:

φ̈ = −w2φ ,
d2φ

dx2
= −k2φ

Thus, the wave equation is indeed satisfied, with speed v = w/k:

φ̈ =
(w
k

)2 d2φ
dx2

= v2
d2φ

dx2

(2) Regarding now the other things in the statement, all this is basically terminology,
which is very natural, when thinking how φ(x) = A cos(kx− wt+ δ) propagates.

(3) Finally, the last assertion is clear. We will see later in this book, using Fourier
analysis, that any solution of the 1D wave equation appears in fact in this way. □
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As a first observation, the above result invites the use of complex numbers. Indeed,
we can write the solutions that we found in a more convenient way, as follows:

φ(x) = Re
[
Aei(kx−wt+δ)

]
And we can in fact do even better, by absorbing the quantity eiδ into the amplitude

A, which becomes now a complex number, and writing our formula as:

φ = Re(φ̃) , φ̃ = Ãei(kx−wt)

In fact, with a bit more work, we can fully solve the 1D wave equation, as follows:

Theorem 8.27. The solution of the 1D wave equation with initial value conditions
φ(x, 0) = f(x) and φ̇(x, 0) = g(x) is given by the d’Alembert formula, namely:

φ(x, t) =
f(x− vt) + f(x+ vt)

2
+

1

2v

∫ x+vt

x−vt

g(s)ds

In the context of our previous lattice model discretizations, what happens is more or less
that the above d’Alembert integral gets computed via Riemann sums.

Proof. There are several things going on here, the idea being as follows:

(1) Let us first check that the d’Alembert solution is indeed a solution of the wave
equation φ̈ = v2φ′′. The first time derivative is computed as follows:

φ̇(x, t) =
−vf ′(x− vt) + vf ′(x+ vt)

2
+

1

2v
(vg(x+ vt) + vg(x− vt))

The second time derivative is computed as follows:

φ̈(x, t) =
v2f ′′(x− vt) + v2f(x+ vt)

2
+
vg′(x+ vt)− vg′(x− vt)

2

Regarding now space derivatives, the first one is computed as follows:

φ′(x, t) =
f ′(x− vt) + f ′(x+ vt)

2
+

1

2v
(g′(x+ vt)− g′(x− vt))

As for the second space derivative, this is computed as follows:

φ′′(x, t) =
f ′′(x− vt) + f ′′(x+ vt)

2
+
g′′(x+ vt)− g′′(x− vt)

2v

Thus we have indeed φ̈ = v2φ′′. As for the initial conditions, φ(x, 0) = f(x) is clear
from our definition of φ, and φ̇(x, 0) = g(x) is clear from our above formula of φ̇.

(2) Conversely now, we must show that our solution is unique, but instead of going
here into abstract arguments, we will simply solve our equation, which among others will
doublecheck the computations in (1). Let us make the following change of variables:

ξ = x− vt , η = x+ vt
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With this change of variables, which is quite tricky, mixing space and time variables,
our wave equation φ̈ = v2φ′′ reformulates in a very simple way, as follows:

d2φ

dξdη
= 0

But this latter equation tells us that our new ξ, η variables get separated, and we
conclude from this that the solution must be of the following special form:

φ(x, t) = F (ξ) +G(η) = F (x− vt) +G(x+ vt)

Now by taking into account the intial conditions φ(x, 0) = f(x) and φ̇(x, 0) = g(x),
and then integrating, we are led to the d’Alembert formula in the statement.

(3) In regards now with our discretization questions, by using a 1D lattice model with
balls and springs as before, what happens to all the above is more or less that the above
d’Alembert integral gets computed via Riemann sums, in our model, as stated. □

Moving ahead now towards electromagnetism and 3D, let us formulate:

Definition 8.28. A monochromatic plane wave is a solution of the 3D wave equation
which moves in only 1 direction, making it in practice a solution of the 1D wave equation,
and which is of the special from found in Theorem 8.26, with no frequencies mixed.

In other words, we are making here two assumptions on our wave. First is the 1-
dimensionality assumption, which gets us into the framework of Theorem 8.26. And
second is the assumption, in connection with the Fourier decomposition result from the
end of Theorem 8.26, that our solution is of “pure” type, meaning a wave having a well-
defined wavelenght and frequency, instead of being a “packet” of such pure waves.

All this is still mathematics, and making now the connection with physics and elec-
tromagnetism, and more specifically with Theorem 8.24 and Fact 8.25, we have:

Fact 8.29. Physically speaking, a monochromatic plane wave is the electromagnetic
radiation appearing as in Theorem 8.24 and Fact 8.25, via equations of type

E = Re(Ẽ) : Ẽ = Ẽ0 e
i(<k,x>−wt)

B = Re(B̃) : B̃ = B̃0 e
i(<k,x>−wt)

with the wave number being now a vector, k ∈ R3. Moreover, it is possible to add to this
an extra parameter, accounting for the possible polarization of the wave.

In practice, we have various types of light, depending on frequency and wavelength.
These are normally referred to as “electromagnetic waves”, but for keeping things simple,
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we will keep using the term “light”. The classification, in a rough form, is as follows:

Frequency Type Wavelength
−

1018 − 1020 γ rays 10−12 − 10−10

1016 − 1018 X− rays 10−10 − 10−8

1015 − 1016 UV 10−8 − 10−7

−
1014 − 1015 blue 10−7 − 10−6

1014 − 1015 yellow 10−7 − 10−6

1014 − 1015 red 10−7 − 10−6

−
1011 − 1014 IR 10−6 − 10−3

109 − 1011 microwave 10−3 − 10−1

1− 109 radio 10−1 − 108

Observe the tiny space occupied by the visible light, all colors there, and the many
more missing, being squeezed under the 1014− 1015 frequency banner. Here is a zoom on
that part, with of course the remark that all this, colors, is something subjective:

Frequency THz = 1012 Hz Color Wavelength nm = 10−9 m
−

670− 790 violet 380− 450
620− 670 blue 450− 485
600− 620 cyan 485− 500
530− 600 green 500− 565
510− 530 yellow 565− 590
480− 510 orange 590− 625
400− 480 red 625− 750

Outside visible light we have, as you probably know it, UV on higher frequencies,
and IR on lower frequencies. At the high frequency end we have X-rays, that you surely
know about too, and γ rays, which are usually associated with various bad things, such
as thunderstorms, solar flares, and small bugs with our nuclear energy technology.

As for the lower frequency end of the scale, first we have microwaves, but if you love
physics and chemistry you should learn some cooking, that’s first-class chemistry, that
you can practice every day. And then we have all sorts of radio wavelenghts, including
FM, followed by AM, and then by several more obscure low-frequency waves.

Importantly, both ends of the table are a bit loose. At the high frequency end there
are some restrictions coming from quantum mechanics, and more on them later. As for
the low frequency end, what’s wave and what’s not is a bit of a philosophical question,
but which is actually not that philosophical, because waves having huge wavelengths can
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easily turn around mountains, full countries and so on, and so are of military interest.
Secret research here, more of engineering type of course, is still ongoing.

Back now to our business, with all the above in hand, we can do some optics. Light
usually comes in “bundles”, with waves of several wavelenghts coming at the same time,
from the same source, and the first challenge is that of separating these wavelenghts.

In order to discuss this, let us start with the following fact:

Theorem 8.30. Inside a linear, homogeneous medium, where there is no free charge
or free current present, both the electric and magnetic fields E and B are subject to

φ̈ = v2∆φ

with v being the speed of light inside the medium, given by

v =
c

n
: n =

√
εµ

ε0µ0

with the quantity on the right n > 1 being called refraction index of the medium.

Proof. This is something that we know well in vacuum, from the above, and the
proof in general is identical, with the resulting speed being:

v =
1
√
εµ

But this formula can be written is a more familiar from, as above. □

As a first observation here, while the above is something quite trivial, mathematically
speaking, from the physical viewpoint we are here into complicated things. Materials can
be transparent or opaque, with the distinction between them being something very subtle,
and advanced, and Theorem 8.30 obviously deals with the transparent case.

In short, we are here inside advanced materials theory, that we cannot really under-
stand, with our knowledge so far. In what follows we will be interested in transparent
materials only, such as glass. Regarding the other materials, such as rock, let us just
mention that light dissapears inside them, converted into heat. Of course glass heats too
when light crosses it, with this being related to v < c inside it. More on this later.

Next in line, and of interest for us, we have:

Fact 8.31. When traveling through a material, and hitting a new material, some of
the light gets reflected, at the same angle, and some of it gets refracted, at a different
angle, depending both on the old and the new material, and on the wavelength.
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Again, this is something deep, and very old as well, and there are many things that
can be said here, ranging from various computations based on the Maxwell equations, to
all sorts of considerations belonging to advanced materials theory.

As a basic formula here, we have the famous Snell law, which relates the incidence
angle θ1 to the refraction angle θ2, via the following simple formula:

sin θ2
sin θ1

=
n1(λ)

n2(λ)

Here ni(λ) are the refraction indices of the two materials, adjusted for the wavelength,
and with this adjustment for wavelength being the whole point, which is something quite
complicated. For an introduction to all this, we refer for instance to Griffiths [44].

As a simple consequence of the above, we have:

Theorem 8.32. Light can be decomposed, by using a prism.

Proof. This follows from Fact 8.31. Indeed, when hitting a piece of glass, provided
that the hitting angle is not 90◦, the light will decompose over the wavelenghts present,
with the corresponding refraction angles depending on these wavelengths. And we can
capture these split components at the exit from the piece of glass, again deviated a bit,
provided that the exit surface is not parallel to the entry surface. And the simplest device
doing the job, that is, having two non-parallel faces, is a prism. □

With this in hand, we can now talk about spectroscopy:

Fact 8.33. We can study events via spectroscopy, by capturing the light the event
has produced, decomposing it with a prism, carefully recording its “spectral signature”,
consisting of the wavelenghts present, and their density, and then doing some reverse
engineering, consisting in reconstructing the event out of its spectral signature.

This is the main principle of spectroscopy, and applications, of all kinds, abound. In
practice, the mathematical tool needed for doing the “reverse engineering” mentioned
above is the Fourier transform, which allows the decomposition of packets of waves, into
monochromatic components. Finally, let us mention too that, needless to say, the event
can be reconstructed only partially out of its spectral signature.

8d. Heat, revised

Let us discuss now heat, in analogy with what we did in the above, for the waves.

The simplest heat diffusion question, studied and understood since long, concerns a
container containing two gases, having initial different temperatures T1 < T2, separated
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by a membrane. Heat transfer goes on, in this setting, and obviously, we can model this
by focusing on the membrane, with a basic grid model for it:

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦
There is some sort of “game” played by the two gases, over this grid, and we can

model this, and then recover the known results about heat diffusion, in this setting.

At a more advanced level, we can remove the membrane. Again, there is some sort of
“game” here, played by the two gases, which can be 2D or 3D, depending on modeling.
Also, in this setting, we can actually keep the membrane, but allow it to inflate.

Let us go now into heavier, fully powerful models and equations for the heat diffusion
mechanism, involving this time more advanced mathematics and physics. The general
equation here is quite similar to the one for the waves, as follows:

Theorem 8.34. Heat diffusion in RN is described by the heat equation

φ̇ = α∆φ

where α > 0 is the thermal diffusivity of the medium, and ∆ is the Laplace operator.

Proof. The study here is quite similar to the study of waves, as follows:

(1) Let us first discuss 2 dimensions. Here, as before for the waves, we can use a lattice
model as follows, with all lengths being l > 0, for simplifying:

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

(2) We have to implement now the physical heat diffusion mechanism, namely “the
rate of change of the temperature of the material at any given point must be proportional,
with proportionality factor α > 0, to the average difference of temperature between that
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given point and the surrounding material”. In practice, this leads to a condition as follows,
expressing the change of the temperature φ, over a small period of time δ > 0:

φ(x, y, t+ δ) = φ(x, y, t) +
αδ

l2

∑
(x,y)∼(u,v)

[φ(u, v, t)− φ(x, y, t)]

In fact, we can rewrite our equation as follows, making it clear that we have here an
equation regarding the rate of change of temperature at x:

φ(x, y, t+ δ)− φ(x, y, t)
δ

=
α

l2

∑
(x,y)∼(u,v)

[φ(u, v, t)− φ(x, y, t)]

(3) So, let us do the math. In the context of our 2D model the neighbors of x are the
points (x± l, y ± l), so the equation above takes the following form:

φ(x, y, t+ δ)− φ(x, y, t)
δ

=
α

l2

[
(φ(x+ l, y, t)− φ(x, y, t)) + (φ(x− l, y, t)− φ(x, y, t))

]
+

α

l2

[
(φ(x, y + l, t)− φ(x, y, t)) + (φ(x, y − l, t)− φ(x, y, t))

]
Now observe that we can write this equation as follows:

φ(x, y, t+ δ)− φ(x, y, t)
δ

= α · φ(x+ l, y, t)− 2φ(x, y, t) + φ(x− l, y, t)
l2

+ α · φ(x, y + l, t)− 2φ(x, y, t) + φ(x, y − l, t)
l2

(4) As it was the case when modeling the wave equation before, we recognize on the
right the usual approximation of the second derivative, coming from calculus. Thus, when
taking the continuous limit of our model, l→ 0, we obtain the following equation:

φ(x, y, t+ δ)− φ(x, y, t)
δ

= α

(
d2φ

dx2
+
d2φ

dy2

)
(x, y, t)

Now with t→ 0, we are led in this way to the heat equation, namely:

φ̇(x, y, t) = α ·∆φ(x, y, t)

Finally, in arbitrary N dimensions the same argument carries over, namely a straight-
forward lattice model, and gives the heat equation, as formulated in the statement. □

Many other things can be said, as a continuation of the above.
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8e. Exercises

Exercises:

Exercise 8.35.

Exercise 8.36.

Exercise 8.37.

Exercise 8.38.

Exercise 8.39.

Exercise 8.40.

Exercise 8.41.

Exercise 8.42.

Bonus exercise.



Part III

Three dimensions



I am milk
I am red hot kitchen

And I am cool
Cool as the deep blue ocean



CHAPTER 9

Space geometry

9a. Space geometry

Space geometry, in that usual 3 dimensions that we live in. Many interesting things
can be said here, in analogy with what we know from chapter 5 about triangles.

9b. Curves, surfaces

At a more advanced level, we can do some algebraic geometry in R3, in continuation
to what we did before in R2. Here we are right away into a dillema, because the plane
curves have two possible generalizations. First we have the algebraic curves in R3:

Definition 9.1. An algebraic curve in R3 is a curve as follows,

C =
{
(x, y, z) ∈ R3

∣∣∣P (x, y, z) = 0, Q(x, y, z) = 0
}

appearing as the joint zeroes of two polynomials P,Q.

These curves look of course like the usual plane curves, and at the level of the phe-
nomena that can appear, these are similar to those in the plane, involving singularities
and so on, but also knotting, which is a new phenomenon. However, it is hard to say
something with bare hands about knots. We will be back to this, later in this book.

On the other hand, as another natural generalization of the plane curves, and this
might sound a bit surprising, we have the surfaces in R3, constructed as follows:

Definition 9.2. An algebraic surface in R3 is a surface as follows,

S =
{
(x, y, z) ∈ R3

∣∣∣P (x, y, z) = 0
}

appearing as the zeroes of a polynomial P .

The point indeed is that, as it was the case with the plane curves, what we have here
is something defined by a single equation. And with respect to many questions, having a
single equation matters a lot, and this is why surfaces in R3 are “simpler” than curves in
R3. In fact, believe me, they are even the correct generalization of the curves in R2.

As an example of what can be done with surfaces, which is very similar to what we
did with the conics C ⊂ R2 in chapter 8, we have the following result:

179
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Theorem 9.3. The degree 2 surfaces S ⊂ R3, called quadrics, are the ellipsoid(x
a

)2
+
(y
b

)2
+
(z
c

)2
= 1

which is the only compact one, plus 16 more, which can be explicitely listed.

Proof. We will be quite brief here, because we intend to rediscuss all this in a
moment, with full details, in arbitrary N dimensions, the idea being as follows:

(1) The equations for a quadric S ⊂ R2 are best written as follows, with A ∈ M3(R)
being a matrix, B ∈M1×3(R) being a row vector, and C ∈ R being a constant:

< Au, u > +Bu+ C = 0

(2) By doing now the linear algebra, and we will come back to this in a moment, with
details, or by invoking the theorem of Sylvester on quadratic forms, we are left, modulo
degeneracy and linear transformations, with signed sums of squares, as follows:

±x2 ± y2 ± z2 = 0, 1

(3) Thus the sphere is the only compact quadric, up to linear transformations, and by
applying now linear transformations to it, we are led to the ellipsoids in the statement.

(4) As for the other quadrics, there are many of them, a bit similar to the parabolas
and hyperbolas in 2 dimensions, and some work here leads to a 16 item list. □

With this done, instead of further insisting on the surfaces S ⊂ R3, or getting into
their rivals, the curves C ⊂ R3, which appear as intersections of such surfaces, C = S∩S ′,
let us get instead to arbitrary N dimensions, see what the axiomatics looks like there,
with the hope that this will clarify our dimensionality dillema, curves vs surfaces.

So, moving to N dimensions, we have here the following definition, to start with:

Definition 9.4. An algebraic hypersurface in RN is a space of the form

S =
{
(x1, . . . , xN) ∈ RN

∣∣∣P (x1, . . . , xN) = 0,∀i
}

appearing as the zeroes of a polynomial P ∈ R[x1, . . . , xN ].

Again, this is a quite general definition, covering both the plane curves C ⊂ R and
the surfaces S ⊂ R2, which is certainly worth a systematic exploration. But, no hurry
with this, for the moment we are here for talking definitons and axiomatics.

In order to have now a full collection of beasts, in all possible dimensions N ∈ N, and
of all possible dimensions k ∈ N, we must intersect such algebraic hypersurfaces. We are
led in this way to the zeroes of families of polynomials, as follows:
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Definition 9.5. An algebraic manifold in RN is a space of the form

X =
{
(x1, . . . , xN) ∈ RN

∣∣∣Pi(x1, . . . , xN) = 0,∀i
}

with Pi ∈ R[x1, . . . , xN ] being a family of polynomials.

As a first observation, as already mentioned, such a manifold appears as an intersection
of hypersurfaces Si, those associated to the various polynomials Pi:

X = S1 ∩ . . . ∩ Sr

There is actually a bit of a discussion needed here, regarding the parameter r ∈ N,
shall we allow this parameter to be r = ∞ too, or not. We will discuss this later, with
some algebra helping, the idea being that allowing r =∞ forces in fact r <∞.

Let us look now more in detail at the hypersurfaces. We have here:

Theorem 9.6. The degree 2 hypersurfaces S ⊂ RN , called quadrics, are up to degen-
eracy and to linear transformations the hypersurfaces of the following form,

±x21 ± . . .± x2N = 0, 1

and with the sphere being the only compact one.

Proof. We have two statements here, the idea being as follows:

(1) The equations for a quadric S ⊂ RN are best written as follows, with A ∈MN(R)
being a matrix, B ∈M1×N(R) being a row vector, and C ∈ R being a constant:

< Ax, x > +Bx+ C = 0

(2) By doing the linear algebra, or by invoking the theorem of Sylvester on quadratic
forms, we are left, modulo linear transformations, with signed sums of squares:

±x21 ± . . .± x2N = 0, 1

(3) To be more precise, with linear algebra, by evenly distributing the terms xixj
above and below the diagonal, we can assume that our matrix A ∈MN(R) is symmetric.
Thus A must be diagonalizable, and by changing the basis of RN , as to have it diagonal,
our equation becomes as follows, with D ∈MN(R) being now diagonal:

< Dx, x > +Ex+ F = 0

(4) But now, by making squares in the obvious way, which amounts in applying yet
another linear transformation to our quadric, the equation takes the following form, with
G ∈MN(−1, 0, 1) being diagonal, and with H ∈ {0, 1} being a constant:

< Gx, x >= H
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(5) Now barring the degenerate cases, we can further assume G ∈MN(−1, 1), and we
are led in this way to the equation claimed in (2) above, namely:

±x21 ± . . .± x2N = 0, 1

(6) In particular we see that, up to some degenerate cases, namely emptyset and point,
the only compact quadric, up to linear transformations, is the one given by:

x21 + . . .+ x2N = 1

(7) But this is the unit sphere, so are led to the conclusions in the statement. □

Regarding now the examples of hypersurfaces S ⊂ RN , or of more general algebraic
manifolds X ⊂ RN , there are countless of them, and it is impossible to have some discus-
sion started here, without being subjective. The unit sphere SN−1

R ⊂ RN gets of course
the crown from everyone, as being the most important manifold after RN itself. But
then, passed this sphere, things ramify, depending on what exact applications of algebraic
geometry you have in mind. In what concerns me, here is my next favorite example:

Theorem 9.7. The invertible matrices A ∈MN(R) lie outside the hypersurface

detA = 0

and are therefore dense, in the space of all matrices MN(R).

Proof. This is something self-explanatory, but with this result being some key in
linear algebra, all this is worth a detailed discussion, as follows:

(1) We certainly know from basic linear algebra that a matrix A ∈MN(R) is invertible
precisely when it has nonzero determinant, detA ̸= 0. Thus, the invertible matrices
A ∈MN(R) are located precisely in the complement of the following space:

S =
{
A ∈MN(R)

∣∣∣ detA = 0
}

(2) We also know from basic linear algebra, or perhaps not so basic linear algebra,
that the determinant detA is a certain polynomial in the entries of A, of degree N :

det ∈ R[X11, . . . , XNN ]

(3) We conclude from this that the above set S is a degree N algebraic hypersurface
in our sense, in the Euclidean space MN(R) ≃ Rn, with n = N2.

(4) Now since the complements of non-trivial hypersurfaces S ⊂ Rn are obviously
dense, and if needing a formal proof here, for our above hypersurface S this is clear,
simply by suitably perturbing the matrix, and in general do not worry, we will be back
to this, with full details, we are led to the conclusions in the statement. □

As an illustration for the power of our density result, we have:
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Theorem 9.8. Given two matrices A,B ∈MN(R), their products

AB,BA ∈MN(R)

have the same characteristic polynomial, PAB = PBA.

Proof. This is something quite hard to prove with bare hands, but we can trick by
using Theorem 9.7. Indeed, it follows from definitions that the characteristic polynomial
of a matrix is invariant under conjugation, in the sense that we have:

PC = PACA−1

Now observe that, when assuming that A is invertible, we have:

AB = A(BA)A−1

Thus, we obtain the following formula, in the case where A is invertible:

PAB = PBA

Now by using the density result from Theorem 9.7, we conclude that this formula
holds in fact for any matrix A, by continuity, as desired. □

Summarizing, we have some algebraic geometry theory going on, with applications, at
least to questions in linear algebra, and presumably in calculus too. Getting back now to
the basics, it is in fact possible to do even more generally, as follows:

Definition 9.9. An algebraic manifold over a field F is a space of the form

X =
{
(x1, . . . , xN) ∈ FN

∣∣∣Pi(x1, . . . , xN) = 0,∀i
}

with Pi ∈ F [x1, . . . , xN ] being a family of polynomials.

This might seem a bit abstract, but as a first observation, recall that F = C is a field
too, on par with F = R, and even better than it, in certain contexts. For instance quantum
mechanics naturally lives over F = C, instead of our usual F = R. Also, in relation
with questions in linear algebra, a matrix A ∈ MN(R) is much better viewed as matrix
A ∈MN(C), because here it has all N eigenvalues, when counted with multiplicities.

In fact, based on this linear algebra observation, and as our first result in complex
algebraic geometry, we can improve Theorem 9.8, as follows:

Theorem 9.10. Given two matrices A,B ∈MN(C), their products

AB,BA ∈MN(C)

have the same eigenvalues, with the same multiplicities.
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Proof. To start with, Theorem 9.7 holds over C too, with the invertible matrices
A ∈MN(C) being dense, as being complementary to the following hypersurface:

detA = 0

But with this in hand, the trick from the proof of Theorem 9.8 applies, and gives:

PAB = PBA

But this gives the result, because in the complex matrix setting the characteristic
polynomial P encodes the eigenvalues, with multiplicities. □

This was for a first result in complex algebraic geometry, perhaps a bit advanced. At
the level of more elementary things, the first thought goes to the plane algebraic curves,
in a complex sense. But, surprise here, these are the spaces as follows:

C =
{
(x, y) ∈ C2

∣∣∣P (x, y) = 0
}

Now when looking at this formula, we realize that our curve C ⊂ C2 is in fact some-
thing quite complicated, corresponding to a 2-dimensional surface X ⊂ R4. But, no
worries, we will come back to this regularly. In fact, in what follows, we will be jointly
developing our theory over both F = R and F = C, with such questions in mind.

Many other things can be said, as a continuation of the above.

9c. Regular polyhedra

Switching topics now, let us first discuss, still in relation with space geometry ques-
tions, the graphs. As a fundamental result about them, we have:

Theorem 9.11. For a connected planar graph we have the Euler formula

v − e+ f = 2

with v, e, f being the number of vertices, edges and faces.

Proof. This is something very standard, the idea being as follows:

(1) Regarding the precise statement, given a connected planar graph, drawn in a
planar way, without crossings, we can certainly talk about the numbers v and e, as for
any graph, and also about f , as being the number of faces that our graph has, in our
picture, with these including by definition the outer face too, the one going to ∞. With
these conventions, the claim is that the Euler formula v − e+ f = 2 holds indeed.
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(2) As a first illustration for how this formula works, consider a triangle:

•

• •
Here we have v = e = 3, and f = 2, with this accounting for the interior and exterior,

and we conclude that the Euler formula holds indeed in this case, as follows:

3− 3 + 2 = 2

(3) More generally now, let us look at an arbitrary N -gon graph:

• •

• •

• •

• •
Then, for this graph, the Euler formula holds indeed, as follows:

N −N + 2 = 2

(4) With these examples discussed, let us look now for a proof. The idea will be to
proceed by recurrence on the number of faces f . And here, as a first observation, the
result holds at f = 1, where our graph must be planar and without cycles, and so must
be a tree. Indeed, with N being the number of vertices, the Euler formula holds, as:

N − (N − 1) + 1 = 2

(5) At f = 2 now, our graph must be an N -gon as above, but with some trees allowed
to grow from the vertices, with an illustrating example here being as follows:

◦ • •

◦ ◦ • ◦ • ◦

◦ • ◦ • ◦ ◦

◦ • • ◦
But here we can argue, again based on the fact that for a rooted tree, the non-root

vertices are in obvious bijection with the edges, that removing all these trees won’t change
the problem. So, we are left with the problem for the N -gon, already solved in (3).
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(6) And so on, the idea being that we can first remove all the trees, by using the
argument in (5), and then we are left with some sort of agglomeration of N -gons, for
which we can check the Euler formula directly, a bit as in (3), or by recurrence.

(7) To be more precise, let us try to do the recurrence on the number of faces f .
For this purpose, consider one of the faces of our graph, which looks as follows, with vi
denoting the number of vertices on each side, with the endpoints excluded:

•

vk

v1 •
v2

•

• vk−1
•

(8) Now let us collapse this chosen face to a single point, in the obvious way. In this
process, the total number of vertices v, edges e, and faces f , evolves as follows:

v → v − k + 1−
∑

vi

e→ e−
∑

(vi + 1)

f → f − 1

Thus, in this process, the Euler quantity v − e+ f evolves as follows:

v − e+ f → v − k + 1−
∑

vi − e+
∑

(vi + 1) + f − 1

= v − k + 1−
∑

vi − e+
∑

vi + k + f − 1

= v − e+ f

So, done with the recurrence, and the Euler formula is proved. □

As a famous application, or rather version, of the Euler formula, let us record:

Proposition 9.12. For a convex polyhedron we have the Euler formula

v − e+ f = 2

with v, e, f being the number of vertices, edges and faces.

Proof. This is more or less the same thing as Theorem 9.11, save for getting rid of
the internal trees of the planar graph there, the idea being as follows:
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(1) In one sense, consider a convex polyhedron P . We can then enlarge one face, as
much as needed, and then smash our polyhedron with a big hammer, as to get a planar
graph X. As an illustration, here is how this method works, for a cube:

• •

• •

• •

• •

smash //

• •

• •

• •

• •
But, in this process, each of the numbers v, e, f stays the same, so we get the Euler

formula for P , as a consequence of the Euler formula for X, from Theorem 9.11.

(2) Conversely, consider a connected planar graph X. Then, save for getting rid of
the internal trees, as explained in the proof of Theorem 9.11, we can assume that we are
dealing with an agglomeration of N -gons, again as explained in the proof of Theorem
9.11. But now, we can inflate our graph as to obtain a convex polyhedron P :

• •

• •

• •

• •

inflate //

• •

• •

• •

• •
Again, in this process, each of the numbers v, e, f will stay the same, and so we get

the Euler formula for X, as a consequence of the Euler formula for P . □

Summarizing, Euler formula understood, but as a matter of making sure that we didn’t
mess up anything with our mathematics, let us do some direct checks as well:

Proposition 9.13. The Euler formula v− e+ f = 2 holds indeed for the five possible
regular polyhedra, as follows:

(1) Tetrahedron: 4− 6 + 4 = 2.
(2) Cube: 8− 12 + 6 = 2.
(3) Octahedron: 6− 12 + 8 = 2.
(4) Dodecahedron: 20− 30 + 12 = 2.
(5) Isocahedron: 12− 30 + 20 = 2.

Proof. The figures in the statement are certainly the good ones for the tetrahedron
and the cube. Regarding now the octahedron, again the figures are the good ones, by
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thinking in 3D, but as an interesting exercise for us, which is illustrating for the above,
let us attempt to find a nice way of drawing the corresponding graph:

(1) To start with, the “smashing” method from the proof of Proposition 9.12 provides
us with a graph which is certainly planar, but which, even worse than before for the cube,
sort of misses the whole point with the 3D octahedron, its symmetries, and so on:

⋆

• ◦

⋆

◦ •

(2) Much nicer, instead, is the following picture, which still basically misses the 3D
beauty of the octahedron, but at least reveals some of its symmetries:

• ◦

⋆ ⋆

◦ •

In short, you get the point, quite subjective all this, and as a conclusion, drawing
graphs in an appropriate way remains an art. As for the dodecahedron and isocahedron,
exercise here for you, and if failing, take some drawing classes. Math is not everything. □

The Euler formula v − e + f = 2, in both its above formulations, the graph one
from Theorem 9.11, and the polyhedron one from Proposition 9.12, is something very
interesting, at the origin of modern pure mathematics, and having countless other versions
and generalizations. We will be back to it on several occasions, in what follows.
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9d. Solid angles

Let us talk now about interactions between particles. But here, we have some experi-
ence from classical mechanics, with the typical picture of what can happen being:

◦ma ◦mb

↘va ↙vb

⋆

◦m1 ◦m2 ◦m3

↙v1 ↓v2 ↘v3

This was for basic interactions in classical mechanics. In our present setting, particle
physics, things are a bit more complicated than this, due to a variety of reasons, and
experimental physics suggests looking at two main types of interactions, as follows:

Fact 9.14. In particle physics, we have two main types of interactions, namely:

(1) Decay. This is when a particle decomposes, as a result of whatever internal
mechanism, into a sum of other particles, ∗0 → ∗1 + . . .+ ∗n.

(2) Scattering. This is when two particles meet, by colliding, or almost, and combine
and decompose into a sum of other particles, ∗a + ∗b → ∗1 + . . .+ ∗n.

Obviously, all this departs a bit from our classical mechanics knowledge, as explained
above, and several comments are in order here, as follows:

(1) In what regards decay, something that we talked a lot about, when doing thermo-
dynamics, and then quantum mechanics, is an electron of an atom changing its energy
level, and emitting a photon. But this can be regarded as being decay.

(2) As for scattering, the simplest example here appears again from an electron of an
atom, changing its energy level, but this time by absorbing a photon. Of course, there
are many other possible examples, such as the electron-positron annihilation.

Getting to work for good now, decay and its mathematics. Ignoring the physics, this
is basically a matter of probability and statistics, and the basics here are as follows:

Theorem 9.15. In the context of decay, the quantity to look at is the decay rate λ,
which is the probability per unit time that the particle will disintegrate. With this:

(1) The number of particles remaining at time t > 0 is Nt = e−λtN0.
(2) The mean lifetime of a particle is τ = 1/λ.
(3) The half-life of the substance is t1/2 = (log 2)/λ.
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Proof. As said above, this is basic probability, as follows:

(1) In mathematical terms, our definition of the decay rate reads:

dN

dt
= −λN

By integrating, we are led to the formula in the statement, namely:

Nt = e−λtN0

(2) Let us first convert what we have into a probability law. We have:∫ ∞

0

Ntdt =

∫ ∞

0

N0e
−λtdt =

N0

λ

Thus, the density of the probability decay function is given by:

f(t) =
λ

N0

·N0e
−λt = λe−λt

We can now compute the mean lifetime, by integrating by parts, as follows:

τ = < t >

=

∫ ∞

0

tf(t)dt

=

∫ ∞

0

λte−λtdt

=

∫ ∞

0

t(−e−λt)′dt

=

∫ ∞

0

e−λtdt

=
1

λ

(3) Finally, regarding the half-life, this is by definition the time t1/2 required for the
decaying quantity to fall to one-half of its initial value. Mathematically, this means:

Nt = 2
− t

t1/2N0

Now by comparing with Nt = e−λtN0, this gives t1/2 = (log 2)/λ, as stated. □

Getting now to scattering, this is something far more familiar, because we can fully
use here our experience from classical mechanics. Let us start with:
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Definition 9.16. The generic picture of scattering is as follows,

•

66

a

��

θ

OO

⋆

with a ≥ 0 being the impact parameter, and θ ∈ [0, π] being the scattering angle.

In other words, we assume here that the particle misses its target by a ≥ 0, with
the limiting case a = 0 corresponding of course to exactly hitting the target, and we are
interested in computing the scattering angle θ ∈ [0, π] as a function θ = θ(a).

Many things can be said here, and more on this in a moment, but as an answer to a
question that you might certainly have, we are interested in a > 0 because this is what
happens in particle physics, there is no need for exactly hitting the target for having a
collision-type interaction. By the case, the limiting case a = 0 is rather unwanted in the
context of our scaterring question, because by symmetry this would normally force the
scattering angle to be θ = 0 or θ = π, which does not look very interesting.

But probably too much talking, let us do a computation. We have here:

Proposition 9.17. In the context of classical particle colliding elastically with a hard
sphere of radius R > 0, we have the formula

a = R cos
θ

2

and so the scattering angle is given by θ = 2arccos(a/R).

Proof. In the context from the statement, which is all classical mechanics, and more
specifically is a basic elastic collision, between a point particle and a hard sphere, if the
impact factor is a > R, nothing happens. In the case a ≤ R we do have an impact, and
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a bounce of our particle on the hard sphere, the picture of the event being as follows:

•

88

a

��

θ

OO

⋆

R
σ

Here the sphere is missing, due to budget cuts, with only its center ⋆ being pictured,
but you get the point. Now with σ being the angle in the statement, we have the following
two formulae, with the first one being clear on the above picture, and with the second
one coming from the fact that, at the rebound, the various angles must sum up to π:

a = R sinσ , 2σ + θ = π

We deduce that the impact factor is given by the following formula:

a = R sin

(
π

2
− θ

2

)
= R cos

θ

2

Thus, we are led to the conclusions in the statement. □

With this understood, let us try to make something more 3D, and statistical, out of
this. We can indeed further build on Definition 9.16, as follows:

Definition 9.18. In the general context of scattering, we can:

(1) Extend our length/angle correspondence a → θ into an infinitesimal area/solid
angle correspondence dσ → dΩ.

(2) Talk about the inverse derivative D(θ) of this correspondence, called differential
cross section, according to the formula dσ = D(θ)dΩ.

(3) And finally, define the total cross section of the scattering event as being the
quantity σ =

∫
dσ =

∫
D(θ)dΩ.

And good news, the notion of total cross section σ, as constructed above, is the one
that we will need, in what follows, with this being to scattering something a bit similar
to what the decay rate λ was to decay, that is, the main quantity to look at.

In order to understand how the cross section works, we have:
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Proposition 9.19. Assuming that the incoming beam comes as follows,

ϕ

subtending a certain angle ϕ, the differential cross section is given by

D(θ) =

∣∣∣∣ a

sin θ
· da
dθ

∣∣∣∣
and the total cross section is given by σ =

∫
D(θ)dΩ.

Proof. Assume indeed that we have a uniform beam as the one pictured in the
statement, enclosed by the double lines appearing there, and with the need for a beam
instead of a single particle coming from what we do in Definition 9.18, which is rather of
continuous nature. Our claim is that we have the following formulae:

dσ = |a · da · dϕ| , dΩ = | sin θ · dθ · dϕ|

Indeed, the first formula, at departure, is clear from the picture above, and the second
formula is clear from a similar picture at the arrival. Now with these formulae in hand,
by dividing them, we obtain the following formula for the differential cross section:

D(θ) =
dσ

dΩ

=

∣∣∣∣ a · da · dϕ
sin θ · dθ · dϕ

∣∣∣∣
=

∣∣∣∣ a

sin θ
· da
dθ

∣∣∣∣
As for the total cross section, this is given as usual by σ =

∫
D(θ)dΩ. □

As an illustration for this, in the case of a hard sphere scattering, we have:

Theorem 9.20. In the case of a hard sphere scattering, the cross section is

σ = πR2

with R > 0 being the radius of the sphere.
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Proof. We know from Proposition 9.17 that, with the notations there, we have:

a = R cos
θ

2
At the level of the corresponding differentials, this gives the following formula:

da

dθ
= −R

2
sin

θ

2
We can now compute the differential cross section, as above, and we obtain:

D(θ) =

∣∣∣∣ a

sin θ
· da
dθ

∣∣∣∣
=

R cos(θ/2)

sin θ
· R sin(θ/2)

2

=
R2(sin θ)/2

2 sin θ

=
R2

4
Now by integrating, we obtain from this, via some calculus, the following formula:

σ =

∫
R2

4
dΩ = πR2

Thus, we are led to the conclusion in the statement. □

9e. Exercises

Exercises:

Exercise 9.21.

Exercise 9.22.

Exercise 9.23.

Exercise 9.24.

Exercise 9.25.

Exercise 9.26.

Exercise 9.27.

Exercise 9.28.

Bonus exercise.



CHAPTER 10

Rotating bodies

10a. Vector products

We will be talking here about all sorts of advanced mechanics, all taking place in 3D.
We will need one more mathematical notion, which is something 3D specific, namely:

Definition 10.1. The vector product of two vectors in R3 is given by

x× y = ||x|| · ||y|| · sin θ · n
where n ∈ R3 with n ⊥ x, y and ||n|| = 1 is constructed using the right-hand rule:

↑x×y

←x

↙y

Alternatively, in usual vertical linear algebra notation for all vectors,x1x2
x3

×
y1y2
y3

 =

x2y3 − x3y2x3y1 − x1y3
x1y2 − x2y1


the rule being that of computing 2× 2 determinants, and adding a middle sign.

Obviously, this definition is something quite subtle, and also something very annoying,
because you always need this, and always forget the formula. Here are my personal
methods. With the first definition, what I always remember is that:

||x× y|| ∼ ||x||, ||y|| , x× x = 0 , e1 × e2 = e3

So, here’s how it works. We are looking for a vector x×y whose length is proportional
to those of x, y. But the second formula tells us that the angle θ between x, y must be
involved via 0 → 0, and so the factor can only be sin θ. And with this we are almost
there, it’s just a matter of choosing the orientation, and this comes from e1 × e2 = e3.

As with the second definition, that I like the most, what I remember here is simply:∣∣∣∣∣∣
1 x1 y1
1 x2 y2
1 x3 y3

∣∣∣∣∣∣ =?

Many things can be said about vector products, mathematically speaking.

195
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10b. Angular momentum

In practice now, in order to get familiar with the vector products, nothing better than
doing some classical mechanics. We have here the following key result:

Theorem 10.2. In the gravitational 2-body problem, the angular momentum

J = x× p

with p = mv being the usual momentum, is conserved.

Proof. There are several things to be said here, the idea being as follows:

(1) First of all the usual momentum, p = mv, is not conserved, because the simplest
solution is the circular motion, where the moment gets turned around. But this suggests
precisely that, in order to fix the lack of conservation of the momentum p, what we have
to do is to make a vector product with the position x. Leading to J , as above.

(2) Regarding now the proof, consider indeed a particle m moving under the gravita-
tional force of a particle M , assumed, as usual, to be fixed at 0. By using the fact that
for two proportional vectors, p ∼ q, we have p× q = 0, we obtain:

J̇ = ẋ× p+ x× ṗ
= v ×mv + x×ma
= m(v × v + x× a)
= m(0 + 0)

= 0

Now since the derivative of J vanishes, this quantity is constant, as stated. □

10c. Rotating bodies

As another basic application of the vector products, still staying with classical me-
chanics, we have all sorts of useful formulae regarding rotating frames. We first have:

Theorem 10.3. Assume that a 3D body rotates along an axis, with angular speed w.
For a fixed point of the body, with position vector x, the usual 3D speed is

v = ω × x

where ω = wn, with n unit vector pointing North. When the point moves on the body

V = ẋ+ ω × x

is its speed computed by an inertial observer O on the rotation axis.
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Proof. We have two assertions here, both requiring some 3D thinking, as follows:

(1) Assuming that the point is fixed, the magnitude of ω × x is the good one, due to
the following computation, with r being the distance from the point to the axis:

||ω × x|| = w||x|| sin t = wr = ||v||
As for the orientation of ω × x, this is the good one as well, because the North pole

rule used above amounts in applying the right-hand rule for finding n, and so ω, and this
right-hand rule was precisely the one used in defining the vector products ×.

(2) Next, when the point moves on the body, the inertial observer O can compute its
speed by using a frame (u1, u2, u3) which rotates with the body, as follows:

V = ẋ1u1 + ẋ2u2 + ẋ3u3 + x1u̇1 + x2u̇2 + x3u̇3

= ẋ+ (x1 · ω × u1 + x2 · ω × u2 + x3 · ω × u3)
= ẋ+ w × (x1u1 + x2u2 + x3u3)

= ẋ+ ω × x
Thus, we are led to the conclusions in the statement. □

In what regards now the acceleration, the result, which is famous, is as follows:

Theorem 10.4. Assuming as before that a 3D body rotates along an axis, the accel-
eration of a moving point on the body, computed by O as before, is given by

A = a+ 2ω × v + ω × (ω × x)
with ω = wn being as before. In this formula the second term is called Coriolis accelera-
tion, and the third term is called centripetal acceleration.

Proof. This comes by using twice the formulae in Theorem 10.3, as follows:

A = V̇ + ω × V
= (ẍ+ ω̇ × x+ ω × ẋ) + (ω × ẋ+ ω × (ω × x))
= ẍ+ ω × ẋ+ ω × ẋ+ ω × (ω × x)
= a+ 2ω × v + ω × (ω × x)

Thus, we are led to the conclusion in the statement. □

The truly famous result is actually the one regarding forces, obtained by multiplying
everything by a mass m, and writing things the other way around, as follows:

ma = mA− 2mω × v −mω × (ω × x)
Here the second term is called Coriolis force, and the third term is called centrifugal

force. These forces are both called apparent, or fictious, because they do not exist in the
inertial frame, but they exist however in the non-inertial frame of reference, as explained
above. And with of course the terms centrifugal and centripetal not to be messed up.
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In fact, even more famous is the terrestrial application of all this, as follows:

Theorem 10.5. The acceleration of an object m subject to a force F is given by

ma = F −mg − 2mω × v −mω × (ω × x)
with g pointing upwards, and with the last terms being the Coriolis and centrifugal forces.

Proof. This follows indeed from the above discussion, by assuming that the acceler-
ation A there comes from the combined effect of a force F , and of the usual g. □

We refer to any standard undergraduate mechanics book, such as Feynman [33], Kibble
[58] or Taylor [86] for more on the above, including various numerics on what happens
here on Earth, the Foucault pendulum, history of all this, and many other things. Let
us just mention here, as a basic illustration for all this, that a rock dropped from 100m
deviates about 1cm from its intended target, due to the formula in Theorem 10.5.

10d. Further results

Further results.

10e. Exercises

Exercises:

Exercise 10.6.

Exercise 10.7.

Exercise 10.8.

Exercise 10.9.

Exercise 10.10.

Exercise 10.11.

Exercise 10.12.

Exercise 10.13.

Bonus exercise.



CHAPTER 11

Advanced calculus

11a. Partial derivatives

Moving now to several variables, N ≥ 2, as a first job, given a function φ : RN → R,
we would like to find a quantity φ′(x) making the following formula work:

φ(x+ h) ≃ φ(x) + φ′(x)h

But here, as in 1 variable, there are not so many choices, and the solution is that of
defining φ′(x) as being the row vector formed by the partial derivatives at x:

φ′(x) =

(
dφ

dx1
. . .

dφ

dxN

)
To be more precise, with this value for φ′(x), our approximation formula φ(x+ h) ≃

φ(x) +φ′(x)h makes sense indeed, as an equality of real numbers, with φ′(x)h ∈ R being
obtained as the matrix multiplication of the row vector φ′(x), and the column vector
h. As for the fact that our formula holds indeed, this follows by putting together the
approximation properties of each of the partial derivatives dφ/dxi, which give:

φ(x+ h) ≃ φ(x) +
N∑
i=1

dφ

dxi
· hi = φ(x) + φ′(x)h

Before moving forward, you might say, why bothering with horizontal vectors, when
it is so simple and convenient to have all vectors vertical, by definition. Good point, and
in answer, we can indeed talk about the gradient of φ, constructed as follows:

∇φ =


dφ
dx1
...
dφ
dxN


With this convention, ∇φ geometrically describes the slope of φ at the point x, in the

obvious way. However, the approximation formula must be rewritten as follows:

φ(x+ h) ≃ φ(x)+ < ∇φ(x), h >

In what follows we will use both φ′ and ∇φ, depending on the context. Moving now
to second derivatives, the main result here is as follows:

199
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Theorem 11.1. The second derivative of a function φ : RN → R, making the formula

φ(x+ h) ≃ φ(x) + φ′(x)h+
< φ′′(x)h, h >

2

work, is its Hessian matrix φ′′(x) ∈MN(R), given by the following formula:

φ′′(x) =

(
d2φ

dxidxj

)
ij

Moreover, this Hessian matrix is symmetric, φ′′(x)ij = φ′(x)ji.

Proof. There are several things going on here, the idea being as follows:

(1) As a first observation, at N = 1 the Hessian matrix constructed above is simply
the 1 × 1 matrix having as entry the second derivative φ′′(x), and the formula in the
statement is something that we know well from basic calculus, namely:

φ(x+ h) ≃ φ(x) + φ′(x)h+
φ′′(x)h2

2

(2) At N = 2 now, we obviously need to differentiate φ twice, and the point is that
we come in this way upon the following formula, called Clairaut formula:

d2φ

dxdy
=

d2φ

dydx

But, is this formula correct or not? As an intuitive justification for it, let us consider
a product of power functions, φ(z) = xpyq. We have then our formula, due to:

d2φ

dxdy
=

d

dx

(
dxpyq

dy

)
=

d

dx

(
qxpyq−1

)
= pqxp−1yq−1

d2φ

dydx
=

d

dy

(
dxpyq

dx

)
=

d

dy

(
pxp−1yq

)
= pqxp−1yq−1

Next, let us consider a linear combination of power functions, φ(z) =
∑

pq cpqx
pyq,

which can be finite or not. We have then, by using the above computation:

d2φ

dxdy
=

d2φ

dydx
=
∑
pq

cpqpqx
p−1yq−1

Thus, we can see that our commutation formula for derivatives holds indeed, due to
the fact that the functions in x, y commute. Of course, all this does not fully prove our
formula, in general. But exercise for you, to have this idea fully working, or to look up
the standard proof of the Clairaut formula, using the mean value theorem.
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(3) Moving now to N = 3 and higher, we can use here the Clairaut formula with
respect to any pair of coordinates, which gives the Schwarz formula, namely:

d2φ

dxidxj
=

d2φ

dxjdxi

Thus, the second derivative, or Hessian matrix, is symmetric, as claimed.

(4) Getting now to the main topic, namely approximation formula in the statement,
in arbitrary N dimensions, this is in fact something which does not need a new proof,
because it follows from the one-variable formula in (1), applied to the restriction of φ to
the following segment in RN , which can be regarded as being a one-variable interval:

I = [x, x+ h]

To be more precise, let y ∈ RN , and consider the following function, with r ∈ R:

f(r) = φ(x+ ry)

We know from (1) that the Taylor formula for f , at the point r = 0, reads:

f(r) ≃ f(0) + f ′(0)r +
f ′′(0)r2

2

And our claim is that, with h = ry, this is precisely the formula in the statement.

(5) So, let us see if our claim is correct. By using the chain rule, we have the following
formula, with on the right, as usual, a row vector multiplied by a column vector:

f ′(r) = φ′(x+ ry) · y

By using again the chain rule, we can compute the second derivative as well:

f ′′(r) = (φ′(x+ ry) · y)′

=

(∑
i

dφ

dxi
(x+ ry) · yi

)′

=
∑
i

∑
j

d2φ

dxidxj
(x+ ry) · d(x+ ry)j

dr
· yi

=
∑
i

∑
j

d2φ

dxidxj
(x+ ry) · yiyj

= < φ′′(x+ ry)y, y >

(6) Time now to conclude. We know that we have f(r) = φ(x + ry), and according
to our various computations above, we have the following formulae:

f(0) = φ(x) , f ′(0) = φ′(x) , f ′′(0) =< φ′′(x)y, y >
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Buit with this data in hand, the usual Taylor formula for our one variable function f ,
at order 2, at the point r = 0, takes the following form, with h = ry:

φ(x+ ry) ≃ φ(x) + φ′(x)ry +
< φ′′(x)y, y > r2

2

= φ(x) + φ′(x)t+
< φ′′(x)h, h >

2

Thus, we have obtained the formula in the statement. □

As before in the one variable case, many more things can be said, as a continuation
of the above. For instance the local minima and maxima of φ : RN → R appear at the
points x ∈ RN where the derivative vanishes, φ′(x) = 0, and where the second derivative
φ′′(x) ∈MN(R) is positive, respectively negative. But, you surely know all this.

As a key observation now, generalizing what we know in 1 variable, we have:

Proposition 11.2. Intuitively, the following quantity, called Laplacian of φ,

∆φ =
N∑
i=1

d2φ

dx2i

measures how much different is φ(x), compared to the average of φ(y), with y ≃ x.

Proof. As before with 1 variable, this is something a bit heuristic, but good to know.
Let us write the formula in Theorem 11.1, as such, and with h→ −h too:

φ(x+ h) ≃ φ(x) + φ′(x)h+
< φ′′(x)h, h >

2

φ(x− h) ≃ φ(x)− φ′(x)h+
< φ′′(x)h, h >

2

By making the average, we obtain the following formula:

φ(x+ h) + φ(x− h)
2

= φ(x) +
< φ′′(x)h, h >

2

Thus, thinking a bit, we are led to the conclusion in the statement, modulo some
discussion about integrating all this, that we will not really need, in what follows. □

With this understood, the problem is now, what can we say about the mathematics
of ∆? As a first observation, which is a bit speculative, the Laplace operator appears by
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applying twice the gradient operator, in a somewhat formal sense, as follows:

∆φ =
N∑
i=1

d2φ

dx2i

=
N∑
i=1

d

dxi
· dφ
dxi

=

〈
d

dx1
...
d

dxN

 ,


dφ
dx1
...
dφ
dxN

〉

= < ∇,∇φ >

Thus, it is possible to write a formula of type ∆ = ∇2, with the convention that the
square of the gradient ∇ is taken in a scalar product sense, as above. However, this can
be a bit confusing, and in what follows, we will not use this notation.

Instead of further thinking at this, and at double derivatives in general, let us formulate
a more straightforward question, inspired by linear algebra, as follows:

Question 11.3. The Laplace operator being linear,

∆(aφ+ bψ) = a∆φ+ b∆ψ

what can we say about it, inspired by usual linear algebra?

In answer now, the space of functions φ : RN → R, on which ∆ acts, being infinite
dimensional, the usual tools from linear algebra do not apply as such, and we must be
extremely careful. For instance, we cannot really expect to diagonalize ∆, via some sort
of explicit procedure, as we usually do in linear algebra, for the usual matrices.

Thinking some more, there is actually a real bug too with our problem, because at
N = 1 this problem becomes “what can we say about the second derivatives φ′′ : R→ R
of the functions φ : R→ R, inspired by linear algebra”, with answer “not much”.

And by thinking even more, still at N = 1, there is a second bug too, because if
φ : R → R is twice differentiable, nothing will guarantee that its second derivative
φ′′ : R → R is twice differentiable too. Thus, we have some issues with the domain and
range of ∆, regarded as linear operator, and these problems will persist at higher N .

So, shall we trash Question 11.3? Not so quick, because, very remarkably, some magic
comes at N = 2 and higher in relation with complex analysis, according to:
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Principle 11.4. The functions φ : RN → R which are 0-eigenvectors of ∆,

∆φ = 0

called harmonic functions, have the following properties:

(1) At N = 1, nothing spectacular, these are just the linear functions.
(2) At N = 2, these are, locally, the real parts of holomorphic functions.
(3) At N ≥ 3, these still share many properties with the holomorphic functions.

In order to understand this, or at least get introduced to it, let us first look at the
case N = 2. Here, any function φ : R2 → R can be regarded as function φ : C → R,
depending on z = x+ iy. But, in view of this, it is natural to enlarge the attention to the
functions φ : C→ C, and ask which of these functions are harmonic, ∆φ = 0. And here,
we have the following remarkable result, making the link with complex analysis:

Theorem 11.5. Any holomorphic function φ : C→ C, when regarded as function

φ : R2 → C

is harmonic. Moreover, the conjugates φ̄ of holomorphic functions are harmonic too.

Proof. The first assertion comes from the following computation, with z = x+ iy:

∆zn =
d2zn

dx2
+
d2zn

dy2

=
d(nzn−1)

dx
+
d(inzn−1)

dy

= n(n− 1)zn−2 − n(n− 1)zn−2

= 0

As for the second assertion, this follows from ∆φ̄ = ∆φ, which is clear from definitions,
and which shows that if φ is harmonic, then so is its conjugate φ̄. □

Many more things can be said, along these lines.

11b. Multiple integrals

We can talk about multiple integrals, in the obvious way. Getting now to the general
theory and rules, for computing such integrals, the key result here is the change of variable
formula. In order to discuss this, let us start with something that we know well, in 1D:

Proposition 11.6. We have the change of variable formula∫ b

a

f(x)dx =

∫ d

c

f(φ(t))φ′(t)dt

where c = φ−1(a) and d = φ−1(b).
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Proof. This follows with f = F ′, via the following differentiation rule:

(Fφ)′(t) = F ′(φ(t))φ′(t)

Indeed, by integrating between c and d, we obtain the result. □

In several variables now, we can only expect the above φ′(t) factor to be replaced by
something similar, a sort of “derivative of φ, arising as a real number”. But this can only
be the Jacobian det(φ′(t)), and with this in mind, we are led to:

Theorem 11.7. Given a transformation φ = (φ1, . . . , φN), we have∫
E

f(x)dx =

∫
φ−1(E)

f(φ(t))|Jφ(t)|dt

with the Jφ quantity, called Jacobian, being given by

Jφ(t) = det

[(
dφi

dxj
(x)

)
ij

]
and with this generalizing the formula from Proposition 11.6.

Proof. This is something quite tricky, the idea being as follows:

(1) Observe first that this generalizes indeed the change of variable formula in 1
dimension, from Proposition 11.6, the point here being that the absolute value on the
derivative appears as to compensate for the lack of explicit bounds for the integral.

(2) In general now, we can first argue that, the formula in the statement being linear
in f , we can assume f = 1. Thus we want to prove vol(E) =

∫
φ−1(E)

|Jφ(t)|dt, and with

D = φ−1(E), this amounts in proving vol(φ(D)) =
∫
D
|Jφ(t)|dt.

(3) Now since this latter formula is additive with respect to D, it is enough to prove
that vol(φ(D)) =

∫
D
Jφ(t)dt, for small cubes D, and assuming Jφ > 0. But this follows

by using the usual definition of the determinant, as a volume.

(4) The details and computations however are quite non-trivial, and can be found for
instance in Rudin [72]. So, please read that. With this, reading the complete proof of
the present theorem from Rudin, being part of the standard math experience. □

Many other things can be said, as a continuation of the above.

11c. Spherical coordinates

Time now do some exciting computations, with the technology that we have. In what
regards the applications of Theorem 11.7, these often come via:
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Proposition 11.8. We have polar coordinates in 2 dimensions,{
x = r cos t

y = r sin t

the corresponding Jacobian being J = r.

Proof. This is elementary, the Jacobian being:

J =

∣∣∣∣∣∣
d(r cos t)

dr
d(r cos t)

dt

d(r sin t)
dr

d(r sin t)
dt

∣∣∣∣∣∣
=

∣∣∣∣cos t −r sin tsin t r cos t

∣∣∣∣
= r cos2 t+ r sin2 t

= r

Thus, we have indeed the formula in the statement. □

We can now compute the Gauss integral, which is the best calculus formula ever:

Theorem 11.9. We have the following formula,∫
R
e−x2

dx =
√
π

called Gauss integral formula.

Proof. Let I be the above integral. By using polar coordinates, we obtain:

I2 =

∫
R

∫
R
e−x2−y2dxdy

=

∫ 2π

0

∫ ∞

0

e−r2rdrdt

= 2π

∫ ∞

0

(
−e

−r2

2

)′

dr

= 2π

[
0−

(
−1

2

)]
= π

Thus, we are led to the formula in the statement. □

Moving now to 3 dimensions, we have here the following result:
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Proposition 11.10. We have spherical coordinates in 3 dimensions,
x = r cos s

y = r sin s cos t

z = r sin s sin t

the corresponding Jacobian being J(r, s, t) = r2 sin s.

Proof. The fact that we have indeed spherical coordinates is clear. Regarding now
the Jacobian, this is given by the following formula:

J(r, s, t)

=

∣∣∣∣∣∣
cos s −r sin s 0

sin s cos t r cos s cos t −r sin s sin t
sin s sin t r cos s sin t r sin s cos t

∣∣∣∣∣∣
= r2 sin s sin t

∣∣∣∣ cos s −r sin s
sin s sin t r cos s sin t

∣∣∣∣+ r sin s cos t

∣∣∣∣ cos s −r sin s
sin s cos t r cos s cos t

∣∣∣∣
= r sin s sin2 t

∣∣∣∣cos s −r sin ssin s r cos s

∣∣∣∣+ r sin s cos2 t

∣∣∣∣cos s −r sin ssin s r cos s

∣∣∣∣
= r sin s(sin2 t+ cos2 t)

∣∣∣∣cos s −r sin ssin s r cos s

∣∣∣∣
= r sin s× 1× r
= r2 sin s

Thus, we have indeed the formula in the statement. □

Let us work out now the general spherical coordinate formula, in arbitrary N dimen-
sions. The formula here, which generalizes those at N = 2, 3, is as follows:

Theorem 11.11. We have spherical coordinates in N dimensions,

x1 = r cos t1
x2 = r sin t1 cos t2
...

xN−1 = r sin t1 sin t2 . . . sin tN−2 cos tN−1

xN = r sin t1 sin t2 . . . sin tN−2 sin tN−1

the corresponding Jacobian being given by the following formula,

J(r, t) = rN−1 sinN−2 t1 sin
N−3 t2 . . . sin

2 tN−3 sin tN−2

and with this generalizing the known formulae at N = 2, 3.
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Proof. As before, the fact that we have spherical coordinates is clear. Regarding
now the Jacobian, also as before, by developing over the last column, we have:

JN = r sin t1 . . . sin tN−2 sin tN−1 × sin tN−1JN−1

+ r sin t1 . . . sin tN−2 cos tN−1 × cos tN−1JN−1

= r sin t1 . . . sin tN−2(sin
2 tN−1 + cos2 tN−1)JN−1

= r sin t1 . . . sin tN−2JN−1

Thus, we obtain the formula in the statement, by recurrence. □

As a comment here, the above convention for spherical coordinates is one among many,
designed to best work in arbitrary N dimensions. Also, in what regards the precise range
of the angles t1, . . . , tN−1, we will leave this to you, as an instructive exercise.

As an application, let us compute the volumes of spheres. For this purpose, we must
understand how the products of coordinates integrate over spheres. Let us start with the
case N = 2. Here the sphere is the unit circle T, and with z = eit the coordinates are
cos t, sin t. We can first integrate arbitrary powers of these coordinates, as follows:

Proposition 11.12. We have the following formulae,∫ π/2

0

cosp t dt =

∫ π/2

0

sinp t dt =
(π
2

)ε(p) p!!

(p+ 1)!!

where ε(p) = 1 if p is even, and ε(p) = 0 if p is odd, and where

m!! = (m− 1)(m− 3)(m− 5) . . .

with the product ending at 2 if m is odd, and ending at 1 if m is even.

Proof. Let us first compute the integral on the left in the statement:

Ip =

∫ π/2

0

cosp t dt

We do this by partial integration. We have the following formula:

(cosp t sin t)′ = p cosp−1 t(− sin t) sin t+ cosp t cos t

= p cosp+1 t− p cosp−1 t+ cosp+1 t

= (p+ 1) cosp+1 t− p cosp−1 t

By integrating between 0 and π/2, we obtain the following formula:

(p+ 1)Ip+1 = pIp−1
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Thus we can compute Ip by recurrence, and we obtain:

Ip =
p− 1

p
Ip−2

=
p− 1

p
· p− 3

p− 2
Ip−4

=
p− 1

p
· p− 3

p− 2
· p− 5

p− 4
Ip−6

...

=
p!!

(p+ 1)!!
I1−ε(p)

But I0 =
π
2
and I1 = 1, so we get the result. As for the second formula, this follows from

the first one, with t = π
2
− s. Thus, we have proved both formulae in the statement. □

We can now compute the volume of the sphere, as follows:

Theorem 11.13. The volume of the unit sphere in RN is given by

V =
(π
2

)[N/2] 2N

(N + 1)!!

with our usual convention N !! = (N − 1)(N − 3)(N − 5) . . .

Proof. Let us denote by B+ the positive part of the unit sphere, or rather unit ball
B, obtained by cutting this unit ball in 2N parts. At the level of volumes, we have:

V = 2NV +

We have the following computation, using spherical coordinates:

V + =

∫
B+

1

=

∫ 1

0

∫ π/2

0

. . .

∫ π/2

0

rN−1 sinN−2 t1 . . . sin tN−2 drdt1 . . . dtN−1

=

∫ 1

0

rN−1 dr

∫ π/2

0

sinN−2 t1 dt1 . . .

∫ π/2

0

sin tN−2dtN−2

∫ π/2

0

1dtN−1

=
1

N
×
(π
2

)[N/2]

× (N − 2)!!

(N − 1)!!
· (N − 3)!!

(N − 2)!!
. . .

2!!

3!!
· 1!!
2!!
· 1

=
1

N
×
(π
2

)[N/2]

× 1

(N − 1)!!

=
(π
2

)[N/2] 1

(N + 1)!!
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Here we have used the following formula, for computing the exponent of π/2:

ε(0) + ε(1) + ε(2) + . . .+ ε(N − 2) = 1 + 0 + 1 + . . .+ ε(N − 2)

=

[
N − 2

2

]
+ 1

=

[
N

2

]
Thus, we obtain the formula in the statement. □

As main particular cases of the above formula, we have:

Theorem 11.14. The volumes of the low-dimensional spheres are as follows:

(1) At N = 1, the length of the unit interval is V = 2.
(2) At N = 2, the area of the unit disk is V = π.
(3) At N = 3, the volume of the unit sphere is V = 4π

3

(4) At N = 4, the volume of the corresponding unit sphere is V = π2

2
.

Proof. Some of these results are well-known, but we can obtain all of them as par-
ticular cases of the general formula in Theorem 11.13, as follows:

(1) At N = 1 we obtain V = 1 · 2
1
= 2.

(2) At N = 2 we obtain V = π
2
· 4
2
= π.

(3) At N = 3 we obtain V = π
2
· 8
3
= 4π

3
.

(4) At N = 4 we obtain V = π2

4
· 16

8
= π2

2
. □

The formula in Theorem 11.13 is certainly nice, but in practice, we would like to have
estimates for that sphere volumes too. For this purpose, we will need:

Theorem 11.15. We have the Stirling formula

N ! ≃
(
N

e

)N √
2πN

valid in the N →∞ limit.

Proof. This is something quite tricky, the idea being as follows:

(1) Let us first see what we can get with Riemann sums. We have:

log(N !) =
N∑
k=1

log k

≈
∫ N

1

log x dx

= N logN −N + 1
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By exponentiating, this gives the following estimate, which is not bad:

N ! ≈
(
N

e

)N

· e

(2) We can improve our estimate by replacing the rectangles from the Riemann sum
approach to the integrals by trapezoids. In practice, this gives the following estimate:

log(N !) =
N∑
k=1

log k

≈
∫ N

1

log x dx+
log 1 + logN

2

= N logN −N + 1 +
logN

2

By exponentiating, this gives the following estimate, which gets us closer:

N ! ≈
(
N

e

)N

· e ·
√
N

(3) In order to conclude, we must take some kind of mathematical magnifier, and
carefully estimate the error made in (2). Fortunately, this mathematical magnifier exists,
called Euler-Maclaurin formula, and after some computations, this leads to:

N ! ≃
(
N

e

)N √
2πN

(4) However, all this remains a bit complicated, so we would like to present now
an alternative approach to (3), which also misses some details, but better does the job,
explaining where the

√
2π factor comes from. First, by partial integration we have:

N ! =

∫ ∞

0

xNe−xdx

Since the integrand is sharply peaked at x = N , as you can see by computing the
derivative of log(xNe−x), this suggests writing x = N + y, and we obtain:

log(xNe−x) = N log x− x
= N log(N + y)− (N + y)

= N logN +N log
(
1 +

y

N

)
− (N + y)

≃ N logN +N

(
y

N
− y2

2N2

)
− (N + y)

= N logN −N − y2

2N
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By exponentiating, we obtain from this the following estimate:

xNe−x ≃
(
N

e

)N

e−y2/2N

Now by integrating, and using the Gauss formula, we obtain from this:

N ! =

∫ ∞

0

xNe−xdx

≃
∫ N

−N

(
N

e

)N

e−y2/2N dy

≃
(
N

e

)N ∫
R
e−y2/2N dy

=

(
N

e

)N √
2N

∫
R
e−z2 dz

=

(
N

e

)N √
2πN

Thus, we have proved the Stirling formula, as formulated in the statement. □

With the above formula in hand, we have many useful applications, such as:

Proposition 11.16. We have the following estimate for binomial coefficients,

(
N

K

)
≃
(

1

tt(1− t)1−t

)N
1√

2πt(1− t)N

in the K ≃ tN →∞ limit, with t ∈ (0, 1]. In particular we have(
2N

N

)
≃ 4N√

πN

in the N →∞ limit, for the central binomial coefficients.

Proof. All this is very standard, by using the Stirling formula etablished above, for
the various factorials which appear, the idea being as follows:
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(1) This follows from the definition of the binomial coefficients, namely:(
N

K

)
=

N !

K!(N −K)!

≃
(
N

e

)N √
2πN

( e
K

)K 1√
2πK

(
e

N −K

)N−K
1√

2π(N −K)

=
NN

KK(N −K)N−K

√
N

2πK(N −K)

≃ NN

(tN)tN((1− t)N)(1−t)N

√
N

2πtN(1− t)N

=

(
1

tt(1− t)1−t

)N
1√

2πt(1− t)N
Thus, we are led to the conclusion in the statement.

(2) This estimate follows from a similar computation, as follows:(
2N

N

)
=

(2N)!

N !N !

≃
(
2N

e

)2N √
4πN

( e
N

)2N 1

2πN

=
4N√
πN

Alternatively, we can take t = 1/2 in (1), then rescale. Indeed, we have:(
N

[N/2]

)
≃

(
1

(1
2
)1/2(1

2
)1/2

)N
1√

2π · 1
2
· 1
2
·N

= 2N
√

2

πN

Thus with the change N → 2N we obtain the formula in the statement. □

We can now estimate the volumes of the spheres, as follows:

Theorem 11.17. The volume of the unit sphere in RN is given by

V ≃
(
2πe

N

)N/2
1√
πN

in the N →∞ limit.
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Proof. We use the formula for V found in Theorem 11.13, namely:

V =
(π
2

)[N/2] 2N

(N + 1)!!

In the case where N is even, the estimate goes as follows:

V =
(π
2

)N/2 2N

(N + 1)!!

≃
(π
2

)N/2

2N
( e
N

)N/2 1√
πN

=

(
2πe

N

)N/2
1√
πN

In the case where N is odd, the estimate goes as follows:

V =
(π
2

)(N−1)/2 2N

(N + 1)!!

≃
(π
2

)(N−1)/2

2N
( e
N

)N/2 1√
2N

=

√
2

π

(
2πe

N

)N/2
1√
2N

=

(
2πe

N

)N/2
1√
πN

Thus, we are led to the uniform formula in the statement. □

Getting back now to our main result so far, Theorem 11.13, we can compute in the
same way the area of the sphere, the result being as follows:

Theorem 11.18. The area of the unit sphere in RN is given by

A =
(π
2

)[N/2] 2N

(N − 1)!!

with the our usual convention for double factorials, namely:

N !! = (N − 1)(N − 3)(N − 5) . . .

In particular, at N = 2, 3, 4 we obtain respectively A = 2π, 4π, 2π2.

Proof. Regarding the first assertion, there is no need to compute again, because the
formula in the statement can be deduced from Theorem 11.13, as follows:

(1) We can either use the “pizza” argument from plane geometry, which shows that
the area and volume of the sphere in RN are related by the following formula:

A = N · V
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Together with the formula in Theorem 11.13 for V , this gives the result.

(2) Or, we can start the computation in the same way as we started the proof of
Theorem 11.13, the beginning of this computation being as follows:

vol(S+) =

∫ π/2

0

. . .

∫ π/2

0

sinN−2 t1 . . . sin tN−2 dt1 . . . dtN−1

Now by comparing with the beginning of the proof of Theorem 11.13, the only thing
that changes is the following quantity, which now dissapears:∫ 1

0

rN−1 dr =
1

N

Thus, we have vol(S+) = N · vol(B+), and so we obtain the following formula:

vol(S) = N · vol(B)

But this means A = N · V , and together with the formula in Theorem 11.13 for V ,
this gives the result. As for the last assertion, this can be either worked out directly, or
deduced from the results for volumes that we have so far, by multiplying by N . □

11d. Normal variables

We have kept the best for the end. As a starting point, we have:

Definition 11.19. Let X be a probability space, that is, a space with a probability
measure, and with the corresponding integration denoted E, and called expectation.

(1) The random variables are the real functions f ∈ L∞(X).
(2) The moments of such a variable are the numbers Mk(f) = E(fk).
(3) The law of such a variable is the measure given by Mk(f) =

∫
R x

kdµf (x).

Here the fact that a measure µf as above exists indeed is not exactly trivial. But we
can do this by looking at formulae of the following type:

E(φ(f)) =

∫
R
φ(x)dµf (x)

Indeed, having this for monomials φ(x) = xn, as above, is the same as having it
for polynomials φ ∈ R[X], which in turn is the same as having it for the characteristic
functions φ = χI of measurable sets I ⊂ R. Thus, in the end, what we need is:

P (f ∈ I) = µf (I)

But this formula can serve as a definition for µf , and we are done.

Regarding now independence, we can formulate here the following definition:
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Definition 11.20. Two variables f, g ∈ L∞(X) are called independent when

E(fkgl) = E(fk)E(gl)

happens, for any k, l ∈ N.

Again, this definition hides some non-trivial things, the idea being a bit as before,
namely that of looking at formulae of the following type:

E[φ(f)ψ(g)] = E[φ(f)]E[ψ(g)]

To be more precise, passing as before from monomials to polynomials, then to char-
acteristic functions, we are led to the usual definition of independence, namely:

P (f ∈ I, g ∈ J) = P (f ∈ I)P (g ∈ J)

As a first result now, which is something very standard, we have:

Theorem 11.21. Assuming that f, g ∈ L∞(X) are independent, we have

µf+g = µf ∗ µg

where ∗ is the convolution of real probability measures.

Proof. We have the following computation, using the independence of f, g:∫
R
xkdµf+g(x) = E((f + g)k) =

∑
r

(
k

r

)
Mr(f)Mk−r(g)

On the other hand, we have as well the following computation:∫
R
xkd(µf ∗ µg)(x) =

∫
R×R

(x+ y)kdµf (x)dµg(y)

=
∑
r

(
k

r

)
Mr(f)Mk−r(g)

Thus µf+g and µf ∗ µg have the same moments, so they coincide, as claimed. □

As a second result on independence, which is more advanced, we have:

Theorem 11.22. Assuming that f, g ∈ L∞(X) are independent, we have

Ff+g = FfFg

where Ff (x) = E(eixf ) is the Fourier transform.
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Proof. This is something which is very standard too, coming from:

Ff+g(x) =

∫
R
eixzd(µf ∗ µg)(z)

=

∫
R×R

eix(z+t)dµf (z)dµg(t)

=

∫
R
eixzdµf (z)

∫
R
eixtdµg(t)

= Ff (x)Fg(x)

Thus, we are led to the conclusion in the statement. □

Let us introduce now the normal laws. This can be done as follows:

Definition 11.23. The normal law of parameter 1 is the following measure:

g1 =
1√
2π
e−x2/2dx

More generally, the normal law of parameter t > 0 is the following measure:

gt =
1√
2πt

e−x2/2tdx

These are also called Gaussian distributions, with “g” standing for Gauss.

Observe that the above laws have indeed mass 1, as they should. This follows indeed
from the Gauss formula, which gives, with x =

√
2t y:∫

R
e−x2/2tdx =

∫
R
e−y2
√
2t dy

=
√
2t

∫
R
e−y2dy

=
√
2t×

√
π

=
√
2πt

Generally speaking, the normal laws appear as bit everywhere, in real life. The reasons
behind this phenomenon come from the Central Limit Theorem (CLT), that we will
explain in a moment, after developing some general theory. As a first result, we have:

Proposition 11.24. We have the variance formula

V (gt) = t

valid for any t > 0.
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Proof. The first moment is 0, because our normal law gt is centered. As for the
second moment, this can be computed as follows:

M2 =
1√
2πt

∫
R
x2e−x2/2tdx

=
1√
2πt

∫
R
(tx)

(
−e−x2/2t

)′
dx

=
1√
2πt

∫
R
te−x2/2tdx

= t

We conclude from this that the variance is V =M2 = t. □

Here is another result, which is the key one for the study of the normal laws:

Theorem 11.25. We have the following formula, valid for any t > 0:

Fgt(x) = e−tx2/2

In particular, the normal laws satisfy gs ∗ gt = gs+t, for any s, t > 0.

Proof. The Fourier transform formula can be established as follows:

Fgt(x) =
1√
2πt

∫
R
e−y2/2t+ixydy

=
1√
2πt

∫
R
e−(y/

√
2t−
√

t/2ix)2−tx2/2dy

=
1√
2πt

∫
R
e−z2−tx2/2

√
2tdz

=
1√
π
e−tx2/2

∫
R
e−z2dz

=
1√
π
e−tx2/2 ·

√
π

= e−tx2/2

As for the last assertion, this follows from the fact that logFgt is linear in t. □

We are now ready to state and prove the CLT, as follows:

Theorem 11.26 (CLT). Given random variables f1, f2, f3, . . . ∈ L∞(X) which are
i.i.d., centered, and with variance t > 0, we have, with n→∞, in moments,

1√
n

n∑
i=1

fi ∼ gt

where gt is the Gaussian law of parameter t, having as density 1√
2πt
e−y2/2tdy.
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Proof. We use the Fourier transform, which is by definition given by:

Ff (x) = E(eixf )

In terms of moments, we have the following formula:

Ff (x) = E

(
∞∑
k=0

(ixf)k

k!

)

=
∞∑
k=0

(ix)kE(fk)

k!

=
∞∑
k=0

ikMk(f)

k!
xk

Thus, the Fourier transform of the variable in the statement is:

F (x) =

[
Ff

(
x√
n

)]n
=

[
1− tx2

2n
+O(n−2)

]n
≃

[
1− tx2

2n

]n
≃ e−tx2/2

But this latter function being the Fourier transform of gt, we obtain the result. □

Let us discuss now some further properties of the normal law. We first have:

Proposition 11.27. The even moments of the normal law are the numbers

Mk(gt) = tk/2 × k!!
where k!! = (k − 1)(k − 3)(k − 5) . . . , and the odd moments vanish.

Proof. We have the following computation, valid for any integer k ∈ N:

Mk =
1√
2πt

∫
R
yke−y2/2tdy

=
1√
2πt

∫
R
(tyk−1)

(
−e−y2/2t

)′
dy

=
1√
2πt

∫
R
t(k − 1)yk−2e−y2/2tdy

= t(k − 1)× 1√
2πt

∫
R
yk−2e−y2/2tdy

= t(k − 1)Mk−2
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Now recall from the proof of Proposition 11.24 that we have M0 = 1, M1 = 0. Thus
by recurrence, we are led to the formula in the statement. □

We have the following alternative formulation of the above result:

Proposition 11.28. The moments of the normal law are the numbers

Mk(gt) = tk/2|P2(k)|
where P2(k) is the set of pairings of {1, . . . , k}.

Proof. Let us count the pairings of {1, . . . , k}. In order to have such a pairing, we
must pair 1 with one of the numbers 2, . . . , k, and then use a pairing of the remaining
k − 2 numbers. Thus, we have the following recurrence formula:

|P2(k)| = (k − 1)|P2(k − 2)|
As for the initial data, this is P1 = 0, P2 = 1. Thus, we are led to the result. □

We are not done yet, and here is one more improvement of the above:

Theorem 11.29. The moments of the normal law are the numbers

Mk(gt) =
∑

π∈P2(k)

t|π|

where P2(k) is the set of pairings of {1, . . . , k}, and |.| is the number of blocks.

Proof. This follows indeed from Proposition 11.28, because the number of blocks of
a pairing of {1, . . . , k} is trivially k/2, independently of the pairing. □

Many other things can be said, as a continuation of the above.

11e. Exercises

Exercises:

Exercise 11.30.

Exercise 11.31.

Exercise 11.32.

Exercise 11.33.

Exercise 11.34.

Exercise 11.35.

Exercise 11.36.

Exercise 11.37.

Bonus exercise.



CHAPTER 12

Charges, matter

12a. Electrons, charges

Welcome to advanced physics. That needs electrons, and here, you don’t necessarily
need a power outlet for having them, a basic Van de Graaff machine, or just rubbing some
suitable materials together, will do. Let us record this finding as follows:

Fact 12.1. Each piece of matter has a charge q ∈ R, which is normally neutral,
q = 0, but that we can make positive or negative, by using various methods. We say that
responsible for the charge is the amount of electrons present, as follows:

(1) When the matter lacks electrons, the charge is positive, q > 0.
(2) When there are more electrons than needed, the charge is negative, q < 0.

And, good news, this will be the starting point for the considerations in this book,
the electrons, as defined above. Of course you might say, for instance if you are a math
student used to a fair amount of exactness, in your learning, that what we say in Fact
12.1 is a bit borderline, for something to be labeled as axiomatic. But well, physics is not
mathematics, it’s sort of harder, when it comes to having things started, and that’s what
we have. Of course we will be back to it, with axioms, later, that is promised.

Moving ahead now, as our first result, due to Coulomb, and that will come as a physics
fact instead of a mathematics theorem, because, well, I must admit that what we have in
Fact 12.1 is indeed more than borderline, as axiomatics for a theory, we have:

Fact 12.2 (Coulomb law). Any pair of charges q1, q2 ∈ R is subject to a force as
follows, which is attractive if q1q2 < 0 and repulsive if q1q2 > 0,

||F || = K · |q1q2|
d2

where d > 0 is the distance between the charges, and K > 0 is a certain constant.

Observe the amazing similarity with the Newton law for gravity. However, as we will
discover soon, passed a few simple facts, things will be far more complicated here.

As in the gravity case, the force F appearing above is understood to be parallel to the
vector x2 − x1 ∈ R3 joining as x1 → x2 the locations x1, x2 ∈ R3 of our charges, and by
taking into account the attraction/repulsion rules above, we have:

221
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Proposition 12.3. The Coulomb force of q1 at x1 acting on q2 at x2 is

F = K · q1q2(x2 − x1)
||x2 − x1||3

with K > 0 being the Coulomb constant, as above.

Proof. We have indeed the following computation:

F = sgn(q1q2) · ||F || ·
x2 − x1
||x2 − x1||

= sgn(q1q2) ·K ·
|q1q2|

||x2 − x1||2
· x2 − x1
||x2 − x1||

= K · q1q2(x2 − x1)
||x2 − x1||3

Thus, we are led to the formula in the statement. □

In relation with the value of the constant K appearing in the above, called Coulomb
constant, things are a bit tricky, as follows:

Fact 12.4. The Coulomb constant K is given by the formula

K = 8.987 551 7923(14)× 109

in standard units, with the charges being measured in coulombs C, given by

1C ≃ 6.241 509× 1018 e

where e is the elementary charge, namely minus that of an electron.

There are in fact several interesting things going on here. First, at the end you would
say why not simply saying that e is the charge of the proton +, but the thing is that the
proton + and the electron − do not have in fact the same exact charge, with sign switched,
and the electron was preferred, as always, over the proton for formulating things.

Which takes us into the question of why the charge of the electron is −, instead of
+. And there is a long story here, involving debates among the 18th century greats, and
with a little bit of confusion being involved too, because the electrons − are attracted
by positive charges q > 0, and so observed around these positive charges q > 0, which
might lead to the idea that they might have themselves a positive charge +, contributing
to q > 0. Benjamin Franklin is generally credited for the − convention.

Things were later restored in the early 20th century, with the atomic theory of Bohr
and others, where electrons − spin around a proton and neutron core q > 0, and with
this picture, including the signs, looking like something very reasonable.
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Passed all this, another peculiarity of Fact 12.4 comes in relation with the definition
of the coulomb, which is in fact given by definition by an exact formula, namely:

1C =
5× 1018

0.801 088 317
e

This in practice gives the following more precise formula for the coulomb, which shows
that a charge of 1C is something fractionary, that cannot be realized in real life:

1C = 6241 509 074 460 762 607.776 e

The problem comes from the following alternative definition of the coulomb, in terms
of the ampere, which is something more complicated, that we will talk about later:

1C = 1A · 1s
Hang on, we are not done yet. Adding to the confusion, the Coulomb constant is

usually denoted K, but also k, or most often ke, but in fact the most often is written in
the following form, with ε0 being the so-called permittivity of free space:

K =
1

4πε0
And the story is not over here, because ε0 itself is given by the following formula, with

µ0 being the magnetic permeability of free space, and c being the speed of light:

ε0 =
1

µ0c2

And we are surely still not done, because all the above discussion assumes that the
other units that are used are standard, namely meter and second, and this is not always
standard, due to the about 50 orders of magnitude physics has to deal with.

In any case, let us end this interesting discussion about units with something concrete,
useful, and very illustrating, in relation with gravity, as follows:

Theorem 12.5. The electrical repulsion between two electrons is about

R = 1042

times bigger than their gravitational attraction.

Proof. Consider indeed two electrons, having masses m,m and charges −e,−e. The
magnitudes of the electric repulsion Fe and gravity attraction Fg are given by:

||Fe|| =
Ke2

d2
, ||Fg|| =

Gm2

d2

Thus the ratio of forces R that we want to measure is given by:

R =
||Fe||
||Fg||

=
Ke2

Gm2
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Regarding now the data, this is as follows, with m at rest, and in standard units,
namely meters and seconds, also kilograms, and including now coulombs too:

K = 8.897× 109 , G = 6.674× 10−11

e = 1.602× 10−19 , m = 9.109× 10−31

We obtain the following approximation for the ratio R considered above:

R =
8.897× 1.6022

6.674× 9.1092
× 109 × 10−38

10−11 × 10−62

= (4.123× 10−2)× 1044

≃ 1042

Thus, we are led to the conclusion in the statement. □

For adding to the picture, and in order to fully understand what that R = 1042 number
that we found truly means, let us complement the above result with:

Proposition 12.6. The universe, or at least the known universe, is about

r = 1037

bigger than a hydrogen atom, with this ratio being 10, 000 smaller than R.

Proof. The radius of the hydrogen atom can be anywhere between 25−120 pm, with
1 pm = 10−12 m, depending on the convention used, with a commonly accepted figure
being 53 pm, representing the mean distance between the proton and the electron. As for
the radius of the known universe, again there is a story here, with a commonly accepted
figure being 4.4× 1026 m. Thus the ratio that we are interested in is:

r =
4.4× 1026

53× 10−12
≃ 1037

And this is 10,000 smaller than 1042, as claimed. □

As a side comment, however, when speaking masses instead of sizes, the number
R = 1042 pales when compared to the mass of the known universe, counting ordinary
mass only, accounting for 4.9%, divided by the mass of a hydrogen atom, which is:

R =
1.5× 1053

1.8× 10−30
≃ 1083

Getting back now to Theorem 12.5 as it is, let us point out that this is something not
at all anecdotical, even in the context of the most abstract theoretical physics that you
can ever imagine, not to say pure mathematics, because of the following rule of thumb,
which is something widely agreed upon, by most of the scientists:

Rule 12.7. Don’t ever expect the mathematics and physics to be the same, over 10
orders of magnitude or so.
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In other words, with this in hand, Theorem 12.5 tells us an interesting thing, namely
that the mathematics and physics of the Coulomb force Fe ∼ 1/d2 will be in fact very
different from the mathematics and physics of the Newton force Fg ∼ 1/d2. We will see
in what follows that indeed it is so, but it is of course far better to be warned in advance
of the potential difficulties on the way. So, Theorem 12.5 is something very smart.

12b. The Gauss law

Let us develop now the basic mathematics for electrostatics. We first have:

Definition 12.8. Given charges q1, . . . , qk ∈ R located at positions x1, . . . , xk ∈ R3,
we define their electric field to be the vector function

E(x) = K
∑
i

qi(x− xi)
||x− xi||3

so that their force applied to a charge Q ∈ R positioned at x ∈ R3 is given by F = QE.

Observe the analogy with gravity, save for the fact that instead of masses m > 0 we
have now charges q ∈ R, and that at the level of constants, G gets replaced by K.

More generally, we will be interested in electric fields of various non-discrete config-
urations of charges, such as charged curves, surfaces and solid bodies. We have already
talked about such things in the above, in the gravitational context, but the discussion
there, involving the gravitational force of a solid body having non-trivial shape or density,
was something rather specialized.

In the electricity context, however, things like wires or metal sheets or solid bodies
coming in all sorts of shapes, tailored for their purpose, play a key role, so this extension
is essential. So, let us go ahead with:

Definition 12.9. The electric field of a charge configuration L ⊂ R3, with charge
density function ρ : L→ R, is the vector function

E(x) = K

∫
L

ρ(z)(x− z)
||x− z||3

dz

so that the force of L applied to a charge Q positioned at x is given by F = QE.

With the above definitions in hand, it is most convenient now to forget about the
charges, and focus on the study of the corresponding electric fields E.

These fields are by definition vector functions E : R3 → R3, with the convention that
they take ±∞ values at the places where the charges are located, and intuitively, are best
represented by their field lines, which are constructed as follows:
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Definition 12.10. The field lines of E : R3 → R3 are the oriented curves

γ ⊂ R3

pointing at every point x ∈ R3 at the direction of the field, E(x) ∈ R3.

As a basic example here, for one charge the field lines are the half-lines emanating
from its position, oriented according to the sign of the charge:

↖ ↑ ↗
← ⊕ →
↙ ↓ ↘

↘ ↓ ↙
→ ⊖ ←
↗ ↑ ↖

For two charges now, if these are of opposite signs, + and −, you get a picture that
you are very familiar with, namely that of the field lines of a bar magnet:

↗ ↗ → → → → ↘ ↘
↖ ↑ ↗ → → ↘ ↓ ↙
← ⊕ → → → → ⊖ ←
↙ ↓ ↘ → → ↗ ↑ ↖
↘ ↘ → → → → ↗ ↗

If the charges are +,+ or −,−, you get something of similar type, but repulsive this
time, with the field lines emanating from the charges being no longer shared:

← ↖ ↖ ↗ ↗ →
↑ ↗ ↖ ↑

← ⊕ ⊕ →
↓ ↘ ↙ ↓

← ↙ ↙ ↘ ↘ →
These pictures, and notably the last one, with +,+ charges, are quite interesting,

because the repulsion situation does not appear in the context of gravity. Thus, we can
only expect our geometry here to be far more complicated than that of gravity.

In general now, the first thing that can be said about the field lines is that, by defini-
tion, they do not cross. Thus, what we have here is some sort of oriented 1D foliation of
R3, in the sense that R3 is smoothly decomposed into oriented curves γ ⊂ R3.

The field lines, as constructed in Definition 12.10, obviously do not encapsulate the
whole information about the field, with the direction of each vector E(x) ∈ R3 being
there, but with the magnitude ||E(x)|| ≥ 0 of this vector missing. However, say when
drawing, when picking up uniformly radially spaced field lines around each charge, and
with the number of these lines proportional to the magnitude of the charge, and then
completing the picture, the density of the field lines around each point x ∈ R will give
you then the magnitude ||E(x)|| ≥ 0 of the field there, up to a scalar.
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Let us summarize these observations as follows:

Proposition 12.11. Given an electric field E : R3 → R3, the knowledge of its field
lines is the same as the knowledge of the composition

nE : R3 → R3 → S

where S ⊂ R3 is the unit sphere, and n : R3 → S is the rescaling map, namely:

n(x) =
x

||x||
However, in practice, when the field lines are accurately drawn, the density of the field
lines gives you the magnitude of the field, up to a scalar.

Proof. We have two assertions here, the idea being as follows:

(1) The first assertion is clear from definitions, with of course our usual convention
that the electric field and its problematics take place outside the locations of the charges,
which makes everything in the statement to be indeed well-defined.

(2) Regarding now the last assertion, which is of course a bit informal, this follows
from the above discussion. It is possible to be a bit more mathematical here, with a
definition, formula and everything, but we will not need this, in what follows. □

Let us introduce now a key definition, as follows:

Definition 12.12. The flux of an electric field E : R3 → R3 through a surface S ⊂ R3,
assumed to be oriented, is the quantity

ΦE(S) =

∫
S

< E(x), n(x) > dx

with n(x) being unit vectors orthogonal to S, following the orientation of S. Intuitively,
the flux measures the signed number of field lines crossing S.

Here by orientation of S we mean precisely the choice of unit vectors n(x) as above,
orthogonal to S, which must vary continuously with x. For instance a sphere has two
possible orientations, one with all these vectors n(x) pointing inside, and one with all
these vectors n(x) pointing outside. More generally, any surface has locally two possible
orientations, so if it is connected, it has two possible orientations. In what follows the
convention is that the closed surfaces are oriented with each n(x) pointing outside.

Regarding the last sentence of Definition 12.12, this is of course something informal,
meant to help, coming from the interpretation of the field lines from Proposition 12.11.
However, we will see later that this simple interpretation can be of great use.

As a first observation, we could have done of course the same thing with gravity
before, but these notions of field lines and flux are not very interesting, in that context.
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In the present setting, however, electric fields passing through metal sheets are a common
occurence, and all the above is important, for any application.

As a first illustration, let us do a basic computation, as follows:

Proposition 12.13. For a point charge q ∈ R at the center of a sphere S,

ΦE(S) =
q

ε0

where the constant is ε0 = 1/(4πK), independently of the radius of S.

Proof. Assuming that S has radius r, we have the following computation:

ΦE(S) =

∫
S

< E(x), n(x) > dx

=

∫
S

〈
Kqx

r3
,
x

r

〉
dx

=

∫
S

Kq

r2
dx

=
Kq

r2
× 4πr2

= 4πKq

Thus with ε0 = 1/(4πK) as above, we obtain the result. □

As a comment here, the constant ε0 = 1/(4πK) which appears in the above is the
permittivity of free space constant that we talked about before, when discussing units. In
what follows we will use this new constant instead of the Coulomb constant K.

More generally now, we have the following result:

Theorem 12.14. The flux of a field E through a sphere S is given by

ΦE(S) =
Qenc

ε0

where Qenc is the total charge enclosed by S, and ε0 = 1/(4πK).

Proof. This can be done in several steps, as follows:

(1) Before jumping into computations, let us do some manipulations. First, by dis-
cretizing the problem, we can assume that we are dealing with a system of point charges.
Moreover, by additivity, we can assume that we are dealing with a single charge. And if
we denote by q ∈ R this charge, located at v ∈ R3, we want to prove that we have the
following formula, where B ⊂ R3 denotes the ball enclosed by S:

ΦE(S) =
q

ε0
δv∈B
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(2) By linearity we can assume that we are dealing with the unit sphere S. Moreover,
by rotating we can assume that our charge q lies on the Ox axis, that is, that we have
v = (r, 0, 0) with r ≥ 0, r ̸= 1. The formula that we want to prove becomes:

ΦE(S) =
q

ε0
δr<1

(3) Let us start now the computation. With u = (x, y, z), we have:

ΦE(S) =

∫
S

< E(u), u > du

=

∫
S

〈
Kq(u− v)
||u− v||3

, u

〉
du

= Kq

∫
S

< u− v, u >
||u− v||3

du

= Kq

∫
S

1− < v, u >

||u− v||3
du

= Kq

∫
S

1− rx
(1− 2xr + r2)3/2

du

(4) In order to compute the above integral, we will use spherical coordinates for the
unit sphere S, which are as follows, with s ∈ [0, π] and t ∈ [0, 2π]:

x = cos s

y = sin s cos t

z = sin s sin t

The corresponding Jacobian is readily computed, as follows:

J =

∣∣∣∣∣∣
cos s − sin s 0

sin s cos t cos s cos t − sin s sin t
sin s sin t cos s sin t sin s cos t

∣∣∣∣∣∣
= sin s sin t

∣∣∣∣ cos s − sin s
sin s sin t cos s sin t

∣∣∣∣+ sin s cos t

∣∣∣∣ cos s − sin s
sin s cos t cos s cos t

∣∣∣∣
= sin s(sin2 t+ cos2 t)

∣∣∣∣cos s − sin s
sin s cos s

∣∣∣∣
= sin s
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(5) With the above change of coordinates, our integral from (3) becomes:

ΦE(S) = Kq

∫
S

1− rx
(1− 2xr + r2)3/2

du

= Kq

∫ 2π

0

∫ π

0

1− r cos s
(1− 2r cos s+ r2)3/2

· sin s ds dt

= 2πKq

∫ π

0

(1− r cos s) sin s
(1− 2r cos s+ r2)3/2

ds

=
q

2ε0

∫ π

0

(1− r cos s) sin s
(1− 2r cos s+ r2)3/2

ds

(6) The point now is that the integral on the right can be computed with the change
of variables x = cos s. Indeed, we have dx = − sin s ds, and we obtain:∫ π

0

(1− r cos s) sin s
(1− 2r cos s+ r2)3/2

ds =

∫ 1

−1

1− rx
(1− 2rx+ r2)3/2

dx

=

[
x− r√

1− 2rx+ r2

]1
−1

=
1− r√

1− 2r + r2
− −1− r√

1 + 2r + r2

=
1− r
|1− r|

+ 1

= 2δr<1

Thus, we are led to the formula in the statement. □

As a comment here, at r = 1, which is normally avoided by our problematics, the
integral Ir computed in (5) above converges too, and can be evaluated as follows:

I1 =

[
x− 1√
2− 2x

]1
−1

=

[
−
√

1− x
2

]1
−1

= 1

Thus, we have the correct middle step between the 0, 2 values of the integral Ir, and
getting back now to the flux, at r = 1 we formally have ΦE(S) = q/(2ε0), which again is
the correct middle step between the 0, q/ε0 values of the flux.

Even more generally now, we have the following result, due to Gauss, which is the
foundation of advanced electrostatics, and of everything following from it, namely elec-
trodynamics, and then quantum mechanics, and particle physics:
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Theorem 12.15 (Gauss law). The flux of a field E through a surface S is given by

ΦE(S) =
Qenc

ε0

where Qenc is the total charge enclosed by S, and ε0 = 1/(4πK).

Proof. This basically follows from Theorem 12.14, or even from Proposition 12.13,
by adding to the results there a number of new ingredients, as follows:

(1) Our first claim is that given a closed surface S, with no charges inside, the flux
through it of any choice of external charges vanishes:

ΦE(S) = 0

This claim is indeed supported by the intuitive interpretation of the flux, as corre-
sponding to the signed number of field lines crossing S. Indeed, any field line entering as
+ must exit somewhere as −, and vice versa, so when summing we get 0.

(2) In practice now, in order to prove this rigorously, there are several ways. A first
argument, which is quite elementary, is the one used by Feynman in [34], based on the
fact that, due to F ∼ 1/d2, local deformations of S will leave invariant the flux, and so
in the end we are left with a rotationally invariant surface, where the result is clear.

(3) A second argument, which basically uses the same idea, but is perhaps a bit more
robust, is by redoing the computations in the proof of Theorem 12.14, by assuming this
time that the integration takes place on an arbitrary surface as follows:

Sλ =
{
λ(u)u

∣∣∣u ∈ S}
To be more precise, here λ : S → (0,∞) is a certain function, defining the surface,

whose derivatives will appear both in the construction of the normal vectors n(x) with
x = λ(u)u, and in the Jacobian of the change of variables x → u, and in the end, when
integrating over S as in the proof of Theorem 12.14, this function λ dissapears.

(4) A third argument, used by basically all electrodynamics books at the graduate
level, and by some undergraduate books too, is by using heavy calculus, namely partial
integration in 3D, and we will discuss this later, more in detail, a bit later.

(5) A fourth argument is by following the idea in (1), namely carefully axiomatizing
the field lines, and their relation with the field, and then obtaining ΦE(S) = 0 by using
the in-and-out trick in (1), as explained for instance by Griffiths in [44].

(6) To summmarize, we are led to the conclusion that given a closed surface S, with
no charges inside, the flux through it of any choice of external charges vanishes:

ΦE(S) = 0

(7) The point now is that, with this and Proposition 12.13 in hand, we can finish by
using a standard math trick. Let us assume indeed, by discretizing, that our system of
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charges is discrete, consisting of enclosed charges q1, . . . , qk ∈ R, and an exterior total
charge Qext. We can surround each of q1, . . . , qk by small disjoint spheres U1, . . . , Uk,
chosen such that their interiors do not touch S, and we have:

ΦE(S) = ΦE(S − ∪Ui) + ΦE(∪Ui)

= 0 + ΦE(∪Ui)

=
∑
i

ΦE(Ui)

=
∑
i

qi
ε0

=
Qenc

ε0

(8) To be more precise, in the above the union ∪Ui is a usual disjoint union, and
the flux is of course additive over components. As for the difference S − ∪Ui, this is by
definition the disjoint union of S with the disjoint union ∪(−Ui), with each −Ui standing
for Ui with orientation reversed, and since this difference has no enclosed charges, the flux
through it vanishes by (6). Finally, the end makes use of Proposition 12.13. □

In order to reach to a better understanding of the Gauss law, mathematically speaking,
let us start with a standard definition, immersing us into 3D problematics, as follows:

Definition 12.16. Given a function f : R3 → R, its usual derivative f ′(u) ∈ R3 can
be written as f ′(u) = ∇f(u), where the gradient operator ∇ is given by:

∇ =

 d
dx
d
dy
d
dz


By using ∇, we can talk about the divergence of a function φ : R3 → R3, as being

< ∇, φ >=

〈 d
dx
d
dy
d
dz

 ,

φx

φy

φz

〉 =
dφx

dx
+
dφy

dy
+
dφz

dz

as well as about the curl of the same function φ : R3 → R3, as being

∇× φ =

∣∣∣∣∣∣
ux

d
dx

φx

uy
d
dy

φy

uz
d
dz

φz

∣∣∣∣∣∣ =


dφz

dy
− dφy

dz
dφx

dz
− dφz

dx
dφy

dx
− dφx

dy


where ux, uy, uz are the unit vectors along the coordinate directions x, y, z.

All this might seem a bit abstract, but is in fact very intuitive. The gradient∇f points
in the direction of the maximal increase of f , with |∇f | giving you the rate of increase
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of f , in that direction. As for the divergence and curl, these measure the divergence and
curl of the vectors φ(u+ v) around a given point u ∈ R3, in a usual, real-life sense.

Getting back now to calculus tools, what was missing from our picture was the higher
dimensional analogue of the fundamental theorem of calculus, and more generally of the
partial integration formula. In 3 dimensions, we have the following result:

Theorem 12.17. The following results hold, in 3 dimensions:

(1) Fundamental theorem for gradients, namely∫ b

a

< ∇f, dx >= f(b)− f(a)

(2) Fundamental theorem for divergences, or Gauss or Green formula,∫
B

< ∇, φ >=
∫
S

< φ(x), n(x) > dx

(3) Fundamental theorem for curls, or Stokes formula,∫
A

< (∇× φ)(x), n(x) > dx =

∫
P

< φ(x), dx >

where S is the boundary of the body B, and P is the boundary of the area A.

Proof. This is a mixture of trivial and non-trivial results, as follows:

(1) This is something that we know well in 1D, namely the fundamental theorem of
calculus, and the general, N -dimensional formula follows from that.

(2) This is something more subtle, and we had a taste of it when dealing with the
Gauss law, and its various proofs. In general, the proof is similar, by using the various
ideas from the proof of the Gauss law, and this can be found in any calculus book.

(3) This is again something subtle, and again with a flavor of things that we know,
from the proof of the Gauss law, and which can be found in any calculus book. □

All the above was of course quite short, and at this point of reading this book, we can
only recommend if needed a short break, for a brief calculus Navy Seals training camp.
Such facilities are provided by basically any undergraduate electrodynamics book, in the
opening chapter, and a particlarly enjoyable read here is Griffiths [44].

As for further details on all this, including mathematical proofs, generalizations, and
more, you can go first to Lax’ books for some good linear algebra, then to Rudin [72],
[73] for advanced calculus, and then to do Carmo for differential geometry.

Getting back now to electrostatics, as a first application of the above, we have the
following new point of view on the Gauss formula, which is more conceptual:
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Theorem 12.18 (Gauss). Given an electric potential E, its divergence is given by

< ∇, E >=
ρ

ε0

where ρ denotes as usual the charge distribution. Also, we have

∇× E = 0

meaning that the curl of E vanishes.

Proof. We have several assertions here, the idea being as follows:

(1) The first formula, called Gauss law in differential form, follows from:∫
B

< ∇, E > =

∫
S

< E(x), n(x) > dx

= ΦE(S)

=
Qenc

ε0

=

∫
B

ρ

ε0

Now since this must hold for any B, this gives the formula in the statement.

(2) As a side remark, the Gauss law in differential form can be established as well
directly, with the computation, involving a Dirac mass, being as follows:

< ∇, E > (x) =

〈
∇, K

∫
R3

ρ(z)(x− z)
||x− z||3

dz

〉
= K

∫
R3

〈
∇, x− z
||x− z||3

〉
ρ(z) dz

= K

∫
R3

4πδx · ρ(z)dz

= 4πK

∫
R3

δx ρ(z)dz

=
ρ(x)

ε0

And with this in hand, we have via (1) a new proof of the usual Gauss law.
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(3) Regarding the curl, by discretizing and linearity we can assume that we are dealing
with a single charge q, positioned at 0. We have, by using spherical coordinates r, s, t:∫ b

a

< E(x), dx > =

∫ b

a

〈
Kqx

||x||3
, dx

〉
=

∫ b

a

〈
Kq

r2
· x

||x||
, dx

〉
=

∫ b

a

Kq

r2
dr

=

[
−Kq

r

]b
a

= Kq

(
1

ra
− 1

rb

)
In particular the integral of E over any closed loop vanishes, and by using now Stokes’

theorem, we conclude that the curl of E vanishes, as stated.

(4) Finally, as a side remark, both the formula of the divergence and the vanishing of
the curl are somewhat clear by looking at the field lines of E. However, as all the above
mathematics shows, there is certainly something to be understood, in all this. □

Moving ahead now, the question appears, what happens to the Gauss equations for
the electric field E, as formulated above in Theorem 12.18, when written in terms of the
associated potential V . And the answer here, which is remarkable, is as follows:

Theorem 12.19 (Poisson). In terms of the electric potential V , the Gauss formula
becomes the Poisson equation, namely

∆V = − ρ

ε0

with ∆ =< ∇,∇ > being the Laplace operator, given by the formula

∆f =
∑
i

d2f

dx2i

and the curl equation dissapears, being automatic for gradients.

Proof. Here both the assertions are elementary, as follows:

(1) With E = −∇V the Gauss equation < ∇, E >= ρ/ε0 becomes:

< ∇,∇V >= − ρ

ε0
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Thus we must have ∆V = −ρ/ε0, with the operator ∆ being given by:

∆f = < ∇,∇f >

=

〈 d
dx
d
dy
d
dz

 ,

 df
dx
df
dy
df
dz

〉

=
d2f

dx2
+
d2f

dy2
+
d2f

dz2

Thus, we are led to the Poisson equation in the statement.

(2) Regarding now the curl, our claim is that the equation∇×E = 0 simply dissapears,
this type of vanishing being automatic for gradients. Indeed, for any f we have:

∇×∇f =

∣∣∣∣∣∣
ux

d
dx

df
dx

uy
d
dy

df
dy

uz
d
dz

df
dz

∣∣∣∣∣∣
=


d2f
dydz
− d2f

dzdy
d2f
dzdx
− d2f

dxdz
d2f
dxdy
− d2f

dydx


=

0
0
0


Thus, we are led to the conclusion in the statement. □

As an interesting feature of the potential approach, the Poisson equation makes sense,
and is in fact very interesting, even when no charge is present, and we have here:

Theorem 12.20 (Laplace). In the case where no charges are present, the Poisson
equation, and so the Gauss and even Coulomb laws too, in a certain sense, become

∆V = 0

called Laplace equation, whose solutions are called harmonic functions. These functions
have an interesting mathematics, reminding that of the holomorphic functions in 2D.

Proof. There are many things that can be said here, First, the Laplace equation
and its physical meaning come from the Poisson equation, and from the various potential
considerations in the above. And mathematically, the idea is that various remarkable
results about the holomorphic functions in 2D, such as the mean formula, extend to the
harmonic functions. Thus, many things to be discussed, and we refer to Rudin [73] for
the mathematics of harmonic functions, and to Griffiths [44] for their physics. □
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12c. Magnetic fields

Just by feeding a light bulb with a battery, and looking at the cables, and playing a
bit with them, we are led to the following interesting conclusion:

Fact 12.21. Parallel electric currents in opposite directions repel, and parallel electric
currents in the same direction attract.

We can in fact say even more, by further playing with the cables, armed this time
with a compass. The conclusion is that each cable produces some kind of “magnetic
field” around it, which interestingly, is not oriented in the direction of the current, but is
rather orthogonal to it, given by the right-hand rule, as follows:

Fact 12.22 (Right-hand rule). An electric current produces a magnetic field B which
is orthogonal to it, whose direction is given by the right-hand rule,

⊖
↑
↑ ↑

↗
↗

↑
⊕

namely wrap your right hand around the cable, with the thumb pointing towards the direc-
tion of the current, and the movement of your wrist will give you the direction of B.

This is something even more interesting than Fact 12.21. Indeed, not only moving
charges produce something new, that we’ll have to investigate, but they know well about
3D, and more specifically about orientation there, left and right, even if living in 1D.

And isn’t this amazing. Let us summarize this discussion with:

Fact 12.23. Charges are smart, they know about 3D, and about left and right.

With this discussed, let us go ahead and investigate the charge smartness, and more
specifically the magnetic fields discovered above. In order to evaluate the properties of
the magnetic fields B coming from electric currents, the simplest way is that of making
them act on exterior charges Q. And we have here the following formula:

Fact 12.24 (Lorentz force law). The magnetic force on a charge Q, moving with
velocity v in a magnetic field B, is as follows, with × being a vector product:

Fm = (v ×B)Q

In the presence of both electric and magnetic fields, the total force on Q is

F = (E + v ×B)Q

where E is the electric field.
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Here the occurrence of the vector product × is not surprising, due to the fact that the
right-hand rule appears both in Fact 12.22, and in the definition of ×. In fact, the Lorentz
force law is just a fancy reformulation of Fact 12.22, telling us that, once the magnetic
fields B duly axiomatized, and with this being a remaining problem, their action on
exterior charges Q will be proportional to the charge, Fm ∼ Q, and with the orientation
and magnitude coming from the 3D of the right-hand rule in Fact 12.22.

As an interesting application of the Lorentz force law, we have:

Theorem 12.25. Magnetic forces do not work.

Proof. This might seem quite surprising, but the math is there, as follows:

dWm = < Fm, dx >

= < (v ×B)Q, v dt >

= Q < v ×B, v > dt

= 0

Thus, we are led to the conclusion in the statement. □

Moving ahead now, let us talk axiomatization of electric currents, including units. We
have here the following definition, clarifying our previous discussion about coulombs:

Definition 12.26. The electric currents I are measured in amperes, given by:

1A = 1C/s

As a consequence, the coulomb is given by 1C = 1A× 1s.

With this notion in hand, let us keep building the math and physics of magnetism.
So, assume that we are dealing with an electric current I, producing a magnetic field B.
In this context, the Lorentz force law from Fact 12.24 takes the following form:

Fm =

∫
(dx×B)I

The current being typically constant along the wire, this reads:

Fm = I

∫
dx×B

We can deduce from this the following result:

Theorem 12.27. The volume current density J satisfies

< ∇, J >= −ρ̇

called continuity equation.
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Proof. We have indeed the following computation, for any surface S enclosing a
volume V , based on the Lorentz force law, and on the overall chage conservation:∫

V

< ∇, J > =

∫
S

< J, n(x) > dx

= − d

dt

∫
V

ρ

= −
∫
V

ρ̇

Thus, we are led to the conclusion in the statement. □

Moving ahead now, let us formulate the following definition:

Definition 12.28. The realm of magnetostatics is that of the steady currents,

ρ̇ = 0 , J̇ = 0

in analogy with electrostatics, dealing with fixed charges.

As a first observation, for steady currents the continuity equation reads:

< ∇, J >= 0

We have here a bit of analogy between electrostatics and magnetostatics, and with
this in mind, let us look for equations for the magnetic field B. We have:

Fact 12.29 (Biot-Savart law). The magnetic field of a steady line current is given by

B =
µ0

4π

∫
I × x
||x||3

where µ0 is a certain constant, called the magnetic permeability of free space.

This law not only gives us all we need, for studying steady currents, and we will talk
about this in a moment, with math and everything, but also makes an amazing link with
the Coulomb force law, due to the following fact, which is also part of it:

Fact 12.30 (Biot-Savart, continued). The electric permittivity of free space ε0 and the
magnetic permeability of free space µ0 are related by the formula

ε0µ0 =
1

c2

where c is as usual the speed of light.

This is something truly remarkable, and very deep, that will have numerous conse-
quences, in what follows, be that for investigating phenomena like radiation, or for making
the link with Einstein’s relativity theory, both crucially involving c.
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But, first of all, this is certainly an invitation to rediscuss units and constants, as a
continuation of our previous discussion on this topic. In what regards the units, we won’t
be impressed by the ampere, and keep using the coulomb, as a main unit:

Conventions 12.31. We keep using standard units, namely meters, kilograms, sec-
onds, along with the coulomb, defined by the following exact formula

1C =
5× 1018

0.801 088 317
e

with e being minus the charge of the electron, which in practice means:

1C ≃ 6.241× 1018 e

We will also use the ampere, defined as 1A = 1C/s, for measuring currents.

In what regards constants, however, time to do some cleanup. We have been boycotting
for some time already the Coulomb constant K, and using instead ε0 = 1/(4πK), due to
the ubiquitous 4π factor, first appearing as the area of the unit sphere, A = 4π, in the
computation for the Gauss law for the unit sphere.

Together with Fact 12.30, this suggests using the numbers ε0, µ0 as our new constants,
by always keeping in mind ε0µ0 = 1/c2, and by having of course the speed of light c as
constant too, and we are led in this way into the following conventions:

Conventions 12.32. We use from now on as constants the electric permittivity of
free space ε0 and the magnetic permeability of free space µ0, given by

ε0 = 8.854 187 8128(13)× 10−12

µ0 = 1.256 637 062 12(19)× 10−6

as well as the speed of light, given by the following exact formula,

c = 299 792 458

which are related by ε0µ0 = 1/c2, and with the Coulomb constant being K = 1/(4πε0).

Observe in passing that we are not messing up our figures, which can be quite often
the case in this type of situation, because according to our data, and by truncating instead
of rounding, as busy theoretical physicists usually do, we have:

ε0µ0c
2 = 8.854× 1.256× 2.9972 × 1016−12−6 = 0.998

Getting back now to theory and math, the Biot-Savart law has as consequence:

Theorem 12.33. We have the following formula:

< ∇, B >= 0

That is, the divergence of the magnetic field vanishes.
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Proof. We recall that the Biot-Savart law tells us that the magnetic field B of a
steady line current I is given by the following formula:

B =
µ0

4π

∫
I × x
||x||3

By applying the divergence operator to this formula, we obtain:

< ∇, B > =
µ0

4π

∫ 〈
∇, I × x
||x||3

〉
=

µ0

4π

∫ 〈
∇× J, x

||x||3

〉
−
〈
∇× x

||x||3
, J

〉
=

µ0

4π

∫ 〈
0,

x

||x||3

〉
− ⟨0, J⟩

= 0

Thus, we are led to the conclusion in the statement. □

Regarding now the curl, we have here a similar result, as follows:

Theorem 12.34 (Ampère law). We have the following formula,

∇×B = µ0J

computing the curl of the magnetic field.

Proof. Again, we use the Biot-Savart law, telling us that the magnetic field B of a
steady line current I is given by the following formula:

B =
µ0

4π

∫
I × x
||x||3

By applying the curl operator to this formula, we obtain:

∇×B =
µ0

4π

∫
∇× I × x

||x||3

=
µ0

4π

∫ 〈
∇, x

||x||3

〉
J− < ∇, J > x

||x||3

=
µ0

4π

∫
4πδx · J −

µ0

4π
· 0

= µ0

∫
δx · J

= µ0J

Thus, we are led to the conclusion in the statement. □

As a conclusion to all this, the equations of magnetostatics are as follows:
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Theorem 12.35. The equations of magnetostatics are

< ∇, B >= 0 , ∇×B = µ0J

with the second equation being the Ampère law.

Proof. This follows indeed from the above discussion, and more specifically from
Theorem 12.33 and Theorem 12.34, which both follow from the Biot-Savart law. □

12d. Maxwell equations

Quite remarkably, and at the origin of all modern theory of electromagnetism, and of
any type of modern electrical engineering too, we have:

Fact 12.36 (Faraday laws). The following happen:

(1) Moving a wire loop γ through a magnetic field B produces a current through γ.
(2) Keeping γ fixed, but changing the strength of B, produces too current through γ.

In order to understand what is going on here, let us start with the simplest electric
loop that we know, namely a battery feeding a light bulb:

⊕ → → → → → → → ↘
⋆ ⊙
⊖ ← ← ← ← ← ← ← ↙

Here the star stands for the fact that we don’t really know what happens inside the
battery, typically a complicated chemical process. Nor we will actually worry about the
bulb, let us simply assume that this bulb does not exist at all. We will be interested in
the force driving the current around the loop, and we have here:

Proposition 12.37. When writing the force driving the current through a loop γ as

F = F⋆ + Fe

with F⋆ coming from the source, and Fe coming from the loop, the quantity

E =

∫
γ

< F (x), dx >

called electromotive force, or emf of the loop, is simply obtained by integrating F⋆.
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Proof. We have indeed the following computation, based on the fact that Fe being
an electrostatic force, its integral over the loop vanishes:

E =

∫
γ

< F (x), dx >

=

∫
γ

< F⋆(x), dx > +

∫
γ

< Fe(x), dx >

=

∫
γ

< F⋆(x), dx > +0

=

∫
γ

< F⋆(x), dx >

Thus, we have our result, and with the remark of course that the emf E ∈ R is not
really a force, but this is the standard terminology, and we will use it. □

In relation now with the Faraday principles from Fact 12.36, these can be fine-tuned,
and reformulated in terms of the emf, in the following way:

Fact 12.38 (Faraday). The emf of a loop γ moving through a magnetic field B is

E = −Φ̇
where Φ is the flux of the field B through the loop γ, given by:

Φ =

∫
γ

< B(x), dx >

As for the emf of a fixed loop γ in a changing magnetic field B, this is

E = −
∫
γ

< Ḃ(x), dx >

which by Stokes is equivalent to the Faraday law ∆× E = −Ḃ.

All the above is very useful in electromechanics, for construcing electric motors. Get-
ting back now to theory, the above considerations lead to the following conclusion:

Fact 12.39 (Faraday). In the context of moving chages, the electrostatics law

∇× E = 0

must be replaced by the following equation,

∇× E = −Ḃ
called Faraday law.

Along the same lines, and following now Maxwell, there is a correction as well to be
made to the main law of magnetostatics, namely the Ampère law, as follows:
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Fact 12.40 (Maxwell). In the context of moving chages, the Ampère law

∇×B = µ0J

must be replaced by the following equation,

∇×B = µ0(J + ε0Ė)

called Ampère law with Maxwell correction term.

Now by putting everything together, and perhaps after doublecheking as well, with
all sorts of experiments, that the remaining electrostatics and magnetostatics laws, that
we have not modified, work indeed fine in the dynamic setting, we obtain:

Theorem 12.41 (Maxwell). Electrodynamics is governed by the formulae

< ∇, E >=
ρ

ε0
, < ∇, B >= 0

∇× E = −Ḃ , ∇×B = µ0J + µ0ε0Ė

called Maxwell equations.

Proof. This follows indeed from the above, the details being as follows:

(1) The first equation is the Gauss law, that we know well.

(2) The second equation is something anonymous, that we know well too.

(3) The third equation is a previously anonymous law, modified into Faraday’s law.

(4) And the fourth equation is the Ampère law, as modified by Maxwell. □

The Maxwell equations are in fact not the end of everything, because in the context
of the 2-body problem, they must be replaced by quantum mechanics. More later.

12e. Exercises

Exercises:

Exercise 12.42.

Exercise 12.43.

Exercise 12.44.

Exercise 12.45.

Exercise 12.46.

Exercise 12.47.

Exercise 12.48.

Exercise 12.49.

Bonus exercise.
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Four dimensions



There was Slugger O’Toole who was drunk as a rule
And Fighting Bill Treacy from Dover

And your man Mick MacCann from the banks of the Bann
Was the skipper of the Irish Rover



CHAPTER 13

Linear algebra

13a. Diagonalization

Let us discuss now the diagonalization question for linear maps and matrices. The
basic diagonalization theory, formulated in terms of matrices, is as follows:

Theorem 13.1. A vector v ∈ CN is called eigenvector of A ∈ MN(C), with corre-
sponding eigenvalue λ, when A multiplies by λ in the direction of v:

Av = λv

In the case where CN has a basis v1, . . . , vN formed by eigenvectors of A, with correspond-
ing eigenvalues λ1, . . . , λN , in this new basis A becomes diagonal, as follows:

A ∼

λ1 . . .
λN


Equivalently, if we denote by D = diag(λ1, . . . , λN) the above diagonal matrix, and by
P = [v1 . . . vN ] the square matrix formed by the eigenvectors of A, we have:

A = PDP−1

In this case we say that the matrix A is diagonalizable.

Proof. This is something elementary, the idea being as follows:

(1) The first assertion is clear, because the matrix which multiplies each basis element
vi by a number λi is precisely the diagonal matrix D = diag(λ1, . . . , λN).

(2) The second assertion follows from the first one, by changing the basis. We can
prove this by a direct computation as well, because we have Pei = vi, and so:

PDP−1vi = PDei = Pλiei = λiPei = λivi

Thus, the matrices A and PDP−1 coincide, as stated. □

In order to study the diagonalization problem, the idea is that the eigenvectors can
be grouped into linear spaces, called eigenspaces, as follows:

247
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Theorem 13.2. Let A ∈MN(C), and for any eigenvalue λ ∈ C define the correspond-
ing eigenspace as being the vector space formed by the corresponding eigenvectors:

Eλ =
{
v ∈ CN

∣∣∣Av = λv
}

These eigenspaces Eλ are then in a direct sum position, in the sense that given vectors
v1 ∈ Eλ1 , . . . , vk ∈ Eλk

corresponding to different eigenvalues λ1, . . . , λk, we have:∑
i

civi = 0 =⇒ ci = 0

In particular, we have
∑

λ dim(Eλ) ≤ N , with the sum being over all the eigenvalues, and
our matrix is diagonalizable precisely when we have equality.

Proof. We prove the first assertion by recurrence on k ∈ N. Assume by contradiction
that we have a formula as follows, with the scalars c1, . . . , ck being not all zero:

c1v1 + . . .+ ckvk = 0

By dividing by one of these scalars, we can assume that our formula is:

vk = c1v1 + . . .+ ck−1vk−1

Now let us apply A to this vector. On the left we obtain:

Avk = λkvk = λkc1v1 + . . .+ λkck−1vk−1

On the right we obtain something different, as follows:

A(c1v1 + . . .+ ck−1vk−1) = c1Av1 + . . .+ ck−1Avk−1

= c1λ1v1 + . . .+ ck−1λk−1vk−1

We conclude from this that the following equality must hold:

λkc1v1 + . . .+ λkck−1vk−1 = c1λ1v1 + . . .+ ck−1λk−1vk−1

On the other hand, we know by recurrence that the vectors v1, . . . , vk−1 must be
linearly independent. Thus, the coefficients must be equal, at right and at left:

λkc1 = c1λ1

...

λkck−1 = ck−1λk−1

Now since at least one of the numbers ci must be nonzero, from λkci = ciλi we obtain
λk = λi, which is a contradiction. Thus our proof by recurrence of the first assertion is
complete. As for the second assertion, this follows from the first one. □

In order to reach now to more advanced results, we can use the following key fact:
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Theorem 13.3. Given a matrix A ∈MN(C), consider its characteristic polynomial:

P (x) = det(A− x1N)

The eigenvalues of A are then the roots of P . Also, we have the inequality

dim(Eλ) ≤ mλ

where mλ is the multiplicity of λ, as root of P .

Proof. The first assertion follows from the following computation, using the fact that
a linear map is bijective when the determinant of the associated matrix is nonzero:

∃v,Av = λv ⇐⇒ ∃v, (A− λ1N)v = 0

⇐⇒ det(A− λ1N) = 0

Regarding now the second assertion, given an eigenvalue λ of our matrix A, consider
the dimension dλ = dim(Eλ) of the corresponding eigenspace. By changing the basis of
CN , as for the eigenspace Eλ to be spanned by the first dλ basis elements, our matrix
becomes as follows, with B being a certain smaller matrix:

A ∼
(
λ1dλ 0
0 B

)
We conclude that the characteristic polynomial of A is of the following form:

PA = Pλ1dλ
PB = (λ− x)dλPB

Thus the multiplicity mλ of our eigenvalue λ, viewed as a root of P , is subject to the
estimate mλ ≥ dλ, and this leads to the conclusion in the statement. □

Now recall that we are over C, where any polynomial equation of degree N ∈ N has
exactly N solutions, counted with multiplicities. By using this, we are led to:

Theorem 13.4. Given a matrix A ∈MN(C), consider its characteristic polynomial

P (X) = det(A−X1N)

then factorize this polynomial, by computing the complex roots, with multiplicities,

P (X) = (−1)N(X − λ1)n1 . . . (X − λk)nk

and finally compute the corresponding eigenspaces, for each eigenvalue found:

Ei =
{
v ∈ CN

∣∣∣Av = λiv
}

The dimensions of these eigenspaces satisfy then the following inequalities,

dim(Ei) ≤ ni

and A is diagonalizable precisely when we have equality for any i.
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Proof. This follows by combining the above results. By summing the inequalities
dim(Eλ) ≤ mλ from Theorem 13.3, we obtain an inequality as follows:∑

λ

dim(Eλ) ≤
∑
λ

mλ ≤ N

On the other hand, we know from Theorem 13.2 that our matrix is diagonalizable
when we have global equality. Thus, we are led to the conclusion in the statement. □

This was for the main result of linear algebra. There are countless applications of this,
and generally speaking, advanced linear algebra consists in building on Theorem 13.4.
Let us record as well a useful algorithmic version of the above result:

Theorem 13.5. The square matrices A ∈MN(C) can be diagonalized as follows:

(1) Compute the characteristic polynomial.
(2) Factorize the characteristic polynomial.
(3) Compute the eigenvectors, for each eigenvalue found.
(4) If there are no N eigenvectors, A is not diagonalizable.
(5) Otherwise, A is diagonalizable, A = PDP−1.

Proof. This is an informal reformulation of Theorem 13.4, with (4) referring to the
total number of linearly independent eigenvectors found in (3), and with A = PDP−1 in
(5) being the usual diagonalization formula, with P,D being as before. □

As a remark here, in step (3) it is always better to start with the eigenvalues having
big multiplicity. Indeed, a multiplicity 1 eigenvalue, for instance, can never lead to the
end of the computation, via (4), simply because the eigenvectors always exist.

13b. Spectral theorems

Let us go back to the diagonalization question, discussed in the previous section. We
have in fact diagonalization results which are far more powerful. We first have:

Theorem 13.6. Any matrix A ∈MN(C) which is self-adjoint, A = A∗, is diagonaliz-
able, with the diagonalization being of the following type,

A = UDU∗

with U ∈ UN , and with D ∈MN(R) diagonal. The converse holds too.

Proof. As a first remark, the converse trivially holds, because if we take a matrix of
the form A = UDU∗, with U unitary and D diagonal and real, then we have:

A∗ = (UDU∗)∗ = UD∗U∗ = UDU∗ = A
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In the other sense now, assume that A is self-adjoint, A = A∗. Our first claim is that
the eigenvalues are real. Indeed, assuming Av = λv, we have:

λ < v, v > = < λv, v >

= < Av, v >

= < v,Av >

= < v, λv >

= λ̄ < v, v >

Thus we obtain λ ∈ R, as claimed. Our next claim now is that the eigenspaces
corresponding to different eigenvalues are pairwise orthogonal. Assume indeed that:

Av = λv , Aw = µw

We have then the following computation, using λ, µ ∈ R:

λ < v,w > = < λv,w >

= < Av,w >

= < v,Aw >

= < v, µw >

= µ < v,w >

Thus λ ̸= µ implies v ⊥ w, as claimed. In order now to finish the proof, it remains to
prove that the eigenspaces of A span the whole space CN . For this purpose, we will use
a recurrence method. Let us pick an eigenvector of our matrix:

Av = λv

Assuming now that we have a vector w orthogonal to it, v ⊥ w, we have:

< Aw, v > = < w,Av >

= < w, λv >

= λ < w, v >

= 0

Thus, if v is an eigenvector, then the vector space v⊥ is invariant under A. Moreover,
since a matrix A is self-adjoint precisely when < Av, v >∈ R for any vector v ∈ CN , as
one can see by expanding the scalar product, the restriction of A to the subspace v⊥ is
self-adjoint. Thus, we can proceed by recurrence, and we obtain the result. □

Observe that, as a consequence of the above result, that you certainly might have
heard of, any symmetric matrix A ∈MN(R) is diagonalizable. In fact, we have:
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Theorem 13.7. Any matrix A ∈ MN(R) which is symmetric, A = At, is diagonaliz-
able, with the diagonalization being of the following type,

A = UDU t

with U ∈ ON , and with D ∈MN(R) diagonal. The converse holds too.

Proof. As before, the converse trivially holds, because if we take a matrix of the
form A = UDU t, with U orthogonal and D diagonal and real, then we have At = A. In
the other sense now, this follows from Theorem 13.6, and its proof. □

As basic examples of self-adjoint matrices, we have the orthogonal projections:

Proposition 13.8. The matrices P ∈ MN(C) which are projections, P 2 = P ∗ = P ,
are precisely those which diagonalize as follows,

P = UDU∗

with U ∈ UN , and with D ∈MN(0, 1) being diagonal.

Proof. Since we have P ∗ = P , by using Theorem 13.6, the eigenvalues must be real.
Then, by using P 2 = P , assuming that we have Pv = λv, we obtain:

λ < v, v > = < λv, v >

= < Pv, v >

= < P 2v, v >

= < Pv, Pv >

= < λv, λv >

= λ2 < v, v >

We therefore have λ ∈ {0, 1}, as claimed, and as a final conclusion here, the diagonal-
ization of the self-adjoint matrices is as follows, with ei ∈ {0, 1}:

P ∼

e1 . . .
eN


To be more precise, the number of 1 values is the dimension of the image of P . □

In the real case, the result regarding the projections is as follows:

Proposition 13.9. The matrices P ∈ MN(R) which are projections, P 2 = P t = P ,
are precisely those which diagonalize as follows,

P = UDU t

with U ∈ ON , and with D ∈MN(0, 1) being diagonal.

Proof. This follows indeed from Proposition 13.8, and its proof. □
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An important class of self-adjoint matrices, which includes for instance all the projec-
tions, are the positive matrices. The theory here is as follows:

Theorem 13.10. For a matrix A ∈ MN(C) the following conditions are equivalent,
and if they are satisfied, we say that A is positive:

(1) A = B2, with B = B∗.
(2) A = CC∗, for some C ∈MN(C).
(3) < Ax, x >≥ 0, for any vector x ∈ CN .
(4) A = A∗, and the eigenvalues are positive, λi ≥ 0.
(5) A = UDU∗, with U ∈ UN and with D ∈MN(R+) diagonal.

Proof. The idea is that the equivalences in the statement basically follow from some
elementary computations, with only Theorem 13.6 needed, at some point:

(1) =⇒ (2) This is clear, because we can take C = B.

(2) =⇒ (3) This follows from the following computation:

< Ax, x > = < CC∗x, x >

= < C∗x,C∗x >

≥ 0

(3) =⇒ (4) By using the fact that < Ax, x > is real, we have:

< Ax, x > = < x,A∗x >

= < A∗x, x >

Thus we have A = A∗, and the remaining assertion, regarding the eigenvalues, follows
from the following computation, assuming Ax = λx:

< Ax, x > = < λx, x >

= λ < x, x >

≥ 0

(4) =⇒ (5) This follows indeed by using Theorem 13.6.

(5) =⇒ (1) Assuming A = UDU∗ with U ∈ UN , and with D ∈ MN(R+) diagonal,

we can set B = U
√
DU∗. Then B is self-adjoint, and its square is given by:

B2 = U
√
DU∗ · U

√
DU∗

= UDU∗

= A

Thus, we are led to the conclusion in the statement. □

Let us record as well the following technical version of the above result:
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Theorem 13.11. For a matrix A ∈ MN(C) the following conditions are equivalent,
and if they are satisfied, we say that A is strictly positive:

(1) A = B2, with B = B∗, invertible.
(2) A = CC∗, for some C ∈MN(C) invertible.
(3) < Ax, x >> 0, for any nonzero vector x ∈ CN .
(4) A = A∗, and the eigenvalues are strictly positive, λi > 0.
(5) A = UDU∗, with U ∈ UN and with D ∈MN(R∗

+) diagonal.

Proof. This follows either from Theorem 13.10, by adding the above various extra
assumptions, or from the proof of Theorem 13.10, by modifying where needed. □

Let us discuss now the case of the unitary matrices. We have here:

Theorem 13.12. Any matrix U ∈MN(C) which is unitary, U∗ = U−1, is diagonaliz-
able, with the eigenvalues on T. More precisely we have

U = V DV ∗

with V ∈ UN , and with D ∈MN(T) diagonal. The converse holds too.

Proof. As a first remark, the converse trivially holds, because given a matrix of type
U = V DV ∗, with V ∈ UN , and with D ∈MN(T) being diagonal, we have:

U∗ = (V DV ∗)∗

= V D∗V ∗

= V D−1V −1

= (V ∗)−1D−1V −1

= (V DV ∗)−1

= U−1

Let us prove now the first assertion, stating that the eigenvalues of a unitary matrix
U ∈ UN belong to T. Indeed, assuming Uv = λv, we have:

< v, v > = < U∗Uv, v >

= < Uv, Uv >

= < λv, λv >

= |λ|2 < v, v >

Thus we obtain λ ∈ T, as claimed. Our next claim now is that the eigenspaces
corresponding to different eigenvalues are pairwise orthogonal. Assume indeed that:

Uv = λv , Uw = µw
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We have then the following computation, using U∗ = U−1 and λ, µ ∈ T:

λ < v,w > = < λv,w >

= < Uv,w >

= < v,U∗w >

= < v,U−1w >

= < v, µ−1w >

= µ < v,w >

Thus λ ̸= µ implies v ⊥ w, as claimed. In order now to finish the proof, it remains to
prove that the eigenspaces of U span the whole space CN . For this purpose, we will use
a recurrence method. Let us pick an eigenvector of our matrix:

Uv = λv

Assuming that we have a vector w orthogonal to it, v ⊥ w, we have:

< Uw, v > = < w,U∗v >

= < w,U−1v >

= < w, λ−1v >

= λ < w, v >

= 0

Thus, if v is an eigenvector, then the vector space v⊥ is invariant under U . Now since
U is an isometry, so is its restriction to this space v⊥. Thus this restriction is a unitary,
and so we can proceed by recurrence, and we obtain the result. □

Let us record as well the real version of the above result, in a weak form:

Proposition 13.13. Any matrix U ∈ MN(R) which is orthogonal, U t = U−1, is
diagonalizable, with the eigenvalues on T. More precisely we have

U = V DV ∗

with V ∈ UN , and with D ∈MN(T) being diagonal.

Proof. This follows indeed from Theorem 13.12. □

Observe that the above result does not provide us with a complete characterization
of the matrices U ∈ MN(R) which are orthogonal. To be more precise, the question left
is that of understanding when the matrices of type U = V DV ∗, with V ∈ UN , and with
D ∈MN(T) being diagonal, are real, and this is something non-trivial.

As an illustration for the above, for the simplest unitaries that we know, namely the
rotations in the real plane, we have the following result:
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Theorem 13.14. The rotation of angle t ∈ R in the real plane, namely

Rt =

(
cos t − sin t
sin t cos t

)
can be diagonalized over the complex numbers, as follows:

Rt =
1

2

(
1 1
i −i

)(
e−it 0
0 eit

)(
1 −i
1 i

)
Over the real numbers this is impossible, unless t = 0, π.

Proof. The last assertion is something clear, that we already know, coming from the
fact that at t ̸= 0, π our rotation is a “true” rotation, having no eigenvectors in the plane.
Regarding the first assertion, the point is that we have the following computation:

Rt

(
1

i

)
=

(
cos t − sin t
sin t cos t

)(
1

i

)
= e−it

(
1

i

)
We have as well a second eigenvector, as follows:

Rt

(
1

−i

)
=

(
cos t − sin t
sin t cos t

)(
1

−i

)
= eit

(
1

−i

)
Thus our matrix Rt is diagonalizable over C, with the diagonal form being:

Rt ∼
(
e−it 0
0 eit

)
As for the passage matrix, obtained by putting together the eigenvectors, this is:

P =

(
1 1
i −i

)
In order to invert now P , we can use the standard inversion formula for the 2 × 2

matrices, which is the same as the one in the real case, and which gives:

P−1 =
1

−2i

(
−i −1
−i 1

)
=

1

2

(
1 −i
1 i

)
Thus, we are led to the conclusion in the statement. □

13c. Normal matrices

Back to generalities, the self-adjoint matrices and the unitary matrices are particular
cases of the general notion of a “normal matrix”, and we have here:

Theorem 13.15. Any matrix A ∈MN(C) which is normal, AA∗ = A∗A, is diagonal-
izable, with the diagonalization being of the following type,

A = UDU∗

with U ∈ UN , and with D ∈MN(C) diagonal. The converse holds too.



13C. NORMAL MATRICES 257

Proof. As a first remark, the converse trivially holds, because if we take a matrix of
the form A = UDU∗, with U unitary and D diagonal, then we have:

AA∗ = UDU∗ · UD∗U∗

= UDD∗U∗

= UD∗DU∗

= UD∗U∗ · UDU∗

= A∗A

In the other sense now, this is something more technical. Our first claim is that a
matrix A is normal precisely when the following happens, for any vector v:

||Av|| = ||A∗v||

Indeed, the above equality can be written as follows:

< AA∗v, v >=< A∗Av, v >

But this is equivalent to AA∗ = A∗A, by expanding the scalar products. Our claim
now is that A,A∗ have the same eigenvectors, with conjugate eigenvalues:

Av = λv =⇒ A∗v = λ̄v

Indeed, this follows from the following computation, and from the trivial fact that if
A is normal, then so is any matrix of type A− λ1N :

||(A∗ − λ̄1N)v|| = ||(A− λ1N)∗v||
= ||(A− λ1N)v||
= 0

Let us prove now, by using this, that the eigenspaces of A are pairwise orthogonal.
Assume that we have two eigenvectors, corresponding to different eigenvalues, λ ̸= µ:

Av = λv , Aw = µw

We have the following computation, which shows that λ ̸= µ implies v ⊥ w:

λ < v,w > = < λv,w >

= < Av,w >

= < v,A∗w >

= < v, µ̄w >

= µ < v,w >

In order to finish, it remains to prove that the eigenspaces of A span the whole CN .
This is something that we have already seen for the self-adjoint matrices, and for unitaries,
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and we will use here these results, in order to deal with the general normal case. As a
first observation, given an arbitrary matrix A, the matrix AA∗ is self-adjoint:

(AA∗)∗ = AA∗

Thus, we can diagonalize this matrix AA∗, as follows, with the passage matrix being
a unitary, V ∈ UN , and with the diagonal form being real, E ∈MN(R):

AA∗ = V EV ∗

Now observe that, for matrices of type A = UDU∗, which are those that we supposed
to deal with, we have the following formulae:

V = U , E = DD̄

In particular, the matrices A and AA∗ have the same eigenspaces. So, this will be
our idea, proving that the eigenspaces of AA∗ are eigenspaces of A. In order to do so, let
us pick two eigenvectors v, w of the matrix AA∗, corresponding to different eigenvalues,
λ ̸= µ. The eigenvalue equations are then as follows:

AA∗v = λv , AA∗w = µw

We have the following computation, using the normality condition AA∗ = A∗A, and
the fact that the eigenvalues of AA∗, and in particular µ, are real:

λ < Av,w > = < λAv,w >

= < Aλv,w >

= < AAA∗v, w >

= < AA∗Av,w >

= < Av,AA∗w >

= < Av, µw >

= µ < Av,w >

We conclude that we have < Av,w >= 0. But this reformulates as follows:

λ ̸= µ =⇒ A(Eλ) ⊥ Eµ

Now since the eigenspaces of AA∗ are pairwise orthogonal, and span the whole CN ,
we deduce from this that these eigenspaces are invariant under A:

A(Eλ) ⊂ Eλ

But with this result in hand, we can finish the proof of the theorem. Indeed, we
can decompose the problem, and the matrix A itself, following these eigenspaces of AA∗,
which in practice amounts in saying that we can assume that we only have 1 eigenspace.
By rescaling, this is the same as assuming that we have AA∗ = 1, and so we are now into
the unitary case, that we know how to solve, as explained in Theorem 13.12. □

As a first application of our latest spectral theorem, we have the following result:
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Theorem 13.16. Given a matrix A ∈ MN(C), we can construct a matrix |A| as
follows, by using the fact that A∗A is diagonalizable, with positive eigenvalues:

|A| =
√
A∗A

This matrix |A| is then positive, and its square is |A|2 = A. In the case N = 1, we obtain
in this way the usual absolute value of the complex numbers.

Proof. Consider indeed the matrix A∗A, which is normal. According to Theorem
13.15, we can diagonalize this matrix as follows, with U ∈ UN , and with D diagonal:

A = UDU∗

From A∗A ≥ 0 we obtain D ≥ 0. But this means that the entries of D are real, and
positive. Thus we can extract the square root

√
D, and then set:

√
A∗A = U

√
DU∗

Thus, we are basically done. Indeed, if we call this latter matrix |A|, then we are led to
the conclusions in the statement. Finally, the last assertion is clear from definitions. □

We can now formulate a first polar decomposition result, as follows:

Theorem 13.17. Any invertible matrix A ∈MN(C) decomposes as

A = U |A|

with U ∈ UN , and with |A| =
√
A∗A as above.

Proof. This is routine, and follows by comparing the actions of A, |A| on the vectors
v ∈ CN , and deducing from this the existence of a unitary U ∈ UN as above. □

Observe that at N = 1 we obtain in this way the usual polar decomposition of the
nonzero complex numbers. More generally now, we have the following result:

Theorem 13.18. Any square matrix A ∈MN(C) decomposes as

A = U |A|

with U being a partial isometry, and with |A| =
√
A∗A as above.

Proof. Again, this follows by comparing the actions of A, |A| on the vectors v ∈ CN ,
and deducing from this the existence of a partial isometry U as above. Alternatively, we
can get this from Theorem 13.17, applied on the complement of the 0-eigenvectors. □
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13d. Spectral measures

We would like to discuss now some interesting applications of our various spectral
theorems to probability theory. Let us start with something basic, as follows:

Definition 13.19. Let X be a probability space, that is, a space with a probability
measure, and with the corresponding integration denoted E, and called expectation.

(1) The random variables are the real functions f ∈ L∞(X).
(2) The moments of such a variable are the numbers Mk(f) = E(fk).
(3) The law of such a variable is the measure given by Mk(f) =

∫
R x

kdµf (x).

Here, and in what follows, we use the term “law” for “probability distribution”, which
means exactly the same thing, and is more convenient. Regarding now the fact that the
law µf exists indeed, this is true, but not exactly trivial. By linearity, we would like to
have a probability measure making hold the following formula, for any P ∈ C[X]:

E(P (f)) =

∫
R
P (x)dµf (x)

By using a standard continuity argument, it is enough to have this formula for the
characteristic functions χI of the arbitrary measurable sets of real numbers I ⊂ R:

E(χI(f)) =

∫
R
χI(x)dµf (x)

But this latter formula, which reads P (f ∈ I) = µf (I), can serve as a definition for
µf , and we are done. Alternatively, assuming some familiarity with measure theory, µf is
the push-forward of the probability measure on X, via the function f : X → R.

Let us summarize this discussion in the form of a theorem, as follows:

Theorem 13.20. The law µf of a random variable f exists indeed, and we have

E(φ(f)) =

∫
R
φ(x)dµf (x)

for any integrable function φ : R→ C.

Proof. This follows from the above discussion, and with the precise assumption on
φ : R → C, which is its integrability, in the abstract mathematical sense, being in fact
something that we will not really need, in what follows. In fact, for most purposes we will
get away with polynomials φ ∈ C[X], and by linearity this means that we can get away
with monomials φ(x) = xk, which brings us back to Definition 13.19 (3), as stated. □

Getting now to the case of the matrices A ∈ MN(C), here it is quite tricky to figure
out what the law of A should mean, based on intuition only. So, in the lack of a bright
idea, let us just reproduce Definition 13.19, with a few modifications, as follows:
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Definition 13.21. Let N ∈ N, and consider the algebra MN(C) of complex N × N
matrices, with its normalized trace tr :MN(C)→ C, given by tr(A) = Tr(A)/N .

(1) We call random variables the self-adjoint matrices A ∈MN(C).
(2) The moments of such a variable are the numbers Mk(A) = tr(Ak).
(3) The law of such a variable is the measure given by Mk(A) =

∫
R x

kdµA(x).

Here we have normalized the trace, as to have tr(1) = 1, in analogy with the formula
E(1) = 1 from usual probability. By the way, as a piece of advice here, many confusions
appear from messing up tr and Tr, and it is better ot forget about Tr, and always use tr.
With the drawback that if you’re a physicist, tr might get messed up in quick handwriting
with the reduced Planck constant ℏ = h/2π. However, shall you ever face this problem,
I have an advice here too, namely forgetting about h, and using h instead of ℏ.

Another comment is that we assumed in (1) that our matrix is self-adjoint, A = A∗,
with the adjoint matrix being given, as usual, by the formula (A∗)ij = Āji. Why this,
because for instance at N = 1 we would like our matrix, which in the case N = 1 is
a number, to be real, and so we must assume A = A∗. Of course there is still some
discussion here, for instance because you might argue that why not assuming instead that
the entries of A are real. But let us leave this for later, and in the meantime, just trust
me. Or perhaps, let us both trust Heisenberg, who was the first intensive user of complex
matrices, and who declared that such matrices must be self-adjoint. More later.

Back to work now, what we have in Definition 13.21 looks quite reasonable, but as
before with the usual random variables f ∈ L∞(X), some discussion is needed, in order
to understand if the law µA exists indeed, and by which mechanism. And, good news
here, in the case of the simplest matrices, the real diagonal ones, we have:

Theorem 13.22. For any diagonal matrix A ∈MN(R) we have the formula

tr(P (A)) =
1

N
(P (λ1) + . . .+ P (λN))

where λ1, . . . , λN ∈ R are the diagonal entries of A. Thus the measure

µA =
1

N
(δλ1 + . . .+ δλN

)

can be regarded as being the law of A, in the sense of Definition 13.21.

Proof. Assume indeed that we have a real diagonal matrix, as follows, with the
convention that the matrix entries which are missing are by definition 0 entries:

A =

λ1 . . .
λN





262 13. LINEAR ALGEBRA

The powers of A are then diagonal too, given by the following formula:

Ak =

λk1 . . .

λkN


In fact, given any polynomial P ∈ C[X], we have the following formula:

P (A) =

P (λ1) . . .
P (λN)


Thus, the first formula in the statement holds indeed. In particular, we conclude that

the moments of A are given by the following formula:

Mk(A) = tr(Ak) =
1

N

∑
i

λki

On the other hand, with µA = 1
N
(δλ1 + . . .+ δλN

) as in the statement, we have:∫
R
xkdµA(x) =

1

N

∑
i

∫
R
xkdδλi

(x)

=
1

N

∑
i

λki

Thus that the law of A exists indeed, and is the measure µA, as claimed. □

The point now is that, by using the spectral theorem for self-adjoint matrices, we have
the following generalization of Theorem 13.22, dealing with the general case:

Theorem 13.23. For a self-adjoint matrix A ∈MN(C) we have the formula

tr(P (A)) =
1

N
(P (λ1) + . . .+ P (λN))

where λ1, . . . , λN ∈ R are the eigenvalues of A. Thus the measure

µA =
1

N
(δλ1 + . . .+ δλN

)

can be regarded as being the law of A, in the sense of Definition 13.21.

Proof. We already know, from Theorem 13.22, that the result holds indeed for the
diagonal matrices. In the general case now, that of an arbitrary self-adjoint matrix, we
know from before that our matrix is diagonalizable, as follows:

A = UDU∗
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Now observe that the moments of A are given by the following formula:

tr(Ak) = tr(UDU∗ · UDU∗ . . . UDU∗)

= tr(UDkU∗)

= tr(Dk)

We conclude from this, by reasoning by linearity, that the matrices A,D have the
same law, µA = µD, and this gives all the assertions in the statement. □

The above theory is not the end of the story, because we can talk about complex
random variables, f : X → C, and about non-self-adjoint matrices too, A ̸= A∗. We will
see that, with a bit of know-how, we can have some law technology going on, for both.

Let us start with the complex variables f ∈ L∞(X). The main difference with respect
to the real case comes from the fact that we have now a pair of variables instead of one,
namely f : X → C itself, and its conjugate f̄ : X → C. Thus, we are led to:

Definition 13.24. The moments a complex variable f ∈ L∞(X) are the numbers

Mk(f) = E(fk)

depending on colored integers k = ◦ • • ◦ . . . , with the conventions

f ∅ = 1 , f ◦ = f , f • = f̄

and multiplicativity, in order to define the colored powers fk.

Observe that, since f, f̄ commute, we can permute terms, and restrict the attention
to exponents of type k = . . . ◦ ◦ ◦ • • • • . . . , if we want to. However, our various results
below will look better without doing this, so we will use Definition 13.24 as stated.

Regarding now the notion of law, this extends too, the result being as follows:

Theorem 13.25. Each complex variable f ∈ L∞(X) has a law, which is by definition
a complex probability measure µf making the following formula hold,

Mk(f) =

∫
C
zkdµf (z)

for any colored integer k. Moreover, we have in fact the formula

E(φ(f)) =

∫
C
φ(x)dµf (x)

valid for any integrable function φ : C→ C.
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Proof. The first assertion follows exactly as in the real case, and with zk being
defined exactly as fk, namely by the following formulae, and multiplicativity:

z∅ = 1 , z◦ = z , z• = z̄

As for the second assertion, this basically follows from this by linearity and continuity,
by using standard measure theory, again as in the real case. □

Moving ahead towards matrices, all this leads to a mixture of easy and complicated
problems. First, Definition 13.24 has the following straightforward analogue:

Definition 13.26. The moments a matrix A ∈MN(C) are the numbers

Mk(A) = tr(Ak)

depending on colored integers k = ◦ • • ◦ . . . , with the usual conventions

A∅ = 1 , A◦ = A , A• = A∗

and multiplicativity, in order to define the colored powers Ak.

As a first observation about this, unless the matrix is normal, AA∗ = A∗A, we cannot
switch to exponents of type k = . . . ◦ ◦ ◦ • • • • . . . , as it was theoretically possible for the
complex variables f ∈ L∞(X). Here is an explicit counterexample for this:

Proposition 13.27. The following matrix, which is not normal,

J =

(
0 1
0 0

)
has the property tr(JJ∗JJ∗) ̸= tr(JJJ∗J∗).

Proof. We have the following formulae, which show that J is not normal:

JJ∗ =

(
0 1
0 0

)(
0 0
1 0

)
=

(
1 0
0 0

)
J∗J =

(
0 0
1 0

)(
0 1
0 0

)
=

(
0 0
0 1

)
Let us compute now the quantities in the statement. We first have:

tr(JJ∗JJ∗) = tr((JJ∗)2) = tr

(
1 0
0 0

)
=

1

2

On the other hand, we have as well the following formula:

tr(JJJ∗J∗) = tr

((
0 1
0 0

)(
1 0
0 0

)(
0 0
1 0

))
= tr

(
0 0
0 0

)
= 0

Thus, we are led to the conclusion in the statement. □
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The above counterexample makes it quite clear that things will be complicated, when
attempting to talk about the law of an arbitrary matrix A ∈ MN(C). But, there is
solution to everything. By being a bit smart, we can formulate things as follows:

Definition 13.28. The law of a complex matrix A ∈ MN(C) is the following func-
tional, on the algebra of polynomials in two noncommuting variables X,X∗:

µA : C < X,X∗ >→ C , P → tr(P (A))

In the case where we have a complex probability measure µA ∈ P(C) such that

tr(P (A)) =

∫
C
P (x) dµA(x)

we identify this complex measure with the law of A.

As mentioned above, this is something smart, that will take us some time to under-
stand. As a first observation, knowing the law is the same as knowing the moments,
because if we write our polynomial as P =

∑
k ckX

k, then we have:

tr(P (A)) = tr

(∑
k

ckA
k

)
=
∑
k

ckMk(A)

Let us try now to compute some matrix laws, and see what we get. We already did
some computations in the real case, and then for the basic 2× 2 Jordan block J too, and
based on all this, we can formulate the following result, with mixed conclusions:

Theorem 13.29. The following happen:

(1) If A = A∗ then µA = 1
N
(λ1 + . . .+ λN), with λi ∈ R being the eigenvalues.

(2) If A is diagonal, µA = 1
N
(λ1 + . . .+ λN), with λi ∈ C being the eigenvalues.

(3) For the basic Jordan block J , the law µJ is not a complex measure.
(4) In fact, assuming AA∗ ̸= A∗A, the law µA is not a complex measure.

Proof. This follows from the above, with only (4) being new. Assuming AA∗ ̸= A∗A,
in order to show that µA is not a measure, we can use a positivity trick, as follows:

AA∗ − A∗A ̸= 0 =⇒ (AA∗ − A∗A)2 > 0

=⇒ AA∗AA∗ − AA∗A∗A− A∗AAA∗ + A∗AA∗A > 0

=⇒ tr(AA∗AA∗ − AA∗A∗A− A∗AAA∗ + A∗AA∗A) > 0

=⇒ tr(AA∗AA∗ + A∗AA∗A) > tr(AA∗A∗A+ A∗AAA∗)

=⇒ tr(AA∗AA∗) > tr(AAA∗A∗)

Thus, we can conclude as in the proof for J , the point being that we cannot obtain
both the above numbers by integrating |z|2 with respect to a measure µA ∈ P(C). □

Fortunately, by using the spectral theorem for normal matrices, we have:
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Theorem 13.30. Given a matrix A ∈MN(C) which is normal, AA∗ = A∗A, we have
the following formula, valid for any polynomial P ∈ C < X,X∗ >,

tr(P (A)) =
1

N
(P (λ1) + . . .+ P (λN))

where λ1, . . . , λN ∈ C are the eigenvalues of A. Thus the complex measure

µA =
1

N
(δλ1 + . . .+ δλN

)

is the law of A. In the non-normal case, the law µA is not a measure.

Proof. As before in the diagonal case, since our matrix is normal, AA∗ = A∗A,
knowing its law in the abstract sense of generalized probability is the same as knowing
the restriction of this abstract distribution to the usual polynomials in two variables:

µA : C[X,X∗]→ C , P → tr(P (A))

In order now to compute this functional, we can write A = UDU∗, as in Theorem
13.15, and then change the basis via U , which in practice means that we can simply
assume U = 1. Thus if we denote by λ1, . . . , λN the diagonal entries of D, which are the
eigenvalues of A, the law that we are looking for is the following functional:

µA : C[X,X∗]→ C , P → 1

N
(P (λ1) + . . .+ P (λN))

But this functional corresponds to integrating P with respect to the following complex
measure, that we agree to still denote by µA, and call distribution of A:

µA =
1

N
(δλ1 + . . .+ δλN

)

Thus, we are led to the conclusion in the statement. □

13e. Exercises

Exercises:

Exercise 13.31.

Exercise 13.32.

Exercise 13.33.

Exercise 13.34.

Exercise 13.35.

Exercise 13.36.

Exercise 13.37.

Exercise 13.38.

Bonus exercise.



CHAPTER 14

Relativity theory

14a. Speed addition

Based on experiments by Fizeau, then Michelson-Morley and others, and some physics
by Maxwell and Lorentz too, Einstein came upon the following principles:

Fact 14.1 (Einstein principles). The following happen:

(1) Light travels in vacuum at a finite speed, c <∞.
(2) This speed c is the same for all inertial observers.
(3) In non-vacuum, the light speed is lower, v < c.
(4) Nothing can travel faster than light, v ̸> c.

The point now is that, obviously, something is wrong here. Indeed, assuming for
instance that we have a train, running in vacuum at speed v > 0, and someone on board
lights a flashlight ∗ towards the locomotive, then an observer ◦ on the ground will see the
light travelling at speed c+ v > c, which is a contradiction:

∗ c
//

v
//

⃝ ⃝ ⃝ ⃝ ⃝ ⃝
◦

c+v
//

Equivalently, with the same train running, in vacuum at speed v > 0, if the observer
on the ground lights a flashlight ∗ towards the back of the train, then viewed from the
train, that light will travel at speed c+ v > c, which is a contradiction again:

◦
c+v

oo
v
//

⃝ ⃝ ⃝ ⃝ ⃝ ⃝
∗c

oo

267
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Summarizing, Fact 14.1 implies c + v = c, so contradicts classical mechanics, which
therefore needs a fix. By dividing all speeds by c, as to have c = 1, and by restricting the
attention to the 1D case, to start with, we are led to the following puzzle:

Puzzle 14.2. How to define speed addition on the space of 1D speeds, which is

I = [−1, 1]

with our c = 1 convention, as to have 1 + c = 1, as required by physics?

In view of our geometric knowledge so far, a natural idea here would be that of
wrapping [−1, 1] into a circle, and then stereographically projecting on R. Indeed, we can
then “import” to [−, 1, 1] the usual addition on R, via the inverse of this map.

So, let us see where all this leads us. First, the formula of our map is as follows:

Proposition 14.3. The map wrapping [−1, 1] into the unit circle, and then stereo-
graphically projecting on R is given by the formula

φ(u) = tan
(πu

2

)
with the convention that our wrapping is the most straightforward one, making correspond
±1→ i, with negatives on the left, and positives on the right.

Proof. Regarding the wrapping, as indicated, this is given by:

u→ eit , t = πu− π

2

Indeed, this correspondence wraps [−1, 1] as above, the basic instances of our corre-
spondence being as follows, and with everything being fine modulo 2π:

−1→ π

2
, −1

2
→ −π , 0→ −π

2
,

1

2
→ 0 , 1→ π

2

Regarding now the stereographic projection, the picture here is as follows:

•i

◦

• • ◦x

•
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Thus, by Thales, the formula of the stereographic projection is as follows:

cos t

x
=

1− sin t

1
=⇒ x =

cos t

1− sin t

Now if we compose our wrapping operation above with the stereographic projection,
what we get is, via the above Thales formula, and some trigonometry:

x =
cos t

1− sin t

=
cos
(
πu− π

2

)
1− sin

(
πu− π

2

)
=

cos
(
π
2
− πu

)
1 + sin

(
π
2
− πu

)
=

sin(πu)

1 + cos(πu)

=
2 sin

(
πu
2

)
cos
(
πu
2

)
2 cos2

(
πu
2

)
= tan

(πu
2

)
Thus, we are led to the conclusion in the statement. □

The above result is very nice, but when it comes to physics, things do not work, for
instance because of the wrong slope of the function φ(u) = tan

(
πu
2

)
at the origin, which

makes our summing on [−1, 1] not compatible with the Galileo addition, at low speeds.

So, what to do? Obviously, trash Proposition 14.3, and start all over again. Getting
back now to Puzzle 14.2, this has in fact a simpler solution, based this time on algebra,
and which in addition is the good, physically correct solution, as follows:

Theorem 14.4. If we sum the speeds according to the Einstein formula

u+e v =
u+ v

1 + uv

then the Galileo formula still holds, approximately, for low speeds

u+e v ≃ u+ v

and if we have u = 1 or v = 1, the resulting sum is u+e v = 1.

Proof. All this is self-explanatory, and clear from definitions, and with the Einstein
formula of u +e v itself being just an obvious solution to Puzzle 14.2, provided that,
importantly, we know 0 geometry, and rely on very basic algebra only. □
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So, very nice, problem solved, at least in 1D. But, shall we give up with geometry,
and the stereographic projection? Certainly not, let us try to recycle that material. In
order to do this, let us recall that the usual trigonometric functions are given by:

sinx =
eix − e−ix

2i
, cosx =

eix + e−ix

2
, tanx =

eix − e−ix

i(eix + e−ix)

The point now is that, and you might know this from calculus, the above functions
have some natural “hyperbolic” or “imaginary” analogues, constructed as follows:

sinhx =
ex − e−x

2
, coshx =

ex + e−x

2
, tanhx =

ex − e−x

ex + e−x

But the function on the right, tanh, starts reminding the formula of Einstein addition,
from Theorem 14.4. So, we have our idea, and we are led to the following result:

Theorem 14.5. The Einstein speed summation in 1D is given by

tanhx+e tanh y = tanh(x+ y)

with tanh : [−∞,∞]→ [−1, 1] being the hyperbolic tangent function.

Proof. This follows by putting together our various formulae above, but it is perhaps
better, for clarity, to prove this directly. Our claim is that we have:

tanh(x+ y) =
tanhx+ tanh y

1 + tanh x tanh y

But this can be checked via direct computation, from the definitions, as follows:

tanhx+ tanh y

1 + tanhx tanh y

=

(
ex − e−x

ex + e−x
+
ey − e−y

ey + e−y

)/(
1 +

ex − e−x

ex + e−x
· e

y − e−y

ey + e−y

)
=

(ex − e−x)(ey + e−y) + (ex + e−x)(ey − e−y)

(ex + e−x)(ey + e−y) + (ex − e−x)(ey + e−y)

=
2(ex+y − e−x−y)

2(ex+y + e−x−y)

= tanh(x+ y)

Thus, we are led to the conclusion in the statement. □

Very nice all this, hope you agree. As a conclusion, passing from the Riemann stere-
ographic projection sum to the Einstein summation basically amounts in replacing:

tan→ tanh

Which sound quite good and conceptual, and we will stop here our 1D study.
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14b. Three dimensions

Let us attempt now to construct u +e v in arbitrary dimensions, just by using our
common sense and intuition. When the vectors u, v ∈ RN are proportional, we are
basically in 1D, and so our addition formula must satisfy:

u ∼ v =⇒ u+e v =
u+ v

1+ < u, v >

However, the formula on the right will not work as such in general, for arbitrary speeds
u, v ∈ RN , and this because we have, as main requirement for our operation, in analogy
with the 1 +e v = 1 formula from 1D, the following condition:

||u|| = 1 =⇒ u+e v = u

Equivalently, in analogy with u+e 1 = 1 from 1D, we would like to have:

||v|| = 1 =⇒ u+e v = v

Summarizing, our u ∼ v formula above is not bad, as a start, but we must add a
correction term to it, for the above requirements to be satisfied, and of course with the
correction term vanishing when u ∼ v. So, we are led to a math puzzle:

Puzzle 14.6. What vanishes when u ∼ v, and then how to correctly define

u+e v =
u+ v + γuv
1+ < u, v >

as for the correction term γuv to vanish when u ∼ v?

But the solution to the first question is well-known in 3D. Indeed, here we can use the
vector product u× v, that we met before, which notoriously satisfies:

u ∼ v =⇒ u× v = 0

Thus, our correction term γuv must be something containing w = u×v, which vanishes
when this vector w vanishes, and in addition arranged such that ||u|| = 1 produces a
simplification, with u+e v = u as end result, and with ||v|| = 1 producing a simplification
too, with u+e v = v as end result. Thus, our vector calculus puzzle becomes:

Puzzle 14.7. How to correctly define the Einstein summation in 3 dimensions,

u+e v =
u+ v + γuvw
1+ < u, v >

with w = u× v, in such a way as for the correction term γuvw to satisfy

w = 0 =⇒ γuvw = 0

and also such that ||u|| = 1 =⇒ u+e v = u, and ||v|| =⇒ u+e v = v?
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In order to solve this latter puzzle, the first observation is that γuvw = w will not do,
and this for several reasons. First, this vector points in the wrong direction, orthogonal
to the plane spanned by u, v, and we certainly don’t want to leave this plane, with our
correction. Also, as a technical remark to be put on top of this, the choice γuvw = w will
not bring any simplifications, as required above, in the cases ||u|| = 1 or ||v|| = 1. Thus,
certainly wrong choice, and we must invent something more complicated.

Moving ahead now, as obvious task, we must “transport” the vector w to the plane
spanned by u, v. But this is simplest done by taking the vector product with any vector
in this plane, and so as a reasonable candidate for our correction term, we have:

γuvw = (αu+ βv)× w

Here α, β ∈ R are some scalars to be determined, but let us take a break, and leave
the computations for later. We did some good work, time to update our puzzle:

Puzzle 14.8. How to define the Einstein summation in 3 dimensions,

u+e v =
u+ v + γuvw
1+ < u, v >

with the correction term being of the following form, with w = u× v, and α, β ∈ R,

γuvw = (αu+ βv)× w

in such a way as to have ||u|| = 1 =⇒ u+e v = u, and ||v|| =⇒ u+e v = v?

In order to investigate what happens when ||u|| = 1 or ||v|| = 1, we must compute the
vector products u × w and v × w. So, pausing now our study for consulting the vector
calculus database, and then coming back, here is the formula that we need:

u× (u× v) =< u, v > u− < u, u > v

As for the formula of v × w, that I forgot to record, we can recover it from the one
above of u× w, by using the basic properties of the vector products, as follows:

v × (u× v) = −v × (v × u)
= −(< v, u > v− < v, v > u)

= < v, v > u− < u, v > v

With these formulae in hand, we can now compute the correction term, with the result
here, that we will need several times in what comes next, being as follows:

Proposition 14.9. The correction term γuvw = (αu+ βv)× w is given by

γuvw = (α < u, v > +β < v, v >)u− (α < u, u > +β < u, v >)v

for any values of the scalars α, β ∈ R.
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Proof. According to our vector product formulae above, we have:

γuvw = (αu+ βv)× w
= α(< u, v > u− < u, u > v) + β(< v, v > u− < u, v > v)

= (α < u, v > +β < v, v >)u− (α < u, u > +β < u, v >)v

Thus, we are led to the conclusion in the statement. □

Time now to get into the real thing, see what happens when ||u|| = 1 and ||v|| = 1,
if we can get indeed u+e v = u and u+e v = v. It is convenient here to do some reverse
engineering. Regarding the first desired formula, namely u+e v = u, we have:

u+e v = u ⇐⇒ u+ v + γuvw = (1+ < u, v >)u

⇐⇒ γuvw =< u, v > u− v
⇐⇒ α = 1, β = 0, ||u|| = 1

Thus, with the parameter choice α = 1, β = 0, we will have, as desired:

||u|| = 1 =⇒ u+e v = u

In what regards now the second desired formula, namely u+e v = v, here the compu-
tation is almost identical, save for a sign switch, which after some thinking comes from
our choice w = u× v instead of w = v × u, clearly favoring u, as follows:

u+e v = v ⇐⇒ u+ v + γuvw = (1+ < u, v >)v

⇐⇒ γuvw = −u+ < u, v > v

⇐⇒ α = 0, β = −1, ||v|| = 1

Thus, with the parameter choice α = 0, β = −1, we will have, as desired:

||v|| = 1 =⇒ u+e v = v

All this is mixed news, because we managed to solve both our problems, at ||u|| = 1
and at ||v|| = 1, but our solutions are different. So, time to breathe, decide that we did
enough interesting work for the day, and formulate our conclusion as follows:

Proposition 14.10. When defining the Einstein speed summation in 3D as

u+e v =
u+ v + u× (u× v)

1+ < u, v >

in c = 1 units, the following happen:

(1) When u ∼ v, we recover the previous 1D formula.
(2) When ||u|| = 1, speed of light, we have u+e v = u.
(3) However, ||v|| = 1 does not imply u+e v = v.
(4) Also, the formula u+e v = v +e u fails.
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Proof. Here (1) and (2) follow from the above discussion, with the following choice
for the correction term, by favoring the ||u|| = 1 problem over the ||v|| = 1 one:

γuvw = u× w

In fact, with this choice made, the computation is very simple, as follows:

||u|| = 1 =⇒ γuvw =< u, v > u− v
=⇒ u+ v + γuvw = u+ < u, v > u

=⇒ u+ v + γuvw
1+ < u, v >

= u

As for (3) and (4), these are also clear from the above discussion, coming from the
obvious lack of symmetry of our summation formula. □

Looking now at Proposition 14.10 from an abstract, mathematical perspective, there
are still many things missing from there, which can be summarized as follows:

Question 14.11. Can we fine-tune the Einstein speed summation in 3D into

u+e v =
u+ v + λ · u× (u× v)

1+ < u, v >

with λ ∈ R, chosen such that ||u|| = 1 =⇒ λ = 1, as to have:

(1) ||u||, ||v|| < 1 =⇒ ||u+e v|| < 1.
(2) ||v|| = 1 =⇒ ||u+e v|| = 1.

All this is quite tricky, and deserves some explanations. First, if we add a scalar λ ∈ R
into our formula, as above, we will still have, exactly as before:

u ∼ v =⇒ u+e v =
1 + uv

1+ < u, v >

On the other hand, we already know from our previous computations, those preceding
Proposition 14.10, that if we ask for λ ∈ R to be a plain constant, not depending on u, v,
then λ = 1 is the only good choice, making the following formula happen:

||u|| = 1 =⇒ u+e v = u

But, and here comes our point, λ = 1 is not an ideal choice either, because it would be
nice to have the properties (1,2) in the statement, and these properties have no reason to
be valid for λ = 1, as you can check for instance by yourself by doing some computations.
Thus, the solution to our problem most likely involves a scalar λ ∈ R depending on u, v,
and satisfying the following condition, as to still have ||u|| = 1 =⇒ u+e v = u:

||u|| = 1 =⇒ λ = 1



14B. THREE DIMENSIONS 275

Obviously, as simplest answer, λ must be some well-chosen function of ||u||, or rather
of ||u||2, because it is always better to use square norms, when possible. But then, with
this idea in mind, after a few computations we are led to the following solution:

λ =
1

1 +
√
1− ||u||2

Summarizing, final correction done, and with this being the end of mathematics, we
did a nice job, and we can now formulate our findings as a theorem, as follows:

Theorem 14.12. When defining the Einstein speed summation in 3D as

u+e v =
1

1+ < u, v >

(
u+ v +

u× (u× v)
1 +

√
1− ||u||2

)
in c = 1 units, the following happen:

(1) When u ∼ v, we recover the previous 1D formula.
(2) We have ||u||, ||v|| < 1 =⇒ ||u+e v|| < 1.
(3) When ||u|| = 1, we have u+e v = u.
(4) When ||v|| = 1, we have ||u+e v|| = 1.
(5) However, ||v|| = 1 does not imply u+e v = v.
(6) Also, the formula u+e v = v +e u fails.

Proof. This follows from the above discussion, as follows:

(1) This is something that we know from Proposition 14.10.

(2) In order to simplify notation, let us set δ =
√

1− ||u||2, which is the inverse of the

quantity γ = 1/
√

1− ||u||2. With this convention, we have:

u+e v =
1

1+ < u, v >

(
u+ v +

< u, v > u− ||u||2v
1 + δ

)
=

(1 + δ+ < u, v >)u+ (1 + δ − ||u||2)v
(1+ < u, v >)(1 + δ)

Taking now the squared norm and computing gives the following formula:

||u+e v||2 =
(1 + δ)2||u+ v||2 + (||u||2 − 2(1 + δ))(||u||2||v||2− < u, v >2)

(1+ < u, v >)2(1 + δ)2

But this formula can be further processed by using δ =
√
1− ||u||2, and by navigating

through the various quantities which appear, we obtain, as a final product:

||u+e v||2 =
||u+ v||2 − ||u||2||v||2+ < u, v >2

(1+ < u, v >)2
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But this type of formula is exactly what we need, for what we want to do. Indeed, by
assuming ||u||, ||v|| < 1, we have the following estimate:

||u+e v||2 < 1 ⇐⇒ ||u+ v||2 − ||u||2||v||2+ < u, v >2< (1+ < u, v >)2

⇐⇒ ||u+ v||2 − ||u||2||v||2 < 1 + 2 < u, v >

⇐⇒ ||u||2 + ||v||2 − ||u||2||v||2 < 1

⇐⇒ (1− ||u||2)(1− ||v||2) > 0

Thus, we are led to the conclusion in the statement.

(3) This is something that we know from Proposition 14.10.

(4) This comes from the squared norm formula established in the proof of (2) above,
because when assuming ||v|| = 1, we obtain:

||u+e v||2 =
||u+ v||2 − ||u||2+ < u, v >2

(1+ < u, v >)2

=
||u||2 + 1 + 2 < u, v > −||u||2+ < u, v >2

(1+ < u, v >)2

=
1 + 2 < u, v > + < u, v >2

(1+ < u, v >)2

= 1

(5) This is clear, from the obvious lack of symmetry of our formula.

(6) This is again clear, from the obvious lack of symmetry of our formula. □

That was nice, all this mathematics, and hope you’re still with me. And good news,
the formula in Theorem 14.12 is the good one, confirmed by experimental physics.

14c. Relativity theory

Time now to draw some concrete conclusions, from the above speed computations.
Since speed v = d/t is distance over time, we must fine-tune distance d, or time t, or
both. Let us first discuss, following as usual Einstein, what happens to time t. Here the
result, which might seem quite surprising, at a first glance, is as follows:

Theorem 14.13. Relativistic time is subject to Lorentz dilation

t→ γt

where the number γ ≥ 1, called Lorentz factor, is given by the formula

γ =
1√

1− v2/c2

with v being the moving speed, at which time is measured.
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Proof. Assume indeed that we have a train, moving to the right with speed v,
through vacuum. In order to compute the height h of the train, the passenger onboard
switches on the ceiling light bulb, measures the time t that the light needs to hit the floor,
by travelling at speed c, and concludes that the train height is h = ct:

∗

h=ct

��

v
//

⃝ ⃝ ⃝ ⃝ ⃝ ⃝

On the other hand, an observer on the ground will see here something different, namely
a right triangle, with on the vertical the height of the train h, on the horizontal the
distance vT that the train has travelled, and on the hypotenuse the distance cT that light
has travelled, with T being the duration of the event, according to his watch:

∗

h
cT

%%vT

Now by Pythagoras applied to this triangle, we have:

h2 + (vT )2 = (cT )2

Thus, the observer on the ground will reach to the following formula for h:

h =
√
c2 − v2 · T

But h must be the same for both observers, so we have the following formula:
√
c2 − v2 · T = ct

It follows that the two times t and T are indeed not equal, and are related by:

T =
ct√

c2 − v2
=

t√
1− v2/c2

= γt

Thus, we are led to the formula in the statement. □

Let us discuss now what happens to length. Intuitively, since speed is distance/time,
and since time gets dilated, we can somehow expect distance to get dilated too.

However, and a bit surprisingly, this is wrong, and after due thinking and computa-
tions, what we have is in fact the following result:
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Theorem 14.14. Relativistic length is subject to Lorentz contraction

L→ L/γ

where the number γ ≥ 1, called Lorentz factor, is given by the usual formula

γ =
1√

1− v2/c2

with v being the moving speed, at which length is measured.

Proof. As before in the proof of Theorem 14.13, meaning in the same train traveling
at speed v, in vacuum, imagine now that the passenger wants to measure the length L of
the car. For this purpose he switches on the light bulb, now at the rear of the car, and
measures the time t needed for the light to reach the front of the car, and get reflected
back by a mirror installed there, according to the following scheme:

∗
L=ct/2

// ♢oo
v
//

⃝ ⃝ ⃝ ⃝ ⃝ ⃝

He concludes that, as marked above, the length L of the car is given by:

L =
ct

2

Now viewed from the ground, the duration of the event is T = T1+T2, where T1 > T2
are respectively the time needed for the light to travel forward, among others for beating
v, and the time for the light to travel back, helped this time by v. More precisely, if l
denotes the length of the train car viewed from the ground, the formula of T is:

T = T1 + T2 =
l

c− v
+

l

c+ v
=

2lc

c2 − v2

With this data, the formula T = γt of time dilation established before reads:

2lc

c2 − v2
= γt =

2γL

c

Thus, the two lengths L and l are indeed not equal, and related by:

l =
γL(c2 − v2)

c2
= γL

(
1− v2

c2

)
=
γL

γ2
=
L

γ

Thus, we are led to the conclusion in the statement. □
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With this discussed, time now to get to the real thing, see what happens to our usual
R4. Let us start our discussion with a look at the non-relativistic case. Assuming that
the object moves with speed v in the x direction, the frame change is given by:

x′ = x− vt

y′ = y

z′ = z

t′ = t

To be more precise, here the first 3 equations come from the law of motion, and t′ = t
is the old t′ = t. In the relativistic setting now, the result is more tricky, as follows:

Theorem 14.15. In the context of a relativistic object moving with speed v along the
x axis, the frame change is given by the Lorentz transformation

x′ = γ(x− vt)

y′ = y

z′ = z

t′ = γ(t− vx/c2)
with γ = 1/

√
1− v2/c2 being as usual the Lorentz factor.

Proof. We know that, with respect to the non-relativistic formulae, x is subject to
the Lorentz dilation by γ, and we obtain as desired:

x′ = γ(x− vt)
Regarding y, z, these are obviously unchanged, so done with these too. Finally, re-

garding time t, a naive thought would suggest that this is subject to a Lorentz contraction
by 1/γ, but this is not true, and more thinking leads to the conclusion that we must use
the reverse Lorentz transformation, given by the following formulae:

x = γ(x′ + vt′)

y = y′

z = z′

By using the formula of x′ we can compute t′, and we obtain the following formula:

t′ =
x− γx′

γv

=
x− γ2(x− vt)

γv

=
γ2vt+ (1− γ2)x

γv
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On the other hand, we have the following computation:

γ2 =
c2

c2 − v2
=⇒ γ2(c2 − v2) = c2 =⇒ (γ2 − 1)c2 = γ2v2

Thus we can finish the computation of t′ as follows:

t′ =
γ2vt+ (1− γ2)x

γv

=
γ2vt− γ2v2x/c2

γv

= γ
(
t− vx

c2

)
We are therefore led to the conclusion in the statement. □

Now since y, z are irrelevant, we can put them at the end, and put the time t first, as
to be close to x. By multiplying as well the time equation by c, our system becomes:

ct′ = γ(ct− vx/c)

x′ = γ(x− vt)
y′ = y

z′ = z

In linear algebra terms, the result is as follows:

Theorem 14.16. The Lorentz transformation is given by
γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1



ct
x
y
z

 =


ct′

x′

y′

z′


where γ = 1/

√
1− v2/c2 as usual, and where β = v/c.

Proof. In terms of β = v/c, replacing v, the system looks as follows:

ct′ = γ(ct− βx)

x′ = γ(x− βct)
y′ = y

z′ = z

But this gives the formula in the statement. □

As an illustration, let us verify that the inverse Lorentz transformation is indeed given
by reversing the speed, v → −v. With notations as in Theorem 14.15, the result is:
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Theorem 14.17. The inverse of the Lorentz transformation is given by v → −v,
x = γ(x′ + vt′)

y = y′

z = z′

t = γ(t′ + vx′/c2)

where γ = 1/
√

1− v2/c2 is as usual the Lorentz factor, identical for v and −v.

Proof. In terms of the formalism in Theorem 14.16, reversing the speed v → −v
amounts in reversing the β = v/c parameter there:

β → −β
What we have to prove, in order to establish the result, is that by doing so, we obtain

the inverse of the matrix appearing there, namely:

L =


γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1


That is, we want to prove that the inverse of this matrix is as follows:

L−1 =


γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1


But here, for the verification of the inversion formula LL−1 = 1, we can restrict the

attention to the upper left corner, where the result is clear. □

Let us discuss now what happens to momentum, mass and energy. We would like to
fix the momentum conservation equations for the plastic collisions, namely:

m = m1 +m2

mv = m1v1 +m2v2
However, this cannot really be done with bare hands, and by this meaning with math-

ematics only. But with some help from experiments, the conclusion is as follows:

Fact 14.18. When defining the relativistic mass of an object of rest mass m > 0,
moving at speed v, by the formula

M = γm : γ =
1√

1− v2/c2

this relativistic mass M , and the corresponding relativistic momentum P =Mv, are both
conserved during collisions.
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In other words, the situation here is a bit similar to that of the Galileo addition vs
Einstein addition for speeds. The collision equations given above are in fact low-speed
approximations of the correct, relativistic equations, which are as follows:

M =M1 +M2

Mv =M1v1 +M2v2

It remains now to discuss kinetic energy. You have certainly heard of the formula
E = mc2, which might actually well be on your T-shirt, now as you read this book, and
in this case here is the explanation for it, in relation with the above:

Theorem 14.19. The relativistic energy of an object of rest mass m > 0,

E =Mc2 : M = γm

which is conserved, as being a multiple of M , can be written as E = E + T , with

E = mc2

being its v = 0 component, called rest energy of m, and with

T = (1− γ)mc2 ≃ mv2

2

being called relativistic kinetic energy of m.

Proof. All this is a bit abstract, coming from Fact 14.18, as follows:

(1) Given an object of rest mass m > 0, consider its relativistic mass M = γm, as
appearing in Fact 14.18, and then consider the following quantity:

E =Mc2

We know from Fact 14.18 that the relativistic mass M is conserved, so E = Mc2 is
conserved too. In view of this, is makes somehow sense to call E energy. There is of course
no clear reason for doing that, but let’s just do it, and we’ll understand later.

(2) Let us compute E . This quantity is by definition given by:

E =Mc2 = γmc2 =
mc2√

1− v2/c2

Since 1/
√
1− x ≃ 1 + x/2 for x small, by calculus, we obtain, for v small:

E ≃ mc2
(
1 +

v2

2c2

)
= mc2 +

mv2

2

And, good news here, we recognize at right the kinetic energy of m.

(3) But this leads to the conclusions in the statement. Indeed, we are certainly dealing
with some sort of energies here, and so calling the above quantity E relativistic energy
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is legitimate, and calling E = mc2 rest energy is legitimate too. Finally, the difference
between these two energies T = E − E follows to be given by:

T = (1− γ)mc2 ≃ mv2

2
Thus, calling T relativistic kinetic energy is legitimate too, and we are done. □

14d. Curved spacetime

In the classical case, to begin with, the general frame change is as follows:

Theorem 14.20. In the classical case, the general frame change formula is:

x′ = x− vxt
y′ = y − vyt
z′ = z − vzt

t′ = t

Equivalently, in matrix form, this frame change formula is given by:
x′

y′

z′

t′

 =


1 0 0 −vx
0 1 0 −vy
0 0 1 −vz
0 0 0 1



x
y
z
t


As for the reverse frame change, this is obtained via v → −v.

Proof. This is indeed clear from definitions. Observe also that the last assertion is
verified by the following inversion formula, at the level of the associated matrices:

1 0 0 vx
0 1 0 vy
0 0 1 vz
0 0 0 1



1 0 0 −vx
0 1 0 −vy
0 0 1 −vz
0 0 0 1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Thus, we are led to the conclusions in the statement. □

In the relativistic case, the formulae and computations are more tricky, with some
vector calculus involved, and the result is best stated in the following way:

Theorem 14.21. In the relativistic case, the general frame change formula is

x′ = x+ (γ − 1)
< v, x > v

||v||2
− γtv

t′ = γ
(
t− < v, x >

c2

)
where γ = 1/

√
1− ||v||2/c2, and the reverse frame change is obtained via v → −v.
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Proof. As already mentioned, this is something quite tricky, with some vector cal-
culus involved, and we will take our time, and try to understand how this works:

(1) To start with, the formula in the statement looks N -dimensional, and our claim is
that, indeed, this formula works in N -dimensional relativity, regardless of N ∈ N.

(2) As a first illustration, let us first see what happens atN = 1. Here both the position
variable x and the speed v are usual real numbers, and our first formula becomes:

x′ = x+ (γ − 1)
vx · v
v2
− γtv

= x+ (γ − 1)x− γtv
= γx− γtv
= γ(x− tv)

Thus, our first formula is correct. As for the second formula, this is correct too:

t = γ
(
t− vx

c2

)
(3) As a second illustration, let us move to arbitrary N ∈ N dimensions, including the

case N = 3 that we are mostly interested in, and test our formula in the case where the
configuration is standard, that is, where the speed vector is of the following form:

v =


ν
0
...
0


In this case, we obtain the correct formula for the position vector, as follows:

x′ = x+ (γ − 1)
νx1 · v
ν2

− γtv

= x+ (γ − 1)x1 ·
v

ν
− γtv

=


x1
x2
...
xN

+ (γ − 1)x1


1
0
...
0

− γt

ν
0
...
0



=


γx1 − γtν

x2
...
xN
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As for the resulting time, this is the correct one too, as follows:

t′ = γ
(
t− νx1

c2

)
(4) Summarizing, the formula in the statement generalizes well everything that we

know. In order to prove now this formula, the general idea is that of decomposing the
position vectors x, x′ as follows, with respect to v and its complement:

x = λv + y , y ⊥ v

x′ = λ′v + y′ , y′ ⊥ v

Indeed, this can only give the result, by using the standard configuration formulae
from before, and various abstract or concrete rotation arguments.

(5) In practice now, there are several ways of doing this. As a first observation, the
above decomposition argument shows that our time formula is indeed the correct one:

t′ = γ
(
t− < v, x >

c2

)
But with this in hand, it is possible to trick with an abstract argument, saying on one

hand that x′ must be linear in x, t, and on the other hand that we must have:

||x′||2 − ct′2 = ||x||2 − ct2

To be more precise, this latter formula must hold indeed, with this being something
quite subtle, that we will explain later, and together with the above-mentioned linearity
requirement, this leads to the formula in the statement for x′. But more on this later.

(6) Going instead on a more pedestrian way, we certainly know that the formula of t′

is correct, and it remains to justify the formula of x′. But here, the best is to do first the
computation in N = 2 dimensions, along the lines suggested in (4). This gives:

x′ = x+ (γ − 1)
< v, x > v

||v||2
− γtv

Thus, we have the formula x′ at N = 2, and the extension to N = 3 and higher is
straightforward, either by using a similar computation, or a rotation argument.

(7) Finally, as a matter of making sure that we didn’t mess up anything with our
reasonings and mathematics, let us verify that the inverse of the general Lorentz transform
that we found is indeed given by v → −v, which in practice means:

x = x′ + (γ − 1)
< v, x′ > v

||v||2
+ γt′v

t = γ

(
t′ +

< v, x′ >

c2

)
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(8) For the space variable, the verification goes as follows:

x′ + (γ − 1)
< v, x′ > v

||v||2
+ γt′v

= x+ (γ − 1)
< v, x > v

||v||2
− γtv

+(γ − 1)
v

||v||2
(
< v, x > +(γ − 1) < v, x > −γt||v||2

)
+γ2

(
t− < v, x >

c2

)
v

= x− (γt+ γ(γ − 1)t− γ2t)v +
(
γ − 1

||v||2
+
γ(γ − 1)

||v||2
− γ2

c2

)
< v, x > v

= x+

(
γ2 − 1

||v||2
− γ2

c2

)
< v, x > v

= x

(9) As for the time variable, the verification here goes as follows:

γ

(
t′ +

< v, x′ >

c2

)
= γ

(
γ
(
t− < v, x >

c2

)
+
< v, x >

c2
+ (γ − 1)

< v, x >

c2
− γt ||v||

2

c2

)
= γ2t

(
1− ||v||

2

c2

)
+
γ < v, x >

c2
(−γ + 1 + γ − 1)

= γ2t

(
1− ||v||

2

c2

)
= t

Thus, we are led to the conclusions in the statement. □

What we found in Theorem 14.21 can be reformulated as follows:

Theorem 14.22. In the relativistic case, the general frame change formula is

x′1 = x1 + (γ − 1)
< v, x > v1
||v||2

− γtv1

...

x′N = xN + (γ − 1)
< v, x > vN
||v||2

− γtvN

ct′ = γ
(
ct− < v, x >

c

)
where γ = 1/

√
1− ||v||2/c2, and the reverse frame change is obtained via v → −v.
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Proof. This is indeed a reformulation of what we found in Theorem 14.21, and with
the time variable being multiplied, as it is quite standard, by c. □

In standard matrix form, all this does not look that great, and the result here, that
we will only formulate at N = 3, for simplifying, is as follows:

Theorem 14.23. In the relativistic case, the general frame change formula is
ct′

x′1
x′2
x′3

 =


γ −β1γ −β2γ −β3γ
−β1γ 1 + αv21 αv1v2 αv1v3
−β2γ αv1v2 1 + αv22 αv2v3
−β3γ αv1v3 αv2v3 1 + αv23



ct
x1
x2
x3


where γ = 1/

√
1− ||v||2/c2 as usual, and α = (γ − 1)/||v||2, and βi = vi/c.

Proof. This is indeed a reformulation of what we found in Theorem 14.22, at N = 3,
and with the rescaled time variable being put in the first position. □

As a second task now, let us recover the speed addition formula, established before,
from the Lorentz transform. We can do this now in general, as follows:

Theorem 14.24. The speed addition formula in N-dimensional relativity is

u+e v =
1

1+ < u, v >

(
u+ v +

< u, v > u− < u, u > v

1 +
√

1− ||u||2

)
in c = 1 units.

Proof. This is very standard, the idea being as follows:

(1) As before, the idea will be that of differentiating x1, . . . , xN and t in the formulae
for the inverse Lorentz transform. With the replacement v → u for the moving speed,
this inverse Lorentz transform is given by the following formula:

xi = x′i + (γ − 1)
< u, x′ > ui
||u||2

+ γt′ui

t = γ

(
t′ +

< u, x′ >

c2

)
(2) Now by differentiating, we obtain from this the following formulae:

dxi = dx′i + (γ − 1)
< u, dx′ > ui
||u||2

+ γuidt
′

dt = γ

(
dt′ +

< u, dx′ >

c2

)
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(3) By dividing now the first formula by the second one, we obtain:

dxi
dt

=
1

γ
· dx

′
i + (γ − 1) < u, dx′ > ui/||u||2 + γuidt

′

dt′+ < u, dx′ > /c2

(4) Next, by dividing everything on the right by dt′, we get from this:

dxi
dt

=
1

γ
· dx

′
i/dt

′ + (γ − 1) < u, dx′/dt′ > ui/||u||2 + γui
1+ < u, dx′/dt′ > /c2

(5) In terms of speeds now, this means that we have, with w = u+e v:

wi =
1

γ
· vi + (γ − 1) < u, v > ui/||u||2 + γui

1+ < u, v > /c2

(6) Now in c = 1 units, this formula is as follows, still with w = u+e v:

wi =
1

γ
· vi + (γ − 1) < u, v > ui/||u||2 + γui

1+ < u, v >

(7) In vector notation now, the above formula shows that we have:

u+e v =
1

1+ < u, v >
· 1
γ

(
v + (γ − 1)

< u, v > u

||u||2
+ γu

)
=

1

1+ < u, v >

(
u+

v

γ
+

(
1− 1

γ

)
< u, v > u

||u||2

)
=

1

1+ < u, v >

(
u+ v +

(
1− 1

γ

)(
< u, v > u

||u||2
− v
))

=
1

1+ < u, v >

(
u+ v +

(
1− 1

γ

)
< u, v > u− < u, u > v

||u||2

)
=

1

1+ < u, v >

(
u+ v +

< u, v > u− < u, u > v

1 +
√
1− ||u||2

)
(8) Here we have used at the end the following formula, for the Lorentz factor:

1− 1

γ
= 1− 1

1/
√

1− ||u||2

= 1−
√

1− ||u||2

=
||u||2

1 +
√

1− ||u||2

Thus, we are led to the conclusion in the statement. □

Getting now to spacetime, in non-relativistic physics two events are separated by space
∆x and by time ∆t, with these two separation variables being independent. In relativistic
physics this is no longer true, and the correct analogue of this comes from:
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Theorem 14.25. The following quantity, called relativistic spacetime separation

∆s2 = c2∆t2 − (∆x2 +∆y2 +∆z2)

is invariant under relativistic frame changes.

Proof. We must prove that the quantity K = c2t2 − x2 − y2 − z2 is invariant under
Lorentz transformations. For this purpose, observe that we have:

K =

〈
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



ct
x
y
z

 ,


ct
x
y
z


〉

Now recall that the Lorentz transformation is given by the following formula, where
γ = 1/

√
1− v2/c2 as usual, and where β = v/c:

γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1



ct
x
y
z

 =


ct′

x′

y′

z′


Thus, if we denote by L the matrix of the Lorentz transformation, and by E the matrix

found before, we must prove that for any vector ξ we have:

< Eξ, ξ >=< ELξ, Lξ >

Since L is symmetric we have < ELξ, Lξ >=< LELξ, ξ >, so we must prove:

E = LEL

But this is the same as proving L−1E = EL, and by using the fact that L → L−1 is
given by β → −β, what we eventually want to prove is that:

L−βE = ELβ

So, let us prove this. As usual we can restrict the attention to the upper left corner,
call that NW corner, and here we have the following computations:

(L−βE)NW =

(
γ βγ
βγ γ

)(
1 0
0 −1

)
=

(
γ −βγ
βγ −γ

)
(ELβ)NW =

(
1 0
0 −1

)(
γ −βγ
−βγ γ

)
=

(
γ −βγ
βγ −γ

)
The matrices on the right being equal, this gives the result. □

Finally, let us discuss gravity. This can be incorporated too, as follows:

Theorem 14.26 (Einstein). The theory of gravity can be suitably modified, and merged
with relativity, into a theory called general relativity.
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Proof. All this is a bit complicated, involving some geometry, as follows:

(1) Before anything, we have seen that in the relativistic context, mass m must be
replaced by relativistic mass M = γm, and momentum p = mv must be replaced by
relativistic momentum P = Mv. Thus, as with Galileo and many other things, such as
the conservation of mass and of momentum, seen above, there is a bug with the Newton
formula F = ṗ, which must be replaced by something of type F = Ṗ .

(2) In practice now, as a starting point, let us go back to the formula F = −∆V , that
we know well. Geometrically, this suggests looking at the gravitational field of k bodies
M1, . . . ,Mk as being represented by R3 having k holes in it, and with the heavier the Mi,
the bigger the hole, and with poor m ≃ 0 having to roll on all this.

(3) Of course we are here in 4D, for the full picture, that of the potential V , or rather
of its graph, and in order to better understand this, it is of help to first consider the
question where our bodies M1, . . . ,Mk lie in a plane R2.

(4) Still staying inside classical mechanics, it is possible to further build on the above
picture in (2), which was something rather intuitive, now with some precise math formulae,
relating the geometry of V to the motion of m under its influence.

(5) The point now is that, with (4) done, the passage to relativity can be understood
as well, by modifying a bit the geometry there, as to fit with relativistic spacetime, and
by having the F = Ṗ idea from (1) in mind too. That is the main idea behind general
relativity, and in practice, all this needs a bit of technical geometry and formulae. □

This was for the basics of Einstein’s relativity theory. For more, we refer to his book
[28], which is a must-read, for any mathematician, physicist, scientist, or non-scientist.

14e. Exercises

Exercises:

Exercise 14.27.

Exercise 14.28.

Exercise 14.29.

Exercise 14.30.

Exercise 14.31.

Exercise 14.32.

Exercise 14.33.

Exercise 14.34.

Bonus exercise.



CHAPTER 15

Infinite matrices

15a. Linear operators

We would like to discuss now the theory of linear operators T : H → H over a complex
Hilbert space H, usually taken separable. Let us start with a basic result, as follows:

Theorem 15.1. Given a Hilbert space H, consider the linear operators T : H → H,
and for each such operator define its norm by the following formula:

||T || = sup
||x||=1

||Tx||

The operators which are bounded, ||T || < ∞, form then a complex algebra B(H), which
is complete with respect to ||.||. When H comes with a basis {ei}i∈I , we have

B(H) ⊂ L(H) ⊂MI(C)

where L(H) is the algebra of all linear operators T : H → H, and L(H) ⊂ MI(C) is the
correspondence T →M obtained via the usual linear algebra formulae, namely:

T (x) =Mx , Mij =< Tej, ei >

In infinite dimensions, none of the above two inclusions is an equality.

Proof. This is something straightforward, the idea being as follows:

(1) The fact that we have indeed an algebra, satisfying the product condition in the
statement, follows from the following estimates, which are all elementary:

||S + T || ≤ ||S||+ ||T || , ||λT || = |λ| · ||T || , ||ST || ≤ ||S|| · ||T ||

(2) Regarding now the completness assertion, if {Tn} ⊂ B(H) is Cauchy then {Tnx}
is Cauchy for any x ∈ H, so we can define the limit T = limn→∞ Tn by setting:

Tx = lim
n→∞

Tnx

291
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Let us first check that the application x→ Tx is linear. We have:

T (x+ y) = lim
n→∞

Tn(x+ y)

= lim
n→∞

Tn(x) + Tn(y)

= lim
n→∞

Tn(x) + lim
n→∞

Tn(y)

= T (x) + T (y)

Similarly, we have T (λx) = λT (x), and we conclude that T ∈ L(H).

(3) With this done, it remains to prove now that we have T ∈ B(H), and that Tn → T
in norm. For this purpose, observe that we have:

||Tn − Tm|| ≤ ε , ∀n,m ≥ N =⇒ ||Tnx− Tmx|| ≤ ε , ∀||x|| = 1 , ∀n,m ≥ N

=⇒ ||Tnx− Tx|| ≤ ε , ∀||x|| = 1 , ∀n ≥ N

=⇒ ||TNx− Tx|| ≤ ε , ∀||x|| = 1

=⇒ ||TN − T || ≤ ε

But this gives both T ∈ B(H), and TN → T in norm, and we are done.

(4) Regarding the embeddings, the correspondence T →M in the statement is indeed
linear, and its kernel is {0}, so we have indeed an embedding as follows, as claimed:

L(H) ⊂MI(C)

In finite dimensions we have an isomorphism, because any M ∈ MN(C) determines
an operator T : CN → CN , given by < Tej, ei >= Mij. However, in infinite dimensions,
we have matrices not producing operators, as for instance the all-one matrix.

(5) As for the examples of linear operators which are not bounded, these are more
complicated, coming from logic, and we will not really need them in what follows. □

As a second basic result regarding the operators, we will need:

Theorem 15.2. Each operator T ∈ B(H) has an adjoint T ∗ ∈ B(H), given by:

< Tx, y >=< x, T ∗y >

The operation T → T ∗ is antilinear, antimultiplicative, involutive, and satisfies:

||T || = ||T ∗|| , ||TT ∗|| = ||T ||2

When H comes with a basis {ei}i∈I , the operation T → T ∗ corresponds to

(M∗)ij =M ji

at the level of the associated matrices M ∈MI(C).
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Proof. This is standard too, and can be proved in 3 steps, as follows:

(1) The existence of the adjoint operator T ∗, given by the formula in the statement,
comes from the fact that the function φ(x) =< Tx, y > being a linear map H → C, we
must have a formula as follows, for a certain vector T ∗y ∈ H:

φ(x) =< x, T ∗y >

Moreover, since this vector is unique, T ∗ is unique too, and we have as well:

(S + T )∗ = S∗ + T ∗ , (λT )∗ = λ̄T ∗ , (ST )∗ = T ∗S∗ , (T ∗)∗ = T

Observe also that we have indeed T ∗ ∈ B(H), because:

||T || = sup
||x||=1

sup
||y||=1

< Tx, y >

= sup
||y||=1

sup
||x||=1

< x, T ∗y >

= ||T ∗||
(2) Regarding now ||TT ∗|| = ||T ||2, which is a key formula, observe that we have:

||TT ∗|| ≤ ||T || · ||T ∗|| = ||T ||2

On the other hand, we have as well the following estimate:

||T ||2 = sup
||x||=1

| < Tx, Tx > |

= sup
||x||=1

| < x, T ∗Tx > |

≤ ||T ∗T ||
By replacing T → T ∗ we obtain from this ||T ||2 ≤ ||TT ∗||, as desired.
(3) Finally, when H comes with a basis, the formula < Tx, y >=< x, T ∗y > applied

with x = ei, y = ej translates into the formula (M∗)ij =M ji, as desired. □

Let us discuss now the diagonalization problem for the operators T ∈ B(H), in anal-
ogy with the diagonalization problem for the usual matrices A ∈ MN(C). As a first
observation, we can talk about eigenvalues and eigenvectors, as follows:

Definition 15.3. Given an operator T ∈ B(H), assuming that we have

Tx = λx

we say that x ∈ H is an eigenvector of T , with eigenvalue λ ∈ C.

We know many things about eigenvalues and eigenvectors, in the finite dimensional
case. However, most of these will not extend to the infinite dimensional case, or at least
not extend in a straightforward way, due to a number of reasons:
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(1) Most of basic linear algebra is based on the fact that Tx = λx is equivalent to
(T − λ)x = 0, so that λ is an eigenvalue when T − λ is not invertible. In the
infinite dimensional setting T − λ might be injective and not surjective, or vice
versa, or invertible with (T − λ)−1 not bounded, and so on.

(2) Also, in linear algebra T −λ is not invertible when det(T −λ) = 0, and with this
leading to most of the advanced results about eigenvalues and eigenvectors. In
infinite dimensions, however, it is impossible to construct a determinant function
det : B(H)→ C, and this even for the diagonal operators on l2(N).

Summarizing, we are in trouble. Forgetting about (2), which obviously leads nowhere,
let us focus on the difficulties in (1). In order to cut short the discussion there, regarding
the various properties of T−λ, we can just say that T−λ is either invertible with bounded
inverse, the “good case”, or not. We are led in this way to the following definition:

Definition 15.4. The spectrum of an operator T ∈ B(H) is the set

σ(T ) =
{
λ ∈ C

∣∣∣T − λ ̸∈ B(H)−1
}

where B(H)−1 ⊂ B(H) is the set of invertible operators.

As a basic example, in the finite dimensional case, H = CN , the spectrum of a usual
matrix A ∈ MN(C) is the collection of its eigenvalues, taken without multiplicities. We
will see many other examples. In general, the spectrum has the following properties:

Proposition 15.5. The spectrum of T ∈ B(H) contains the eigenvalue set

ε(T ) =
{
λ ∈ C

∣∣∣ ker(T − λ) ̸= {0}}
and ε(T ) ⊂ σ(T ) is an equality in finite dimensions, but not in infinite dimensions.

Proof. We have several assertions here, the idea being as follows:

(1) First of all, the eigenvalue set is indeed the one in the statement, because Tx = λx
tells us precisely that T − λ must be not injective. The fact that we have ε(T ) ⊂ σ(T ) is
clear as well, because if T − λ is not injective, it is not bijective.

(2) In finite dimensions we have ε(T ) = σ(T ), because T − λ is injective if and only if
it is bijective, with the boundedness of the inverse being automatic.

(3) In infinite dimensions we can assumeH = l2(N), and the shift operator S(ei) = ei+1

is injective but not surjective. Thus 0 ∈ σ(T )− ε(T ). □

Philosophically, the best way of thinking at this is as follows: the numbers λ /∈ σ(T )
are good, because we can invert T − λ, the numbers λ ∈ σ(T )− ε(T ) are bad, because so
they are, and the eigenvalues λ ∈ ε(T ) are evil. Welcome to operator theory.

Let us develop now some general theory. As a first goal, we would like to prove that
the spectra are non-empty. This is something quite tricky, the result being as follows:
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Theorem 15.6. The spectrum of a bounded operator T ∈ B(H) is:

(1) Compact.
(2) Contained in the disc D0(||T ||).
(3) Non-empty.

Proof. This can be proved by using some complex analysis, as follows:

(1) In view of (2) below, it is enough to prove that σ(T ) is closed. But this follows
from the following computation, with |ε| being small:

λ /∈ σ(T ) =⇒ T − λ ∈ B(H)−1

=⇒ T − λ− ε ∈ B(H)−1

=⇒ λ+ ε /∈ σ(T )
(2) This follows indeed from the following computation:

λ > ||T || =⇒
∣∣∣∣∣∣T
λ

∣∣∣∣∣∣ < 1

=⇒ 1− T

λ
∈ B(H)−1

=⇒ λ− T ∈ B(H)−1

=⇒ λ /∈ σ(T )
(3) Assume by contradiction σ(T ) = ∅. Given a linear form f ∈ B(H)∗, consider the

following map, which is well-defined, due to our assumption σ(T ) = ∅:
φ : C→ C , λ→ f((T − λ)−1)

By using the fact that T → T−1 is differentiable, which is something elementary, we
conclude that this map is differentiable, and so holomorphic. Also, we have:

λ→∞ =⇒ T − λ→∞
=⇒ (T − λ)−1 → 0

=⇒ f((T − λ))−1 → 0

Thus by the Liouville theorem we obtain φ = 0. But, in view of the definition of φ,
this gives (T − λ)−1 = 0, which is a contradiction, as desired. □

Here is now a second basic result regarding the spectra, inspired from what happens
in finite dimensions, for the usual complex matrices, and which shows that things do not
necessarily extend without troubles to the infinite dimensional setting:

Theorem 15.7. We have the following formula, valid for any operators S, T :

σ(ST ) ∪ {0} = σ(TS) ∪ {0}
In finite dimensions we have σ(ST ) = σ(TS), but this fails in infinite dimensions.
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Proof. There are several assertions here, the idea being as follows:

(1) This is something that we know in finite dimensions, coming from the fact that
the characteristic polynomials of the associated matrices A,B coincide:

PAB = PBA

Thus we obtain σ(ST ) = σ(TS) in this case, as claimed. Observe that this improves
twice the general formula in the statement, first because we have no issues at 0, and
second because what we obtain is actually an equality of sets with mutiplicities.

(2) In general now, let us first prove the main assertion, stating that σ(ST ), σ(TS)
coincide outside 0. We first prove that we have the following implication:

1 /∈ σ(ST ) =⇒ 1 /∈ σ(TS)
Assume indeed that 1− ST is invertible, with inverse denoted R:

R = (1− ST )−1

We have then the following formulae, relating our variables R, S, T :

RST = STR = R− 1

By using RST = R− 1, we have the following computation:

(1 + TRS)(1− TS) = 1 + TRS − TS − TRSTS
= 1 + TRS − TS − TRS + TS

= 1

A similar computation, using STR = R− 1, shows that we have:

(1− TS)(1 + TRS) = 1

Thus 1 − TS is invertible, with inverse 1 + TRS, which proves our claim. Now by
multiplying by scalars, we deduce from this that for any λ ∈ C− {0} we have:

λ /∈ σ(ST ) =⇒ λ /∈ σ(TS)
But this leads to the conclusion in the statement.

(3) Regarding now the counterexample to the formula σ(ST ) = σ(TS), in general, let
us take S to be the shift on H = L2(N), given by the following formula:

S(ei) = ei+1

As for T , we can take it to be the adjoint of S, and we have:

S∗S = 1 =⇒ 0 /∈ σ(SS∗)

SS∗ = Proj(e⊥0 ) =⇒ 0 ∈ σ(SS∗)

Thus, the spectra do not match on 0, and so we have our counterexample. □
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15b. Spectral radius

Let us develop now some systematic theory for the computation of the spectra, based
on what we know about the eigenvalues of the usual complex matrices. As a first result,
which is well-known for the usual matrices, and extends well, we have:

Theorem 15.8. We have the “polynomial functional calculus” formula

σ(P (T )) = P (σ(T ))

valid for any polynomial P ∈ C[X], and any operator T ∈ B(H).

Proof. We pick a scalar λ ∈ C, and we decompose the polynomial P − λ:
P (X)− λ = c(X − r1) . . . (X − rn)

We have then the following equivalences:

λ /∈ σ(P (T )) ⇐⇒ P (T )− λ ∈ B(H)−1

⇐⇒ c(T − r1) . . . (T − rn) ∈ B(H)−1

⇐⇒ T − r1, . . . , T − rn ∈ B(H)−1

⇐⇒ r1, . . . , rn /∈ σ(T )
⇐⇒ λ /∈ P (σ(T ))

Thus, we are led to the formula in the statement. □

The above result is something very useful, and generalizing it will be our next task.
As a first ingredient here, assuming that A ∈MN(C) is invertible, we have:

σ(A−1) = σ(A)−1

It is possible to extend this formula to the arbitrary operators, and we will do this
in a moment. Before starting, however, we have to find a class of functions generalizing
both the polynomials P ∈ C[X] and the inverse function x → x−1. The answer to this
question is provided by the rational functions, which are as follows:

Definition 15.9. A rational function f ∈ C(X) is a quotient of polynomials:

f =
P

Q

Assuming that P,Q are prime to each other, we can regard f as a usual function,

f : C−X → C
with X being the set of zeros of Q, also called poles of f .

Now that we have our class of functions, the next step consists in applying them to
operators. Here we cannot expect f(T ) to make sense for any f and any T , for instance
because T−1 is defined only when T is invertible. We are led in this way to:
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Definition 15.10. Given an operator T ∈ B(H), and a rational function f = P/Q
having poles outside σ(T ), we can construct the following operator,

f(T ) = P (T )Q(T )−1

that we can denote as a usual fraction, as follows,

f(T ) =
P (T )

Q(T )

due to the fact that P (T ), Q(T ) commute, so that the order is irrelevant.

To be more precise, f(T ) is indeed well-defined, and the fraction notation is justified
too. In more formal terms, we can say that we have a morphism of complex algebras as
follows, with C(X)T standing for the rational functions having poles outside σ(T ):

C(X)T → B(H) , f → f(T )

Summarizing, we have now a good class of functions, generalizing both the polynomials
and the inverse map x→ x−1. We can now extend Theorem 15.8, as follows:

Theorem 15.11. We have the “rational functional calculus” formula

σ(f(T )) = f(σ(T ))

valid for any rational function f ∈ C(X) having poles outside σ(T ).

Proof. We pick a scalar λ ∈ C, we write f = P/Q, and we set:

F = P − λQ

By using now Theorem 15.8, for this polynomial, we obtain:

λ ∈ σ(f(T )) ⇐⇒ F (T ) /∈ B(H)−1

⇐⇒ 0 ∈ σ(F (T ))
⇐⇒ 0 ∈ F (σ(T ))
⇐⇒ ∃µ ∈ σ(T ), F (µ) = 0

⇐⇒ λ ∈ f(σ(T ))

Thus, we are led to the formula in the statement. □

As an application of the above methods, we can investigate certain special classes of
operators, such as the self-adjoint ones, and the unitary ones. Let us start with:

Proposition 15.12. The following happen:

(1) We have σ(T ∗) = σ(T ), for any T ∈ B(H).
(2) If T = T ∗ then X = σ(T ) satisfies X = X.
(3) If U∗ = U−1 then X = σ(U) satisfies X−1 = X.
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Proof. We have several assertions here, the idea being as follows:

(1) The spectrum of the adjoint operator T ∗ can be computed as follows:

σ(T ∗) =
{
λ ∈ C

∣∣∣T ∗ − λ /∈ B(H)−1
}

=
{
λ ∈ C

∣∣∣T − λ̄ /∈ B(H)−1
}

= σ(T )

(2) This is clear indeed from (1).

(3) For a unitary operator, U∗ = U−1, Theorem 1.11 and (1) give:

σ(U)−1 = σ(U−1) = σ(U∗) = σ(U)

Thus, we are led to the conclusion in the statement. □

In analogy with what happens for the usual matrices, we would like to improve now
(2,3) above, with results stating that the spectrum X = σ(T ) satisfies X ⊂ R for self-
adjoints, and X ⊂ T for unitaries. This will be tricky. Let us start with:

Theorem 15.13. The spectrum of a unitary operator

U∗ = U−1

is on the unit circle, σ(U) ⊂ T.

Proof. Assuming U∗ = U−1, we have the following norm computation:

||U || =
√
||UU∗|| =

√
1 = 1

Now if we denote by D the unit disk, we obtain from this:

σ(U) ⊂ D

On the other hand, once again by using U∗ = U−1, we have as well:

||U−1|| = ||U∗|| = ||U || = 1

Thus, as before with D being the unit disk in the complex plane, we have:

σ(U−1) ⊂ D

Now by using Theorem 15.11, we obtain σ(U) ⊂ D ∩D−1 = T, as desired. □

We have as well a similar result for the self-adjoints, as follows:

Theorem 15.14. The spectrum of a self-adjoint operator

T = T ∗

consists of real numbers, σ(T ) ⊂ R.
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Proof. The idea is that we can deduce the result from Theorem 15.13, by using the
following remarkable rational function, depending on a parameter r ∈ R:

f(z) =
z + ir

z − ir
Indeed, for r >> 0 the operator f(T ) is well-defined, and we have:(

T + ir

T − ir

)∗

=
T − ir
T + ir

=

(
T + ir

T − ir

)−1

Thus f(T ) is unitary, and by using Theorem 15.13 we obtain:

σ(T ) ⊂ f−1(f(σ(T )))

= f−1(σ(f(T )))

⊂ f−1(T)
= R

Thus, we are led to the conclusion in the statement. □

One key thing that we know about matrices, which is clear for the diagonalizable
matrices, and then in general follows by density, is the following formula:

σ(eA) = eσ(A)

We would like to have such formulae for the general operators T ∈ B(H), but this
is something quite technical. Consider the rational calculus morphism from Definition
15.10, which is as follows, with the exponent standing for “having poles outside σ(T )”:

C(X)T → B(H) , f → f(T )

As mentioned before, the rational functions are holomorphic outside their poles, and
this raises the question of extending this morphism, as follows:

Hol(σ(T ))→ B(H) , f → f(T )

But for this, we can use the Cauchy formula. Indeed, given a function f ∈ C(X)T ,
the operator f(T ) ∈ B(H) from Definition 15.10 can be recaptured as follows:

f(T ) =
1

2πi

∫
γ

f(z)

z − T
dz

Now given an arbitrary function f ∈ Hol(σ(T )), we can define f(T ) ∈ B(H) by the
exactly same formula, and we obtain in this way the desired correspondence:

Hol(σ(T ))→ B(H) , f → f(T )

This was for the plan. In practice now, all this needs a bit of care, with many verifi-
cations needed, and with the technical remark that a winding number must be added to
the above Cauchy formulae, for things to be correct. The result is as follows:
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Theorem 15.15. Given T ∈ B(H), we have a morphism of algebras as follows, where
Hol(σ(T )) is the algebra of functions which are holomorphic around σ(T ),

Hol(σ(T ))→ B(H) , f → f(T )

which extends the previous rational functional calculus f → f(T ). We have:

σ(f(T )) = f(σ(T ))

Moreover, if σ(T ) is contained in an open set U and fn, f : U → C are holomorphic
functions such that fn → f uniformly on compact subsets of U then fn(T )→ f(T ).

Proof. This follows indeed by reasoning along the above lines, by making a heavy
use of the Cauchy formula, and for full details here, we refer to any specialized operator
theory book. In what follows, we will not really need this result. □

In order to formulate now our next result, we will need the following notion:

Definition 15.16. Given an operator T ∈ B(H), its spectral radius

ρ(T ) ∈
[
0, ||T ||

]
is the radius of the smallest disk centered at 0 containing σ(T ).

Now with this notion in hand, we have the following key result, improving our key
theoretical result so far about spectra, namely σ(T ) ̸= ∅, from Theorem 15.6:

Theorem 15.17. The spectral radius of an operator T ∈ B(H) is given by

ρ(T ) = lim
n→∞

||T n||1/n

and in this formula, we can replace the limit by an inf.

Proof. We have several things to be proved, the idea being as follows:

(1) Our first claim is that the numbers un = ||T n||1/n satisfy:

(n+m)un+m ≤ nun +mum

Indeed, we have the following estimate, using the Young inequality ab ≤ ap/p+ bq/q,
with exponents p = (n+m)/n and q = (n+m)/m:

un+m = ||T n+m||1/(n+m)

≤ ||T n||1/(n+m)||Tm||1/(n+m)

≤ ||T n||1/n · n

n+m
+ ||Tm||1/m · m

n+m

=
nun +mum
n+m

(2) Our second claim is that the second assertion holds, namely:

lim
n→∞

||T n||1/n = inf
n
||T n||1/n
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For this purpose, we just need the inequality found in (1). Indeed, fix m ≥ 1, let
n ≥ 1, and write n = lm+ r with 0 ≤ r ≤ m− 1. By using twice uab ≤ ub, we get:

un ≤
1

n
(lmulm + rur)

≤ 1

n
(lmum + ru1)

≤ um +
r

n
u1

It follows that we have lim supn un ≤ um, which proves our claim.

(3) Summarizing, we are left with proving the main formula, which is as follows, and
with the remark that we already know that the sequence on the right converges:

ρ(T ) = lim
n→∞

||T n||1/n

In one sense, we can use the polynomial calculus formula σ(T n) = σ(T )n. Indeed, this
gives the following estimate, valid for any n, as desired:

ρ(T ) = sup
λ∈σ(T )

|λ|

= sup
ρ∈σ(T )n

|ρ|1/n

= sup
ρ∈σ(Tn)

|ρ|1/n

= ρ(T n)1/n

≤ ||T n||1/n

(4) For the reverse inequality, we fix a number ρ > ρ(T ), and we want to prove that
we have ρ ≥ limn→∞ ||T n||1/n. By using the Cauchy formula, we have:

1

2πi

∫
|z|=ρ

zn

z − T
dz =

1

2πi

∫
|z|=ρ

∞∑
k=0

zn−k−1T k dz

=
∞∑
k=0

1

2πi

(∫
|z|=ρ

zn−k−1dz

)
T k

=
∞∑
k=0

δn,k+1T
k

= T n−1

By applying the norm we obtain from this formula:

||T n−1|| ≤ 1

2π

∫
|z|=ρ

∣∣∣∣∣∣∣∣ zn

z − T

∣∣∣∣∣∣∣∣ dz ≤ ρn · sup
|z|=ρ

∣∣∣∣∣∣∣∣ 1

z − T

∣∣∣∣∣∣∣∣



15C. NORMAL OPERATORS 303

Since the sup does not depend on n, by taking n-th roots, we obtain in the limit:

ρ ≥ lim
n→∞

||T n||1/n

Now recall that ρ was by definition an arbitrary number satisfying ρ > ρ(T ). Thus,
we have obtained the following estimate, valid for any T ∈ B(H):

ρ(T ) ≥ lim
n→∞

||T n||1/n

Thus, we are led to the conclusion in the statement. □

In the case of the normal elements, we have the following finer result:

Theorem 15.18. The spectral radius of a normal element,

TT ∗ = T ∗T

is equal to its norm.

Proof. We can proceed in two steps, as follows:

Step 1. In the case T = T ∗ we have ||T n|| = ||T ||n for any exponent of the form

n = 2k, by using the formula ||TT ∗|| = ||T ||2, and by taking n-th roots we get:

ρ(T ) ≥ ||T ||

Thus, we are done with the self-adjoint case, with the result ρ(T ) = ||T ||.

Step 2. In the general normal case TT ∗ = T ∗T we have T n(T n)∗ = (TT ∗)n, and by
using this, along with the result from Step 1, applied to TT ∗, we obtain:

ρ(T ) = lim
n→∞

||T n||1/n

=
√

lim
n→∞

||T n(T n)∗||1/n

=
√

lim
n→∞

||(TT ∗)n||1/n

=
√
ρ(TT ∗)

=
√
||T ||2

= ||T ||

Thus, we are led to the conclusion in the statement. □

15c. Normal operators

By using Theorem 15.18 we can say a number of non-trivial things about the normal
operators, commonly known as “spectral theorem for normal operators”. As a first result
here, we can improve the polynomial functional calculus formula, as follows:
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Theorem 15.19. Given T ∈ B(H) normal, we have a morphism of algebras

C[X]→ B(H) , P → P (T )

having the properties ||P (T )|| = ||P|σ(T )||, and σ(P (T )) = P (σ(T )).

Proof. This is an improvement of Theorem 15.8 in the normal case, with the extra
assertion being the norm estimate. But the element P (T ) being normal, we can apply to
it the spectral radius formula for normal elements, and we obtain:

||P (T )|| = ρ(P (T ))

= sup
λ∈σ(P (T ))

|λ|

= sup
λ∈P (σ(T ))

|λ|

= ||P|σ(T )||

Thus, we are led to the conclusions in the statement. □

We can improve as well the rational calculus formula, and the holomorphic calculus
formula, in the same way. Importantly now, at a more advanced level, we have:

Theorem 15.20. Given T ∈ B(H) normal, we have a morphism of algebras

C(σ(T ))→ B(H) , f → f(T )

which is isometric, ||f(T )|| = ||f ||, and has the property σ(f(T )) = f(σ(T )).

Proof. The idea here is to “complete” the morphism in Theorem 15.19, namely:

C[X]→ B(H) , P → P (T )

Indeed, we know from Theorem 1.19 that this morphism is continuous, and is in fact
isometric, when regarding the polynomials P ∈ C[X] as functions on σ(T ):

||P (T )|| = ||P|σ(T )||

Thus, by Stone-Weierstrass, we have a unique isometric extension, as follows:

C(σ(T ))→ B(H) , f → f(T )

It remains to prove σ(f(T )) = f(σ(T )), and we can do this by double inclusion:

“⊂” Given a continuous function f ∈ C(σ(T )), we must prove that we have:

λ /∈ f(σ(T )) =⇒ λ /∈ σ(f(T ))

For this purpose, consider the following function, which is well-defined:

1

f − λ
∈ C(σ(T ))
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We can therefore apply this function to T , and we obtain:(
1

f − λ

)
T =

1

f(T )− λ
In particular f(T )− λ is invertible, so λ /∈ σ(f(T )), as desired.
“⊃” Given a continuous function f ∈ C(σ(T )), we must prove that we have:

λ ∈ f(σ(T )) =⇒ λ ∈ σ(f(T ))
But this is the same as proving that we have:

µ ∈ σ(T ) =⇒ f(µ) ∈ σ(f(T ))
For this purpose, we approximate our function by polynomials, Pn → f , and we

examine the following convergence, which follows from Pn → f :

Pn(T )− Pn(µ)→ f(T )− f(µ)
We know from polynomial functional calculus that we have:

Pn(µ) ∈ Pn(σ(T )) = σ(Pn(T ))

Thus, the operators Pn(T ) − Pn(µ) are not invertible. On the other hand, we know
that the set formed by the invertible operators is open, so its complement is closed. Thus
the limit f(T )− f(µ) is not invertible either, and so f(µ) ∈ σ(f(T )), as desired. □

As an important comment, Theorem 15.20 is not exactly in final form, because it
misses an important point, namely that our correspondence maps:

z̄ → T ∗

However, this is something non-trivial, and we will be back to this later. Observe
however that Theorem 15.20 is fully powerful for the self-adjoint operators, T = T ∗,
where the spectrum is real, so where z = z̄ on the spectrum. We will be back to this.

As a second result now, along the same lines, we can further extend Theorem 15.20
into a measurable functional calculus theorem, as follows:

Theorem 15.21. Given T ∈ B(H) normal, we have a morphism of algebras as follows,
with L∞ standing for abstract measurable functions, or Borel functions,

L∞(σ(T ))→ B(H) , f → f(T )

which is isometric, ||f(T )|| = ||f ||, and has the property σ(f(T )) = f(σ(T )).

Proof. As before, the idea will be that of “completing” what we have. To be more
precise, we can use the Riesz theorem and a polarization trick, as follows:

(1) Given a vector x ∈ H, consider the following functional:

C(σ(T ))→ C , g →< g(T )x, x >
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By the Riesz theorem, this functional must be the integration with respect to a certain
measure µ on the space σ(T ). Thus, we have a formula as follows:

< g(T )x, x >=

∫
σ(T )

g(z)dµ(z)

Now given an arbitrary Borel function f ∈ L∞(σ(T )), as in the statement, we can
define a number < f(T )x, x >∈ C, by using exactly the same formula, namely:

< f(T )x, x >=

∫
σ(T )

f(z)dµ(z)

Thus, we have managed to define numbers < f(T )x, x >∈ C, for all vectors x ∈ H,
and in addition we can recover these numbers as follows, with gn ∈ C(σ(T )):

< f(T )x, x >= lim
gn→f

< gn(T )x, x >

(2) In order to define now numbers < f(T )x, y >∈ C, for all vectors x, y ∈ H, we can
use a polarization trick. Indeed, for any operator S ∈ B(H) we have:

< S(x+ y), x+ y > = < Sx, x > + < Sy, y >

+ < Sx, y > + < Sy, x >

By replacing y → iy, we have as well the following formula:

< S(x+ iy), x+ iy > = < Sx, x > + < Sy, y >

−i < Sx, y > +i < Sy, x >

By multiplying this latter formula by i, we obtain the following formula:

i < S(x+ iy), x+ iy > = i < Sx, x > +i < Sy, y >

+ < Sx, y > − < Sy, x >

Now by summing this latter formula with the first one, we obtain:

< S(x+ y), x+ y > +i < S(x+ iy), x+ iy > = (1 + i)[< Sx, x > + < Sy, y >]

+2 < Sx, y >

(3) But with this, we can now finish. Indeed, by combining (1,2), given a Borel
function f ∈ L∞(σ(T )), we can define numbers < f(T )x, y >∈ C for any x, y ∈ H, and it
is routine to check, by using approximation by continuous functions gn → f as in (1), that
we obtain in this way an operator f(T ) ∈ B(H), having all the desired properties. □

As a comment here, the above result and its proof provide us with more than a Borel
functional calculus, because what we got is a certain measure on the spectrum σ(T ), along
with a functional calculus for the L∞ functions with respect to this measure. We will be
back to this later, and for the moment we will only need Theorem 15.21 as formulated,
with L∞(σ(T )) standing, a bit abusively, for the Borel functions on σ(T ).
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15d. Diagonalization

Let us discuss now some useful decomposition results for the bounded linear operators
T ∈ B(H), that we can now establish, by using the above measurable calculus technology.
We know that any z ∈ C can be written as follows, with a, b ∈ R:

z = a+ ib

Also, we know that both the real and imaginary parts a, b ∈ R, and more generally
any real number c ∈ R, can be written as follows, with r, s ≥ 0:

c = r − s

In order to discuss now the operator theoretic generalizations of these results, which
by the way covers the usual matrix case too, let us start with the following basic fact:

Theorem 15.22. Any operator T ∈ B(H) can be written as

T = Re(T ) + iIm(T )

with Re(T ), Im(T ) ∈ B(H) being self-adjoint, and this decomposition is unique.

Proof. This is something elementary, the idea being as follows:

(1) As a first observation, in the case H = C our operators are usual complex numbers,
and the formula in the statement corresponds to the following basic fact:

z = Re(z) + iIm(z)

(2) In general now, we can use the same formulae for the real and imaginary part as
in the complex number case, the decomposition formula being as follows:

T =
T + T ∗

2
+ i · T − T

∗

2i

To be more precise, both the operators on the right are self-adjoint, and the summing
formula holds indeed, and so we have our decomposition result, as desired.

(3) Regarding now the uniqueness, by linearity it is enough to show that R + iS = 0
with R, S both self-adjoint implies R = S = 0. But this follows by applying the adjoint
to R + iS = 0, which gives R− iS = 0, and so R = S = 0, as desired. □

More generally now, as a continuation of this, and as an answer to some of the questions
raised above, in relation with the complex numbers, we have the following result:

Theorem 15.23. Given an operator T ∈ B(H), the following happen:

(1) We can write T = A+ iB, with A,B ∈ B(H) being self-adjoint.
(2) When T = T ∗, we can write T = R− S, with R, S ∈ B(H) being positive.
(3) Thus, we can write any T as a linear combination of 4 positive elements.
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Proof. All this follows from basic spectral theory, as follows:

(1) This is something that we already know, from Theorem 15.22, with the decompo-
sition formula there being something straightforward, as follows:

T =
T + T ∗

2
+ i · T − T

∗

2i

(2) This follows from the measurable functional calculus. Indeed, assuming T = T ∗

we have σ(T ) ⊂ R, so we can use the following decomposition formula on R:

1 = χ[0,∞) + χ(−∞,0)

To be more precise, let us multiply by z, and rewrite this formula as follows:

z = χ[0,∞)z − χ(−∞,0)(−z)

Now by applying these measurable functions to T , we obtain as formula as follows,
with both the operators T+, T− ∈ B(H) being positive, as desired:

T = T+ − T−
(3) This follows indeed by combining the results in (1) and (2) above. □

Going ahead with our decomposition results, another basic thing that we know about
complex numbers is that any z ∈ C appears as a real multiple of a unitary:

z = reit

Finding the correct operator theoretic analogue of this is quite tricky, and this even
for the usual matrices A ∈MN(C). As a basic result here, we have:

Theorem 15.24. Given an operator T ∈ B(H), the following happen:

(1) When T = T ∗ and ||T || ≤ 1, we can write T as an average of 2 unitaries:

T =
U + V

2

(2) In the general T = T ∗ case, we can write T as a rescaled sum of unitaries:

T = λ(U + V )

(3) Thus, in general, we can write T as a rescaled sum of 4 unitaries.

Proof. This follows from the results that we have, as follows:

(1) Assuming T = T ∗ and ||T || ≤ 1 we have 1− T 2 ≥ 0, and the decomposition that
we are looking for is as follows, with both the components being unitaries:

T =
T + i

√
1− T 2

2
+
T − i

√
1− T 2

2
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To be more precise, the square root can be extracted by using the continuous functional
calculus, and the check of the unitarity of the components goes as follows:

(T + i
√
1− T 2)(T − i

√
1− T 2) = T 2 + (1− T 2)

= 1

(2) This simply follows by applying (1) to the operator T/||T ||.
(3) Assuming first that we have ||T || ≤ 1, we know from Theorem 15.23 (1) that we

can write T = A + iB, with A,B being self-adjoint, and satisfying ||A||, ||B|| ≤ 1. Now
by applying (1) to both A and B, we obtain a decomposition of T as follows:

T =
U + V +W +X

2

In general, we can apply this to the operator T/||T ||, and we obtain the result. □

Good news, we can now diagonalize the normal operators. We will do this in 3
steps, first for the self-adjoint operators, then for the families of commuting self-adjoint
operators, and finally for the general normal operators, by using the following trick:

T = Re(T ) + iIm(T )

However, and coming somehow as bad news, all this will be quite technical. Indeed,
the diagonalization in infinite dimensions is more tricky than in finite dimensions, and
instead of writing a formula of type T = UDU∗, with U,D ∈ B(H) being respectively
unitary and diagonal, we will express our operator as T = U∗MU , with U : H → K being
a certain unitary, and M ∈ B(K) being a certain diagonal operator. The point indeed is
that this is how the spectral theorem is used in practice, for concrete applications.

But probably too much talking, let us get to work. We first have:

Theorem 15.25. Any self-adjoint operator T ∈ B(H) can be diagonalized,

T = U∗MfU

with U : H → L2(X) being a unitary operator from H to a certain L2 space associated to
T , with f : X → R being a certain function, once again associated to T , and with

Mf (g) = fg

being the usual multiplication operator by f , on the Hilbert space L2(X).

Proof. The construction of U, f can be done in several steps, as follows:

(1) We first prove the result in the special case where our operator T has a cyclic
vector x ∈ H, with this meaning that the following holds:

span
(
T kx

∣∣∣n ∈ N
)
= H
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For this purpose, let us go back to the proof of Theorem 15.21. We will use the
following formula from there, with µ being the measure on X = σ(T ) associated to x:

< g(T )x, x >=

∫
σ(T )

g(z)dµ(z)

Our claim is that we can define a unitary U : H → L2(X), first on the dense part
spanned by the vectors T kx, by the following formula, and then by continuity:

U [g(T )x] = g

Indeed, the following computation shows that U is well-defined, and isometric:

||g(T )x||2 = < g(T )x, g(T )x >

= < g(T )∗g(T )x, x >

= < |g|2(T )x, x >

=

∫
σ(T )

|g(z)|2dµ(z)

= ||g||22
We can then extend U by continuity into a unitary U : H → L2(X), as claimed. Now

observe that we have the following formula:

UTU∗g = U [Tg(T )x]

= U [(zg)(T )x]

= zg

Thus our result is proved in the present case, with U as above, and with f(z) = z.

(2) We discuss now the general case. Our first claim is that H has a decomposition
as follows, with each Hi being invariant under T , and admitting a cyclic vector xi:

H =
⊕
i

Hi

Indeed, this is something elementary, the construction being by recurrence in finite
dimensions, in the obvious way, and by using the Zorn lemma in general. Now with this
decomposition in hand, we can make a direct sum of the diagonalizations obtained in (1),
for each of the restrictions T|Hi

, and we obtain the formula in the statement. □

The above result is very nice, closing more or less the discussion regarding the self-
adjoint operators. At the theoretical level, however, there are still a number of comments
that can be made, about this, and we will be back to this, at the end of this chapter.

We have the following technical generalization of the above result:
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Theorem 15.26. Any family of commuting self-adjoint operators Ti ∈ B(H) can be
jointly diagonalized,

Ti = U∗MfiU

with U : H → L2(X) being a unitary operator from H to a certain L2 space associated to
{Ti}, with fi : X → R being certain functions, once again associated to Ti, and with

Mfi(g) = fig

being the usual multiplication operator by fi, on the Hilbert space L2(X).

Proof. This is similar to the proof of Theorem 15.25, by suitably modifying the
measurable calculus formula, and µ itself, as to have this working for all operators Ti. □

We can now discuss the case of the arbitrary normal operators, as follows:

Theorem 15.27. Any normal operator T ∈ B(H) can be diagonalized,

T = U∗MfU

with U : H → L2(X) being a unitary operator from H to a certain L2 space associated to
T , with f : X → C being a certain function, once again associated to T , and with

Mf (g) = fg

being the usual multiplication operator by f , on the Hilbert space L2(X).

Proof. This is our main diagonalization theorem, the idea being as follows:

(1) Consider the decomposition of T into its real and imaginary parts, namely:

T =
T + T ∗

2
+ i · T − T

∗

2i
We know that the real and imaginary parts are self-adjoint operators. Now since T

was assumed to be normal, TT ∗ = T ∗T , these real and imaginary parts commute:[
T + T ∗

2
,
T − T ∗

2i

]
= 0

Thus Theorem 15.26 applies to these real and imaginary parts, and gives the result. □

This was for our series of diagonalization theorems. There is of course one more result
here, regarding the families of commuting normal operators, as follows:

Theorem 15.28. Any family of commuting normal operators Ti ∈ B(H) can be jointly
diagonalized,

Ti = U∗MfiU

with U : H → L2(X) being a unitary operator from H to a certain L2 space associated to
{Ti}, with fi : X → C being certain functions, once again associated to Ti, and with

Mfi(g) = fig

being the usual multiplication operator by fi, on the Hilbert space L2(X).
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Proof. This is similar to the proof of Theorem 15.26 and Theorem 15.27, by com-
bining the arguments there. To be more precise, this follows as Theorem 15.26, by using
the decomposition trick from the proof of Theorem 15.27. □

With the above diagonalization results in hand, we can now “fix” the continuous and
measurable functional calculus theorems, with a key complement, as follows:

Theorem 15.29. Given a normal operator T ∈ B(H), the following hold, for both the
functional calculus and the measurable calculus morphisms:

(1) These morphisms are ∗-morphisms.
(2) The function z̄ gets mapped to T ∗.
(3) The functions Re(z), Im(z) get mapped to Re(T ), Im(T ).
(4) The function |z|2 gets mapped to TT ∗ = T ∗T .
(5) If f is real, then f(T ) is self-adjoint.

Proof. These assertions are more or less equivalent, with (1) being the main one,
which obviously implies everything else. But this assertion (1) follows from the diagonal-
ization result for normal operators, from Theorem 15.27. □

15e. Exercises

Exercises:

Exercise 15.30.

Exercise 15.31.

Exercise 15.32.

Exercise 15.33.

Exercise 15.34.

Exercise 15.35.

Exercise 15.36.

Exercise 15.37.

Bonus exercise.



CHAPTER 16

Quantum mechanics

16a. Atomic theory

Welcome to quantum mechanics. As a starting point, we have the following funda-
mental, grand result, due to Rydberg in 1888, based on the Balmer series, and with later
contributions by Ritz in 1908, using the Lyman series as well:

Fact 16.1 (Rydberg, Ritz). The spectral lines of the hydrogen atom are given by the
Rydberg formula, depending on integer parameters n1 < n2,

1

λn1n2

= R

(
1

n2
1

− 1

n2
2

)
with R being the Rydberg constant for hydrogen, which is as follows:

R ≃ 1.096 775 83× 107

These spectral lines combine according to the Ritz-Rydberg principle, as follows:

1

λn1n2

+
1

λn2n3

=
1

λn1n3

Similar formulae hold for other atoms, with suitable fine-tunings of R.

Here the first part, the Rydberg formula, generalizes the results of Lyman, Balmer,
Paschen, which appear at n1 = 1, 2, 3, at least retrospectively. The Rydberg formula
predicts further spectral lines, appearing at n1 = 4, 5, 6, . . . , and these were discovered
later, by Brackett in 1922, Pfund in 1924, Humphreys in 1953, and others afterwards,
with all these extra lines being in far IR. The simplified complete table is as follows:

n1 n2 Series name Wavelength n2 =∞ Color n2 =∞
− −

1 2−∞ Lyman 91.13 nm UV
2 3−∞ Balmer 364.51 nm UV
3 4−∞ Paschen 820.14 nm IR

− −
4 5−∞ Brackett 1458.03 nm far IR
5 6−∞ Pfund 2278.17 nm far IR
6 7−∞ Humphreys 3280.56 nm far IR
...

...
...

...
...

313
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Regarding the last assertion, concerning other elements, this was something conjec-
tured and partly verified by Ritz, and fully verified and clarified later, via many experi-
ments, the fine-tuning of R being basically R→ RZ2, where Z is the atomic number.

From a theoretical physics viewpoint, the main result remains the middle assertion,
called Ritz-Rydberg combination principle. This is something at the same time extremely
simple, and completely puzzling, the informal conclusion being as follows:

Thought 16.2. The simplest observables of the hydrogen atom, combining via

1

λn1n2

+
1

λn2n3

=
1

λn1n3

look like quite weird quantities. Why wouldn’t they just sum normally.

Fortunately, mathematics comes to the rescue. Indeed, the Ritz-Rydberg combination
principle reminds the formula en1n2en2n3 = en1n3 for the usual matrix units eij : ej → ei.
In short, we are in familiar territory here, and we can start dreaming of:

Principle 16.3. Observables in quantum mechanics should be some sort of infinite
matrices, generalizing the Lyman, Balmer, Paschen lines of the hydrogen atom, and mul-
tiplying between them as the matrices do, as to produce further observables.

In practice now, all this leads to the following grand conclusion:

Claim 16.4 (Bohr and others). The atoms are formed by a core of protons and neu-
trons, surrounded by a cloud of electrons, basically obeying to a modified version of elec-
tromagnetism. And with a fine mechanism involved, as follows:

(1) The electrons are free to move only on certain specified elliptic orbits, labeled
1, 2, 3, . . . , situated at certain specific heights.

(2) The electrons can jump or fall between orbits n1 < n2, absorbing or emitting light
and heat, that is, electromagnetic waves, as accelerating charges.

(3) The energy of such a wave, coming from n1 → n2 or n2 → n1, is given, via the
Planck viewpoint, by the Rydberg formula, applied with n1 < n2.

(4) The simplest such jumps are those observed by Lyman, Balmer, Paschen. And
multiple jumps explain the Ritz-Rydberg formula.

And the story is not over here. Following now Heisenberg, the next claim is that
the underlying mathematics in all the above can lead to a beautiful axiomatization of
quantum mechanics, as a “matrix mechanics”, along the lines of Principle 16.3.

All this is quite deep, and needs a number of comments, as follows:

(1) First of all, our matrices must be indeed infinite, because so are the series observed
by Lyman, Balmer, Paschen, corresponding to n1 = 1, 2, 3 in the Rydberg formula, and
making it clear that the range of the second parameter n2 > n1 is up to ∞.
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(2) Although this was not known to Ritz-Rydberg and Heisenberg, let us mention too
that some later results of Brackett, Pfund, Humphreys and others, at n1 = 4, 5, 6, . . . ,
confirmed the fact that the range of the first parameter n1 is up to ∞ too.

(3) As a more tricky comment now, going beyond what Principle 16.3 says, our infinite
matrices must be in fact complex. This was something known to Heisenberg, and later
Schrödinger came with proof that quantum mechanics naturally lives over C.

(4) But all this leads us into some tricky mathematics, because the infinite matrices
A ∈ M∞(C) do not act on the vectors v ∈ C∞ just like that. For instance the all-one
matrix Aij = 1 does not act on the all-one vector vi = 1, for obvious reasons.

16b. Schrödinger equation

Time now to get into the real thing, namely quantum mechanics. However, before
getting back to what Heisenberg was saying, based on Lyman, Balmer, Paschen, namely
developing some sort of “matrix mechanics”, let us hear as well the point of view of
Schrödinger, which came a few years later. His idea was to forget about exact things, and
try to investigate the hydrogen atom statistically. Let us start with:

Question 16.5. In the context of the hydrogen atom, assuming that the proton is
fixed, what is the probability density φt(x) of the position of the electron e, at time t,

Pt(e ∈ V ) =

∫
V

φt(x)dx

as function of an intial probability density φ0(x)? Moreover, can the corresponding equa-
tion be solved, and will this prove the Bohr claims for hydrogen, statistically?

In order to get familiar with this question, let us first look at examples coming from
classical mechanics. In the context of a particle whose position at time t is given by
x0 + γ(t), the evolution of the probability density will be given by:

φt(x) = φ0(x) + γ(t)

However, such examples are somewhat trivial, of course not in relation with the com-
putation of γ, usually a difficult question, but in relation with our questions, and do not
apply to the electron. The point indeed is that, in what regards the electron, we have:

Fact 16.6. In respect with various simple interference experiments:

(1) The electron is definitely not a particle in the usual sense.
(2) But in most situations it behaves exactly like a wave.
(3) But in other situations it behaves like a particle.
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Getting back now to the Schrödinger question, all this suggests to use, as for the
waves, an amplitude function ψt(x) ∈ C, related to the density φt(x) > 0 by the formula
φt(x) = |ψt(x)|2. Not that a big deal, you would say, because the two are related by
simple formulae as follows, with θt(x) being an arbitrary phase function:

φt(x) = |ψt(x)|2 , ψt(x) = eiθt(x)
√
φt(x)

However, such manipulations can be crucial, raising for instance the possibility that
the amplitude function satisfies some simple equation, while the density itself, maybe not.
And this is what happens indeed. Schrödinger was led in this way to:

Claim 16.7 (Schrödinger). In the context of the hydrogen atom, the amplitude function
of the electron ψ = ψt(x) is subject to the Schrödinger equation

ihψ̇ = − h2

2m
∆ψ + V ψ

m being the mass, h = h0/2π the reduced Planck constant, and V the Coulomb potential
of the proton. The same holds for movements of the electron under any potential V .

Observe the similarity with the wave equation φ̈ = v2∆φ, and with the heat equation
φ̇ = α∆φ too. Many things can be said here. Following now Heisenberg and Schrödinger,
and then especially Dirac, who did the axiomatization work, we have:

Definition 16.8. In quantum mechanics the states of the system are vectors of a
Hilbert space H, and the observables of the system are linear operators

T : H → H

which can be densely defined, and are taken self-adjoint, T = T ∗. The average value of
such an observable T , evaluated on a state ξ ∈ H, is given by:

< T >=< Tξ, ξ >

In the context of the Schrödinger mechanics of the hydrogen atom, the Hilbert space is the
space H = L2(R3) where the wave function ψ lives, and we have

< T >=

∫
R3

T (ψ) · ψ̄ dx

which is called “sandwiching” formula, with the operators

x , −ih
m
∇ , −ih∇ , −h

2∆

2m
, −h

2∆

2m
+ V

representing the position, speed, momentum, kinetic energy, and total energy.

In other words, we are doing here two things. First, we are declaring by axiom that
various “sandwiching” formulae found before by Heisenberg, involving the operators at
the end, that we will not get into in detail here, hold true. And second, we are raising
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the possibility for other quantum mechanical systems, more complicated, to be described
as well by the mathematics of the operators on a certain Hilbert space H, as above.

So, this was the story of early quantum mechanics, over-simplified as to fit here in
a few pages. For more, you can check Feynman [35] for foundations, and everything,
including for some nice pictures and explanations regarding Fact 16.6. You have as well
Griffiths [45] or Weinberg [91], for further explanations on Definition 16.8, not to forget
Dirac’s original text [25], and all this is discussed as well in my book [12].

16c. Spherical coordinates

In order to solve now the hydrogen atom, the idea will be that of reformulating the
Schrödinger equation in spherical coordinates. And for this purpose, we will need:

Theorem 16.9. The Laplace operator in spherical coordinates is

∆ =
1

r2
· d
dr

(
r2 · d

dr

)
+

1

r2 sin s
· d
ds

(
sin s · d

ds

)
+

1

r2 sin2 s
· d

2

dt2

with our standard conventions for these coordinates, in 3D.

Proof. There are several proofs here, a short, elementary one being as follows:

(1) Let us first see how ∆ behaves under a change of coordinates {xi} → {yi}, in
arbitrary N dimensions. Our starting point is the chain rule for derivatives:

d

dxi
=
∑
j

d

dyj
· dyj
dxi

By using this rule, then Leibnitz for products, then again this rule, we obtain:

d2f

dx2i
=

∑
j

d

dxi

(
df

dyj
· dyj
dxi

)
=

∑
j

d

dxi

(
df

dyj

)
· dyj
dxi

+
df

dyj
· d
dxi

(
dyj
dxi

)

=
∑
j

(∑
k

d

dyk
· dyk
dxi

)(
df

dyj

)
· dyj
dxi

+
df

dyj
· d

2yj
dx2i

=
∑
jk

d2f

dykdyj
· dyk
dxi
· dyj
dxi

+
∑
j

df

dyj
· d

2yj
dx2i



318 16. QUANTUM MECHANICS

(2) Now by summing over i, we obtain the following formula, with A being the deriv-
ative of x→ y, that is to say, the matrix of partial derivatives dyi/dxj:

∆f =
∑
ijk

d2f

dykdyj
· dyk
dxi
· dyj
dxi

+
∑
ij

df

dyj
· d

2yj
dx2i

=
∑
ijk

AkiAji
d2f

dykdyj
+
∑
ij

d2yj
dx2i
· df
dyj

=
∑
jk

(AAt)jk
d2f

dykdyj
+
∑
j

∆(yj)
df

dyj

(3) So, this will be the formula that we will need. Observe that this formula can be
further compacted as follows, with all the notations being self-explanatory:

∆f = Tr(AAtHy(f))+ < ∆(y),∇y(f) >

(4) Getting now to spherical coordinates, (x, y, z) → (r, s, t), the derivative of the
inverse, obtained by differentiating x, y, z with respect to r, s, t, is given by:

A−1 =

 cos s −r sin s 0
sin s cos t r cos s cos t −r sin s sin t
sin s sin t r cos s sin t r sin s cos t


The product (A−1)tA−1 of the transpose of this matrix with itself is then: cos s sin s cos t sin s sin t
−r sin s r cos s cos t r cos s sin t

0 −r sin s sin t r sin s cos t

 cos s −r sin s 0
sin s cos t r cos s cos t −r sin s sin t
sin s sin t r cos s sin t r sin s cos t


But everything simplifies here, and we have the following remarkable formula, which

by the way is something very useful, worth to be memorized:

(A−1)tA−1 =

1 0 0
0 r2 0
0 0 r2 sin2 s


Now by inverting, we obtain the following formula, in relation with the above:

AAt =

1 0 0
0 1/r2 0
0 0 1/(r2 sin2 s)
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(5) Let us compute now the Laplacian of r, s, t. We first have the following formula,
that we will use many times in what follows, and is worth to be memorized:

dr

dx
=

d

dx

√
x2 + y2 + z2

=
1

2
· 2x√

x2 + y2 + z2

=
x

r

Of course the same computation works for y, z too, and we therefore have:

dr

dx
=
x

r
,

dr

dy
=
y

r
,

dr

dz
=
z

r

(6) By using the above formulae, twice, we can compute the Laplacian of r:

∆(r) = ∆
(√

x2 + y2 + z2
)

=
d

dx

(x
r

)
+

d

dy

(y
r

)
+

d

dz

(z
r

)
=

r2 − x2

r3
+
r2 − y2

r3
+
r2 − z2

r3

=
2

r

(7) In what regards now s, the computation here goes as follows:

∆(s) = ∆
(
arccos

(x
r

))
=

d

dx

(
−
√
r2 − x2
r2

)
+

d

dy

(
xy

r2
√
r2 − x2

)
+

d

dz

(
xz

r2
√
r2 − x2

)
=

2x
√
r2 − x2
r4

+
r2(z2 − 2y2) + 2x2y2

r4
√
r2 − x2

+
r2(y2 − 2z2) + 2x2z2

r4
√
r2 − x2

=
2x
√
r2 − x2
r4

+
x(2x2 − r2)
r4
√
r2 − x2

=
x

r2
√
r2 − x2

=
cos s

r2 sin s
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(8) Finally, in what regards t, the computation here goes as follows:

∆(t) = ∆

(
arctan

(
z

y

))
=

d

dx
(0) +

d

dy

(
− z

y2 + z2

)
+

d

dz

(
y

y2 + z2

)
= 0− 2yz

(y2 + z2)2
+

2yz

(y2 + z2)2

= 0

(9) We can now plug the data from (4) and (6,7,8) in the general formula that we
found in (2) above, and we obtain in this way:

∆f =
d2f

dr2
+

1

r2
· d

2f

ds2
+

1

r2 sin2 s
· d

2f

dt2
+

2

r
· df
dr

+
cos s

r2 sin s
· df
ds

=
2

r
· df
dr

+
d2f

dr2
+

cos s

r2 sin s
· df
ds

+
1

r2
· d

2f

ds2
+

1

r2 sin2 s
· d

2f

dt2

=
1

r2
· d
dr

(
r2 · df

dr

)
+

1

r2 sin s
· d
ds

(
sin s · df

ds

)
+

1

r2 sin2 s
· d

2f

dt2

Thus, we are led to the formula in the statement. □

Still with me, I hope, and do not worry, one day you will have such computations
for breakfast. We can now reformulate the Schrödinger equation in spherical coordinates,
and separate the variables, which leads to a radial and angular equation, as follows:

Theorem 16.10. The time-independent Schrödinger equation in spherical coordinates
separates, for solutions of type ϕ = ρ(r)α(s, t), into two equations, as follows,

d

dr

(
r2 · dρ

dr

)
− 2mr2

h2
(V − E)ρ = Kρ

sin s · d
ds

(
sin s · dα

ds

)
+
d2α

dt2
= −K sin2 s · α

with K being a constant, called radial equation, and angular equation.

Proof. By using the formula in Theorem 16.9, the time-independent Schrödinger
equation reformulates in spherical coordinates as follows:

(V − E)ϕ =
h2

2m

[
1

r2
· d
dr

(
r2 · dϕ

dr

)
+

1

r2 sin s
· d
ds

(
sin s · dϕ

ds

)
+

1

r2 sin2 s
· d

2ϕ

dt2

]
Let us look now for separable solutions for this latter equation, consisting of a radial

part and an angular part, as in the statement, namely:

ϕ(r, s, t) = ρ(r)α(s, t)
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By plugging this function into our equation, we obtain:

(V − E)ρα =
h2

2m

[
α

r2
· d
dr

(
r2 · dρ

dr

)
+

ρ

r2 sin s
· d
ds

(
sin s · dα

ds

)
+

ρ

r2 sin2 s
· d

2α

dt2

]
In order to solve this equation, we will do two manipulations. First, by multiplying

everything by 2mr2/(h2ρα), this equation takes the following more convenient form:

2mr2

h2
(V − E) = 1

ρ
· d
dr

(
r2 · dρ

dr

)
+

1

α sin s
· d
ds

(
sin s · dα

ds

)
+

1

α sin2 s
· d

2α

dt2

Now observe that by moving the radial terms to the left, and the angular terms to the
right, this latter equation can be written as follows:

2mr2

h2
(V − E)− 1

ρ
· d
dr

(
r2 · dρ

dr

)
=

1

α sin2 s

[
sin s · d

ds

(
sin s · dα

ds

)
+
d2α

dt2

]
Since this latter equation is now separated between radial and angular variables, both

sides must be equal to a certain constant −K, as follows:

2mr2

h2
(V − E)− 1

ρ
· d
dr

(
r2 · dρ

dr

)
= −K

1

α sin2 s

[
sin s · d

ds

(
sin s · dα

ds

)
+
d2α

dt2

]
= −K

But this leads to the conclusion in the statement. □

Let us first study the angular equation. We first have the following result:

Proposition 16.11. The angular equation that we found before, namely

sin s · d
ds

(
sin s · dα

ds

)
+
d2α

dt2
= −K sin2 s · α

separates, for solutions of type α = σ(s)θ(t), into two equations, as follows,

1

θ
· d

2θ

dt2
= −m2

sin s

σ
· d
ds

(
sin s · dσ

ds

)
+K sin2 s = m2

with m being a constant, called azimuthal equation, and polar equation.

Proof. This is something elementary, the idea being as follows:

(1) Let us first recall that r ∈ [0,∞) is the radius, s ∈ [0, π] is the polar angle, and
t ∈ [0, 2π] is the azimuthal angle. Be said in passing, there are several conventions and
notations here, and the above ones, that we use here, come from the general ones in N
dimensions, because further coordinates can be easily added, in the obvious way.
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(2) Getting back now to our question, by plugging α = σ(s)θ(t) into the angular
equation, we obtain:

sin s · θ · d
ds

(
sin s · dσ

ds

)
+ σ · d

2θ

dt2
= −K sin2 s · σθ

By dividing everything by σθ, this equation can be written as follows:

−1

θ
· d

2θ

dt2
=

sin s

σ
· d
ds

(
sin s · dσ

ds

)
+K sin2 s

Since the variables are separated, we must have, for a certain constant m:

1

θ
· d

2θ

dt2
= −m2

sin s

σ
· d
ds

(
sin s · dσ

ds

)
+K sin2 s = m2

Thus, we are led to the conclusion in the statement. □

Regarding the azimuthal equation, things here are quickly settled, as follows:

Proposition 16.12. The solutions of the azimuthal equation, namely

1

θ
· d

2θ

dt2
= −m2

are the functions as follows, with a, b ∈ C being parameters,

θ(t) = aeimt + be−imt

and with only the case m ∈ Z being acceptable, on physical grounds.

Proof. The first assertion is clear, because we have a second order equation, and
two obvious solutions for it, e±imt, and then their linear combinations, and that’s all.
Regarding the last assertion, the point here is that by using θ(t) = θ(t + 2π), which is a
natural physical assumption on the wave function, we are led to m ∈ Z, as stated. □

We are now about to solve the angular equation, with only the polar equation remain-
ing to be studied. However, in practice, this polar equation is 10 times more difficult that
everything what we did so far, so be patient. We first have:

Proposition 16.13. The polar equation that we found before, namely

sin s

σ
· d
ds

(
sin s · dσ

ds

)
+K sin2 s = m2

with m ∈ Z, translates via σ(s) = f(cos s) into the following equation,

(1− x2)f ′′(x)− 2xf ′(x) =

(
m2

1− x2
−K

)
f(x)

where x = cos s, called Legendre equation.
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Proof. Let us first do a number of manipulations on our equation, before making
the change of variables. By multiplying by σ, our equation becomes:

sin s · d
ds

(
sin s · dσ

ds

)
=
(
m2 −K sin2 s

)
σ

By differentiating at left, this equation becomes:

sin s (cos s · σ′ + sin s · σ′′) =
(
m2 −K sin2 s

)
σ

Finally, by dividing everything by sin2 s, our equation becomes:

σ′′ +
cos s

sin s
· σ′ =

(
m2

sin2 s
−K

)
σ

Now let us set σ(s) = f(cos s). With this change of variables, we have:

σ = f(cos s)

σ′ = − sin s · f ′(cos s)

σ′′ = − cos s · f ′(cos s) + sin2 s · f ′′(cos s)

By plugging this data, our radial equation becomes:

sin2 s · f ′′(cos s)− 2 cos s · f ′(cos s) =

(
m2

sin2 s
−K

)
f(cos s)

Now with x = cos s, which is our new variable, this equation reads:

(1− x2)f ′′(x)− 2xf ′(x) =

(
m2

1− x2
−K

)
f(x)

But this is the Legendre equation, as stated. □

Here comes now the difficult point. We have the following non-trivial result:

Theorem 16.14. The solutions of the Legendre equation, namely

(1− x2)f ′′(x)− 2xf ′(x) =

(
m2

1− x2
−K

)
f(x)

can be explicitely computed, via complicated math, and only the case

K = l(l + 1) : l ∈ N

is acceptable, on physical grounds.

Proof. The first part is something quite complicated, involving the hypergeometric
functions 2F1, that you don’t want to hear about, believe me. As for the second part,
analysis and physics, this is something not trivial either. See Griffiths [45]. □

In order to construct the solutions, we will need:
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Theorem 16.15. The orthonormal basis of L2[−1, 1] obtained by starting with the
Weierstrass basis {xl}, and doing Gram-Schmidt, is the family of polynomials {Pl}, with
each Pl being of degree l, and with positive leading coefficient, subject to:∫ 1

−1

Pk(x)Pl(x) dx = δkl

These polynomials, called Legendre polynomials, satisfy the equation

(1− x2)P ′′
l (x)− 2xP ′

l (x) + l(l + 1)Pl(x) = 0

which is the Legendre equation at m = 0, and with K = l(l + 1). Moreover,

Pl(x) =
1

2ll!

(
d

dx

)l

(x2 − 1)l

which is called the Rodrigues formula for Legendre polynomials.

Proof. As a first observation, we are not lost somewhere in abstract math, because
of the occurrence of the Legendre equation. As for the proof, this goes as follows:

(1) The first assertion is clear, because the Gram-Schmidt procedure applied to the
Weierstrass basis {xl} can only lead to a certain family of polynomials {Pl}, with each Pl

being of degree l, and also unique, if we assume that it has positive leading coefficient,
with this ± choice being needed, as usual, at each step of Gram-Schmidt.

(2) In order to have now an idea about these beasts, here are the first few of them,
which can be obtained say via a straightforward application of Gram-Schmidt:

P0 = 1

P1 = x

P2 = (3x2 − 1)/2

P3 = (5x3 − 3x)/2

P4 = (35x4 − 30x2 + 3)/8

P5 = (63x5 − 70x3 + 15x)/8

(3) Now thinking about what Gram-Schmidt does, this is certainly something by
recurrence. And examining the recurrence leads to the Legendre equation, as stated.

(4) As for the Rodrigues formula, by uniqueness no need to try to understand where
this formula comes from, and we have two choices here, either by verifying that {Pl} is
orthonormal, or by verifying the Legendre equation. And both methods work. □

Going ahead now, we can solve in fact the Legendre equation at any m, as follows:
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Proposition 16.16. The general Legendre equation, with parameters m ∈ N and
K = l(l + 1) with l ∈ N, namely

(1− x2)f ′′(x)− 2xf ′(x) =

(
m2

1− x2
− l(l + 1)

)
f(x)

is solved by the following functions, called Legendre functions,

Pm
l (x) = (−1)m(1− x2)m/2

(
d

dx

)m

Pl(x)

where Pl are as before the Legendre polynomials. Also, we have

Pm
l (x) = (−1)m (1− x2)m/2

2ll!

(
d

dx

)l+m

(x2 − 1)l

called Rodrigues formula for Legendre functions.

Proof. The first assertion is something elementary, coming by differentiatingm times
the Legendre equation, which leads to the general Legendre equation. As for the second
assertion, this follows from the Rodrigues formula for Legendre polynomials. □

And this is the end of our study. Eventually. By putting together all the above results,
we are led to the following conclusion:

Theorem 16.17. The separated solutions α = σ(s)θ(t) of the angular equation,

sin s · d
ds

(
sin s · dα

ds

)
+
d2α

dt2
= −K sin2 s · α

are given by the following formulae, where l ∈ N is such that K = l(l + 1),

σ(s) = Pm
l (cos s) , θ(t) = eimt

and where m ∈ Z is a constant, and with Pm
l being the Legendre function,

Pm
l (x) = (−1)m(1− x2)m/2

(
d

dx

)m

Pl(x)

where Pl are the Legendre polynomials, given by the following formula:

Pl(x) =
1

2ll!

(
d

dx

)l

(x2 − 1)l

These solutions α = σ(s)θ(t) are called spherical harmonics.

Proof. This follows indeed from all the above, and with the comment that everything
is taken up to linear combinations. We will normalize the wave function later. □
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16d. The hydrogen atom

Hydrogen, eventually. In order now to finish our study, and eventually get to conclu-
sions about hydrogen, it remains to solve the radial equation, for the Coulomb potential
V of the proton. Let us begin with some generalities, valid for any time-independent
potential V . As a first manipulation on the radial equation, we have:

Proposition 16.18. The radial equation, written with K = l(l + 1),

(r2ρ′)′ − 2mr2

h2
(V − E)ρ = l(l + 1)ρ

takes with ρ = u/r the following form, called modified radial equation,

Eu = − h2

2m
· u′′ +

(
V +

h2l(l + 1)

2mr2

)
u

which is a time-independent 1D Schrödinger equation.

Proof. With ρ = u/r as in the statement, we have:

ρ =
u

r
, ρ′ =

u′r − u
r2

, (r2ρ′)′ = u′′r

By plugging this data into the radial equation, this becomes:

u′′r − 2mr

h2
(V − E)u =

l(l + 1)

r
· u

By multiplying everything by h2/(2mr), this latter equation becomes:

h2

2m
· u′′ − (V − E)u =

h2l(l + 1)

2mr2
· u

But this gives the formula in the statement. As for the interpretation, as time-
independent 1D Schrödinger equation, this is clear as well, and with the comment here
that the term added to the potential V is some sort of centrifugal term. □

Getting back now to the Coulomb potential of the proton, we have here:

Fact 16.19. The Coulomb potential of the hydrogen atom proton, acting on the elec-
tron by attraction, is given according to the Coulomb law by

V = −Kep
r

where p is the charge of the proton, and K is the Coulomb constant. In practice however
we have p ≃ e up to order 10−7, and so our formula can be written as

V ≃ −Ke
2

r

and we will use this latter formula, and with = sign, for simplifying.
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Getting back now to math, it remains to solve the modified radial equation, for the
above potential V . And we have here the following result, which does not exactly solve
this radial equation, but provides us instead with something far better, namely the proof
of the original claim by Bohr, which was at the origin of everything:

Theorem 16.20 (Schrödinger). In the case of the hydrogen atom, where V is the
Coulomb potential of the proton, the modified radial equation, which reads

Eu = − h2

2m
· u′′ +

(
−Ke

2

r
+
h2l(l + 1)

2mr2

)
u

leads to the Bohr formula for allowed energies,

En = −m
2

(
Ke2

h

)2

· 1
n2

with n ∈ N, the binding energy being

E1 ≃ −2.177× 10−18

with means E1 ≃ −13.591 eV.

Proof. This is again something non-trivial, and we will be following Griffiths [45],
with some details missing. The idea is as follows:

(1) By dividing our modified radial equation by E, this becomes:

− h2

2mE
· u′′ =

(
1 +

Ke2

Er
− h2l(l + 1)

2mEr2

)
u

In terms of α =
√
−2mE/h, this equation takes the following form:

u′′

α2
=

(
1 +

Ke2

Er
+
l(l + 1)

(αr)2

)
u

In terms of the new variable p = αr, this latter equation reads:

u′′ =

(
1 +

αKe2

Ep
+
l(l + 1)

p2

)
u

Now let us introduce a new constant S for our problem, as follows:

S = −αKe
2

E
In terms of this new constant, our equation reads:

u′′ =

(
1− S

p
+
l(l + 1)

p2

)
u

(2) The idea will be that of looking for a solution written as a power series, but before
that, we must “peel off” the asymptotic behavior. Which is something that can be done,
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of course, heuristically. With p → ∞ we are led to u′′ = u, and ignoring the solution
u = ep which blows up, our approximate asymptotic solution is:

u ∼ e−p

Similarly, with p→ 0 we are led to u′′ = l(l+1)u/p2, and ignoring the solution u = p−l

which blows up, our approximate asymptotic solution is:

u ∼ pl+1

(3) The above heuristic considerations suggest writing our function u as follows:

u = pl+1e−pv

So, let us do this. In terms of v, we have the following formula:

u′ = ple−p [(l + 1− p)v + pv′]

Differentiating a second time gives the following formula:

u′′ = ple−p

[(
l(l + 1)

p
− 2l − 2 + p

)
v + 2(l + 1− p)v′ + pv′′

]
Thus the radial equation, as modified in (1) above, reads:

pv′′ + 2(l + 1− p)v′ + (S − 2(l + 1))v = 0

(4) We will be looking for a solution v appearing as a power series:

v =
∞∑
j=0

cjp
j

But our equation leads to the following recurrence formula for the coefficients:

cj+1 =
2(j + l + 1)− S

(j + 1)(j + 2l + 2)
· cj

(5) We are in principle done, but we still must check that, with this choice for the
coefficients cj, our solution v, or rather our solution u, does not blow up. And the whole
point is here. Indeed, at j >> 0 our recurrence formula reads, approximately:

cj+1 ≃
2cj
j

But, surprisingly, this leads to v ≃ c0e
2p, and so to u ≃ c0p

l+1ep, which blows up.

(6) As a conclusion, the only possibility for u not to blow up is that where the series
defining v terminates at some point. Thus, we must have for a certain index j:

2(j + l + 1) = S

In other words, we must have, for a certain integer n > l:

S = 2n
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(7) We are almost there. Recall from (1) above that S was defined as follows:

S = −αKe
2

E
: α =

√
−2mE
h

Thus, we have the following formula for the square of S:

S2 =
α2K2e4

E2
= −2mE

h2
· K

2e4

E2
= −2mK2e4

h2E

Now by using the formula S = 2n from (6), the energy E must be of the form:

E = −2mK2e4

h2S2
= −mK

2e4

2h2n2

Calling this energy En, depending on n ∈ N, we have, as claimed:

En = −m
2

(
Ke2

h

)2

· 1
n2

(8) Thus, we proved the Bohr formula. Regarding numerics, the data is as follows:

K = 8.988× 109 , e = 1.602× 10−19

h = 1.055× 10−34 , m = 9.109× 10−31

But this gives the formula of E1 in the statement. □

As a first remark, all this agrees with the Rydberg formula, due to:

Theorem 16.21. The Rydberg constant for hydrogen is given by

R = − E1

h0c

where E1 is the Bohr binding energy, and the Rydberg formula itself, namely

1

λn1n2

= R

(
1

n2
1

− 1

n2
2

)
simply reads, via the energy formula in Theorem 16.20,

1

λn1n2

=
En2 − En1

h0c

which is in agreement with the Planck formula E = h0c/λ.

Proof. Here the first assertion is something numeric, coming from the fact that the
formula in the statement gives, when evaluated, the Rydberg constant:

R =
−E1

h0c
=

2.177× 10−18

6.626× 10−34 × 2.998× 108
= 1.096× 107
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As a consequence, and passed now what the experiments exactly say, we can define
the Rydberg constant of hydrogen abstractly, by the following formula:

R =
m

2h0c

(
Ke2

h

)2

Regarding now the second assertion, by dividing R = −E1/(h0c) by any number of
type n2 we obtain, according to the energy convention in Theorem 16.20:

R

n2
= −En

h0c

But these are exactly the numbers which are subject to substraction in the Rydberg
formula, and so we are led to the conclusion in the statement. □

Let us go back now to our study of the Schrödinger equation. Our conclusions are:

Theorem 16.22. The wave functions of the hydrogen atom are the following functions,
labelled by three quantum numbers, n, l,m,

ϕnlm(r, s, t) = ρnl(r)α
m
l (s, t)

where ρnl(r) = pl+1e−pv(p)/r with p = αr as before, with the coefficients of v subject to

cj+1 =
2(j + l + 1− n)

(j + 1)(j + 2l + 2)
· cj

and αm
l (s, t) being the spherical harmonics found before.

Proof. This follows indeed by putting together all the results obtained so far, and
with the remark that everything is up to the normalization of the wave function. □

In what regards the main wave function, that of the ground state, we have:

Theorem 16.23. With the hydrogen atom in its ground state, the wave function is

ϕ100(r, s, t) =
1√
πa3

e−r/a

where a = 1/α is the inverse of the parameter appearing in our computations above,

α =

√
−2mE
h

called Bohr radius of the hydrogen atom. This Bohr radius is the mean distance between
the electron and the proton, in the ground state, and is given by the formula

a =
h2

mKe2

which numerically means a ≃ 5.291× 10−11.
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Proof. There are several things going on here, as follows:

(1) According to the various formulae in the proof of Theorem 16.20, taken at n = 1,
the parameter α appearing in the computations there is given by:

α =

√
−2mE
h

=
1

h
·m · Ke

2

h
=
mKe2

h2

Thus, the inverse α = 1/a is indeed given by the formula in the statement.

(2) Regarding the wave function, according to Theorem 16.22 this consists of:

ρ10(r) =
2e−r/a

√
a3

, α0
0(s, t) =

1

2
√
π

By making the product, we obtain the formula of ϕ100 in the statement.

(3) But this formula of ϕ100 shows in particular that the Bohr radius a is indeed the
mean distance between the electron and the proton, in the ground state.

(4) Finally, in what regards the numerics, these are as follows:

a =
1.0552 × 10−68

9.109× 10−31 × 8.988× 109 × 1.6022 × 10−38
= 5.297× 10−11

Thus, we are led to the conclusions in the statement. □

Getting back now to the general setting of Theorem 16.20, the point is that the
polynomials v(p) appearing there are well-known objects in mathematics, as follows:

Proposition 16.24. The polynomials v(p) are given by the formula

v(p) = L2l+1
n−l−1(p)

where the polynomials on the right, called associated Laguerre polynomials, are given by

Lp
q(x) = (−1)p

(
d

dx

)p

Lp+q(x)

with Lp+q being the Laguerre polynomials, given by the following formula:

Lq(x) =
ex

q!

(
d

dx

)q

(e−xxq)

Proof. The story here is very similar to that of the Legendre polynomials. Consider
the Hilbert space H = L2[0,∞), with the following scalar product on it:

< f, g >=

∫ ∞

0

f(x)g(x)e−x dx

(1) The orthogonal basis obtained by applying Gram-Schmidt to the Weierstrass basis
{xq} is then the basis formed by the Laguerre polynomials {Lq}.
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(2) We have the explicit formula for Lq in the statement, which is analogous to the
Rodrigues formula for the Legendre polynomials.

(3) The first assertion follows from the fact that the coefficients of the associated
Laguerre polynomials satisfy the equation for the coefficients of v(p).

(4) Alternatively, the first assertion follows as well by using an equation for the La-
guerre polynomials, which is very similar to the Legendre equation. □

With the above result in hand, we can now improve Theorem 16.20, as follows:

Theorem 16.25. The wave functions of the hydrogen atom are given by

ϕnlm(r, s, t) =

√(
2

na

)3
(n− l − 1)!

2n(n+ l)!
e−r/na

(
2r

na

)l

L2l+1
n−l−1

(
2r

na

)
αm
l (s, t)

with αm
l (s, t) being the spherical harmonics found before.

Proof. This follows indeed by putting together what we have, namely Theorem 16.20
and Proposition 16.24, and then doing some remaining work, concerning the normalization
of the wave function, which leads to the normalization factor appearing above. □

And good news, that is all. The above formula is all you need, in everyday life.

16e. Exercises

Congratulations for having read this book, and no exercises for this final chapter.
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complex function, 135
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general relativity, 289
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random variable, 64
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real number, 16
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resultant, 141
Riemann integration, 63
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Riemann sum, 63
right-hand rule, 160, 195, 237
rocket, 37
roots of polynomial, 140
roots of unity, 145–147
rotating body, 196
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scalar product, 98, 102
second derivative, 55, 57
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simple harmonic oscillator, 112
simple oscillator, 112
simple pendulum, 107
sin, 21, 49, 61
single roots, 142
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speed, 41
speed of light, 163
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standard units, 163
steady current, 162
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twice differentiable, 55
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vector, 130
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