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Abstract. This is an introduction to plane geometry, angles and trigonometry, starting
from zero or almost. We first discuss basic plane geometry, with the main results regard-
ing the triangles explained. Then we get into trigonometry, with the basic properties
of the sine, cosine and tangent discussed. We then go on a more advanced discussion,
using affine and polar coordinates, then complex numbers, and with a look into trilinear
coordinates too. Finally, we get into calculus methods, with an even more advanced
study of the trigonometric functions, and with some applications discussed too.



Preface

Measuring angles is an art, mastered by artists, as well as craftsmen, scientists and
engineers, requiring you to know quite a deal of advanced mathematics, that you can
hopefully learn from this book. But, before anything, why measuring angles?

Leaving arts aside, where drawing obviously requires some good knowledge of angles
and perspective, unless of course you are interested in doing some low-skill work, and
sell that as modern art, angles appear naturally in any question related to building, or
understanding all sorts of objects, devices and phenomena, typically at big scales.

Let us take for instance, talking big scales, the question of understanding the move-
ments of the Sun, Moon, other planets, and stars, around our Earth. With this being not
that philosophical as a question as it might seem, because when sailing at sea, or even
walking on unknown land, the Sun, Moon and so on can be very useful in showing you
the way. Well, in relation with this, with measuring distances being barred by the big
scale of our objects, you are left with observing angles, and then hopefully produce from
these angles, via some tricky math computations, the direction that you need.

So, this was for the main principle of angles and trigonometry, big things can only
be observed, and used, via angles. As for the applications of this principle, no need of
course to go to the astronomical scales evoked above, these abound in various big scale
questions from real life, and engineering. Measuring land, or even smaller things, like
trees, or building various things, such as bridges, roads, big houses and so on, all this will
lead you into angles and trigonometry, exactly as our ship capitain above.

As a concrete illustration, you certainly know about that amazing pyramids built by
the ancient Egyptians. Well, that pyramids were built by using an advanced knowledge of
trigonometry, available at that time, and which dissapeared in the present modern ages.
Or at least this is how one hypothesis about the pyramids goes, and looking around, at
the trigonometry knowledge of my mathematics and engineering students, I am pretty
much convinced that this is indeed the true explanation for the pyramids question.

Getting now to the present book, this will be an introduction to all this, geometry, an-
gles and trigonometry, starting from zero or almost, meaning basic knowledge of numbers
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4 PREFACE

and fractions, and with emphasis on various formulae useful for science and engineering,
along the lines evoked above. The book is organized in 4 parts, as follows:

Part I - We discuss here basic plane geometry, with the theorem of Thales, and then
with the main results regarding the triangles explained.

Part II - Here we discuss basic trigonometry, with the definition and basic properties
of the sine and cosine, and of the other trigonometric functions.

Part III - Here we go on a more advanced discussion, using affine and polar coordinates,
then complex numbers, and with a look into trilinear coordinates too.

Part IV - We get here into calculus methods, with an even more advanced study of
the trigonometric functions, and with some applications discussed too.

As mentioned, the presentation will be elementary, starting from zero or almost. How-
ever, with the book format being chosen long, 400 pages, we will not hesitate to deviate
from time to time from the standard paths, and talk about other things too.

Many thanks to my math professors, and now that I am a professor myself, to my
students. Thanks as well to my cats, for their teachings regarding the angle of attack,
which is a more advanced notion, that we will hopefully discuss too, in this book.

Cergy, October 2025

Teo Banica
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Part I

Plane geometry



Buffalo Soldier, dreadlock Rasta
Fighting on arrival, fighting for survival

Driven from the mainland
To the heart of the Caribbean



CHAPTER 1

Parallel lines

1a. Parallel lines

Welcome to plane geometry. At the beginner level, which is ours for the moment,
this will be a story of points and lines. So, let us try to understand this first, what can
be said about points and lines, and in what regards more complicated things like angles,
triangles, and of course, trigonometry, we will leave them for later.

So, points and lines. Here is a basic observation, to start with, and we will call this
“axiom” instead of “theorem”, as the statements which are true and useful are usually
called, in mathematics, for reasons that will become clear in a moment:

Axiom 1.1. Any two distinct points P ̸= Q determine a line, denoted PQ.

Obviously, our axiom holds, and looks like something very useful. Need to draw
anything, for various engineering purposes, at your job, or in your garage? The rule will
be your main weapon, used exactly as in Axiom 1.1, that is, put the rule on the points
P ̸= Q that your line must unite, and then draw that line PQ.

Actually, in relation with this, drawing lines in the real life, for various engineering
purposes, we are rather used in practice to draw segments PQ:

P Q segmentoo

This being said, you certainly know from real life that it never hurts to “enhance”
your segment, by extending it a bit on both sides, because who knows when you will need
that two extra bits, and matter of not getting back to the rule, at that time:

P Q better segmentoo

But now in theory, will having that segment extended to infinity hurt? Certainly not,
so this is why our lines PQ in mathematics will be infinite, as above:

P Q lineoo

Very good all this, so at least we know one thing, why lines instead of segments. And
with this being an instance of a general principle that we will heavily use, throughout this
book, as mathematicians, namely use our friend ∞, whenever appropriate.
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12 1. PARALLEL LINES

Getting now to point, as already announced, why is Axiom 1.1 an axiom, instead of
being a theorem? You would probably argue that this theorem can be proved by using a
rule, as indicated above. However, this does not stand for a mathematical proof.

So, this is how things are, you will have to trust me here. And for further making my
case, let me mention that my theoretical physics friends agree with me, on the grounds
that, when looking with a good microscope at your rule, that rule is certainly bent.

In fact, still talking nature and physics, and jokes left aside now, the situation with
the lines in the real life is something quite complicated, as follows:

Fact 1.2. The lines in the real life are something quite tricky, due to:

(1) Certain obviously plane surfaces, such as the Earth, being in fact round.
(2) Spacetime itself having, according to relativity theory, a certain curvature.
(3) And so on, with true lines, planes, spaces being something rather mathematical.

So, this is the situation, and you get my point I hope, there is a bit of curvature and
geometry in the real life, and due to this, if we want our theory to have something to do
with this, it is certainly safer to have Axiom 1.1 stated as such, as an axiom.

Getting now to more discussion, still around Axiom 1.1, an interesting question ap-
pears in connection with our one and only assumption there, namely:

P ̸= Q

Indeed, given a point Q in the plane, we can come up with a sequence of points
Pn → Q horizontally, and in this case the lines PnQ will all coincide with the horizontal
at Q. But then, based on this, we could formally say that the n→∞ limit of these lines,
which makes sense to be denoted QQ, is also, by definition, the horizontal at Q:

P1 Q P1Qoo

||
P2 Q P2Qoo

||
P3 Q P3Qoo

↓
Q QQoo

However, is this really a good idea, or not. The point indeed is that, when doing
exactly the same trick with a series of points Pn → Q vertically, we will obtain in this
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way, as our limiting line QQ, the vertical at Q, as shown by the following picture:

P1

P2

P3

Q Q Q Q

P1Q

OO

= P2Q

OO

= P3Q

OO

→ QQ

OO

Which does not sound very good, so forget about this. However, since we seem to
have some sort of valuable idea here, who knows, let us formulate:

Job 1.3. Develop later some kind of analysis theory, generalizing plane geometry,
where lines of type QQ make sense too, say as some sort of tangents.

As a further comment now, still on Axiom 1.1, it is of course understood that the two
points P ̸= Q appearing there, and the line PQ uniting them, lie in the given plane that
we are interested in, in this Part I of the present book. However, Axiom 1.1 obviously
holds too in space, and most likely, in higher dimensional spaces too.

So, the question which appears now is, on which type of spaces does Axiom 1.1 hold?
And this is a quite interesting question, because if we take a sphere for instance, any two
points P ̸= Q can be certainly united by a segment, which is by definition the shortest
segment, on the sphere, uniting them. And, if we prolong this segment, in the obvious
way, what we get is a circle uniting P,Q, that we can call line, and denote P,Q.

However, not so quick. There is in fact a bug with this, because if we take P to be
the North Pole, and Q to be the South Pole, any meridian on the globe will do, as PQ.
So, as a conclusion, Axiom 1.1 does not really hold on a sphere, but not by much.

Anyway, as before, we seem to have an idea here, so let us formulate:

Job 1.4. Develop as well later some advanced geometry theory, generalizing plane
geometry, where certain lines PQ can take multiple values.

Still talking spheres, one idea in order to fix what we have in the above is by restricting
the attention to the Northern hemisphere, because with this done, any two points P ̸= Q
will certainly determine a line, in agreement with what Axiom 1.1 says.

However, now that we know this, what about the Southern hemisphere, can we include
it too in our formalism, via some mathematical tricks? And in answer here, yes this can
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be done, say by identifying on the sphere the pairs of opposite points. Indeed, in this way
what we have regarding the Northern hemisphere, that is, Axiom 1.1, will still hold, and
as a bonus, we will have this axiom holding on the Southern hemisphere too.

As before with other things, we seem to have a good idea here, so let us record:

Job 1.5. Develop later some sort of alternative plane geometry, inspired by what hap-
pens here on Earth, but with the opposite points being identified.

And with this, done I guess with the discussion regarding Axiom 1.1, or at least we
have learned enough about it, at least so far. More about this, later in this book.

Moving ahead now, as a natural question, do any two lines K ̸= L determine a point?
Normally yes, because assuming P,Q ∈ K∩L we would haveK = L = PQ, contradiction.
However, it might happen that these distinct lines K ̸= L are parallel, K||L, in which
case we have K ∩ L = ∅. In order to further discuss this, let us formulate:

Definition 1.6. We say that two lines are parallel, K||L, when they do not cross,

K ∩ L = ∅

or when they coincide, K = L. Otherwise, we say that K,L cross, and write K ̸ ||L.

Here we have tricked a bit, by agreeing to call parallel the pairs of identical lines too,
and this for simplifying most of our mathematics, in what follows, trust me here.

Very good, and now with Axiom 1.1 and Definition 1.6, we are potentially ready for
doing some geometry. However, this is not exactly true, and we will need as well:

Axiom 1.7. Given a point not lying on a line, P /∈ L, we can draw through P a unique
parallel to L. That is, we can find a line K satisfying P ∈ K, K||L.

To be more precise, this is again something which obviously holds, but cannot be
established, as a theorem. I mean just try, and you will see that you will fail. As before
with Axiom 1.1, we will leave as an exercise some further meditating on all this.

Before leaving this preliminary discussion, however, two more comments regarding the
two axioms that we have. We have seen in the above that Axiom 1.1 is in fact something
quite tricky, and the same can be said about Axiom 1.7, notably with:

Comment 1.8. The axiom of parallels can fail for certain quite natural planes, such
as the one evoked in Job 1.5, where any two lines obviously cross.
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Which sounds quite interesting, hope you agree with me. We will talk about such
things later in this book, and in the meantime, as a further piece of advertisement for all
this, have a look at the following magical configuration, called Fano plane:

•

• •
•

• • •

Here the circle in the middle is by definition a line, and with this convention, any two
points determine a line, and any two lines determine a point. And isn’t this beautiful.
We will be back to this, with full explanations and comments, later in this book.

As a second comment now on our axioms, which is of key importance too, we have:

Comment 1.9. Assuming the real numbers and some vector mathematics known, we
can say that the plane is R2, and with this, the following formula proves Axiom 1.1:

PQ =
{
λP + (1− λ)Q

∣∣∣λ ∈ R
}

As for Axiom 1.7, this is easy to establish too, by assuming L = QR and setting:

K =
{
P + λ(R−Q)

∣∣∣λ ∈ R
}

However, we will not do so in this book, at least to start with, due to various reasons,
including those coming from Fact 1.2.

To be more precise here, and more on this later when talking vectors, the above formula
proving Axiom 1.1 is something quite obvious. As for the second formula, proving Axiom
1.7, this comes from the following configuration, involving a parallelogram:

S

P

R

Q
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Indeed, by standard vector calculus, to be discussed later in this book, we must have
P +R = Q+ S, and so S = P +R−Q, which leads to the following formula for the line
K = PS that we are looking for, which coincides with the formula given above:

K =
{
(1− λ)P + λ(P +R−Q)

∣∣∣λ ∈ R
}

Getting now to Comment 1.9 as stated, in relation with the last assertion there, in
the hope that you get my point. Indeed, as explained in Fact 1.2, true mathematics and
physics can be far more complicated than what can be said about R2, so it is safer, at
least to start with, to develop geometry based on Axiom 1.1 and Axiom 1.7 only.

By the way, the approach that we will be using, based on Axiom 1.1 and Axiom 1.7,
will be something quite beautiful, old style and everything, as we will soon discover. As
for vectors and modernity, do not worry, we will be back to them, later in this book.

1b. Thales theorem

Ready for some math? Here we go, and many things can be said here, especially about
parallel lines, which are the main objects of basic geometry, as for instance:

Claim 1.10 (Thales). Proportions are kept, along parallel lines.

To be more precise, consider a configuration as follows, consisting of two parallel lines,
and of two extra lines, which are crossing, and crossing these parallel lines too:

S

A C

B D

The claim of Thales is then that the following equality holds:

SA

SB
=
SC

SD

Moreover, in addition to this, we have some further claims, such as the fact that
AC/BD equals the above number, too. And there is more that can be said, along the
same lines, this time involving configurations of three parallel lines, and so on.

In what follows the idea will be that of proving the main claim of Thales, which is the
equality above, and then deducing from this all sorts of other useful statements, that can
be made. But, getting to the point now, how to prove that main claim of Thales?
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Well, this is actually not obvious, and we will have to trick. Let us start with the
following fact, which itself is something quite obvious, and very useful too:

Theorem 1.11. The area of a triangle, with a side drawn horizontally,

A

B C

is half the product of that side, and of the height.

Proof. This is clear by completing the picture into a rectangle, as follows:

A

B C

Indeed, the area of the rectangle is easy to compute, given by:

area(□) = side× height
On the other hand, as it is clear on the above picture, our rectangle appears to be

made from two triangles equal to ABC, via some cutting and pasting. Thus:

area(□) = 2× area(ABC)
We conclude from this that the area of the triangle is given by:

area(ABC) =
1

2
× side× height

Thus, we are led to the conclusion in the statement. □

In practice now, it is better to use an equivalent statement, as follows:

Theorem 1.12. The area of a triangle, with an altitude drawn,

A

B E C

is given by the following formula,

area(ABC) =
AE ×BC

2
and this no matter how our triangle is oriented, in the plane.
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Proof. This follows indeed from Theorem 1.11, by rotating what we found there,
or simply by arguing that the method used there in the proof, with constructing that
rectangle, works in any direction, with no need for our triangle to lie on the horizontal. □

Good news, we can now prove the Thales theorem, as follows:

Theorem 1.13 (Thales). Proportions are kept, along parallel lines. That is, given a
configuration as follows, consisting of two parallel lines, and of two extra lines,

S

A C

B D

the following equality holds:

SA

SB
=
SC

SD

Moreover, the converse of this holds too, in the sense that, in the context of a picture as
above, if this equality is satisfied, then the lines AC and BD must be parallel.

Proof. We can prove indeed the main assertion via the following computation, based
on the area formula in Theorem 1.12, used multiple times:

SA

SB
=

area(CSA)

area(CSB)

=
area(CSA)

area(CSA) + area(CAB)

=
area(CSA)

area(CSA) + area(CAD)

=
area(ASC)

area(ASD)

=
SC

SD

As for the converse, which is actually something quite theoretical, and not that useful
in practice, we will leave the proof here as an instructive exercise. □

As already mentioned before, there are many other useful versions of the Thales the-
orem, which are all good to know. Let us start our discussion here with:
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Theorem 1.14 (Thales 2). In the context of the Thales theorem, we have:

SA

SB
=
AC

BD

However, the converse of this does not necessarily hold.

Proof. In order to prove the formula in the statement, instead of getting lost into
some new area computations, let us draw a tricky parallel, as follows:

S

A C

B E D

By using Theorem 1.13, we have the following computation, as desired:

SA

SB
=
DE

DB
=
AC

DB

As for the converse, as before this is something quite theoretical, and not that useful
in practice, we will leave the proof here as an instructive exercise. □

As a third Thales theorem now, which is something beautiful too, we have:

Theorem 1.15 (Thales 3). Given a configuration as follows, consisting of three parallel
lines, and of two extra lines, which can cross or not,

A D

B E

C F

the following equality holds:
AB

BC
=
DE

EF
That is, once again, the proportions are kept, along parallel lines.

Proof. We have two cases here, as follows:

(1) When the two extra lines are parallel, the result is clear, because we have plenty
of parallelograms there, and the fractions in question are plainly equal.
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(2) When the two lines cross, let us call S their intersection:

S

A D

B E

C F

Now by using Theorem 1.13 several times, we obtain:

AB

BC
=

SB − SA
SC − SB

=
1− SA

SB
SC
SB
− 1

=
1− SD

SE
SF
SE
− 1

=
SE − SD
SF − SE

=
DE

EF
Thus, we are led to the formula in the statement. □

Very nice all this, we now master the Thales theorem, in its various formulations, the
overall conclusion being that, everything that is clear on pictures, regarding proportions
and parallel lines, is true indeed, and we have mathematical proof for that.

As a supplementary conclusion now, still about parallel lines, coming from the proof
of Thales 2, which was something quite tricky, with that parallel drawn, we have:

Conclusion 1.16. Many things can be done with parallel lines, with a suitably drawn
such line hopefully solving, by some kind of miracle, your plane geometry problem.

Which is something good to know. We will see more illustrations for this general
principle in the next chapter, when getting more in detail into triangle geometry.

1c. Desargues theorem

Moving ahead now, many other things can be said about points and lines, and some-
times parallel lines, as a continuation of the Thales theorem. As a basic statement here,
due to Desargues, we have the following fact, that we will prove in what follows:
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Fact 1.17 (Desargues). Two triangles are in perspective centrally if and only if they
are in perspective axially. That is, in the context of a configuration of type

A

D

B E

F

C

the lines AD,BE,CF cross, so that ABC,DEF are in central perspective, if and only if
AB ∩DE,AC ∩DF,BC ∩EF are collinear, so that ABC,DEF are in axial perspective.

Obviously, this is something that can be very useful for various technical computations
and drawings, and more on this later. Getting now to the proof of the result, this is
something quite tricky. So, with a bit of imagination, we first have it in one sense:

Theorem 1.18. The Desargues claim holds in one sense: central perspectivity implies
axial perspectivity.

Proof. The trick here is to pass in 3D, as follows:

(1) Assume first that we are in 3D, with our triangles ABC and DEF lying in distinct
planes, say ABC ⊂ P and DEF ⊂ Q. Assuming central perspectivity, the lines AD,BE
cross, so the points A,B,D,E are coplanar. But this tells us that the lines AB,DE cross,
and that, in addition, their crossing point lies on the intersection of the planes P,Q:

(AB ∩DE) ∈ P ∩Q

But a similar argument, again using central perspectivity, shows that we have also:

(AC ∩DF ) ∈ P ∩Q , (BC ∩ EF ) ∈ P ∩Q

Now since the intersection P ∩Q is a certain line in space, we obtain the result.

(2) Thus, almost there, with the theorem proved when the triangles ABC and DEF
are both in 3D, in generic position, and the rest is just a matter of finishing. Indeed, when
ABC and DEF are still in 3D, but this time lying in the same plane, the result follows
too, by perturbing a bit our configuration, as to make it generic. And with this we are
done indeed, because we are now in 2D, exactly as in the setting of the theorem. □
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In order to prove now to converse, there are several methods and tricks available, and
we will choose here to use something quite conceptual. So, temporarily forgetting about
Desargues, we have the following result, which is something having its own interest:

Theorem 1.19. We have a duality between points and lines, obtained by fixing a circle
in the plane, say of center O and radius r > 0, and doing the following,

(1) Given a point P , construct Q on the line OP , as to have OP ·OQ = r2,
(2) Draw the perpendicular at Q on the line OQ. This is the dual line p,

and this duality P ↔ p transforms collinear points into concurrent lines.

Proof. Here the fact that we have a duality is something quite self-explanatory, and
the statement at the end is something which holds too, the idea being as follows:

(1) We can certainly construct the correspondence P → p in the statement, which
maps points P ̸= O to lines p not containing O, and which is clearly injective.

(2) Conversely, given a line p not containing O, we can project O on this line, to a
point Q, and then construct P ∈ OQ by the formula in the statement, OP ·OQ = r2.

(3) We conclude from this that we have indeed a bijection P → p as in the statement,
which maps points P ̸= O to lines p not containing O.

(4) Before getting further, let us make a few simple observations. As a first remark,
when the point P is inside the circle, its dual line p is outside of it, as follows:

O P Q

p
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Conversely, when P is outside the circle, its dual line p crosses the circle:

p

O Q P

Finally, when P is on the circle, p is the tangent to the circle, there at P :

p

O P

(5) Getting now to the last assertion, the idea here is to prove that we have the
following implication, with Pn ↔ p and L↔ l being instances of our duality:

P1, . . . , Pn ∈ l =⇒ L ∈ p1, . . . , pn
But here, we can assume n = 1. Thus, we must prove that the following happens:

P ∈ l =⇒ L ∈ p

(6) In order to prove now this latter fact, given a point P , construct its dual line
P ↔ p via a point Q as in the statement, satisfying the following formula:

OP ·OQ = r2
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Now assuming P ∈ l, as above, let us construct the dual point L ↔ l, by projecting
O on the line l, into a point R ∈ l, and then requiring that L ∈ OR must satisfy:

OL ·OR = r2

With these constructions made, we want to prove that the following happens:

L ∈ p

(7) But this is best seen by considering the following intersection point:

S = p ∩OR

Indeed, let us draw a picture of P,Q,R, S, including, for reasons that will become
clear in a moment, points U ∈ OS and V ∈ OQ obtained by symmetrizing Q,S:

S

U

R
l

p

O P Q V

(8) Now since both the lines RP and UV are orthogonal on OS, these lines must be
parallel, and by using the Thales theorem, we obtain the following formula:

OP

OR
=
OV

OU
=
OS

OQ

(9) But this latter formula can be written as follows, using OP ·OQ = r2:

OS ·OR = OP ·OQ = r2

Now by comparing with OL ·OR = r2, we conclude that we have:

L = S

Now since S ∈ p by definition, we have L ∈ p, which proves our claim in (6). □
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Many other interesting things can be said about the duality from Theorem 1.19, and
we will be back to this on a regular basis, in what follows.

Getting back now to Desargues, with this technology in hand, the point is that the
Desargues configuration is self-dual, so we obtain, as needed:

Theorem 1.20. The Desargues claim holds in the other sense too: axial perspectivity
implies central perspectivity.

Proof. As already mentioned, there are several methods and tricks available, in order
to prove this, but the simplest is to argue that this is a trivial consequence of Theorem
1.18 and Theorem 1.19. Indeed, let us look at the Desargues configuration, namely:

A

D

B E

F

C

Let us look now at the dual Desargues configuration, involving triangles abc and def .
We have then the following things happening, both coming from Theorem 1.19:

– The original triangles ABC,DEF are in central perspective precisely when the dual
triangles abc, def are in axial perspective.

– The original triangles ABC,DEF are in axial perspective precisely when the dual
triangles abc, def are in central perspective.

But with this, we are done, because Theorem 1.18 applied to the dual triangles abc, def
gives the present result, for the original triangles ABC,DEF . □

Summarizing, done with the Desargues theorem, and we have learned many interesting
things, including the duality between points and lines, on this occasion.

1d. Pappus theorem

Next, we have the following fact, going back in time, to Pappus:
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Fact 1.21 (Pappus). Given a configuration as follows,

C

B

A

D E F

the three middle points are collinear.

However, as before with Desargues, or rather with the tricky implication of Desargues,
proving such things will need some preparations. So, we must be patient.

Getting to work now on this, and temporarily forgetting about Pappus, the point is
that we have the following useful result, which is something having its own interest:

Theorem 1.22. We can talk about the cross ratio of four collinear points A,B,C,D,
as being the following quantity, signed according to our usual sign conventions,

(A,B,C,D) =
AC ·BD
BC · AD

and with this notion in hand, points in central perspective have the same cross ratio:

(A,B,C,D) = (A′, B′, C ′, D′)

Moreover, the converse of this fact holds too.

Proof. As before with Theorem 1.19, there is a lot of mathematics hidden here,
and with the formula in the statement coming by drawing a suitable parallel line, and
computing both (A,B,C,D), (A′, B′, C ′, D′) in terms of the new points which appear:

(1) To start with, the notion of cross ratio, as constructed in the statement, is some-
thing very natural. Observe first that we can write the cross ratio as follows:

(A,B,C,D) =
AC

BC
· BD
AD

On the other hand, we can write as well the cross ratio as follows:

(A,B,C,D) =
AC

AD
· BD
BC

But are these quantities really the same? Sure yes, the theory of fractions says, but
go see that geometrically, and have it all the time in mind, when working with the cross
ratio, that ain’t no easy task, which takes a lot of practice. Welcome to geometry.
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(2) Next, many other things can be said, as for instance being the fact that A,B,C,D
are somehow “nicely positioned” on their line when their cross ratio is −1:

(A,B,C,D) = −1
Again, try getting familiar with this, by working out some examples, doing some

computations and so on. All this is first-class geometry, that you should know.

(3) Getting now to what our statement says, in relation with points in central per-
spective, consider first the following picture, with the points A,B,C,D,E, F and S,O
being as indicated, and with a parallel line to SE drawn on the left, as indicated:

P

S

O A B C

D

E

Q

F

(4) We have then the following equality, obtained by using the Thales theorem:

(O,B,C,A) =
OC

BC
· BA
OA

=
PO

SB
· SB
OQ

=
PO

OQ

On the other hand, again by using the Thales theorem, we have as well:

(O,E, F,D) =
OF

EF
· ED
OD

=
PO

SE
· SE
OQ

=
PO

OQ

We conclude that in the context of the above configuration, we have:

(O,B,C,A) = (O,E, F,D)
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(5) But this gives the equality in statement, by suitably generalizing what we found,
somewhat by “blowing up” the point O on the left into a pair of distinct points. To be
more precise, let us turn now to the precise equality to be proved, namely:

(A,B,C,D) = (A′, B′, C ′, D′)

Here the points A,B,C,D and A′, B′, C ′, D′ are assumed to be in perspectivity, say
with respect to a center of perspectivity S. Consider as well the following intersection:

O = ABCD ∩ A′B′C ′D′

(6) We have the following formula, coming from the definition of the cross ratio:

(A,B,C,D) =
AC ·BD
BC · AD

=
AC ·OD
OC · AD

· OC ·BD
BC ·OD

=
OC ·BD
BC ·OD

/OC · AD
AC ·OD

=
(O,B,C,D)

(O,A,C,D)

On the other hand, we have as well the following computation, nearly identical:

(A′, B′, C ′, D′) =
A′C ′ ·B′D′

B′C ′ · A′D′

=
A′C ′ ·O′D′

O′C ′ · A′D′ ·
O′C ′ ·B′D′

B′C ′ ·O′D′

=
O′C ′ ·B′D′

B′C ′ ·O′D′

/O′C ′ · A′D′

A′C ′ ·O′D′

=
(O′, B′, C ′, D′)

(O′, A′, C ′, D′)

(7) But with these formulae in hand, by using (4) twice, we obtain:

(A,B,C,D) =
(O,B,C,D)

(O,A,C,D)

=
(O′, B′, C ′, D′)

(O′, A′, C ′, D′)

= (A′, B′, C ′, D′)

Thus, we are led to the conclusion in the statement. □

Good news, we can now prove the Pappus theorem, as follows:
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Theorem 1.23 (Pappus). Given a hexagon AFBDCE with both the odd and the even
vertices being collinear,

C

B

A

D E F

the pairs of opposite sides cross into three collinear points.

Proof. Observe first the fancier formulation of the statement, with respect to what
we had before in Fact 1.21, but this is of course more for fun, of perhaps for some deeper
reasons too, these mysterious hexagons sort of rule in plane geometry, and more on this
later in this book too, on several occasions. In practice now, what we have to prove
remains as in Fact 1.21, and the idea is that can be proved by refining the picture, by
adding some extra points, and using the cross ratio technology from Theorem 1.22:

(1) Consider indeed the Pappus configuration in the statement, let us call P,Q,R the
crossing points appearing there, and construct points X, Y, Z as follows:

X = AC ∩DR , Y = AR ∩DF , Z = AD ∩ PQ

We obtain in this way an enlarged configuration, which looks as follows:

A B C X

Z P Q R

D E F Y

(2) We have then the following equalities, with the first one coming from Theorem
1.22, via the central perspective coming from the point R, and with the second one being
something trivial, valid for any cross ratio, coming from definitions:

(A,C,B,X) = (Y,E, F,D) = (D,F,E, Y )
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(3) But with this equality, we can conclude. Indeed, let us see what happens to the
configurations ACBX and DFEY , when projected respectively from the points D,A, on
the line PQ. Via these projections, we have the following correspondences:

ACB → ZQP , DFE → ZQP

(4) Now remember the cross ratio formula found in (2), namely:

(A,C,B,X) = (D,F,E, Y )

In view of this, and by applying again Theorem 1.22, this time in reverse form, we
conclude that the images of X, Y via the above projections must coincide:

(DX ∩ AY ) ∈ PQ

But, according to our conventions above, DX ∩ AY = R, so we obtain, as desired:

R ∈ PQ

(5) Thus, result proved. As a further comment, observe that there is a relation with
Desargues too. Finally, note that the Pappus configuration is self-dual. □

Summarizing, Pappus theorem proved, and we have learned many interesting things
on this occassion, notably in relation with the notion of cross ratio from Theorem 1.22.
As a continuation now of that material, let us formulate the following definition:

Definition 1.24. Four collinear points A,B,C,D,

A D B C

are called in harmonic ratio when their cross ratio equals −1:

(A,B,C,D) = −1

In this case, we also say that D is the harmonic conjugate of C, with respect to A,B.

In other words, our points A,B,C,D are in harmonic ratio when the following hap-
pens, with our usual conventions for the signed lengths of segments:

AC ·BD
BC · AD

= −1

As an example, the points in the above picture, with B being the middle of AC, and
D lying 2/3− 1/3 on AB, are indeed in harmonic ratio, with this coming from:

(A,B,C,D) =
AC

BC
· BD
AD

= 2×
(
−1

2

)
= −1

In general, being in harmonic ratio means somehow that A,B,C,D are “nicely dis-
tributed”, and this notion appears in relation with many questions, from the real life. In
practice now, here is how we can construct such points, in harmonic ratio:
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Theorem 1.25. Given collinear points A,B,C, the harmonic conjugate D of C with
respect to A,B can be constructed by using the following configuration:

L

M

N

K

A D B C

That is, take any line passing through C, take an arbitrary point L too, not lying on the
line ABC, then construct points M,N as above, then K, and finally D.

Proof. This is something very standard, the idea being as follows:

(1) To start with, the point D constructed above does not depend on the choice of
the line passing through C, with this coming from Desargues. Also, D does not depend
either on the choice of the point L, with this coming from Desargues too.

(2) Now in view of this, in order to prove the result, we can choose the line passing
through C, or the point L, or both, as we want to. And here, the most convenient is to
keep the line passing through C arbitrary, but to choose L high up, towards ∞, above
the segment AB. With this choice, our picture becomes as follows, with parallel lines:

M

N

K

A D B C

(3) But in this situation, we can easily compute the cross ratio. Indeed, by using the
Thales theorem several times, we have the following computation:

AD

DB
=
AK

KN
=
MA

NB
=
CA

CB
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Thus, the cross ratio is given by the following formula:

(A,B,C,D) =
AC

BC
· BD
AD

=
AC

BC
· BC
CA

= −1

We are therefore led to the conclusion in the statement. □

And with this, end of this preliminary chapter, on lines, points, and related topics.
We have learned many interesting things, all good to know, and we will be back to this
on many occasions, in what follows, with applications, generalizations, and more.

1e. Exercises

This was a quite elementary chapter, on the foundations of geometry, although some
things were a bit philosophical, and probably new to you. As exercises, we have:

Exercise 1.26. Learn a bit about modern geometry, and tangent spaces.

Exercise 1.27. Learn also a bit about projective spaces, and projective geometry.

Exercise 1.28. Work out some further versions, or consequences, of Thales.

Exercise 1.29. Try finding a 2D proof for the first implication in Desargues’ theorem.

Exercise 1.30. Learn more about the duality between points and lines.

Exercise 1.31. Learn more about the cross ratio of four collinear points.

Exercise 1.32. Try finding the precise relation between Desargues and Pappus.

Exercise 1.33. Learn also a bit about the theorems of Pascal and Brianchon.

As bonus exercise, in case you know a bit about vectors, review what we said above
in terms of vectors. We will be back to this, but only later in this book.



CHAPTER 2

Triangles

2a. Barycenter

Welcome to triangle geometry, which is on the route of what we want to do in this
book, namely angles and trigonometry. In fact, you can sense this right away, with
“triangle” obviously coming from “three angles”. And with the point being that, while
angles taken alone are quite hard to investigate, angles coming in triplets, that is, in the
form of triangles, are relatively easy to get into, via Thales and other techniques.

But let us start our study of triangles with the most important triangle result of them
all, which is actually unrelated to angles. This is the barycenter theorem, as follows:

Theorem 2.1 (Barycenter). Given a triangle ABC, its medians cross,

A

F E

B D C

at a point called barycenter, lying at 1/3− 2/3 on each median.

Proof. The idea is that we can get this from Thales, via some tricks:

(1) Let us draw indeed the medians AD and BE, and call P their intersection:

A

F E

P

B D C

33
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(2) Now comes the trick. Let us symmetrize P with respect to D, into a point Q:

A

F E

P

B D C

Q

(3) Since BD = DC and PD = DQ, by Thales, the figure BPCQ is a parallelogram.
In particular we have BP ||CQ, and again by Thales, we obtain from this:

AE = EC =⇒ AP = PQ

On the other hand, remember that D was the midpoint of PQ. Thus, we obtain:

AP = 2PD

(4) Summarizing, we have proved that when intersecting two medians, the intersection
point lies at 1/3 − 2/3 on one of the two medians. But, by symmetry, this intersection
point must lie as well at 1/3− 2/3 on the other median, that we have intersected.

(5) But with this established, we are done. Indeed, if we consider, on each of the 3
medians, the point lying at 1/3 − 2/3 on that median, then by (4) these 3 points will
coincide. Thus, we are led to the conclusion in the statement. □

The barycenter has many interesting properties, the most important of which, in
relation with intuition and physics, can be summarized as follows:

Fact 2.2. The gravity center of a triangle ABC is as follows:

(1) In the 0-dimensional case, that is, when putting equal weigths at the vertices
A,B,C, and computing the center, this is the barycenter.

(2) In the 1-dimensional case, that is, with the sides AB,BC,AC have weigths pro-
portional with their length, this is, in general, different from the barycenter.

(3) In the 2-dimensional case, that is, with the triangle ABC itself, as an area, having
a weight, uniformly distributed, this is again the barycenter.

All this looks quite interesting, so let us try now to have some understanding of this.
But, we are faced right away with the following question: how to compute, in practice,
the barycenter of a configuration of weights, say as in (1), (2), (3) above?

Not an easy question, but based on everyday experience, let us formulate:
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Method 2.3. In order to compute the barycenter of a plane object:

(1) We can come up with a blade, put it under the object, and find the correct angle,
such as the object lies in equilibrium, on the blade.

(2) In this case, with the object lying in equilibrium, we can say, mathematically, that
the barycenter lies on the line of the blade edge.

(3) And by doing twice this procedure, we can exactly locate the barycenter, as being
the interesection of the two lines that we obtain.

So, let us see how this method works, in relation with Fact 2.2 (1). Consider, as
indicated there, a triangle, with equal weights installed at the vertices:

•

• •

Now let us come with the blade, as indicated in Method 2.3 (1), and try to find the
correct angle, as for the upper vertex to lie on the blade, and for the whole triangle to be
in equilibrium. Our claim is that, in order for this to happen, the blade must be precisely
positioned on the median emanating from the upper vertex, as follows:

•

• •

Indeed, in this configuration, we have equilibrium, because the upper weight, which
is on the blade, will not matter, and the left and right weigths, being equally distanced
from the blade, as you can see by drawing two perpendiculars, which will obviously be
equal, will cancel each other’s effect. Moreover, we can also see that if we move the blade
a bit to the right, the triangle will obviously fall to the left, and that if we move the blade
a bit to the left, the triangle will obviously fall to the right. Thus, claim proved.

But with this claim proved, we are done, our conclusion being as follows:

Conclusion 2.4. When computing the physical barycenter as in Method 2.3, a trian-
gle having equal weights installed at the vertices must have its barycenter on each of the
three medians. Thus, these three medians cross, at the physical barycenter.
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Which is very nice, not only we have a proof now for what is said Fact 2.2 (1),
equality of the mathematical and physical barycenters, but as a bonus, we have as well
an alternative proof for Theorem 2.1, using an old-fashioned blade, instead of math.

Getting now to Fact 2.2 (2), that we would like to understand next, that is a negative
result, with a degenerate triangle being a counterexample there, as follows:

AB C

Indeed, the usual barycenter of this degenerate triangle, appearing as in Theorem 2.1,
or as in Fact 2.2 (1), obviously lies at 1/3− 2/3 on the segment, as follows:

AB P C

However, in the context of Fact 2.2 (2), the side AB, which is zero, does not matter,
and the sides AC,BC both have their centers at the middle of the segment. Thus, the
center of gravity of our degenerate triangle is in this case the middle of the segment:

AB P1 C

Getting now to the context of Fact 2.2 (3), this is something a bit more tricky to
understand, with a limit involved, and in the end we obtain the usual barycenter:

AB P2 C

We will leave some thinking here as an instructive exercise, and this because we will
have to come back to Fact 2.2 (3) in a moment, anyway. So, degenerate triangles studied,
and as a conclusion to this discussion, around Fact 2.2 (2), let us formulate:

Conclusion 2.5. The centers of a degenerate triangle are as follows, with the sub-
scripts 0, 1, 2 standing for the dimensionality of the problem, in the sense of Fact 2.2,

AB P0,2 P1 C

and with P0,2 being the usual, mathematical barycenter, the one from Theorem 2.1.

Getting now to the arbitrary triangles, what we have in Method 2.3 does not apply
well to the solid triangles, and their discretizations. So, we must come up with something
new. And, a bit of thinking here, again inspired from everyday experience with various
objects, leads to the following method, standing as a complement to Method 2.3:

Method 2.6. In order to compute the barycenter of a plane object:

(1) We can discretize the object, by approximating chunks of mass ε with point weigths
of mass ε, positioned anywhere inside the corresponding chunk.

(2) For discrete objects, we can use the rule that a two-point configuration a− b can
be replaced with a+ b lying at b

a+b
− a

a+b
on the segment, and recursivity.

(3) Thus, we have an algorithm for computing the barycenter of our discretization.
And by taking the limit ε→ 0, we reach to the barycenter of the initial object.
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To be more precise here, passed some standard discretization talk, done in (1) and (3),
the main point lies in the rule in (2), which itself is something very intuitive, say coming
from Method 2.3. Indeed, ignoring the rest of the configuration, a blade passing through
the point at b

a+b
− a

a+b
on the segment will certainly have our a− b configuration lying in

equilibrium, so in practice we can replace if we want this a − b configuration by a point
mass of a+ b positioned there, at b

a+b
− a

a+b
on the segment, as indicated above.

As an illustration, let us reprove Fact 2.2 (1) by using this new method. Consider, as
indicated in Fact 2.2 (1), a triangle, with equal weights installed at the vertices:

•

• •

By using the rule in Method 2.6 (2), we can merge the lower weights, as follows:

•

••

But then, by using again this rule, we can further merge our weights, as follows:

• • •

Thus, Fact 2.2 (1) proved again, our conclusion being as follows:

Conclusion 2.7. When computing the physical barycenter as in Method 2.6, a trian-
gle having equal weights installed at the vertices must have its barycenter lying at 1/3−2/3
on each median. Thus, these three medians cross, at the physical barycenter.
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Which is again nice, not only we have now a new proof for what is said Fact 2.2 (1),
equality of the mathematical and physical barycenters, but as a bonus, we have as well a
full alternative proof for Theorem 2.1, including the 1/3− 2/3 claim there.

Getting now to what Fact 2.2 (3) says, consider as indicated there a solid triangle,
with uniformly distributed weight, all across its surface, of total mass 1:

A

B C

Now let us discretize this triangle, as in Method 2.6 (1). An easy way of doing so,
with ε = 1/4, is by cutting the triangle in 4 obvious equal parts, as follows:

A

F E

B D C

In order to finish our ε = 1/4 discretization, we still have to pick the positions of our
4 point weights, inside the above 4 triangles. As mentioned in Method 2.6 (1), the precise
positions of these points will not matter in the end, in relation with our overall ε → 0
computation, so there are many possible choices here. As a standard choice, however,
that we will use here, we have the mathematical barycenters of the above 4 triangles.
And with this done, the picture of our ε = 1/4 discretization becomes as follows:

A

•
F E

•
• •

B D C

Getting now to the computation of the barycenter of this 4-point configuration, this
is clear, because we can see that this 4-point configuration actually consists of a triangle,
and its barycenter. Thus, as barycenter, we obtain the point in the middle. Of course,
this computation can be done too by using the rules in Method 2.6 (2).
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Summarizing, done with ε = 1/4. The next step is ε = 1/16, by cutting each of
the small 4 triangles in 4 parts, as before, then ε = 1/64 and so on. We will leave the
computations here as an instructive exercise, and as a conclusion to all this, our method
works indeed, and we reach in this way to a proof of Fact 2.2 (3):

Conclusion 2.8. When computing the physical barycenter as in Method 2.6, a solid
triangle, with uniformly distributed weight, has as barycenter the usual barycenter.

Very good all this, so we have now a decent knowledge of the barycenter, and time to
talk about something else. However, before doing so, let us listen as well to what cat has
to say. Cat indeed is constantly meowing, and this since the beginning of this chapter,
when I stated Theorem 2.1. So, what is it, cat, found some mice over there?

Cat 2.9. Yes, with three mice situated at A,B,C, a cat situated at

P =
A+B + C

3
can catch them all, and with 1/3− 2/3 and everything, without much trouble.

Which sounds like an interesting remark, simplifying what we did in the proof of
Theorem 2.1, and perhaps afterwards too, but in practice, go understand what cat is
exactly saying, how come he can sum points in the plane, and then divide by 3, just like
that. We will leave this for later in this book, and more specifically in Part III, when
discussing vectors, which are the good tools for investigating such questions.

2b. Angles, basics

Getting now to what we wanted to do in this book, angles and trigonometry, we can
certainly talk about angles, in the obvious way, by using triangles and the Thales theorem.
Let us record this finding, which is something quite intuitive, as follows:

Fact 2.10. We can talk about the angle between two crossing lines, and have some
basic theory for the angles going, by using triangles, and Thales, in the obvious way.

To be more precise, let us go back to the configuration from the Thales theorem, from
chapter 1, which was as follows, with two parallel lines, and two other lines:

S

A C

B D

In this situation, we can say that the two triangles SAC and SBD are similar, and
with an equivalent formulation of similarity being the fact that the angles are equal:
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Definition 2.11. We say that two triangles are similar, and we write

SAC ∼ SBD

when their respective angles are equal.

The point now is that, in this situation, we can have some mathematics going, for the
lengths, coming from the following formula, which is the Thales theorem:

SA

SB
=
SC

SD
=
AC

BD

Many other things can be said here. We will be back to this, and to similar triangles
in general, with all sorts of applications, to triangle geometry questions, in a moment.

At the philosophical level now, you might wonder of course what the values of the
angles should be, say as real numbers. But this is something quite tricky, that will take
us some time to understand. In the lack of something bright, for the moment, let us
formulate the following definition, which is quite intuitive, and does the job:

Definition 2.12. We can talk about the numeric value of angles, as follows:

(1) The right angle has value 90◦.
(2) We can double angles, in the obvious way.
(3) Thus, the half right angle has value 45◦, and the flat angle has value 180◦.
(4) We can also triple, quadruple and so on, again in the obvious way.
(5) Thus, we can talk about arbitrary rational multiples of 90◦.
(6) And, with a bit of analysis helping, we can in fact measure any angle.

So, this will be our starting definition for the numeric values of the angles. Of course,
all this might seem a bit improvised, but do not worry, we will come back later to this,
with a better, more advanced definition for these numeric values of the angles.

As another comment, you might wonder what that 90 figure for the right angles stands
for. In answer, no one really knows, this is just some convention, old as our modern world
and mathematics, say a bit similar to the 10 that we use as numeration basis. Although,
with the terrestrial month, based on the movement of the Moon, having about 30 days,
we can see here why 10 and its multiples are so important to us, humans.

In any case, comment recorded, and we will come back to this later, with a genius new
method for rescaling the angles, independent of astronomy and the Moon, with the right
angle 90◦ being destined to be called π/2, with π = 3.14159 . . . being a certain extremely
complicated number. And with this being not a joke. More later.

Getting back to work now, theorems and proofs, in relation with the above, here is a
key result, which will be our main tool for the study of the angles:
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Theorem 2.13. In an arbitrary triangle

A

B C

the sum of all three angles is 180◦.

Proof. This does not seem obvious to prove, with bare hands, but as usual, in such
situations, some tricky parallels can come to the rescue. Let us prolong indeed the segment
BC a bit, on the C side, and then draw a parallel at C, to the line AB, as follows:

A

B C

We can see that the three angles around C, summing up to the flat angle 180◦, are in
fact the 3 angles of our triangle. Thus, theorem proved, just like that. □

More generally now, we have the following result, dealing with arbitrary polygons:

Theorem 2.14. In an arbitrary polygon, the sum of all angles is

Σ = (N − 2)180◦

with N = 3, 4, 5, . . . being the number of vertices.

Proof. This follows indeed by decomposing our polygon having N vertices into N−2
triangles, in the obvious way, with the picture at N = 4 being as follows:

B

A

D C

Thus, by using Theorem 2.13, we are led to the conclusion in the statement. □

Going ahead now with our study of angles, as a continuation of the above, let us first
talk about the simplest angle of them all, which is the right angle, denoted 90◦. In relation
with it, let us formulate the following definition, making the link with triangles:
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Definition 2.15. We call right triangle a triangle of type

A

B C

having one of the angles equal to 90◦.

Many things can be said about right triangles, and we will be back to this. As a
second important angle now, we have the 60◦ angle, which usually appears via:

Theorem 2.16. In an equilateral triangle, having all sides equal,

A

B C

all angles equal 60◦.

Proof. This is clear indeed from the fact that the sum of angles is 180◦. □

Yet another interesting angle is the 30◦ one. About it, we have:

Theorem 2.17. In a right triangle having small angles 30◦, 60◦,

A

B C

we have AB = AC/2.

Proof. This is clear indeed by considering the middle E of the side AC, which makes
appear an equilateral triangle ABE, as follows:

A

E

B C

Thus, we are led to the conclusion in the statement. □
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2c. Pythagoras theorem

Many other interesting things can be said about the right angle 90◦, and about right
triangles, in particular with the following key result, due to Pythagoras:

Theorem 2.18 (Pythagoras). In a right triangle ABC,

A

B C

we have AB2 +BC2 = AC2.

Proof. This comes indeed from the following picture, consisting of two squares, and
four triangles which are identical to our triangle ABC, as indicated:

◦ ◦ ◦

◦

◦A

◦B ◦C ◦

Indeed, let us compute the area S of the outer square. This can be done in two ways.
First, since the side of this square is AB +BC, we obtain:

S = (AB +BC)2

= AB2 +BC2 + 2× AB ×BC

On the other hand, the outer square is made of the smaller square, having side AC,
and of four identical right triangles, having sizes AB,BC. Thus:

S = AC2 + 4× AB ×BC
2

= AC2 + 2× AB ×BC

Thus, we are led to the conclusion in the statement. □

As a basic application of the Pythagoras theorem, we have:
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Theorem 2.19. The 45◦ − 45◦ and 30◦ − 60◦ right triangles are as follows,

A

1

√
2

B
1

C

A

1
2

B √
3

C

up to a rescaling of the sides.

Proof. These results come indeed from 1 + 1 = 2, and from 1 + 3 = 4. □

As another basic application of the Pythagoras theorem, which is something widely
useful in practice, and this since the ancient times, we have:

Theorem 2.20. A triangle having sides 3, 4, 5 is a right triangle:

A

3
5

B
4

C

Thus, for drawing right angles, you only need a loop, with 12 knots on it.

Proof. This comes indeed from 9 + 16 = 25, and from the obvious converse of the
Pythagoras theorem, and up to you to check the details here. As for the second assertion,
and how can that be used in practice, we will leave this as an engineering exercise. □

Still speaking engineering, having 12 knots equally spaced on a loop is certainly possi-
ble, and reliable for most tasks, but if we want to improve our tool, it would be desirable
to have more knots on out loop. So, here we are looking for integer solutions of:

a2 + b2 = c2

Which is not exactly obvious, but with a bit of patience, we are led to:

Theorem 2.21. A triangle having sides 5, 12, 13 is a right triangle:

A

5
13

B
12

C

Thus, for drawing right angles, you only need a loop, with 30 knots on it.
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Proof. Here the first assertion comes from the following equality, and with the com-
ment that this is the simplest possible one, passed 9 + 16 = 25:

25 + 144 = 169

As for the second assertion, we will leave this again as an engineering exercise. As a
bonus exercise, try further improving this, say with a solution using 90 knots. □

Along the same lines, at a more advanced level, we have the following result, which
fully closes the discussion, regarding the Pythagoras equation over the integers:

Theorem 2.22. The Pythagoras equation, namely

a2 + b2 = c2

can be fully solved over the integers, the solutions being

a = d(m2 − n2) , b = 2dmn , c = d(m2 + n2)

with (m,n) = 1, up to exchanging a, b.

Proof. This is something standard, due to Euclid, the idea being as follows:

(1) Let us try to solve a2 + b2 = c2. If we divide a, b, c by their greatest common
divisor d = (a, b, c), the equation is still satisfied. Thus, we can assume (a, b, c) = 1, and
we want to prove that the solutions are as follows, up to exchanging a, b:

a = m2 − n2 , b = 2mn , c = m2 + n2

(2) To start with, in one sense our result is clear, because given any two numbers m,n,
the above formulae produce a solution to our equation, as shown by:

(m2 − n2)2 + (2mn)2 = m4 + n4 − 2m2n2 + 4m2n2

= m4 + n4 + 2m2n2

= (m2 + n2)2

(3) So, we must prove now the converse, stating that if a, b, c satisfying (a, b, c) = 1
are solutions of a2 + b2 = c2, then we can write them as in (1). For this purpose, the first
observation is that, due to a2 + b2 = c2, our assumption (a, b, c) = 1 implies:

(a, b) = (a, c) = (b, c) = 1

(4) Let us study now the parity of a, b, c. Since (a, b) = 1, one of these two numbers,
say a, is odd. Now assuming that b is odd too, we would get a2 + b2 = 2(4), which is
impossible, due to a2 + b2 = c2. Thus b must be even, and as a conclusion to this study,
up to exchanging a, b, we can assume that the parity of our numbers is as follows:

a = odd , b = even , c = odd
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(5) Now comes the trick. We can rewrite our equation in the following way:

a2 + b2 = c2 ⇐⇒ b2 = c2 − a2

⇐⇒ b2 − (c− a)(c+ a)

⇐⇒ c+ a

b
=

b

c− a
(6) With this done, let us look at the fraction on the left. This is a rational number,

so we can write it in reduced form, as follows, with (m,n) = 1:

c+ a

b
=
m

n

Now observe that our equation, as reformulated in (5), takes the following form:

c+ a

b
=
m

n
,

c− a
b

=
n

m

Equivalently, our equation, as reformulated in (5), takes the following form:

c

b
+
a

b
=
m

n
,

c

b
− a

b
=

n

m

But this latter system is equivalent to the following two formulae:

a

b
=

1

2

(m
n
− m

n

)
=
m2 − n2

2mn

c

b
=

1

2

(m
n

+
m

n

)
=
m2 + n2

2mn
(7) Good work that we did, and time to breathe, and see what we have. We have

proved so far that if a, b, c satisfying (a, b, c) = 1 are solutions of a2 + b2 = c2, then up to
exchanging a, b, we can find numbers m,n satisfying (m,n) = 1, such that:

a

b
=
m2 − n2

2mn
,

c

b
=
m2 + n2

2mn

Which sounds nice, because due to (a, b) = (b, c) = 1, as noted in (3), the two fractions
on the left are in reduced form. So, if we manage to prove that the two fractions on the
right are in reduced form too, this would finish the proof, because we would get:

a = m2 − n2 , b = 2mn , c = m2 + n2

(8) So, let us look now at the two fractions on the right, appearing above. As a first
observation, due to (m,n) = 1, the following two fractions are in reduced form:

m2 − n2

mn
,

m2 + n2

mn

The problem, however, is that the fractions in (7) are the halves of these quantities.
So, all we need is a study modulo 2, and with this, normally done.
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(9) Getting now to the endgame, from (m,n) = 1, the case where both m,n are even
is excluded. But the case where both m,n are odd is excluded too, due to:

a

b
=
m2 − n2

2mn

Indeed, if m,n were both to be odd, we would have m2 − n2 = 0(4) and 2mn = 2(4),
so the fraction on the right, when reduced, would have an even denominator. But this
would tell us that b must be even, which contradicts our b odd choice from (4).

(10) Summarizing, one of the numbers m,n must be even, and the other must be odd.
But this does the job, because it shows that m2 − n2 and m2 + n2 are both odd, so when
dividing the reduced fractions from (7) by 2, these fractions remain still reduced. Thus,
as a conclusion to our study, the following two fractions are reduced:

m2 − n2

2mn
,

m2 + n2

2mn
(11) So, theorem proved. Indeed, as indicated in (7), let us look now at:

a

b
=
m2 − n2

2mn
,

c

b
=
m2 + n2

2mn
Since all fractions appearing here are in reduced form, we obtain from this:

a = m2 − n2 , b = 2mn , c = m2 + n2

And finally, as indicated in (1), by multiplying a, b, c by an arbitrary number d, we
obtain the general solutions from the statement, namely:

a = d(m2 − n2) , b = 2dmn , c = d(m2 + n2)

(12) At the level of the interesting examples now, there are of course many of them,
and we have for instance a solution as follows:

92 + 402 = 1681 = 412

Thus, and good news here, we have solved as well a quite difficult exercise left, the
one at the end of the proof of Theorem 2.21. □

2d. Triangle centers

Now that we know about angles, let us go back to triangles. We have the following
result, making appear 3 more centers of our triangle, which all have their own importance
and interest, and which are in general different from the barycenter:

Theorem 2.23. Given a triangle ABC, the following happen:

(1) The medians cross, at the barycenter G.
(2) The angle bisectors cross, at the incenter I.
(3) The perpendicular bisectors cross, at the circumcenter O.
(4) The altitudes cross, at the orthocenter H.
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Proof. Let us first draw our triangle, with this being always the first thing to be
done in geometry, draw a picture, and then thinking and computations afterwards:

A

B C

Allowing us the freedom to play with some tricks, as advanced mathematicians, both
students and professors, are allowed to, here is how the proof goes:

(1) This is something that we know well, from Theorem 2.1.

(2) Come with a small circle, inside ABC, and then inflate it, as to touch all 3 edges.
The center of the circle will be then at equal distance from all 3 edges, so it will lie on all
3 angle bisectors. Thus, we have constructed the incenter, as required.

(3) We can use the same method as for (2). Indeed, come with a big circle, containing
ABC, and then deflate it, as for it to pass through A,B,C. The center of the circle will
be then at equal distance from all 3 vertices, so it will lie on all 3 perpendicular bisectors.
Thus, we have constructed the circumcenter, as required.

(4) This is something tougher, and I must admit that, when writing this book, I first
struggled a bit with this, then ended looking it up on the internet. So, here is the trick.
Draw a parallel to BC at A, and similarly, parallels to AB and AC at C and B. You will
get in this way a bigger triangle, upside-down, A′B′C ′, as follows:

C ′ A B′

B C

A′
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But then, the circumcenter of this bigger triangle A′B′C ′, that we know to exist from
(3), will be the orthocenter of ABC, as shown by the following picture:

C ′ A B′

B C

A′

Thus, we are led to the conclusions in the statement. □

As an illustration, let us work out the case of the right triangles. Here we can say
more about the various triangle centers, the result being as follows:

Theorem 2.24. The various centers G, I,O,H of a right triangle ABC are subject
to the fact that we have H = B, and that O is the middle of AC,

A

O

G

BH C

and based on this, we can conclude that the following happen:

(1) O,G,H are collinear, with GH = 2GO.
(2) I does not generally lie on the line OGH.

Proof. This is indeed something quite self-explanatory, as follows:

(1) To start with, we have indeed H = B, as being the intersection of the altitudes
drawn from A,C. Also, the middle of AC being at equal distance from A,B,C, as we
can see by completing ABC into a rectangle, it is the circumcenter O.

(2) Regarding now the barycenter G, we know from Theorem 2.1 that this lies on the
median emanating from B, which is the segment HO, at 1/3 − 2/3. Thus, by putting
everything together, we have proved the assertion (1) in the statement.

(3) Finally, regarding the incenter I, this must lie on the angle bisector drawn from
B, and unless our right triangle ABC is isosceles, this angle bisector will certainly not
coincide with the median BO. Thus, we have proved as well the assertion (2). □
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As another illustration, let us work out as well the case of the isosceles triangles.
Again, here we can say more about the various triangle centers, and we have:

Theorem 2.25. In the case of an isosceles triangle, the barycenter G, incenter I,
circumcenter O and orthocenter H all lie on the main median, the picture being

A

O

G

I

H

B C

when the angle at A is small, and with the order of these points being reversed, namely
H, I,G,O, when the angle at A is big. In all cases, we can conclude that:

(1) O,G,H are collinear, with GH = 2GO.
(2) I lies also on the line OGH, but at various positions.

Proof. There are several things going on here, the idea being as follows:

(1) Let us start our study with the case of a degenerate isosceles triangle, having null
angle at A. The picture of this triangle is something very simple, as follows:

A

BC

Now let us compute the various centers. Regarding the barycenter G, this lies at
1/3− 2/3 on the main median, no question about this, so we have:

AG = 2GB

Regarding the incenter I, this is the center of the inner circle, which gets squeezed to
a null circle as the angle at A gets squeezed to 0, so we have:

I = B = C
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Regarding now the circumcenter O, this is the center of the outer circle, passing
through A and B = C, so this point must be the middle of the main median:

AO = OB

Finally, regarding the orthocenter H, which appears as the intersection of the 3 alti-
tudes, this gets squeezed to B = C, when the angle at A gets squeezed to 0:

H = B = C

Summarizing, we have our points, and by putting together all the above, the precise
picture is as follows, with the main median being divided here into 6 equal parts:

A

−

−

O

G

−

BCIH

In particular, as a consequence of this, we have indeed GH = 2GO, as stated.

(2) Next, let us see what happens when the angle at A is small. Here G, I,O,H are
respectively at the intersection of the main median with the median at B, angle bisector
at B, perpendicular bisector opposed to B, and altitude at B, and a quick study on how
these 4 latter lines are positioned leads to the picture in the statement, namely:

A

O

G

I

H

B C
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In order to prove now GH = 2GO, we must do some computations. And for this
purpose, the best is to consider the middle M of the side BC, and think of our triangle
ABC as appearing from the right triangle AMC, by symmetrizing. Indeed, when doing
so, we have right away a simple formula for AG, in terms of AMC, namely:

AG =
2

3
· AM

Regarding now the computation of AO, consider the middle P of the side AC, and
the corresponding perpendicular bisector, passing through the circumcenter O:

A

P

O

B M C

We have then the following computation, using similar triangles:

AO

AP
=

AC

AM
=⇒ AO =

1

2
· AC

2

AM

Finally, regarding the computation of AH, let us draw the altitude from B:

A

N

H

B M C

Again we have some similar triangles appearing, which leads to:

AH

AN
=

AC

AM
,

NC

BC
=
MC

AC
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Thus, we can compute AH in terms of the sides of AMC, as follows:

AH = AN · AC
AM

= (AC −NC) AC
AM

=

(
AC − BC ·MC

AC

)
AC

AM

=
AC2 − 2MC2

AM

Summarizing, we have established the following formulae:

AG =
2

3
· AM , AO =

1

2
· AC

2

AM
, AH =

AC2 − 2MC2

AM

Now observe that we have the following equality, coming from Pythagoras:

3AG =
2AM2

AM

=
2(AC2 −MC2)

AM
= 2AO + AH

Thus AH − AG = 2(AG − AO), and so GH = 2GO, as claimed. Finally, in what
regards the incenter I, nothing much can be said about it. We will leave some exploration
here as an exercise, and come back to it later, in chapter 3, with some formulae.

(3) Next, when further enlarging the angle at A, we will meet a new configuration when
the triangle ABC gets equilateral, that is, with all its sides equal. In this case G, I,O,H
all coincide with the obvious center of the triangle, the picture being as follows:

A

GIOH

B C

Observe that in this case we still have GH = 2GO, as stated, coming as 0 = 0.
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(4) Next, when further enlarging the angle at A, while still keeping it smaller than a
right angle, a similar study to the one performed in (2) leads to the following picture:

A

H

I

G

O

B C

Also as before in (2), the formula GH = 2GO still holds, and in what regards I,
nothing simple can be said about it, and we will leave all this as an exercise.

(5) Getting now to the case where A becomes a right angle, here the orthocenter
becomes H = A, and the circumcenter O becomes the middle of BC, as follows:

AH

I

G

B O C

Observe that the formula GH = 2GO still holds in this case, trivially.

(6) Next, when the angle at A becomes obtuse, what happens is that H escapes from
the triangle, and the same happens for O, with the picture being as follows:

H

A

I

G

B C

O

As before in (2) and (4), the formula GH = 2GO still holds, and in what regards I,
nothing simple can be said about it, and we will leave all this as an exercise.
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(7) Finally, in the case where the triangle ABC becomes degenerate, with a flat angle
at A, the picture becomes as follows, with both H,O being sent to the infinity:

H

B AIG

OO

��

C

O

To be more precise here, in what regards the vertical alignment, in view of the formula
GH = 2GO from (6), we can say that H is sent to infinity twice as fast as O, so we are
led to the above picture, making it clear that we have GH = 2GO too, in this case. □

The above study was quite interesting, and based on what we have in Theorem 2.24
and Theorem 2.25, we can now formulate the following conjecture:

Conjecture 2.26. For an arbitrary triangle ABC,

A

B C

the points O,G,H are collinear, with GH = 2GO.

We will see in the next chapter that this is something which holds indeed. And also,
we will be back to the incenter I too, with some formulae regarding it.

As another question now, also coming from our study, we have:

Question 2.27. Can we have some general theory going, for the various centers of a
triangle, notably with results stating that when drawing lines of type AD,BE,CF ,

A

F E

B D C

these lines cross indeed? Also, what about the various centers of a triangle, that we can
obtain in this way, what are the exact relations between them?
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These are all interesting questions, and we will answer them too, in due time.

2e. Exercises

This was a quite standard chapter on plane geometry, only fundamental things, which
are all good to know, in the real life, and as exercises on this, we have:

Exercise 2.28. Study some more the alternative barycenter of triangles, the 1D one,
constructed by using triangles with weighted edges.

Exercise 2.29. Clarify what we said in the above about the barycenter, and its com-
putation, in relation with discretization methods.

Exercise 2.30. Try finding an alternative proof, without any kind of tricks, for the
existence of the orthocenter.

Exercise 2.31. Learn a bit about the story of mankind, and of human numbers, about
basis 10, and about 360◦ too.

Exercise 2.32. Look up and learn some other proofs, most likely more complicated,
of the Pythagoras theorem.

Exercise 2.33. Review if needed the arithmetic ingredients used by Euclid for solving
the Pythagoras equation, over the integers.

Exercise 2.34. Find some other interesting solutions of the Pythagoras equation over
the integers. Also, learn a bit about the Fermat equation, too.

Exercise 2.35. Verify that what we said above regarding the centers of isosceles tri-
angles, with GH = 2GO, holds no matter how acute or obtuse the angle at A is.

As bonus exercise, meditate a bit about angles, and about the best way of assigning
them numeric values. We will be back to this, but only later in this book.



CHAPTER 3

Triangle centers

3a. Euler circle, line

Getting now to more advanced plane geometry, still in relation with the triangles, we
know from chapter 2 that associated to any triangle ABC are two remarkable circles,
namely the inner one, centered at the incenter I, and the outer one, centered at the
circumcenter O. But, which of these two circles is the most important?

In answer, the point is that we have as well a third circle, called nine-point circle,
which for many purposes is actually the most important one. In order to discuss this, we
will need to know more about circles, notably with the following basic fact:

Theorem 3.1. Any triangle lying on a circle, with two vertices on a diameter,

A

B O C

is a right triangle.

Proof. This is clear, because we have two isosceles triangles appearing, so at the
level of the corresponding angles, the 180◦ equation for our triangle is as follows:

b+ (b+ c) + c = 180◦

Thus, we obtain b+ c = 90◦, so the angle at A is indeed 90◦, as claimed. □

More generally now, we have the following result, which is very useful too:

Theorem 3.2. Given a triangle ABC lying on a circle,

A

O

B C

the angle at A does not depend on the position of A, and equals half the angle BOC.

57
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Proof. This follows a bit as before. Indeed, the angles of our triangle ABC are as
follows, with p, q, r being the smaller angles on the picture, from left to right:

a = p+ q , b = p+ r , c = r + q

Now let us look at the angle BOC. This is given by the following formula:

BOC = 180◦ − 2r

= (a+ b+ c)− 2r

= (2p+ 2q + 2r)− 2r

= 2p+ 2q

Thus, we are led to the conclusions in the statement. □

As a third basic result about circles, which is good to know too, we have:

Theorem 3.3. Given a configuration as follows, with A,B,C,D on a circle,

A

B

P

C

D

we have PAD ∼ PCB. In particular we have the formula

PA · PB = PC · PD

and this quantity is called the power of P with respect to the circle in question.

Proof. There are several things going on here, the idea being as follows:

(1) To start with, by using Theorem 3.2 we can see that the angles A,B,C,D of the
quadrilateral ABCD are related by A + C = 180◦ and B + D = 180◦. But this shows
that the triangles PAD, PCB have the same angles, so they are similar, as stated.

(2) Next, from the similarity PAD ∼ PCB we obtain the following formula:

PA

PD
=
PC

PB

But this can be written in the form in the statement, PA · PB = PC · PD.

(3) Finally, we can forget about A,B,C,D, and conclude that given a point P outside
a circle, we can talk about the quantity PA ·PB, which is independent of the secant PAB
used. And with this being called power of P with respect to the circle. □
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Getting now to what we wanted to do, nine-point circle, let us start with the following
key result, due to Euler and others, establishing the existence of this circle:

Theorem 3.4. Associated to any triangle ABC we have a nine-point circle,

A

P K

L

E

F

Q R

B J D C

passing through the following points, pictured above:

(1) The midpoints D,E, F of each side.
(2) The feet J,K, L of each altitude.
(3) The midpoints P,Q,R of each segment vertex - orthocenter.

Proof. This is something quite tricky, the idea being as follows:

(1) Consider the circle passing through D,E, F . We will prove in what follows that
this circle passes through J , and by symmetry, this circle will have to pass through K,L
too. Then we will prove that this circle passes through P , and by symmetry, this circle
will have to pass through Q,R too. And so, we will have our nine-point circle.

(2) So, let us first prove that the points D,E, F, J are cocyclic. The simplified picture
here, with the triangle ABC and these points D,E, F, J , is as follows:

A

F E

B J D C

Now let us look at the trapezoid DEFJ , highlighted above. As a first observation, by
definition of the points E,F , as being side midpoints, we have:

EF ||JD
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Now let us compute the sides DE,FJ of this trapezoid. In what regards DE, this is
an easy task, because by definition of the points D,E, we have:

DE =
AB

2

Regarding now FJ , observe that ABJ is a right triangle, having FJ as median. We
conclude that the length of this median FJ is half of the corresponding side:

FJ =
AB

2

Now by looking at what we have in the above, we conclude that DEFJ is an isosceles
trapezoid. But such an isosceles trapezoid must obviously lie on a circle, by obvious
symmetry reasons, so its vertices D,E, F, J are indeed cocyclic, as claimed.

(3) Next, by using the same argument, the circle through D,E, F must pass through
K,L too. Thus, we have our six-point circle, passing through the following points:

A

K

L

E

F

B J D C

(4) Now let us prove that this six-point circle passes through P . The simplified picture
here, with the triangle ABC and with the points D,E, F, P , is as follows:

A

P

F E

B J D C

For this purpose, the trick is to look at the triangles PJD, PFD, highlighted above.
Indeed, regarding these triangles, we have the following observations:
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– In what regards PJD, this is by definition a right triangle. We conclude that J lies
on the circle centered at the middle of PD, and having radius PD/2, and with this latter
circle being of course, by uniqueness, the six-point circle constructed in (3).

– In what regards now PFD, our claim is that this is a right triangle too. Indeed, by
definition of the points F,D, as being the midpoints of AB,BC, we have:

FD||AC

On the other hand, since the point P is by definition the middle of the segment AH,
with H being the orthocenter of the triangle ABC, we have:

FP ||BH

But since BH ⊥ AC, by definition of the orthocenter H, this shows that we have:

FP ⊥ AC

Thus FD ⊥ FP , so our triangle PFD is indeed a right triangle, as claimed.

– But with this, we can finish, because it follows that P lies as well on the circle found
before, the one centered at the middle of PD, and having radius PD/2. Thus, the points
P, J, F,D are cocyclic, and so P lies on the six-point circle constructed in (3).

(5) Finally, a similar argument shows that the remaining two points Q,R lie on this
six-point circle too. Thus, we have our nine-point circle, as desired. □

As a second result now regarding the nine-point circle, we have:

Theorem 3.5. The center N of the nine-point circle associated to a triangle ABC,

A

B C

is on the line OG, positioned as follows, with GO = 2NG,

N G × O

and its radius is half of the radius of the circumscribed circle.
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Proof. In order to prove this, consider the configuration producing the barycenter
of our triangle ABC, that we know well since the beginning of chapter 2, namely:

A

F E

B D C

We can see that the triangles ABC and DEF are similar, and with this similarity
coming from the homothety centered at the barycenter G of our triangle ABC, of ratio
−1/2. In other words, we know that this latter homothety has the following property:

ABC → DEF

Now by looking at the corresponding circumscribed circles, these must be in correspon-
dence too, via our homothety. In particular, the centers of these circumscribed circles,
which are respectively O and N , must be positioned as follows, with GO = 2NG:

N G × O

Thus, we proved the first assertion. As for the radii of these two circles, these must
be related as well by our ratio −1/2 homothety, which in practice means that the radius
of the nine-point circle is half of the radius of the circumscribed circle, as stated. □

As a continuation of the above, we have the following key result:

Theorem 3.6. Associated to any triangle ABC, not equilateral,

A

B C

is its Euler line, notably passing through H,N,G,O, with the proportions being

H × × N G × O

that is, with GH = 2GO, and with N being midway between H and O.

Proof. This is something which fine-tunes and generalizes a number of things that
we knew from before, the idea with this being as follows:

(1) To start with, this is something that we discussed in chapter 2 for the right triangles
and isosceles triangles, where the Euler line is the main median, save for the details of
NH = NO, which will follow from the discussion below, regarding the general case.
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(2) In order to discuss now the general case, let us go back to the proof of Theorem
3.5, and to the homothety used there, centered at the barycenter G, and of ratio −1/2.
Let us denote by H ′ the preimage of the circumcenter O under this homothety:

H ′ × G O

In view of what we already know from Theorem 3.5, it remains to prove that:

H ′ = H

(3) So, let us prove this latter equality. In order to do so, the trick is to consider the
point X, symmetric of A with respect to O, with the picture being as follows:

A

H ′ G O

B C

X

(4) Now let us look at the triangle AH ′X, hightlighted above. As a first observation,
its barycenter lies on its median H ′O at 1/3− 2/3, so this barycenter is G.

(5) Now with this is hand, we conclude that AG is a median of this triangle AH ′X
too. But since the barycenter G of the triangle AH ′X must be located 1/3− 2/3 on this
latter median, we conclude that the side midpoint D is the middle of H ′X:

A

H ′ G O

B D C

X
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(6) But with this, we can finish. Indeed, it follows that we have OD||AH ′, and since
we have OD ⊥ BC, we conclude that we have AH ′ ⊥ BC. Similarly, we have BH ′ ⊥ AC
and CH ′ ⊥ AB, so the point H ′ is indeed the orthocenter, H ′ = H, as desired. □

Quite interesting all this, with as a philosophical conclusion, any triangle ABC not
coming exactly alone, but rather accompanied by an extra line, and by a circle too. Thus,
and anticipating here a bit, what we have is a configuration of total degree 6. And we
will see later in this book other magical occurrences of degree 6 configurations.

3b. Special triangles

The results established above are quite general, valid for any triangle, and time now to
see what happens in practice, for various particular triangles, such as the right triangles,
or the isosceles triangles. So, we will do such a study, and then, based on what we find,
we will formulate and prove some further results, in the general case.

Let us start with the right triangles. We have already talked about them in chapter 2,
with the conclusion that in what regards O,G,H the situation is quite trivial, with their
collinearity, and the formula GH = 2GO, coming from the following configuration:

A

O

G

BH C

Thus, we have the Euler line, coming trivially in this case, as being the main median
of our right triangle. It remains now to update our discussion, by talking about the
nine-point circle and its center N , and the situation here is trivial too, as follows:

Theorem 3.7. For a right triangle the nine-point circle is a five-point circle,

A

K

F E

N

B D C

whose existence is trivial. As for the Euler line, this is the main median, trivially too.
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Proof. There are several things going on here, the idea being as follows:

(1) To start with, in our case, the 9 points of the nine-point circle, as considered in
Theorem 3.4, are the side midpoints D,E, F , the altitude feet B,K,B, and the midpoints
of the vertex-orthocenter segments F,B,D. Thus, all in all, we have in fact only 5 points,
namely the vertex B, the side midpoints D,E, F , and the altitude foot K.

(2) In order to prove now that these points are cocyclic, consider the middle N of
the segment BE. Since the figure BDEF is a rectangle, having center N , the points
B,D,E, F are indeed cocyclic, around N . As for the remaining point K, since BKE is
a right triangle with median KN , we have KN = NB = NE, so done with this too.

(3) Summarizing, we have proved that for a right triangle the nine-point circle exists,
as a five-point circle, for trivial reasons, and with its center and radius being, again for
trivial reasons, those coming from the general theory, exactly as desired. □

Getting now to the isosceles triangles, we know from chapter 2 that things will be less
trivial, because we have struggled a bit there, in order to establish the formulaGH = 2GO.
Now by adding the nine-point circle to the discussion there, we have the following result,
which is something quite modest, and is formulated a bit informally too:

Theorem 3.8. For an isosceles triangle the nine-point circle is an eight-point circle,
and the Euler line is trivially the main median, as follows,

A

O

G

N

H

B C

and the fact that the eight-point circle exists indeed, and that we have, on the Euler line,

H × × N G × O

can be proved as well, with some patience, by using similar triangles and Pythagoras.

Proof. There are several things going on here, the idea being as follows:

(1) To start with, the Euler line is trivially the main median.
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(2) Next, as explained in chapter 2, in order to do the computations, the best is to
consider the middle pointM of the side BC, and to think of our original isosceles triangle
ABC as appearing from the right triangle AMC, by reflection. That is, our main object
becomes AMC, and we will do the computations in terms of the side lengths of AMC.

(3) Still reviewing the material from chapter 2, let us recall from there that, by using
the above philosophy, and similar triangles, we are led to the following formulae:

AG =
2

3
· AM , AO =

1

2
· AC

2

AM
, AH =

AC2 − 2MC2

AM

As a consequence, we have the following equality, coming from Pythagoras:

3AG =
2AM2

AM

=
2(AC2 −MC2)

AM
= 2AO + AH

Thus AH − AG = 2(AG− AO), and so GH = 2GO, as we know since chapter 2.

(4) Getting now to new computations, involving the nine-point circle, which in our
case is rather an eight-point circle, and its center N , there are many things to be done
here. So, let us start by showing that everything is fine on the Euler line. If we denote as
usual by P the middle of the segment AH, the picture of our triangle becomes:

A

P

O

G

N

H

B M C

To be more precise, the points A,P,O,G,H,M are as before, and we have added to
these the middle N of the segment PM , which must be the center of the nine-point circle
under construction, due to the fact that this nine-point circle must pass through P,M .

(5) So, what is to be proved? Well, as mentioned above, we first want to make sure
that things fine on the Euler line, and with GH = 2GO already established in (3), we are
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left with proving ON = NH. So, let us prove this. We have the following computation,
using the various formulae from (3), along with Pythagoras, at the end:

AN =
AP + AM

2

=
AH

4
+
AM

2

=
AC2 − 2MC2

4AM
+
AM

2

=
AC2 − 2MC2 + 2AM2

4AM

=
AC2 − 2MC2 + 2(AC2 −MC2)

4AM

=
3AC2 − 4MC2

4AM

On the other hand, we have as well the following computation:

AO + AH

2
=

1

2

(
1

2
· AC

2

AM
+
AC2 − 2MC2

AM

)
=

AC2 + 2(AC2 − 2MC2)

4AM

=
3AC2 − 4MC2

4AM

Thus we have AN = (AO + AH)/2, so we obtain ON = NH, as desired.

(6) Next, now that we have the center N of our nine-point circle in construction, let
us look at its radius. Since this circle must pass through P , its radius must be:

ρ = AN − AP

= AN − AH

2

=
3AC2 − 4MC2

4AM
− AC2 − 2MC2

2AM

=
AC2

4AM

=
AO

2

Thus, the radius is half of the radius of the circumscribed circle, as desired.

(7) In the order to finish now, we still must establish the existence of the nine-point
circle, which in our case is an eight-point circle. But for this purpose, by symmetry, it
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is enough to consider the point N constructed above, and prove that its distance to the
points K,E,R, appearing respectively as the foot of the altitude from B, the middle of
AC, and the middle of CH, all equal the number ρ computed above.

(8) Which is not exactly trivial, and we will leave having some fun with all this as
an instructive exercise, and with the remark of course that we already know that this
happens indeed, as a consequence of Theorems 3.4, 3.5, 3.6. □

3c. Heron, Brahmagupta

Moving on, let us talk now about the forgotten triangle center, which is the incenter
I. As a first question, we must compute the radius of the incircle, and we have here:

Theorem 3.9. Given a right triangle ABC, the radius of the incircle is:

r =
AB +BC − AC

2

For an isosceles triangle, appearing from a right triangle AMC by reflection, we have:

r =
MC(AC −MC)

AM

In the general case, that of an arbitrary triangle, we have the following formula:

r =
2× area(ABC)
AB +BC + AC

Moreover, the distances AI,BI, CI can be computed as well, by using this.

Proof. There are several things going on here, the idea being as follows:

(1) For a right triangle with sides a, b, c, we have a simple configuration, namely:

A

c−r

c−r

a−r

r

I
r

r

r

B r a−r C

By looking at AC we have b = a+ c− 2r, and so r = (a+ c− b)/2, as claimed.
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(2) For an isosceles triangle with sides 2α, b, b, the configuration is as follows:

A

b−αb−α

X

α

Y

αI
r

rr

B α M α C

Now observe that by using similar triangles we have the following formula:

IY

MC
=

AY

AM
But this formula for the length r = IY , together with input coming from the above

picture, namely AY = AC −MC, gives the formula for r in the statement.

(3) In the case of an arbitary triangle now, the configuration is as follows:

A

xx

y zI
r

rr

B y z C

If we denote by a, b, c the sides of our triangle ABC, the area is then given by the
following formula, which gives the formula for r in the statement:

area(ABC) =
ar

2
+
br

2
+
cr

2

(4) Next, in order to compute AI,BI, CI, we can use Pythagoras, which gives:

AI =
√
x2 + r2 , BI =

√
y2 + r2 , CI =

√
z2 + r2

In order to compute now the lengths x, y, z, observe that we have:

x+ y = c , x+ z = b , y + z = a

Solving this system gives the following formulae for the lengths x, y, z:

x =
b+ c− a

2
, y =

a+ c− b
2

, z =
a+ b− c

2
Thus, we can compute indeed the lengths AI,BI, CI, using our formula for r. □

At a more advanced level now, we have the following remarkable result:
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Theorem 3.10 (Heron). The area of a triangle having sides a, b, c is given by

S =
√
s(s− a)(s− b)(s− c)

with s = (a+ b+ c)/2 being the semiperimeter. As a consequence, we have

r =

√
(s− a)(s− b)(s− c)

s

and the distances AI,BI, CI can be computed as well, by using this.

Proof. To start with, the Heron product P in the statement is given by:

16P 2 = 16s(s− a)(s− b)(s− c)
= (a+ b+ c)(b+ c− a)(a+ c− b)(a+ b− c)
= [(b+ c)2 − a2] · [a2 − (b− c)2]
= (b2 + c2 − a2 + 2bc)(a2 − b2 − c2 + 2bc)

= 4b2c2 − (b2 + c2 − a2)2

In order to further process this quantity, we can think of our triangle ABC as appearing
by gluing two right triangles, according to the following picture:

A

c b
x

B y M z C

Indeed, we can express our product in terms of x, y, z, and we obtain, as desired:

16P 2 = 4b2c2 − (b2 + c2 − a2)2

= 4(x2 + y2)(x2 + z2)− (2x2 − 2yz)2

= 4(x2y2 + x2z2 + 2x2yz)

= 4x2(y + z)2

= 4(ax)2

= 16S2

Finally, the formula for r follows from this, and from the formula r = S/s from
Theorem 3.9, and AI,BI, CI can be computed too, as explained in Theorem 3.9. □

As a generalization of the Heron formula, we have the following result:
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Theorem 3.11 (Brahmagupta). The area of a quadrilateral lying on a circle

A

B

C

D

having sides a, b, c, d is given by the following formula,

S =
√
(s− a)(s− b)(s− c)(s− d)

with s = (a+ b+ c+ d)/2 being the semiperimeter.

Proof. As a first observation, this formula generalizes indeed the Heron formula for
triangles, which can be obtained with d = 0. In order to prove now the formula, the idea
will be that of applying the Heron formula, to certain pair of similar triangles:

(1) To start with, the result for trapezoids comes as a limiting case of the formula for
non-trapezoids, so we can assume that the sides AB,CD are not parallel. Alternatively,
assuming AB||CD, and with the result being clear for rectangles, we can assume that
the sides AD,BC are not parallel, which in practice means, by cyclically permuting the
vertices A,B,C,D, that we can again assume that the sides AB,CD are not parallel.

(2) So, assuming that the sides AB,CD are not parallel, let us prolong these sides
AB and CD, until they meet at a point E, with the picture being as follows:

A
a

d

B
x

b E

y
C

c

D

The point now is that, due to the presence of the circle through the points A,B,C,D,
we have a pair of similar triangles appearing on this picture, as follows:

ADE ∼ CBE
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(3) In relation now with areas, since the proportionality factor between the above two
similar triangles is d/b, we conclude that we have the following formula:

area(ADE) =
d2

b2
× area(CBE)

Now in terms of the original quadrilateral ABCD, this formula gives:

area(ABCD) = area(ADE)− area(CBE)

=

(
d2

b2
− 1

)
× area(CBE)

(4) Next, let us apply the Heron formula to CBE. We obtain:

area(CBE) =
1

4

√
(x+ y + b)(x+ y − b)(x− y + b)(y − x+ b)

Thus, done or almost, and in order to finish, we have to compute x, y, or rather the
quantities x+ y, x− y appearing above, in terms of a, b, c, d, and see what we get.

(5) But this can be done by using ADE ∼ CBE, which gives:

x

b
=
y + c

d
,

y

b
=
x+ a

d

Indeed, let us write these formulae in the following way:

dx = by + bc , dy = bx+ ab

By making the sum and difference of these equations, we obtain:

d(x+ y) = b(x+ y) + b(c+ a) , d(x− y) = b(y − x) + b(c− a)
Thus, we have the following formulae for the quantities x+ y, x− y:

x+ y = b · c+ a

d− b
, x− y = b · c− a

d+ b

(6) Now let us compute the quantities in the Heron formula, from (4). These are as
follows, with s = (a+ b+ c+ d)/2 being the semiperimeter of our quadrilateral:

x+ y + b = b

(
c+ a

d− b
+ 1

)
= 2b · s− b

d− b

x+ y − b = b

(
c+ a

d− b
− 1

)
= 2b · s− d

d− b

x− y + b = b

(
c− a
d+ b

+ 1

)
= 2b · s− a

d+ b

y − x+ b = b

(
a− c
d+ b

+ 1

)
= 2b · s− c

d+ b
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(7) But with this, we can now finish. Indeed, the Heron formula from (4) takes the
following form, in terms of a, b, c, d and of the semiperimeter s = (a+ b+ c+ d)/2:

area(CBE) = b2
√
s− b
d− b

· s− d
d− b

· s− a
d+ b

· s− c
d+ b

= b2

√
(s− a)(s− b)(s− c)(s− d)

(d− b)2(d+ b)2

=
b2

d2 − b2
√

(s− a)(s− b)(s− c)(s− d)

Now by using the formula in (3), we are led to the conclusion in the statement. □

The Brahmagupta formula established above is something quite interesting, and many
other things can be said about it, notably with the following claim:

Claim 3.12. The maximum area of a quadrilateral having sides a, b, c, d is

S =
√

(s− a)(s− b)(s− c)(s− d)
s = (a+ b+ c+ d)/2 being the semiperimeter, achieved when the points are cyclic.

Obviously, this is something quite intuitive, because when inflating something, that
thing tends to become a circle, right. However, in what regards the precise mathematics
of this phenomenon, there are surely some things to be done, and we prefer to defer the
discussion here for later in this book, in Part II, when doing trigonometry.

3d. Feuerbach points

Quite nice all the above, and with the centers O,G,H,N, I all discussed, end of the
story, you would say. Well, not at all, because here is an amazing result about this:

Theorem 3.13 (Feuerbach). Given an arbitrary triangle ABC, not equilateral,

A

B C

the inner and nine-point circles are tangent at a point Z, called Feuerbach point.

Proof. Strange statement that we have here, because Z appears by definition as
some sort of “center” of our triangle, but is obviously not a center. So, this is definitely
next-level mathematics, with respect to what we know. In what regards now the proof,
this is unfortunately next-level too, the idea with all this being as follows:
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(1) To start with, for an isosceles triangle, not taken equilateral, the Feuerbach point
exists indeed, and is the middle of the main side, as shown by the following picture:

A

B Z C

Thus, very good, at least we know one thing, Z exists for isosceles triangles.

(2) The next step is to look at the right triangles, with the idea in mind of proving
the following formula for them, which would prove the result:

NI = ρ− r

In order to do this, consider our right triangle, with edges a, b, c, as follows:

A

c
b

B a C

According to the various formulae above, the radii ρ and r are given by:

ρ =
b

4
, r =

a+ c− b
2

Thus, one of the quantities that we are interested in is given by:

ρ− r = b

4
− a+ c− b

2
=

3b− 2a− 2c

4

(3) Regarding now the other quantity that we are interested in, the length of the
segment IN , in order to compute it, we can use the following configuration:

A

r
I

r N
c/4

a/4

B C
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Indeed, by using Pythagoras, we have the following formula for the length of IN :

IN =

√(
r − a

4

)2
+
(
r − c

4

)2
=

√(
a+ c− b

2
− a

4

)2

+

(
a+ c− b

2
− c

4

)2

=
1

4

√
(a+ 2c− b)2 + (2a+ c− b)2

(4) Thus, we are left with proving that the quantities found in (2) and (3) coincide,
provided that a, b, c satisfy a2 + c2 = b2, and this can be done indeed, as follows:

IN =
1

4

√
(a+ 2c− b)2 + (2a+ c− b)2

=
1

4

√
5a2 + 5c2 + 8b2 + 8ac− 12ab− 12bc

=
1

4

√
4a2 + 4c2 + 9b2 + 8ac− 12ab− 12bc

=
1

4

√
(3b− 2a− 2c)2

=
3b− 2a− 2c

4
= ρ− r

(5) Summarizing, good news, done with the right triangles. Of course, many more
things can be said here, for instance with some precise formulae for the position of the
Feuerbach point Z, in this case, that of the right triangles, and we will leave some study
here, based on the various computations and formulae above, as an exercise.

(6) As for the general case, that of the arbitrary triangles ABC, this is something
fairly complicated, at least with the technology that we presently have.

(7) But, we will be back to this later, when knowing more things, first in Part II after
learning some trigonometry, with a number of comments on this, and then later in Part
III, after learning vectors, with some further comments on this, in general. □

As a complement of Theorem 3.13, we have as well the following result:
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Theorem 3.14. Given a triangle ABC, the nine-point circle is tangent as well to the
3 external tangent circles, appearing according to the following picture,

⋆ A ⋆

B C

⋆

at 3 further points associated to the triangle, called secondary Feuerbach points.

Proof. This is again something quite subtle, the idea being as follows:

(1) To start with, a bit philosophically, a triangle ABC can be thought of as being a
collection of 3 lines, and from this perspective, forgetting a bit about the vertices A,B,C
where these 3 lines cross, the picture of our triangle is the one above.

(2) But with this interpretation in hand, we can see that the incircle does not come
alone, but rather accompanied by 3 more circles, called external tangent circles.

(3) And, in relation with this, coming as a continuation of Theorem 3.13, the present
theorem states that the nine-point circle is tangent to these 3 external circles too.

(4) Getting to work now, we first need to know more about the external circles, in
analogy with what we know about the incircle. In order to compute the radius p of the
external circle opposed to A, we can use the following configuration:

A

c b

B
a

p

C

J
p p
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Indeed, a bit like before for the incircle, this leads to the following formula:

area(ABC) = area(ABJ) + area(ACJ)− area(BCJ)

=
pc

2
+
pb

2
− pa

2

(5) As a conclusion to this, and with more standard notations ra, rb, rc for the radii
of the 3 external circles, and by including the previous formula of r too, for symmetry
reasons, the formulae are as follows, with S being the area of the triangle ABC:

r =
2S

a+ b+ c
, ra =

2S

b+ c− a
, rb =

2S

a+ c− b
, rc =

2S

a+ b− c
(6) Equivalently, by using the Heron formula for the area S, the formulae of the various

radii are as follows, with s = (a+ b+ c)/2 being the semiperimeter:

r =

√
(s− a)(s− b)(s− c)

s
, ra =

√
s(s− b)(s− c)

s− a

rb =

√
s(s− a)(s− c)

s− b
, rc =

√
s(s− a)(s− b)

s− c
(7) Finally, let us record as well the formulae for right triangles, where some simplifi-

cations appear, due to 2S = ac and to a2 + c2 = b2. These are as follows:

r =
a+ c− b

2
, ra =

a+ b− c
2

, rb =
a+ b+ c

2
, rc =

b+ c− a
2

(8) In relation now with what the theorem says, let us start our study with the case
of the isosceles triangles. Here one of the extra Feuerbach points comes for free, being
equal to the previous Feuerbach point Z, as shown by the following picture:

A

B Z C

(9) Thus, we are left with proving that the nine-point circle is tangent to one of the
external circles on the left or right, and this can be done indeed, via some computations,
based on the various formulae for the isosceles triangles established before. We will leave
this for now as an exercise, and come back later to this, directly in the general case.
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(10) As a continuation of this, let us examine now the case of the right triangles:

A

c
b

B a C

By symmetry, we have two questions to be solved, namely one regarding the external
circle far from B, and one regarding one of the 2 external circles next to B.

(11) Let us start with the first question, in relation with the external circle far from
B. By arguing like in the proof of Theorem 3.13, we can get the result as follows:

IbN =

√(
rb −

a

4

)2
+
(
rb −

c

4

)2
=

√(
a+ c+ b

2
− a

4

)2

+

(
a+ c+ b

2
− c

4

)2

=
1

4

√
(a+ 2c+ 2b)2 + (2a+ c+ 2b)2

=
1

4

√
5a2 + 5c2 + 8b2 + 8ac+ 12ab+ 12bc

=
1

4

√
4a2 + 4c2 + 9b2 + 8ac+ 12ab+ 12bc

=
1

4

√
(3b+ 2a+ 2c)2

=
3b+ 2a+ 2c

4

=
b

4
+
a+ c+ b

2
= ρ+ rb
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(12) As for the second question, say in relation with the external circle on the left, we
can get the result here too, via some similar computations, as follows:

IcN =

√(
rc +

a

4

)2
+
(
rc −

c

4

)2
=

√(
b+ c− a

2
+
a

4

)2

+

(
b+ c− a

2
− c

4

)2

=
1

4

√
(2b+ 2c− a)2 + (2b+ c− 2a)2

=
1

4

√
5a2 + 5c2 + 8b2 − 8ac− 12ab+ 12bc

=
1

4

√
4a2 + 4c2 + 9b2 − 8ac− 12ab+ 12bc

=
1

4

√
(3b− 2a+ 2c)2

=
3b− 2a+ 2c

4

=
b

4
+
b+ c− a

2
= ρ+ rc

Thus, good news, done with all Feuerbach points for the right triangles.

(13) In the general case now, in what regards the proof of the result, the situation is a
bit similar to that in Theorem 3.13, with this being something fairly complicated, at least
with the technology that we presently have. We will be back to this later, first in Part II
after learning some trigonometry, with a number of comments about this, and then later
in Part III, after learning vectors, with some further comments on this, in general. □

The above results are quite interesting, and many other things can be said along these
lines, with a summary of what can be done being as follows:

(1) In what regards the nine-point circle and Euler line, several other interesting
things can be said in relation with various suitable homotheties centered on the Euler
line, different from the one centered at G and of ratio −1/2, that we used above.

(2) In what regards the various Feuerbach points, and the tangent circles in general,
many other interesting things can be said here, notably with some general questions of
Apollonius and others regarding the configurations of tangent circles.

(3) In short, many things to learned, and we will leave some exploration here as an
exercise. In what concerns us, we will be back to this quite sporadically, notably with
some further constructions of triangle centers, belonging or not to the Euler line.
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So long for the various triangle centers. We will be back to them on several occasions,
first in the next chapter, with a number of new methods, then later in Part II, after
learning trigonometry, and then later in Part III too, after learning vector calculus.

3e. Exercises

This was a quite advanced chapter, and as exercises on this, we have:

Exercise 3.15. Learn more about powers of points with respect to circles.

Exercise 3.16. Learn more, as much as you can, about the nine-point circle.

Exercise 3.17. Learn also, again as much as you can, about the Euler line.

Exercise 3.18. In particular, learn about the further homotheties based there.

Exercise 3.19. Learn also a bit about the other possible triangle centers.

Exercise 3.20. Prove the nine-point circle for isosceles triangles, via Pythagoras.

Exercise 3.21. Learn more about the Brahmagupta formula, and related topics.

Exercise 3.22. Find the secondary Feuerbach points, for the isosceles triangles.

As bonus exercise, you can start reading an advanced plane geometry book.



CHAPTER 4

Incidence results

4a. Menelaus, Ceva

Let us go back now to the basic triangle geometry and centers, as developed at the
end of chapter 2. In order to further build on that material, we first need to answer our
question there, asking for general crossing results, of the following type:

A

F E

B D C

We will discusss this slowly, with several results on this, and on related topics. Among
others, we will see that the other triangle centers usually belong to the Euler line.

First on our list we have the following key result, due to Menelaus:

Theorem 4.1 (Menelaus). In a configuration of the following type, with a triangle
ABC cut by a line FED,

A

F

E

B C D

we have the following formula, with all segments being taken oriented:

AF

FB
· BD
DC
· CE
EA

= −1

Moreover, the converse holds, with this formula guaranteeing that F,E,D are colinear.

81
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Proof. This is indeed something very standard, the idea being as follows:

(1) Let us first try to prove the following equality, which is a bit weaker than what
the theorem says, with all segments being by definition taken oriented:

AF

FB
· BD
DC
· CE
EA

= 1

But this is something clear, because by projecting the vertices A,B,C on the line
DEF , into points A′, B′, C ′, we have the following computation:

AF

FB
· BD
DC
· CE
EA

=
AA′

BB′ ·
BB′

CC ′ ·
CC ′

AA′ = 1

(2) Next, we must see what happens to the above equality, when allowing the segments
to be oriented. But here, there are several cases to be considered, depending on whether
the line DEF intersects the triangle ABC, a bit as in the picture in the statement, or
not. Let us first examine the crossing configuration, as in the statement, namely:

A

F

E

B C D

In this case, with all the segments being by definition taken oriented, we are led indeed
to the formula in the statement, as follows:

AF

FB
· BD
DC

CE

EA
=
|AF |
|FB|

(
−|BD|
|DC|

)
· CE
EA

= −|AF |
|FB|

· |BD|
|DC|

· |CE|
|EA|

= −1
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(3) Let us examine now the non-crossing configuration, which is as follows:

A

B

C

F E D

In this case, again with all the segments being by definition taken oriented, we are
again led to the formula in the statement, as follows:

AF

FB
· BD
DC
· CE
EA

=

(
−|AF |
|FB|

)(
−|BD|
|DC|

)(
−CE
EA

)
= −|AF |

|FB|
· |BD|
|DC|

· |CE|
|EA|

= −1

(4) Thus, we have proved the formula in the statement. As for the converse, this
follows from the main result, in the obvious way, and as usual with converses of such
statements, we will leave the discussion here as an instructive exercise for you. □

We can now answer our original question about crossing lines inside a triangle, drawn
from the vertices, with the following remarkable result, about this:

Theorem 4.2 (al-Mutaman, Ceva). In a configuration of the following type, with a
triangle ABC containing inner lines AD,BE,CF which cross,

A

F E

B D C

we have the following formula:

AF

FB
· BD
DC
· CE
EA

= 1

Moreover, the converse holds, with this formula guaranteeing that AD,BE,CF cross.
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Proof. This is something very standard again, the idea being as follows:

(1) Some history first. This theorem was first discovered by al-Mutaman, king of
Zaragoza, and fine intellectual and scientist, in the 11th century, and published in his
treatise “Book of perfection”. However, a bit later, the Arab civilization in Western
Europe started to decay, and they lost al-Andalus to the Spaniards, along with many
other things, including the credit for the present theorem going to al-Mutaman.

(2) In fact, the al-Mutaman theorem was completely forgotten, and rediscovered in
the 17th century by the Italian mathematician Ceva, who published it, along with his
rediscovery of the Menelaus theorem too, in his book “De lineis rectis”. Subsequently,
Ceva, along with Gergonne, Nagel and others, and more on this in a moment, managed
to use this theorem for pushing the boundaries of triangle geometry to a new level.

(3) So, this was for the story, and in practice, as of now, early 21th century, it is still
very customary to refer to this as Ceva’s theorem, and to the lines AD,BE,CF in the
statement as being cevians. Moral of the story I guess, no mercy for decaying civilizations,
and with the remark of course that things here are quite cyclic, and never-ending, and
one day the credit for the present theorem might well go back to al-Mutaman.

(4) Getting to work now, a first way of proving this result is by using the Menelaus
theorem, applied twice. Indeed, if we denote by O the point in the middle, we have the
following formula, coming from the line COF cutting the triangle ABD:

AF

FB
· BC
CD
· DO
OA

= −1

On the other hand, again by using the Menelaus theorem, we have as well the following
formula, coming this time from the line BEO cutting the triangle ADC:

AO

OD
· DB
BC
· CE
EA

= −1

By multiplying now the above two formulae, we obtain, as desired:

1 =
AF

FB
· BC
CD
· DO
OA
× AO

OD
· DB
BC
· CE
EA

=
AF

FB
· BC
CD
× DB

BC
· CE
EA

=
AF

FB
· BC
DC
× BD

BC
· CE
EA

=
AF

FB
· BD
DC
· CE
EA

(5) An alternative proof, which is more elegant, is by using the same idea as for
Menelaus, namely some fractions which cancel. Again by denoting by O the point in the
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middle, we have the following formulae for the quotient AF/FB, in terms of areas:

AF

FB
=
AFO

FBO
=
AFC

FBC

We deduce from this that we have the following extra formula for AF/FB:

AF

FB
=
AFC − AFO
FBC − FBO

=
AOC

BOC

Similarly, we have the following formulae for BD/DC, and for CE/EA:

BD

DC
=
AOB

AOC
,

CE

EA
=
BOC

AOB

Now by multiplying all these formulae we obtain, as desired:

AF

FB
· BD
DC
· CE
EA

=
AOC

BOC
· AOB
AOC

· BOC
AOB

= 1

(6) As for the converse, this follows from the main result, in the obvious way, and as
usual with such converses, we will leave the discussion here as an exercise. □

Summarizing, question about crossing lines inside a triangle solved, and we will see
applications in a moment. Before that, however, let us meditate a bit more on the relation
between Menelaus and Ceva. These statements are obviously related, and a natural guess
here would be that these are equivalent. So, let us formulate the following question:

Question 4.3. What is the precise relation between Menelaus and Ceva?

In answer now, we have seen in the above that Menelaus implies Ceva, so we are left
with proving that Ceva implies Menelaus. However, and as surprising as this might seem,
this is something non-trivial, which cannot be really done with bare hands, and in order
to understand what I am talking about, try a bit, and you will get the point.

However, with the help of more advanced technology, such as the duality between
points and lines from chapter 1, the equivalence can be established indeed, as follows:

Theorem 4.4. The Menelaus and Ceva configurations are dual, via the usual duality
between points and lines, with respect to a circle, and with this bringing:

(1) An extra proof for Ceva, assuming Menelaus known.
(2) Or a proof for Menelaus, assuming Ceva known.

Proof. This is something quite tricky, the idea being as follows:
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(1) Consider indeed the Ceva configuration, which was as follows:

A

F E

B D C

(2) Now let us compute the dual of this configuration, with respect to an arbitrary
circle in the plane, not passing through the above points. If we denote by α, β, γ the duals
of BC,AC,AB, and by a, b, c the duals of A,B,C, then we have a triangle, as follows:

α

c b

β a γ

(3) Next, if we denote by δ the dual of AD, and by d that of D, the picture becomes:

α

c b d

β a γ δ

(4) Similarly, we can draw the duals ε, φ of BE,CF , and the duals e, f of E,F . Now
the point is that, according to the properties of the duality, the lines AD,BE,CF cross
precisely when their dual points δ, ε, φ are aligned, leading to the following picture:

α

φ

ε

β γ δ



4A. MENELAUS, CEVA 87

(5) But this is precisely the picture of the Menelaus configuration, and with a bit more
work, that we will leave as an exercise, the product of quotients from the Ceva theorem
corresponds to the product of quotients from the Menelaus theorem, as desired.

(6) To be more precise here, in what regards the exercise that we left, we are in need
of some sort of lemma, stating that certain ratios are preserved by duality. But, with our
duality mapping points to lines, and vice versa, how can we can even formulate such a
lemma? Not very clear all this, and in the hope that you agree with me.

(7) In answer now, and forgetting about Menelaus and Ceva, and with the aim of
formulating our lemma, let us consider configurations of the following type:

S

A B C

What we have here are 4 points and 4 lines, with 3 collinear points, and 3 concurrent
lines. Thus, and quite remarkably, the dual configuration should look the same, namely
with 4 points and 4 lines, featuring 3 collinear points, and 3 concurrent lines:

σ

α β γ

But with this, we can now state our lemma, which can only be the following equality:

AB

BC
=
αβ

βγ

(8) And with this, job done for me I guess, we are now on a large highway leading to
the present theorem, and exercise for you to accept the journey, and enjoy it.

(9) As for the consequences of this, mentioned in the statement, these all follow from
the discussion in the proof of Theorem 4.2, and we will leave some meditation here as an
instructive exercise too. By the way, there are as well some other methods for establishing
the equivalence between Menelaus and Ceva, as for instance by using the cross ratio
technology from chapter 1, and again exercise for you, to learn more about all this. □
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4b. Basic applications

As a basic application of the Ceva theorem, we have now a new point of view on the
barycenter, and on the incenter, circumcenter and orthocenter too, as follows:

Theorem 4.5. The barycenter, incenter, circumcenter, orthocenter theorems

A

F E

B D C

can all be proved by using the Ceva theorem.

Proof. All this is indeed quite standard, the idea being as follows:

(1) In what regards the barycenter, the fact that the medians cross can be seen indeed
as coming from the Ceva theorem, via the following trivial computation:

AF

FB
· BD
DC
· CE
EA

= 1× 1× 1 = 1

(2) Regarding now the incenter, let us draw the angle bisector AD, then project D on
the sides AB,AC, to points X, Y , and draw the altitude AP as well:

A

X Y

B P D C

We have then similar triangles BDX ∼ BAP and CDY ∼ CAP , which give:

BD

DX
=
AB

AP
,

CD

DY
=
AC

AP
But DX = DY , with D lying on the bisector, so by dividing these relations, we get:

BD

DC
=
AB

AC
And with this, done, because we can conclude that the angle bisectors cross indeed,

as a consequence of the Ceva theorem, via the following computation:

AF

FB
· BD
DC
· CE
EA

=
AC

BC
· AB
AC
· BC
AB

= 1
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(3) Regarding now the circumcenter, whose existence is plainly trivial, let us attempt
to deduce this via Ceva too. So, let us draw the perpendicular bisectors of the sides
AB,AC, intersect them at O, and then consider the point D = AO ∩BC:

A

P Q

O

B D C

In order to compute the ratio BD/DC, let us project B,C on the line AO, into points
X, Y . We have then the following formula, coming from Thales:

BD

DC
=
BX

CY

On the other hand, due to the various square angles at P,Q and X, Y , we have similar
triangles ABX ∼ AOP and ACY ∼ AOQ, which give the following formulae:

BX

AB
=
OP

AO
,

CY

AC
=
OQ

AO

Now by dividing these two latter formulae, we obtain the following formula:

BX

CY
=
OP

OQ
· AB
AC

Summarizing, we have proved that the ratio BD/DC is given by:

BD

DC
=
OP

OQ
· AB
AC

Which does not look very good, so it is better now to cheat, project O on BC, to a
point R, and declare that the circumcenter sort of comes from Ceva too, via:

AF

FB
· BD
DC
· CE
EA

=

(
OQ

OR
· AC
BC

)(
OP

OQ
· AB
AC

)(
OR

OP
· BC
AB

)
= 1

Nevermind. As a conclusion here, which is something quite interesting, while the
existence of the circumcenter was the simplest to establish, among all triangles centers, and
with this existence result being actually a plain triviality, in what regards the associated
Ceva computations, these are quite complicated. We will be back to this phenomenon
later in this book, with more details and comments, when doing trigonometry.

(4) Finally, let us get to the orthocenter, whose existence was the hardest one to estab-
lish, among all basic triangle centers, in chapter 2. Consider the configuration producing
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the orthocenter, which is as follows, with AD, BE, CF being the altitudes:

A

F E

B D C

The quantity in the Ceva theorem can be then written as follows:

AF

FB
· BD
DC
· CE
EA

=

(
AF

FC
· FC
FB

)(
BD

DA
· DA
DC

)(
CE

EB
· EB
EA

)
Now the point is that, by using similar triangles, we have:

AF

FC
=
EA

EB
,

BD

DA
=
FB

FC
,

CE

EB
=
DC

DA

Thus everything simplifies, and we obtain, as desired:

AF

FB
· BD
DC
· CE
EA

= 1

(5) Finally, as previously mentioned in the context of our circumcenter computations
in (3), this is not the end of the story with the various triangle centers viewed via Ceva,
because there is still a potential trigonometry discussion coming on top of this, which can
clarify a number of things. More on this later, when doing trigonometry. □

Getting now to new triangle centers that can be constructed via Ceva, there are
potentially plenty of them, because given any numbers a, b, c we can construct points
D,E, F on edges, and a new point inside ABC, according to the following recipe:

AF

FB
· BD
DC
· CE
EA

=
a

b
· b
c
· c
a
= 1

In fact, in relation with this method, we can formulate the following interesting result,
making the link with the various barycenter considerations from the beginning of chapter
2, and generally speaking, explaining the physics of the Ceva theorem:
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Theorem 4.6. Given a triangle ABC, we have crossing lines as follows,

A

F E

B D C

precisely when it is possible to assign weigths a, b, c to the vertices A,B,C, as for each of
the lines AD,BE,CF to unite a vertex with the barycenter of the opposite side.

Proof. This is a reformulation of the Ceva theorem. Indeed, recall that the Ceva
condition, for the lines AD,BE,CF to cross indeed, was as follows:

AF

FB
· BD
DC
· CE
EA

= 1

The point now is that, by basic arithmetic, a product of three numbers equaling 1
amounts in saying that the product in question is as follows:

a

b
· b
c
· c
a
= 1

Thus, the Ceva condition for AD,BE,CF to cross can be reformulated as follows:

AF

FB
=
a

b
,

BD

DC
=
b

c
,

CE

EA
=
c

a
Geometrically, this means that the ratios on the sides must be as follows:

A

a a

F

b

E

c

B
b

D c C

But this shows that, when installing the numbers a, b, c at the vertices A,B,C, as
weights, each of the lines AD,BE,CF will unite a vertex with the barycenter of the
opposite side. Thus, we are led to the conclusion in the statement. □

Moving on, let us further explore the applications of the Ceva theorem, with the aim
of constructing new centers of a triangle ABC, according to the following recipe:

AF

FB
· BD
DC
· CE
EA

=
a

b
· b
c
· c
a
= 1
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As a first observation, when one of the ratios in the Ceva product equals 1, say when
BD = DC, and so when AD is a median, by Thales the Ceva condition reads FE||BC,
and the fact that the lines AD,BE,CF cross is clear from Thales too, as follows:

A

F E

B D C

Thus, at the abstract level, of arithmetic nature, the simplest non-trivial application
of the Ceva theorem should come from the following identity:

1

2
· 4
1
· 1
2
= 1

Which sounds quite interesting, so let us record this finding, as follows:

Theorem 4.7. Given a triangle ABC with internal lines drawn as follows,

A

F ×

× E

B × × × D C

at 1/3− 2/3 twice and 1/5− 4/5, as indicated, these lines cross indeed.

Proof. As a first question, you might wonder where the above thirds and fifths come
from, but the mathematics of Ceva is indeed there, as simple as possible, as follows:

AF

FB
· BD
DC
· CE
EA

=
1

2
· 4
1
· 1
2
= 1

As a second question now, is this “simplest non-trivial” application of Ceva indeed
non-trivial, as advertised? In answer, yes, because such things are indeed not easy to
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prove with bare hands. The first thought goes to drawing two parallels, as follows:

A

F ×

× E

B × × × D C

And we will leave some exploration here, based on Thales, as an instructive exercise.
Of course, in case you find this exercise, and the present theorem, too easy, all this needs
an update, say based on the following formula, which is the next simplest one:

1

3
· 6
1
· 1
2
= 1

Finally, observe that in the context of the above exercise, it might help to complete
the configuration formed by the two parallels into a complete grid, with each of the sides
AB,AC,BC divided into 3 × 5 = 15 equal parts, and then with lots of parallels drawn.
And with this, interestingly, making the link with the discretization considerations from
chapter 2, in the context of our barycenter discussion there. Quite nice all this, so many
things to be explored here, and with the hope that you will spend some time on this. □

Moving away now from all this quite abstract mathematics, which rather counts as
algebra, let us discuss some further triangle centers, obtained via Ceva, and enlarging the
list that we already have, from Theorem 4.5. As a first result here, we have:

Theorem 4.8 (Gergonne). Given a triangle ABC with its incircle drawn,

A

F E

•

B D C

the lines AD,BE,CF cross indeed, at a point called Gergonne point of ABC.
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Proof. The incircle configuration is indeed an invitation to apply the Ceva theorem,
because the various lengths appearing on the sides of ABC are as follows:

A

F

x

E

x

•

B

y

y D z C

z

Thus, the lines AD,BE,CF cross indeed, according to the following computation:

AF

FB
· BD
DC
· CE
EA

=
x

y
· y
z
· z
x
= 1

For the record, a bit as we did before in Theorem 4.5 for the other triangle centers,
let us record as well the numerics. Solving for x, y, z in terms of the sides a, b, c gives:

x =
b+ c− a

2
, y =

a+ c− b
2

, z =
a+ b− c

2
Thus, the detailed Ceva computation for the Gergonne point is as follows:

b+ c− a
a+ c− b

· a+ c− b
a+ b− c

· a+ b− c
b+ c− a

= 1

There are of course many other things that can be said about the Gergonne point,
and for more on all this, we refer to any advanced plane geometry book. □

Along the same lines, we have as well the following result:

Theorem 4.9 (Nagel). Given a triangle ABC with its external circles drawn,

A

⋆ F E ⋆

B D C

⋆

the lines AD,BE,CF cross indeed, at a point called Nagel point of ABC.
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Proof. With our usual apologies for the graphics, when it comes to external cir-
cles, let us attempt to prove this, in analogy with what we did for Theorem 4.8. The
configuration for the external circle opposed to A is something quite simple, as follows:

A

c b

B
x

x
D

p

y
C

y

J
p p

Since J is equally distant from AB,AC we must have c+x = b+y, and together with
x+ y = a this allows the computation of x, y, with the solution being:

x =
a+ b− c

2
, y =

a+ c− b
2

Thus, a bit as before in the Gergonne theorem, but with all fractions being now
inverted, the present Nagel theorem holds indeed, thanks to the following formula:

a+ c− b
b+ c− a

· a+ b− c
a+ c− b

· b+ c− a
a+ b− c

= 1

As before with Gergonne, many other things can be said about the Nagel point, and
for more on all this, we refer to any advanced plane geometry book. □

So long for triangles and their centers, and there are in fact far more than this, namely
dozens, hundreds, thousands, and even tens of thousands, for all levels and tastes. For
the story here, we already talked about al-Mutaman, king of Zaragoza, in the above, but
many other busy people, as for instance Napoleon, contributed as well to this.

In fact, studying triangles and their centers was a very fashionable business, since the
ancient times, and up to not so long ago. In more modern times, however, the goals of
mathematicians have slightly deviated towards arithmetic, with the must-do thing here,
instead of constructing a new triangle center, being that of joining the list of generalizators
of the Legendre symbol, for the quadratic residues. As for the truly modern times, the
present ones, here the goal is that of having your own version of quantum field theory.

Back now to concrete mathematics and theorems, let us end this discussion about tri-
angle centers with something a bit philosophical. In order for the point that we obtain via
Ceva to deserve the name “triangle center”, we must choose our numbers a, b, c carefully,
and ideally having something to do with the angles A,B,C. We are led in this way to:
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Theorem 4.10. Given a triangle ABC, and a function f , mapping angles to numbers,
we can construct points D,E, F on edges, and a new center of ABC,

A

F E

B D C

according to the following recipe, based on the Ceva theorem,

AF

FB
· BD
DC
· CE
EA

=
f(A)

f(B)
· f(B)

f(C)
· f(C)
f(A)

= 1

and with as basic illustration here, the barycenter coming from f = 1.

Proof. This is indeed something self-explanatory, and with the further comment
that, with a bit of trigonometric know-how, the computations in the proof of Theorem
4.5 show that the incenter, circumcenter and orthocenter appear too in this way, with f
being various trigonometric functions. More on this later, when doing trigonometry. □

4c. Pascal, Brianchon

Switching topics, but still in relation with incidence questions, let us recall from chap-
ter 1 something fundamental, namely the Desargues configuration, as follows:

A

D

B E

F

C

Obviously, this is something fundamental in relation with the notion of perspectivity,
and the applications of this to life and engineering abound. In fact, it was because of this
that, passed Thales, we chose this to be our very first theorem in this book.
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Along the same lines, and also going back to the material from chapter 1, of funda-
mental importance too is the Pappus configuration, which is a bit similar, as follows:

C

B

A

D E F

So, these are the two main configurations of plane geometry, perhaps more important
than those met in the context of the triangles and their centers, and when attempting to
generalize them, as to have some interesting mathematics going, we are led to:

Question 4.11. How to generalize Desargues and Pappus, say by replacing some of
the lines there by more complicated curves, such as circles, ellipses and so on?

And with this being, and we insist, a very good question. Among others because, as
the recent history of mathematics has shown, this was more or less the question at the
origin of modern algebraic geometry, and of modern mathematics in general.

In answer now, we have the following key theorem of Pascal, which can be regarded
as being a version of the Pappus theorem, with the 2 lines there replaced by a circle:

Theorem 4.12 (Pascal). Given a hexagon lying on a circle

E

A C

D F

B

the pairs of opposite sides intersect in points which are collinear.

Proof. Many things can be said here, the idea being as follows:

(1) To start with, as mentioned above, the Pascal theorem and related results are the
source of many advanced things in mathematics, all leading to all sorts of possible proofs.
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With the technology that we have so far, the best is to prove this by applying three times
the Menelaus theorem, a bit as we did for the Ceva theorem.

(2) Let us first fix some notation. We denote by ABCDEF our arbitrary hexagon
lying on the circle, and with the actual order of the points on the circle being irrelevant,
and with, in practice, a quite nice order here being ADBFCE, and this in order to have
a nice picture, as above, of the whole configuration, with obvious crossing points.

(3) We must prove that the following points are collinear:

M = AB ∩DE , N = AF ∩ CD , P = BC ∩ EF
In order to do so, with Menelaus in mind, consider as well the following points:

I = AF ∩DE , J = BC ∩DE , K = AF ∩BC
The picture becomes then as follows, with the hexagon being now chosen to have its

vertices ordered ABCDEF , in order to better understand what is going on:

P

N K A F I

B

C

E

D

J

M

(4) Now let us look at the triangle IJK. The points M,N,P that we are interested
in lie on its sides, and according to Menelaus, in order to prove that these points M,N,P
are indeed collinear, we must prove that the following product equals 1:

Z =
MI

MJ
· PJ
PK
· NK
NI

(5) But this can be proved by applying Menelaus three times. Indeed, we first have
the following formula, coming from the triangle IJK cut by the line MAB:

MI

MJ
=
BK

BJ
· AI
AK
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Next, with the same triangle IJK, cut this time by the line NCD, we obtain:

NK

NI
=
CK

CJ
· DJ
BI

And finally, with the same triangle IJK, cut by the line PEF , we obtain:

PJ

PK
=
EJ

EI
· FI
FK

(6) By putting everything together, we conclude that the product from (4), that we
want to prove to be equal to 1, is given by the following formula:

Z =

(
BK

BJ
· AI
AK

)(
EJ

EI
· FI
FK

)(
CK

CJ
· DJ
BI

)
But Z = 1 is true indeed, due to the following formulae, coming from the notion of

power of a point with respect to a circle, that we know well since chapter 3:

BK · CK = AK · FK

AI · FI = EI ·DI

EJ ·BJ = DJ · CJ
(7) Summarizing, Pascal theorem proved, by applying the Menelaus theorem three

times, and with some help from the notion of power of a point with respect to a circle. As
mentioned in the above, there are many other proofs as well, quite often based on more
advanced technology, and we will be back to this, later on this book.

(8) Finally, observe the similarity with the Pappus theorem. We will see later that the
Pascal theorem generalizes to the case of conics, and with this generalizing Pappus. □

Along the same lines, we have as well the following result:

Theorem 4.13 (Brianchon). Given a hexagon circumscribed around on a circle

A B

F ∗ C

E D

its main diagonals intersect.
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Proof. Long story with this too, the idea being as follows:

(1) To start with, this result is nearly impossible to prove, with bare hands, and ask
around kids preparing for Math Olympiads, they will witness for that.

(2) But, this follows by duality from Pascal, because the dual of the Pascal configu-
ration, with respect to the circle in question, on which the hexagon lies, is obviously the
Brianchon configuration, and vice versa. Thus, theorem proved, just like that.

(3) Finally, as before with Pascal, we will see later that this extends to conics. □

With this discussed, let us briefly talk now about conics. Normally this is more
advanced material, for later in this book, but coming in advance, here is what can be said
about them, and about the light that they bring on our various incidence theorems:

Fact 4.14. The conics, which are the algebraic curves of degree 2, appearing by cutting
a two-sided cone with a plane, fall into three classes, as follows:

(1) Generic conics: the ellipses, and hyperbolas.
(2) Limiting cases: the circles, and parabolas.
(3) Degenerate conics: the point, the line, the 2 lines.

Based on this, we can extend the Pascal and Brianchon theorems from circles to all conics,
by projecting, and this generalization of Pascal covers Pappus, coming from 2 lines.

Obviously, many things going on here, and we won’t attempt to comment more on
this, at this stage of things. More later, but you get the point I hope, in what regards
the mathematics that we know, it is all about conics. By the way, in what regards
the physics that we know, namely planets and comets moving on ellipses, and asteroids
moving sometimes on parabolas and hyperbolas, it is all about conics too. More later.

In any case, quite interesting all these results about hexagons, and the relation between
them. So let us ask the cat, what he thinks about all this. And cat answers:

Cat 4.15. In hexagrammum mysticum you will trust.

Okay, and not that I really understand what cat says, he might be a reincarnation of
Pascal’s cat, or perhaps of Pascal himself, but the plan for what follows next becomes
now clear, keep developing geometry, by keeping an eye on hexagons.

4d. Projective geometry

Moving on, still in relation with the various incidence results that we know, namely
Desargues, Pappus, Menelaus, Ceva, Pascal, Brianchon, but on a different take, one an-
noying thing is that, while the parallels are certainly useful for the proofs, usually coming
via Thales, the same parallels complicate the statements, with many cases appearing due
to them, via various lines which can be parallel or not. So, let us formulate:
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Dream 4.16. It would be nice to have a more advanced version of plane geometry,
where parallel lines are allowed to meet, at infinity.

So, this would be our dream, and we insist on the word “advanced” in the above,
because we are here formulating this dream not as total beginners, but rather after about
100 pages of learning plane geometry, by heavy relying on parallels and Thales.

The question is now, how to make our dream come true? And in answer here, nothing
simpler than that, all we have to do is to forget all the mathematics and other science
that we know, and return to a modest status of average Instagram user, according to:

Fact 4.17. Our dream comes true in real life. Indeed, take a picture of some railroad
tracks, and look at that picture. Do the railroad tracks cross? Sure they do.

So, this was for the story, the mathematical wonderland where all lines cross does
exist, and is called Instagram. Abstractly now, here are some axioms, to start with:

Definition 4.18. A projective space is a space consisting of points and lines, subject
to the following conditions:

(1) Each 2 points determine a line.
(2) Each 2 lines cross, on a point.

As a basic example we have the usual projective plane P 2, which is best seen as being
the space of lines in space passing through the origin. To be more precise, let us call each
of these lines in space passing through the origin a point of P 2, and let us also call each
plane in space passing through the origin a line of P 2. Now observe the following:

(1) Each 2 points determine a line. Indeed, 2 points in our sense means 2 lines in
space passing through the origin, and these 2 lines obviously determine a plane passing
through the origin, namely the plane they belong to, which is a line in our sense.

(2) Each 2 lines cross, on a point. Indeed, 2 lines in our sense means 2 planes passing
through the origin, and these 2 planes obviously determine a line in space passing through
the origin, namely their intersection, which is a point in our sense.

Thus, what we have is indeed a projective space in the sense of Definition 4.18. More
generally, we have the following construction, in arbitrary dimensions:

Theorem 4.19. We can define the projective space PN−1 as being the space of lines
in N-dimensional space passing through the origin, and in small dimensions:

(1) P 1 is the usual circle.
(2) P 2 is some sort of twisted sphere.
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Proof. We have several assertions here, with all this being of course a bit informal,
and self-explanatory, the idea and some further details being as follows:

(1) To start with, the fact that the space PN−1 constructed in the statement is indeed
a projective space in the sense of Definition 4.18 follows from definitions, exactly as in
the discussion preceding the statement, regarding the case N = 3.

(2) At N = 2 now, a line in the plane passing through the origin corresponds to 2
opposite points on the unit circle T , according to the following scheme:

•

||

• •

<<

•

Thus, P 1 corresponds to the upper semicircle of T , with the endpoints identified, and
so we obtain a circle, P 1 = T , according to the following scheme:

•

• // •oo

(3) At N = 3 now, the space P 2 corresponds to the upper hemisphere of the unit
sphere S2, with the points on the equator identified via x = −x. But, we can deform if
we want the hemisphere into a square, with the equator becoming the boundary of this
square, and in this picture, the x = −x identification corresponds to a “identify opposite
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edges, with opposite orientations” folding method for the square:

◦ // ◦

��
◦

OO

◦oo

(4) Thus, we have our space. In order to understand now what this beast is, let us
look first at the other 3 possible methods of folding the square, which are as follows:

◦ // ◦

◦

OO

// ◦

OO ◦ // ◦

��
◦ //

OO

◦

◦ // ◦

◦

OO

◦oo

OO

Regarding the first space, the one on the left, things here are quite simple. Indeed,
when identifying the solid edges we get a cylinder, and then when further identifying the
dotted edges, what we get is some sort of closed cylinder, which is a torus.

(5) Regarding the second space, the one in the middle, things here are more tricky.
Indeed, when identifying the solid edges we get again a cylinder, but then when further
identifying the dotted edges, we obtain some sort of “impossible” closed cylinder, called
Klein bottle. This Klein bottle obviously cannot be drawn in 3 dimensions, but with a
bit of imagination, you can see it, in its full splendor, in 4 dimensions.

(6) Finally, regarding the third space, the one on the right, we know by symmetry that
this must be the Klein bottle too. But we can see this as well via our standard folding
method, namely identifying solid edges first, and dotted edges afterwards. Indeed, we
first obtain in this way a Möbius strip, and then, well, the Klein bottle.

(7) With these preliminaries made, and getting back now to the projective space P 2,
we can see that this is something more complicated, of the same type, reminding the torus
and the Klein bottle. So, we will call it “sort of twisted sphere”, as in the statement, and
exercise for you to imagine how this beast looks like, in 4 dimensions. □
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Next, let us mention that Definition 4.18 is something far wider than it might seem.
Consider indeed the following configuration of 7 points and 7 lines, called Fano plane:

•

• •
•

• • •
Here the circle in the middle is by definition a line, and with this convention, the basic

axioms in Definition 4.18 are satisfied, in the sense that any two points determine a line,
and any two lines determine a point. And isn’t this beautiful.

In practice now, projective geometry can help in relation with many questions. We
will be back to this later in this book, when discussing more systematically all this.

4e. Exercises

This was again a quite advanced chapter, and as exercises on this, we have:

Exercise 4.20. Clarify the duality between Menelaus and Ceva.

Exercise 4.21. Work some more on the circumcenter, using Ceva.

Exercise 4.22. Explore some more with weights and barycenters.

Exercise 4.23. Have some fun with Ceva with various rational ratios.

Exercise 4.24. Learn more about the Gergonne and Nagel points.

Exercise 4.25. Learn also about the various other triangle centers.

Exercise 4.26. Learn more about the theorems of Pascal and Brianchon.

Exercise 4.27. Learn more about the Fano plane, and the Paley biplane too.

As bonus exercise, reiterated, start reading an advanced plane geometry book.



Part II

Basic trigonometry



In the clearing stands a boxer
And a fighter by his trade

And he carries the reminders
Of every glove that laid him down



CHAPTER 5

Sine, cosine

5a. Sine, cosine

Time now to go back to the basics, namely angles and Pythagoras, that we learned
about some time ago, in chapter 2. As a continuation of that material, let us develop now
some trigonometry, among others with the aim of better understanding the triangles, and
having a new look at the various more advanced results from chapters 3-4.

In short, welcome to trigonometry, which will be something quite simple in the begin-
ning, and later, will gradually evolve. At the beginning of everything, we have:

Definition 5.1. Given a right triangle ABC,

C

t
A B

we define the sine and cosine of the angle at A, denoted t, by the following formulae:

sin t =
BC

AC
, cos t =

AB

AC

We call the sine and cosine basic trigonometric functions.

As a first observation, the sine and cosine do not depend on the choice of the right
triangle ABC, having angle t at A, and this due to the Thales theorem. In view of this,
we can choose our right triangle ABC as to have AC = 1, and in this case we have
sin t = BC and cos t = AB. We can encode all this in a single picture, as follows:

C

1
sin t

t
A

cos t
B

107
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As a few basic examples now, for the sine, coming from things that we know well
about right triangles, from chapter 2, all consequences of Pythagoras, we have:

sin 0◦ = 0 , sin 30◦ =
1

2
, sin 45◦ =

1√
2

, sin 60◦ =

√
3

2
, sin 90◦ = 1

Let us record as well the list of corresponding cosines. These are as follows:

cos 0◦ = 1 , cos 30◦ =

√
3

2
, cos 45◦ =

1√
2

, cos 60◦ =
1

2
, cos 90◦ = 0

Observe that the numbers in the above two lists are the same, but written backwards
in the second list. In fact, we have the following result, regarding this:

Theorem 5.2. The sines and cosines are subject to the formulae

sin(90◦ − t) = cos t , cos(90◦ − t) = sin t

valid for any angle t ∈ [0◦, 90◦].

Proof. In order to understand this, the best is to choose our right triangle ABC
with AC = 1, as suggested after Definition 5.1, with the picture being as follows:

C

1
sin t

t
A

cos t
B

On the other hand, by focusing now at the angle at C, and perhaps twisting a bit our
minds too, we have as well the following picture, for the same triangle:

C

1
cos(90◦−t)

90◦−t

A
sin(90◦−t)

B

Thus, we are led to the conclusion in the statement. □

Before going ahead with more trigonometry, with all sorts of properties of the sine
and cosine, that we can surely work out, a question that you might have:

Question 5.3. Why bothering with sine and cosine?
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In answer, good question indeed, and you won’t believe me, but when writing this
book, at this point that we are now, I asked this myself too, and could not find any
simple answer. So, I went into a tour of my Mathematics Department, here at Cergy,
desperately asking colleagues about this, with some of them being actually world class
geometers, but no one remembered the answer to this question either.

So, what do to. And here, you guessed it right, go back home at full speed, using
various driving techniques that I learned as a youngster, in the Bucharest of the early
1990s, good times back then, and ask the cat. And cat looked at me, and declared:

Cat 5.4. The area of an arbitrary triangle, having an angle t at A,

C

t
A B

is given by the following formula, making appear the sine:

area(ABC) =
AB × AC × sin t

2
As for the need for cosines, homework for you buddy.

Thanks cat, quite interesting all this, so let us try to understand the above formula.
But, in order to do so, the simplest is to draw an altitude of our triangle, as follows:

C

t
A D B

Indeed, with this altitude drawn, we have the following computation:

area(ABC) =
basis× height

2

=
AB × CD

2

=
AB × AC × sin t

2
Thus, formula proved, so the sine is definitely a good and useful thing, as cat says. As

for the cosine, damn cat has assigned this to us as an exercise, so we will have to think
about it, and come back to it, in due time. And no late homework, of course.
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Moving forward now, still in relation with Cat 5.4, we have the following question:

Question 5.5. What happens to the cat formula,

area(ABC) =
AB × AC × sin t

2
when the angle at A is obtuse, t > 90◦?

Which looks like a very good question. In answer now, given a triangle which is obtuse
at A, we can simply rotate the AC side to the right, as for that obtuse angle to become
acute, t′ = 180◦ − t, and the area of the triangle obviously remains the same, and this
since both the basis and height remain unchanged. Thus, the correct definition for sin t
for obtuse angles should be the one making the following formula work:

AB × AC × sin t

2
=
AB × AC × sin(180◦ − t)

2
Now by simplifying, we are led to the following formula:

sin t = sin(180◦ − t)
Thus, Question 5.5 answered, with our conclusions being as follows:

Theorem 5.6. We can talk about the sine of any angle t ∈ [0◦, 180◦], according to

sin t = sin(180◦ − t)
and with this, the cat formula for the area of a triangle, namely

area(ABC) =
AB × AC × sin t

2
holds for any triangle, without any assumption on it.

Proof. This follows indeed from the above discussion. □

Moving ahead now, defining sines as in Definition 5.1 for t ∈ [0◦, 90◦], and as above
for t ∈ [90◦, 180◦] certainly does the job, as explained above, but is not very elegant. So,
let us try to improve this. We have here the following obvious speculation:

Speculation 5.7. The sine of any angle t ∈ [0◦, 180◦] can be defined geometrically,
according to the usual picture

C

1
sin t

t
A

cos t
B

with the convention that for t > 90◦, the triangle is drawn at the left of A.
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Which sounds quite good, but when thinking some more, things fine of course with
the sine, but what about the cosine? The problem indeed is that, in the case t > 90◦,
when the triangle is drawn at the left of A, the lower side AB changes orientation:

AB → BA

But, as we know well from chapter 1, from various considerations regarding segments
and orientation, this would amount in saying that we are replacing:

AB → −AB
And so, we are led to the following formula for the cosine, in this case:

cos t = − cos(180◦ − t)
Very good all this, so let us update now Theorem 5.6, and by incorporating as well

Speculation 5.7, in the form of a grand result, in the following way:

Theorem 5.8 (update). We can talk about the sine and cosine of any angle t ∈
[0◦, 180◦], according to the following picture,

C

1
sin t

t
A

cos t
B

which in the case of obtuse angles becomes by definition as follows,

C

sin t
1

t
B − cos t

A

and with this, we have the following formulae, valid for any t ∈ [0◦, 180◦]:

sin t = sin(180◦ − t) , cos t = − cos(180◦ − t)
Moreover, the cat formula for the area of a triangle, namely

area(ABC) =
AB × AC × sin t

2

holds for any triangle, without any assumption on it.

Proof. This follows indeed by putting together all the above. □
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Which sounds quite good, and normally end of the story, but let us be crazy now, and
try to talk as well about the sine or cosine of angles t < 0◦, or t > 180◦.

Indeed, we know the recipe, namely suitably drawing our right triangle, with attention
to positive and negatives. Thus, for t ∈ [180◦, 270◦], our picture should be as follows:

t t
B

− cos t
A

t

C

− sin t
1

As for the next case, t ∈ [270◦, 360◦], here our picture should be as follows:

t t
A

cos t
B

t

C

1
− sin t

But with this, we are done, because adding or substracting 360◦ to our angles won’t
change the corresponding right triangle, and so won’t change the sine and cosine.

Hope you’re still with me, after all these wild speculations. Good work that we did,
and time now to further improve Theorem 5.8, into something really final, as follows:

Theorem 5.9 (final update). We can talk about the sine and cosine of any angle
t ∈ R, according to the following picture,

C

1
sin t

t
A

cos t
B

suitably drawn for angles t < 0◦, or t > 90◦, with attention to positive and negative
lengths, as explained above. With this, all the basic formulae still hold, for any t ∈ R.
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Proof. This follows indeed by putting together all the above, and with the basic
formulae in question being as follows, and in the hope that I forgot none:

sin(90◦ − t) = cos t , cos(90◦ − t) = sin t

sin(90◦ + t) = cos t , cos(90◦ + t) = − sin t

sin(180◦ − t) = sin t , cos(180◦ − t) = − cos t

sin(180◦ + t) = − sin t , cos(180◦ + t) = − cos t

sin(270◦ − t) = − cos t , cos(270◦ − t) = − sin t

sin(270◦ + t) = − cos t , cos(270◦ + t) = sin t

sin(360◦ − t) = − sin t , cos(360◦ − t) = cos t

sin(360◦ + t) = sin t , cos(360◦ + t) = cos t

Plus of course, not to forget about this, and thanks cat for meowing and reminding
me this, the cat formula for the area of a triangle, which was as follows:

area(ABC) =
AB × AC × sin t

2

Here actually some discussion is needed, in relation with positives and negatives, and
we will leave this as an instructive exercise for you, reader. □

5b. Pythagoras, again

In order to study now the sine and cosine, let us first update the numerics that we
already have, for very simple angles in [0◦, 90◦], to more angles, in [0◦, 360◦]. We have
here the following statement, which is something straightforward:

Theorem 5.10. The sines of the basic angles are as follows,

sin 0◦ = 0 , sin 30◦ =
1

2
, sin 45◦ =

1√
2

, sin 60◦ =

√
3

2
, sin 90◦ = 1

sin 120◦ =

√
3

2
, sin 135◦ =

1√
2

, sin 150◦ =
1

2
, sin 180◦ = 0

sin 210◦ = −1

2
, sin 225◦ = − 1√

2
, sin 240◦ = −

√
3

2
, sin 270◦ = −1

sin 300◦ = −
√
3

2
, sin 315◦ = − 1√

2
, sin 330◦ = −1

2
, sin 360◦ = 0

with this coming from the basic geometry of right triangles.
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Proof. This is indeed self-explanatory, with input coming from chapter 2. By the
way, let us record as well the formulae of the corresponding cosines, as follows:

cos 0◦ = 1 , cos 30◦ =

√
3

2
, cos 45◦ =

1√
2

, cos 60◦ =
1

2
, cos 90◦ = 0

cos 120◦ = −1

2
, cos 135◦ = − 1√

2
, cos 150◦ = −

√
3

2
, cos 180◦ = −1

cos 210◦ = −
√
3

2
, cos 225◦ = − 1√

2
, cos 240◦ = −1

2
, cos 270◦ = 0

cos 300◦ =
1

2
, cos 315◦ =

1√
2

, cos 330◦ =

√
3

2
, cos 360◦ = 1

We will be back to such things, with more angles, when knowing more things. □

The problem is now, how to get beyond the above formulae? Not an easy question,
but do not worry, we will be back to this, in due time. For the moment, as a complement
to the above, let us record the following key formula, coming from Pythagoras:

Theorem 5.11. The sines and cosines are subject to the formula

sin2 t+ cos2 t = 1

coming from Pythagoras’ theorem.

Proof. This is something which is certainly true, but for pure mathematical pleasure,
let us reproduce the picture leading to Pythagoras, in the trigonometric setting:

◦ ◦ ◦

◦

sin t◦

◦ ◦
cos t

1

◦

When computing the area of the outer square, we obtain:

(sin t+ cos t)2 = 1 + 4× sin t cos t

2

Now when expanding we obtain sin2 t+ cos2 t = 1, as claimed. □

Next, with our knowledge of the sine and cosine, we can now formulate a technical
generalization of the Pythagoras theorem, in the following way:
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Theorem 5.12. Given an arbitrary triangle, as follows,

C

t
A B

the length of the side which is away from the vertex A is given by the formula

BC2 = AB2 + AC2 − 2AB · AC · cos t
called law of cosines, and with this generalizing Pythagoras.

Proof. Let us draw indeed an altitude of our triangle, as follows:

C

t
A D B

We have then the following computation, coming from Pythagoras, applied twice:

BC2 = CD2 +BD2

= CD2 + (AB − AD)2

= CD2 + AB2 + AD2 − 2AB · AD
= AB2 + AC2 − 2AB · AD
= AB2 + AC2 − 2AB · AC · cos t

Finally, the last assertion is clear, because with cos t = 0 we obtain Pythagoras. □

The above result looks quite interesting, for engineering purposes, and we have:

Conclusion 5.13. The law of cosines found above can be effectively used for making
money, by computing distances BC over wild land, for various interested customers.

Which might sound quite interesting, for us humans, but my cat, who is not into
making money, seems unfazed. In fact, here is what he has to say, about this:

Cat 5.14. That law of cosines is ugly, and no match for my law of sines:

area(ABC) =
AB · AC · sin t

2
I would suggest you humans to look into the quantity

< AB,AC >= AB · AC · cos t
in order to understand what the cosines are good for. And change your diet, too.
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Quite interesting all this, but in practice, this < AB,AC > quantity does not seem
to be something very intuitive, at least to my human brain. We will leave this for later.

So, what to do, in this situation? Find some sort of better law of cosines, of course.
And for this purpose, in the lack of any bright idea, I would just go to an arbitrary triangle
ABC, a bit as in Theorem 5.12, and do some further computations there, for all sorts of
lengths that can appear, in the hope that one of these computations leads to cosines.

With this idea in mind, let us first examine the right triangles. As a cheap trick here,
our usual picture of a right triangle, with the big side having length 1, can be drawn as
follows, with A,B,C standing for the angles at the vertices A,B,C:

C

sinB
sinA

A
sinC

B

Thus, the lenghts of the sides of a right triangle are proportional to the sines of the
opposite angles. Quite remarkably, the same happens in general:

Theorem 5.15. Given an arbitrary triangle ABC, we have:

[BC − AC − AB] ∼ [sinA− sinB − sinC]

That is, the lenghts of the sides are proportional to the sines of the opposite angles.

Proof. Let us draw indeed an altitude of our triangle, as follows:

A

B D C

We have then the following computation, for the ratio AB/AC:

AB

AC
=
AD/ sinB

AD/ sinC
=

sinC

sinB

As for AB/BC and AC/BC, these are given by similar formulae, again involving
quotients of corresponding sines, and this leads to the conclusion in the statement. □

Getting now to our goals, in relation with Cat 5.4 and Cat 5.14, this is quite mixed
news, because what we have in Theorem 5.15 is rather a new law of sines. Nevermind.
So, now that we know this, let us compute as well the missing factor. We have here:
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Theorem 5.16. The lengths of sides of an arbitrary triangle ABC are given by

A

2R sinC 2R sinB

B
2R sinA

C

with R being the radius of the circumscribed circle.

Proof. In order to prove this, let us draw a perpendicular bisector, as follows:

A

O

B D C

We have then 3 isosceles triangles appearing, say with angles α, β, γ at the point O,
satisfying α+ β+ γ = 360◦. The other angles of these isosceles triangles, those coming in
pairs, being 90◦ − α/2, 90◦ − β/2, 90◦ − γ/2, we conclude, by looking at what happens at
each of the vertices of our triangle ABC, that we have the following formulae:

α = 2A , β = 2B , γ = 2C

But with this we can compute the triangle edges. Indeed, we have:

BC = 2BD = 2BO sin
(α
2

)
= 2R sinA

Similarly, we have AB = 2R sinC and AC = 2R sinB, as claimed. □

Very nice all this, we are learning new things, but the cosine problem remains open.
As an idea for a solution, we can try to look instead at the lengths of the altitudes, with
the rationale being that, these being orthogonal to the sides, the sines might get converted
in this way to cosines. But, as bad news, this leads again to sines, as follows:

Theorem 5.17. The lengths of altitudes in an arbitrary triangle ABC satisfy

[AD −BE − CF ] ∼
[

1

sinA
− 1

sinB
− 1

sinC

]
and in fact we have the following formulae for these altitude lengths,

AD =
S

R sinA
, BE =

S

R sinB
, CF =

S

R sinC

with R being the radius of the circumscribed circle, and S being the area.
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Proof. In order to prove the first assertion, let us draw two altitudes, as follows:

A

E

B D C

We have then the following computation for the ratio AD/BE, which along with
similar formulae for AD/CF and BE/CF leads to the first assertion:

AD

BE
=
AB sinB

AB sinA
=

1/ sinA

1/ sinB

As for the second assertion, which reproves and fine-tunes the first assertion, this
comes from Theorem 5.16. Indeed, the area of our triangle is given by:

S =
AD ·BC

2
=
AD · 2R sinA

2
= AD ·R sinA

Thus we have AD = S/(R sinA), and the computation of BE,CF is similar. □

Time perhaps to give up, with our quest for cosines? We have learned many interesting
things on the way, no question about this, our conclusions being as follows:

Conclusion 5.18. The sine is definitely a very interesting and useful quantity, for
all sorts of questions. As for the true need for cosines, this remains an open question.

And do not worry, we will come back to this. In fact, as a piece of advertisement
for what will come later, when talking truly advanced mathematics, involving higher
dimensions, quantum mechanics and so on, the < AB,AC >= AB ·AC · cos t beast that
cat was talking about is the useful, and in fact one and only, geometric tool. So, staying
for the moment with the sine, but the cosine will strike back, and eventually win.

5c. Tangent, cotangent

Back now to the basics, it is possible to say many more things about angles and sin t,
cos t, and also talk about some supplementary quantities, such as the tangent:

Definition 5.19. We can talk about the tangent of angles t ∈ R, as being given by

tan t =
sin t

cos t

with sin t, cos t being defined as before.
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In more geometric terms, consider an arbitrary right triangle, as follows:

C

t
A B

We have then the following computation, for the tangent of t:

tan t =
sin t

cos t
=
BC

AC

/AB
AC

=
BC

AB

Thus, the tangent defined above complements the sine and cosine, because we have:

sin t =
BC

AC
, cos t =

AB

AC
, tan t =

BC

AB

A similar interpretation works for obtuse right triangles, and even for right triangles
with an arbitrary angle t ∈ R, and we can formulate, in the spirit of Theorem 5.9:

Theorem 5.20. We can talk, geometrically, about the tangent of any angle t ∈ R,
according to the following picture,

C

tan t

t
A

1
B

suitably drawn for angles t < 0◦, or t > 90◦, with attention to positive and negative
lengths, as explained above. With this, all the basic formulae still hold, for any t ∈ R.

Proof. Here the first assertion follows by reasoning as in the proof of Theorem 5.9,
or simply follows from Theorem 5.9 itself. As for the second assertion, the basic formulae
for the tangent, all coming from what we know, are as follows:

tan(−t) = − tan t

tan(90◦ − t) = 1

tan t
, cos(90◦ + t) = − 1

tan t

tan(180◦ − t) = − tan t , tan(180◦ + t) = tan t
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Let us record as well the formulae for the basic angles. These are as follows:

tan 0◦ = 0 , tan 30◦ =
1√
3

, sin 45◦ = 1 , sin 60◦ =
√
3

tan 120◦ = −
√
3 , tan 135◦ = −1 , tan 150◦ = − 1√

3
, tan 180◦ = 0

Thus, we are led to the conclusions in the statement. □

Very nice all this, but are we really done with generalities and definitions? Not yet,
because, let us go back to our basic right triangle, with an angle t, as follows:

C

t
A B

We know from the above that we have the following formulae:

sin t =
BC

AC
, cos t =

AB

AC
, tan t =

BC

AB

However, there are still 3 fractions left, in need of a name, so let us formulate the
following definition, completing what we already have, regarding sin, cos, tan:

Definition 5.21. We can talk about the secant, cosecant and cotangent, as being

sec t =
AC

AB
, csc t =

AC

BC
, cot t =

BC

AB

in the context of a right triangle, as above, or equivalently, as being

sec t =
1

cos t
, csc t =

1

sin t
, cot t =

1

tan t

in terms of the standard trigonometric functions sin, cos, tan.

In practice, the secant, cosecant and cotangent can be understood as well geometri-
cally, by using right triangles ABC as above, with a suitable side chosen to be 1:

C

sec t

t
A

1
B

C

csc t
1

t
A B

C

1

t
A

cot t
B
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In relation with this, we have as well the following catch-all picture, featuring a circle
too, and justifying the use of the words “secant” and “cosecant” in the above:

csc t

cot t
t

◦
tan t

sin t
1

cos t

t

sec t

We will be back to this configuration, with more about it, in chapter 7.

As a last piece of discussion, in relation with Concusion 5.18, we can still ask about
the usefulness of our new functions, tan, sec, csc, cot. Wait and see here, with some ap-
plications coming next, and in the meantime, in relation with what we already have, we
can reformulate Theorem 5.17 in a nicer way, in terms of cosecants, as follows:

Theorem 5.22. The lengths of altitudes in an arbitrary triangle ABC satisfy

[AD −BE − CF ] ∼ [cscA− cscB − cscC]

and in fact we have the following formulae for these altitude lengths,

AD = δ cscA , BE = δ cscB , CF = δ cscC

with δ = S/R, where S is the area, and R is the radius of the circumscribed circle.

Proof. This is indeed a reformulation of what we have in Theorem 5.17, by using
the function csc = 1/ sin, along with the above notation δ = S/R. □

5d. Back to centers

Remember the discussion following the Ceva theorem, from chapter 4? We had some
unfinished business there, in what regards the applications, and we promised to get back
to this, once we know some trigonometry. So, time to do this, and as a nice surprise, we
get into something quite interesting, involving cosecants and cotangents, as follows:
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Theorem 5.23. The barycenter, incenter and orthocenter theorems can be all deduced
from the Ceva theorem, with the computations being respectively as follows,

1× 1× 1 = 1

cscA

cscB
· cscB
cscC

· cscC
cscA

= 1

cotA

cotB
· cotB
cotC

· cotC
cotA

= 1

with A,B,C being the angles of our triangle.

Proof. Let us first recall from chapter 3 that the Ceva theorem concerns a configu-
ration as follows, with a triangle ABC containing inner lines AD,BE,CF :

A

F E

B D C

The theorem states that AD,BE,CF cross precisely when the following happens:

AF

FB
· BD
DC
· CE
EA

= 1

Regarding now the barycenter, incenter and orthocenter, the situation is as follows:

(1) In what regards the barycenter, the computation is trivial, as follows:

1× 1× 1 = 1

(2) In order to deal now with the incenter, consider indeed a triangle, with an angle
bisector drawn, and with two perpendiculars drawn as well, as indicated:

A

F E

B D C

We have then the following computation, using FD = DE:

BD

DC
=
FD cscB

DE cscC
=

cscB

cscC
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We conclude that Ceva gives indeed the incenter, with the computation being:

cscA

cscB
· cscB
cscC

· cscC
cscA

= 1

(3) Finally, in order to deal now with the orthocenter, a bit in a similar way, consider
indeed a triangle, with an altitude drawn, as follows:

A

B D C

We have then the following computation, coming from definitions:

BD

DC
=
BD

AD

/DC
AD

=
cotB

cotC

Thus Ceva gives as well the orthocenter, with the computation being as follows:

cotA

cotB
· cotB
cotC

· cotC
cotA

= 1

And with this being something nice, remember the mess with the orthocenter when
first proving the theorem, with that trick involved. Gone all that. □

Before going further, with a similar study of the circumcenter, and as a matter of
having everything regarding the barycenter, incenter and orthocenter understood, let us
do some more computations. The situation here is as follows:

(1) In what regards orthocenter configuration, involving the triangle altitudes, we
already have formulae for everything, coming from the right angles appearing in this
configuration, which are certainly an invitation to trigonometry.

(2) Regarding the incenter configuration, we have already talked about it in chapter 3,
when talking about the Feuerbach points. There are of course many other computations
that can be done, using trigonometry, but for now, what we have here will basically do.

Thus, we are left with doing some more computations for the barycenter configuration,
involving the triangle medians. And here, we have the following remarkable result:
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Theorem 5.24. Given an arbitrary parallelogram ABCD,

D

A

C

B

its sides and diagonals are related by the following formula, called parallelogram law,

AB2 +BC2 + CD2 +DA2 = AC2 +BD2

and this can be used, in the obvious way, in order to compute the triangle medians.

Proof. There are several things going on here, the idea being as follows:

(1) In the case of a rectangle the parallelogram law is Pythagoras’ theorem, and this
suggests using the natural generalization of Pythagoras’ theorem, which is the law of
cosines from Theorem 5.12. Indeed, with O being the middle point of the parallelogram,
and with s, t being the angles there of the triangles OAB and OBC, we have:

AB2 = OA2 +OB2 − 2OA ·OB · cos s
BC2 = OB2 +OC2 − 2OB ·OC · cos t

But OA = OC, and cos s = − cos t, due to s + t = 180◦, so by summing we get the
following formula, which is exactly the parallelogram law, divided by 2:

AB2 +BC2 = 2OA2 + 2OB2

(2) Regarding now the medians, consider a triangle ABC, with a median drawn:

A

B M C

By completing to a parallelogram, and using the parallelogram law, we obtain:

2AB2 + 2AC2 = 4AM2 +BC2

Thus, we are led to the following formula, for the length of the median:

AM =

√
2AB2 + 2AC2 −BC2

4

(3) Finally, as a philosophical comment, the parallelogram law looks as a highly refined
version of the law of cosines. Unfortunately, the cosines are gone. Damn. □
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Back now to our regular business in this section, applications of the Ceva theorem,
regarding the circumcenter, we have the following result about it:

Theorem 5.25. The circumcenter theorem can be deduced too from Ceva, via

csc 2A

csc 2B
· csc 2B
csc 2C

· csc 2C
csc 2A

= 1

with A,B,C being the angles of our triangle.

Proof. Consider indeed the configuration associated to the circumcenter:

A

F E

B D C

(1) In order to compute the ratio BD/DC, let us prolong AD until it meets the outer
circle, in a point P . Now if we look at the trapezoid ABPC, cut by its diagonals AP and
BC, all 8 angles which appear at vertices equal B,C or 90◦ −B, 90◦ − C:

A

F E

O

B D C

P

(2) Getting now to the ratio BD/DC, if we project the points B,C on the line AP ,
into points X, Y , then we have the following computation, coming from similar triangles
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appearing via the observations in (1), and with R being the radius of the outer circle:

BD

DC
=

BX

CY

=
AB · cosC
AC · cosB

=
2R sinC · cosC
2R sinB · cosB

=
sinC · cosC
sinB · cosB

(3) Now the computation for AF/FB and CE/EA being similar, we conclude that
the circumcenter theorem can be indeed deduced from Ceva, via:

secA cscA

secB cscB
· secB cscB

secC cscC
· secC cscC

secA cscA
= 1

(4) However, we can do better. Consider indeed the following configuration, on a circle
having radius 1, with the triangle PQR being taken isosceles:

P

O

Q R

Now let us compute the area of QOR. On one hand, since the angle QOR equals 2P ,
this area is sin 2P/2. On the other hand, by cutting the triangle QOR into two halves,
as indicated above, the area follows to be 2× sinP cosP/2. Thus, we have:

sin 2P = 2 sinP cosP

(5) But with this, we can go back to the computation in (2), and we get:

BD

DC
=

sin 2C

sin 2B

Thus, we have our final trigonometry formula for BD/DC, and the computation for
AF/FB and CE/EA being similar, we are led to the conclusion in the statement. □

Getting now to the center of the nine-point circle, this is of different nature, involving
more complicated trigonometric quantities, the result here being as follows:
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Theorem 5.26. The center of the nine-point circle comes from Ceva via(
cscA

cscB
· cos(C − A)
cos(C −B)

)(
cscB

cscC
· cos(A−B)

cos(A− C)

)(
cscC

cscA
· cos(B − C)
cos(B − A)

)
= 1

with A,B,C being the angles of our triangle.

Proof. We have the following configuration, with the altitude AJ drawn, H being
the orthocenter, P being the middle of AH, and Y being the middle of PJ :

A

P

Y N

H

B J X D C

By using the various ratios on the altitude, we have the following computation:

NX = Y J =
PJ

2
=
AJ +HJ

2

Regarding now the components appearing on the right, we first have:

AJ = AB sinB = 2R sinB sinC

As for the other component, this can be computed by drawing the altitude BK and
using the similarity of triangles BHJ ∼ BCK, which gives the following formula:

HJ =
BJ ·KC
BK

=
AB cosB · 2R sinA cosC

AB sinA
= 2R cosB cosC

As a conclusion, the distance from N to the side BC is given by:

NX = R(cosB cosC + sinB sinC)

But now we can compute the ratio BD/DC, by using areas, and we get:

BD

DC
=
area(ABN)

area(ACN)
=

sinC

sinB
· cosA cosB + sinA sinB

cosA cosC + sinA sinC

But the quantities on the right are respectively cos(A−B) and cos(A−C), as we will
soon learn, in the next chapter, so we are led to the conclusion in the statement. □

Finally, regarding the Gergonne and Nagel points, the Ceva type formulae follow from
what we have in chapter 4, and are again a bit complicated, as follows:
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Theorem 5.27. The Gergonne point comes from Ceva via

sinB + sinC − sinA

sinA+ sinC − sinB
· sinA+ sinC − sinB

sinA+ sinB − sinC
· sinA+ sinB − sinC

sinB + sinC − sinA
= 1

and the same holds for the Nagel point, with all fractions inverted.

Proof. As explained in chapter 4, the Gergonne point comes indeed, and in fact by
definition, from Ceva, according to the following computation:

b+ c− a
a+ c− b

· a+ c− b
a+ b− c

· a+ b− c
b+ c− a

= 1

Now since the triangle sides a, b, c are proportional to sinA, sinB, sinC, this leads to
the formula in the statement. As for the Nagel point, here the computation was:

a+ c− b
b+ c− a

· a+ b− c
a+ c− b

· b+ c− a
a+ b− c

= 1

Thus, we are again led to the conclusion in the statement. □

Very nice all this, we have now some trigonometric intuition on the various triangle
centers constructed in Part I. Actually, in relation with this, we still have the Feuerbach
point Z to be discussed. We will do this later, in Part III, using more advanced tools.

5e. Exercises

Welcome to trigonometry, good to have you here, and as exercises, we have:

Exercise 5.28. Meditate some more on the need for the sine.

Exercise 5.29. Meditate also some more on the need for the cosine.

Exercise 5.30. And meditate too on the need for the tangent.

Exercise 5.31. Learn more about the secant, and its interpretations.

Exercise 5.32. Learn more about the cosecant, and its interpretations.

Exercise 5.33. Learn also more about the cotangent, and its interpretations.

Exercise 5.34. Write a short essay on sin and cos, using directly angles t ∈ R.

Exercise 5.35. Experiment more with Ceva, using other trigonometric functions.

As bonus exercise, reiterated, meditate a bit more on the numeric angles.



CHAPTER 6

Sums, duplication

6a. Sums of angles

Getting back now to the basics, sine, cosine and tangent, how these can be computed,
and what can be done with them, we have the following key result:

Theorem 6.1. The sines and cosines of sums are given by

sin(x+ y) = sinx cos y + cosx sin y

cos(x+ y) = cos x cos y − sinx sin y

and these formulae give a formula for the tangent too, namely

tan(x+ y) =
tanx+ tan y

1− tanx tan y

provided of course that the denominator is nonzero.

Proof. This is something quite tricky, using the same idea as in the proof of Pythago-
ras’ theorem, that is, computing certain areas, the idea being as follows:

(1) Let us first establish the formula for the sines. In order to do so, consider the
following picture, consisting of a length 1 line segment, with angles x, y drawn on each
side, and with everything being completed, and lengths computed, as indicated:

◦
sinx/ cosx

◦

1/ cosx

1

1/ cos y

◦

sin y/ cos y

◦

Now let us compute the area of the big triangle, or rather the double of that area. We
can do this in two ways, either directly, with a formula involving sin(x + y), or by using

129
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the two small triangles, involving functions of x, y. We obtain in this way:

1

cosx
· 1

cos y
· sin(x+ y) =

sinx

cosx
· 1 + sin y

cos y
· 1

But this gives the formula for sin(x+ y) from the statement.

(2) Moving ahead, no need of new tricks for cosines, because by using the formula for
sin(x+ y) we can deduce a formula for cos(x+ y), as follows:

cos(x+ y) = sin
(π
2
− x− y

)
= sin

[(π
2
− x
)
+ (−y)

]
= sin

(π
2
− x
)
cos(−y) + cos

(π
2
− x
)
sin(−y)

= cos x cos y − sinx sin y

(3) Finally, in what regards the tangents, we have, according to the above:

tan(x+ y) =
sinx cos y + cosx sin y

cosx cos y − sinx sin y

=
sinx cos y/ cosx cos y + cosx sin y/ cosx cos y

1− sinx sin y/ cosx cos y

=
tanx+ tan y

1− tanx tan y

Thus, we are led to the conclusions in the statement. □

Let us record as well the formulae for the secondary trigonometric functions:

Proposition 6.2. The secants and cosecants of sums are given by

sec(x+ y) =
secx sec y

1− tanx tan y

csc(x+ y) =
cscx csc y

cotx+ cot y

and we have a formula for the cotangent too, namely

cot(x+ y) =
cotx cot y − 1

cotx+ cot y

provided of course that the denominator is nonzero.

Proof. This comes from the formulae in Theorem 6.1, as follows:
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(1) In what regards the secant, we have the following computation:

sec(x+ y) =
1

cos(x+ y)

=
1

cosx cos y − sinx sin y

=
secx sec y

1− sinx secx sin y sec y

=
secx sec y

1− tanx tan y

(2) In what regards the cosecant, we have the following computation:

csc(x+ y) =
1

sin(x+ y)

=
1

sinx cos y + cosx sin y

=
cscx csc y

csc y cos y + cscx cosx

=
cscx csc y

cotx+ cot y

(3) In what regards the cotangent, we have the following computation:

cot(x+ y) =
1

tan(x+ y)

=
1− tanx tan y

tanx+ tan y

=
cotx cot y − 1

cotx+ cot y

Thus, we are led to the formulae in the statement. □

Getting back to Theorem 6.1 as stated, let us record as well what happens when
replacing sums by substractions. The formulae here are as follows:

Theorem 6.3. The sines and cosines of differences are given by

sin(x− y) = sinx cos y − cosx sin y

cos(x− y) = cos x cos y + sinx sin y

and these formulae give a formula for the tangent too, namely

tan(x− y) = tanx− tan y

1 + tan x tan y

provided of course that the denominator is nonzero.
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Proof. These are all consequences of what we have in Theorem 6.1, as follows:

(1) Regarding the sine, we have here the following computation:

sin(x− y) = sinx cos(−y) + cos x sin(−y)
= sin x cos y − cosx sin y

(2) Regarding the cosine, the computation here is similar, as follows:

cos(x− y) = cosx cos(−y)− sinx sin(−y)
= cos x cos y + sinx sin y

(3) Finally, for the tangent we have a similar computation, as follows:

tan(x− y) =
tanx+ tan(−y)
1− tanx tan(−y)

=
tanx− tan y

1 + tan x tan y

Thus, we are led to the conclusions in the statement. □

Let us record as well the formulae for the secondary trigonometric functions:

Proposition 6.4. The secants and cosecants of differences are given by

sec(x− y) = secx sec y

1 + tan x tan y

csc(x− y) = cscx csc y

cot y − cotx

and we have a formula for the cotangent too, namely

cot(x− y) = cotx cot y + 1

cot y − cotx

provided of course that the denominator is nonzero.

Proof. These are all consequences of Proposition 6.2, as follows:

(1) Regarding the secant, we have here the following computation:

sec(x− y) =
secx sec(−y)

1− tanx tan(−y)

=
secx sec y

1 + tan x tan y
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(2) Regarding the cosecant, the computation here is similar, as follows:

csc(x− y) =
cscx csc(−y)

cotx+ cot(−y)

= − cscx csc y

cotx− cot y

=
cscx csc y

cot y − cotx

(3) Finally, for the cotangent we have a similar computation, as follows:

cot(x− y) =
cotx cot(−y)− 1

cotx+ cot(−y)

=
− cotx cot y − 1

cotx− cot y

=
cotx cot y + 1

cot y − cotx

Thus, we are led to the conclusions in the statement. □

As illustrations for the above formulae, we can now compute the sine, cosine and
tangent of various interesting new angles, appearing as sums and differences, such as:

15◦ = 45◦ − 30◦ , 75◦ = 45◦ + 30◦

In fact, thinking well, this is pretty much it, modulo periodicity formulae. So, all in
all, with our formulae for sums, we can deal now with all multiples of 15◦.

Let us record our result here, dealing with the main functions, as follows:

Theorem 6.5. The sine, cosine and tangent of multiples of 15◦ are given by

sin 15◦ =

√
3− 1

2
√
2

, sin 30◦ =
1

2
, sin 45◦ =

1√
2
, sin 60◦ =

√
3

2
, sin 75◦ =

√
3 + 1

2
√
2

cos 15◦ =

√
3 + 1

2
√
2

, cos 30◦ =

√
3

2
, cos 45◦ =

1√
2
, cos 60◦ =

1

2
, cos 75◦ =

√
3− 1

2
√
2

tan 15◦ =

√
3− 1√
3 + 1

, tan 30◦ =
1√
3
, tan 45◦ = 1 , tan 60◦ =

√
3 , tan 75◦ =

√
3 + 1√
3− 1

plus various periodicity formulae.



134 6. SUMS, DUPLICATION

Proof. For the quantity sin 15◦ = cos 75◦, we have the following computation:

sin 15◦ = sin(45◦ − 30◦)

= sin 45◦ cos 30◦ − cos 45◦ sin 30◦

=
1√
2
·
√
3

2
− 1√

2
· 1
2

=

√
3− 1

2
√
2

Also, for the quantity cos 15◦ = sin 75◦, we have the following computation:

cos 15◦ = cos(45◦ − 30◦)

= cos 45◦ cos 30◦ + sin 45◦ sin 30◦

=
1√
2
·
√
3

2
+

1√
2
· 1
2

=

√
3 + 1

2
√
2

As for the other formulae in the statement, these all follow from this. □

For completness, let us record as well the result for the secondary functions:

Theorem 6.6. The secant, cosecant and cotangent of multiples of 15◦ are

sec 15◦ =
2
√
2√

3 + 1
, sec 30◦ =

2√
3
, sec 45◦ =

√
2 , sec 60◦ = 2 , sec 75◦ =

2
√
2√

3− 1

csc 15◦ =
2
√
2√

3− 1
, csc 30◦ = 2 , csc 45◦ =

√
2 , csc 60◦ =

2√
3
, csc 75◦ =

2
√
2√

3 + 1

cot 15◦ =

√
3 + 1√
3− 1

, cot 30◦ =
√
3 , cot 45◦ = 1 , cot 60◦ =

1√
3
, cot 75◦ =

√
3− 1√
3 + 1

plus various periodicity formulae.

Proof. This follows indeed by inverting the various fractions in Theorem 6.5. □

As a conclusion to all this, not a big deal, you would say, but wait for it. We will see
in what comes next that, with some halving tricks helping, our general formulae for sums
can be used in order to compute the trigonometric functions of nearly all angles.
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6b. Duplication

Time now for more advanced trigonometry. Indeed, by taking x = y in Theorem 6.1
we obtain some interesting formulae for the duplication of angles, as follows:

Theorem 6.7. The sines of the doubles of angles are given by

sin(2t) = 2 sin t cos t

and the corresponding cosines are given by the following equivalent formulae,

cos(2t) = cos2 t− sin2 t

= 2 cos2 t− 1

= 1− 2 sin2 t

with all these three formulae being useful, in practice.

Proof. This is something very standard, the idea being as follows:

(1) By taking x = y = t in the formulae from Theorem 6.1, we obtain:

sin(2t) = 2 sin t cos t

cos(2t) = cos2 t− sin2 t

As for the extra formulae for cos(2t), these follow by using cos2+sin2 = 1.

(2) Alternatively, and as already explained in fact in chapter 5, where we first met the
formula for the sine in the statement, consider the following very familiar configuration,
lying on a circle, with the triangle in question being taken isosceles:

A

O

B C

Let us assume as well that the circle radius is 1, and let us compute the area of BOC.
On one hand, by using the fact that the angle BOC equals 2A, this area follows to be
sin 2A/2. On the other hand, by cutting this triangle BOC into two halves, as indicated
above, the area follows to be 2× sinA cosA/2. Thus, we have the following formula:

sin 2A = 2 sinA cosA
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(3) Finally, regarding the cosine, by using this and Pythagoras twice, we have:

cos 2A =
√

1− sin2 2A

=
√

1− 4 sin2A cos2A

=
√

1− 4 sin2A cos2A

=
√

(cos2A+ sin2A)2 − 4 sin2A cos2A

=
√

cos4A+ sin4A− 2 sin2A cos2A

=
√

(cos2A− sin2A)2

= cos2A− sin2A

To be more precise, this computation holds indeed, with some discussion needed at
the end, when extracting the square root. Alternatively, we can deduce this formula by
using the configuration from (2), and we will leave this as an instructive exercise.

(4) As for the other formulae for the cosine in the statement, these follow from this,
and from Pythagoras, as already mentioned in (1). □

Let us record as well the formula for the tangents, which is as follows:

Theorem 6.8. The tangents of the doubles of angles are given by

tan(2t) =
2 tan t

1− tan2 t

provided as usual that the denominator is nonzero.

Proof. This follows indeed by taking x = y = t in the formula for tangents from
Theorem 6.1. Equivalently, you can check, as an easy, instructive exercise, that this is
indeed what we get, by dividing the sine and cosine computed in Theorem 6.7. □

The point now is that, with this, we can substantially improve our data from Theorem
6.5, by computing the cosines of the halves of the angles there, using the above formula
for cos(2t), and then computing the sines of these angles too, by using Pythagoras, and
finally by computing the tangents too, as quotients. As a result here, let us record:

Theorem 6.9. The sine, cosine and tangent of 22.5◦ are given by

sin 22.5◦ =

√
2−
√
2

2
, cos 22.5◦ =

√
2 +
√
2

2
, tan 22.5◦ =

√
2− 1

and for the odd multiples of 22.5◦, we have similar formulae.
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Proof. For the cosine we can use cos(2t) = 2 cos2 t− 1, and we obtain:

cos 22.5◦ =

√
1 + 1√

2

2

=

√√
2 + 1

2
√
2

=

√
2 +
√
2

2

For the sine we can use Pythagoras, sin2+cos2 = 1, and we obtain:

sin 22.5◦ =
√
1− cos2 22.5◦

=

√
1− 2 +

√
2

4

=

√
2−
√
2

2

Finally, by taking the quotient we obtain a formula for the tangent, as follows:

tan 22.5◦ =

√
2−
√
2

2 +
√
2

=

√
(2−

√
2)2

(2 +
√
2)(2−

√
2)

=
2−
√
2√

2

=
√
2− 1

Thus, we are led to the conclusions in the statement. □

Along the same lines, at a more advanced level, we have as well:

Theorem 6.10. The sine, cosine and tangent of 7.5◦ are given by

sin 7.5◦ =

√
4−
√
2−
√
6

8
, cos 7.5◦ =

√
4 +
√
2 +
√
6

8
, tan 7.5◦ =

√
4−
√
2−
√
6

4 +
√
2 +
√
6

and for the odd multiples of 7.5◦, we have similar formulae.
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Proof. For the cosine we can use cos(2t) = 2 cos2 t− 1, and we obtain:

cos 7.5◦ =

√
1 + cos 15◦

2

=

√
1 + 1+

√
3

2
√
2

2

=

√
2
√
2 + 1 +

√
3

4
√
2

=

√
4 +
√
2 +
√
6

8

For the sine we can use Pythagoras, sin2+cos2 = 1, and we obtain:

sin 7.5◦ =
√
1− cos2 7.5◦

=

√
1− 4 +

√
2 +
√
6

8

=

√
4−
√
2−
√
6

8

Finally, by taking the quotient we obtain the formula for the tangent. As for the last
assertion, it is clear that the same method will work for all multiples of 7.5◦, with input
from Theorem 6.5, and we will leave the computations here as an instructive exercise. □

As a conclusion to all this, we have quite mixed news, as follows:

(1) On one hand the formulae in Theorem 6.7 are definitely something powerful,
allowing us in theory to indefinitely halve the angles that we know, and so to virtually
obtain, via some limits if needed, all the sines and cosines in this world.

(2) On the other hand, in practice, all this leads us into the question of extracting
square roots, which rather belongs to arithmetic. So, all in all, not that much of a total
kill, Theorem 6.7 transferring our questions, from trigonometry to arithmetic.

As an application now of the new formulae that we learned, let us go back to the
Brahmagupta formula for the area of a cyclic quadrilateral from chapter 3, namely:

S =
√

(s− a)(s− b)(s− c)(s− d)

We have the following generalization of this formula, due to Bretschneider:
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Theorem 6.11 (Bretschneider). The area of an arbitrary quadrilateral

A
a

d

B
b

C

c

D

having sides a, b, c, d is given by the following formula,

S =
√
(s− a)(s− b)(s− c)(s− d)− abcd cos2 t

with s = (a+ b+ c+ d)/2 being the semiperimeter, and t = (A+ C)/2.

Proof. This is something quite tricky, the idea being as follows:

(1) As a first observation, in relation with the apparent lack of symmetry of the
formula, we have A+B+C +D = 360◦, so the angles t = (A+C)/2 and s = (B+D)/2
are related by s+ t = 180◦, and so they have the same squared cosines:

s+ t = 180◦ =⇒ cos s = − cos t =⇒ cos2 s = cos2 t

Thus, there is in fact no lack of symmetry in the formula. Good.

(2) As a second observation, this generalizes the Brahmagupta formula. Indeed, for a
cyclic quadrilateral we have A+ C = B +D = 180◦, so t = 90◦, and we get:

S =
√
(s− a)(s− b)(s− c)(s− d)

(3) As a third observation, the Bretschneider formula gives the following estimate,
which shows that the area of a quadrilateral having sides a, b, c, d is maximized when the
quadrilateral is cyclic, confirming a conjecture that we made in chapter 3:

S ≤
√

(s− a)(s− b)(s− c)(s− d)
(4) Getting now to the proof of the formula, and coming as bad news, what we did

in chapter 3, namely Heron formula, generalized into the Brahmagupta formula, does not
help much in relation with our question. So, we will have to redo everything, and with
the proof below providing of course a new proof for Heron, and Brahmagupta.

(5) Time to get to work. By using the law of sines twice, we have:

S =
ad sinA

2
+
bc sinC

2

With Brahmagupta in mind, suggesting the use of S2, let us write this as:

4S2 = (ad)2 sin2A+ (bc)2 sin2C + 2abcd sinA sinC
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(6) Next comes the trick. We obviously have to some trigonometry here, in order to
get rid of the angles A,C, or maybe just replace them by a single one, say t = (A+C)/2.
And after trying a million things here, as Bretschneider, and probably people like Heron
and Brahmagupta too, most likely did, we are led to the following lucky formula, coming
from the law of cosines applied twice, to the triangles ADB and CDB:

a2 + d2 − 2ad cosA = b2 + c2 − 2bc cosC

(7) Indeed, let us write this latter formula in the following way:

a2 + d2 − b2 − c2 = 2(ad cosA− bc cosC)

By squaring, we obtain from this the following formula:

(a2 + d2 − b2 − c2)2

4
= (ad)2 cos2A+ (bc)2 cos2C − 2abcd cosA cosC

(8) But this latter formula is very similar to what we have in (5), and does the
simplification job for that formula in (5). Indeed, by summing our two formulae, and by
using the various trigonometry rules that we learned in this chapter, we obtain:

4S2 +
(a2 + d2 − b2 − c2)2

4
= (ad)2 + (bc)2 − 2abcd cos(A+ C)

= (ad+ bc)2 − 2abcd(1 + cos(A+ C))

= (ad+ bc)2 − 4abcd cos2
(
A+ C

2

)
(9) Now by setting t = (A+C)/2, as in the statement, and with s = (a+ b+ c+ d)/2

being the semiperimeter, we can finish the computation, as follows:

16(S2 + abcd cos2 t)

= 4(ad+ bc)2 − (a2 + d2 − b2 − c2)2

= (2ad+ 2bc+ a2 + d2 − b2 − c2)(2ad+ 2bc− a2 − d2 + b2 + c2)

= [(a+ d)2 − (b− c)2] · [(b+ c)2 − (a− d)2]
= (a+ d+ b− c)(a+ d− b+ c)(b+ c− a+ d)(b+ c+ a− d)
= 16(s− a)(s− b)(s− c)(s− d)

(10) Thus, we have reached to the following formula:

S =
√

(s− a)(s− b)(s− c)(s− d)− abcd cos2 t

But this is exactly the formula in the statement. □

Regarding now the area of arbitrary polygons, let us record here:
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Theorem 6.12. The area of an arbitrary articulated polygon,

A

B

F

C

E D

that is, having edges of fixed lenghts, is maximized when the polygon lies on a circle.

Proof. This is again something quite tricky, the idea being as follows:

(1) To start with, given an articulated polygon, it is quite clear that there is a way,
which is unique, of putting it on a circle. Indeed, the solution comes by starting with a
circle which is much bigger than needed, putting inside the polygon, cut at one vertex,
and then deflating the circle, until that cut vertex becomes a vertex again.

(2) Next, in what regards the proof, we have seen that the Bretschneider formula
does the job for quadrilaterals. But we can use this same formula for dealing with any
polygon. Indeed, if we consider the first four vertices A,B,C,D, add an edge AD, and
apply Bretschneider, we conclude that these four vertices A,B,C,D must be cyclic:

A

B

F ⋆

C

E D

Next, we can do the same trick for B,C,D,E, which follow to be cyclic as well:

A

B

F

⋆ C

E D

And so on, with the conclusion being that all vertices must be cyclic, as claimed.

(3) Finally, you might wonder, is the present theorem, which sounds so conceptual
and simple, really in need of such a complicated proof, using the Bretschneider formula,
which is definitely something quite complicated, as we have seen in the above.
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(4) In answer, here is an alternative, physics type proof for the present theorem, based
on nothing or almost, and more specifically, based only on the very intuitive fact that,
among all shapes of a given perimeter, it is the disk which maximizes the area. So, let us
arrange first our articulated polygon on a circle, as explained in (1) above:

A

B

F

C

E D

(5) Now let us start playing with our articulated polygon, attempting to maximize
the area. But this is impossible, because by keeping the above small strips attached, the
perimeter will remain that same, namely the perimeter of the original circle, while the
area will increase, which is contradictory. Thus theorem proved, just like that.

(6) Amazing all this, isn’t it, and do not hesitate to tell this to your fellow students
too. And if among them, some math nerd does not agree with the claim in (4), stating
that the disk maximizes the area, for a given perimeter, well, tell him that you know how
to rigorously prove that, via trigonometry and Bretschneider, as explained in (2). □

6c. Three angles

We have seen that some interesting mathematics appears in relation with the sines
and cosines of sums of angles, x+y. This suggests, as a continuation, summing 3 or more
angles, and we will explore this here. To start with, we have the following result:

Theorem 6.13. The sines of sums of 3 angles are given by the formula

sin(x+ y + z) = sinx cos y cos z + cosx sin y cos z

+cosx cos y sin z − sinx sin y sin z

the cosines of sums of 3 angles are given by the formula

cos(x+ y + z) = cosx cos y cos z − cosx sin y sin z

− sinx cos y sin z − sinx sin y cos z

and we have a formula for the tangent too, namely

tan(x+ y + z) =
tanx+ tan y + tan z − tanx tan y tan z

1− tanx tan y − tanx tan z − tan y tan z

provided of course that the denominator is nonzero.
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Proof. We use the addition formulae from Theorem 6.1, namely:

sin(x+ y) = sinx cos y + cosx sin y

cos(x+ y) = cos x cos y − sinx sin y

In what regards the sine, the computation here is as follows:

sin(x+ y + z)

= sin x cos(y + z) + cos x sin(y + z)

= sin x(cos y cos z − sin y sin z) + cos x(sin y cos z + cos y sin z)

= sin x cos y cos z + cosx sin y cos z + cosx cos y sin z − sinx sin y sin z

In what regards the cosine, the computation here is similar, as follows:

cos(x+ y + z)

= cos x cos(y + z)− sinx sin(y + z)

= cos x(cos y cos z − sin y sin z)− sinx(sin y cos z + cos y sin z)

= cos x cos y cos z − cosx sin y sin z − sinx cos y sin z − sinx sin y cos z

Regarding now the tangent, this follows by taking the quotient, or by using:

tan(x+ y) =
tanx+ tan y

1− tanx tan y

Indeed, by using this formula twice, we obtain, for a sum of three angles:

tan(x+ y + z) =
tanx+ tan(y + z)

1− tanx tan(y + z)

=
tanx+ tan y+tan z

1−tan y tan z

1− tanx tan y+tan z
1−tan y tan z

=
tanx+ tan y + tan z − tanx tan y tan z

1− tanx tan y − tanx tan z − tan y tan z

Thus, we are led to the conclusions in the statement. □

As a consequence of the above result, obtained with x = y = z = t, we have:

Theorem 6.14. The sines and cosines of sums of triple of angles are given by

sin(3t) = 3 sin t− 4 sin3 t

cos(3t) = 4 cos3 t− 3 cos t

and we have a formula for the tangent too, namely

tan(3t) =
3 tan t− tan3 t

1− 3 tan2 t

provided of course that the denominator is nonzero.
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Proof. With x = y = z = t in the sine formula from Theorem 6.13, we obtain:

sin(3t) = 3 sin t cos2 t− sin3 t

= 3 sin t(1− sin2 t)− sin3 t

= 3 sin t− 4 sin3 t

Similarly, with x = y = z = t in the cosine formula from Theorem 6.13, we obtain:

cos(3t) = cos3 t− 3 cos t sin2 t

= cos3 t− 3 cos t(1− cos2 t)

= 4 cos3 t− 3 cos t

Finally, with x = y = z = t in the tangent formula from Theorem 6.13 we obtain the
formula for the tangent in the statement, without any further manipulation. □

Getting now to numeric applications, the above formulae raise the possibility of com-
puting the trigonometric functions of 10◦ and its multiples, by solving the corresponding
cubic equations. However, this will not work very well, because do we really know how
to solve the cubic equations. So, let us record here something modest, as follows:

Theorem 6.15. The quantities a = sin 10◦, b = cos 10◦, c = tan 10◦ satisfy

3a− 4a3 =
1

2
, 4b3 − 3b =

√
3

2
,

3c− c3

1− 3c2
=

1√
3

and we have similar equations, for the other multiples of 10◦.

Proof. By taking t = 10◦ in the formulae from Theorem 6.14, we obtain:

sin(30◦) = 3a− 4a3

cos(30◦) = 4b3 − 3b

tan(30◦) =
3c− c3

1− 3c2

Thus, we are led indeed to the formulae in the statement. □

In order to comment now on all this, we have to talk a bit about degree 3 equations.
Here is a well-known result of Cardano, regarding them:

Theorem 6.16. For a normalized degree 3 equation, namely

x3 + 3px+ 2q = 0

the discriminant is ∆ = −108(p3 + q2), and assuming ∆ < 0, the number

x =
3

√
−q +

√
p3 + q2 +

3

√
−q −

√
p3 + q2

is a solution of our equation.
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Proof. This is something quite tricky, the idea being as follows:

(1) Regarding the discriminant ∆, the idea is that this is the degree 3 analogue of the
well-known quantity ∆ = b2 − 4ac, and with the precise formula being the above one,
∆ = −108(p3 + q2). We will talk more in detail about this later in this book.

(2) Next, assuming ∆ < 0, which in practice means p3 + q2 > 0, the number x in the
statement is well-defined, and by using (a+ b)3 = a3 + b3 + 3ab(a+ b), we have:

x3 =

(
3

√
−q +

√
p3 + q2 +

3

√
−q −

√
p3 + q2

)3

= −2q + 3
3

√
−q +

√
p3 + q2 · 3

√
−q −

√
p3 + q2 · x

= −2q + 3 3
√
q2 − p3 − q2 · x

= −2q − 3px

Thus, we are led to the conclusion in the statement. □

Which sounds good, but getting back now to trigonometry, we have bad news:

Proposition 6.17. The degree 3 equation for y = 2 cos t in terms of c = cos(3t),

y3 − 3y − 2c = 0

has discriminant ∆ = 108(1− c2) > 0, so Theorem 6.16 does not apply to it.

Proof. This is something quite self-explanatory. Indeed, according to Theorem 6.14,
the equation for x = cos t in terms of c = cos(3t) is as follows:

4x3 − 3x = c

Now with y = 2x as in the statement, this equation takes the following form:

y3 − 3y = 2c

But this is a normalized 3 equation, as in Theorem 6.14, with parameters p = −1 and
q = −c, so its discriminant is given by the following formula:

∆ = −108(−1 + c2) = 108(1− c2)
Thus, assuming of course c ̸= ±1, we are led to the conclusion in the statement. □

The problem is now, what to do. Obviously, we would need a version of Theorem 6.16
dealing with the case ∆ > 0, which in practice requires talking about

√
p3 + q2 when

p3 + q2 < 0. So, let us be crazy, and introduce a formal number i satisfying:

i2 = −1
And with this, we will certainly have our extension of Theorem 6.16. However, before

doing that, let us first study the simplest cubic equation, x3 = 1. We have:

x3 = 1 ⇐⇒ (x− 1)(x2 + x+ 1) = 0
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Now when looking at x2 + x+ 1 = 0, the discriminant is ∆ = −3, and so
√
∆ =

√
3 i.

We conclude that x3 = 1 has in fact 3 solutions, namely x = 1, and:

w =
−1 +

√
3 i

2
, w2 =

−1−
√
3 i

2
Quite nice all this, and we can now extend Theorem 6.16, as follows:

Theorem 6.18. For a normalized degree 3 equation, namely

x3 + 3px+ 2q = 0

the discriminant is ∆ = −108(p3 + q2), and the formal numbers

x = w
3

√
−q +

√
p3 + q2 + w2 3

√
−q −

√
p3 + q2

with w3 = 1 are the solutions of our equation.

Proof. As before, by using (a+ b)3 = a3 + b3 + 3ab(a+ b), we have:

x3 =

(
w

3

√
−q +

√
p3 + q2 + w2 3

√
−q −

√
p3 + q2

)3

= −2q + 3
3

√
−q +

√
p3 + q2 · 3

√
−q −

√
p3 + q2 · x

= −2q + 3 3
√
q2 − p3 − q2 · x

= −2q − 3px

Thus, we are led to the conclusion in the statement. □

Very good, and getting back now to trigonometry, along the lines of Proposition 6.17,
the question is, do we have a win, with Theorem 6.18? And unfortunately, no way:

Theorem 6.19. The degree 3 equation for y = 2 cos t in terms of c = cos(3t),

y3 − 3y − 2c = 0

having ∆ = 108(1− c2) > 0, when approached via Theorem 6.18, gives nothing.

Proof. Strange statement that we have here, with such things being called “no-go
results”, and being the realm of pure mathematics. However, I have seen so many applied
mathematicians, myself included a few times, saying “good work that we did, and we’ll
get that missing cosine via Cardano”, that this is definitely worth some discussion:

(1) Theorem 6.18 applies to our equation, and gives, with s = sin(3t):

x = w
3

√
1 +
√
c2 − 1 + w2 3

√
1−
√
c2 − 1

= w
3

√
1 +
√
1− c2 · i+ w2 3

√
1−
√
1− c2 · i

= w 3
√
1 + si+ w2 3

√
1− si
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(2) The problem is now, how to extract that cubic roots, of the formal numbers 1±si.
And here, we get nothing, because when attempting to solve (a± ib)3 = 1± si, we end up
with some complicated equations, which are in fact more or less equivalent to the cubic
equation y3 − 3y = 2c that we started with. Thus, we get indeed nothing. □

We will be back to this, with more explanations, later in this book, when studying
the formal numbers a+ ib as above, which are called complex numbers. More later.

6d. Higher formulae

Moving on now, let us see what happens for a sum of 4 angles. In view of Theorem
6.13, we do not really want to deal with the sine and the cosine, where the formulae will
be most likely quite complicated, so we will focus on the tangent instead. We have:

Theorem 6.20. The tangents of sums of 4 angles are given by

tan(x+ y + z + t) =

(
tanx+ tan y + tan z + tan t− tanx tan y tan z

− tanx tan y tan t− tanx tan z tan t− tan y tan z tan t

)
(
1− tanx tan y − tanx tan z − tanx tan t− tan y tan z
− tan y tan t− tan z tan t+ tanx tan y tan z tan t

)
provided of course that the denominator is nonzero.

Proof. We use the formula for the tangents of sums from Theorem 6.1, namely:

tan(x+ y) =
tanx+ tan y

1− tanx tan y

By using this formula twice we obtain, for a sum of four angles:

tan(x+ y + z + t)

=
tan(x+ y) + tan(z + t)

1− tan(x+ y) tan(z + t)

=

tanx+tan y
1−tanx tan y

+ tan z+tan t
1−tan z tan t

1− tanx+tan y
1−tanx tan y

· tan z+tan t
1−tan z tan t

=

(
tanx+ tan y + tan z + tan t− tanx tan y tan z

− tanx tan y tan t− tanx tan z tan t− tan y tan z tan t

)
(
1− tanx tan y − tanx tan z − tanx tan t− tan y tan z
− tan y tan t− tan z tan t+ tanx tan y tan z tan t

)
Thus, we are led to the formula in the statement. □

And the problem is now, is what we found in Theorem 6.20 good news, or not? You
would probably say, definitely no, that looks like the end of the world.
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However, listen to the old man here, who has seen all sorts of complicated formulae,
over his career, what we have in Theorem 6.20 is in fact not that bad. Indeed, we can
now formulate the following result, which is something quite nice:

Theorem 6.21. The tangents of the sums of angles are given by

tan(x+ y) =
a+ b

1− ab

tan(x+ y + z) =
a+ b+ c− abc
1− ab− ac− bc

tan(x+ y + z + t) =
a+ b+ c+ d− abc− abd− acd− bcd
1− ab− ac− ad− bc− bd− cd+ abcd

...

where a = tanx, b = tan y, c = tan z, d = tan t, . . . , with on top odd symmetric functions
of a, b, c, d, . . . , and on the bottom even symmetric functions of a, b, c, d, . . .

Proof. Here the formulae in the statement are those from Theorems 6.1, 6.13 and
6.20, and the conclusion at the end is something quite self-explanatory. We will leave
some thinking here as an exercise, and we will be back to this, later in this book. □

Getting back now to the sine and cosine, we have seen in the above that for small
k ∈ N we have formulae as follows, with Pk, Qk being certain polynomials:

cos(kt) = Pk(cos t) , sin((k + 1)t) = Qk(cos t) sin t

To be more precise, in what regards the cosine, we have the following formulae:

cos(2t) = 2 cos2 t− 1

cos(3t) = 4 cos3 t− 3 cos t

...

As for the sine, the formulae here, coming from what we know, are as follows:

sin(2t) = 2 cos t sin t

sin(3t) = (4 cos2 t− 1) sin t

...

To be more precise here, in what regards the formula of sin(3t), we have:

sin(3t) = 3 sin t− 4 sin3 t

= (3− 4 sin2 t) sin t

= (3− 4 + 4 cos2 t) sin t

= (4 cos2 t− 1) sin t
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In order to see now if our conjecture regarding Pk, Qk is true, let us compute as well
the sine and cosine of 4t. We have here the following result, confirming our conjecture:

Proposition 6.22. We have the following formulae,

cos(4t) = 8 cos4 t− 8 cos2 t+ 1

sin(4t) = (8 cos3 t− 4 cos t) sin t

confirming our conjectures cos(kt) = Pk(cos t) and sin((k + 1)t) = Qk(cos t) sin t.

Proof. Regarding the cosine, we have the following computation:

cos(4t) = 2 cos2(2t)− 1

= 2(2 cos2 t− 1)2 − 1

= 2(4 cos4 t− 4 cos2 t+ 1)− 1

= 8 cos4 t− 8 cos2 t+ 1

Regarding the sine, we have the following computation:

sin(4t) = 2 sin(2t) cos(2t)

= 4 sin t cos t(2 cos2 t− 1)

= (8 cos3 t− 4 cos t) sin t

Thus, we are led to the conclusions in the statement. □

In general now, we can proceed by recurrence, and we obtain:

Theorem 6.23. The cosines and sines of multiplied angles are given by

cos(kt) = Pk(cos t) , sin((k + 1)t) = Qk(cos t) sin t

with Pk, Qk being certain polynomials with integer coefficients, given by

Pk+1(x) = Pk(x)x−Qk−1(x)(1− x2)
Qk(x) = Qk−1(x)x+ Pk(x)

called Chebycheff polynomials of the first and second kind.

Proof. This is indeed something very standard, the idea being as follows:

(1) We use our basic formulae for the sums, which are as follows:

cos(x+ y) = cos x cos y − sinx sin y

sin(x+ y) = sinx cos y + cosx sin y

We conclude that we have the following formulae, valid for any k ∈ N:
cos((k + 1)t) = cos(kt) cos t− sin(kt) sin t

sin((k + 1)t) = sin(kt) cos t+ cos(kt) sin t
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Now by recurrence, these formulae take the following form:

cos((k + 1)t) = Pk(cos t) cos t−Qk−1(cos t) sin
2 t

sin((k + 1)t) = Qk−1(cos t) sin t cos t+ Pk(cos t) sin t

We can write these latter formulae in a more convenient way, as follows:

cos((k + 1)t) = Pk(cos t) cos t−Qk−1(cos t)(1− cos2 t)

sin((k + 1)t) = (Qk−1(cos t) cos t+ Pk(cos t)) sin t

Thus, we have the formulae in the statement, with Pk, Qk being as follows:

Pk+1(x) = Pk(x)x−Qk−1(x)(1− x2)
Qk(x) = Qk−1(x)x+ Pk(x)

Observe in particular that both Pk, Qk much have integer coefficients.

(2) Let us do as well some numerics, as a matter of doublechecking what we found.
As input for our computations, we have the following initial values:

P0 = 1 , P1 = x , Q0 = 1

At the first step of our recurrence we obtain the following formulae:

P2 = 2x2 − (1− x2) = 2x2 − 1

Q1 = x+ x = 2x

At the second step of our recurrence we obtain the following formulae:

P3 = (2x3 − x)− (2x− 2x3) = 4x3 − 3x

Q2 = 2x2 + (2x2 − 1) = 4x2 − 1

At the third step of our recurrence we obtain the following formulae:

P4 = (4x4 − 3x2)− (4x2 − 1)(1− x2) = 8x4 − 8x2 + 1

Q3 = (4x3 − x) + (4x3 − 3x) = 8x3 − 4x

And, good news, this agrees with what we found in Proposition 6.22, and before. □

For future reference, let us record now the above numerics, along with some more:

Proposition 6.24. The Chebycheff polynomials of the first kind are

1 , x , 2x2 − 1 , 4x3 − 3x , 8x4 − 8x2 + 1 , 16x5 − 20x3 + 5x , . . .

and the Chebycheff polynomials of the second kind are

1 , 2x , 4x2 − 1 , 8x3 − 4x , 16x4 − 12x2 + 1 , 32x5 − 32x3 + 6x , . . .

and this list can be indefinitely enlarged, by recurrence, when needed.

Proof. Here the formulae of P0, P1, P2, P3, P4 and Q0, Q1, Q2, Q3 are those found
above, and those of P5 and Q4, Q5 can be found similarly, by recurrence. □
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As a continuation of this, and forgetting a bit about trigonometry, many useful and
interesting things can be said about the Chebycheff polynomials, with the quantity of
available information being truly remarkable, potentially covering dozens of pages.

So, exercise for you to learn more about this, when needed, and in what concerns us,
for the end of the present chapter, we would like to record a main result regarding the
Chebycheff polynomials, which is something quite advanced, as follows:

Theorem 6.25. The orthogonal polynomials for L2[−1, 1], with measure

dµ(x) = (1− x)a(1 + x)bdx

called Jacobi polynomials, satisfy a degree 2 equation, namely

(1− x2)J ′′
k (x) + (b− a− (a+ b+ 2)x)J ′

k(x) + k(k + a+ b+ 1)Jk(x) = 0

and are given by the following formula, featuring derivatives:

Jk(x) =
(−1)k

2kk!
(1− x)−a(1 + x)−b

dk

dxk
[
(1− x)a(1 + x)b(1− x2)k

]
At a = b = 0 we recover the Legendre polynomials from physics, and at a = b = ±1

2
we

recover the Chebycheff polynomials of the first and second kind.

Proof. This is obviously something quite advanced, that we included here only with
the aim of telling the truth regarding the Chebycheff polynomials, say for later when you
will need such things, and with the idea of all this being as follows:

(1) Generally speaking, the statement appears as a generalization of the result for
Legendre polynomials, which corresponds to the particular case a = b = 0, and the proof
is quite similar. We will leave learning more about all this as an exercise.

(2) Regarding now the main particular cases of the Jacobi polynomials, these are
the Gegenbauer polynomials, appearing at a = b. However, there is not that much of a
simplification when passing from general parameters a, b to equal parameters, a = b, so
in practice, the main particular cases are those indicated in the statement, namely:

– The Legendre polynomials, which naturally appear in questions from quantum me-
chanics, coming at the simplest values of the parameters, namely a = b = 0.

– The Chebycheff polynomials of the first kind Pk, which are given by the formula
Pk(cos t) = cos(kt) from trigonometry, appearing at a = b = −1

2
.

– The Chebycheff polynomials of the second kind Qk, which are given by the formula
Qk(cos t) sin t = sin((k + 1)t), appearing at a = b = 1

2
. □
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6e. Exercises

This was a standard trigonometry chapter, and as exercises on this, we have:

Exercise 6.26. Compute the trigonometric functions of all multiples of 22.5◦.

Exercise 6.27. Compute the trigonometric functions of all multiples of 7.5◦.

Exercise 6.28. Compute the trigonometric functions of all multiples of 3.75◦.

Exercise 6.29. Learn about iterated square roots, and the case where they simplify.

Exercise 6.30. Learn more about degree 3 equations, and the Cardano formula.

Exercise 6.31. Learn also about degree 4 equations, and about Cardano there.

Exercise 6.32. Learn more, as much as you can, about Chebycheff polynomials.

Exercise 6.33. Learn also about the other types of orthogonal polynomials.

As bonus exercise, work out more numerics, as many as you can. All good work.



CHAPTER 7

Numeric angles

7a. Circles, arcs

With the trigonometry basics reasonably understood, and more on this of course in
the remainder of this book, let us turn now into a philosophical question, regarding
the angles themselves. We have been using, since chapter 2, a quite reasonable way of
assigning numeric values to them, according to the following recipe:

(1) The square angle is worth 90◦, and with this choice coming from astronomy, and
more specifically, from the approximately 30 days that a lunar month has.

(2) Its half is 45◦, its third is 30◦, its quarter is 22.5◦, its fifth is 18◦, its sixth is 15◦,
and so on, so we can measure all angles of type 90◦/N , with N ∈ N.

(3) But then, by taking multiples of these latter angles, 90◦/N with N ∈ N, we can
measure all angles of type 90◦ ·M/N , with M,N ∈ N.

(4) Thus, we can measure all angles of type 90◦ · r, with r ∈ Q, and since any real
number can be approximated rationals, we can in fact measure all angles.

Which sounds very reasonable, and we will keep of course using this system, like
everyone does, but as a philosophical question in relation with this, we have:

Question 7.1. Is there a better way of measuring the angles, with the 90◦ from as-
tronomy being replaced by something that can help in our math computations?

And modern question this is, because in ancient times, and in fact up to not that long
ago, astronomy was the same thing as mathematics. But well, this is the situation, we
cannot really argue with modernity, so we will have to answer our question.

In answer to this now, we would like to find a way of assigning to angles the lengths
or areas that they “produce”. And here, the situation is as follows:

153
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(1) The first thought goes to triangles, say by assigning to each angle the side of an
isosceles triangle having at the distinguished vertex sides 1, 1, and angle t:

A

1 1

t

B
t

C

Which in practice means setting, by definition, t = 2 sin(t/2). But this won’t work
well, because when doubling the angle the side obviously won’t double.

(2) Along the same lines, as a second idea, we can use the same triangle, but look this
time at its area, which would amount in setting t = (sin t)/2. But this won’t work either,
because when doubling the angle the area obviously won’t double.

In short, we are in trouble here, and we must invent something else. And the answer
here comes from using disk slices instead of triangles, as follows:

Theorem 7.2. We can measure angles by putting them in the middle of a circle of
radius 1, and assigning to them the corresponding arc lengths:

A

1 1

t

B t C

Equivalently, we can use twice the area of the disk slice, which equals the arc length.

Proof. This is obviously something quite philosophical, and you might wonder, what
exactly is to be proved here. In answer, there are two things to be proved, as follows:

(1) First is the fact that our measuring method is indeed good, in the sense that
doubling the angles will double their values, tripling the angles will triple their values,
and so on. But this is something which is plainly obvious, so done with this.

(2) And then, there is the last assertion, claiming that we have the following formula,
with on the left the area of the disk slice ABC, and on the right the arc length BC:

2× area(ABC) = BC
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But this is something which is clear for isosceles triangles having altitude 1:

A

1

B C

Now back to our disk slice, this can be approximated by unions of such isosceles
triangles, having altitude 1, in the obvious way, as follows:

A

◦ ◦

Thus, we conclude that our area formula holds indeed, as desired. □

Very nice all this, but in practice, will our discovery answer indeed Question 7.1, and
help with our mathematics? At this stage of things, this is not clear at all, hope you agree
with me with this, is it really worth it to bother with these arc lengths, or disk slices.

In short, patience, we have still a long way to go. Getting to work now, browsing
through what we did so far in the present book, not very good news here, with everything
or almost being not obviously related to arc lengths, or disk slices. With the exception,
however, of a key result from the beginning of chapter 3, which was as follows:

Proposition 7.3. Given a triangle ABC lying on a circle,

A

O

B C

the angle at A does not depend on the position of A, and equals half the angle BOC.
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Proof. We already know this from chapter 3, but always good to talk about it again.
Due to the various isosceles triangles on the picture, the angles of our triangle ABC must
be as follows, with p, q, r being the smaller angles on the picture, from left to right:

a = p+ q , b = p+ r , c = r + q

Now let us look at the angle BOC. With the symbol ♡ standing for new value of the
flat angle, as per Theorem 7.2, this angle BOC is given by the following formula:

BOC = ♡− 2r

= (a+ b+ c)− 2r

= 2p+ 2q

Thus, we are led to the conclusions in the statement. □

So, what does Proposition 7.3 teach us? As a first observation, its proof makes appear
the elephant in the room, which is the new value ♡ of the flat angle, measured by using
the method in Theorem 7.2. So, let us record the following question:

♡ =?

In practice, this question asks for the computation of half of the length of the circle
of radius 1. But more on this later, such elephants are usually to be ignored, right.

Next, and getting now to what Proposition 7.3 actually says, there is an obvious
relation there with Theorem 7.2. But, thinking a bit at all this, when it comes to exploit
this fact, we are rather led to a technical continuation of Theorem 7.2, as follows:

Theorem 7.4 (addendum). We can equally measure the angles A by putting them on
a circle, as follows, and assigning to A half of the length of the arc BC,

A

◦

B C

and with this yielding the same quantity as the one defined before.

Proof. This is indeed something self-explanatory, coming from Proposition 7.3. By
the way, observe that nothing can be said in relation with the area of ABC, taken as
triangle or disk slice, so we cannot add anything about areas, to our statement. □
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With this discussed, what is next? Well, many things I guess, or rather everything,
because we have nothing so far. Indeed, our Theorem 7.2, even complemented by Theorem
7.4 as above, looks more like a terrible complication, at the present stage of things.

Fortunately, trigonometry comes to the rescue. Remember indeed the catch-all picture
for all 6 trigonometric functions, from chapter 5? Well, that picture features a circle,
originally drawn there for understanding the secant and cosecant. And we can exploit
that circle, in relation with Theorem 7.2, as to formulate the following finding:

Theorem 7.5. In the context of the catch-all picture for trigonometric functions

csc t

cot t
t

◦
tan t

sin t
1

cos t

t

t

sec t

the angle t appears as an arc length, as indicated. In particular, we have

sin t ≃ t

for small angles t, and with this being due to our new method of measuring angles.

Proof. This is again something self-explanatory, with the picture being something
that we know well, from chapter 5, with just the arc length t being added. As for the last
assertion, assume that t is small, and let us zoom on the area containing sin t and t:

◦

sin t

t

1 t

We can see that we have indeed sin t ≃ t, somehow by obvious reasons, and with a
formal proof coming by comparing the various lengths and areas appearing there. Thus
done, and we will be back to this later, with some further details and explanations. □
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Still with me, I hope, after all this exploration and philosophy. You would probably
say, after all, what’s the point with Theorem 7.5, and in answer, my claim is that this
is a win. To further make my case, let me reformulate the essentials of the main results
that we learned so far in this chapter, Theorem 7.2 and Theorem 7.5, as follows:

Theorem 7.6. We can measure angles by putting them in the middle of a circle of
radius 1, and assigning to them the corresponding arc lengths,

◦

sin t
1

t

t

and in this way, we have the following key estimate, valid for small angles t,

sin t ≃ t

which can be potentially useful, when doing more advanced trigonometry.

Proof. This is indeed a summary from what we know from Theorem 7.2 and Theorem
7.5, with some weeds removed, and with the last assertion being of course something
subjective, which remains to be justified. But no worries, we will get to this, soon. □

Very nice all this, we seem to have some new theory going on, potentially answering
the philosophical questions raised at the beginning of this chapter. Of course, still long
way to go. In the meantime, as usual in such delicate situations, let us ask the cat, what
he thinks about all this. And the answer comes quite encouraging, as follows:

Cat 7.7. This world is made of small angles and forces adding up, and sin t ≃ t might
be useful indeed.

Okay, thanks cat, nice to hear that, sounds quite motivating, all this underlying
physics, and we will have the remainder of this book, for exploring the subject.

7b. The number pi

Getting now seriously to work, with our new method for measuring the angles in hand,
approved by cat, let us discuss the first obvious question that appears on the way, namely
the new formula for the right angle 90◦. In practice, this amounts in computing a quarter
of the length of the unit circle, and we will study here this problem.

Before starting, however, a remark. While the 90◦ angle was certainly the “unit”,
when doing geometry in Part I, in relation with the various trigonometry considerations
from chapters 5-6, or just with the unit circle itself, regarded as such, the full angle 360◦,
corresponding to the length of the unit circle, would be more appropriate as unit.
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However, with the full angle 360◦ being something quite abstract, pictorially cor-
responding to a dumb point, or perhaps to a bizarre half-line, it is better to make a
compromise here, and declare the flat angle 180◦, corresponding to half of the lenght of
the unit circle, as being the unit. So, let us do so, and call our new angle unit π:

Definition 7.8. We call π our new angle unit, according to the formula

180◦ = π

which in practice tells us that π is half of the length of the unit circle.

Before getting to the computation of π, now that we have our unit, let us do some
angle conversions. For the basic angles, the conversion formulae are as follows:

0◦ = 0 , 90◦ =
π

2
, 180◦ = π , 270◦ =

3π

2

Let us record as well the conversion formulae for the halves of these angles:

45◦ =
π

4
, 135◦ =

3π

4
, 225◦ =

5π

4
, 315◦ =

7π

4

Finally, let us record as well the formulae for the thirds of the basic angles:

30◦ =
π

6
, 60◦ =

π

3
, 120◦ =

2π

3
, 150◦ =

5π

6

210◦ =
7π

6
, 240◦ =

4π

3
, 300◦ =

5π

3
, 330◦ =

11π

6
And so on, and good luck in memorizing all this. And by the way, with apologies in

advance if I keep using sometimes the old 90◦ conventions, like everyone does, when it is
not a matter of life and death, I mean, not a matter of advanced trigonometry.

Getting back now to what we wanted to do, as our most pressing issue, we have:

Question 7.9. What is the value of π?

And good this question this is, because, as we will soon discover, although estimates
of type π ≃ 3.14 are relatively easy to establish, π is not a rational number, and even
worse, there is no equation satisfied by π, or any kind of simple formula for π.

In short, patience, understanding what π is will take us some time. To start with, we
have the following fact, which can be regarded as being something quite axiomatic:

Theorem 7.10. The following two definitions of π are equivalent:

(1) The length of the unit circle is L = 2π.
(2) The area of the unit disk is A = π.
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Proof. This is something that we already know, coming from Theorem 7.2, but for
mathematical pleasure, let us prove this again. We can cut the unit disk as a pizza, into
N slices, and forgetting about gastronomy, leave aside the rounded parts:

◦ ◦

◦ ◦ ◦

◦ ◦
The area to be eaten can be then computed as follows, where H is the height of the

slices, S is the length of their sides, and P = NS is the total length of the sides:

A = N × HS

2

=
HP

2

≃ 1× L
2

Thus, with N →∞ we obtain that we have A = L/2, as desired. □

In what regards now the precise value of π, the above picture at N = 6 shows that
we have π > 3, but not by much. More can be said by using some basic trigonometry, by
replacing the hexagon used in the above with other polygons, and we have here:

Theorem 7.11. We have the following approximations of π,

2.828 < π < 4

3 < π < 3.464

3.061 < π < 3.314

obtained respectively by using squares, hexagons and octagons.

Proof. This is something which is quite long and routine, as follows:

(1) Let us first see what we can get by approximating the unit circle with squares:

◦ ◦

◦ ◦
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The squares inscribed and circumscribed to the unit circle have edges as follows:

e =
√
2 , E = 2

Thus by looking at half perimeters, we obtain the following estimate for π:

2e < π < 2E =⇒ 2
√
2 < π < 4

We have as well an estimate for π coming by looking at areas, which is:

e2 < π < E2 =⇒ 2 < π < 4

Summarizing, the half perimeter method appears to be better than the area one, and
gives the following numeric estimates, by using

√
2 = 1.414 . . . :

2.828 < π < 4

(2) Leaving the pentagons aside, let us see what happens by using hexagons:

◦ ◦

◦ ◦ ◦

◦ ◦

The hexagons inscribed and circumscribed to the unit circle have edges as follows,
with the formula for E coming from an equilateral triangle having altitude 1:

e = 1 , E =
2√
3

Thus by looking at half perimeters, we obtain the following estimate for π:

3e < π < 3E =⇒ 3 < π < 2
√
3

We have as well an estimate for π coming by looking at areas, which is as follows,
using the fact that the area of an equilateral triangle is

√
3/4× edge2:

3
√
3

2
e2 < π <

3
√
3

2
E2 =⇒ 3

√
3

2
< π < 2

√
3

Summarizing, the half perimeter method appears again to be better than the area
one, and gives the following numeric estimates, by using

√
3 = 1.732 . . . :

3 < π < 3.464
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(3) Leaving the heptagon aside, next we have the octagon, which is as follows:

◦ ◦

◦ ◦

◦ ◦

◦ ◦

The octagons inscribed and circumscribed to the unit circle have edges as follows,
coming by looking at the respective “pizza slices”, which are π/4−3π/8−3π/8 triangles,
the inner ones having radial edge 1, and the outer ones having radial altitude 1:

e = 2 sin
(π
8

)
, E = 2 tan

(π
8

)
Thus by looking at half perimeters, we obtain the following estimate for π:

4e < π < 4E =⇒ 8 sin
(π
8

)
< π < 8 tan

(π
8

)
We have as well an estimate for π coming by looking at areas, which is as follows,

using the fact that the area of a π/4− 3π/8− 3π/8 triangle is cot(π/8)× edge2/4:

2 cot(π/8)e2 < π < 2 cot(π/8)E2

=⇒ 8 sin(π/8) cos(π/8) < π < 8 tan(π/8)

=⇒ 4 sin(π/4) < π < 8 tan(π/8)

(4) In order to reach now to some concrete numeric estimates, by using these octagon
methods, we must ask Conor and Khabib for some help with trigonometry, and GSP for
some assistance with the square roots. The half-perimeter estimate for π reads:

8 sin(π/8) < π < 8 tan(π/8)

=⇒ 4

√
2−
√
2 < π < 8(

√
2− 1)

=⇒ 3.061 < π < 3.314

As for the area estimate for π, this gives something weaker, as follows:

4 sin(π/4) < π < 8 tan(π/8)

=⇒ 4/
√
2 < π < 8(

√
2− 1)

=⇒ 2.828 < π < 3.314

Thus, we are led to the conclusions in the statement. □
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As a conclusion to this, certainly good work that we did, but all this remains a bit
frustrating, because any kid on the street knows that π = 3.14, and with our methods
above we only have π = 3.0 or π = 3.1 or π = 3.2 or π = 3.3, which is quite lame.

Nevermind. Life goes on, and passing now to the general case, that of the arbitrary
regular polygons, we have the following result, further building on the above:

Theorem 7.12. We have the following estimates for π, obtained by computing the
half perimeter of an inscribed and circumscribed regular N-gon,

N sin
( π
N

)
< π < N tan

( π
N

)
and with a bit of patience, with N = 2n with n >> 0, this gives π = 3.14159 . . .

Proof. We use the same method as before. Consider indeed the unit circle, and an
inscribed or circumscribed regular N -gon, as follows:

◦ ◦

◦ ◦

◦ ◦

◦ ◦

(1) In order to compute the edge of the inscribed N -gon, let us look at the corre-
sponding “pizza slices”. These are isosceles triangles with angle 2π/N and edge 1, so
when drawing an altitude and computing the lengths, the picture is as follows:

◦

sin(π/N)

◦

1

1

cos(π/N)
◦

sin(π/N)

◦

Thus, the edge and half-perimeter of the inscribed N -gon are as follows:

e = 2 sin
( π
N

)
, p = N sin

( π
N

)
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We can compute as well the area of the inscribed N -gon, and we get:

a = N × area(slice)

= N sin
( π
N

)
cos
( π
N

)
=

N

2
sin

(
2π

N

)
(2) Getting now to the circumscribed N -gon, the “pizza slices” here are again isosceles

triangles with angle 2π/N , but this time with altitude 1. Thus when drawing these
altitudes and computing the relevant lengths, the picture is as follows:

◦

tan(π/N)

◦ 1 ◦

tan(π/N)

◦

Thus, the edge and half-perimeter of the circumscribed N -gon are as follows:

E = 2 tan
( π
N

)
, P = N tan

( π
N

)
We can compute as well the area of the circumscribed N -gon, and we get:

A = N × area(slice) = N tan
( π
N

)
(3) Time now to derive some conclusions, from our study. With the perimeter method,

we obtain the estimate from the statement, namely:

N sin
( π
N

)
< π < N tan

( π
N

)
As for the area method, this gives the following estimate:

N

2
sin

(
2π

N

)
< π < N tan

( π
N

)
But this latter estimate is to be ignored, because the upper bound is the same, and

the lower bound is lower, and so unuseful, and this due to the following fact:

sin(2t) = 2 sin t cos t < 2 sin t

Thus, done with our study, and we have proved the estimate in the statement.
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(4) Next, as a matter of doublechecking, let us see what we get at N = 4, 6, 8. And
here, what we get is as follows, which is in tune with what we found before:

4 sin(π/4) < π < 4 tan(π/4) =⇒ 2
√
2 < π < 4

6 sin(π/6) < π < 6 tan(π/6) =⇒ 3 < π < 2
√
3

8 sin(π/8) < π < 8 tan(π/8) =⇒ 4

√
2−
√
2 < π < 8(

√
2− 1)

(5) Finally, in what regards the last assertion of the theorem, by using our formulae
for duplication of the angles it is pretty much clear that, with a bit of patience, we can
succesively do the computations for the N -gons with N being a power of 2:

N = 2, 4, 6, 8, 16, 32, 64, . . .

And this will give us as many decimals of π as we want, and in the end we will get
π = 3.14159 . . . , as claimed. Thus, good work that we did, and theorem proved. □

Excuse me, but cat is here, meowing something. What is it, cat?

Cat 7.13. I would be curious about the computations at N = 16, 32, 64, see if you
humans can really do them, and how many decimals of π you get.

Humm, good point, it’s true that Theorem 7.12 was quite nice, but at the level of
numerics, there was in fact nothing new there, with respect to Theorem 7.11. So, here we
go with some more computations. We have the following result, convincive, I hope:

Theorem 7.14. We have the the following estimates for π, obtained by computing the
half perimeter of an inscribed and circumscribed regular hexadecagon,

3.121 < π < 3.183

and with a bit more work, with N = 2n, n >> 0, the same method gives π = 3.14159 . . .

Proof. We recall from Theorem 7.12 that we have the following estimate, that we
would like to use now at N = 16, and at higher powers of 2:

N sin
( π
N

)
< π < N tan

( π
N

)
(1) Let us begin with some general trigonometry, regarding the sines and tangents of

the halves of angles. For the sines, we have the following computation:

cos(2t) = 1− 2 sin2 t =⇒ 1− 2 sin2 t =
√

1− sin2(2t)

=⇒ 2 sin2 t = 1−
√

1− sin2(2t)

=⇒ sin t =

√
1−

√
1− sin2(2t)

2
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As for the tangents, we have here the following computation, and with exercise here
for you to figure out why we chose the sign plus, for the square root:

tan(2t) =
2 tan t

1− tan2 t
=⇒ tan(2t) tan2 t+ 2 tan t− tan(2t) = 0

=⇒ tan t =
−2 +

√
4 + 4 tan2(2t)

2 tan(2t)

=⇒ tan t =

√
1 + tan2(2t)− 1

tan(2t)

(2) Now let us see what we get at N = 16. With t = π/16, and with trigonometric
input concerning 2t = π/8 from the proof of Theorem 7.11, we obtain:

sin(π/16) =

√√√√1−
√

1− 2−
√
2

4

2
=

√
2−

√
2 +
√
2

2

As for the tangent, again with trigonometric input from before, we get:

tan(π/16) =

√
1 + (

√
2− 1)2 − 1

√
2− 1

=

√
4− 2

√
2− 1√

2− 1

(3) At the level of the numerics, the formulae are as follows:

sin(π/16) = 0.195 . . . , tan(π/16) = 0.198 . . .

By multiplying by 16, as required by our method from Theorem 7.12, we have:

16 sin(π/16) = 3.121 . . . , 16 tan(π/16) = 3.182 . . .

Thus, we are led to the N = 16 estimate in the statement. Moreover, with a bit more
work, it is pretty much clear that we can do the same at N = 32, 64, 128, . . . , and we can
only end up in this way with the known estimate for π, namely π = 3.14159 . . . □

Good work that we did, I bet the cat will be satisfied. However, cat declares:

Cat 7.15. Boss, you are cheating, I saw you using your calculator for computing the
square roots. But that calculator, if allowed, can give you π = 3.14159 . . . right away.

Well, what can I say. Guess you win, dear cat, so as a grand conclusion to all the
computations that we did so far, let us formulate:

Grand conclusion 7.16. Computing the decimals of π is no easy business, and

π = 3.14159 . . .

is something that we will leave for later, when we will know more things.

And with this, end of our study of π. More later, on several occasions.
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7c. Basic estimates

Getting back now to what we wanted to do in this chapter, in relation with the angles,
and their measuring, let us first recall that the following happens:

Theorem 7.17. We can measure angles by putting them in the middle of a circle of
radius 1, and assigning to them the corresponding arc lengths,

1

◦

sin t

cos t

t

t

and this gives as well a method for measuring sines and cosines, as indicated, and with
this working for all angles t ∈ R, with our usual conventions for signed segments.

Proof. This is something that we already know, the idea being as follows:

(1) To start with, the above picture is our usual one, from chapter 5, with the arc
length t added, and with the secondary trigonometric functions removed.

(2) As for the last assertion, regarding the arbitrary angles t ∈ R, this comes from our
general trigonometry discussion from chapter 5. However, for full clarity, let us review
now that discussion, in the present setting. We have several cases, as follows:

– In the simplest case, namely t ∈ [0, π/2], the sine and cosine are indeed computed
according to the following picture, which is the one in the statement:

P

1
sin t

t

O
cos t

Q
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– In the case of obtuse angles, t ∈ [π/2, π], the picture becomes as follows:

P

sin t
1

t

Q − cos t
O

– In the next case, namely t ∈ [π, 3π/2], the picture becomes as follows:

t t

Q
− cos t

O

t

P

− sin t
1

– As for the last case, namely t ∈ [3π/2, 2π], here our picture is as follows:

t t

O
cos t

Q

t

P

1
− sin t

And with this we are done, because with things fine for t ∈ [0, 2π], they will be fine for
any t ∈ R, by using the 2π periodicity of both the sine and cosine, and of our geometric
constructions. Thus, we are led to the conclusions in the statement. □

Regarding now the tangent, things are more complicated here, as follows:
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Theorem 7.18 (addendum). The tangent can be added as well to the picture, as being
a length of a vertical segment, as indicated,

1

sin t

cos t

t

tan t
t

with the convention however that this length is positive in the first and third quadrant,
and negative in the second and fourth quadrant.

Proof. This is indeed something self-explanatory, and with the comment that there
is no simple way of fixing things, so in a word, better not mess with the tangent. □

Let us get now into an interesting question, namely estimating sin, cos, tan and the
other trigonometric functions. For this purpose, let us first recall the basic formulae for
the sums of angles, that we established in chapter 6, which were as follows:

sin(x+ y) = sinx cos y + cosx sin y

cos(x+ y) = cos x cos y − sinx sin y

Let us recall as well, also from chapter 6, the formula for the tangent of the sum of
two angles, which comes by dividing the two formulae above, namely:

tan(x+ y) =
tanx+ tan y

1− tanx tan y

Obviously, these formulae allow us in practice to transport our approximation ques-
tions around t = 0. Indeed, in what regards the sine, we have for instance the following
estimate, with t ≃ 0, which technically proves that the sine is continuous, at any x:

sin(x+ t) = sinx cos t+ cosx sin t

≃ sinx cos 0 + cosx sin 0

= sin x · 1 + cos x · 0
= sin x
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In what regards the cosine, the continuity computation here is similar, as follows:

cos(x+ t) = cosx cos t− sinx sin t

≃ cosx cos 0− sinx sin 0

= cos x · 1− sinx · 0
= cos x

As for the tangent, again we have here a similar computation, as follows:

tan(x+ t) =
tanx+ tan t

1− tanx tan t

≃ tanx+ tan 0

1− tanx tan 0

=
tanx+ 0

1− tanx · 0
= tan x

Many other things can be said, along these lines, and we will be back to such things
later in this book, on a more systematic basis, when doing calculus for the trigonometric
functions. In any case, let us record these findings as an informal fact, as follows:

Fact 7.19. We can use the standard formulae for the sums of angles in order to
transport our various approximation questions around t = 0.

With this understood, let us get now to what happens with trigonometric functions
around 0. And here, to start with, we have the following basic estimates:

Theorem 7.20. We have the following estimates,

sin t ≤ t ≤ tan t

valid for small angles, coming from our convention for numeric angles.

Proof. Many things can be said here, the idea being as follows:

(1) As a first observation, we have already met such estimates before, in Theorem
7.12. To be more precise, we have seen estimates for π as follows, obtained by evaluating
the perimeters of the regular N -gons inscribed and circumscribed to the unit circle:

N sin
( π
N

)
< π < N tan

( π
N

)
But these estimates are of the type of the one in the statement:

sin
( π
N

)
<

π

N
< tan

( π
N

)
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(2) In general now, the idea is that the estimates are both clear from our circle picture
for the angles, and trigonometric functions. Indeed, the picture for the sine is:

◦

sin t
1

t

t

Now by using the standard fact that the shortest distance between a point and a line
is achieved by constructing the orthogonal projection on that line, we conclude that for
any angle t ∈ [0, π/2] we have indeed the following estimate, as claimed:

sin t ≤ t

(3) Equivalently, and a bit more rigorously, we can draw the dotted segment above,
having length 2 sin(t/2), and with Pythagoras on the left, followed by shortest distance
between two points being achieved by that dotted segment on the right, we obtain:

sin t ≤ 2 sin(t/2) ≤ t

(4) As yet another proof, we can compare the area of the above isosceles triangle with
the area of the disk slice, which gives right away the following estimate, as desired:

sin t

2
≤ t

2
(5) Regarding now the tangent, again for t ∈ [0, π/2], the picture is as follows:

∗
1

t

tan t
t

But here we can argue that the arc t and segment tan t are related by a projection
from ∗, which lands orthogonally on the arc, and obliquely on the segment, and since
orthogonal projections notoriously provide the best view, we obtain, as claimed:

t ≤ tan t

(6) Equivalently, and more rigorously, by comparing areas we get, as desired:

t

2
≤ tan t

2
(7) Thus, done. Finally, one remaining question concerns the exact range of the above

estimates, and we will leave the discussion here as an interesting exercise. □
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In fact, by using our circle technology, we are led to the following result:

Theorem 7.21. The following happen, for small angles, again coming from our con-
vention for numeric angles, and best justifying this convention:

(1) sin t ≃ t.
(2) cos t ≃ 1− t2/2.
(3) tan t ≃ t.

Proof. This can be indeed established as follows:

(1) This is clear indeed on the circle, by arguing like in the previous proof, and we will
leave the various details here as an instructive exercise. Equivalently, this follows from
sin t ≤ t ≤ tan t, by using tan t = sin t/ cos t ≃ sin t, coming from cos t ≃ 1.

(2) This comes from (1), and from Pythagoras. Indeed, knowing sin t ≃ t, when
looking for a quantity cos t making the Pythagoras formula sin2 t + cos2 t = 1 hold, we
are led, via some quick thinking, to the formula cos t ≃ 1 − t2/2, as stated. Here is the
verification, and with the result itself coming via some reverse engineering, from this:(

1− t2

2

)2

+ t2 =

(
1− t2 + t4

4

)
+ t2

≃ 1− t2 + t2

= 1

(3) This is again clear on the circle, or simply follows from (1,2), by dividing. □

Many other things can be said, as a continuation of this. We will be back to this, on
several occasions, with various improvements of the above results.

7d. More about pi

Getting back now to π itself, we know that this jointly appears as half of the length
of the unit circle, π = L/2, or as the area of the unit disk, π = A. In view of this, it
is interesting to work out too what happens in our usual 3 dimensions, as a matter of
deciding if π rules there too, or if we will have some work to be done there, later.

And here, good news, things just fine, with π being once again the king:

Theorem 7.22. The volume of the unit sphere is given by

V =
4π

3

and the corresponding area is A = 4π.
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Proof. This is something very standard, by knowing a bit of integration theory, or
even without knowing it, as explained below, the idea being as follows:

(1) To start with, we can talk about the integral of a continuous function f : [a, b]→ R,
as being the signed area below its graph. As a basic example here, for the function
f(x) = x we have to compute the area of a right trapezoid, and we obtain:∫ b

a

xdx = length× average height

= (b− a)× b+ a

2

=
b2 − a2

2

(2) In general now, by drawing rectangles, we have the following formula for the
integral, which can stand as a formal definition for this integral:∫ b

a

f(x)dx = lim
N→∞

N∑
k=1

b− a
N
· f
(
a+

b− a
N
· k
)

To be more precise, when dividing the interval [a, b] into N equal parts, the common
length of these equal parts is (b − a)/N , and on the vertical we can approximate the
average height by the above values of f . Thus, we have indeed the above formula.

(3) As an illustration for this method, let us integrate f(x) = x2. For this purpose,
we will need the following two formulae, which are both well-known:

1 + 2 + . . .+N =
N(N + 1)

2

12 + 22 + . . .+N2 =
N(N + 1)(2N + 1)

6

To be more precise, in what regards the first formula, this is best seen by arguing that
the average of the numbers 1, 2, . . . , N being the number in the middle, we have:

1 + 2 + . . .+N

N
=
N + 1

2

Thus, we obtain the following formula, which is the one given above:

1 + 2 + . . .+N =
N(N + 1)

2

(4) Next, let us compute 12 + 22 + . . . + N2. This is not obvious at all, so as a
preliminary here, let us go back to the computation of 1 + . . .+N , and try to find a new
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proof there, which might have some chances to extend to 12 + 22 + . . .+N2. The trick is
to consider the following picture, with stacks going from 1 to N :

□
...

□ . . . □
□ □ . . . □

□ □ □ . . . □

Now if we take two copies of this, and put them one on the top of the other, with a
twist, in the obvious way, we obtain a rectangle having size N × (N + 1). Thus:

2(1 + 2 + . . .+N) = N(N + 1)

But this gives the same formula as the one found before, in (3), namely:

1 + 2 + . . .+N =
N(N + 1)

2

(5) Armed with this new method, let us study now 12+22+. . .+N2. Here we obviously
need to do some 3D geometry, namely taking the picture P formed by a succession of
solid squares, having sizes 1 × 1, 2 × 2, 3 × 3, and so on up to N × N . Some quick
thinking suggests that stacking 3 copies of P , with some obvious twists, will lead us to a
parallelepiped. But this is not exactly true, and some further thinking shows that what
we have to do is to add 3 more copies of P , leading to the following formula:

12 + 22 + . . .+N2 =
N(N + 1)(2N + 1)

6

Alternatively, this latter formula can be of course proved by recurrence, if you prefer
doing so. And so, one way or another, both formulae in (3) are now proved.

(6) With this discussed, let us go back now to our problem raised in (3), namely
integrating the function f(x) = x2. We can do this by using the general formula in (2),
with technical help from the formulae established in (3), as follows:∫ b

a

x2dx = lim
N→∞

N∑
k=1

b− a
N

(
a+

b− a
N
· k
)2

= lim
N→∞

a2(b− a) + a(b− a)2N + 1

N
+ (b− a)3 (N + 1)(2N + 1)

6N2

= a2(b− a) + a(b− a)2 + (b− a)3

3

=
b3 − a3

3



7D. MORE ABOUT PI 175

(7) Getting now, eventually, to the unit sphere in 3D, its equation is as follows:

x2 + y2 + z2 = 1

As a first observation, the range of the first coordinate x is as follows:

x ∈ [−1, 1]

Now when this first coordinate x is fixed, the other coordinates y, z vary on a circle,
given by the equation y2 + z2 = 1− x2, and so having radius as follows:

r(x) =
√
1− x2

Thus, the vertical slice of our sphere at x has area as follows:

a(x) = πr(x)2 = π(1− x2)

(8) We conclude from this, using (6), that the volume of the sphere is given by:

V = π

∫ 1

−1

1− x2 dx

= π

(∫ 1

−1

1 dx−
∫ 1

−1

x2dx

)
= π

(
2− 2

3

)
=

4π

3

(9) Finally, the second assertion follows from the first one, by using the same “pizza”
argument as in 2 dimensions, but this time with a 3 factor appearing, from the volume
formula for tetrahedra. Indeed, consider a tetrahedron, in 3 dimensional space:

A

B D

C

The volume of this tetrahedron is then given by the following formula, coming for
instance by constructing a triangular prism, out of 3 copies of this tetrahedron:

volume =
1

3
× basis area× height
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(10) Now recall the “pizza” argument from 2 dimensions, that we used several times,
in this chapter. By using (9), the same will apply in 3D, giving the following formula:

A = 3V

= 3× 4π

3
= 4π

Thus, we are led to the conclusions in the statement. □

Many other things can be said, as a continuation of the above, and we will come back
to this later in this book, when systematically discussing analysis and integrals.

7e. Exercises

This was another standard trigonometry chapter, and as exercises, we have:

Exercise 7.23. Further meditate on the two possible definitions for π, as length and
area, and on the equivalence between them.

Exercise 7.24. Further build on our various computations above, for the decimals of
π. The more decimals you compute here, the better that is.

Exercise 7.25. Learn a bit about some other properties of the number π, such as
being irrational. Learn as well about common rational approximations of π.

Exercise 7.26. Learn also about more specialized properties of the number π, such as
being transcendental. Although we will back to this, later.

Exercise 7.27. Meditate on how to recover the tangent, and the secondary trigono-
metric functions too, geometrically, as certain signed segments.

Exercise 7.28. Further work on the various proofs of sin t ≤ t ≤ tan t given above,
with the aim of making fully rigorous all of them.

Exercise 7.29. Try to improve the estimate sin t ≃ t for t small, into something of
type sin t ≃ t+ at2, or even sin t ≃ t+ at2 + bt3, with a, b ∈ R to be found.

Exercise 7.30. Learn more about integrating functions, and then, following Einstein
who told us to look at R4, compute the volume of the 4D sphere.

As bonus exercise, quite refreshing, learn about the Buffon needle too.



CHAPTER 8

Inverse functions

8a. Functions, graphs

Time now for some calculus, in order to better understand the various trigonometric
functions, namely sin, cos, tan, sec, csc, cot. We recall that these functions appear
geometrically, according to the following catch-all picture, that we know well:

csc t

cot t
t

◦
tan t

sin t
1

cos t

t

t

sec t

We have seen that we can do many things, using this picture. However, geometry is
not everything, and a bit of algebraic abstraction, called “basic mathematical analysis”,
might help us. Let us start our study abstractly, with the following definition:

Definition 8.1. A real function is a correspondence as follows:

f : R→ R , x→ f(x)

More generally, we can talk about functions f : X → R, with X ⊂ R.

Here the first notion is indeed something very intuitive, with this covering countless
functions that we already know, as for instance the usual power functions:

f : R→ R , f(x) = xn

In relation with trigonometry, the sine and cosine are functions of this type:

sin : R→ R , cos : R→ R
177
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As for the second notion, this is something more general, which is useful too. As a
basic example here, we have the inverse function, which cannot be defined at x = 0:

f : R− {0} → R , f(x) =
1

x

In relation with trigonometry, the tangent function tanx = sinx/ cosx is obviously of
this type, not defined at the points x ∈ R where the cosine vanishes, which are the odd
multiples of π/2, and the same can be said about the secant sec x = 1/ cosx:

tan, sec : R−
(
Zπ +

π

2

)
→ R

As for the cosecant csc x = 1/ sinx and cotangent cotx = cosx/ sinx, these are not
defined at the points x ∈ R where the sine vanishes, which are the multiples of π:

csc, cot : R− Zπ → R
All this is quite interesting, bringing a bit of analytic order to what we have been

doing so far, in relation with trigonometry, so let us record our findings, as follows:

Proposition 8.2. The trigonometric functions are as follows:

(1) sin, cos : R→ R.
(2) tan, sec : R− (Zπ + π/2)→ R.
(3) csc, cot : R− Zπ → R.

Proof. This follows indeed from the above discussion, which itself basically comes
from sin 0 = cos(π/2) = 0, and from our various rules for the trigonometric functions,
when it comes to deal with angles t ∈ R, outside the familiar domain t ∈ [0, π/2]. □

Now back to the general context of Definition 8.1, since we eventually allowed there
the domain of the function to be an arbitrary set X ⊂ R, why not doing the same for the
image. We are led in this way into the following refinement of Definition 8.1:

Definition 8.3 (update). More generally, we call function any correspondence

f : X → Y , x→ f(x)

with X ⊂ R and Y ⊂ R.

In practice, however, this will not change much to what we already had, from Definition
8.1. Indeed, any function f : X → Y with Y ⊂ R can be regarded as a function f : X → R
in the obvious way, by composing it with the inclusion Y ⊂ R, as follows:

f : X → Y ⇝ f : X → Y ⊂ R
However, Definition 8.3 can be something useful, in relation with the notions of injec-

tivity, or surjectivity. Consider for instance the usual square function:

f : R→ R , f(x) = x2



8A. FUNCTIONS, GRAPHS 179

This function is certainly not injective, but we can make it injective, as follows:

f : [0,∞)→ R , f(x) = x2

Which is good, but this latter function is still not surjective. However, we can make
it surjective, by using the framework of Definition 8.3, as follows:

f : [0,∞)→ [0,∞) , f(x) = x2

Obviously, this latter trick, in relation with surjectivity, can work for any function, in
obvious way, by setting Y = f(X). Let us record this finding, as follows:

Proposition 8.4. Any function f : X → R can be made into a function

f : X → Y

which is surjective, simply by setting Y = f(X).

Proof. This is indeed something clear from definitions, as explained above. □

With this done, you might perhaps ask at this point, why not pulling now a similar
trick for injectivity, a bit as we did before for f(x) = x2, by restricting the domain. Well,
the problem is that this is not really possible, in a general way, convenient for all functions,
because depending on the exact function f : R→ R that we have in mind, restricting the
domain to this or that X ⊂ R, as to have f injective, remains something subjective.

Back now to trigonometry, all this is quite interesting, and Proposition 8.2 has the
following refinement, in terms of our new function formalism, from Definition 8.3:

Proposition 8.5. The trigonometric functions are as follows, surjective:

(1) sin : R→ [−1, 1].
(2) cos : R→ [−1, 1].
(3) tan : R− (Zπ + π/2)→ R.
(4) sec : R− (Zπ + π/2)→ R− (−1, 1).
(5) csc : R− Zπ → R− (−1, 1).
(6) cot : R− Zπ → R.

Proof. This follows indeed Proposition 8.2, with the only change in the formulae
coming by restricting the range of the sine, cosine, secant and cosecant. □

Getting now to injectivity issues, as explained above, restricting the domain of an ar-
bitrary function f : X → Y is something quite subjective. However, for the trigonometric
functions, such things can be done, with some common sense, by using:

Theorem 8.6. The trigonometric functions are as follows:

(1) sin, cos are periodic, of period 2π.
(2) sec, csc are also periodic of period 2π.
(3) tan, cot are periodic too, of period π.
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Proof. Since the angles t ∈ R, regarded geometrically, are periodic of period 2π,
so must be all their trigonometric functions, and this gives (1,2,3), with 2π everywhere.
However, for the tangent something interesting happens, as follows:

tan(x+ π) =
sin(x+ π)

cos(x+ π)
=
− sinx

− cosx
=

sinx

cosx
= tanx

Thus tan is indeed periodic of period π, and the same happens for the cotangent. □

Before going further and exploiting this fact, in relation with injectivity, along the
above lines, let us draw as well some pictures. Regarding the sine, we have:

Proposition 8.7. The graph of sin : R→ [−1, 1] is as follows,

1

OO

−2π −3π
2

−π −π
2

0 π
2

π 3π
2

2π //

−1

with this pattern being repeated indefinitely, to the left and to the right.

Proof. We know that the sine appears as follows, and a bit of thinking, say with the
angle t turning counterclockwise, leads to the picture in the statement:

◦

sin t
1

t

t

Observe also that the graph crosses the horizontal axis at 0 at a 45◦ angle, and with
the other crossing angles being 45◦, 135◦ too, by periodicity, due to sin t ≃ t. □

Regarding the cosine, we have a similar result here, as follows:
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Proposition 8.8. The graph of cos : R→ [−1, 1] is as follows,

1

OO

−2π −3π
2

−π −π
2

0 π
2

π 3π
2

2π //

−1

with this pattern being repeated indefinitely, to the left and to the right.

Proof. We know that the cosine appears as follows, and a bit of thinking, with the
angle t turning counterclockwise, leads to the picture in the statement:

◦
1

cos t

t

t

Observe that what we get is the graph of the sine function, translated by π/2, and
this due to the following formula, that we know well since chapter 5:

cosx = sin
(
x+

π

2

)
In particular, the crossings with the horizontal axis all happen at 45◦, 135◦ angles.

Moreover, we can also say that the maximum at 0, and so by periodicity, all maxima and
minima, happen with the graph being flattened there, with this coming from the following
estimate, coming from sin t ≃ t and Pythagoras, that we know from chapter 7:

cos t ≃ 1− t2

2

To be more precise, with a bit of analysis know-how, or just thinking, at what slope
of a curve should mean, the lack of degree 1 term, in t itself, in the above formula, tells us
precisely this, that the graph must be flattened around 0. Note also that, by translation,
the same can be said about the various minima and maxima of the sine function. □

Regarding now the tangent, the result here is as follows:



182 8. INVERSE FUNCTIONS

Proposition 8.9. The graph of tan : R− (Zπ + π/2)→ R is as follows,

−π
2

0

OO

π
2

//

with this pattern being repeated indefinitely, to the left and to the right.

Proof. We know that the tangent appears as follows, and a bit of thinking, with the
angle t turning counterclockwise, leads to the picture in the statement:

1

t

tan t
t

As before with the sine and cosine, we can say more about this, in regards with the
slopes at various particular points. Indeed, the graph must cross the horizontal axis at 0
at a 45◦ angle, due to the following estimate, that we know from chapter 7:

tan t ≃ t

Also, the graph must be tangent to the vertical dotted lines at ±π/2, as the above
picture suggests, with this coming straight from the formula tan = sin / cos. □

With this discussed, let us turn now to the secondary trigonometric functions:

secx =
1

cosx
, cscx =

1

sinx
, cotx =

1

tanx

Regarding the secant, the result here is as follows, coming from the one for cos:
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Proposition 8.10. The graph of sec : R− (Zπ + π/2)→ R is as follows,

1

OO

−3π
2

−π −π
2

0 π
2

π 3π
2

//

−1

with this pattern being repeated indefinitely, to the left and to the right.

Proof. This comes indeed from sec = 1/ cos, by applying x → 1/x to the graph of
cos, from Proposition 8.8. Thus, we obtain the graph in the statement, with flattened
curves at the multiples of π, and with asymptotes at the multiples of π plus π/2. □

Regarding now the cosecant, the result here is quite similar, as follows:

Proposition 8.11. The graph of csc : R− Zπ → R is as follows,

1

OO

−3π
2

−π −π
2

0 π
2

π 3π
2

//

−1

with this pattern being repeated indefinitely, to the left and to the right.

Proof. This comes indeed from csc = 1/ sin, by applying x → 1/x to the graph
of sin, from Proposition 8.7. Equivalently, we can get this from Proposition 8.10 via
cscx = sec(x−π/2), which shows that the graph is the one of sec, translated by π/2. □

Finally, regarding cot, the result here is similar to Proposition 8.9, as follows:
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Proposition 8.12. The graph of cot : R− Zπ → R is as follows,

−π −π
2

0

OO

π
2

π //

with this pattern being repeated indefinitely, to the left and to the right.

Proof. This comes indeed from cot = 1/ tan, by applying x → 1/x to the graph of
tan, from Proposition 8.9. In practice, this amounts in symmetrizing the graph there,
and then translating it by π/2, and we will leave some thinking here as an exercise. □

Summarizing, many interesting things going on, when it comes to draw the graphs of
trigonometric functions, and with this being, quite obviously, just the tip of the iceberg.
We will talk more about this in Part IV, when systematically doing calculus.

Getting back now to what we wanted to do, namely updating Proposition 8.5 by
using the various periodicity properties from Theorem 8.6, this remains something a bit
subjective, but armed with a bit of common sense, we can do this as follows:

Theorem 8.13. The trigonometric functions are as follows, modulo periodicity, and
with these functions being surjective:

(1) sin : [0, 2π]→ [−1, 1].
(2) cos : [0, 2π]→ [−1, 1].
(3) tan : (−π/2, π/2)→ R.
(4) sec : (−π/2, 3π/2)− {π/2} → R− (−1, 1).
(5) csc : (0, 2π)− {π} → R− (−1, 1).
(6) cot : (0, π)→ R.

Proof. This follows from Proposition 8.5 and Theorem 8.6, but with the choice of
the domain remaining something quite subjective, our comments being as follows:

(1) Here the choice sin : [0, 2π]→ [−1, 1] is reasonable, but if you prefer your mathe-
matics to be centered at 0, you will rather want to go with sin : [−π, π]→ [−1, 1].
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(2) Some comment here, with cos : [0, 2π] → [−1, 1] being reasonable, and with an
alternative choice, which can be sometimes useful, being cos : [−π, π]→ [−1, 1].

(3) No comment here, tan : (−π/2, π/2)→ R being obviously optimal.

(4) This is more tricky, another choice being sec : (0, 2π)−{π/2, 3π/2} → R− (−1, 1),
and yet another choice being sec : (−π, π)− {−π/2, π/2} → R− (−1, 1).

(5) Our choice here, csc : (0, 2π)− {π} → R− (−1, 1), is something quite reasonable,
although csc : (−π, π)− {0} → R− (−1, 1) can be sometimes useful too.

(6) No comment here, cot : (0, π)→ R being obviously optimal. □

Moving on, let us recall that the trigonometric functions have as well a number of
supplementary properties, coming in relation with x → −x, which are not captured by
the periodicity properties from Theorem 8.6, and can be summarized as follows:

Proposition 8.14. The trigonometric functions are as follows:

(1) sin, csc are even, f(x) = f(−x).
(2) cos, sec are odd, f(x) = −f(x).
(3) tan, cot are odd too, f(x) = −f(x).

Proof. This is indeed something that we know well, which for sin, cos comes from
definitions, and for the other trigonometric functions comes from this. □

But with this, we can further fine-tune Theorem 8.13, and again armed with a bit of
common sense, in order to deal with uncertainty, we are led in this way to:

Theorem 8.15. The trigonometric functions are as follows, modulo periodicity and
parity, and with these functions being bijective:

(1) sin : [−π/2, π/2]→ [−1, 1].
(2) cos : [0, π]→ [−1, 1].
(3) tan : (−π/2, π/2)→ R.
(4) sec : (0, π)− {π/2} → R− (−1, 1).
(5) csc : (−π/2, π/2)− {0} → R− (−1, 1).
(6) cot : (0, π)→ R.

Moreover, sin is increasing, cos decreasing, tan increasing, and cot decreasing.

Proof. This follows indeed from Theorem 8.13 and Proposition 8.14. Observe also,
as an interesting fact, that there is no reasonable way of making sec, csc monotone. □

And with this, end of our preliminary analytic study of the trigonometric functions.
We have learned many interesting things about them, and looking retrospectively at what
we did so far in this chapter, all this learning came from some trivialities regarding the
general functions, namely those in Definition 8.1 and Definition 8.3. Nice.
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8b. Continuity basics

Following the same strategy as before, namely trust in pure mathematics, let us tem-
porarily say goodbye now to our beloved trigonometric functions, but we will be back to
them soon, no worries, and develop some more theory for the general functions.

The idea will be that of focusing our study on the functions f : R → R which are
suitably regular, with the hope of getting into interesting mathematics. And, in what
regards these regularity properties, the most basic of them is continuity:

Definition 8.16. A function f : R→ R, or more generally f : X → R, with X ⊂ R
being a subset, is called continuous when, for any xn, x ∈ X:

xn → x =⇒ f(xn)→ f(x)

Also, we say that f : X → R is continuous at a given point x ∈ X when the above
condition is satisfied, for that point x.

Regarding now the basic examples of continuous functions, there are many of them,
and we will discuss them in a moment, once we will have some basic tools, in order to
prove that this or that function is continuous or not, without much pain. As a matter,
however, of having a first illustration for Definition 8.16, let us record here:

Proposition 8.17. The basic power functions, namely

f(x) = xk

with k ∈ N, are all continuous.

Proof. According to Definition 8.16, we want to prove that we have:

xn → x =⇒ xkn → xk

(1) A first method is by using the standard results regarding the sequences. To be
more precise, we know from basic analysis that the following formula holds:

lim
n→∞

xnyn = lim
n→∞

xn lim
n→∞

yn

But with xn = yn, this leads to the following formula:

lim
n→∞

x2n =
(
lim
n→∞

xn

)2
Obviously, we can iterate this method, and so for any k ∈ N, we have:

lim
n→∞

xkn =
(
lim
n→∞

xn

)k
But now, assuming xn → x as above, this formula gives, as desired:

lim
n→∞

xkn = xk
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(2) As a second method, more direct, we must estimate quantities (x+ t)k − xk, with
t small. But we can do this with the binomial formula, which gives, for |t| ≤ 1:

|(x+ t)k − xk| =

∣∣∣∣∣
k∑
s=0

(
k

s

)
xk−sts − xk

∣∣∣∣∣
=

∣∣∣∣∣
k∑
s=1

(
k

s

)
xk−sts

∣∣∣∣∣
≤

k∑
s=1

(
k

s

)
|x|k−s|t|s

≤ |t|
k∑
s=1

(
k

s

)
|x|k−s

≤ |t|
k∑
s=0

(
k

s

)
|x|k−s

= |t|(1 + |x|)k

Now assume xn → x. We can then write xn = x+ tn, and by choosing our n >> 0 as
to have |tn| ≤ 1, we can use the above estimate, which gives:

|xkn − xk| ≤ |tn|(1 + |x|k)

Now since we have tn → 0, we obtain from this xkn → xk, as desired. □

Getting back now to general theory, and to Definition 8.16 as stated, many things can
be said, about the continuous functions. We will discuss this, slowly, in what follows.

To start with, there are many other equivalent formulations of the notion of continuity,
with a well-known, useful, and much feared one, being as follows:

Theorem 8.18. A function f : X → R is continuous when

∀x ∈ X, ∀ε > 0,∃δ > 0, |x− y| < δ =⇒ |f(x)− f(y)| < ε

holds.

Proof. Let us prove this, with no fear. According to Definition 8.16, in order for our
function f to be continuous, the following must happen, for any x ∈ X:

xn → x =⇒ f(xn)→ f(x)

Now when reminding what convergence of a sequence exactly means, for both the
convergences xn → x and f(xn)→ f(x), we are led to the conclusion in the statement. □
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In order to get now towards examples of continuous functions, let us start with the
following theoretical result, regarding the various operations on functions:

Theorem 8.19. If f, g are continuous, then so are:

(1) f + g.
(2) fg.
(3) f/g.
(4) f ◦ g.

Proof. Before anything, we should mention that the claim is that (1-4) hold indeed,
provided that at the level of domains and ranges, the statement makes sense. For instance
in (1,2,3) we are talking about functions having the same domain, and with g(x) ̸= 0 for
the needs of (3), and there is a similar discussion regarding (4).

(1) The claim here is that if both f, g are continuous at a point x, then so is the sum
f + g. But this is clear from the similar result for sequences, namely:

lim
n→∞

(xn + yn) = lim
n→∞

xn + lim
n→∞

yn

(2) Again, the statement here is similar, and the result follows from:

lim
n→∞

xnyn = lim
n→∞

xn lim
n→∞

yn

(3) Here the claim is that if both f, g are continuous at x, with g(x) ̸= 0, then f/g is
continuous at x. In order to prove this, observe that by continuity, g(x) ̸= 0 shows that
g(y) ̸= 0 for |x− y| small enough. Thus we can assume g ̸= 0, and with this assumption
made, the result follows from the similar result for sequences, namely:

lim
n→∞

xn/yn = lim
n→∞

xn/ lim
n→∞

yn

(4) Here the claim is that if g is continuous at x, and f is continuous at g(x), then
f ◦ g is continuous at x. But this is clear, coming from:

xn → x =⇒ g(xn)→ g(x)

=⇒ f(g(xn))→ f(g(x))

Alternatively, using that scary ε, δ condition from Theorem 8.18, let us pick ε > 0.
Since f is continuous at g(x), we can find δ > 0 such that:

|g(x)− z| < δ =⇒ |f(g(x))− f(z)| < ε

On the other hand, since g is continuous at x, we can find γ > 0 such that:

|x− y| < γ =⇒ |g(x)− g(y)| < δ

Now by combining the above two inequalities, with z = g(y), we obtain:

|x− y| < γ =⇒ |f(g(x))− f(g(y))| < ε

Thus, the composition f ◦ g is continuous at x, as desired. □
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At the level of examples now, we first have the following result:

Theorem 8.20. The following functions are continuous:

(1) xn, with n ∈ Z.
(2) P/Q, with P,Q ∈ R[X].
(3) ex =

∑
k x

k/k!.

Proof. This is a mixture of trivial and non-trivial results, as follows:

(1) Since f(x) = x is continuous, by using Theorem 8.19 we obtain the result for
exponents n ∈ N, and then for general exponents n ∈ Z too. Observe that this generalizes
Proposition 8.17, gone all that computations, by some kind of abstract miracle.

(2) The statement here, which generalizes (1), follows exactly as (1), by using the
various findings from Theorem 8.19, and with the comment of course that, a bit like in
Theorem 8.19 before, P/Q is considered as function outside the zeroes of Q.

(3) This is something quite tricky, that will take us some time to understand, but
since ex is crucially related to trigonometry, as we will discover later, all this effort will
be worth it. To start with, we can define a number e = 2.71828 . . . as follows:

e = lim
n→∞

(
1 +

1

n

)n
To be more precise, it is quite routine to show, by using the binomial formula and

the arithmetic-geometric inequality, that the sequence on the right converges indeed, to
a certain e ∈ [2, 3]. Next, again by using the binomial formula and various estimates, we
have the following formula, which can stand as an alternative definition for e:

e =
∞∑
k=0

1

k!

Observe that this series converges very fast, and in constrast with the π mess from
chapter 7, this can be used in order to reach to the known figure for e, namely:

e = 2.71828 . . .

As a main claim now, we have the following formula, valid for any x ∈ R:

ex =
∞∑
k=0

xk

k!
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In order to prove this, consider the series on the right, f(x) =
∑

k x
k/k!, whose

convergence is fast too, and easy to establish. By using the binomial formula, we have:

f(x+ y) =
∞∑
k=0

(x+ y)k

k!

=
∞∑
k=0

k∑
s=0

(
k

s

)
· x

syk−s

k!

=
∞∑
k=0

k∑
s=0

xsyk−s

s!(k − s)!

= f(x)f(y)

Thus, we have good evidence that f(x) should be a power function, and so we are on
the way of proving f(x) = ex, with e = f(1). Now let us prove that f is continuous. The
continuity of f is clear at x = 0, and in general, this can be deduced as follows:

lim
t→0

f(x+ t) = lim
t→0

f(x)f(t)

= f(x) lim
t→0

f(t)

= f(x) · 1
= f(x)

Time now to put everything together, and prove our claim. We know that the series
f(x) =

∑
k x

k/k! is continuous, and satisfies the following conditions:

f(0) = 1 , f(1) = e , f(x+ y) = f(x)f(y)

But this gives f(x) = ex, as desired, first for x ∈ N, in the obvious way, then for
x ∈ Z, and even x ∈ Q, again by simple algebra, and finally for x ∈ R, by continuity. □

Good news, we can go back now to the trigonometric functions, and we have:

Theorem 8.21. The trigonometric functions, considered on their maximal domains,

(1) sin, cos : R→ R.
(2) tan, sec : R− (Zπ + π/2)→ R.
(3) csc, cot : R− Zπ → R.

are continuous on these maximal domains.

Proof. This is something that we already talked about in chapter 7, in some detail,
but always good to talk about this again. The idea with all this is as follows:

(1) We must first prove here that xn → x implies sinxn → sinx, which in practice
amounts in proving that sin(x+ y) ≃ sinx for y small. But this follows from:

sin(x+ y) = sin x cos y + cosx sin y
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Indeed, with this formula in hand, we can establish the continuity of sinx, as follows,
with the limits at 0 which are used being both clear on pictures:

lim
y→0

sin(x+ y) = lim
y→0

(sinx cos y + cosx sin y)

= sin x lim
y→0

cos y + cosx lim
y→0

sin y

= sin x · 1 + cos x · 0
= sin x

Moving ahead now with cosx, here the continuity follows from the continuity of sin x,
by using the following formula, which is obvious from definitions:

cosx = sin
(π
2
− x
)

Alternatively, we can use the same method as for sin, and we get, as desired:

lim
y→0

cos(x+ y) = lim
y→0

(cosx cos y − sinx sin y)

= cos x lim
y→0

cos y − sinx lim
y→0

sin y

= cos x · 1− sinx · 0
= cos x

(2) The fact that the functions tanx and secx are continuous too is clear from the
fact that sinx, cos x are continuous, by using Theorem 8.19 (3).

(3) As for the fact that the functions cscx and cotx are continuous too, this is again
clear from the fact that sin x, cos x are continuous, by using Theorem 8.19 (3). □

As a last piece of general theory, regarding the continuous functions, some functions
are “more continuous than some other”, as shown by the following result:

Theorem 8.22. Consider the following properties, regarding f : X → R with X ⊂ R:
(1) f has the following property, for some K > 0, called Lipschitz property:

|f(x)− f(y)| ≤ K|x− y|

(2) f is uniformly continuous, in the sense that the following happens:

∀ε > 0,∃δ > 0, |x− y| < δ =⇒ |f(x)− f(y)| < ε

(3) f is continuous in the usual sense, namely:

∀x ∈ X, ∀ε > 0,∃δ > 0, |x− y| < δ =⇒ |f(x)− f(y)| < ε

We have then (1) =⇒ (2) =⇒ (3). Also, the converse implications do not hold.
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Proof. This is something quite self-explanatory, the idea being as follows:

(1) =⇒ (2) This is clear, coming by talking δ = ε/K.

(2) =⇒ (3) This is something which is plainly trivial.

(3) ≠⇒ (2) Indeed, x2 is continuous but not uniformly continuous.

(2) ≠⇒ (1) Indeed,
√
|x| is uniformly continuous but not Lipschitz. □

In practice now, and for instance in relation with the trigonometric functions, re-
stricted to various intervals [a, b], all this seems to have something to do with the slope
of the graph of f , computed at various points of [a, b]. We will be back to this later, in
Part IV, when talking slopes of graphs, or derivatives, which can help with this.

8c. Inverse functions

Getting back now to questions raised in the beginning of this chapter, let us discuss
now bijectivity and inversion problems. To start with, we have:

Theorem 8.23. Given a bijective function f : X → Y , its inverse function

f−1 : Y → X

is obtained by flipping the graph over the x = y diagonal of the plane.

Proof. This is indeed something quite clear and intuitive, because by definition of
the inverse function f−1 : Y → X, this is given by the following formula:

y = f(x) ⇐⇒ f−1(y) = x

Thus, in practice, drawing the graph of f−1 : Y → X amounts in taking the graph of
f : X → Y and interchanging the coordinates, x↔ y, as indicated. □

As a basic application of this technology, dealing with the various trigonometric func-
tions that we are interested in, from Theorem 8.15, we have the following result:

Theorem 8.24. We can talk about the inverse trigonometric functions,

(1) arcsin : [−1, 1]→ [−π/2, π/2].
(2) arccos : [−1, 1]→ [0, π].
(3) arctan : R→ (−π/2, π/2).
(4) arcsec : R− (−1, 1)→ (0, π)− {π/2}.
(5) arccsc : R− (−1, 1)→ (−π/2, π/2)− {0}.
(6) arccot : R→ (0, π).

whose graphs can be obtained by flipping those of sin, cos, tan, sec, csc, cot.
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Proof. This is something self-explanatory, based on Theorem 8.15, as follows:

(1) Consider the function sin : [−π/2, π/2] → [−1, 1], which is bijective. Its inverse
function arcsin : [−1, 1]→ [−π/2, π/2], obtained by flipping the graph, is as follows:

π
2

OO

−1 1 //

−π
2

Observe that the graph crosses the horizontal axis at 45◦, and also that we have vertical
tangents at left and at right, with this coming from our knowledge of sin.

(2) Consider the function cos : [0, π]→ [−1, 1], which is bijective. Its inverse function
arccos : [−1, 1]→ [0, π], obtained by flipping the graph, is then as follows:

π

OO

π
2

−1 1 //

Observe that the graph crosses the vertical axis at 45◦, and also that we have vertical
tangents at left and at right, with this coming from our knowledge of cos.
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(3) Consider the function tan : (−π/2, π/2) → R, which is bijective. Its inverse
function arctan : R→ (−π/2, π/2), obtained by flipping the graph, is as follows:

π
2

OO

//

−π
2

Observe that the graph crosses the coordinate axes at 45◦, and that we have horizontal
asymptotes on top and bottom, with this coming from our knowledge of tan.

(4) Consider the function sec : (0, π) − {π/2} → R − (−1, 1), which is bijective. Its
inverse function arcsec : R− (−1, 1)→ (0, π)− {π/2} is then as follows:

π

OO

π
2

−1 1 //

Observe that we have various asymptotes on the horizontal and vertical, as indicated
by dotted lines in the above picture, with this coming from our knowledge of sec.
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(5) Consider the function csc : (−π/2, π/2) − {0} → R − (−1, 1), which is bijective.
Its inverse function arccsc : R− (−1, 1)→ (−π/2, π/2)− {0} is then as follows:

π
2

OO

−1 1 //

−π
2

Observe that we have various asymptotes on the horizontal and vertical, as indicated
by dotted lines in the above picture, with this coming from our knowledge of csc.

(6) Consider the function cot : (0, π) → R, which is bijective. Its inverse function
arccot : R→ (0, π), obtained by flipping the graph, is as follows:

π

OO

π
2

//

Observe that the graph crosses the vertical axis at 45◦, and that we have horizontal
asymptotes on top and bottom, with this coming from our knowledge of cot. □

Many other things can be said about the inverse trigonometric functions, notably with
all sorts of formulae for them, coming from the formulae that we know well for the usual
trigonometric functions. We will leave some exploration here as an exercise.

8d. Approximation

Getting back now to the basics, are the limits of continuous functions continuous?
And the answer here is no, as shown by the following result, featuring arctan:
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Theorem 8.25. The basic discontinuous function, namely

sgn(x) =


−1 , x < 0

0 , x = 0

1 , x > 0

can be approximated by suitable modifications of arctan(x).

Proof. We know that arctan(x) looks a bit like sgn(x), but one problem comes from
the fact that its image is [−π/2, π/2], instead of the desired [−1, 1]. Thus, we must first
rescale arctan(x) by π/2, which amounts in considering the following function:

f(x) =
2

π
arctan(x)

Now with this done, we must stretch the variable x, as to get our function closer and
closer to sgn(x). This can be done in several ways, a standard one being as follows:

gn(x) =
2

π
arctan(nx)

So, let us see if this works. First, we have the following computation, for x > 0:

lim
n→∞

gn(x) =
2

π
lim
n→∞

arctan(nx)

=
2

π
arctan(∞)

=
2

π
· π
2

= 1

Similarly, we have the following computation, this time for x < 0:

lim
n→∞

gn(x) =
2

π
lim
n→∞

arctan(nx)

=
2

π
arctan(−∞)

=
2

π

(
−π
2

)
= −1

Finally, for x = 0 the limit is that of the constant 0 sequence, as follows:

lim
n→∞

gn(0) = lim
n→∞

0 = 0
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We conclude from this that we have the following pointwise convergence:

lim
n→∞

gn(x) =


−1 , x < 0

0 , x = 0

1 , x > 0

In other words, we have proved that we have the following approximation:

lim
n→∞

2

π
arctan(nx) = sgn(x)

Thus, we are led to the conclusion in the statement. □

Sumarizing, we are a bit in trouble, because we would like to have in our bag of theo-
rems something saying that fn → f with fn continuous implies f continuous. Fortunately,
this can be done, with a suitable refinement of the notion of convergence, as follows:

Definition 8.26. We say that fn converges uniformly to f , and write fn →u f , if:

∀ε > 0,∃N ∈ N,∀n ≥ N, |fn(x)− f(x)| < ε,∀x
That is, the same condition as for fn → f must be satisfied, but with the ∀x at the end.

And it is this “∀x at the end” which makes the difference, and will make our theory
work. Indeed, we have the following result, based on the above definition:

Theorem 8.27. Assuming that fn are continuous, and that

fn →u f

then f is continuous. That is, uniform limit of continuous functions is continuous.

Proof. Let us try indeed to prove that the limit f is continuous at some point x.
For this, we pick a number ε > 0. Since fn →u f , we can find N ∈ N such that:

|fN(z)− f(z)| <
ε

3
, ∀z

On the other hand, since fN is continuous at x, we can find δ > 0 such that:

|x− y| < δ =⇒ |fN(x)− fN(y)| <
ε

3

But with this, we are done. Indeed, for |x− y| < δ we have:

|f(x)− f(y)| ≤ |f(x)− fN(x)|+ |fN(x)− fN(y)|+ |fN(y)− f(y)|

≤ ε

3
+
ε

3
+
ε

3
= ε

Thus, the limit function f is continuous at x, and we are done. □

Getting now to more concrete things, we have the following fundamental result, due
to Weierstrass, regarding the approximation of functions by polynomials:
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Theorem 8.28 (Weierstrass). Any continuous function on a closed interval

f : [a, b]→ R
can be uniformly approximated by polynomials.

Proof. This is indeed something very classical, with a well-known, constructive proof,
being by using an approximation by suitable Bernstein polynomials, namely:

fn(x) =
n∑
k=0

f

(
k

n

)
bkn(x)

To be more precise, we assume here that [a, b] = [0, 1], and we set:

bkn(x) =

(
n

k

)
xk(1− x)n−k

As for the proof of this, this is something well-known, which goes as follows:

(1) Consider indeed the basic Bernstein polynomials bkn, as constructed above. These
remind the binomial laws, so it is with some probability that we will start. We have the
following formulae, which are all elementary to establish, and which in probabilistic terms
are dealing with the moments of order 0, 1, 2 of the binomial laws:∑

k

(
n

k

)
xk(1− x)n−k = 1

∑
k

k

n

(
n

k

)
xk(1− x)n−k = x

∑
k

(
x− k

n

)2(
n

k

)
xk(1− x)n−k = x(1− x)

n

(2) In terms of the basic Bernstein polynomials bkn, the above formulae read:∑
k

bkn(x) = 1

∑
k

k

n
· bkn(x) = x

∑
k

(
x− k

n

)2

bkn(x) =
x(1− x)

n

(3) Now consider our arbitrary continuous function f : [0, 1] → R, and construct for
any n ∈ N the approximation indicated above, namely:

fn(x) =
n∑
k=0

f

(
k

n

)
bkn(x)
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In order to estimate the error |fn − f |, we will use a standard result, called Heine-
Cantor theorem, stating that our continuous function f : [a, b] → R is automatically
uniformly continuous. So, pick ε > 0, and then δ > 0 such that the following happens:

|x− y| < δ =⇒ |f(x)− f(y)| < ε

Now with this done, we have the following estimate, using the first formula in (2) at
the first step, the uniform continuity at the last step, and with M = sup |f |:

|fn(x)− f(x)| =

∣∣∣∣∣∑
k

(
f

(
k

n

)
− f(x)

)
bkn(x)

∣∣∣∣∣
≤

∑
k

∣∣∣∣f (kn
)
− f(x)

∣∣∣∣ bkn(x)
=

∑
|x− k

n
<δ|

∣∣∣∣f (kn
)
− f(x)

∣∣∣∣ bkn(x) + ∑
|x− k

n
≥δ|

∣∣∣∣f (kn
)
− f(x)

∣∣∣∣ bkn(x)
≤ ε+M

∑
|x− k

n
≥δ|

bkn(x)

(4) The point now is that the last sum on the right can be estimated by using the
Chebycheff inequality, based on the third formula from (2), and we obtain:∑

|x− k
n
≥δ|

bkn(x) ≤
∑
k

δ−2

(
x− k

n

)2

bkn(x)

= δ−2 x(1− x)
n

≤ δ−2

4n

(5) Now by putting everything together, we obtain the following estimate:

|fn(x)− f(x)| ≤ ε+
δ−2M

4n

Thus we have indeed |fn − f | → 0, uniform convergence, as desired.

(6) Summarizing, present theorem proved, modulo some learning in relation with the
Heine-Cantor theorem, which is something very standard, and with Chebycheff inequality
too, which is something very standard too, that we will leave as an exercise. □

The above result is quite interesting, and as a question coming from this, we would
like for instance to know how to explicitly approximate the basic trigonometric functions,
defined on suitable intervals, by polynomials. However, this latter question is something
non-trivial. We will be back to it later in this book, when discussing calculus.
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8e. Exercises

This was a more advanced chapter, and as exercises on this, we have:

Exercise 8.29. Learn more about the continuous and discontinuous functions, and
notably about the notion of jump, and what can be done with it.

Exercise 8.30. Learn also about the alternative definition of continuity in terms of
open and closed sets, and what can be done with it.

Exercise 8.31. Learn more about Lipschitz functions, and what can be done with
them. Also, compute Lipschitz constants for all functions that you know.

Exercise 8.32. Learn more about uniform continuity, and what can be done with it.
Also, investigate the uniform continuity of all functions that you know.

Exercise 8.33. Work out the basic formulae for inverse trigonometric functions,
based on the basic formulae for usual trigonometric functions.

Exercise 8.34. Work out the basic estimates for inverse trigonometric functions,
based on the basic estimates for usual trigonometric functions.

Exercise 8.35. Learn more about the general continuous functions, notably with their
uniform continuity property on compact sets.

Exercise 8.36. Learn more about the uniform convergence of continuous functions,
with its various properties, and what can be done with it.

As bonus exercise, and no surprise here, start reading some calculus.



Part III

Affine coordinates



There is a house in New Orleans
They call the Rising Sun

And it’s been the ruin of many a poor boy
Dear God, I know I was one



CHAPTER 9

Affine coordinates

9a. The real plane

Welcome to geometry and trigonometry, take two. What we have been doing so far
was certainly great work, needed for understanding what is going on, no question about
this, but that material was a bit old, essentially going back to the old Greeks. Time now
for some true modern things, from a few hundred centuries ago, no longer than that.

The general principle of modern geometry, coming from the work of Descartes and
others, is something very simple and bright, as follows:

Principle 9.1. Everything that we know about plane geometry, including angles and
trigonometry, can be better understood, and substantially generalized, by using vectors,

x =

(
a

b

)
with a, b ∈ R, which such a vector describing the position of a point x in the plane with
respect to a given system of coordinates, with a, b ∈ R being the coordinates of x.

To be more precise here, let us fix a system of coordinates in the plane, with this
meaning fixing a point O, called the origin, and then a pair of orthogonal lines passing
through O. We will assume in addition that these two orthogonal lines are oriented, by
marking arrows on them, and we will also specify the unit length on each of them, with
the complete picture of our coordinate system being as follows:

−

O

OO

//|

Now given a point x in the plane, we can project it onto the coordinate axes, and call
the numbers a, b ∈ R describing the positions of these projections, with respect to the

203
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origin O, the coordinates of x, with the picture for this being as follows:

b

OO

x

−

O | a //

Observe now that, conversely, given two real numbers a, b ∈ R, these will uniquely
determine a certain point x is the plane, constructed according to the above picture. That
is, we draw a on the horizontal axis, b on the vertical axis, than we draw perpendiculars
as above, and x will be then the intersection of these two perpendiculars.

Summarizing, a point x in the plane and a pair of real numbers a, b ∈ R is the same
thing. In view of this, we agree to use the following notation, for this correspondence,
and also make the convention that, with x viewed in this way, it will be called vector:

x =

(
a

b

)
In practice now, with all this digested, it is actually convenient to forget about the

plane, coordinates and projections, and summarize this discussion as follows:

Definition 9.2. A vector is a pair of real numbers, written vertically:

x =

(
a

b

)
We identify the vectors with the points in the plane, in the obvious way.

Many interesting things can be done with vectors, and of particular interest is the
summing operation for such vectors, given by the following formula:

x =

(
a

b

)
, y =

(
c

d

)
=⇒ x+ y =

(
a+ c

b+ d

)
Geometrically, and coming as a simple application of the Thales theorem, the idea

with this operation is that the vectors add by forming a parallelogram, as shown by:
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Theorem 9.3. The vector addition can be understood geometrically,

b+ d •x+y

d •y

b •x

• //

OO

c a a+ c

with x+ y completing the parallelogram based at O, x, y.

Proof. This is something quite self-explanatory. Consider indeed a parallelogram in
the plane, with three of its vertices being as follows:

O =

(
0

0

)
, x =

(
a

b

)
, y =

(
c

d

)
Now let us draw verticals from x, y, and from the fourth vertex z too. From Thales

we obtain that the first coordinate of z is a+ c, according to the following picture:

•z

•y

•x

• //

OO

c a a+ c

Similarly, if we draw horizontals from x, y, and from z too, from Thales we obtain
that the second coordinate of z is b+ d, according to the following picture:

b+ d •z

d •y

b •x

• //

OO
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Thus we are led to the picture in the statement, and with the final conclusion being
that the coordinates of the fourth vertex z can be computed according to:

x =

(
a

b

)
, y =

(
c

d

)
=⇒ z =

(
a+ c

b+ d

)
But this is exactly the summing formula for the vectors, as desired. □

In practice, the summing operation is usefully complemented by the multiplication by
scalars operation, which is given by the following very intuitive formula:

x =

(
a

b

)
=⇒ λx =

(
λa

λb

)
Next, of particular interest too, in relation with the computation of the lengths, is the

following result, allowing us to compute the length of any vector:

Theorem 9.4. The length of a vector is given by the following formula:

x =

(
a

b

)
=⇒ ||x|| =

√
a2 + b2

Also, the vector lengths satisfy ||λx|| = |λ| · ||x||, and ||x+ y|| ≤ ||x||+ ||y||.

Proof. In what regards the first assertion, which is the main one, this follows as a
basic application of the theorem of Pythagoras, according to the following picture:

b

OO

x

−

O | a //

Regarding now the second assertion, with x =
(
a
b

)
, we have indeed:

||λx|| =

∣∣∣∣∣∣∣∣(λaλb
)∣∣∣∣∣∣∣∣

=
√

(λa)2 + (λb)2

= |λ|
√
a2 + b2

= |λ| · ||x||
Finally, the last assertion is something clear, geometrically. Of course, this can be

proved algebrically as well, by raising ||x + y|| ≤ ||x|| + ||y|| to the square, simplifying,
and raising to the square again, and with this being a good exercise for you. □
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And with this, good news, we have now all the needed vector calculus tools, in our
bag, and we can start exploring what we can do, geometrically, with this new formalism.
Before doing that, however, one more thing, which can be something useful:

Fact 9.5. We can talk as well about oblique coordinates, according to

b

DD

x

−

O | a //

and in this setting, our knowledge about sums of vectors extends.

To be more precise here, we can talk indeed about oblique coordinates, as above,
by using a system of coordinates which is not necessarily orthogonal, and with the unit
vectors on the coordinate axes being not necessarily of the same length. As mentioned, our
basic knowledge about affine coordinates, including the parallelogram rule for the sums
of vectors, extends to this setting, and this can be something useful. On the opposite, in
this setting, we cannot use our formulae above for the lengths. More on this later.

9b. Points and lines

Getting back now to geometry, as a first good surprise, in what regards the axiomatics
from chapter 1, that is literally nuked by coordinates. We have indeed, regarding the first
axiom of geometry, that we started chapter 1 with, the following trivial theorem:

Theorem 9.6. Any two distinct points P ̸= Q determine a line, given by

L =
{
λP + (1− λ)Q

∣∣∣λ ∈ R
}

in affine coordinates.

Proof. We can say that the line L determined by the points P ̸= Q consists by
definition of the points R such that we have, for a certain λ ∈ R:

QR = λQP

By using now the standard rules of vector calculus, this equation reads:

QR = λQP ⇐⇒ R−Q = λ(P −Q)
⇐⇒ R = Q+ λ(P −Q)
⇐⇒ R = λP + (1− λ)Q

Thus, we are led to the conclusion in the statement. □
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Thus, very good news, axiom becoming theorem, what more can we wish for. Still
talking lines, let us have some further look at them. We have the following result:

Theorem 9.7. The lines in the plane are the solutions of equations of type

ax+ by + c = 0

with (a, b) ̸= (0, 0), and in addition, the following happen:

(1) Two such lines coincide when their triples (a, b, c) are proportional.
(2) Two such lines are parallel or coincide when their pairs (a, b) are proportional.

Proof. We have several things to be proved, the idea being as follows:

(1) As explained and Theorem 9.6 and its proof, with the convention that a line
appears by uniting two points, the equations of these lines are as follows, with P ̸= Q:

L =
{
λP + (1− λ)Q

∣∣∣λ ∈ R
}

Thus, in terms of coordinates, the lines are given by equations of the following type,
with (p, r) ̸= (q, s), and with λ ∈ R being a parameter which varies:{

x = λp+ (1− λ)q
y = λr + (1− λ)s

Equivalently, we can say that the lines are given by equations of the following type,
with (p, r) ̸= (q, s), and with λ ∈ R being a parameter which varies:{

x = q + λ(p− q)
y = s+ λ(r − s)

But now, by eliminating λ, in the obvious way, we are led to the conclusion that the
lines are given by equations of the following type, with (a, b) ̸= (0, 0):

ax+ by + c = 0

(2) In what regards now the second assertion, stating that two such lines coincide
when their triples (a, b, c) are proportional, this is something clear.

(3) As for the last assertion, stating that two such lines are parallel or coincide when
their pairs (a, b) are proportional, this is something clear too. □

In what follows we will often use the formula in Theorem 9.7, which is more convenient
than the one in Theorem 9.6, for various algebraic computations. However, one problem
with this sometimes comes from our lack of intuition regarding the parameters a, b, c:

Question 9.8. Given a line in the plane, written as above as

ax+ by + c = 0

with (a, b) ̸= (0, 0), what is the geometric meaning of the parameters a, b, c?
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This question, which is something quite subtle, will be answered in due time. Moving
on, and still following the material from the beginning of chapter 1, as a second piece of
good news, our second geometry axiom becomes a theorem too, as follows:

Theorem 9.9. Given a point not lying on a line, P /∈ L, we can draw through P a
unique parallel to L. That is, we can find a line K satisfying P ∈ K, K||L.

Proof. According to Theorem 9.7, we can assume that our line L is given by an
equation of the following type, with (a, b) ̸= (0, 0):

ax+ by + c = 0

As for the point P , with the notation P = (x, y), the condition in the statement,
namely P /∈ L, tells us that the following must happen:

ax+ by + c ̸= 0

In view of this, let us pick now γ ∈ R such that the following equality holds:

ax+ by + γ = 0

But this formula, with x, y being now variables again, defines a certain line K, which
certainly passes through P , and which is parallel to L too, as desired. □

Getting now to the next thing that we did in chapter 1, namely the Thales theorem,
and coming as further good news, that simplifies too with coordinates, as follows:

Theorem 9.10 (Thales). Proportions are kept, along parallel lines. That is, given a
configuration as follows, consisting of two parallel lines, and of two extra lines,

S

A C

B D

the following equality holds:
SA

SB
=
SC

SD
Moreover, the converse of this holds too, in the sense that, in the context of a picture as
above, if this equality is satisfied, then the lines AC and BD must be parallel.

Proof. Many things can be said here, the idea being as follows:

(1) In what regards the main assertion, we can assume if we want, by translation,
that the point S is the origin, S = O. Now with this assumption made, since O,A,B are
collinear, and since O,C,D are collinear too, we must have, for certain b, d ∈ R:

B = bA , D = dC
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Thus, the picture of the Thales configuration becomes as follows, with b, d ∈ R:

O

A C

bA dC

(2) Now let us prove the main assertion. We have the following equivalences:

AC||BD ⇐⇒ D −B = λ(C − A)
⇐⇒ dC − bA = λ(C − A)
⇐⇒ d = b

But with this in hand, d = b, we obtain indeed the Thales formula, as follows:

OA

OB
=

1

b
=

1

d
=
OC

OD

(3) Conversely now, we can still use the convention S = O and the equalities B = bA
and D = dC found in (1), and the picture there too, and we have, as claimed:

OA

OB
=
OC

OD
=⇒ 1

b
=

1

d
=⇒ b = d

=⇒ AC||BD

(4) Finally, let us mention that the other formulations of the Thales theorem, also
from chapter 1, are also clear with coordinates. Indeed, for the above configuration, with
the convention S = O, the improved conclusion, Thales 2, is as follows:

OA

OB
=
OC

OD
=
AC

BD

(5) Getting now to the Thales 3 configuration, also by following the material from
chapter 1, this was as follows, with two lines meeting two parallel lines:

A D

B E

C F

But here, save for a discussion of the case AC||DF , where the Thales 3 formula is
clear, we can assume that AC ∩DF is the origin O. And then, by proceeding as in (1),
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our picture becomes as follows, with b, c ∈ R being certain parameters:

A D

bA bD

cA cD

We conclude that the Thales 3 formula holds indeed, as follows:

AB

BC
=
b− 1

c− 1
=
DE

EF

Thus, fully done with Thales, in all its formulations, using coordinates. □

Getting now to the continuation of what we did in Part I, there are countless results
there, and time perhaps to make a summary of what we have seen there:

(1) In chapter 1 we have seen the theorems of Desargues and Pappus, along with the
duality of points and lines, and the cross ratio technology, used there for their proof.

(2) In chapter 2 we have seen the existence of the barycenter, then the Pythagoras
theorem, and then the existence of the incenter, circumcenter and orthocenter.

(3) In chapter 3 we have discussed the nine-point circle and Euler line, and then the
Feuerbach points, with the promise that come back to these later, with details.

(4) In chapter 4 we have seen the theorems of Menelaus and Ceva, then the Gergonne
and Nagel points, and then the theorems of Pascal and Brianchon.

Summarizing, many things to be done now, with coordinates, and contrary to what
we did in Part I, where the material was organized in relation with the philosophical
meaning of the theorems, rather than with the difficulty of the proofs, we will choose now
to discuss what is the simplest first, and leave more complicated things for later.

So, getting now to the material from chapter 2, triangles and their centers, we first
have the barycenter theorem, which drastically simplifies with coordinates, as follows:
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Theorem 9.11 (Barycenter). Given a triangle ABC, its medians cross,

A

F E

B D C

at a point called barycenter, lying at 1/3− 2/3 on each median.

Proof. Let us call A,B,C ∈ R2 the coordinates of the vertices A,B,C, and consider
the average P = (A+B + C)/3. We have then:

P =
1

3
· A+

2

3
· B + C

2

Thus P lies on the median emanating from A, and a similar argument shows that P
lies as well on the medians emanating from B,C. Thus, we have our barycenter. □

Very nice all this, hope you agree with me. In what regards now the rest of the
material from chapter 2, the Pythagoras theorem is trivial with coordinates, while the
rest, namely incenter, circumcenter and orthocenter, looks less trivial with coordinates,
so we will keep this for later. Skipping as well chapter 3, obviously for later too, and
getting now to the material from chapter 4, starting with Menelaus, we have:

Theorem 9.12 (Menelaus). In a configuration of the following type, with a triangle
ABC cut by a line DEF ,

A

F

E

B C D

we have the following formula, with all segments being taken oriented:

AF

FB
· BD
DC
· CE
EA

= −1

Moreover, the converse holds, with this formula guaranteeing that D,E, F are colinear.

Proof. This is something fundamental, worth a detailed discussion, as follows:
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(1) To start with, let us recall the proof that we already know, from chapter 4. The
argument there was that by projecting the vertices A,B,C on the line DEF , into points
A′, B′, C ′, we have the following computation, for unoriented segments:

AF

FB
· BD
DC
· CE
EA

=
AA′

BB′ ·
BB′

CC ′ ·
CC ′

AA′ = 1

But with this, we are basically done, because when adding orientations the study is
elementary, as explained in chapter 4, and so is the proof of the converse.

(2) The point now is that, what we did in the above, with that projection trick, can be
considered as being an affine coordinate proof. Indeed, by fixing the origin O anywhere
on the line DEF , and this line DEF as being the Ox axis, our computation reads:

AF

FB
· BD
DC
· CE
EA

=
A2

B2

· B2

C2

· C2

A2

= 1

(3) This being said, let us present now a second proof, which, although being a bit
longer and less smart, will contain some interesting computations. When seeing the
statement of the theorem, the first thought goes to oblique coordinates, according to:

A

EE

F

E

O C D //

To be more precise, consider a system of oblique coordinates as above, and points
A,F and C,D on the axes. The problem, which is something quite fundamental, is that
of computing the following intersection, that we called E on the above picture:

AC ∩ FD =?

(4) So, let us denote the coordinates of our various points as follows:

A =

(
0

a

)
, F =

(
0

f

)
, C =

(
c

0

)
, D =

(
d

0

)
, E =

(
x

y

)
We have the following computation, giving the equation of the line AC:

AE

AC
=
x

c
,

CE

CA
=
y

a
=⇒ x

c
+
y

a
= 1
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Similarly, we have the following computation, giving the equation of FD:

FE

FD
=
x

d
,

DE

DF
=
y

f
=⇒ x

d
+
y

f
= 1

Summarizing, the equations for the coordinates of E = AC ∩ FD are as follows:{
x
c
+ y

a
= 1

x
d
+ y

f
= 1

(5) Now let us solve this system. For finding x, we can write our system as:{
x
cf

+ y
af

= 1
f

x
ad

+ y
af

= 1
a

By making the difference, we obtain the following equation for x:

x

(
1

cf
− 1

ad

)
=

1

f
− 1

a

Thus, the x coordinate of E = AC ∩ FD is given by the following formula:

x =
cd(a− f)
ad− cf

Similarly, the y coordinate of E = AC ∩ FD is given by the following formula:

y =
af(c− d)
cf − ad

(6) We can now prove Menelaus. We have indeed the following computation:

CE

EA
=

CA

EA
− 1

=
c

x
− 1

=
ad− cf
d(a− f)

− 1

=
f(d− c)
d(a− f)

But with this, we have the following computation:

AF

FO
· OD
DC
· CE
EA

=
a− f
f
· d

c− d
· f(d− c)
d(a− f)

= −1

But this is exactly what Menelaus says, modulo our relabeling of points. □
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9c. Scalar products

Getting now to the Ceva theorem and various triangle centers, we have seen all
across chapters 2-5 that computations can be quite complicated, basically leading us
into trigonometry. In view of this, it is perhaps wiser to develop first some more vector
mathematics, with some new tools, more powerful, that can help in our quest.

With this idea in mind, we first have the following result, providing us with a powerful
vector calculus tool in order to deal with orthogonality, and related topics:

Theorem 9.13. If we define the scalar product of two vectors by〈(
a

b

)
,

(
c

d

)〉
= ac+ bd

then the following happen:

(1) < A+B,C >=< A,C > + < B,C >.
(2) < A,B + C >=< A,B > + < A,C >.
(3) < λA,B >=< A, λB >= λ < A,B >.
(4) ||A|| =

√
< A,A >.

(5) A ⊥ B ⇐⇒ < A,B >= 0.
(6) < A,B >= ||A|| · ||B|| · cos t, with t being the angle between A,B.
(7) < A,B >=< A′, B >=< A,B′ >, prime being projection on the other vector.

Proof. Many things going on here, the idea being as follows:

(1-3) These formulae, very useful in practice, are all clear from definitions.

(4-7) To start with, the formula in (4) is clear, coming from:〈(
a

b

)
,

(
a

b

)〉
= a2 + b2 =

∣∣∣∣∣∣∣∣(ab
)∣∣∣∣∣∣∣∣2

Observe that this formula agrees with what (6) says. In fact, more generally, the scalar
product of two proportional vectors is as follows, again in agreement with (6):〈(

a

b

)
,

(
λa

λb

)〉
= λa2 + λb2 = ±

∣∣∣∣∣∣∣∣(ab
)∣∣∣∣∣∣∣∣ · ∣∣∣∣∣∣∣∣(λaλb

)∣∣∣∣∣∣∣∣
In order to prove now (5), we can assume using (3) that we have ||A|| = ||B|| = 1.

But here, assuming A ⊥ B, if s is the angle formed by A with the Ox axis, we have:

< A,B >=

〈(
cos s

sin s

)
,±
(
− sin s

cos s

)〉
= 0
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Getting now to (6), which will prove as well the converse of this, again we can assume
||A|| = ||B|| = 1, and if s is the angle formed by A with the Ox axis, we have:

< A,B > =

〈(
cos s

sin s

)
,

(
cos(s+ t)

sin(s+ t)

)〉
= cos s cos(s+ t) + sin s sin(s+ t)

= cos((s+ t)− s)
= cos t

As for (7), this is a reformulation of (6), using the above formula of < A, λA >. □

As an application of our scalar product technology, we can solve now two questions
that we had left. To start with, we can solve Question 9.8, majestically, as follows:

Theorem 9.14. The line equation ax+ by + c = 0 can be written as〈(
a

b

)
,

(
x

y

)〉
= −c

with the vector
(
a
b

)
being any nonzero vector orthogonal to the line.

Proof. This is indeed something self-explanatory, and very beautiful. □

As a second application, which is more philosophical, and solving a question that we
had open since the beginning of chapter 5, some 100 pages ago, we have:

Theorem 9.15. The formula for scalar products, namely

< A,B >= ||A|| · ||B|| · cos t
with t being the angle between A,B, tells us what the cosine is good for.

Proof. This is again something self-explanatory, and very beautiful. □

Very nice all this, and we will make a good use of the scalar products, in what follows.
Moving on now, shall we stop here, or develop some more vector calculus tools?

In answer, I don’t know about you, but in what regards me, I’m still a bit scared by
trigonometry, and would feel more confident with more vector weapons on me. So, with
orthogonality understood, let us discuss now areas, that can only help us, later.

We are very used to the areas of triangles, but for our purposes here, it is better to
deal with areas of parallelograms. And here, we have the following key result:

Theorem 9.16. The area of the parallelogram formed by
(
a
c

)
and

(
b
d

)
is

A =

∣∣∣∣det(a b
c d

)∣∣∣∣
with the determinant on the right being given by det = ad− bc.



9C. SCALAR PRODUCTS 217

Proof. Many things can be said here, the idea with this being as follows:

(1) As a first observation, the vectors are proportional,
(
a
c

)
∼
(
b
d

)
, or equivalently,

their parallelogram area is 0, precisely when the following quantity vanishes:

det

(
a b
c d

)
= ad− bc

Thus, we know one thing, and with this justifying the introduction of det.

(2) Getting now to the general case, this does not look hard to prove, with the variety
of techniques that we have, at our disposal. However, since what we will be doing here
extends in fact to arbitrary N dimensions, and we will need this later in this book, it is
better to manufacture a proof starting from the basics, namely the Thales theorem.

(3) So, getting started now, in general, we can assume for simplifying that we are in
the case a, b, c, d > 0, the proof in general being similar. Moreover, by interchanging if
needed the vectors

(
a
c

)
,
(
b
d

)
, we can assume that we are in the following situation:

a

c
>
b

d

(4) Now let us slide the upper side of the parallelogram downwards left, until we reach
Oy. Our parallelogram, which has not changed its area in this process, becomes:

c+ d ◦
c+ x •
d ◦
x •

OO

c •

• //

b a a+ b

(5) Moreover, we can further modify this parallelogram, once again by not altering its
area, by sliding the right side downwards, until we reach the Ox axis:

c+ x ◦

x •

OO

•

c ◦

• • //

b a a+ b
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(6) Let us compute now the area. Since our two sliding operations have not changed
the area of the original parallelogram, this area is given by the following formula:

A = ax

In order to compute the quantity x, observe that in the context of the first move, we
have two similar triangles, according to the following picture:

c+ d •

d ◦

OO

• ◦
x •

//

b a a+ b

Thus, we are led to the following equation for the number x:

d− x
b

=
c

a

By solving this equation, we obtain the following value for x:

x = d− bc

a

(7) Thus the area of our parallelogram, or rather of the final rectangle obtained from
it, which has the same area as the original parallelogram, is given by:

A = ax = ad− bc

We are therefore led to the conclusion in the statement. □

Many other things can be said about determinants, and we will be back to this on
several occasions. In the meantime, let us record the following formula, which shows that
the determinants appear as particular cases of scalar products, or perhaps vice versa:

det

(
a b
c d

)
=

〈(
a

c

)
,

(
d

−b

)〉
And with this, end of our general vector study, we have now tools for attacking all

sorts of questions. Getting back to geometry, we can reprove the Ceva theorem:
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Theorem 9.17 (Ceva). In a configuration of the following type, with a triangle ABC
containing inner lines AD,BE,CF which cross,

A

F E

B D C

we have the following formula:

AF

FB
· BD
DC
· CE
EA

= 1

Moreover, the converse holds, with this formula guaranteeing that AD,BE,CF cross.

Proof. As explained in chapter 4, this follows either from Menelaus applied 3 times,
or directly, by computing some areas, or via the duality between points and lines, from
Menelaus. So, let us try now to manufacture a fourth proof, using coordinates:

(1) We can choose the origin O to be the middle point on the above picture, so that
the vectors D,E, F are given by formulae as follows, for certain d, e, f ∈ R:

D = dA , E = eB , F = fC

Now let us try to compute E = eB. This lies on AC, so we must have:

eB = λA+ (1− λ)C

We are therefore led to the following system of equations, for E = eB:{
eB1 = λA1 + (1− λ)C1

eB2 = λA2 + (1− λ)C2

(2) Equivalently, we have the following system of equations:{
λ(A1 − C1) = eB1 − C1

λ(A2 − C2) = eB2 − C2

By multiplying these equations by B2, B1 and substracting, we get:

λ =
B1C2 −B2C1

(A1 − C1)B2 − (A2 − C2)B1
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(3) Which looks quite complicated, but for Ceva, what we need is the following ratio:

CE

EA
=

λ

1− λ

=
B1C2 −B2C1

(A1 − C1)B2 − (A2 − C2)B1 −B1C2 +B2C1

=
B1C2 −B2C1

A1B2 − A2B1

=
det(BC)

det(AB)

(4) And with this, good news, we can reprove the Ceva theorem, as follows:

AF

FB
· BD
DC
· CE
EA

=
det(CA)

det(CB)
· det(AB)

det(AC)
· det(BC)
det(AB)

= 1

(5) Finally, let us mention that this proof is in fact not very far from what we were
doing in chapter 4 with areas, because the above 2 × 2 determinants do compute areas,
which are in fact exactly the same areas as those that we used in chapter 4. □

9d. Triangles, revised

As a continuation of the above, we still have many things to be done, in relation with
triangles and their centers. Let us start with the following key result:

Theorem 9.18. We can talk about trilinear coordinates with respect to a triangle

A

bc

x

y
z

B a C

with these being the distances (x, y, z) to the sides, as indicated, up to a common scalar,
and the trilinear coordinates of the basic triangle centers are as follows:

(1) Barycenter: (1/a, 1/b, 1/c).
(2) Incenter: (1, 1, 1).
(3) Excenters: (−1, 1, 1), (1,−1, 1), (1, 1,−1).
(4) Circumcenter: (cosA, cosB, cosC).
(5) Orthocenter: (secA, secB, secC).
(6) Nine-point circle center: (cos(B − C), cos(C − A), cos(A−B)).
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Proof. To start with, we can certainly talk about the distances (x, y, z) to the sides
of a given point, which uniquely determine the point. However, it is technically convenient
to allow a scalar in all this, by making the following convention, for any λ ̸= 0:

(x, y, z) = (λx, λy, λz)

Observe that the value of the scalar, and so of the original distances (x, y, z), called
“absolute” trilinear coordinates, can be recaptured by using areas, as follows:

S =
ax+ by + cz

2
To be more precise, here S is the area of the triangle, and if the point lies outside

of the triangle, this formula must be fine-tuned with some − signs, in the obvious way.
Getting now to explicit computations, for various centers, these are as follows:

(1) The altitude lengths being (2S/a, 2S/b, 2S/c), the absolute coordinates of the
barycenter are 2S/3(1/a, 1/b, 1/c), which by simplifying leads to (1/a, 1/b, 1/c).

(2) For the incenter things are trivial, the absolute coordinates being (r, r, r), with r
being the radius of the incircle, which by simplifying leads to (1, 1, 1).

(3) Same situation for the excenters, their absolute coordinates being respectively
(−ra, ra, ra), (rb,−rb, rb), (rc, rc,−rc), with ra, rb, rc being the external circle radii.

(4) The absolute coordinates of the circumcenter are (R cosA,R cosB,R cosC), with
R being the circle radius, which by simplifying leads to (cosA, cosB, cosC).

(5) For the orthocenter, we have seen in chapter 5 that we have x = 2R cosB cosC,
and with this being proportional to secA, we obtain (secA, secB, secC).

(6) As for the center of the nine-point circle, we have seen in chapter 5 that we have
x = R cos(B − C), so we obtain (cos(B − C), cos(C − A), cos(A−B)). □

Getting now to the other triangle centers, these can be computed as well by using our
previous formulae in this book, with the Gergonne point appearing as follows:(

a

b+ c− a
,

b

a+ c− b
,

c

a+ b− c

)
As for the Nagel point, this appears similarly, with all fractions inverted:(

b+ c− a
a

,
a+ c− b

b
,
a+ b− c

c

)
Next, regarding the Feuerbach points, the result here is as follows:

Theorem 9.19. The Feuerbach point of a triangle ABC has trilinear coordinates

(1− cos(B − C), 1− cos(C − A), 1− cos(A−B))

and a similar result holds for the secondary Feuerbach points, with − signs added.
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Proof. This is something a bit more technical, the idea being as follows:

(1) Consider indeed the point Z in the statement. There is a clear relation here with
the incenter I and the nine-point circle center N , coming from the following formulae:

I = (1, 1, 1)

N = (cos(B − C), cos(C − A), cos(A−B))

Z = (1− cos(B − C), 1− cos(C − A), 1− cos(A−B))

To be more precise, we can see right away from this that I,N, Z are collinear.

(2) Next, we must prove the Feuerbach theorem, stating that the incircle, centered
at I and having radius r, and the nine-point circle, centered at N and having radius
ρ = R/2, are indeed tangent at Z. This amounts in proving the following formulae:

IZ = r , NZ = ρ , IN = ρ− r
(3) To be more precise, thanks to our observation in (1) that I,N, Z are collinear,

we just have to prove two of these formulae, with the third one being automatic. But
this can be done indeed, with some trigonometric pain, by computing first the absolute
coordinates of Z, and then computing the above distances, using Pythagoras.

(4) Finally, the same arguments apply to the secondary Feuerbach points Za, Zb, Zc,
which can be constructed similarly, by formally removing N from the excenters Ia, Ib, Ic.
And we will leave this as an exercise for you too, all good mathematics, enjoy. □

Moving on, we can construct as well new triangle centers by using our trilinear coor-
dinate technology, notably with the symmedian point, which appears as follows:

Theorem 9.20 (Lemoine). The symmedians of a triangle, appearing by symmetrizing
each median with respect to the corresponding angle bisector

A

B E M C

meet at a point having coordinates (a, b, c), called symmedian or Lemoine point.

Proof. There are many known proofs here, but with the trilinear coordinates of the
intesection being given by such a simple formula, this is an invitation to coordinates:

(1) So, consider the point K = (a, b, c), and let us project it on AB,AC, into points
X, Y . We have then the following computation, involving the angles on top:

sin(KAB)

sin(KAC)
=
KX/KA

KY/KA
=
KX

KY
=
c

b
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(2) On the other hand, regarding the median, if we project B,C on it, to points Z, T ,
we have the following computation, again involving the angles on top:

sin(MAB)

sin(MAC)
=
BZ/AB

CT/AC
=
AC

AB
=
b

c

(3) Now since the ratios that we found in (1,2) are inverted, we conclude that K lies
indeed on the symmedian emanating from A, and this gives the result. □

As a last piece of general theory, as a useful technical version of the trilinear coordi-
nates, we can talk as well about barycentric coordinates, as follows:

Theorem 9.21. We can talk about barycentric coordinates with respect to a triangle

A

bc

•xoo

P

•y // B a C •zoo

corresponding to the weights (x, y, z) that must be installed at vertices, as for P to be the
physical barycenter. These are again taken up to a scalar, defined according to

P =
xA+ yB + zC

x+ y + z

and called absolute when x+ y + z = 1. The conversion formulae are

trilinear (x, y, z) −→ barycentric (ax, by, cz)

barycentric (x, y, z) −→ trilinear (x/a, y/b, z/c)

with a, b, c being the sides. In practice, the formulae for known triangle centers are similar
to those before, with some simplifying, and some becoming more complicated.

Proof. Many things going on here, the idea being as follows:

(1) It is best to start algebrically, by defining the absolute barycentric coordinates of
a point P as being the unique numbers x, y, z such that the following happens:

P = xA+ yB + xC , x+ y + z = 1

Then, as before with the trilinear coordinates, it is technically convenient to allow a
scalar in all this, by making the following convention, for any λ ̸= 0:

(x, y, z) = (λx, λy, λz)
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(2) Next, we have the physical interpretation in the statement, say coming via the
considerations from chapter 2, and with the remark that the weights to be installed at
vertices are unique up to a scalar, that is, are subject to (x, y, z) = (λx, λy, λz).

(3) Getting now to the point, explicit computation of the barycentric coordinates, our
claim is that we have the following key formula, with all areas being signed:

(x, y, z) = (area(PBC), area(PAC), area(PAB))

(4) But this follows from the following computation, for the corresponding absolute
barycentric coordinates (x, y, z), based on the area formula from Theorem 9.16:

2 · area(PBC) = det(P −B,C −B)

= det(xA+ (y − 1)B + zC,C −B)

= det(xA− (x+ z)B + zC,C −B)

= det(x(A−B) + z(C −B), C −B)

= det(x(A−B), C −B)

= x det(A−B,C −B)

= x× 2 · area(ABC)
(5) Next, and coming as a consequence of the above formula, we have the conversion

formulae between trilinear and barycentric coordinates in the statement.

(6) Finally, regarding the last assertion, many things can be said here, starting with
the fact that the barycenter becomes simpler, (1, 1, 1), while the incenter becomes more
complicated, (a, b, c). Exercise of course for you, to learn more about all this. □

9e. Exercises

This was a key chapter, featuring many computations with coordinates, in relation
with everything that we knew. Our exercises are about completing these computations:

Exercise 9.22. Prove the Desargues theorem, using coordinates.

Exercise 9.23. Duality between points and lines, using coordinates.

Exercise 9.24. Prove the Pappus theorem, using coordinates.

Exercise 9.25. Work out the basics of the cross ratio, using coordinates.

Exercise 9.26. Construct all basic triangle centers, using coordinates.

Exercise 9.27. Nine-point circle and Euler line, using coordinates.

Exercise 9.28. Feuerbach points fully done, using coordinates.

Exercise 9.29. Also Pascal and Brianchon, using coordinates.

As bonus exercise, which might actually help with this, learn a bit more linear algebra,
in 3D, which can be very useful, in order to manipulate the trilinear coordinates.



CHAPTER 10

Ellipses, conics

10a. Matrices, rotations

As another application of the vector calculus, that we will need among others in
order to study the conics, let us discuss now the transformations of the plane. The
transformations of the plane R2 that we are interested in are as follows:

Definition 10.1. A map f : R2 → R2 is called affine when it maps lines to lines,

f(tx+ (1− t)y) = tf(x) + (1− t)f(y)

for any x, y ∈ R2 and any t ∈ R. If in addition f(0) = 0, we call f linear.

As a first observation, our “maps lines to lines” interpretation of the equation in
the statement assumes that the points are degenerate lines, and this in order for our
interpretation to work when x = y, or when f(x) = f(y). Also, what we call line is not
exactly a set, but rather a dynamic object, think trajectory of a point on that line. We
will be back to this later, once we will know more about such maps.

Here are some basic examples of symmetries, all being linear in the above sense:

Proposition 10.2. The symmetries with respect to Ox and Oy are:(
x

y

)
→
(
x

−y

)
,

(
x

y

)
→
(
−x
y

)
The symmetries with respect to the x = y and x = −y diagonals are:(

x

y

)
→
(
y

x

)
,

(
x

y

)
→
(
−y
−x

)
All these maps are linear, in the above sense.

Proof. The fact that all these maps are linear is clear, because they map lines to
lines, in our sense, and they also map 0 to 0. As for the explicit formulae in the statement,
these are clear as well, by drawing pictures for each of the maps involved. □

Here are now some basic examples of rotations, once again all being linear:

225
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Proposition 10.3. The rotations of angle 0◦ and of angle 90◦ are:(
x

y

)
→
(
x

y

)
,

(
x

y

)
→
(
−y
x

)
The rotations of angle 180◦ and of angle 270◦ are:(

x

y

)
→
(
−x
−y

)
,

(
x

y

)
→
(
y

−x

)
All these maps are linear, in the above sense.

Proof. As before, these rotations are all linear, for obvious reasons. As for the
formulae in the statement, these are clear as well, by drawing pictures. □

Here are some basic examples of projections, once again all being linear:

Proposition 10.4. The projections on Ox and Oy are:(
x

y

)
→
(
x

0

)
,

(
x

y

)
→
(
0

y

)
The projections on the x = y and x = −y diagonals are:(

x

y

)
→ 1

2

(
x+ y

x+ y

)
,

(
x

y

)
→ 1

2

(
x− y
y − x

)
All these maps are linear, in the above sense.

Proof. Again, these projections are all linear, and the formulae are clear as well, by
drawing pictures, with only the last 2 formulae needing some explanations:

(1) In what regards the projection on the x = y diagonal, the picture here is as follows:

◦

OO

•

◦ •

__

◦ ◦ ◦ //

But this gives the result, since the 45◦ triangle shows that this projection leaves
invariant x+ y, so we can only end up with the average (x+ y)/2, as double coordinate.

(2) As for the projection on the x = −y diagonal, the proof here is similar. □

Finally, we have the translations, which are as follows:



10A. MATRICES, ROTATIONS 227

Proposition 10.5. The translations are exactly the maps of the form(
x

y

)
→
(
x+ p

y + q

)
with p, q ∈ R, and these maps are all affine, in the above sense.

Proof. A translation f : R2 → R2 is clearly affine, because it maps lines to lines.
Also, such a translation is uniquely determined by the following vector:

f

(
0

0

)
=

(
p

q

)
To be more precise, f must be the map which takes a vector

(
x
y

)
, and adds this vector(

p
q

)
to it. But this gives the formula in the statement. □

Summarizing, we have many interesting examples of linear and affine maps. Let us
develop now some general theory, for such maps. As a first result, we have:

Theorem 10.6. For a map f : R2 → R2, the following are equivalent:

(1) f is linear in our sense, mapping lines to lines, and 0 to 0.
(2) f maps sums to sums, f(x+ y) = f(x) + f(y), and satisfies f(λx) = λf(x).

Proof. This is something which comes from definitions, as follows:

(1) =⇒ (2) We know that f satisfies the following equation, and f(0) = 0:

f(tx+ (1− t)y) = tf(x) + (1− t)f(y)
By setting y = 0, and by using our assumption f(0) = 0, we obtain, as desired:

f(tx) = tf(x)

As for the first condition, regarding sums, this can be established as follows:

f(x+ y) = f

(
2 · x+ y

2

)
= 2f

(
x+ y

2

)
= 2 · f(x) + f(y)

2
= f(x) + f(y)

(2) =⇒ (1) Conversely now, assuming that f satisfies f(x + y) = f(x) + f(y) and
f(λx) = λf(x), then f must map lines to lines, as shown by:

f(tx+ (1− t)y) = f(tx) + f((1− t)y)
= tf(x) + (1− t)f(y)

Also, we have f(0) = f(2 · 0) = 2f(0), which gives f(0) = 0, as desired. □
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The above result is very useful, and in practice, we will often use the condition (2)
there, somewhat as a new definition for the linear maps. Let us record this as follows:

Definition 10.7 (upgrade). A map f : R2 → R2 is called:

(1) Linear, when it satisfies f(x+ y) = f(x) + f(y) and f(λx) = λf(x).
(2) Affine, when it is of the form f = g + x, with g linear, and x ∈ R2.

Done with the axiomatics of plane transformations, you would say? You must be
kidding, because coming on top of this definition, we have the following powerful result,
which can stand as yet another axiomatization of the linear and affine maps:

Theorem 10.8. The linear maps f : R2 → R2 are precisely the maps of type

f

(
x

y

)
=

(
ax+ by

cx+ dy

)
and the affine maps f : R2 → R2 are precisely the maps of type

f

(
x

y

)
=

(
ax+ by

cx+ dy

)
+

(
p

q

)
depending respectively on 4, and on 6 real parameters.

Proof. Assuming that f is linear in the sense of Definition 10.7, we have:

f

(
x

y

)
= f

(
x

(
1

0

)
+ y

(
0

1

))
= xf

(
1

0

)
+ yf

(
0

1

)
Thus, we obtain the formula in the statement, with a, b, c, d ∈ R being given by:

f

(
1

0

)
=

(
a

c

)
, f

(
0

1

)
=

(
b

d

)
In the affine case now, we have as extra piece of data a vector, as follows:

f

(
0

0

)
=

(
p

q

)
Indeed, if f : R2 → R2 is affine, then the following map is linear:

f −
(
p

q

)
: R2 → R2

Thus, by using the formula for linear maps, we obtain the result. □

As a further twist to the story, in what regards the linear maps, appearing as above,
we can put our parameters a, b, c, d into a matrix, in the following way:
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Definition 10.9. A matrix A ∈M2(R) is an array as follows:

A =

(
a b
c d

)
These matrices act on the vectors in the following way,(

a b
c d

)(
x

y

)
=

(
ax+ by

cx+ dy

)
the rule being “multiply the rows of the matrix by the vector”.

The above multiplication formula might seem a bit complicated, at a first glance, but
it is not. Here is an example for it, quickly worked out:(

1 2
5 6

)(
3

1

)
=

(
1 · 3 + 2 · 1
5 · 3 + 6 · 1

)
=

(
5

21

)
Now with the above multiplication convention for matrices and vectors, we can turn

Theorem 10.8 into something even better, and more powerful, as follows:

Theorem 10.10. The linear maps f : R2 → R2 are precisely the maps of type

f(v) = Av

and the affine maps f : R2 → R2 are precisely the maps of type

f(v) = Av + w

with A being a 2× 2 matrix, and with v, w ∈ R2 being vectors, written vertically.

Proof. This comes indeed from Theorem 10.8, via Definition 10.9, with:

A =

(
a b
c d

)
, v =

(
x

y

)
, w =

(
p

q

)
Thus, we are led to the conclusions in the statement. □

At the level of basic examples, the symmetries from Proposition 10.2, with respect to
Ox, Oy and to the diagonals x = y, x = −y, come from the following matrices:(

1 0
0 −1

)
,

(
−1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −1
−1 0

)
Indeed, this is clear from the formulae in Proposition 10.2. Next, the rotations from

Proposition 10.3, of angles 0◦, 90◦, 180◦, 270◦, come from the following matrices:(
1 0
0 1

)
,

(
0 −1
1 0

)
,

(
−1 0
0 −1

)
,

(
0 1
−1 0

)
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And finally, the various projections from Proposition 10.4, on Ox, Oy and on the
diagonals x = y, x = −y, come from the following matrices:(

1 0
0 0

)
,

(
0 0
0 1

)
,

1

2

(
1 1
1 1

)
,

1

2

(
1 −1
−1 1

)
In view of this, let us discuss now the computation of the arbitrary symmetries, rota-

tions and projections. We begin with the rotations, whose formula is a must-know:

Proposition 10.11. The rotation of angle t ∈ R is given by the matrix

Rt =

(
cos t − sin t
sin t cos t

)
depending on t ∈ R taken modulo 2π.

Proof. The rotation being linear, it must correspond to a certain matrix
(
a b
c d

)
. But

we can guess this matrix via its action on
(
1
0

)
and

(
0
1

)
. Indeed, pictures show that:(

a b
c d

)(
1
0

)
=

(
cos t
sin t

)
,

(
a b
c d

)(
0
1

)
=

(
− sin t
cos t

)
Guessing now the matrix is not complicated, because the first equation gives us the

first column, and the second equation gives us the second column:(
a

c

)
=

(
cos t
sin t

)
,

(
b

d

)
=

(
− sin t
cos t

)
Thus, we can just put together these two vectors, and we obtain our matrix. □

Regarding now the symmetries, the formula here is as follows:

Proposition 10.12. The symmetry with respect to Ox rotated by t/2 ∈ R is

St =

(
cos t sin t
sin t − cos t

)
depending on t ∈ R taken modulo 2π.

Proof. As before, we can guess the matrix via its action on the basic coordinate
vectors

(
1
0

)
and

(
0
1

)
. Indeed, some quick pictures show that we must have:(
a b
c d

)(
1
0

)
=

(
cos t
sin t

)
,

(
a b
c d

)(
0
1

)
=

(
sin t
− cos t

)
Thus, we can just put together these two vectors, and we obtain our matrix. □

Finally, regarding the projections, the formula here is as follows:



10A. MATRICES, ROTATIONS 231

Proposition 10.13. The projection on Ox rotated by t/2 ∈ R is

Pt =
1

2

(
1 + cos t sin t
sin t 1− cos t

)
depending on t ∈ R taken modulo 2π.

Proof. Indeed, some quick pictures, using similarity of triangles, show that:

Pt

(
1
0

)
= cos

t

2

(
cos t

2

sin t
2

)
=

1

2

(
1 + cos t
sin t

)

Pt

(
0
1

)
= sin

t

2

(
cos t

2

sin t
2

)
=

1

2

(
sin t

1− cos t

)
Now by putting together these two vectors, and we obtain our matrix. □

In order to formulate now a second theorem, dealing with compositions of maps, let
us make the following multiplication convention, between matrices and matrices:(

a b
c d

)(
p q
r s

)
=

(
ap+ br aq + bs
cp+ dr cq + ds

)
This might look a bit complicated, but as before, in what was concerning multiplying

matrices and vectors, the idea is very simple, namely “multiply the rows of the first matrix
by the columns of the second matrix”. With this convention, we have:

Theorem 10.14. If we denote by fA : R2 → R2 the linear map associated to A,

fA(v) = Av

then we have the following multiplication formula for such maps:

fAfB = fAB

That is, the composition of linear maps corresponds to the multiplication of matrices.

Proof. We want to prove that we have the following formula, valid for any two
matrices A,B ∈M2(R), and any vector v ∈ R2:

A(Bv) = (AB)v

For this purpose, let us write our matrices and vector as follows:

A =

(
a b
c d

)
, B =

(
p q
r s

)
, v =

(
x

y

)
The formula that we want to prove becomes:(

a b
c d

)[(
p q
r s

)(
x

y

)]
=

[(
a b
c d

)(
p q
r s

)](
x

y

)
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But this is the same as saying that we have:(
a b
c d

)(
px+ qy

rx+ sy

)
=

(
ap+ br aq + bs
cp+ dr cq + ds

)(
x

y

)
And this latter formula does hold indeed, because on both sides we get:(

apx+ aqy + brx+ bsy

cpx+ cqy + drx+ dsy

)
Thus, we have proved the result. □

As a verification for the above result, let us compose two rotations. The computation
here is as follows, yieding a rotation, as it should, and of the correct angle:

RsRt =

(
cos s − sin s
sin s cos s

)(
cos t − sin t
sin t cos t

)
=

(
cos s cos t− sin s sin t − cos s sin t− sin t cos s
sin s cos t+ cos s sin t − sin s sin t+ cos s cos t

)
=

(
cos(s+ t) − sin(s+ t)
sin(s+ t) cos(s+ t)

)
= Rs+t

Finally, in relation with the considerations from chapter 9, we have:

Theorem 10.15. A matrix is invertible precisely when its determinant

det

(
a b
c d

)
= ad− bc

is nonzero, and in this case, we have the following inversion formula:(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
Moreover, this result can be used for inverting the linear maps.

Proof. Many things can be said here, the idea being as follows:

(1) To start with, ad − bc = 0 means
(
a
c

)
∼
(
b
d

)
, so the associated linear map is not

surjective, and by Theorem 10.14 it follows that our matrix is not invertible.

(2) Next, assuming ad− bc ̸= 0, let us try to solve the following problem:(
a b
c d

)(
∗ ∗
∗ ∗

)
=

(
ad− bc 0

0 ad− bc

)
But the solution here is a no-brainer, and we are led to the inversion formula in the

statement. As for the last assertion, this follows from Theorem 10.14.
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(3) Finally, you might wonder what the determinant really is. In answer, we can say
that we have by definition the following formula, for any x, y ∈ R2, with the sign being
+ when x, y come in this order, counterclockwise, and being − otherwise:

det(x y) = ±area(O, x, y, x+ y)

Indeed, this makes the link with the considerations from chapter 9, and the results
there tell us that this is indeed the determinant, as appearing in the statement. □

10b. Ellipses, conics

Getting back now to geometry, let us talk about conics. We have already met them
in chapter 4, and time to have a systematic look at all this. We first have:

Theorem 10.16. The ellipses, taken centered at the origin 0, and squarely oriented
with respect to Oxy, can be defined in 4 possible ways, as follows:

(1) As the curves given by an equation as follows, with a, b > 0:(x
a

)2
+
(y
b

)2
= 1

(2) Or given by an equation as follows, with q > 0, p = −q, and l ∈ (0, 2q):

d(z, p) + d(z, q) = l

(3) As the curves appearing when drawing a circle, from various perspectives:

⃝ → ?

(4) As the closed non-degenerate curves appearing by cutting a cone with a plane.

Proof. This might look a bit confusing, and you might say, what exactly is to be
proved here. Good point, and in answer, what is to be proved is that the above construc-
tions (1-4) give rise to the same class of curves. And this can be done as follows:

(1) To start with, let us draw a picture from what comes out of (1), which will be our
main definition for the ellipses, in what follows. Here that is, making it clear what the
parameters a, b > 0 stand for, with 2a× 2b being the gift box size for our ellipse:

•b

•−a •a

•−b



234 10. ELLIPSES, CONICS

(2) Let us prove now that such an ellipse has two focal points, as stated in (2). We
must look for a number r > 0, and a number l > 0, such that our ellipse appears as
d(z, p) + d(z, q) = l, with p = (0,−r) and q = (0, r), according to the following picture:

•b

•−a •−r •r •a

•−b

(3) Let us first compute these numbers r, l > 0. Assuming that our result holds indeed
as stated, by taking z = (0, a), we see that the length l is:

l = (a− r) + (a+ r) = 2a

As for the parameter r, by taking z = (b, 0), we conclude that we must have:

2
√
b2 + r2 = 2a =⇒ r =

√
a2 − b2

(4) With these observations made, let us prove now the result. Given l, r > 0, and
setting p = (0,−r) and q = (0, r), we have the following computation, with z = (x, y):

d(z, p) + d(z, q) = l

⇐⇒
√

(x+ r)2 + y2 +
√

(x− r)2 + y2 = l

⇐⇒
√

(x+ r)2 + y2 = l −
√

(x− r)2 + y2

⇐⇒ (x+ r)2 + y2 = (x− r)2 + y2 + l2 − 2l
√

(x− r)2 + y2

⇐⇒ 2l
√

(x− r)2 + y2 = l2 − 4xr

⇐⇒ 4l2(x2 + r2 − 2xr + y2) = l4 + 16x2r2 − 8l2xr

⇐⇒ 4l2x2 + 4l2r2 + 4l2y2 = l4 + 16x2r2

⇐⇒ (4x2 − l2)(4r2 − l2) = 4l2y2
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(5) Now observe that we can further process the equation that we found as follows:

(4x2 − l2)(4r2 − l2) = 4l2y2 ⇐⇒ 4x2 − l2

l2
=

4y2

4r2 − l2

⇐⇒ 4x2 − l2

l2
=

y2

r2 − l2/4

⇐⇒
( x
2l

)2
− 1 =

(
y√

r2 − l2/4

)2

⇐⇒
( x
2l

)2
+

(
y√

r2 − l2/4

)2

= 1

(6) Thus, our result holds indeed, and with the numbers l, r > 0 appearing, and no
surprise here, via the formulae l = 2a and r =

√
a2 − b2, found in (3) above.

(7) Getting back to our theorem, we have two other assertions there at the end, (3,4).
But, thinking a bit, these assertions are equivalent, and (4) can be established by doing
some 3D computations, that we will leave here as an instructive exercise, for you. □

Along the same lines, at a more advanced level, we have the following result:

Theorem 10.17. The conics, which are the algebraic curves of degree 2 in the plane,

C =
{
(x, y) ∈ R2

∣∣∣P (x, y) = 0
}

with degP ≤ 2, appear modulo degeneration by cutting a 2-sided cone with a plane, and
can be classified into ellipses, parabolas and hyperbolas.

Proof. This follows by further building on Theorem 10.16, as follows:

(1) Let us first classify the conics up to non-degenerate linear transformations of the
plane, which are by definition transformations as follows, with detA ̸= 0:(

x

y

)
→ A

(
x

y

)
Our claim is that as solutions we have the circles, parabolas, hyperbolas, along with

some degenerate solutions, namely ∅, points, lines, pairs of lines, R2.

(2) As a first remark, it looks like we forgot precisely the ellipses, but via linear
transformations these become circles, so things fine. As a second remark, all our claimed
solutions can appear. Indeed, the circles, parabolas, hyperbolas can appear as follows:

x2 + y2 = 1 , x2 = y , xy = 1
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As for ∅, points, lines, pairs of lines, R2, these can appear too, as follows, and with
our polynomial P chosen, whenever possible, to be of degree exactly 2:

x2 = −1 , x2 + y2 = 0 , x2 = 0 , xy = 0 , 0 = 0

Observe here that, when dealing with these degenerate cases, assuming degP = 2
instead of degP ≤ 2 would only rule out R2 itself, which is not worth it.

(3) Getting now to the proof of our claim in (1), classification up to linear transfor-
mations, consider an arbitrary conic, written as follows, with a, b, c, d, e, f ∈ R:

ax2 + by2 + cxy + dx+ ey + f = 0

Assume first a ̸= 0. By making a square out of ax2, up to a linear transformation in
(x, y), we can get rid of the term cxy, and we are left with:

ax2 + by2 + dx+ ey + f = 0

In the case b ̸= 0 we can make two obvious squares, and again up to a linear transfor-
mation in (x, y), we are left with an equation as follows:

x2 ± y2 = k

In the case of positive sign, x2 + y2 = k, the solutions are the circle, when k ≥ 0, the
point, when k = 0, and ∅, when k < 0. As for the case of negative sign, x2 − y2 = k,
which reads (x−y)(x+y) = k, here once again by linearity our equation becomes xy = l,
which is a hyperbola when l ̸= 0, and two lines when l = 0.

(4) In the case b ̸= 0 the study is similar, with the same solutions, so we are left with
the case a = b = 0. Here our conic is as follows, with c, d, e, f ∈ R:

cxy + dx+ ey + f = 0

If c ̸= 0, by linearity our equation becomes xy = l, which produces a hyperbola or two
lines, as explained before. As for the remaining case, c = 0, here our equation is:

dx+ ey + f = 0

But this is generically the equation of a line, unless we are in the case d = e = 0,
where our equation is f = 0, having as solutions ∅ when f ̸= 0, and R2 when f = 0.

(5) Thus, done with the classification, up to linear transformations as in (1). But this
classification leads to the classification in general too, by applying now linear transforma-
tions to the solutions that we found. So, done with this, and very good.

(6) It remains to discuss the cone cutting. By suitably choosing our coordinate axes
(x, y, z), we can assume that our cone is given by an equation as follows, with k > 0:

x2 + y2 = kz2
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In order to prove the result, we must in principle intersect this cone with an arbitrary
plane, which has an equation as follows, with (a, b, c) ̸= (0, 0, 0):

ax+ by + cz = d

(7) However, before getting into computations, observe that what we want to find is a
certain degree 2 equation in the above plane, for the intersection. Thus, it is convenient
to change the coordinates, as for our plane to be given by the following equation:

z = 0

(8) But with this done, what we have to do is to see how the cone equation x2+y2 = kz2

changes, under this change of coordinates, and then set z = 0, as to get the (x, y) equation
of the intersection. But this leads, via some thinking or computations, to the conclusion
that the cone equation x2 + y2 = kz2 becomes in this way a degree 2 equation in (x, y),
which can be arbitrary, and so to the final conclusion in the statement. □

In practice now, we already know many things about ellipses, from the beginning of
this section. Similar things can be said about parabolas and hyperbolas.

Getting now to more advanced plane geometry, we have the following result:

Theorem 10.18 (Pascal). Given a hexagon lying on a conic

E

A C

D F

B

the pairs of opposite sides intersect in points which are collinear.

Proof. This is something quite standard, the idea being as follows:

(1) We already know this from chapter 4 for the circles, and by using the cone cutting
from Theorem 10.17, and projecting, we have this, more generally, for all ellipses.

(2) But then, based on the fact that the ellipses are generic conics, we can conclude,
via a standard abstract algebra argument, that the result must hold for all conics.

(3) Alternatively, all this can be proved of course directly, say by using affine coordi-
nates, and with the computations here being an excellent exercise. □



238 10. ELLIPSES, CONICS

As an interesting consequence of the above result, worth recording, we have:

Fact 10.19. The Pascal theorem for conics generalizes the Pappus theorem

C

E

A

D B F

which corresponds to the case where the conic in question consists of 2 lines.

In short, good news, if you had troubles in understanding the proof of Pappus, back
when struggling with chapter 1, no worries, because you can have it now via Pascal. Still
following the material in chapter 4, we have as well the following result:

Theorem 10.20 (Brianchon). Given a hexagon circumscribed around on a conic

A B

F ∗ C

E D

the main diagonals intersect.

Proof. The story here is quite similar to that of the Pascal theorem, the idea being
that we know this from chapter 4 for the circles, and with this actually coming from Pascal
itself, via duality, then the extension to the ellipses is standard, by using Theorem 10.17
and projecting, and finally the extension to all conics is standard too, by using a standard
abstract algebra argument, involving genericity. Alternatively, this can be proved as well
by using coordinates, and with the computations here being an excellent exercise. □

And with this, good news, looking back restrospectively at what we wanted to do in
the present Part III, namely reviewing the geometry from Part I by using coordinates, all
that we knew from Part I, or almost, has been successfully reviewed. Very nice.
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10c. Polar coordinates

Moving on with our mathematics, and with the sky being the limit, we can in fact do
better than the affine coordinates, by introducing polar coordinates, as follows:

Theorem 10.21. The points of the plane x ∈ R2, written as vectors

x =

(
a

b

)
can be written in polar coordinates, in the following way,

x =

(
r cos t

r sin t

)
with the connecting formulae being as follows,

a = r cos t , b = r sin t

and in the other sense being as follows,

r =
√
a2 + b2 , tan t =

b

a

and with the numbers r, t being called modulus, and argument.

Proof. This is something self-explanatory and intuitive, with r =
√
a2 + b2 being as

usual the length of the vector, and with t being the angle made by the vector with the
Ox axis. That is, with the picture for what is going on in the above being as follows:

b •x

• //

OO

r

t

a

Thus, we are led to the conclusions in the statement. □

As a complement to the above result, in relation with notations, let us record:

Comment 10.22. In the presence of physics, and time t, it is better to write:

x =

(
r cos θ

r sin θ

)
However, with no physics present, it is better to use Theorem 10.21 as such.
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And I am saying this because I am usually faster than my students to do computations
with polar coordinates, thanks to my dumb t, which is quicker to write than their θ.

As an application now of this technology, and coming as a continuation of our work
on conics, let us investigate more general curves. Let us start our discussion with:

Definition 10.23. An algebraic curve in R2 is the vanishing set

C =
{
(x, y) ∈ R2

∣∣∣P (x, y) = 0
}

of a polynomial P ∈ R[X, Y ] of arbitrary degree.

We already know well the algebraic curves in degree 2, which are the conics, and a first
problem is, what results from what we learned about conics have a chance to be relevant
to the arbitrary algebraic curves. And normally none, because the ellipses, parabolas and
hyperbolas are obviously very particular curves, having very particular properties.

Let us record however a useful statement here, as follows:

Proposition 10.24. The conics can be written in cartesian, polar, or parametric
coordinates, with the equations for the unit circle being

x2 + y2 = 1 , r = 1 , x = cos t , y = sin t

and with the equations for ellipses, parabolas and hyperbolas being similar.

Proof. The equations for the circle are clear, those for ellipses were found in the
above, and we will leave as an exercise those for parabolas and hyperbolas. □

As a true answer to our question now, coming this time from a very modest conic,
namely xy = 0, that we dismissed in the above as being “degenerate”, we have:

Theorem 10.25. The following happen, for curves C defined by polynomials P :

(1) In degree d = 2, curves can have singularities, such as xy = 0 at (0, 0).
(2) In general, assuming P = P1 . . . Pk, we have C = C1 ∪ . . . . . . ∪ Ck.
(3) A union of curves Ci ∪ Cj is generically non-smooth, unless disjoint.
(4) Due to this, we say that C is non-degenerate when P is irreducible.

Proof. All this is self-explanatory, the details being as follows:

(1) This is something obvious, just the story of two lines crossing.

(2) This comes from the following trivial fact, with the notation z = (x, y):

P1 . . . Pk(z) = 0 ⇐⇒ P1(z) = 0, or P2(z) = 0, . . . , or Pk(z) = 0

(3) This is something very intuitive, and it actually takes a bit of time to imagine a
situation where C1 ∩ C2 ̸= ∅, C1 ̸⊂ C2, C2 ̸⊂ C1, but C1 ∪ C2 is smooth. In practice
now, “generically” has of course a mathematical meaning, in relation with probability,
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and our assertion does say something mathematical, that we are supposed to prove. But,
we will not insist on this, and leave this as an instructive exercise, precise formulation of
the claim, and its proof, in the case you are familiar with probability theory.

(4) This is just a definition, based on the above, that we will use in what follows. □

With degree 1 and 2 investigated, and our conclusions recorded, let us get now to
degree 3, see what new phenomena appear here. And here, to start with, we have the
following remarkable curve, well-known from calculus, because 0 is not a maximum or
minimum of the function x→ y, despite the derivative vanishing there:

x3 = y

Also, in relation with set theory and logic, and with the foundations of mathematics
in general, we have the following curve, which looks like the empyset ∅:

(x− y)(x2 + y2 − 1) = 0

But, it is not about counterexamples to calculus, or about logic, that we want to talk
about here. As a first truly remarkable degree 3 curve, or cubic, we have the cusp:

Proposition 10.26. The standard cusp, which is the cubic given by

x3 = y2

has a singularity at (0, 0), with only 1 tangent line at that singularity.

Proof. The two branches of the cusp are indeed both tangent to Ox, because:

y′ = ±3

2

√
x =⇒ y′(0) = 0

Observe also that what happens for the cusp is different from what happens for xy = 0,
precisely because we have 1 line tangent at the singularity, instead of 2. □

As a second remarkable cubic, which gets the crown, and the right to have a Theorem
about it, we have the Tschirnhausen curve, which is as follows:

Theorem 10.27. The Tschirnhausen cubic, given by the following equation,

x3 = x2 − 3y2

makes the dream of xy = 0 come true, by self-intersecting, and being non-degenerate.

Proof. This is something self-explanatory, by drawing a picture, but there are several
other interesting things that can be said about this curve, as follows:

(1) Let us start with the curve written in polar coordinates, as follows:

r cos3
(
t

3

)
= a
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With k = tan(θ/3), the equations of the coordinates are as follows:

x = a(1− 3k2) , y = ak(3− k2)
Now by eliminating k, we reach to the following equation:

(a− x)(8a+ x)2 = 27ay2

(2) By translating horizontally by 8a, and changing signs of variables, we have:

x = 3a(3− k2) , y = ak(3− k2)
Now by eliminating k, we reach to the following equation:

x3 = 9a(x2 − 3y2)

But with a = 1/9 this is precisely the equation in the statement. □

In degree 4 now, quartics, we have enough dimensions for “improving” the cusp and
the Tschirnhausen curve. First we have the cardioid, which is as follows:

Proposition 10.28. The cardioid, which is a quartic, given in polar coordinates by

2r = a(1− cos t)

makes the dream of x3 = y2 come true, by being a closed curve, with a cusp.

Proof. As before with the Tschirnhausen curve, this is something self-explanatory,
by drawing a picture, but there are several things that must be said, as follows:

(1) The cardioid appears by definition by rolling a circle of radius c > 0 around another
circle of same radius c > 0. With t being the rolling angle, we have:

x = 2c(1− cos t) cos t

y = 2c(1− cos t) sin t

(2) Thus, in polar coordinates we get the equation in the statement, with a = 4c:

r = 2c(1− cos t)

(3) Finally, in cartesian coordinates, the equation is as follows:

(x2 + y2)2 + 4cx(x2 + y2) = 4c2y2

Thus, what we have is indeed a degree 4 curve, as claimed. □

Still in degree 4, the crown gets to the Bernoulli lemniscate, which is as follows:

Theorem 10.29. The Bernoulli lemniscate, a quartic, which is given by

r2 = a2 cos 2t

makes the dream of x3 = x2 − 3y2 come true, by being closed, and self-intersecting.
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Proof. As usual, this is something self-explanatory, by drawing a picture, which
looks like an ∞ sign, but there are several other things that must be said. For instance
in cartesian coordinates, the equation of our curve is as follows, with a2 = 2c2:

(x2 + y2)2 = c2(x2 − y2)
Thus, we are led to the conclusions in in the statement. □

We will be back to curves, with a discussion at N = 5 and higher, in chapter 12.

10d. The Solar system

Getting back now to the basics, conics, we have seen in the above that all basic math-
ematics relies on them. Importantly, the same is true for physics, with the planets and
comets in our Solar system moving aroung the Sun on ellipses, and with certain asteroids,
which are here in our system just for visiting, moving on parabolas and hyperbolas.

Excited about this? So am I, and here is the result, due to Kepler and Newton:

Theorem 10.30. Planets and other celestial bodies move around the Sun on conics,

C =
{
(x, y) ∈ R2

∣∣∣P (x, y) = 0
}

with P ∈ R[x, y] being of degree 2, which can be ellipses, parabolas or hyperbolas.

Proof. This is something quite long, requiring some knowledge of calculus and equa-
tions, and more specifically, of multivariable calculus, and with this knowledge being
scheduled for later in this book, at the very end, in chapter 16, we are a bit in trouble.
This being said, no way back, so here is the proof, technically based on that material that
we will learn later, and please relax, take this as a physics class, and enjoy:

(1) According to observations and calculations performed over the centuries, since the
ancient times, and first formalized by Newton, following some groundbreaking work of
Kepler, the force of attraction between two bodies of masses M,m is given by:

||F || = G · Mm

d2

Here d is the distance between the two bodies, and G ≃ 6.674 × 10−11 is a constant.
Now assuming that M is fixed at 0 ∈ R3, the force exterted on m positioned at x ∈ R3,
regarded as a vector F ∈ R3, is given by the following formula:

F = −||F || · x

||x||
= −GMm

||x||2
· x

||x||
= −GMmx

||x||3

But F = ma = mẍ, with a = ẍ being the acceleration, second derivative of the
position, so the equation of motion of m, assuming that M is fixed at 0, is:

ẍ = −GMx

||x||3
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(2) Obviously, the problem happens in 2 dimensions, and you can even find, as an
exercise, a formal proof of that, based on the above equation. Now here the most conve-
nient is to use standard x, y coordinates, and denote our point as z = (x, y). With this
change made, and by setting K = GM , the equation of motion becomes:

z̈ = − Kz

||z||3

In other words, in terms of the coordinates x, y, the equations are:

ẍ = − Kx

(x2 + y2)3/2
, ÿ = − Ky

(x2 + y2)3/2

(3) Let us begin with a simple particular case, that of the circular solutions. To be
more precise, we are interested in solutions of the following type:

x = r cosαt , y = r sinαt

In this case we have ||z|| = r, so our equation of motion becomes:

z̈ = −Kz
r3

On the other hand, differentiating x, y leads to the following formula:

z̈ = (ẍ, ÿ) = −α2(x, y) = −α2z

Thus, we have a circular solution when the parameters r, α satisfy:

r3α2 = K

(4) In the general case now, the problem can be solved via some calculus. Let us write
indeed our vector z = (x, y) in polar coordinates, as in Comment 10.22, as follows:

x = r cos θ , y = r sin θ

We have then ||z|| = r, and our equation of motion becomes, as in (3):

z̈ = −Kz
r3

Let us differentiate now x, y. By using standard calculus rules, we have:

ẋ = ṙ cos θ − r sin θ · θ̇
ẏ = ṙ sin θ + r cos θ · θ̇

Differentiating one more time gives the following formulae:

ẍ = r̈ cos θ − 2ṙ sin θ · θ̇ − r cos θ · θ̇2 − r sin θ · θ̈
ÿ = r̈ sin θ + 2ṙ cos θ · θ̇ − r sin θ · θ̇2 + r cos θ · θ̈

Consider now the following two quantities, appearing as coefficients in the above:

a = r̈ − rθ̇2 , b = 2ṙθ̇ + rθ̈
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In terms of these quantities, our second derivative formulae read:

ẍ = a cos θ − b sin θ
ÿ = a sin θ + b cos θ

(5) We can now solve the equation of motion from (4). Indeed, with the formulae that
we found for ẍ, ÿ, our equation of motion takes the following form:

a cos θ − b sin θ = −K
r2

cos θ

a sin θ + b cos θ = −K
r2

sin θ

But these two formulae can be written in the following way:(
a+

K

r2

)
cos θ = b sin θ(

a+
K

r2

)
sin θ = −b cos θ

By making now the product, and assuming that we are in a non-degenerate case,
where the angle θ varies indeed, we obtain by positivity that we must have:

a+
K

r2
= b = 0

(6) We are almost there. Let us first examine the second equation, b = 0. Remember-
ing who b is, from (4), this equation can be solved as follows:

b = 0 ⇐⇒ 2ṙθ̇ + rθ̈ = 0

⇐⇒ θ̈

θ̇
= −2 ṙ

r

⇐⇒ (log θ̇)′ = (−2 log r)′

⇐⇒ log θ̇ = −2 log r + c

⇐⇒ θ̇ =
λ

r2

As for the first equation the we found, namely a +K/r2 = 0, remembering from (4)

that a was by definition given by a = r̈ − rθ̇2, this equation now becomes:

r̈ − λ2

r3
+
K

r2
= 0

(7) As a conclusion to all this, in polar coordinates, x = r cos θ, y = r sin θ, our
equations of motion are as follows, with λ being a constant, not depending on t:

r̈ =
λ2

r3
− K

r2
, θ̇ =

λ

r2
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Even better now, by writing K = λ2/c, these equations read:

r̈ =
λ2

r2

(
1

r
− 1

c

)
, θ̇ =

λ

r2

(8) As an illustration, let us quickly work out the case of a circular motion, where r

is constant. Here r̈ = 0, so the first equation gives c = r. Also we have θ̇ = α, with:

α =
λ

r2

Assuming θ = 0 at t = 0, from θ̇ = α we obtain θ = αt, and so, as in (3) above:

x = r cosαt , y = r sinαt

Observe also that the condition found in (3) is indeed satisfied:

r3α2 =
λ2

r
=
λ2

c
= K

(9) Back to the general case now, our claim is that we have the following formula, for
the distance r = r(t) as function of the angle θ = θ(t), for some ε, δ ∈ R:

r =
c

1 + ε cos θ + δ sin θ

Let us first check that this formula works indeed. With r being as above, and by using
our second equation found before, θ̇ = λ/r2, we have the following computation:

ṙ =
c(ε sin θ − δ cos θ)θ̇

(1 + ε cos θ + δ sin θ)2

=
λc(ε sin θ − δ cos θ)

r2(1 + ε cos θ + δ sin θ)2

=
λ(ε sin θ − δ cos θ)

c
Thus, the second derivative of the above function r is given, as desired, by:

r̈ =
λ(ε cos θ + δ sin θ)θ̇

c

=
λ2(ε cos θ + δ sin θ)

r2c

=
λ2

r2

(
1

r
− 1

c

)
(10) The above check was something quite informal, and now we must prove that our

formula is indeed the correct one. For this purpose, we use a trick. Let us write:

r(t) =
1

f(θ(t))
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Abbreviated, and by always reminding that f takes θ = θ(t) as variable, this reads:

r =
1

f

With the convention that dots mean as usual derivatives with respect to t, and that
the primes will denote derivatives with respect to θ = θ(t), we have:

ṙ = −f
′θ̇

f 2
= − f

′

f 2
· λ
r2

= −λf ′

By differentiating one more time with respect to t, we obtain:

r̈ = −λf ′′θ̇ = −λf ′′ · λ
r2

= −λ
2

r2
f ′′

On the other hand, our equation for r̈ found in (7) reads:

r̈ =
λ2

r2

(
1

r
− 1

c

)
=
λ2

r2

(
f − 1

c

)
Thus, in terms of f = 1/r as above, our equation for r̈ simply reads:

f ′′ + f =
1

c

But this latter equation is elementary to solve. Indeed, both functions cos t, sin t satisfy
g” + g = 0, so any linear combination of them satisfies as well this equation. But the
solutions of f ′′ + f = 1/c being those of g′′ + g = 0 shifted by 1/c, we obtain:

f =
1 + ε cos θ + δ sin θ

c

Now by inverting, we obtain the formula announced in (9), namely:

r =
c

1 + ε cos θ + δ sin θ

(11) But this leads to the conclusion that the trajectory is a conic. Indeed, in terms
of the parameter θ, the formulae of the coordinates are:

x =
c cos θ

1 + ε cos θ + δ sin θ

y =
c sin θ

1 + ε cos θ + δ sin θ

But these are precisely the equations of conics in polar coordinates.
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(12) To be more precise, in order to find the precise equation of the conic, observe
that the two functions x, y that we found above satisfy the following formula:

x2 + y2 =
c2(cos2 θ + sin2 θ)

(1 + ε cos θ + δ sin θ)2

=
c2

(1 + ε cos θ + δ sin θ)2

On the other hand, these two functions satisfy as well the following formula:

(εx+ δy − c)2 =
c2
(
ε cos θ + δ sin θ − (1 + ε cos θ + δ sin θ)

)2
(1 + ε cos θ + δ sin θ)2

=
c2

(1 + ε cos θ + δ sin θ)2

We conclude that our coordinates x, y satisfy the following equation:

x2 + y2 = (εx+ δy − c)2

But what we have here is an equation of a conic, as claimed. □

10e. Exercises

This was a truly advanced geometry chapter, and as exercises here, we have:

Exercise 10.31. Find the matrices of all plane transformations that you know.

Exercise 10.32. Find the transformations coming from all matrices A ∈M2(0, 1).

Exercise 10.33. Then, do the same for all matrices A ∈M2(−1, 0, 1).

Exercise 10.34. Learn more linear algebra, in particular with diagonalization.

Exercise 10.35. Learn more about the focal points of ellipses, and other conics.

Exercise 10.36. Prove the Pascal and Brianchon theorems directly, using coordinates.

Exercise 10.37. Work out the precise formulae for conics, in polar coordinates.

Exercise 10.38. Learn more about Kepler and Newton, and their findings.

As bonus exercise, find and start reading an old-style algebraic geometry book.



CHAPTER 11

Complex numbers

11a. Complex numbers

Let us discuss now the complex numbers, bringing our geometry and trigonometry
discussion in this book to yet another level, hopefully final. There is a lot of magic here,
and we will carefully explain this material. The starting definition is as follows:

Definition 11.1. The complex numbers are variables of the form

x = a+ ib

with a, b ∈ R, which add in the obvious way, and multiply according to the following rule:

i2 = −1
Each real number can be regarded as a complex number, a = a+ i · 0.

In other words, we consider variables as above, without bothering for the moment
with their precise meaning. Now consider two such complex numbers:

x = a+ ib , y = c+ id

The formula for the sum is then the obvious one, as follows:

x+ y = (a+ c) + i(b+ d)

As for the formula of the product, by using the rule i2 = −1, we obtain:

xy = (a+ ib)(c+ id)

= ac+ iad+ ibc+ i2bd

= ac+ iad+ ibc− bd
= (ac− bd) + i(ad+ bc)

Thus, the complex numbers as introduced above are well-defined. The multiplica-
tion formula is of course quite tricky, and hard to memorize, but we will see later some
alternative ways, which are more conceptual, for performing the multiplication.

The advantage of using the complex numbers comes from the fact that the equation
x2 = 1 has now a solution, x = i. In fact, this equation has two solutions, namely:

x = ±i
249



250 11. COMPLEX NUMBERS

This is of course very good news. More generally, we have the following result, regard-
ing the arbitrary degree 2 equations, with real coefficients:

Theorem 11.2. The complex solutions of ax2 + bx+ c = 0 with a, b, c ∈ R are

x1,2 =
−b±

√
b2 − 4ac

2a
with the square root of negative real numbers being defined as

√
−m = ±i

√
m

and with the square root of positive real numbers being the usual one.

Proof. We can write our equation in the following way:

ax2 + bx+ c = 0 ⇐⇒ x2 +
b

a
x+

c

a
= 0

⇐⇒
(
x+

b

2a

)2

− b2

4a2
+
c

a
= 0

⇐⇒
(
x+

b

2a

)2

=
b2 − 4ac

4a2

⇐⇒ x+
b

2a
= ±
√
b2 − 4ac

2a
Thus, we are led to the conclusion in the statement. □

We will see later that any degree 2 complex equation has solutions as well, and that
more generally, any polynomial equation, real or complex, has solutions. Moving ahead
now, we can represent the complex numbers in the plane, in the following way:

Proposition 11.3. The complex numbers, written as usual

x = a+ ib

can be represented in the plane, according to the following identification:

x =

(
a

b

)
With this convention, the sum of complex numbers is the usual sum of vectors.

Proof. Consider indeed two arbitrary complex numbers:

x = a+ ib , y = c+ id

Their sum is then by definition the following complex number:

x+ y = (a+ c) + i(b+ d)

Thus, we are led to the conclusion in the statement. □
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As an illustration for this, let us record the following basic picture, with some key
complex numbers, namely 1, i,−1,−i, represented according to our conventions:

•i

OO

•−1 •1 //

•−i

We have so far a quite good understanding of their complex numbers, and their ad-
dition. In order to understand now the multiplication operation, we must do something
more complicated, namely using polar coordinates. Let us start with:

Definition 11.4. The complex numbers x = a+ib can be written in polar coordinates,

x = r(cos t+ i sin t)

with the connecting formulae being as follows,

a = r cos t , b = r sin t

and in the other sense being as follows,

r =
√
a2 + b2 , tan t =

b

a

and with r, t being called modulus, and argument.

There is a clear relation here with the vector notation from Proposition 11.3, because
r is the length of the vector, and t is the angle made by the vector with the Ox axis. To
be more precise, the picture for what is going on in Definition 11.4 is as follows:

b •x

• //

OO

r

t

a
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As a basic example here, the number i takes the following form:

i = cos
(π
2

)
+ i sin

(π
2

)
The point now is that in polar coordinates, the multiplication formula for the complex

numbers, which was so far something quite opaque, takes a very simple form:

Theorem 11.5. Two complex numbers written in polar coordinates,

x = r(cos s+ i sin s) , y = p(cos t+ i sin t)

multiply according to the following formula:

xy = rp(cos(s+ t) + i sin(s+ t))

In other words, the moduli multiply, and the arguments sum up.

Proof. We can assume that we have r = p = 1, by dividing everything by these
numbers. Now with this assumption made, we have the following computation:

xy = (cos s+ i sin s)(cos t+ i sin t)

= (cos s cos t− sin s sin t) + i(cos s sin t+ sin s cos t)

= cos(s+ t) + i sin(s+ t)

Thus, we are led to the conclusion in the statement. □

The above result, which is based on some non-trivial trigonometry, is quite powerful.
As a basic application of it, we can now compute powers, as follows:

Theorem 11.6. The powers of a complex number, written in polar form,

x = r(cos t+ i sin t)

are given by the following formula, valid for any exponent k ∈ N:
xk = rk(cos kt+ i sin kt)

Moreover, this formula holds in fact for any k ∈ Z, and even for any k ∈ Q.

Proof. We have the following computation, with k terms everywhere:

xk = x . . . x

= r(cos t+ i sin t) . . . r(cos t+ i sin t)

= rk([cos(t+ . . .+ t) + i sin(t+ . . .+ t))

= rk(cos kt+ i sin kt)

Thus, we are done with the case k ∈ N. Regarding now the generalization to the case
k ∈ Z, it is enough here to do the verification for k = −1, where the formula is:

x−1 = r−1(cos(−t) + i sin(−t))
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But this number x−1 is indeed the inverse of x, as shown by:

xx−1 = r(cos t+ i sin t) · r−1(cos(−t) + i sin(−t))
= cos(t− t) + i sin(t− t)
= cos 0 + i sin 0

= 1

Finally, regarding the generalization to the case k ∈ Q, it is enough to do the verifi-
cation for exponents of type k = 1/n, with n ∈ N. The claim here is that:

x1/n = r1/n
[
cos

(
t

n

)
+ i sin

(
t

n

)]
In order to prove this, let us compute the n-th power of this number. We can use the

power formula for the exponent n ∈ N, that we already established, and we obtain:

(x1/n)n = (r1/n)n
[
cos

(
n · t

n

)
+ i sin

(
n · t

n

)]
= r(cos t+ i sin t)

= x

Thus, we have indeed a n-th root of x, and our proof is now complete. □

We should mention that there is a bit of ambiguity in the above, in the case of the
exponents k ∈ Q, due to the fact that the square roots, and the higher roots as well, can
take multiple values, in the complex number setting. We will be back to this.

As a basic application of Theorem 11.6, we have the following result:

Proposition 11.7. Each complex number, written in polar form,

x = r(cos t+ i sin t)

has two square roots, given by the following formula:

√
x = ±

√
r

[
cos

(
t

2

)
+ i sin

(
t

2

)]
When x > 0, these roots are ±

√
x. When x < 0, these roots are ±i

√
−x.

Proof. The first assertion is clear indeed from the general formula in Theorem 11.6,
at k = 1/2. As for its particular cases with x ∈ R, these are clear from it. □

As a comment here, for x > 0 we are very used to call the usual
√
x square root of x.

However, for x < 0, or more generally for x ∈ C − R+, there is less interest in choosing
one of the possible

√
x and calling it “the” square root of x, because all this is based on

our convention that i comes up, instead of down, which is something rather arbitrary.

We can go back now to the degree 2 equations, and we have:
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Theorem 11.8. The complex solutions of ax2 + bx+ c = 0 with a, b, c ∈ C are

x1,2 =
−b±

√
b2 − 4ac

2a

with the square root of complex numbers being defined as above.

Proof. This is clear, the computations being the same as in the real case. To be
more precise, our degree 2 equation can be written as follows:(

x+
b

2a

)2

=
b2 − 4ac

4a2

Thus, we are led to the conclusion in the statement. □

As a last general topic regarding the complex numbers, let us discuss conjugation.
This is something quite tricky, complex number specific, as follows:

Definition 11.9. The complex conjugate of x = a+ ib is the following number,

x̄ = a− ib
obtained by making a reflection with respect to the Ox axis.

As before with other such operations on the complex numbers, a quick picture says it
all. Here is the picture, with the numbers x, x̄,−x,−x̄ being all represented:

•−x̄ •x

• //

OO

r
t

•−x •x̄

There are many things that can be said about conjugation, summarized as follows:

Theorem 11.10. The conjugation operation x→ x̄ has the following properties:

(1) x = x̄ precisely when x is real.
(2) x = −x̄ precisely when x is purely imaginary.
(3) xx̄ = |x|2, with |x| = r being as usual the modulus.
(4) With x = r(cos t+ i sin t), we have x̄ = r(cos t− i sin t).
(5) We have the formula xy = x̄ȳ, for any x, y ∈ C.
(6) The solutions of ax2 + bx+ c = 0 with a, b, c ∈ R are conjugate.
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Proof. These results are all elementary, the idea being as follows:

(1) This is something that we already know, coming from definitions.

(2) This is something clear too, because with x = a + ib our equation x = −x̄ reads
a+ ib = −a+ ib, and so a = 0, which amounts in saying that x is purely imaginary.

(3) This is a key formula, which can be proved as follows, with x = a+ ib:

xx̄ = (a+ ib)(a− ib)
= a2 + b2

= |x|2

(4) This is clear indeed from the picture following Definition 11.9.

(5) This is something quite magic, which can be proved as follows:

(a+ ib)(c+ id) = (ac− bd) + i(ad+ bc)

= (ac− bd)− i(ad+ bc)

= (a− ib)(c− id)

(6) This comes from the formula of the solutions, that we know from Theorem 11.2,
but we can deduce this as well directly, without computations. Indeed, by using our
assumption that the coefficients are real, a, b, c ∈ R, we have:

ax2 + bx+ c = 0 =⇒ ax2 + bx+ c = 0

=⇒ āx̄2 + b̄x̄+ c̄ = 0

=⇒ ax̄2 + bx̄+ c = 0

Thus, we are led to the conclusion in the statement. □

11b. Euler formula

We would like to discuss now the final and most convenient writing of the complex
numbers, which is a variation on the polar writing, as follows:

x = reit

For this purpose, let us start with the following basic result:

Theorem 11.11. We can exponentiate the complex numbers, according to the formula

ex =
∞∑
k=0

xk

k!

and the function x→ ex satisfies ex+y = exey.
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Proof. We must first prove that the series converges. But this follows from:

|ex| =

∣∣∣∣∣
∞∑
k=0

xk

k!

∣∣∣∣∣
≤

∞∑
k=0

∣∣∣∣xkk!
∣∣∣∣

=
∞∑
k=0

|x|k

k!

= e|x| <∞
Regarding the formula ex+y = exey, this follows too as in the real case, as follows:

ex+y =
∞∑
k=0

(x+ y)k

k!

=
∞∑
k=0

k∑
s=0

(
k

s

)
· x

syk−s

k!

=
∞∑
k=0

k∑
s=0

xsyk−s

s!(k − s)!
= exey

Thus, we are led to the conclusions in the statement. □

As a consequence of the above formula ex+y = exey, we have the following result:

Proposition 11.12. The exponential of complex numbers is given by

es+it = eseit

with es being a usual real exponential, and with eit, in need to be computed.

Proof. This is indeed something self-explanatory, coming from ex+y = exey, and with
the somewhat non-standard notation x = s+ it being something needed later. □

Now let us get to the remaining problem, computation of eit with t ∈ R. Here are a
few elementary observations, regarding the operation t→ eit:

Proposition 11.13. For t ∈ R the number eit belongs to the unit circle,

eit ∈ T
and the operation t→ eit is subject to the following formulae,

ei(s+t) = eiseit , ei0 = 1 , (eit)−1 = eit

telling us t→ eit is a group morphism R→ T.
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Proof. There are several things going on here, the idea being as follows:

(1) To start with, we have the following formula, valid for any x ∈ C:

ex̄ =
∞∑
k=0

x̄k

k!
=

∞∑
k=0

xk

k!
= ex

We have as well the following computation, again valid for any x ∈ C:
exe−x = ex−x = e0 = 1 =⇒ (ex)−1 = e−x

(2) But with these two formulae in hand, we can prove the first assertion. Indeed, the
first formula, applied with x = it, with t ∈ R, gives the following equality:

e−it = eit

As for the second formula above, again applied with x = it, this gives:

(eit)−1 = eit

We conclude that the complex number z = eit has the following property:

z−1 = z̄

But this is exactly the equation of the unit circle T, as desired.
(3) Regarding now the various formulae in the statement, for the operation t → eit,

these are all trivial, coming from the multiplicativity formula ex+y = exey.

(4) As for the final conclusion, this is something quite intuitive, telling us that t→ eit

transforms the additive structure of R into the multiplicative structure of T. □

What is next? Well, we will have to improvise a bit, and we are led in this way to the
following fundamental result of Euler, regarding the complex exponential:

Theorem 11.14. We have the following formula,

eit = cos t+ i sin t

valid for any t ∈ R.

Proof. There are several possible proofs of this, the idea being as follows:

(1) Intuitive proof. We know from Proposition 11.13 that t→ eit is a group morphism
R → T. But in view of this, barring any pathologies, this operation can only appear by
“wrapping”. That is, we must have a formula as follows, for a certain α ∈ R:

eit = cos(αt) + i sin(αt)

In order now to find the parameter α ∈ R, let us look at what happens around t = 0.
As a first observation, at t = 0 precisely, our formula is as follows, true:

e0 = cos 0 + i sin 0
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The point now is that, around t = 0, we have the following elementary estimate,
simply obtained by truncating the series defining the exponential:

eit ≃ 1 + it

On the other hand, we know from chapter 7 that we have sin t ≃ t and cos t ≃ 1−t2/2,
for t ≃ 0. We conclude that we have the following estimate, for t ≃ 0:

cos(αt) + i sin(αt) ≃ 1 + iαt

Thus we must have α = 1, and we are led to the Euler formula in the statement.

(2) Calculus proof. This is something more solid, obtained by differentiating the
following function, using the various available calculus rules, and getting 0:

f(t) = e−it(cos t+ i sin t)

Indeed, this shows that our function f must be constant, equal to f(0) = 1, as desired.
We will discuss this in detail in Part IV, when doing calculus. □

Now back to our x = reit objectives, with the above theory in hand we can indeed use
from now on this notation, the complete statement being as follows:

Theorem 11.15. The complex numbers x = a+ ib can be written in polar coordinates,

x = reit

with the connecting formulae being

a = r cos t , b = r sin t

and in the other sense being

r =
√
a2 + b2 , tan t =

b

a

and with r, t being called modulus, and argument.

Proof. This is a reformulation of our previous Definition 11.4, by using the formula
eit = cos t+ i sin t from Theorem 11.14, and multiplying everything by r. □

With this in hand, we can now go back to the basics, namely the addition and multi-
plication of the complex numbers. We have the following result:

Theorem 11.16. In polar coordinates, the complex numbers multiply as

reis · peit = rp ei(s+t)

with the arguments s, t being taken modulo 2π.

Proof. This is something that we already know, from Theorem 11.5, reformulated
by using the notations from Theorem 11.15. Observe that this follows as well directly,
from the fact that we have ex+y = exey, that we know from Theorem 11.11. □
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The above formula is obviously very powerful. However, in polar coordinates we do
not have a simple formula for the sum. Thus, this formalism has its limitations.

We can investigate as well more complicated operations, as follows:

Theorem 11.17. We have the following operations on the complex numbers, written
in polar form, as above:

(1) Inversion: (reit)−1 = r−1e−it.

(2) Square roots:
√
reit = ±

√
reit/2.

(3) Powers: (reit)a = raeita.

(4) Conjugation: reit = re−it.

Proof. This is something that we already know, from Theorem 11.6, but we can now
discuss all this, from a more conceptual viewpoint, the idea being as follows:

(1) We have indeed the following computation, using Theorem 11.16:

(reit)(r−1e−it) = rr−1 · ei(t−t)

= 1 · 1
= 1

(2) Once again by using Theorem 11.16, we have:

(±
√
reit/2)2 = (

√
r)2ei(t/2+t/2) = reit

(3) Given an arbitrary number a ∈ R, we can define, as stated:

(reit)a = raeita

Due to Theorem 11.16, this operation x→ xa is indeed the correct one.

(4) This comes from the fact, that we know from Theorem 11.10, that the conjugation
operation x→ x̄ keeps the modulus, and switches the sign of the argument. □

11c. Polynomials, roots

Getting now to the real thing, recall from Theorem 11.8 that any degree 2 equation
has 2 complex roots. We can in fact prove that any polynomial equation, of arbitrary
degree N ∈ N, has exactly N complex solutions, counted with multiplicities:

Theorem 11.18. Any polynomial P ∈ C[X] decomposes as

P = c(X − a1) . . . (X − aN)

with c ∈ C and with a1, . . . , aN ∈ C.



260 11. COMPLEX NUMBERS

Proof. The problem is that of proving that our polynomial has at least one root,
because afterwards we can proceed by recurrence. We prove this by contradiction. So,
assume that P has no roots, and pick a number x ∈ C where |P | attains its minimum:

|P (x)| = min
y∈C
|P (y)| > 0

Since Q(t) = P (x+ t)−P (x) is a polynomial which vanishes at t = 0, this polynomial
must be of the form ctk + higher terms, with c ̸= 0, and with k ≥ 1 being an integer. We
obtain from this that, with t ∈ C small, we have the following estimate:

P (x+ t) ≃ P (x) + ctk

Now let us write t = rw, with r > 0 small, and with |w| = 1. Our estimate becomes:

P (x+ rw) ≃ P (x) + crkwk

Now recall that we assumed P (x) ̸= 0. We can therefore choose w ∈ T such that cwk

points in the opposite direction to that of P (x), and we obtain in this way:

|P (x+ rw)| ≃ |P (x) + crkwk|
= |P (x)|(1− |c|rk)

Now by choosing r > 0 small enough, as for the error in the first estimate to be small,
and overcame by the negative quantity −|c|rk, we obtain from this:

|P (x+ rw)| < |P (x)|
But this contradicts our definition of x ∈ C, as a point where |P | attains its minimum.

Thus P has a root, and by recurrence it has N roots, as stated. □

In practice now, the above proof being by contradiction, and so being not very useful,
when it comes to explicitly compute the roots, the following question remains open:

Question 11.19. Given P ∈ C[X], how to compute its roots?

And good question this is, which will bring us into many interesting things. In degree
2, to start with, we already know how to do this, from Theorem 11.8, but the formula
there relies on some trigonometry for extracting the square roots, according to:√

r(cos t+ i sin t) = ±
√
r

[
cos

(
t

2

)
+ i sin

(
t

2

)]
Now regarding this trigonometry part, we certainly know how to deal with it, by using

our formulae from chapter 6 for the halving of angles, which were as follows:

cos

(
t

2

)
=

√
1 + cos t

2
, sin

(
t

2

)
=

√
1− cos t

2

However, this makes it for too many operations, when solving our degree 2 equations,
and in practice, it is often better to use the following result, for the square roots:
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Theorem 11.20. Any complex number x = a+ ib has two square roots, given by

√
x = ±

√
a+
√
a2 + b2

2
± i

√
−a+

√
a2 + b2

2

with the signs being identical when b > 0, and opposite when b < 0.

Proof. This is something quite routine, the idea being as follows:

(1) With x = a+ ib as in the statement, and
√
x = c+ id, our equation is:

(c+ id)2 = a+ ib

In terms of the real and imaginary parts, we have two equations, as follows:

c2 − d2 = a , 2cd = b

(2) Let us first compute the number u = c2. The equation for it is as follows:

u− b2

4u
= a

Thus, the number u = c2 satisfies the following degree 2 equation:

u2 − au− b2

4
= 0

But this latter equation has a unique positive solution, given by:

u =
a+
√
a2 + b2

2

Thus, we are led to the formula of c = ±
√
u in the statement.

(3) Similarly, let us compute now v = d2. The equation for it is as follows:

b2

4v
− v = a

Thus, the number v = d2 satisfies the following degree 2 equation:

v2 + av − b2

4
= 0

But this latter equation has a unique positive solution, given by:

v =
−a+

√
a2 + b2

2

Thus, we are led to the formula of d = ±
√
v in the statement, and this gives the result,

with the last assertion regarding signs being clear, coming from 2cd = b. □
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With this being said, I don’t know about you, but personally, for better sleeping at
night, I would rather prefer to have this doublechecked. So, given two numbers a, b ∈ R,
consider the following numbers c, d ∈ R, with the sign on the right being that of b:

c =

√
a+
√
a2 + b2

2
, d = ±

√
−a+

√
a2 + b2

2

We have then (c+ id)2 = (c2 − d2) + 2icd, whose real part is given by:

c2 − d2 =
a+
√
a2 + b2

2
− −a+

√
a2 + b2

2

=
a

2
+
a

2
= a

As for the imaginary part, this can be computed as follows:

2cd = ±2

√
a+
√
a2 + b2

2
· −a+

√
a2 + b2

2

= ±2
√
−a2 + a2 + b2

4
= ±|b|
= b

Thus we have indeed (c+ id)2 = a+ ib, as desired. Now by getting back to the degree
2 equations, we can formulate a new result regarding them, as follows:

Theorem 11.21. The complex solutions of ax2 + bx+ c = 0 with a, b, c ∈ C are

x1,2 =
−b±

√
b2 − 4ac

2a

with the square root of b2 − 4ac = p+ iq being extracted as above, namely

√
p+ iq = ±

√
p+

√
p2 + q2

2
± i

√
−p+

√
p2 + q2

2

with the signs being identical when q > 0, and opposite when q < 0.

Proof. This follows indeed from our old degree 2 computation, from the proof of
Theorem 11.8, with the square roots being extracted as in Theorem 11.20. □

Getting now to degree 3 equations, let us try to solve ax3 + bx2 + cx + d = 0. By
linear transformations we can assume a = 1, b = 0, and then it is convenient to write
c = 3p, d = 2q. Thus, our equation becomes x3 + 3px + 2q = 0, and regarding such
equations, we have the following famous result, that we already met in chapter 6:
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Theorem 11.22 (Cardano). For a normalized degree 3 equation, namely

x3 + 3px+ 2q = 0

the following three complex numbers,

x1,2,3 = w
3

√
−q +

√
p3 + q2 + w2 3

√
−q −

√
p3 + q2

with w = 1, e2πi/3, e4πi/3 are the solutions of our equation.

Proof. With x as above, by using (a+ b)3 = a3 + b3 + 3ab(a+ b), we have:

x3 =

(
w

3

√
−q +

√
p3 + q2 + w2 3

√
−q −

√
p3 + q2

)3

= −2q + 3
3

√
−q +

√
p3 + q2 · 3

√
−q −

√
p3 + q2 · x

= −2q + 3 3
√
q2 − p3 − q2 · x

= −2q − 3px

Thus, we are led to the conclusion in the statement. □

We refer to chapter 6 for the continuation of the story, the idea being as follows:

Warning 11.23. Do not use Cardano when p3 + q2 < 0, because this will lead you
into extracting third roots of numbers y ∈ C− R, which cannot be explicitly done.

Getting now to degree 4, as before it is possible to write the equations in a more
convenient form, namely x4 + 6px2 + 4qx+ 3r = 0, and quite remarkably, we have:

Theorem 11.24. The roots of a normalized degree 4 equation, written as

x4 + 6px2 + 4qx+ 3r = 0

are as follows, with y satisfying the equation (y2 − 3r)(y − 3p) = 2q2,

x1 =
1√
2

(
−
√
y − 3p+

√
−y − 3p+

4q√
2y − 6p

)

x2 =
1√
2

(
−
√
y − 3p−

√
−y − 3p+

4q√
2y − 6p

)

x3 =
1√
2

(√
y − 3p+

√
−y − 3p− 4q√

2y − 6p

)

x4 =
1√
2

(√
y − 3p−

√
−y − 3p− 4q√

2y − 6p

)
and with y being computable via the Cardano formula.
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Proof. This is something quite tricky, the idea being as follows:

(1) To start with, let us write our equation in the following form:

x4 = −6px2 − 4qx− 3r

Here comes the trick. Assume that we have found a number y satisfying the following
equation, and we will see in a moment why we are doing this:

(y2 − 3r)(y − 3p) = 2q2

The point indeed is that with this magic number y in hand, our degree 4 equation
takes a particularly simple form, as follows:

(x2 + y)2 = x4 + 2x2y + y2

= −6px2 − 4qx− 3r + 2x2y + y2

= (2y − 6p)x2 − 4qx+ y2 − 3r

= (2y − 6p)x2 − 4qx+
2q2

y − 3p

=

(√
2y − 6p · x− 2q√

2y − 6p

)2

(2) Which looks very good, leading us to the following degree 2 equations:

x2 + y +
√

2y − 6p · x− 2q√
2y − 6p

= 0

x2 + y −
√

2y − 6p · x+ 2q√
2y − 6p

= 0

Now let us write these two degree 2 equations in standard form, as follows:

x2 +
√

2y − 6p · x+
(
y − 2q√

2y − 6p

)
= 0

x2 −
√

2y − 6p · x+
(
y +

2q√
2y − 6p

)
= 0

(3) Regarding the first equation, the solutions there are as follows:

x1 =
1

2

(
−
√

2y − 6p+

√
−2y − 6p+

8q√
2y − 6p

)

x2 =
1

2

(
−
√

2y − 6p−

√
−2y − 6p+

8q√
2y − 6p

)
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As for the second equation, the solutions there are as follows:

x3 =
1

2

(√
2y − 6p+

√
−2y − 6p− 8q√

2y − 6p

)

x4 =
1

2

(√
2y − 6p−

√
−2y − 6p− 8q√

2y − 6p

)
Thus, we are led to the formulae in the statement. □

We still have to compute the number y appearing in the above via Cardano, and the
result here, adding to what we already have in Theorem 11.24, is as follows:

Theorem 11.25 (continuation). The value of y in the previous theorem is

y = t+ p+
a

t

where the number t is given by the formula

t =
3

√
b+
√
b2 − a3

with a = p2 + r and b = 2p2 − 3pr + q2.

Proof. The legend has it that this is what comes from Cardano, but depressing and
normalizing and solving (y2− 3r)(y− 3p) = 2q2 makes it for too many operations, so the
most pragmatic way is to simply check this equation. With y as above, we have:

y2 − 3r = t2 + 2pt+ (p2 + 2a) +
2pa

t
+
a2

t2
− 3r

= t2 + 2pt+ (3p2 − r) + 2pa

t
+
a2

t2

With this in hand, we have the following computation:

(y2 − 3r)(y − 3p) =

(
t2 + 2pt+ (3p2 − r) + 2pa

t
+
a2

t2

)(
t− 2p+

a

t

)
= t3 + (a− 4p2 + 3p2 − r)t+ (2pa− 6p3 + 2pr + 2pa)

+(3p2a− ra− 4p2a+ a2)
1

t
+
a3

t3

= t3 + (a− p2 − r)t+ 2p(2a− 3p2 + r) + a(a− p2 − r)1
t
+
a3

t3

= t3 + 2p(−p2 + 3r) +
a3

t3
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Now by using the formula of t in the statement, this gives:

(y2 − 3r)(y − 3p) = b+
√
b2 − a3 − 4p2 + 6pr +

a3

b+
√
b2 − a3

= b+
√
b2 − a3 − 4p2 + 6pr + b−

√
b2 − a3

= 2b− 4p2 + 6pr

= 2(2p2 − 3pr + q2)− 4p2 + 6pr

= 2q2

Thus, we are led to the conclusion in the statement. □

In degree 5 and more, things become fairly complicated, and we have:

Theorem 11.26. There is no general formula for the roots of polynomials of degree
N = 5 and higher, with the reason for this, coming from Galois theory, being that the
group S5 is not solvable. The simplest numeric example is P = X5 −X − 1.

Proof. This is something quite tricky, the idea being as follows:

(1) The first assertion, for generic polynomials, is due to Abel-Ruffini, but Galois
theory helps in better understanding this, and comes with a number of bonus points too,
namely the possibility of formulating a finer result, with Abel-Ruffini’s original “generic”,
which was something algebraic, being now replaced by an analytic “generic”, and also
with the possibility of dealing with concrete polynomials, such as:

P = X5 −X − 1

(2) Regarding now the details of the Galois proof of the Abel-Ruffini theorem, assume
that the roots of a polynomial P ∈ F [X] can be computed by using iterated roots, a bit
as for the degree 2 equation, or for the degree 3 and 4 equations, via Cardano. Then,
algebrically speaking, this gives rise to a tower of fields as folows, with F0 = F , and each
Fi+1 being obtained from Fi by adding a root, Fi+1 = Fi(xi), with x

ni
i ∈ Fi:

F0 ⊂ F1 ⊂ . . . ⊂ Fk

(3) In order for Galois theory to apply well to this situation, we must make all the
extensions normal, which amounts in replacing each Fi+1 = Fi(xi) by its extension Ki(xi),
with Ki extending Fi by adding a ni-th root of unity. Thus, with this replacement, we
can assume that the tower in (2) in normal, meaning that all Galois groups are cyclic.

(4) Now by Galois theory, at the level of the corresponding Galois groups we obtain a
tower of groups as follows as follows, which is a resolution of the last group Gk, the Galois
group of P , in the sense of group theory, in the sense that all quotients are cyclic:

G1 ⊂ G2 ⊂ . . . ⊂ Gk

As a conclusion, Galois theory tells us that if the roots of a polynomial P ∈ F [X] can
be computed by using iterated roots, then its Galois group G = Gk must be solvable.
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(5) In the generic case, the conclusion is that Galois theory tells us that, in order for
all polynomials of degree 5 to be solvable, via square roots, the group S5, which appears
there as Galois group, must be solvable, in the sense of group theory. But this is wrong,
because the alternating subgroup A5 ⊂ S5 is simple, and therefore not solvable.

(6) Finally, regarding the polynomial P = X5−X−1, some elementary computations
here, based on arithmetic over F2,F3, and involving various cycles of length 2, 3, 5, show
that its Galois group is S5. Thus, we have our counterexample.

(7) To be more precise, our polynomial factorizes over F2 as follows:

X5 −X − 1 = (X2 +X + 1)(X3 +X2 + 1)

We deduce from this the existence of an element τσ ∈ G ⊂ S5, with τ ∈ S5 being a
transposition, and with σ ∈ S5 being a 3-cycle, disjoint from it. Thus, we have:

τ = (τσ)3 ∈ G

(8) On the other hand since P = X5 −X − 1 is irreducible over F5, we have as well
available a certain 5-cycle ρ ∈ G. Now since < τ, ρ >= S5, we conclude that the Galois
group of P is full, G = S5, and by (4) and (5) we have our counterexample.

(9) Finally, as mentioned in (1), all this shows as well that a random polynomial of
degree 5 or higher is not solvable by square roots, and with this being an elementary
consequence of the main result from (5), via some standard analysis arguments. □

There is a lot of further interesting theory that can be developed here, following Galois
and others. For more on all this, we recommend any solid algebra book.

11d. Napoleon, Fermat

We have kept the best for the end. As a last topic regarding the complex numbers,
which is something really beautiful, we have the roots of unity. Let us start with:

Theorem 11.27. The equation xN = 1 has N complex solutions, namely{
wk
∣∣∣k = 0, 1, . . . , N − 1

}
, w = e2πi/N

which are called roots of unity of order N .

Proof. This follows from the general multiplication formula for the complex numbers
in polar form. Indeed, with the notation x = reit, our equation reads:

rNeitN = 1

Thus r = 1, and t ∈ [0, 2π) must be a multiple of 2π/N , as stated. □
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As an illustration here, the roots of unity of small order, along with some of their
basic properties, which are very useful for computations, are as follows:

N = 1. Here the unique root of unity is 1.

N = 2. Here we have two roots of unity, namely 1 and −1.
N = 3. Here we have 1, then w = e2πi/3, and then w2 = w̄ = e4πi/3.

N = 4. Here the roots of unity, read as usual counterclockwise, are 1, i,−1,−i.
N = 5. Here, with w = e2πi/5, the roots of unity are 1, w, w2, w3, w4.

N = 6. Here a useful alternative writing is {±1,±w,±w2}, with w = e2πi/3.

N = 7. Here, with w = e2πi/7, the roots of unity are 1, w, w2, w3, w4, w5, w6.

N = 8. Here the roots of unity, read as usual counterclockwise, are the numbers
1, w, i, iw,−1,−w,−i,−iw, with w = eπi/4, which is also given by w = (1 + i)/

√
2.

The roots of unity are very useful variables, and have many interesting properties. As
a first application, we can now solve the ambiguity questions related to the extraction of
N -th roots, that we met in the above, the statement here being as follows:

Theorem 11.28. Any nonzero x = reit has exactly N roots of order N , namely

y = r1/Neit/N

multiplied by the N roots of unity of order N .

Proof. We must solve the equation zN = x, over the complex numbers. Since the
number y in the statement clearly satisfies yN = x, our equation is equivalent to:

zN = yN

Now observe that we can write this equation in the following way:(
z

y

)N
= 1

We conclude from this that the solutions z of our equation appear by multiplying y
by the solutions of tN = 1, which are the N -th roots of unity, as claimed. □

The roots of unity appear in connection with many other interesting questions, and
there are many useful formulae relating them, which are good to know. Here is a basic
such formula, very beautiful, which has many applications, all across mathematics:

Theorem 11.29. The roots of unity, {wk} with w = e2πi/N , have the property

N−1∑
k=0

(wk)s = NδN |s

for any exponent s ∈ N, where on the right we have a Kronecker symbol.
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Proof. The numbers in the statement, when written more conveniently as (ws)k with
k = 0, . . . , N − 1, form a certain regular polygon in the plane Ps. Thus, if we denote by
Cs the barycenter of this polygon, we have the following formula:

1

N

N−1∑
k=0

wks = Cs

Now observe that in the case N/| s our polygon Ps is non-degenerate, circling around
the unit circle, and having center Cs = 0. As for the case N |s, here the polygon is
degenerate, lying at 1, and having center Cs = 1. Thus, we have the following formula:

Cs = δN |s

Thus, we obtain the formula in the statement. □

And with this, end of our theoretical discussion regarding the complex numbers, we
have certainly amassed here more nuclear-grade weapons than all the Cold War main
powers combined. And the question is, getting now to geometry, can all this help?

In answer, depends on the question, with the philosophy being as follows:

Principle 11.30. The complex numbers tell a certain story of the real plane, and
with this story being usually the accurate one, when it comes to modern mathematics or
physics. In what regards classical plane geometry and triangles, however, which are old
disciplines, some things can be done with complex numbers, while some other, not.

This principle is something quite deep, and to be more precise, the dichotomy comes
somehow from classical vs quantum mathematics and physics, as follows:

(1) In what regards classical mathematics and physics, that is basically built around
things like gravity and conics, which naturally live over R.

(2) As for the more modern, quantum mathematics and physics, that is built around
electromagnetism and quantum mechanics, which live over C.

But all this is perhaps too abstract. In order to sense whether your plane geometry
or triangle problem is worth an approach via complex numbers, here is a method:

Method 11.31. If your plane geometry or triangle problem features

(1) Equilateral triangles, which can be dealt with using w3 = 1,
(2) Or squares, which can be dealt with using the numbers 1, i,−1,−i,
(3) Or other regular polygons, which can be dealt with using wN = 1,
(4) Or circles, which simply read |x− c| = r in complex notation,

then the complex numbers might be the way, for solving your problem.
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So, this was the general idea, hope this was understandable, and in what follows we
will discuss, as an illustration for (1), certain geometry questions featuring equilateral
triangles, following Napoleon, Fermat, Torricelli and others. Let us start with:

Theorem 11.32. A triangle ABC, with A,B,C appearing counterclockwise

A

B C

is equilateral precisely when its vertices, regarded as complex numbers, satisfy

A+ wB + w2C = 0

with w = e2πi/3. When A,B,C appear clockwise, the same happens, with w → w2.

Proof. The roots of unity of order 3, and their opposites, are as follows:

w −w2

−1 ∗ 1

w2 −w

Thus the clockwise rotation by 60◦ is P → −wP , and by using this, along with
1 + w + w2, coming from w3 = 1, the condition for ABC to be equilateral reads:

A− C = −w(B − C) ⇐⇒ A+ wB − (1 + w)C = 0

⇐⇒ A+ wB + w2C = 0

As for the last assertion, this follows from this, by interchanging B ↔ C. □

Getting now to arbitrary triangles ABC, we saw earlier in this book that these pas-
sioned many people, including al-Mutaman, king of Zaragoza, and discoverer or the Ceva
theorem. More recently Napoleon, emperor of the French, spent some time in studying
the configuration involving equilateral triangles erected on the sides of ABC. His main
findings, along with those of Fermat and Torricelli, can be summarized as follows:
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Theorem 11.33. In the context of the Napoleon configuration, namely

E

F A

R Q

B C

P

D

with equilateral triangles, and their barycenters drawn, the following happen,

(1) Napoleon theorem: the triangle PQR is equilateral.
(2) Torricelli circles: the circles ABF , BCD, ACE are concurrent.
(3) Torricelli point: AD,BE,CF cross, on this circle concurrence point.
(4) More Torricelli: these lines AD,BE,CF cross at 60◦ − 120◦ angles.
(5) Fermat point: the Torricelli point minimizes AX +BX + CX.
(6) Napoleon point: AP,BQ,CR cross too, at the Napoleon point.

with the assumption that all angles of ABC are ≤ 120◦ being needed for (5).

Proof. Many things going on here, the idea being as follows:

(1) The Napoleon theorem follows, majestically, using Theorem 11.32, as follows:

P + wQ+ w2R =
B + C +D

3
+ w · A+ C + E

3
+ w2 · A+B + F

3

=
B + wA+ w2F

3
+
C + wE + w2A

3
+
D + wC + w2B

3
= 0 + 0 + 0

= 0

(2,3,4) These assertions, which are all related, are all elementary, and follow from some
angle hunting, without any major difficulty. We will leave them as exercises, for you.

(5) Let us define the Fermat point of a triangle ABC as being the point which min-
imizes AX + BX + CX, with the existence being clear, but with the uniqueness, not.
Our claim is that when the triangle ABC has all angles ≤ 120◦, this Fermat point is the
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Torricelli point from (2,3,4), appearing as follows, with all angles around it being 120◦:

A

0

B C

In order to prove this, we use vector calculus. By fixing the origin 0 at the Torricelli
point, as indicated above, we have the following estimate, for any point X in the plane,
with i, j, k denoting the unit vectors along A,B,C, which satisfy i+ j + k = 0:

||A||+ ||B||+ ||C|| = < A, i > + < B, j > + < C, k >

= < A−X, i > + < B −X, j > + < C −X, k >
≤ ||A−X||+ ||B −X||+ ||C −X||

Thus, claim proved. As for the case where one of the angles of ABC is ≥ 120◦, here
the Fermat point must be that vertex, and we will leave this as an exercise.

(6) Well, I must admit that I tried to prove this with my favorite plane geometry
method, complex numbers, and failed, the computations being quite complicated. Moral
of the story, not everyone is Napoleon, and I will leave this to you, as an exercise.

(7) Finally, let us mention that most of the above results hold as well when drawing
the equilateral triangles in an inward way, notably leading to the second Napoleon point
of ABC. And exercise of course for you, to learn more about all this. □

11e. Exercises

This was a quite exciting chapter, certainly mathematical, but of philosophical and
physics flavor too, and as exercises about this, we have:

Exercise 11.34. What becomes C when the complex plane is drawn upside-down?

Exercise 11.35. What about drawing the reals from right to left? Or doing both?

Exercise 11.36. Further meditate on the need for ± when extracting square roots.

Exercise 11.37. Work out all the details for the existence of roots of polynomials.

Exercise 11.38. Learn a bit about the resultant of two polynomials.

Exercise 11.39. Learn also about the discriminant, and its various properties.

Exercise 11.40. Practice a bit with Cardano in degree 3, and in degree 4 too.

Exercise 11.41. Learn some Galois theory, including various algebraic preliminaries.

As bonus exercise, which is long, but very instructive, have a look at everything that
we did since the beginning of this book, by using complex number technology.



CHAPTER 12

Curves, surfaces

12a. Plane curves

Time to end the present Part III of this book, on geometry and trigonometry, and
in a beautiful way, and this because the remaining Part IV will be dedicated to calculus
methods and their applications to technical trigonometry, not exactly sweet things.

In our plan, we would like talk more about plane curves, as a continuation of our
discussion about conics and other basic curves from chapter 10, and then explore curves
and surfaces, and geometry in general, in 3D space, and in higher dimensions too.

Getting started, let us recall from chapter 10 the following key definition:

Definition 12.1. An algebraic curve in R2 is the vanishing set

C =
{
(x, y) ∈ R2

∣∣∣P (x, y) = 0
}

of a polynomial P ∈ R[X, Y ] of arbitrary degree.

As explained in chapter 10, this definition is something very general. A bit of basic
theory can be developed at this level, the conclusions being as follows:

Theorem 12.2. The following happen, for curves C defined by polynomials P :

(1) In degree d = 2, curves can have singularities, such as xy = 0 at (0, 0).
(2) In general, assuming P = P1 . . . Pk, we have C = C1 ∪ . . . . . . ∪ Ck.
(3) A union of curves Ci ∪ Cj is generically non-smooth, unless disjoint.
(4) Due to this, we say that C is non-degenerate when P is irreducible.

Proof. We know all this from chapter 10, the idea being as follows:

(1) This is something obvious, just the story of two lines crossing.

(2) This comes from the following trivial fact, with the notation z = (x, y):

P1 . . . Pk(z) = 0 ⇐⇒ P1(z) = 0, or P2(z) = 0, . . . , or Pk(z) = 0

(3) This is something very intuitive, and it actually takes a bit of time to imagine a
situation where C1 ∩ C2 ̸= ∅, C1 ̸⊂ C2, C2 ̸⊂ C1, but C1 ∪ C2 is smooth.

(4) This is just a definition, based on the above, that we will use in what follows. □

273
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Still following the material from chapter 10, at the level of examples, we have:

Theorem 12.3. The low degree plane curves are as follows:

(1) Degree 1: the points, needing no presentation.
(2) Degree 2: the conics, namely ellipses and hyperbolas, then circles and parabolas,

and the two lines too, needing no presentation either.
(3) Degree 3: the cubics, notably featuring the standard cusp x3 = y2, and the

Tschirnhausen curve x3 = x2 − 3y2.
(4) Degree 4: The quartics, notably featuring the cardioid 2r = a(1− cos t), and the

Bernoulli lemniscate r2 = a2 cos 2t.

Proof. Again, this is something that we know well from chapter 10, and we refer to
the material there for a full discussion of this, including the special curves in (3,4). □

What is next? Higher degree of course, and in the lack of anything nice in degree 5,
quintics, let us discuss now the degree 6, sextics. We first have here:

Proposition 12.4. The trefoil sextic, or Kiepert curve, which is given by

r3 = a3 cos 3t

looks like a trefoil, closed curve, with a triple self-intersection.

Proof. As before with other such curves, drawing a picture, which reveals the trefoil
in question, is mandatory. Next, with z = x+ iy = reit, we have:

r3 = a3 cos 3t ⇐⇒ r3 cos 3t =

(
r2

a

)3

⇐⇒ z3 + z̄3 = 2
(zz̄
a

)3
⇐⇒ (x+ iy)3 + (x− iy)3 = 2

(
x2 + y2

a

)3

⇐⇒ x3 − 3xy2 =

(
x2 + y2

a

)3

⇐⇒ (x2 + y2)3 = a3(x3 − 3xy2)

We conclude that we have indeed a sextic, as claimed. □

We also have in degree 6 the most beautiful of curves them all, the Cayley sextic:

Theorem 12.5. The Cayley sextic, given in polar coordinates by

r = a cos3
(
t

3

)
makes the dream of previous curves come true, by looking like a self-intersecting heart.
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Proof. As before, picture mandatory. With z = reit and u = z1/3 we have:

r = a cos3
(
t

3

)
⇐⇒ ar cos3

(
t

3

)
= r2

⇐⇒ a

(
u+ ū

2

)3

= r2

⇐⇒ a(u3 + ū3 + 3uū(u+ ū)) = 8r2

⇐⇒ 3auū · u+ ū

2
= 4r2 − ax

⇐⇒ 27a3r6 · r
2

a
= (4r2 − ax)3

⇐⇒ 27a2(x2 + y2)2 = (4x2 + 4y2 − ax)3

We conclude that have indeed a sextic, as claimed. □

And we will stop here with examples, what else can we wish more for, than the Cayley
sextic. Quite remarkably now, most of the above curves are sinusoidal spirals, in the
following sense, and with actually the term “sinusoidal spiral” being a bit unfortunate:

Theorem 12.6. The sinusoidal spirals, which are as follows,

rn = an cosnt

with a ̸= 0 and n ∈ Q− {0}, include the following curves:

(1) n = −1 line.
(2) n = 1 circle, n = −1/2 parabola, n = −2 hyperbola.
(3) n = −3 Humbert cubic, n = −1/3 Tschirnhausen curve.
(4) n = 1/2 cardioid, n = 2 Bernoulli lemniscate.
(5) n = 3 Kiepert trefoil, n = 1/3 Cayley sextic.

Proof. We first have to prove that the sinusoidal spirals are indeed algebraic curves.
But this is best done by using the complex coordinate z = reit, as follows:

rn = an cosnt ⇐⇒ rn cosnt =

(
r2

a

)n
⇐⇒ zn + z̄n = 2

(zz̄
a

)n
⇐⇒ (x+ iy)n + (x− iy)n = 2

(
x2 + y2

a

)n
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As a first observation now, in the case n ∈ N we can simply use the binomial formula,
and we get an algebraic equation of degree 2n, as follows:

[n/2]∑
k=0

(−1)k
(
n

2k

)
xn−2ky2k =

(
x2 + y2

a

)n
In general, things are a bit more complicated, as shown for instance by our computation

for the Cayley sextic. However, the same idea as there applies, and we are led in this way
to the equation of an algebraic curve, as claimed. Regarding now the examples:

(1) At n = −1 the equation is as follows, producing a line:

r cos t = a ⇐⇒ x = a

(2) At n = 1 the equation is as follows, producing a circle:

r = a cos t ⇐⇒ r2 = ax ⇐⇒ x2 + y2 = ax

(3) At n = −1/2 the equation is as follows, producing a parabola:

a = r cos2(t/2) ⇐⇒ r + x = 2a ⇐⇒ y2 = 4a(a− x)
(4) At n = −2 the equation is as follows, producing a hyperbola:

a2 = r cos2 2t ⇐⇒ a2 = 2x2 − r2 ⇐⇒ (x+ y)(x− y) = a2

(5) At n = −3 the equation is as follows, producing a curve with 3 components, which
looks like some sort of “trivalent hyperbola”, called Humbert cubic:

r3 cos 3t = a3 ⇐⇒ z3 + z̄3 = 2a3 ⇐⇒ x3 − 3xy2 = a3

(6) As for the other curves, this follows from our various formulae above. □

Let us study now more in detail the sinusoidal spirals. We first have:

Proposition 12.7. The sinusoidal spirals, which with z = x+ iy are

zn + z̄n = 2
(zz̄
a

)n
with a ̸= 0 and n ∈ Q− {0}, are as follows:

(1) With n = −m, m ∈ N, the equation is zm + z̄m = 2am, degree m.
(2) With n = m, m ∈ N, the equation is zm + z̄m = 2(zz̄/a)m, degree 2m.
(3) With n = −1/m, m ∈ N, the equation is (z1/m + z̄1/m)m = 2ma.
(4) With n = 1/m, m ∈ N, the equation is (z1/m + z̄1/m)m = 2mzz̄/a.

Proof. This is something self-explanatory, the details being as follows:

(1) With n = −m and m ∈ N as in the statement, the equation is, as claimed:

z−m + z̄−m = 2
(zz̄
a

)−m
⇐⇒ zm + z̄m = 2am

(2) This is an empty statement, just a matter of using the new variable m = n.
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(3) With n = −1/m and m ∈ N as in the statement, the equation is, as claimed:

z−1/m + z̄−1/m = 2
(zz̄
a

)−1/m

⇐⇒ z1/m + z̄1/m = 2a1/m

⇐⇒ (z1/m + z̄1/m)m = 2ma

(4) With n = 1/m and m ∈ N as in the statement, the equation is, as claimed:

z1/m + z̄1/m = 2
(zz̄
a

)1/m
⇐⇒ (z1/m + z̄1/m)m = 2m · zz̄

a

Thus, we are led to the conclusions in the statement. □

Observe that in the fractionary cases, n = ±1/m, the equations in the above statement
are not polynomial in x, y, unless at very small values of m. To be more precise:

(1) In the case n = −1/m, we certainly have at m = 1, 2, 3 the d = 1 line, d = 2
parabola, and d = 3 Tschirnhausen curve, but at m = 4 things change, with the equation
(z1/4 + z̄1/4)4 = 16a being no longer polynomial in x, y, and requiring a further square
operation to make it polynomial, and therefore leading to a curve of degree d = 8.

(2) As for the case n = 1/m, this is more complicated, with the data that we have at
m = 1, 2, 3, namely the d = 2 circle, d = 3 cardioid, and d = 6 Cayley sextic, being not
very good, and with things getting even more complicated at m = 4 and higher.

In short, things quite complicated, and the general case, n = ±p/q with p, q ∈ N,
is certainly even more complicated. Instead of insisting on this, let us focus now on the
simplest sinusoidal spirals that we have, namely those with n = ±m, with m ∈ N.

The point indeed is that the sinusoidal spirals with n ∈ N are also part of another
remarkable family of plane algebraic curves, going back to Cassini, as follows:

Theorem 12.8. The polynomial lemniscates, which are as follows,

|P (z)| = bn

with P ∈ C[X] having n distinct roots, and b > 0, include the following curves:

(1) The sinusoidal spirals with n ∈ N, including the n = 1 circle, n = 2 Bernoulli
lemniscate, and n = 3 Kiepert trefoil.

(2) The Cassini ovals, which are the quartics given by |z + c| · |z − c| = b2, covering
too the Bernoulli lemniscate, appearing at b = c.

Proof. This is something quite self-explanatory, the details being as follows:
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(1) Regarding the sinusoidal spirals with n ∈ N, their equation is, with an = 2cn:

zn + z̄n = 2
(zz̄
a

)n
⇐⇒ cn(zn + z̄n) = (zz̄)n

⇐⇒ (zn − cn)(z̄n − cn) = c2n

⇐⇒ |zn − cn| = cn

(2) Regarding the Cassini ovals, these correspond to the case where the polynomial
P ∈ C[X] has degree 2, and we already know from the above that these cover the Bernoulli
lemniscate. In general, the equation for the Cassini ovals is:

|z + c| · |z − c| = b2 ⇐⇒ |z2 − c2| = b2

⇐⇒ (z2 − c2)(z̄2 − c2) = b4

⇐⇒ (zz̄)2 − c2(z2 + z̄2) + c4 = b4

⇐⇒ (x2 + y2)2 − c2(x2 − y2) + c4 = b4

⇐⇒ (x2 + y2)2 = c2(x2 − y2) + b4 − c4

Thus, we are led to the conclusions in the statement. □

The polynomial lemniscates can be geometrically understood as follows:

Theorem 12.9. The equation |P (z)| = b defining the polynomial lemniscates can be
written as follows, in terms of the roots c1, . . . , cn of the polynomial P ,

n

√√√√ n∏
k=1

|z − ci| = b

telling us that the geometric mean of the distances from z to the vertices of the polygon
formed by c1, . . . , cn must be the constant b > 0.

Proof. This is something self-explanatory, and as an illustration, let us work out the
case of sinusoidal spirals with n ∈ N. Here with w = e2πi/n we have:

zn − cn =
n∏
k=1

(z − cwk)

Thus, the sinusoidal spiral equation reformulates as follows:

|zn − cn| = cn ⇐⇒
n∏
k=1

|z − cwk| = cn ⇐⇒ n

√√√√ n∏
k=1

|z − cwk| = c

Thus, for a sinusoidal spiral with positive integer parameter, the geometric mean of
the distances to the vertices of a regular polygon must equal the radius of the polygon. □

Regarding now the sinusoidal spirals with n ∈ −N, these are too part of another
remarkable family of plane algebraic curves, constructed as follows:
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Theorem 12.10. Given points in the plane c1, . . . , cn ∈ C and a number d ∈ R,
construct the associated stelloid as being the set of points z ∈ C verifying

1

n

n∑
k=1

αv(z − ci) = d

with αv denoting the angle with respect to a direction v. Then the stelloid is an algebraic
curve, not depending on v, and at the level of examples we have the sinusoidal spirals with
n ∈ −N, including the n = −1 line, n = −2 hyperbola, and n = −3 Humbert cubic.

Proof. All this is quite self-explanatory, and we will leave the verification of the
various generalities regarding the stelloids, as well as the verification of the relation with
the sinusoidal spirals with n ∈ −N, as an instructive exercise. □

So long for plane algebraic curves. Needless to say, all the above is old-style, first class
mathematics, having countless applications. For instance when doing classical mechanics
or electrodynamics, you will certainly meet polynomial lemniscates and stelloids, when
looking at the field lines. Also, the image of any circle passing though 0 by z → z2 is a
cardioid, and the famous Mandelbrot set is organized around such a cardioid.

12b. Space geometry

Getting now the usual 3 dimensions that we live in, to start with, many interesting
things can be said, in analogy with what we know about triangles. We first have:

Theorem 12.11. Any tetrahedron in three-dimensional space

A

B D

C

has a barycenter, lying 1/4−3/4 on the medians, uniting vertices to opposite barycenters.

Proof. The barycenter of our tetrahedron can only be given by:

P =
A+B + C +D

4
Now observe that this formula can be written in the following way:

P =
1

4
· A+

3

4
· B + C +D

3
Thus, we are led to the conclusion in the statement. □
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As in the case of the triangles, there is some further discussion here in relation with
physical barycenters, when considering that the vertices, or edges, or faces, or the whole
solid body itself, have mass. We will leave the study here as an interesting exercise.

Moving on, as a second basic result, again as for the triangles, we have:

Theorem 12.12. Any tetrahedron in three-dimensional space

A

B D

C

has an incenter, where the solid angle bisectors cross.

Proof. Again, this is something quite self-explanatory, and as in the case of the
triangles, there are several ways of precisely stating and proving this, as follows:

(1) As a first approach, which is straightforward, we can base our study on the notion
of solid angle bisector, as stated. Consider indeed a solid angle, as follows:

A

This solid angle has then a bisector, and with this best seen by fitting a sphere into
our angle. Indeed, if O is the center of the sphere, AO is the angle bisector.

(2) Now the point is that the 4 angle bisectors cross indeed, and this can be seen for
instance by interpreting each angle bisector as being an intersection of 3 planes, in the
obvious way. Indeed, the total of 12 planes that we have must intersect.

(3) But the simplest is to argue that the incenter appears by fitting, or rather by
inflating, a sphere inside our tetrahedron. Indeed, once our sphere is duly inflated, as to
touch the faces, its center will be the incenter of our tetrahedron. □

Along the same lines, we have as well the following result:
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Theorem 12.13. Any tetrahedron in three-dimensional space

A

B D

C

has a circumcenter, where the perpendicular bisectors cross.

Proof. Again, this is something quite self-explanatory, and as in the case of the
triangles, there are several ways of precisely stating and proving this, as follows:

(1) As a first approach, which is straightforward, we can base our study on the notion
of perpendicular bisector, as stated. Consider indeed a triangle in space:

B D

C

This triangle has then a perpendicular bisector, emanating from the circumcenter, as
shown above, and with this best seen by fitting our triangle into a sphere. Indeed, if O is
the center of the sphere, O projects on the triangle via the perpendicular bisector.

(2) Now the point is that the 4 perpendicular bisectors cross indeed, and this can be
seen for instance by interpreting each perpendicular bisector as being an intersection of 3
planes, in the obvious way. Indeed, the total of 12 planes that we have must intersect.

(3) But the simplest is to argue that the circumcenter appears by fitting, or rather by
deflating, a sphere outside our tetrahedron. Indeed, once our sphere is duly deflated, as
to touch the vertices, its center will be the circumcenter of our tetrahedron. □

Regarding now the orthocenter, things here are quite complicated, as follows:
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Theorem 12.14. Under suitable assumptions, the tetrahedra in 3D space

A

B D

C

have an orthocenter, where the altitudes cross.

Proof. This is something quite subtle, the idea being as follows:

(1) To start with, the altitudes of a tetrahedron do not cross, in general. We will leave
some thinking here, and the construction of counterexamples, as an exercise.

(2) Along the same lines, but a bit more philosophically, let us look at the 2-dimensional
proof, of the existence of the orthocenter. The trick and picture were as follows:

C ′ A B′

B C

A′

But such things won’t work in three dimensions, somehow for obvious reasons, and
again, we will leave some thinking here as an instructive exercise.

(3) Getting now to what can be done, as to have some theory and results going on,
following Monge and others, the idea is that we can talk about orthocentric tetrahedra.
Consider indeed a tetrahedron whose opposite edges are orthogonal:

AB ⊥ CD , AC ⊥ BD , AD ⊥ BC

In this situation the altitudes cross, and their intersection, the orthocenter, coincides
with the Monge point, appearing as the intersection of the 6 midplanes, which pass
through the middle of each of the 6 edges, and are orthogonal to the opposite edge. □
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12c. Linear algebra

Getting now to vector calculus and linear algebra, we are already a bit experts in
that, in 2 dimensions. So, we will be quite brief, the extension of most of the results being
quite straightforward. Also, for various reasons that will become clear in a moment, it is
convenient to discuss directly the N -dimensional case. As a starting point, we have:

Definition 12.15. The points x ∈ RN can be represented as vectors

x =

x1
...
xN


and are subject to the addition and multiplication by scalars operations

x+ y =

 x1 + y1
...

xN + yN

 , λx =

λx1
...

λxN


geometrically corresponding to forming a parallelogram, and dilating by λ.

Along the same lines, at a more advanced level, we can talk about scalar products and
lengths of vectors, with the basic theory here being summarized as follows:

Theorem 12.16. We can talk about scalar products and lengths, according to

< x, y >=
∑
i

xiyi , ||x|| =
√∑

i

x2i

which are related by the following conversion formulae,

||x|| =
√
< x, x > , < x, y >=

||x+ y||2 − ||x− y||2

4

and the following happen:

(1) < λx, y >=< x, λy >= λ < x, y >.
(2) < x+ y, z >=< x, z > + < y, z >.
(3) < x, y + z >=< x, z > + < y, z >.
(4) ||λx|| = |λ| · ||x||.
(5) | < x, y > | ≤ ||x|| · ||y||.
(6) ||x+ y|| ≤ ||x||+ ||y||.
(7) x ⊥ y ⇐⇒ < x, y >= 0, by definition.
(8) < x, y >= ||x|| · ||y|| · cos t, with t being the angle between x, y, by definition.
(9) < x, y >=< x′, y >=< x, y′ >, prime being the projection on the other vector.



284 12. CURVES, SURFACES

Proof. We can certainly talk about scalar products and lengths, as above, and with
the second conversion formula, called polarization identity, coming from:

||x+ y||2 − ||x− y||2 = < x+ y, x+ y > − < x− y, x− y >
= ||x||2 + ||y||2 + 2 < x, y > −||x||2 − ||y||2 + 2 < x, y >

= 4 < x, y >

By the way, talking useful identities, we have as well a parallelogram rule, as in 2D,
that I forgot to mention in the above statement, which is as follows:

||x+ y||2 + ||x− y||2 = < x+ y, x+ y > + < x− y, x− y >
= ||x||2 + ||y||2 + 2 < x, y > +||x||2 + ||y||2 − 2 < x, y >

= 2(||x||2 + ||y||2)

As for the various claims in the statement, these basically follow as in 2D:

(1-4) All the verifications here are trivial, as before in 2D.

(5-6) Given two vectors x, y ∈ RN , consider the following function f : R→ R:

f(t) = ||x+ ty||2

= < x+ ty, x+ ty >

= ||x||2 + 2t < x, y > +t2||y||2

Thus f is a degree 2 polynomial, and since this polynomial is positive, its discriminant
must be negative, ∆ ≤ 0. But the discriminant is given by the following formula:

∆ = 4 < x, y >2 −4||x||2||y||2

Thus, we obtain | < x, y > | ≤ ||x|| · ||y||, as claimed. As for ||x + y|| ≤ ||x|| + ||y||,
this follows from this, by raising to the square and simplifying.

(7-9) This is something more subtle, because do we really know what orthogonality
and angles really are, in RN , so the best is to proceed as indicated, with orthogonality
and angles being defined as above, and with the last formula being an easy exercise. □

Good work that we did, we are now experts in vector calculus, but as a matter of
making sure that we have not forgotten anything, let us ask the cat. And cat says:

Cat 12.17. Normally vector calculus in 3D is about vector products,x1x2
x3

×
y1y2
y3

 =

x2y3 − x3y2x3y1 − x1y3
x1y2 − x2y1


but you can probably reach to some interesting things using < x, y > only.
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Thanks cat, and I am afraid indeed that we won’t have time here to talk about x× y.
Thus being said, shall you ever get into advanced mechanics, angular momentum, rotating
frames, fluid dynamics, special and general relativity, or electromagnetism and quantum
mechanics, ask your cat about vector products x× y, which can be useful.

Moving on, with some linear algebra, let us start with the following definition:

Definition 12.18. A map f : RN → RM is called linear when it satisfies:

f(x+ y) = f(x) + f(y) , f(λx) = λf(x)

That is, f must behave well with respect to the basic operations on vectors.

As a first question that you might have, why calling linear such beasts? In answer,
observe that the above linearity conditions can be merged into one, as follows:

f(tx+ (1− t)y) = tf(x) + (1− t)f(y)
But this latter condition tells us that our map f must map lines into lines, or rather

points moving on lines to points moving on lines, as follows:

f : [x− y] ⇝ [f(x)− f(y)]
Thus, the terminology is justified. In what regards now the mathematics of the linear

maps, again by following the 2D material from the previous chapters, we have:

Theorem 12.19. The linear maps f : RN → RM are in correspondence with the
matrices A ∈MM×N(R), with the linear map associated to such a matrix being

f(x) = Ax

and with the matrix associated to a linear map being given by the formula

Aij =< f(ej), ei >

with {ei} being the standard bases, and < x, y >=
∑

i xiyi being the scalar product.

Proof. There are several things going on here, the idea being as follows:

(1) According to Definition 12.18, a linear map f : RN → RM must send a vector
x ∈ RN to a certain vector f(x) ∈ RM , all whose components are linear combinations of
the components of x. Thus, we can write, for certain numbers Aij ∈ R:

f

x1
...
xN

 =

 A11x1 + . . .+ A1NxN
...

AM1x1 + . . .+ AMNxN


Now observe that the parameters Aij ∈ R can be regarded as being the entries of a

rectangular matrix A ∈MM×N(R). Thus, we have a correspondence, as follows:

f ↔ A
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(2) In order to understand now how this correspondence works, let us make the fol-
lowing convention, for the multiplication of the rectangular matrices:

(AB)ij =
∑
k

AikBkj

To be more precise, we assume here A ∈MM×N(R) and B ∈MN×K(R), and we obtain
in this way a certain matrix AB ∈ MM×K(R). Now observe that in the case K = 1, and
by omitting the corresponding trivial index j, our multiplication formula reads:

(AB)i =
∑
k

AikBk

But this is quite similar to what we have in (1), with the formula there taking the
following form, which is the one in the statement, with our present conventions:

f(x) = Ax

(3) Regarding now the second assertion, with f(x) = Ax as above, if we denote by
e1, . . . , eN the standard basis of RN , then we have the following formula:

f(ej) =

A1j
...

AMj


But this gives the formula < f(ej), ei >= Aij in the statement, as desired. □

As a first consequence of the above result, of great practical interest, we have:

Theorem 12.20. Regarding the linear maps, written as fA(x) = Ax:

(1) These compose according to fAfB = fAB.
(2) fA is invertible when A is invertible, and f−1

A = fA−1.
(3) When A is invertible, fA(x) = y is solved by x = fA−1(y).

Proof. This is something self-explanatory, with (1) being clear from definitions, (2)
coming from (1), and (3) coming from (2). As a comment, however, in order to understand
the meaning of this, let us see what (3) tells us. The equation fA(x) = y reads:

A11x1 + . . .+ A1NxN = y1
...

AN1x1 + . . .+ ANNxN = yN

We recognize here an arbitrary linear system, which is something that is certainly not
easy to solve, with bare hands. But with our linear algebra technology, assuming that
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A = (Aij) is invertible, say with inverse B = (Bij), the solution is given by:
x1 = B11y1 + . . .+B1NyN

...

xN = BN1y1 + . . .+BNNyN

Which sounds quite amazing, hope you agree with me. In practice, however, inverting
matrices is something non-trivial. We will be back to this later, with a solution. □

As a continuation of this, inspired by the 2× 2 determinants, let us formulate:

Theorem 12.21. We can talk about the determinants of N × N matrices, defined
according to the following formula, valid for any vectors v1, . . . , vN ∈ RN ,

det(v1 . . . vN) = ±vol < v1, . . . , vN >

with < v1, . . . , vN >⊂ RN being the parallelepiped spanned by these vectors, and with the
sign being + if we can continuously pass ei → vi, and being − otherwise. And:

(1) In 2 dimensions, we have det
(
a b
c d

)
= ad− bc.

(2) In general, det enjoys the same properties as in 2D.
(3) In particular, A is invertible when detA ̸= 0, and A−1 can be computed.

Proof. There is a long story here, the idea being as follows:

(1) We can certainly define the determinant as in the statement, and in 2D we obtain
indeed det

(
a b
c d

)
= ad− bc, according to our computations in chapter 9.

(2) Things here are more complicated, depending on your exact knowledge of 2D
determinants, but believe me, all formulae that you presumably know in 2D, except of
course for det

(
a b
c d

)
=<

(
a
c

)
,
(
d
−b

)
>, which is something quite special, extend indeed to N

dimensions, and with the proofs being quite elementary, using the Thales theorem, a bit
as we did in chapter 9. Among others, we obtain the following formula, at N = 3:

det

a b c
d e f
g h i

 = aei+ bfg + cdh− ceg − bdi− afh

(3) Here the first assertion comes from Theorem 12.20, and the second assertion is
more technical, with for instance the inversion formula at N = 3 being as follows:a b c

d e f
g h i

−1

=
1

det

ei− fh ch− bi bf − ce
fg − di ai− cg cd− af
dh− eg bg − ah ae− bd


Summarizing, many things to be learned here, and have a look at [11] for more. □

Finally, let us talk about diagonalization. The basic theory here is as follows:
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Theorem 12.22. A vector v ∈ RN is called eigenvector of A ∈ MN(R), with corre-
sponding eigenvalue λ, when A multiplies by λ in the direction of v:

Av = λv

In the case where RN has a basis v1, . . . , vN formed by eigenvectors of A, with correspond-
ing eigenvalues λ1, . . . , λN , in this new basis A becomes diagonal, as follows:

A ∼

λ1 . . .
λN


Equivalently, if we denote by D = diag(λ1, . . . , λN) the above diagonal matrix, and by
P = [v1 . . . vN ] the square matrix formed by the eigenvectors of A, we have:

A = PDP−1

In this case we say that the matrix A is diagonalizable.

Proof. The first assertion is clear, and the second one follows from it, by changing
the basis. Alternatively, we can prove this by a direct computation too, as follows:

PDP−1vi = PDei = Pλiei = λiPei = λivi

Thus, the matrices A and PDP−1 coincide, as stated. □

In practice now, in order to diagonalize the real matrices A ∈ MN(R), it is better to
regards them as complex matrices, A ∈ MN(C), because there are more chances to find
eigenvectors in CN , than in its subspace RN . And, with this trick adopted, we have:

Theorem 12.23. Given a matrix A ∈MN(C), consider its characteristic polynomial

P (X) = det(A−X1N)

then factorize this polynomial, by computing the complex roots, with multiplicities,

P (X) = (−1)N(X − λ1)n1 . . . (X − λk)nk

and finally compute the corresponding eigenspaces, for each eigenvalue found:

Ei =
{
v ∈ CN

∣∣∣Av = λiv
}

The dimensions of these eigenspaces satisfy then the following inequalities,

dim(Ei) ≤ ni

and A is diagonalizable precisely when we have equality for any i.

Proof. This is something more technical, based on some routine algebra, and with
the occurrence of the characteristic polynomial being not surprising, due to:

Av = λv ⇐⇒ det(A− λ) = 0

For details, you can have a look at any linear algebra book, including mine [11]. □
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Let us end this discussion with something very concrete and useful, as follows:

Theorem 12.24. Any matrix A ∈ MN(R) which is symmetric, A = At, is diagonal-
izable, with the diagonalization being of the following type,

A = UDU t

with U ∈MN(R) orthogonal, and D ∈MN(R) diagonal. The converse holds too.

Proof. Many things going on here, the idea being as follows:

(1) To start with, the operation A → At is the transposition, (At)ij = Aji. Also,
U ∈ MN(R) is called orthogonal when it satisfies the following conditions, with the
equivalence coming from the polarization identity from Theorem 12.16:

||Ux|| = ||x|| ⇐⇒ < Ux,Uy >=< x, y >

⇐⇒ < U tUx, y >=< x, y >

⇐⇒ U t = U−1

(2) Getting now to the proof, the last assertion trivially holds, because if we take a
matrix of the form A = UDU t, with U orthogonal and D diagonal, we have:

At = (UDU t)t = UDU t = A

(3) In the other sense now, assume that A is symmetric, A = At. Our first claim is
that the eigenvalues are real. Indeed, assuming Av = λv, we have, as desired:

λ < v, v > = < Av, v >

= < v,Av >

= λ̄ < v, v >

(4) Our next claim is that the eigenspaces corresponding to different eigenvalues are
pairwise orthogonal. Indeed, assuming Av = λv, Aw = µw we have, using λ, µ ∈ R:

λ < v,w > = < Av,w >

= < v,Aw >

= µ < v,w >

We conclude that λ ̸= µ implies v ⊥ w, which proves our claim.

(5) In order to finish the proof, it remains to prove that the eigenspaces of A span the
whole RN . For this purpose, observe that assuming Av = λv and v ⊥ w, we have:

< Aw, v > = < w,Av >

= < w, λv >

= λ < w, v >

= 0

Thus v⊥ is invariant under A, so we can do the recurrence, and we get the result. □
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12d. Surfaces, manifolds

We would like to end the present chapter and Part III with a discussion on what hap-
pens to curves in higher dimensions, with an introduction to modern algebraic geometry.
As before with other things in this chapter, we will be quite quick, and advanced.

Let us first get to R3. Here we are right away into a dillema, because the plane curves
have two possible generalizations. First we have the algebraic curves in R3:

Definition 12.25. An algebraic curve in R3 is a curve as follows,

C =
{
(x, y, z) ∈ R3

∣∣∣P (x, y, z) = 0, Q(x, y, z) = 0
}

appearing as the joint zeroes of two polynomials P,Q.

These curves look of course like the usual plane curves, and at the level of the phe-
nomena that can appear, these are similar to those in the plane, involving singularities
and so on, but also knotting, which is a new phenomenon. However, it is hard to say
something with bare hands about knots, and we will not get into this, in this book.

On the other hand, as another natural generalization of the plane curves, and this
might sound a bit surprising, we have the surfaces in R3, constructed as follows:

Definition 12.26. An algebraic surface in R3 is a surface as follows,

S =
{
(x, y, z) ∈ R3

∣∣∣P (x, y, z) = 0
}

appearing as the zeroes of a polynomial P .

The point indeed is that, as it was the case with the plane curves, what we have here
is something defined by a single equation. And with respect to many questions, having a
single equation matters a lot, and this is why surfaces in R3 are “simpler” than curves in
R3. In fact, believe me, they are even the correct generalization of the curves in R2.

As an example of what can be done with surfaces, which is very similar to what we
did with the conics C ⊂ R2 before, we have the following result:

Theorem 12.27. The degree 2 surfaces S ⊂ R3, called quadrics, are the ellipsoid(x
a

)2
+
(y
b

)2
+
(z
c

)2
= 1

which is the only compact one, plus 16 more, which can be explicitly listed.

Proof. We will be quite brief here, because we intend to rediscuss all this in a
moment, with more details, in arbitrary N dimensions, the idea being as follows:
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(1) The equations for a quadric S ⊂ R2 are best written as follows, with A ∈ M3(R)
being a matrix, B ∈M1×3(R) being a row vector, and C ∈ R being a constant:

< Au, u > +Bu+ C = 0

(2) Since A ∈ M3(R) can be chosen symmetric, by using Theorem 12.24 we are left,
modulo degeneracy and linear transformations, with signed sums of squares:

±x2 ± y2 ± z2 = 0, 1

(3) Thus the sphere is the only compact quadric, up to linear transformations, and by
applying now linear transformations to it, we are led to the ellipsoids in the statement.

(4) As for the other quadrics, there are many of them, a bit similar to the parabolas
and hyperbolas in 2 dimensions, and some work here leads to a 16 item list. □

With this discussed, instead of further insisting on the surfaces S ⊂ R3, or getting into
their rivals, the curves C ⊂ R3, which appear as intersections of such surfaces, C = S∩S ′,
let us get instead to arbitrary N dimensions, see what the axiomatics looks like there,
with the hope that this will clarify our dimensionality dillema, curves vs surfaces.

So, moving to N dimensions, we have here the following definition, to start with:

Definition 12.28. An algebraic hypersurface in RN is a space of the form

S =
{
(x1, . . . , xN) ∈ RN

∣∣∣P (x1, . . . , xN) = 0,∀i
}

appearing as the zeroes of a polynomial P ∈ R[x1, . . . , xN ].

Again, this is a quite general definition, covering both the plane curves C ⊂ R and
the surfaces S ⊂ R2, which is certainly worth a systematic exploration. But, no hurry
with this, for the moment we are here for talking definitions and axiomatics.

In order to have now a full collection of beasts, in all possible dimensions N ∈ N, and
of all possible dimensions k ∈ N, we must intersect such algebraic hypersurfaces. We are
led in this way to the zeroes of families of polynomials, as follows:

Definition 12.29. An algebraic manifold in RN is a space of the form

X =
{
(x1, . . . , xN) ∈ RN

∣∣∣Pi(x1, . . . , xN) = 0,∀i
}

with Pi ∈ R[x1, . . . , xN ] being a family of polynomials.

As a first observation, as already mentioned, such a manifold appears as an intersection
of hypersurfaces Si, those associated to the various polynomials Pi:

X = S1 ∩ . . . ∩ Sk
There is actually a bit of a discussion needed here, regarding the parameter k ∈ N,

shall we allow this parameter to be k =∞ too, or not. We will discuss this later.
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Let us first look more in detail at the hypersurfaces. We have here:

Theorem 12.30. The degree 2 hypersurfaces S ⊂ RN , called quadrics, are up to
degeneracy and to linear transformations the hypersurfaces of the following form,

±x21 ± . . .± x2N = 0, 1

and with the sphere being the only compact one.

Proof. We have two statements here, the idea being as follows:

(1) The equations for a quadric S ⊂ RN are best written as follows, with A ∈MN(R)
being a matrix, B ∈M1×N(R) being a row vector, and C ∈ R being a constant:

< Ax, x > +Bx+ C = 0

(2) Since A ∈ MN(R) can be chosen symmetric, by using Theorem 12.24 we are left,
modulo degeneracy and linear transformations, with signed sums of squares:

±x21 ± . . .± x2N = 0, 1

(3) To be more precise, by changing the basis of RN , as to have A ∈MN(R) diagonal,
our equation becomes as follows, with D ∈MN(R) being now diagonal:

< Dx, x > +Ex+ F = 0

(4) But now, by making squares in the obvious way, which amounts in applying yet
another linear transformation to our quadric, the equation takes the following form, with
G ∈MN(−1, 0, 1) being diagonal, and with H ∈ {0, 1} being a constant:

< Gx, x >= H

(5) Now barring the degenerate cases, we can further assume G ∈MN(−1, 1), and we
are led in this way to the equation claimed in (2) above, namely:

±x21 ± . . .± x2N = 0, 1

(6) In particular we see that, up to some degenerate cases, namely emptyset and point,
the only compact quadric, up to linear transformations, is the one given by:

x21 + . . .+ x2N = 1

(7) But this is the unit sphere, so are led to the conclusions in the statement. □

Getting now to the arbitrary general manifolds, we have the following question:

Question 12.31. Given an algebraic manifold in RN , appearing as

X =
{
(x1, . . . , xN) ∈ RN

∣∣∣Pi(x1, . . . , xN) = 0,∀i
}

what are the polynomials P ∈ R[x1, . . . , xN ] vanishing on X? Conversely, given a set

I ⊂ R[x1, . . . , xN ]
what is the manifold X where all the polynomials P ∈ I vanish?
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Obviously, this is something important, because assuming that we managed to find
an answer, we would have a useful “algebraic geometry” correspondence, as follows:(

X ⊂ RN
)
←→

(
I ⊂ R[x1, . . . , xN ]

)
In practice now, we already know a bit about the beasts on the left X, so let us study

the beasts on the right I. Here are a few basic observations, about them:

– To start with, assuming that X ⊂ RN comes from polynomials {Pi}, the set I ⊂
R[x1, . . . , xN ] of polynomials vanishing on X obviously contains {Pi}.

– However, much more is true. Indeed, if we come with any family of polynomials
{Qi} ⊂ R[x1, . . . , xN ], it is then clear that we must have

∑
i PiQi ∈ I.

– Getting now a bit abstract, we can see that, more generally, I ⊂ R[x1, . . . , xN ] must
be stable under sums, and must satisfy P ∈ I =⇒ PQ ∈ I, ∀Q.

And so, question now, in view of all this, what are the beasts I ⊂ R[x1, . . . , xN ] that
we are looking for? In answer, these must be ideals, in the following sense:

Definition 12.32. We have notions of rings and ideals, as follows:

(1) A ring R is a set with operations + and ×, satisfying the usual conditions for
such operations, except for ab = ba, and for a ̸= 0 =⇒ ∃a−1.

(2) An ideal I ⊂ R is a subgroup with the left ideal property i ∈ I, r ∈ R =⇒ ir ∈ I,
or the right ideal property i ∈ I, r ∈ R =⇒ ri ∈ I, or both.

In what follows we will be mainly interested in the ring R = R[x1, . . . , xN ], which is
commutative, ab = ba. For such rings, the 3 notions of ideals in (2) coincide.

In relation now with our algebraic geometry questions, we can reformulate our notion
of algebraic manifold, in commutative algebra terms, as follows:

Theorem 12.33. The algebraic manifolds are precisely the sets of the form

X =
{
x ∈ RN

∣∣∣P (x) = 0,∀P ∈ I
}

with I ⊂ R[x1, . . . , xN ] being a certain ideal.

Proof. In one sense, this comes from the discussion after Question 12.31, and in the
other sense this is trivial, because we can write I = {Pi|i ∈ I}, with Pi = i. □

In order to further discuss now the correspondence X ↔ I, we need to know more
algebra. Let us start with the following basic fact, in the context of Definition 12.32:

Theorem 12.34. Let R be a ring, and I ⊂ R be an additive subgroup.

(1) I is a two-sided ideal precisely when F = R/I is a ring.
(2) If R is commutative, I ⊂ R is a maximal ideal precisely when F is a field.
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Proof. This is something very standard, the idea being as follows:

(1) Since the additive group (R,+) is abelian, given an additive subgroup I ⊂ R we
can form the quotient group F = R/I, which is abelian too, with addition as follows:

(a+ I) + (b+ I) = (a+ b+ I)

The question is now, can we turn this abelian group F into a ring? Normally the
multiplication can only be as follows, and with this clarifying our statement:

(a+ I)(b+ I) = (ab+ I)

But, will this work. In practice, the following condition must be satisfied:

(a+ I) = (a′ + I) , (b+ I) = (b′ + I) =⇒ (ab+ I) = (a′b′ + I)

But this shows that I ⊂ R must be a two-sided ideal, as claimed.

(2) Assume first that F = R/I is a field. This means that any nonzero element of F
is invertible, and with our usual conventions for F , this reads:

∀a /∈ I , ∃b ∈ R , (ab+ I) = (1 + I)

Now assume by contradiction that I ⊂ R is not maximal, so that we have a bigger
ideal I ⊂ J ⊂ R. If we pick a ∈ J − I, we obtain, by the above, the following:

a ∈ J − I , b ∈ R , ab = 1 + i , i ∈ I
But this is contradictory, because since J is an ideal, containing I, we must have

ab, i ∈ J , and so we conclude that we have 1 ∈ J , which in turn gives:

J = R

As for the converse, this follows via some similar arguments, exercise for you. □

Getting back now to algebraic geometry, we first have the following result:

Theorem 12.35 (Hilbert basis theorem). Any ideal of polynomials

I ⊂ R[x1, . . . , xN ]
is finitely generated, I = (P1, . . . , Pk), for some Pi ∈ R[x1, . . . , xN ].

Proof. This is something quite tricky, the idea being as follows:

(1) Following Emmy Noether, let us call a ring R Noetherian when any ideal I ⊂ R
is finitely generated. Equivalently, any increasing sequence of ideals I1 ⊂ I2 ⊂ . . . must
stabilize, in the sense that we must have In = In+1 = . . . , for some n ∈ N.

(2) We want to prove that R[x1, . . . , xN ] is Noetherian, and we will do this by recur-
rence on N . Since R = R is clearly Noetherian, as being a field, we are left with proving
the recurrence step. And, for this purpose, we will prove something which is a bit more
general, namely that if a ring R is Noetherian, then so is the ring R[X].
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(3) We do this by contradiction. So, assume that R is Noetherian, and that R[X] is
not Noetherian, so that we have an ideal I ⊂ R[X] which is not finitely generated.

(4) In order to find a contradiction, let us pick P1 ∈ I of minimial degree d1 ∈ N,
then P2 ∈ I/(P1) of minimal degree d2 ∈ N, then P3 ∈ I/(P1, P2) of minimal degree
d3 ∈ N, and so on. Since our ideal I ⊂ R[X] was assumed to be not finitely generated,
this procedure will not stop, and we obtain an increasing sequence, as follows:

d1 ≤ d2 ≤ d3 ≤ . . .

(5) Now let ai ∈ R be the leading coefficient of each Pi, and set J = (a1, a2, . . .) ⊂ R.
Since R was assumed to be Noetherian, we can find n ∈ N such that J = (a1, . . . , an).
Thus, we have a formula as follows, for certain scalars λi ∈ R:

an+1 =
n∑
i=1

λiai

(6) With this done, consider the following polynomial, with λi ∈ R as above:

Q =
n∑
i=1

λiX
dn+1−diPi

This polyomial satisfies then Q ∈ (P1, . . . , Pn), and has the same leading coefficient as
Pn+1 /∈ (P1, . . . , Pn). Thus, the following polynomial has degree < dn+1:

Pn+1 −Q ∈ I/(P1, . . . , Pn)

But this is a contradiction, as desired, and this finishes the proof. □

In practice, Theorem 12.35 is best remembered geometrically, as follows:

Theorem 12.36. The algebraic manifolds X ⊂ RN are precisely the intersections

X = S1 ∩ . . . ∩ Sk
with Si ⊂ RN being hypersurfaces.

Proof. Indeed, given an algebraic manifold X ⊂ RN , we can consider the ideal
I ⊂ R[x1, . . . , xN ] of polynomials vanishing on X, then write I = (P1, . . . , Pk) with
k <∞, as in Theorem 12.35, and then set Si ⊂ RN to be the set of zeroes of Pi. □

Moving ahead now, let us further investigate the correspondence X ↔ I. We would
like this to be bijective, but there are at least 2 obstructions to this, as follows:

– To start with, assuming P k = 0 on X, we have P = 0 on X. In view of this, we
must restrict the attention to the ideals I which are “radical”, P k ∈ I =⇒ P ∈ I.

– Also, at N = 1, the ideal I = (x2+1) ⊂ R[x] produces the manifold X = ∅. In view
of this, we must trade R for C, where arbitrary polynomials have roots.
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So, these are two obvious obstructions, with respective solutions to them, and coming
now as good news, there is no third obstruction, as shown by the following result:

Theorem 12.37 (Nullstellensatz). We have a correspondence(
X ⊂ CN

)
←→

(
I ⊂ C[x1, . . . , xN ]

)
between algebraic manifolds in CN , and radical ideals of C[x1, . . . , xN ].

Proof. This is something quite tricky, due to Hilbert, as follows:

(1) We know that at N = 1 polynomials have roots, so here I = (P ) =⇒ XI ̸= ∅.
The point now is that, by doing some algebra, in the spirit of what we did in the proof of
Theorem 12.35, something similar happens in arbitrary N dimensions, in the sense that
any proper ideal I ⊂ C[x1, . . . , xN ] produces a non-empty manifold, XI ̸= ∅.

(2) Next, what we want to prove is that given an ideal I ⊂ C[x1, . . . , xN ], any poly-
nomial P ∈ C[x1, . . . , xN ] vanishing on XI has the property P k ∈ I, for some k ∈ N. For
this purpose, we can add 1 dimension, and consider the following ideal:

J =< I, xN+1P (x1, . . . , xN)− 1 >

(3) Now since we have XJ = ∅, by (1) we conclude that J is trivial. In order now to
best interpret this finding, consider the following algebra:

C[x1, . . . , xN ][P−1] = C[x1, . . . , xN+1]/(xN+1P − 1)

The triviality of J gives then a formula of the following type, with fi ∈ I:
1 = f0 + f1xN+1 + . . .+ fkx

k
N+1

Now by multiplying by P k, we obtain from this P k ∈ I, as desired. □

12e. Exercises

Welcome to space geometry, and as exercises on this, we have:

Exercise 12.38. Learn more about sinusoidal spirals, and their properties.

Exercise 12.39. Learn also more about polynomial lemniscates, and stelloids.

Exercise 12.40. Read also some electrostatics, featuring various algebraic curves.

Exercise 12.41. Clarify what we said, in relation with orthocentric tetrahedra.

Exercise 12.42. Mediate on the notions of orthogonality and angles, in RN .

Exercise 12.43. Learn also about vector products in R3, and their applications.

Exercise 12.44. Learn the full theory of the determinant, defined as a volume.

Exercise 12.45. Read, as much as you can, about matrix diagonalization.

As bonus exercise, reiterated, start reading a nice algebraic geometry book.



Part IV

Calculus methods



If you’re going to San Francisco
Be sure to wear some flowers in your hair

If you’re going to San Francisco
You’re gonna meet some gentle people there



CHAPTER 13

Functions, derivatives

13a. Functions, derivatives

With algebra and geometry reasonably understood, time to get, with no fear, into
analysis and related topics. Our main motivation is very simple, as follows:

Motivation 13.1. We have been advised by felines to trade our beloved 90◦ from
astronomy for the quite abstract π/2 from mathematics, based on the fact that

sin t ≃ t

can be of help, in relation with the fact that this world is made of small angles and forces,
adding up. But is this really a good idea? We want to see applications of this.

But all this is perhaps a bit too philosophical. At a more concrete level, still in relation
with our rescaling 90◦ → π/2, and with the resulting estimate sin t ≃ t, we have:

Motivations 13.2. In with relation with the above, and more concretely:

(1) Can we further improve sin t ≃ t, cos t ≃ 1− t2/2, tan t ≃ t?
(2) What about estimating sinx, cosx, tanx, at an arbitrary x ∈ R?
(3) In fact, how to best approximate sin, cos, tan by polynomials?
(4) What are the averages of sin, cos, tan, over suitable intervals?
(5) What about more complicated averages, say of sinp x cosq x?
(6) Also, what about π itself, can we reach to π = 3.1415 . . .?

All this was trigonometry, which is certainly useful for engineering and related topics.
On top of this, we have accumulated as well a number of motivations coming from pure
mathematics and physics, more philosophical, which can be summarized as follows:

Motivations 13.3. In relation with pure mathematics and physics:

(1) How to rigorously prove eit = cos t+ i sin t?
(2) What are the volumes of spheres, in arbitrary dimensions?
(3) Is a matrix A ∈MN(C), picked at random, diagonalizable?
(4) Can we approximate the functions f : RN → RM by linear maps?
(5) How to define tangent spaces to our various curves and surfaces?
(6) Can we understand the computations of Newton, for gravity?

299
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Getting to work now, there is an answer to all these questions, namely “calculus”.
The idea of calculus is very simple. To start with, we will be interested in the functions
f : R → R. We know that when f is continuous at x, we can write an approximation
formula as follows, for the values of our function f around that point x:

f(x+ t) ≃ f(x)

The problem is now, how to improve this? And a bit of thinking at all this suggests
to look at the slope of f at the point x. Which leads us into the following notion:

Definition 13.4. A function f : R→ R is called differentiable at x when

f ′(x) = lim
t→0

f(x+ t)− f(x)
t

called derivative of f at that point x, exists.

As a first remark, in order for f to be differentiable at x, that is to say, in order for
the above limit to converge, the numerator must go to 0, as the denominator t does:

lim
t→0

[f(x+ t)− f(x)] = 0

Thus, f must be continuous at x. However, the converse is not true, a basic coun-
terexample being f(x) = |x| at x = 0. Let us summarize these findings as follows:

Proposition 13.5. If f is differentiable at x, then f must be continuous at x. How-
ever, the converse is not true, a basic counterexample being f(x) = |x|, at x = 0.

Proof. The first assertion is something that we already know, from the above. As
for the second assertion, regarding f(x) = |x|, this is something quite clear on the picture
of f , but let us prove this mathematically, based on Definition 13.4. We have:

lim
t↘0

|0 + t| − |0|
t

= lim
t↘0

t− 0

t
= 1

On the other hand, we have as well the following computation:

lim
t↗0

|0 + t| − |0|
t

= lim
t↗0

−t− 0

t
= −1

Thus, the limit in Definition 13.4 does not converge, as desired. □

Generally speaking, the last assertion in Proposition 13.5 should not bother us much,
because most of the basic continuous functions are differentiable, and we will see examples
in a moment. Before that, however, let us recall why we are here, namely improving the
basic estimate f(x+ t) ≃ f(x). We can now do this, using the derivative, as follows:

Theorem 13.6. Assuming that f is differentiable at x, we have:

f(x+ t) ≃ f(x) + f ′(x)t

In other words, f is, approximately, locally affine at x.
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Proof. Assume indeed that f is differentiable at x, and let us set, as before:

f ′(x) = lim
t→0

f(x+ t)− f(x)
t

By multiplying by t, we obtain that we have, once again in the t→ 0 limit:

f(x+ t)− f(x) ≃ f ′(x)t

Thus, we are led to the conclusion in the statement. □

All this is very nice, and before developing more theory, let us work out some examples.
As a first illustration, the derivatives of the power functions are as follows:

Theorem 13.7. We have the differentiation formula

(xp)′ = pxp−1

valid for any exponent p ∈ R.

Proof. We can do this in three steps, as follows:

(1) In the case p ∈ N we can use the binomial formula, which gives, as desired:

(x+ t)p =
n∑
k=0

(
p

k

)
xp−ktk

= xp + pxp−1t+ . . .+ tp

≃ xp + pxp−1t

(2) Let us discuss now the general case p ∈ Q. We write p = m/n, with m ∈ Z and
n ∈ N. In order to do the computation, we use the following formula:

an − bn = (a− b)(an−1 + an−2b+ . . .+ bn−1)

We set in this formula a = (x+ t)m/n and b = xm/n. We obtain, as desired:

(x+ t)m/n − xm/n =
(x+ t)m − xm

(x+ t)m(n−1)/n + . . .+ xm(n−1)/n

≃ (x+ t)m − xm

nxm(n−1)/n

≃ mxm−1t

nxm(n−1)/n

=
m

n
· xm−1−m+m/n · t

=
m

n
· xm/n−1 · t
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(3) In the general case now, where p ∈ R is real, we can use a similar argument.
Indeed, given any integer n ∈ N, we have the following computation:

(x+ t)p − xp =
(x+ t)pn − xpn

(x+ t)p(n−1) + . . .+ xp(n−1)

≃ (x+ t)pn − xpn

nxp(n−1)

Now observe that we have the following estimate, with [.] being the integer part:

(x+ t)[pn] ≤ (x+ t)pn ≤ (x+ t)[pn]+1

By using the binomial formula on both sides, for the integer exponents [pn] and [pn]+1
there, we deduce that with n >> 0 we have the following estimate:

(x+ t)pn ≃ xpn + pnxpn−1t

Thus, we can finish our computation started above as follows:

(x+ t)p − xp ≃ pnxpn−1t

nxpn−p
= pxp−1t

But this gives (xp)′ = pxp−1, which finishes the proof. □

Here are some further computations, for other basic functions that we know:

Theorem 13.8. We have the following results:

(1) (sinx)′ = cosx.
(2) (cosx)′ = − sinx.
(3) (ex)′ = ex.
(4) (log x)′ = x−1.

Proof. This is quite tricky, as always when computing derivatives, as follows:

(1) Regarding sin, the computation here goes as follows:

(sinx)′ = lim
t→0

sin(x+ t)− sinx

t

= lim
t→0

sinx cos t+ cosx sin t− sinx

t

= lim
t→0

sinx · cos t− 1

t
+ cosx · sin t

t
= cos x

Here we have used the fact, that we know well from chapter 7, obtained by drawing
the trigonometric circle, that we have sin t ≃ t for t ≃ 0, plus the fact, which follows from
this and Pythagoras, sin2+cos2 = 1, that we have as well cos t ≃ 1− t2/2, for t ≃ 0.
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(2) The computation for cos is similar, based on the same ingredients, as follows:

(cosx)′ = lim
t→0

cos(x+ t)− cosx

t

= lim
t→0

cosx cos t− sinx sin t− cosx

t

= lim
t→0

cosx · cos t− 1

t
− sinx · sin t

t
= − sinx

(3) For the exponential, the derivative can be computed as follows:

(ex)′ =

(
∞∑
k=0

xk

k!

)′

=
∞∑
k=0

kxk−1

k!

= ex

(4) As for the logarithm, the computation here is as follows, using log(1 + y) ≃ y for
y ≃ 0, which follows from ey ≃ 1 + y that we found in (3), by taking the logarithm:

(log x)′ = lim
t→0

log(x+ t)− log x

t

= lim
t→0

log(1 + t/x)

t

=
1

x

Thus, we are led to the formulae in the statement. □

Speaking exponentials, we can now formulate a nice result about them:

Theorem 13.9. The exponential function, namely

ex =
∞∑
k=0

xk

k!

is the unique power series satisfying f ′ = f and f(0) = 1.

Proof. Consider indeed a power series satisfying f ′ = f and f(0) = 1. Due to
f(0) = 1, the first term must be 1, and so our function must look as follows:

f(x) = 1 +
∞∑
k=1

ckx
k
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According to our differentiation rules, the derivative of this series is given by:

f(x) =
∞∑
k=1

kckx
k−1

Thus, the equation f ′ = f is equivalent to the following equalities:

c1 = 1 , 2c2 = c1 , 3c3 = c2 , 4c4 = c3 , . . .

But this system of equations can be solved by recurrence, as follows:

c1 = 1 , c2 =
1

2
, c3 =

1

2× 3
, c4 =

1

2× 3× 4
, . . .

Thus we have ck = 1/k!, leading to the conclusion in the statement. □

Observe that the above result leads to a more conceptual explanation for the number
e itself. To be more precise, e ∈ R is the unique number satisfying:

(ex)′ = ex

Let us work out now some general results. We have here the following statement:

Theorem 13.10. We have the following formulae:

(1) (f + g)′ = f ′ + g′.
(2) (fg)′ = f ′g + fg′.
(3) (f ◦ g)′ = (f ′ ◦ g) · g′.

Proof. All these formulae are elementary, the idea being as follows:

(1) This follows indeed from definitions, the computation being as follows:

(f + g)′(x) = lim
t→0

(f + g)(x+ t)− (f + g)(x)

t

= lim
t→0

(
f(x+ t)− f(x)

t
+
g(x+ t)− g(x)

t

)
= lim

t→0

f(x+ t)− f(x)
t

+ lim
t→0

g(x+ t)− g(x)
t

= f ′(x) + g′(x)

(2) This follows from definitions too, the computation, by using the more convenient
formula f(x+ t) ≃ f(x) + f ′(x)t as a definition for the derivative, being as follows:

(fg)(x+ t) = f(x+ t)g(x+ t)

≃ (f(x) + f ′(x)t)(g(x) + g′(x)t)

≃ f(x)g(x) + (f ′(x)g(x) + f(x)g′(x))t

Indeed, we obtain from this that the derivative is the coefficient of t, namely:

(fg)′(x) = f ′(x)g(x) + f(x)g′(x)
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(3) Regarding compositions, the computation here is as follows, again by using the
more convenient formula f(x+ t) ≃ f(x) + f ′(x)t as a definition for the derivative:

(f ◦ g)(x+ t) = f(g(x+ t))

≃ f(g(x) + g′(x)t)

≃ f(g(x)) + f ′(g(x))g′(x)t

Indeed, we obtain from this that the derivative is the coefficient of t, namely:

(f ◦ g)′(x) = f ′(g(x))g′(x)

Thus, we are led to the conclusions in the statement. □

We can of course combine the above formulae, and we obtain for instance:

Theorem 13.11. The derivatives of fractions are given by:(
f

g

)′

=
f ′g − fg′

g2

In particular, we have the following formula, for the derivative of inverses:(
1

f

)′

= − f
′

f 2

In fact, we have (fp)′ = pfp−1, for any exponent p ∈ R.

Proof. This statement is written a bit upside down, and for the proof it is better to
proceed backwards. To be more precise, by using (xp)′ = pxp−1 and Theorem 13.10 (3),
we obtain the third formula. Then, with p = −1, we obtain from this the second formula.
And finally, by using this second formula and Theorem 13.10 (2), we obtain:(

f

g

)′

= f ′ · 1
g
+ f

(
1

g

)′

=
f ′

g
− fg′

g2

=
f ′g − fg′

g2

Thus, we are led to the formulae in the statement. □

With the above formulae in hand, we can now do all sorts of computations for the
other basic functions that we know, including tan x, or arctanx:

Theorem 13.12. We have the following formulae,

(tanx)′ =
1

cos2 x
, (arctanx)′ =

1

1 + x2

and the derivatives of the remaining trigonometric functions can be computed as well.
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Proof. For the tangent, we have the following computation:

(tanx)′ =
sin′ x cosx− sinx cos′ x

cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x
As for arctan, we can use here the following computation:

(tan ◦ arctan)′(x) = tan′(arctanx) arctan′(x)

=
1

cos2(arctanx)
arctan′(x)

Indeed, since the term on the left is simply x′ = 1, we obtain from this:

arctan′(x) = cos2(arctanx)

On the other hand, with t = arctanx we know that we have tan t = x, and so:

cos2(arctanx) = cos2 t =
1

1 + tan2 t
=

1

1 + x2

Thus, we are led to the formula in the statement. As for the last assertion, we will
leave this as an exercise for now, and come back later to it, in chapter 14. □

At the theoretical level now, further building on Theorem 13.6, we have:

Theorem 13.13. The local minima and maxima of a differentiable function f : R→ R
appear at the points x ∈ R where:

f ′(x) = 0

However, the converse of this fact is not true in general.

Proof. The first assertion follows from the formula in Theorem 13.6, namely:

f(x+ t) ≃ f(x) + f ′(x)t

Indeed, saying that our function f has a local maximum at x ∈ R means that there
exists a number ε > 0 such that the following happens:

f(x+ t) ≥ f(x) , ∀t ∈ [−ε, ε]
We conclude that we must have f ′(x)t ≥ 0 for sufficiently small t, and since this small

t can be both positive or negative, this gives, as desired:

f ′(x) = 0

As for the study of the local minima, this is similar. Finally, in what regards the
converse, the simplest counterexample here is f(x) = x3, taken at x = 0. □

As an important consequence now of Theorem 13.13, we have:
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Theorem 13.14. Assuming that f : [a, b]→ R is differentiable, we have

f(b)− f(a)
b− a

= f ′(c)

for some c ∈ (a, b), called mean value property of f .

Proof. In the case f(a) = f(b), the result, called Rolle theorem, states that we have
f ′(c) = 0 for some c ∈ (a, b), and follows from Theorem 13.13. Now in what regards our
statement, due to Lagrange, this follows from Rolle, applied to the following function:

g(x) = f(x)− f(b)− f(a)
b− a

· x

Indeed, we have g(a) = g(b), due to our choice of the constant on the right, so we get
g′(c) = 0 for some c ∈ (a, b), which translates into the formula in the statement. □

Back now to Theorem 13.13, this can be used in order to find the minimum and
maximum of any differentiable function, and this method is best recalled as follows:

Algorithm 13.15. In order to find the minimum and maximum of f : [a, b]→ R:
(1) Compute the derivative f ′.
(2) Solve the equation f ′(x) = 0.
(3) Add a, b to your set of solutions.
(4) Compute f(x), for all your solutions.
(5) Compute the min/max of all these f(x) values.
(6) Then this is the min/max of your function.

Needless to say, all this is very interesting, and powerful. The general problem in
any type of applied mathematics is that of finding the minimum or maximum of some
function, and we have now an algorithm for dealing with such questions. Very nice.

13b. Second derivatives

The derivative theory that we have is already quite powerful, and can be used in order
to solve all sorts of interesting questions, but with a bit more effort, we can do better.
Indeed, at a more advanced level, we can come up with the following notion:

Definition 13.16. We say that f : R→ R is twice differentiable if it is differentiable,
and its derivative f ′ : R→ R is differentiable too. The derivative of f ′ is denoted

f ′′ : R→ R
and is called second derivative of f .

You might probably wonder why coming with this definition, which looks a bit abstract
and complicated, instead of further developing the theory of the first derivative, which
looks like something very reasonable and useful. Good point, and answer to this coming
in a moment. But before that, let us get a bit familiar with f ′′. We first have:
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Interpretation 13.17. The second derivative f ′′(x) ∈ R is the number which:

(1) Expresses the growth rate of the slope f ′(z) at the point x.
(2) Gives us the acceleration of the function f at the point x.
(3) Computes how much different is f(x), compared to f(z) with z ≃ x.
(4) Tells us how much convex or concave is f , around the point x.

So, this is the truth about the second derivative, making it clear that what we have
here is a very interesting notion. In practice now, (1) follows from the usual interpretation
of the derivative, as both a growth rate, and a slope. Regarding (2), this is some sort
of reformulation of (1), using the intuitive meaning of the word “acceleration”, with the
relevant physics equations, due to Newton, being as follows:

v = ẋ , a = v̇

Regarding now (3) in the above, this is something more subtle, of statistical nature,
that we will clarify with some mathematics, in a moment. As for (4), this is something
quite subtle too, that we will again clarify with some mathematics, in a moment.

In practice now, let us first compute the second derivatives of the functions that we
are familiar with, see what we get. The result here, which is perhaps not very enlightening
at this stage of things, but which certainly looks technically useful, is as follows:

Proposition 13.18. The second derivatives of the basic functions are as follows:

(1) (xp)′′ = p(p− 1)xp−2.
(2) sin′′ = − sin.
(3) cos′′ = − cos.
(4) exp′ = exp.
(5) log′(x) = −1/x2.

Also, there are functions which are differentiable, but not twice differentiable.

Proof. We have several assertions here, the idea being as follows:

(1) Regarding the various formulae in the statement, these all follow from the various
formulae for the derivatives established before, as follows:

(xp)′′ = (pxp−1)′ = p(p− 1)xp−2

(sinx)′′ = (cosx)′ = − sinx

(cosx)′′ = (− sinx)′ = − cosx

(ex)′′ = (ex)′ = ex

(log x)′′ = (−1/x)′ = −1/x2

Of course, this is not the end of the story, because these formulae remain quite opaque,
and must be examined in view of Interpretation 13.17, in order to see what exactly is going
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on. Also, we have tan and the inverse trigonometric functions too. In short, plenty of
good exercises here, for you, and the more you solve, the better your calculus will be.

(2) Regarding now the counterexample, recall first that the simplest example of a
function which is continuous, but not differentiable, was f(x) = |x|, the idea behind this
being to use a “piecewise linear function whose branches do not fit well”. In connection
now with our question, piecewise linear will not do, but we can use a similar idea, namely
“piecewise quadratic function whose branches do not fit well”. So, let us set:

f(x) =

{
−x2 (x ≤ 0)

x2 (x ≥ 0)

The derivative is then f ′(x) = 2|x|, which is not differentiable, as desired. □

Getting now to general theory, we first have the following key result:

Theorem 13.19. Any twice differentiable function f : R→ R is locally quadratic,

f(x+ t) ≃ f(x) + f ′(x)t+
f ′′(x)

2
t2

with f ′′(x) being as usual the derivative of the function f ′ : R→ R at the point x.

Proof. Assume indeed that f is twice differentiable at x, and let us try to construct
an approximation of f around x by a quadratic function, as follows:

f(x+ t) ≃ a+ bt+ ct2

We must have a = f(x), and we also know from Theorem 13.6 that b = f ′(x) is the
correct choice for the coefficient of t. Thus, our approximation must be as follows:

f(x+ t) ≃ f(x) + f ′(x)t+ ct2

In order to find the correct choice for c ∈ R, observe that the function t → f(x + t)
matches with t→ f(x)+ f ′(x)t+ ct2 in what regards the value at t = 0, and also in what
regards the value of the derivative at t = 0. Thus, the correct choice of c ∈ R should be
the one making match the second derivatives at t = 0, and this gives:

f ′′(x) = 2c

We are therefore led to the formula in the statement, namely:

f(x+ t) ≃ f(x) + f ′(x)t+
f ′′(x)

2
t2

In order to prove now that this formula holds indeed, we will use L’Hôpital’s rule,
which states that the 0/0 type limits can be computed as follows:

f(x)

g(x)
≃ f ′(x)

g′(x)
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Observe that this formula holds indeed, as an application of Theorem 13.6. Now by
using this, if we denote by φ(t) ≃ P (t) the formula to be proved, we have:

φ(t)− P (t)
t2

≃ φ′(t)− P ′(t)

2t

≃ φ′′(t)− P ′′(t)

2

=
f ′′(x)− f ′′(x)

2
= 0

Thus, we are led to the conclusion in the statement. □

The above result substantially improves Theorem 13.6, and there are many applica-
tions of it. As a first such application, justifying Interpretation 13.17 (3), we have the
following statement, which is a bit heuristic, but we will call it however Proposition:

Proposition 13.20. Intuitively speaking, the second derivative f ′′(x) ∈ R computes
how much different is f(x), compared to the average of f(z), with z ≃ x.

Proof. As already mentioned, this is something a bit heuristic, but which is good to
know. Let us write the formula in Theorem 13.19 as such, and with t→ −t too:

f(x+ t) ≃ f(x) + f ′(x)t+
f ′′(x)

2
t2

f(x− t) ≃ f(x)− f ′(x)t+
f ′′(x)

2
t2

By making the average, we obtain the following formula:

f(x+ t) + f(x− t)
2

≃ f(x) +
f ′′(x)

2
t2

But this is what our statement says, save for some uncertainties regarding the aver-
aging method, and for the precise value of I(t2/2). We will leave this for later. □

Back to rigorous mathematics, we can improve as well Theorem 13.13, as follows:

Theorem 13.21. The local minima and local maxima of a twice differentiable function
f : R→ R appear at the points x ∈ R where

f ′(x) = 0

with the local minima corresponding to the case f ′(x) ≥ 0, and with the local maxima
corresponding to the case f ′′(x) ≤ 0.
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Proof. The first assertion is something that we already know. As for the second
assertion, we can use the formula in Theorem 13.19, which in the case f ′(x) = 0 reads:

f(x+ t) ≃ f(x) +
f ′′(x)

2
t2

Indeed, assuming f ′′(x) ̸= 0, it is clear that the condition f ′′(x) > 0 will produce a
local minimum, and that the condition f ′′(x) < 0 will produce a local maximum. □

As before with Theorem 13.13, the above result is not the end of the story with the
mathematics of the local minima and maxima, because things are undetermined when:

f ′(x) = f ′′(x) = 0

In answer, in such cases, the third derivative must be used. More on this later.

13c. Convex functions

As a main concrete application of the second derivative, which is something very useful
in practice, and related to Interpretation 13.17 (4), we have the following result:

Theorem 13.22 (Jensen). Given a convex function f : R→ R, we have the following
inequality, for any x1, . . . , xN ∈ R, and any λ1, . . . , λN > 0 summing up to 1,

f(λ1x1 + . . .+ λNxN) ≤ λ1f(x1) + . . .+ λNxN

with equality when x1 = . . . = xN . In particular, by taking the weights λi to be all equal,
we obtain the following inequality, valid for any x1, . . . , xN ∈ R,

f

(
x1 + . . .+ xN

N

)
≤ f(x1) + . . .+ f(xN)

N

and once again with equality when x1 = . . . = xN . A similar statement holds for the
concave functions, with all the inequalities being reversed.

Proof. This is indeed something quite routine, the idea being as follows:

(1) First, we can talk about convex functions in a usual, intuitive way, with this
meaning by definition that the following inequality must be satisfied:

f

(
x+ y

2

)
≤ f(x) + f(y)

2

(2) But this means, via a simple argument, by approximating numbers t ∈ [0, 1] by
sums of powers 2−k, that for any t ∈ [0, 1] we must have:

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)
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Alternatively, via yet another simple argument, this time by doing some geometry
with triangles, this means that we must have:

f

(
x1 + . . .+ xN

N

)
≤ f(x1) + . . .+ f(xN)

N

But then, again alternatively, by combining the above two simple arguments, the
following must happen, for any λ1, . . . , λN > 0 summing up to 1:

f(λ1x1 + . . .+ λNxN) ≤ λ1f(x1) + . . .+ λNxN

(3) Summarizing, all our Jensen inequalities, at N = 2 and at N ∈ N arbitrary, are
equivalent. The point now is that, if we look at what the first Jensen inequality, that we
took as definition for the convexity, exactly means, this is simply equivalent to:

f ′′(x) ≥ 0

(4) Thus, we are led to the conclusions in the statement, regarding the convex func-
tions. As for the concave functions, the proof here is similar. Alternatively, we can say
that f is concave precisely when −f is convex, and get the results from what we have. □

As a basic application of the Jensen inequality, widely useful in practice, we have:

Theorem 13.23 (Young). We have the following inequality,

ab ≤ ap

p
+
bq

q

valid for any a, b ≥ 0, and any exponents p, q > 1 satisfying 1
p
+ 1

q
= 1.

Proof. We use the logarithm function, which is concave on (0,∞), due to:

(log x)′′ =

(
−1

x

)′

= − 1

x2

Thus we can apply the Jensen inequality, and we obtain in this way:

log

(
ap

p
+
bq

q

)
≥ log(ap)

p
+

log(bq)

q

= log(a) + log(b)

= log(ab)

Now by exponentiating, we obtain the Young inequality. □

Observe that for the simplest exponents, namely p = q = 2, the Young inequality
gives something which is trivial, but is very useful and basic, namely:

ab ≤ a2 + b2

2
Things over with this, you would say? You must be kidding, because as a key appli-

cation now of the Young inequality, also widely useful in practice, we have:
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Theorem 13.24 (Hölder). Assuming that p, q ≥ 1 are conjugate, in the sense that

1

p
+

1

q
= 1

we have the following inequality, valid for any two vectors x, y ∈ CN ,

∑
i

|xiyi| ≤

(∑
i

|xi|p
)1/p(∑

i

|yi|q
)1/q

with the convention that an ∞ exponent produces a max |xi| quantity.

Proof. This is something very standard, the idea being as follows:

(1) Assume first that we are dealing with finite exponents, p, q ∈ (1,∞). By linearity
we can assume that x, y are normalized, in the following way:∑

i

|xi|p =
∑
i

|yi|q = 1

But in this case, by applying Young and summing we obtain, as desired:∑
i

|xiyi| ≤
∑
i

|xi|p

p
+
∑
i

|yi|q

q

=
1

p
+

1

q
= 1

(2) In the case p = 1 and q =∞, or vice versa, the inequality holds too, trivially, with
the convention that an ∞ exponent produces a max quantity, according to:

lim
p→∞

(∑
i

|xi|p
)1/p

= max |xi|

Thus, we are led to the conclusion in the statement. □

As a consequence now of the Hölder inequality, we have:

Theorem 13.25 (Minkowski). Assuming p ∈ [1,∞], we have the inequality(∑
i

|xi + yi|p
)1/p

≤

(∑
i

|xi|p
)1/p

+

(∑
i

|yi|p
)1/p

for any two vectors x, y ∈ CN , with our usual conventions at p =∞.
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Proof. We have indeed the following estimate, using the Hölder inequality, and the
conjugate exponent q ∈ [1,∞], given by 1/p+ 1/q = 1:∑

i

|xi + yi|p =
∑
i

|xi + yi| · |xi + yi|p−1

≤
∑
i

|xi| · |xi + yi|p−1 +
∑
i

|yi| · |xi + yi|p−1

≤

(∑
i

|xi|p
)1/p(∑

i

|xi + yi|(p−1)q

)1/q

+

(∑
i

|yi|p
)1/p(∑

i

|xi + yi|(p−1)q

)1/q

=

(∑
i

|xi|p
)1/p

+

(∑
i

|yi|p
)1/p

(∑
i

|xi + yi|p
)1−1/p

Here we have used the following fact, at the end:

1

p
+

1

q
= 1 =⇒ 1

q
=
p− 1

p
=⇒ (p− 1)q = p

Thus, we are led to the inequality in the statement. □

Good news, done with inequalities, and as a consequence of our results, and more
specifically of the Minkowski inequality obtained above, we can formulate:

Theorem 13.26. Given an exponent p ∈ [1,∞], the formula

||x||p =

(∑
i

|xi|p
)1/p

with our usual conventions at p =∞, defines a norm on CN .

Proof. This follows indeed from Minkowski, and with the norm axioms being by
definition something intuitive, inspired from the properties of the length of vectors x ∈ RN ,
namely ||x|| > 0 for x ̸= 0, ||λx|| = |λ| · ||x||, and ||x+ y|| ≤ ||x||+ ||y||. □

And with this, we are now experts in functional analysis. If you ever fail solving your
problem by using the usual distance ||.||2, switch to ||.||p, with a suitably chosen p.

13d. Taylor formula

Back now to the general theory of the derivatives, and their theoretical applications,
we can further develop our basic approximation method, at order 3, at order 4, and so
on, the ultimate result on the subject, called Taylor formula, being as follows:
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Theorem 13.27. Any function f : R→ R can be locally approximated as

f(x+ t) =
∞∑
k=0

f (k)(x)

k!
tk

where f (k)(x) are the higher derivatives of f at the point x.

Proof. Consider the function to be approximated, namely:

φ(t) = f(x+ t)

Let us try to best approximate this function at a given order n ∈ N. We are therefore
looking for a certain polynomial in t, of the following type:

P (t) = a0 + a1t+ . . .+ ant
n

The natural conditions to be imposed are those stating that P and φ should match
at t = 0, at the level of the actual value, of the derivative, second derivative, and so on
up the n-th derivative. Thus, we are led to the approximation in the statement:

f(x+ t) ≃
n∑
k=0

f (k)(x)

k!
tk

In order to prove now that this approximation holds indeed, we can use L’Hôpital’s
rule, applied several times, as in the proof of Theorem 13.19. To be more precise, if we
denote by φ(t) ≃ P (t) the approximation to be proved, we have:

φ(t)− P (t)
tn

≃ φ′(t)− P ′(t)

ntn−1

≃ φ′′(t)− P ′′(t)

n(n− 1)tn−2

...

≃ φ(n)(t)− P (n)(t)

n!

=
f (n)(x)− f (n)(x)

n!
= 0

Thus, we are led to the conclusion in the statement. □

Here is a related interesting statement, inspired from the above proof:

Proposition 13.28. For a polynomial of degree n, the Taylor approximation

f(x+ t) ≃
n∑
k=0

f (k)(x)

k!
tk

is an equality. The converse of this statement holds too.
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Proof. By linearity, it is enough to check the equality in question for the monomials
f(x) = xp, with p ≤ n. But here, the formula to be proved is as follows:

(x+ t)p ≃
p∑

k=0

p(p− 1) . . . (p− k + 1)

k!
xp−ktk

We recognize the binomial formula, so our result holds indeed. As for the converse,
this is clear, because the Taylor approximation is a polynomial of degree n. □

There are many other things that can be said about the Taylor formula, at the the-
oretical level, notably with a study of the remainder, when truncating this formula at a
given order n ∈ N. We will be back to this, later in this book, towards the end.

In relation now with the local extrema, we have the following result:

Theorem 13.29. Given a differentiable function f : R→ R, we can always write

f(x+ t) ≃ f(x) +
f (n)(x)

n!
tn

with f (n)(x) ̸= 0, and this tells us if x is a local minimum, or maximum of f .

Proof. This is indeed something self-explanatory, coming from Theorem 13.27, with
the number n ∈ N in question being the smallest one such that f (n)(x) ̸= 0. □

As a concrete application now of the Taylor formula, we have:

Theorem 13.30. We have the following formulae,

ex =
∞∑
k=0

xk

k!
, log(1 + x) =

∞∑
k=0

(−1)k+1x
k

k

as well as the following formulae,

sinx =
∞∑
l=0

(−1)l x2l+1

(2l + 1)!
, cosx =

∞∑
l=0

(−1)l x
2l

(2l)!

as Taylor series, and in general as well, with x ∈ (−1, 1] needed for log.

Proof. There are several assertions here, the proofs being as follows:

(1) Regarding the Taylor series statements, we can use here the following formulae:

(ex)′ = ex , (log x)′ = x−1

(sinx)′ = cosx , (cosx)′ = − sinx

Thus we can differentiate exp, log, sin, cos, as many times as we want to, and compute
the corresponding Taylor series, and we obtain the formulae in the statement.
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(2) Regarding now the convergence away from 0, we already know that this happens
for ex. In order to discuss sin and cos, we will need the Euler formula, namely:

eix = cosx+ i sinx

To be more precise, this is a formula that we more or less established in chapter 11,
with the promise to come back later to it, after learning calculus. So, let us set:

f(x) =
cosx+ i sinx

eix

The point is that we can compute the derivative of f , and we obtain:

f ′(x) = (e−ix(cosx+ i sinx))′

= −ie−ix(cosx+ i sinx) + e−ix(− sinx+ i cosx)

= e−ix(−i cosx+ sinx) + e−ix(− sinx+ i cosx)

= 0

We conclude from this that f is constant, equal to f(0) = 1, as desired.

(3) Getting back now to our questions regarding sin and cos, we have the following
computation, valid for any x ∈ R, based on the usual formula of the exponential:

eix =
∞∑
k=0

(ix)k

k!

=
∞∑
l=0

(ix)2l

(2l)!
+

∞∑
l=0

(ix)2l+1

(2l + 1)!

=
∞∑
l=0

(−1)l x
2l

(2l)!
+ i

∞∑
l=0

(−1)l x2l+1

(2l + 1)!

Now by comparing this with eix = cosx+ i sinx, we obtain, for any x ∈ R:

cosx =
∞∑
l=0

(−1)l x
2l

(2l)!
, sinx =

∞∑
l=0

(−1)l x2l+1

(2l + 1)!

(4) Finally, in what regards the logarithm, we know that we have, as Taylor series:

log(1 + x) =
∞∑
k=0

(−1)k+1x
k

k

By using now the general theory of series, from basic analysis, we can see that this
series does obviously not converge for |x| > 1, nor at x = −1. Thus, we are left with the
question whether the above formula holds or not, at x ∈ (−1, 1].
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(5) And in order to prove that it is so, we must check one of the following formulae,
with log(1 + x) standing here by definition for the above Taylor series of log(1 + x):

exp(log(1 + x)) = 1 + x , log(exp(x)) = x

But this can be done indeed, with some patience, and we will leave the computations
here, based on the binomial formula, as an instructive exercise. □

As another application of our Taylor formula technology, we have:

Theorem 13.31. We have the following generalized binomial formula, with p ∈ R,

(x+ t)p =
∞∑
k=0

(
p

k

)
xp−ktk

with the generalized binomial coefficients being given by the formula(
p

k

)
=
p(p− 1) . . . (p− k + 1)

k!

valid for any |t| < |x|. With p ∈ N, we recover the usual binomial formula.

Proof. It is customary to divide everything by x, which is the same as assuming
x = 1. The formula to be proved is then as follows, under the assumption |t| < 1:

(1 + t)p =
∞∑
k=0

(
p

k

)
tk

Let us discuss now the validity of this formula, depending on p ∈ R:

(1) Case p ∈ N. According to our definition of the generalized binomial coefficients,
we have

(
p
k

)
= 0 for k > p, so the series is stationary, and the formula to be proved is:

(1 + t)p =

p∑
k=0

(
p

k

)
tk

But this is the usual binomial formula, which holds for any t ∈ R.

(2) Case p = −1. Here we can use the following formula, valid for |t| < 1:

1

1 + t
= 1− t+ t2 − t3 + . . .

But this is exactly our generalized binomial formula at p = −1, because:(
−1
k

)
=

(−1)(−2) . . . (−k)
k!

= (−1)k
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(3) Case p ∈ −N. With p = −m, the generalized binomial coefficients are:(
−m
k

)
=

(−m)(−m− 1) . . . (−m− k + 1)

k!

= (−1)k (m+ k − 1)!

(m− 1)!k!

= (−1)k
(
m+ k − 1

m− 1

)
Thus, our generalized binomial formula at p = −m reads:

1

(1 + t)m
=

∞∑
k=0

(−1)k
(
m+ k − 1

m− 1

)
tk

But this is something standard, and we will leave the proof as an exercise.

(4) General case, p ∈ R. As we can see, things escalate quickly, so we will skip the
next step, p ∈ Q, and discuss directly the case p ∈ R. Consider the following function:

f(x) = xp

The derivatives at x = 1 are then given by the following formula:

f (k)(1) = p(p− 1) . . . (p− k + 1)

Thus, the Taylor approximation at x = 1 is as follows:

f(1 + t) =
∞∑
k=0

p(p− 1) . . . (p− k + 1)

k!
tk

But this is exactly our generalized binomial formula, so we are done with the case
where t is small. As for the general case, which reads |t| < 1 with our normalization
x = 1 above, this follows from (1 + t)p = exp(p log(1 + t)), using Theorem 13.30. □

As a main application now of our generalized binomial formula, we have:

Theorem 13.32. We have the following formula,

√
1 + t = 1− 2

∞∑
k=1

Ck−1

(
−t
4

)k
with Ck =

1
k+1

(
2k
k

)
being the Catalan numbers. Also, we have

1√
1 + t

=
∞∑
k=0

Dk

(
−t
4

)k
with Dk =

(
2k
k

)
being the central binomial coefficients.
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Proof. At p = 1/2, the generalized binomial coefficients are:(
1/2

k

)
=

1/2(−1/2) . . . (3/2− k)
k!

= (−1)k−1 (2k − 2)!

2k−1(k − 1)!2kk!

= −2
(
−1
4

)k
Ck−1

Also, at p = −1/2, the generalized binomial coefficients are:(
−1/2
k

)
=
−1/2(−3/2) . . . (1/2− k)

k!

= (−1)k (2k)!

2kk!2kk!

=

(
−1
4

)k
Dk

Thus, Theorem 13.31 at p = ±1/2 gives the formulae in the statement. □

Quite nice all this. Eventually, we learned how to extract square roots. We will see
many other concrete applications of calculus, in what follows.

13e. Exercises

Good to have you here, at this calculus chapter, and as exercises, we have:

Exercise 13.33. Clarify all the details in the proof of (xp)′ = pxp−1.

Exercise 13.34. Compute the derivatives of remaining trigonometric functions.

Exercise 13.35. Compute the second derivatives of all trigonometric functions.

Exercise 13.36. Further meditate on the interpretations of the second derivative.

Exercise 13.37. Clarify everything that we said, in relation with convex functions.

Exercise 13.38. Compute the third and fourth derivatives of all basic functions.

Exercise 13.39. Learn more about the general Taylor formula, and its remainder.

Exercise 13.40. See what happens to the binomial formula, at exponents p ∈ Z/3.

As bonus exercise, recommended, find and solve 100 basic calculus exercises.



CHAPTER 14

Trigonometric functions

14a. First derivatives

Time to see how our calculus technology works for the trigonometric functions. Let
us start with the following key result, that we already know from chapter 13:

Theorem 14.1. We have the following formulae,

(sinx)′ = cosx , (cosx)′ = − sinx , (tanx)′ =
1

cos2 x

provided that the denominator at right does not vanish.

Proof. This is something that we know from chapter 13, but as a matter of having
the present chapter rather self-contained, let us briefly recall the proofs:

(1) Regarding sin, the computation here goes as follows, using the basic estimate
sin t ≃ t for t ≃ 0, along with cos t ≃ 1− t2/2, coming from it via Pythagoras:

(sinx)′ = lim
t→0

sin(x+ t)− sinx

t

= lim
t→0

sinx cos t+ cosx sin t− sinx

t

= lim
t→0

sinx · cos t− 1

t
+ cosx · sin t

t
= cos x

(2) The computation for cos is similar, based on the same ingredients, as follows:

(cosx)′ = lim
t→0

cos(x+ t)− cosx

t

= lim
t→0

cosx cos t− sinx sin t− cosx

t

= lim
t→0

cosx · cos t− 1

t
− sinx · sin t

t
= − sinx

321



322 14. TRIGONOMETRIC FUNCTIONS

(3) For the tangent, by using the rules in chapter 13, we have indeed:

(tanx)′ =
sin′ x cosx− sinx cos′ x

cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x
(4) Alternatively, we can get this by using tan t ≃ t for t ≃ 0, as follows:

(tanx)′ = lim
t→0

tan(x+ t)− tanx

t

= lim
t→0

tanx+tan t
1−tanx tan t

− tanx

t

= lim
t→0

tan t+ tan2 x tan t

t(1− tanx tan t)

= lim
t→0

tan t+ tan2 x tan t

t
= 1 + tan2 x

=
1

cos2 x
Thus, we are led to the formulae in the statement. □

As a comment now, observe that the formula for the tangent can be written as follows,
in terms of the secant function, and with this looking like an improvement:

(tanx)′ = sec2 x

However, it is better not to do so, and this for a quite subtle reason, as follows:

Fact 14.2. We will learn later that the operation inverse to f → f ′, called integration,
is something interesting too, and in view of this, it is better to express our f ′ functions in
terms of sin, cos only, for subsequent quick identification and integration, when needed.

Well, hope you get my point, while the various secondary trigonometric functions are
certainly very interesting objects, worth the study, and valuable as input for our present
derivative computations, they are not recommended as output, for the above reasons.

Talking now secondary trigonometric functions, we first have:

Theorem 14.3. We have the following formulae,

(secx)′ =
sinx

cos2 x
, (cscx)′ = − cosx

sin2 x
, (cotx)′ = − 1

sin2 x
provided that the denominators do not vanish.
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Proof. For the secant, we have the following computation:

(secx)′ =

(
1

cosx

)′

= − cos′ x

cos2 x

=
sinx

cos2 x

For the cosecant, we have a similar computation, as follows:

(cscx)′ =

(
1

sinx

)′

= − sin′ x

sin2 x

= − cosx

sin2 x

For the cotangent, we have the following computation, as for the tangent:

(cotx)′ =
(cosx
sinx

)′
=

cos′ x sinx− cosx sin′ x

sin2 x

= −sin2 x+ cos2 x

sin2 x

= − 1

sin2 x

Alternatively, we can use our previous formula for the tangent, and we obtain:

(cotx)′ =

(
1

tanx

)′

= − tan′ x

tan2 x

= − 1/ cos2 x

sin2 x/ cos2 x

= − 1

sin2 x

Thus, we are led to the conclusions in the statement. □

Time now for the inverse trigonometric functions. We have here:



324 14. TRIGONOMETRIC FUNCTIONS

Theorem 14.4. The derivatives of basic inverse trigonometric functions are

(arcsinx)′ =
1√

1− x2
, (arccosx)′ = − 1√

1− x2
, (arctanx)′ =

1

1 + x2

and the derivatives of secondary inverse trigonometric functions are

(arcsecx)′ =
1

|x|
√
x2 − 1

, (arccscx)′ = − 1

|x|
√
x2 − 1

, (arccotx)′ = − 1

1 + x2

provided that the denominators do not vanish.

Proof. This is something routine, by using what we already have, along with the
formula (f ◦ g)′ = (f ′ ◦ g) · g′ from chapter 13, as follows:

(1) For the arcsine, we can use the following computation:

(sin ◦ arcsin)′(x) = sin′(arcsinx) arcsin′(x)

= cos(arcsinx) arcsin′(x)

Indeed, since the term on the left is simply x′ = 1, we obtain from this:

arcsin′(x) =
1

cos(arcsinx)

On the other hand, with t = arcsinx we know that we have sin t = x, and so:

cos(arcsinx) = cos t

=
√

1− sin2 t

=
√
1− x2

Thus, we are led to the formula in the statement, namely:

(arcsinx)′ =
1√

1− x2

(2) For the arcosine, we have a similar computation, as follows:

(cos ◦ arccos)′(x) = cos′(arccosx) arccos′(x)

= − sin(arccosx) arccos′(x)

Indeed, since the term on the left is simply x′ = 1, we obtain from this:

arccos′(x) = − 1

sin(arccosx)

On the other hand, with t = arccosx we know that we have cos t = x, and so:

sin(arccosx) = sin t

=
√
1− cos2 t

=
√
1− x2
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Thus, we are led to the formula in the statement, namely:

(arccosx)′ = − 1√
1− x2

(3) For the arctangent, we can use the following computation:

(tan ◦ arctan)′(x) = tan′(arctanx) arctan′(x)

=
1

cos2(arctanx)
arctan′(x)

Indeed, since the term on the left is simply x′ = 1, we obtain from this:

arctan′(x) = cos2(arctanx)

On the other hand, with t = arctanx we know that we have tan t = x, and so:

cos2(arctanx) = cos2 t

=
1

1 + tan2 t

=
1

1 + x2

Thus, we are led to the formula in the statement, namely:

(arctanx)′ =
1

1 + x2

(4) For the arcsecant, we can use the following computation:

(sec ◦ arcsec)′(x) = sec′(arcsecx) arcsec′ (x)

=
sin(arcsecx)

cos2(arcsecx)
arcsec′ (x)

Indeed, since the term on the left is simply x′ = 1, we obtain from this:

arcsec′ (x) =
cos2(arcsecx)

sin(arcsecx)

On the other hand, with t = arcsecx we know that we have sec t = x, and so:

cos(arcsecx) = cos t =
1

x
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As for the sine of the arcsecant, we can compute it as well, as follows:

sin(arcsecx) = sin t

=
√
1− cos2 t

=

√
1− 1

x2

=

√
x2 − 1

|x|

Thus, we are led to the formula in the statement, namely:

(arcsecx)′ =
cos2(arcsecx)

sin(arcsecx)

=
1

x2
· |x|√

x2 − 1

=
1

|x|
√
x2 − 1

(5) For the arcosecant, we can use the following computation:

(csc ◦ arccsc)′(x) = csc′(arccscx) arccsc′ (x)

= − cos(arcsecx)

sin2(arccscx)
arccsc′ (x)

Indeed, since the term on the left is simply x′ = 1, we obtain from this:

arccsc′ (x) = −sin2(arccscx)

cos(arccscx)

On the other hand, with t = arccscx we know that we have csc t = x, and so:

sin(arccscx) = sin t =
1

x

As for the cosine of the arcosecant, we can compute it as well, as follows:

cos(arccscx) = cos t

=
√

1− sin2 t

=

√
1− 1

x2

=

√
x2 − 1

|x|
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Thus, we are led to the formula in the statement, namely:

(arccscx)′ = −sin2(arccscx)

cos(arccscx)

= − 1

x2
· |x|√

x2 − 1

= − 1

|x|
√
x2 − 1

(6) For the arcotangent, we can use the following computation:

(cot ◦ arccot)′(x) = cot′(arccotx) arccot′ (x)

= − 1

sin2(arccotx)
arccot′ (x)

Indeed, since the term on the left is simply x′ = 1, we obtain from this:

arccot′ (x) = − sin2(arccotx)

On the other hand, with t = arccotx we know that we have cot t = x, and so:

sin2(arccotx) = sin2 t

=
1

1 + cot2 t

=
1

1 + x2

Thus, we are led to the formula in the statement, namely:

(arccotx)′ = − 1

1 + x2

And so, theorem proved, we are now experts in computing derivatives. □

14b. Higher derivatives

In what regards now the second derivatives, we first have the following result:

Theorem 14.5. We have the following formulae,

(sinx)′′ = − sinx , (cosx)′′ = − cosx , (tanx)′′ =
2 sinx

cos3 x

as well as the following formulae,

(secx)′′ =
1 + sin2 x

cos3 x
, (cscx)′′ =

1 + cos2 x

sin3 x
, (cotx)′′ =

2 cosx

sin3 x

provided that the denominators do not vanish.
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Proof. This comes from the formulae in Theorem 14.1 and Theorem 14.3, with help
from the general derivation formulae from chapter 13 when needed, as follows:

(1) The formula for the sine is clear, coming as follows:

(sinx)′′ = (cosx)′ = − sinx

(2) The formula for the cosine is clear too, coming as follows:

(cosx)′′ = (− sinx)′ = − cosx

(3) For the tangent, we have the following computation:

(tanx)′′ =

(
1

cos2 x

)′

= −(cos2 x)′

cos4 x

=
2 cosx sinx

cos4 x

=
2 sinx

cos3 x

(4) For the secant, we have the following computation:

(secx)′′ =

(
sinx

cos2 x

)′

=
sin′ x cos2 x− sinx(cos2 x)′

cos4 x

=
cosx · cos2 x+ sinx · 2 cosx sinx

cos4 x

=
cos2 x+ 2 sin2 x

cos3 x

=
1 + sin2 x

cos3 x
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(5) For the cosecant, we have a similar computation, as follows:

(cscx)′′ =
(
− cosx

sin2 x

)′
= −cos′ x sin2 x− cosx(sin2 x)′

sin4 x

=
sinx · sin2 x+ cosx · 2 sinx cosx

sin4 x

=
sin2 x+ 2 cos2 x

sin3 x

=
1 + cos2 x

sin3 x

(6) For the cotangent, we have the following computation, as for the tangent:

(cotx)′′ =

(
− 1

sin2 x

)′

=
(sin2 x)′

sin4 x

=
2 sinx cosx

sin4 x

=
2 cosx

sin3 x

Thus, we are led to the conclusions in the statement. □

Regarding now the inverse trigonometric functions, we have here:

Theorem 14.6. The second derivatives of basic inverse trigonometric functions are

(arcsinx)′′ =
x

(1− x2)3/2
, (arccosx)′′ = − x

(1− x2)3/2
, (arctanx)′′ = − 2x

(1 + x2)2

and the second derivatives of secondary inverse trigonometric functions are

(arcsecx)′′ =
|x|(1− 2x2)

x3(x2 − 1)3/2
, (arccscx)′′ = − |x|(1− 2x2)

x3(x2 − 1)3/2
, (arccotx)′′ =

2x

(1 + x2)2

provided that the denominators do not vanish.

Proof. This is routine, by using the formulae from Theorem 14.4, as follows:
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(1) For the arcsine, the computation is as follows:

(arcsinx)′′ =

(
1√

1− x2

)′

= −
√
1− x2 ′

1− x2

=
x/
√
1− x2

1− x2

=
x

(1− x2)3/2

(2) For the arcosine the computation, using the one above, is as follows:

(arccosx)′′ =

(
− 1√

1− x2

)′

= − x

(1− x2)3/2

(3) For the arctangent, the computation is as follows:

(arctanx)′′ =

(
1

1 + x2

)′

= − 2x

(1 + x2)2

(4) For the arcsecant, the computation is as follows:

(arcsecx)′′ =

(
1

|x|
√
x2 − 1

)′

= −(|x|
√
x2 − 1)′

x2(x2 − 1)

= −|x|
′
√
x2 − 1 + |x|

√
x2 − 1

′

x2(x2 − 1)

= −sgn(x)
√
x2 − 1 + |x|x/

√
x2 − 1

x2(x2 − 1)

= −sgn(x)(x
2 − 1) + |x|x

x2(x2 − 1)3/2

= −|x|(x
2 − 1) + |x|x2

x3(x2 − 1)3/2

=
|x|(1− 2x2)

x3(x2 − 1)3/2

(5) For the arcosecant the computation, using the one above, is as follows:

(arccscx)′′ =

(
− 1

|x|
√
x2 − 1

)′

= − |x|(1− 2x2)

x3(x2 − 1)3/2
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(6) For the arcotangent the computation, using the one for the tangent, is:

(arccotx)′′ =

(
− 1

1 + x2

)′

=
2x

(1 + x2)2

Thus, we are led to the formulae in the statement. □

Regarding now the third derivatives, for the sine and cosine we have:

(sinx)′′′ = (− sinx)′ = − cosx

(cosx)′′′ = (− cosx)′ = sinx

As for the fourth derivatives of the sine and cosine, these are as follows:

(sinx)′′′′ = (− cosx)′ = sinx

(cosx)′′′′ = (sinx)′ = cosx

In view of this, which looks interesting, let us see as well what happens for the tangent.
However, the result here is as follows, making it clear that we have no periodicity:

Theorem 14.7. The first two derivatives of the tangent function are

(tanx)′ =
1

cos2 x
, (tanx)′′ =

2 sinx

cos3 x

and the third and fourth derivatives are

(tanx)′′′ =
2 + 4 sin2 x

cos4 x
, (tanx)′′′′ =

16 sinx+ 8 sin3 x

cos5 x

provided that the denominators do not vanish.

Proof. We already know the first two formulae, from Theorem 14.1 and Theorem
14.5. Regarding now the third formula, the computation here is as follows:

(tanx)′′′ =

(
2 sinx

cos3 x

)′

=
2 cosx · cos3 x+ 2 sinx · 3 cos2 x sinx

cos6 x

=
2 cos2 x+ 6 sin2 x

cos4 x

=
2 + 4 sin2 x

cos4 x
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As for the fourth formula, the computation here is as follows:

(tanx)′′′′ =

(
2 + 4 sin2 x

cos4 x

)′

=
8 sinx cosx · cos4 x+ (2 + 4 sin2 x) · 4 cos3 x sinx

cos8 x

=
8 sinx cos2 x+ (2 + 4 sin2 x) · 4 sinx

cos5 x

=
8 sinx(1− sin2 x) + (2 + 4 sin2 x) · 4 sinx

cos5 x

=
16 sinx+ 8 sin3 x

cos5 x

Thus, we are led to the conclusions in the statement. □

Regarding now the higher derivatives of sec, csc, cot, and of the inverse functions
arcsin, arccos, arctan and arcsec, arccsc, arccot, these can be certainly computed too, up
to the needed order, but the complexity grows with the order, a bit like for tan.

Summarizing, we are here back to the basics, with sin, cos being the nice trigonometric
functions, and with everything else being quite complicated. Good to know.

14c. Taylor series

Getting now to the Taylor series of the various trigonometric functions, that we would
like to compute at x = 0, some simplifications appear here, due to the fact that we will
not need for this all the derivatives f (k)(x), but just their values f (k)(0). And, as we will
soon discover, this will allow the computation for all 12 basic functions, namely:

sin cos tan
sec csc cot

arcsin arccos arctan
arcsec arccsc arccot

Getting started now, with what is most likely the simplest, namely the sine and cosine,
we have here the following result, that we already know from chapter 13:

Theorem 14.8. We have the following formulae for sin and cos,

sinx =
∞∑
n=0

(−1)n x2n+1

(2n+ 1)!
, cosx =

∞∑
n=0

(−1)n x2n

(2n)!

as Taylor series, around 0, and also in general.
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Proof. This is something that we saw in chapter 13, and as a matter of having the
present section rather complete and self-contained, here is the detailed proof:

(1) Regarding the sine, we can use here the following formulae:

(sinx)′ = cosx , (cosx)′ = − sinx

Indeed, we can differentiate sin as many times as we want to, and we get:

sin(k)(x) =


sinx k = 0(4)

cosx k = 1(4)

− sinx k = 2(4)

− cosx k = 3(4)

In particular, we obtain the following formula for the derivatives, at x = 0:

sin(k)(0) =


0 k = 0(4)

1 k = 1(4)

0 k = 2(4)

−1 k = 3(4)

Thus, when constructing the Taylor series, the even powers of x dissapear, and for the
odd powers, the derivative formulae that we need to know are as follows:

sin(2n+1)(0) = (−1)n

But this gives the formula in the statement for the Taylor series, namely:

sinx =
∞∑
n=0

(−1)n x2n+1

(2n+ 1)!

(2) For the cosine, the story is similar, again based on the following formulae:

(sinx)′ = cosx , (cosx)′ = − sinx

Indeed, we can differentiate cos as many times as we want to, and we get:

cos(k)(x) =


cosx k = 0(4)

− sinx k = 1(4)

− cosx k = 2(4)

sinx k = 3(4)

In particular, we obtain the following formula for the derivatives, at x = 0:

cos(k)(0) =


1 k = 0(4)

0 k = 1(4)

−1 k = 2(4)

0 k = 3(4)
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Thus, when constructing the Taylor series, the odd powers of x dissapear, and for the
even powers, the derivative formulae that we need to know are as follows:

cos(2n)(0) = (−1)n

But this gives the formula in the statement for the Taylor series, namely:

cosx =
∞∑
n=0

(−1)n x2n

(2n)!

Thus, we are led to the formulae in the statement.

(3) Regarding now the convergence of the Taylor series away from 0, coming as a
bonus, and which actually reproves the above results, via a different method, we have the
following computation, for any x ∈ R, based on the usual formula of the exponential:

eix =
∞∑
k=0

(ix)k

k!

=
∞∑
n=0

(ix)2n

(2n)!
+

∞∑
n=0

(ix)2n+1

(2n+ 1)!

=
∞∑
n=0

(−1)n x2n

(2n)!
+ i

∞∑
n=0

(−1)n x2n+1

(2n+ 1)!

Now by comparing this with the Euler formula eix = cosx+ i sinx, which itself comes
from sin′ = cos, cos′ = − sin, by differentiating the function f(x) = e−ix(cosx + i sinx),
and getting f ′(x) = 0, and so f(x) = f(0) = 1, we obtain, for any x ∈ R:

cosx =
∞∑
n=0

(−1)n x2n

(2n)!
, sinx =

∞∑
n=0

(−1)n x2n+1

(2n+ 1)!

Thus, we are led to the conclusions in the statement. □

The problem is now, in practice, how to memorize the above formulae? Here is my
personal method, which works every single time, in a matter of few seconds:

Method 14.9. In order to recover the series of sin, cos, all you need to know is

ez =
∞∑
k=0

zk

k!

along with the Euler formula, eix = cosx+ i sinx.

Getting now to more specialized results, let us discuss the computation of the Taylor
series of the other basic trigonometric functions. We will be interested, as usual in this



14C. TAYLOR SERIES 335

chapter, in the fundamental 12 trigonometric functions, which are as follows:

sin cos tan
sec csc cot

arcsin arccos arctan
arcsec arccsc arccot

We already have 2 Taylor series, that of sin, cos, but in what regards the other 10
functions, things can be quite tricky. Our plan will be as follows:

(1) In what regards arcsin, arccos, arctan, arccot, the first derivatives, computed
before, look quite good, suggesting that the Taylor series can be computed with the
generalized binomial formula, for square roots. We can expect here to have formulae
making appear the Catalan numbers Ck, and the central binomial coefficients Dk.

(2) In what regards arcsec, arccsc, these do not converge at 0, but we can multiply
them by x, and use the above results for the other inverse trigonometric functions. Thus,
modulo some quantities of type 1/x, we can expect again to have formulae making appear
the Catalan numbers Ck, and the central binomial coefficients Dk.

(3) Next come tan, csc, cot, whose study is more tricky, leading to Taylor series
featuring some numbers which are not explicitly computable, namely the tangent numbers
Tk, and the Bernoulli numbers Bk, and with these latter numbers being related to each
other, and useful for many other purposes. Expect some tricky mathematics here.

(4) Finally, we have sec, whose study is again quite tricky, leading again to Taylor
series featuring some numbers which are not explicitly computable, namely the Euler
numbers Ek. And with these latter numbers being related to tangent numbers Tk, and
the Bernoulli numbers Bk. Again, expect some tricky mathematics here.

Getting started now, we first need to talk about arcsin, arccos, arctan, arccot:

Theorem 14.10. The Taylor series of arcsin, arccos are given by

arcsinx =
∞∑
n=0

Dn

4n(2n+ 1)
x2n+1 , arccosx =

π

2
−

∞∑
n=0

Dn

4n(2n+ 1)
x2n+1

and the Taylor series of arctan, arccot are given by

arctanx =
∞∑
n=0

(−1)n

2n+ 1
x2n+1 , arccotx =

π

2
−

∞∑
n=0

(−1)n

2n+ 1
x2n+1

with Dn =
(
2n
n

)
being the central binomial coefficients.
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Proof. This is something routine, by using the formulae of the first derivatives that
we computed before, in Theorem 14.4, which were as follows:

(arcsinx)′ =
1√

1− x2
, (arccosx)′ = − 1√

1− x2

(arctanx)′ =
1

1 + x2
, (arccotx)′ = − 1

1 + x2

(1) Indeed, let us recall from the end of chapter 13 that we can extract the inverse
square roots as follows, with Dn =

(
2n
n

)
being the central binomial coefficients:

1√
1 + t

=
∞∑
n=0

Dn

(
−t
4

)n
With the change of variables t = −x2, this formula becomes:

1√
1− x2

=
∞∑
n=0

Dn

(
x2

4

)n
The question is now, what is the function having this as derivative? Since the arcsine

must vanish at x = 0, we are led to the formula in the statement, namely:

arcsinx =
∞∑
n=0

Dn

4n(2n+ 1)
x2n+1

(2) A similar study applies to the arcosine, and we obtain here, again as claimed:

arccosx =
π

2
−

∞∑
n=0

Dn

4n(2n+ 1)
x2n+1

Alternatively, we can simply say that this formula follows from the one of arcsin.

(3) Regarding now the arctangent, we can use here the following formula:

1

1 + x2
=

∞∑
n=0

(−1)nx2n

By arguing like before for the arcsine, we obtained here, as claimed:

arctanx =
∞∑
n=0

(−1)n

2n+ 1
x2n+1

(4) Finally, a similar study applies to the arcotangent, and we obtain, as claimed:

arccotx =
π

2
−

∞∑
n=0

(−1)n

2n+ 1
x2n+1

Alternatively, we can simply say that this formula follows from the one of arctan. □
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Next, we need to talk about arcsec, arccsc, the result here being as follows:

Theorem 14.11. The Taylor series of arcsec is given by

arcsecx =
π

2
−

∞∑
n=0

Dn

4n(2n+ 1)
x−(2n+1)

and the Taylor series of arccsc is given by

arccscx =
∞∑
n=0

Dn

4n(2n+ 1)
x−(2n+1)

with Dn =
(
2n
n

)
being the central binomial coefficients.

Proof. This is again routine, by using the formulae of the first derivatives that we
computed before, in Theorem 14.4, which were as follows:

(arcsecx)′ =
1

|x|
√
x2 − 1

, (arccscx)′ = − 1

|x|
√
x2 − 1

Thus, by using the binomial formula, we obtain the formulae in the statement. Alter-
natively, these formulae follow from those for arccos, arcsin, from Theorem 14.10. □

Next, we need to talk about tan, csc, cot. The result here is more complicated, and a
bit theoretical, involving the tangent and Bernoulli numbers, as follows:

Theorem 14.12. The Taylor series of tan is given by

tanx =
∞∑
n=0

(−1)n T2n+1

(2n+ 1)!
x2n+1

the Taylor series of csc is given by

x cscx = 1 +
∞∑
n=1

(−1)n−1 (4
n − 2)B2n

(2n)!
x2n

and the Taylor series of cot is given by

x cotx = 1−
∞∑
n=1

(−1)n−14
nB2n

(2n)!
x2n

with Tk being the tangent numbers, and Bk being the Bernoulli numbers.

Proof. This is something more tricky, and many things can be said here. Let us
mention that the Bernoulli numbers are defined recursively, according to:

k∑
n=1

(
2k

2n− 1

)
B2n

2n
=

2k − 1

2(2k + 1)
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As for the tangent numbers, these are modifications of the Bernoulli numbers:

T2n+1 = 4n+1(4n+1 − 1)
B2n+2

2n+ 2

As for the proof, this is something quite technical. We will be back to this in chapter
15, when discussing more in detail the Bernoulli numbers, and their properties. □

Finally, we need to talk about sec, the result here being as follows:

Theorem 14.13. The Taylor series of sec is given by

secx =
∞∑
n=0

(−1)n E2n

(2n)!
x2n

with Ek being Euler numbers.

Proof. This is again something more tricky, and many things can be said here. Let
us mention that the Euler numbers are defined recursively, according to:

k∑
n=1

(
2k

2n

)
E2n = −1

As for the proof, this is again something more technical. We will be back to this in
chapter 15, when discussing more in detail this type of formulae, and related topics. □

And with this, end of our discussion regarding the 12 basic trigonometric functions.
Finally, let us mention that, in analogy with what we know from Theorem 14.8 regarding
sin and cos, the above Taylor series formulae hold not only around x = 0, but in general
too, provided of course that the series converges. Which is of course, good to know.

14d. Hyperbolic functions

Ready for some physics? We would like to talk now about the hyperbolic functions,
which appear for instance in Einstein’s relativity theory. Let us start with:

Fact 14.14 (Einstein principles). The following happen:

(1) Light travels in vacuum at a finite speed, c <∞.
(2) This speed c is the same for all inertial observers.
(3) In non-vacuum, the light speed is lower, v < c.
(4) Nothing can travel faster than light, v ̸> c.

The point now is that, obviously, something is wrong here. Indeed, assuming for
instance that we have a train, running in vacuum at speed v > 0, and someone on board
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lights a flashlight ∗ towards the locomotive, then an observer ◦ on the ground will see the
light traveling at speed c+ v > c, which is a contradiction:

∗ c
//

v
//

⃝ ⃝ ⃝ ⃝ ⃝ ⃝
◦

c+v
//

Equivalently, with the same train running, in vacuum at speed v > 0, if the observer
on the ground lights a flashlight ∗ towards the back of the train, then viewed from the
train, that light will travel at speed c+ v > c, which is a contradiction again:

◦
c+v

oo
v
//

⃝ ⃝ ⃝ ⃝ ⃝ ⃝
∗c

oo

Summarizing, Fact 14.14 implies c + v = c, so contradicts classical mechanics, which
therefore needs a fix. By dividing all speeds by c, as to have c = 1, and by restricting the
attention to the 1D case, to start with, we are led to the following puzzle:

Puzzle 14.15. How to define speed addition on the space of 1D speeds, which is

I = [−1, 1]

with our c = 1 convention, as to have 1 + c = 1, as required by physics?

In view of our geometric knowledge so far, a natural idea here would be that of
wrapping [−1, 1] into a circle, and then stereographically projecting on R. Indeed, we can
then “import” to [−, 1, 1] the usual addition on R, via the inverse of this map. So, let us
see where all this leads us. First, the formula of our map is as follows:

Theorem 14.16. The map wrapping [−1, 1] into the unit circle, and then stereograph-
ically projecting on R is given by the formula

φ(u) = tan
(πu

2

)
with the convention that our wrapping is the most straightforward one, making correspond
±1→ i, with negatives on the left, and positives on the right.
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Proof. Regarding the wrapping, as indicated, this is given by:

u→ eit , t = πu− π

2
Indeed, this correspondence wraps [−1, 1] as above, the basic instances of our corre-

spondence being as follows, and with everything being fine modulo 2π:

−1→ π

2
, −1

2
→ −π , 0→ −π

2
,

1

2
→ 0 , 1→ π

2
Regarding now the stereographic projection, the picture here is as follows:

•i

◦

• • ◦x

•

Thus, by Thales, the formula of the stereographic projection is as follows:

cos t

x
=

1− sin t

1
=⇒ x =

cos t

1− sin t

Now if we compose our wrapping operation above with the stereographic projection,
what we get is, via the above Thales formula, and some trigonometry:

x =
cos t

1− sin t

=
cos
(
πu− π

2

)
1− sin

(
πu− π

2

)
=

cos
(
π
2
− πu

)
1 + sin

(
π
2
− πu

)
=

sin(πu)

1 + cos(πu)

=
2 sin

(
πu
2

)
cos
(
πu
2

)
2 cos2

(
πu
2

)
= tan

(πu
2

)
Thus, we are led to the conclusion in the statement. □



14D. HYPERBOLIC FUNCTIONS 341

The above result is very nice, but when it comes to physics, things do not work, for
instance because of the wrong slope of the function φ(u) = tan

(
πu
2

)
at the origin, which

makes our summing on [−1, 1] not compatible with the Galileo addition, at low speeds.

So, what to do? Obviously, trash Theorem 14.16, and start all over again. Getting
back now to Puzzle 14.15, this has in fact a simpler solution, based this time on algebra,
and which in addition is the good, physically correct solution, as follows:

Theorem 14.17. If we sum the speeds according to the Einstein formula

u+e v =
u+ v

1 + uv

then the Galileo formula still holds, approximately, at low speeds

u+e v ≃ u+ v

and if we have u = 1 or v = 1, the resulting sum is u+e v = 1.

Proof. All this is self-explanatory, and clear from definitions, and with the Einstein
formula of u +e v itself being just an obvious solution to Puzzle 14.15, provided that,
importantly, we know 0 geometry, and rely on very basic algebra only. □

So, very nice, problem solved, at least in 1D. But, shall we give up with geometry,
and the stereographic projection? Certainly not, let us try to recycle that material. In
order to do this, let us recall that the usual trigonometric functions are given by:

sinx =
eix − e−ix

2i
, cosx =

eix + e−ix

2
, tanx =

eix − e−ix

i(eix + e−ix)

The point now is that, mathematically speaking, the above functions have some nat-
ural “hyperbolic” or “imaginary” analogues, constructed as follows:

sinhx =
ex − e−x

2
, coshx =

ex + e−x

2
, tanhx =

ex − e−x

ex + e−x

But the function on the right, tanh, starts reminding the formula of Einstein addition,
from Theorem 14.17. So, we have our idea, and we are led to the following result:

Theorem 14.18. The Einstein speed summation in 1D is given by

tanhx+e tanh y = tanh(x+ y)

with tanh : [−∞,∞]→ [−1, 1] being the hyperbolic tangent function.

Proof. This follows by putting together our various formulae above, but it is perhaps
better, for clarity, to prove this directly. Our claim is that we have:

tanh(x+ y) =
tanhx+ tanh y

1 + tanh x tanh y
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But this can be checked via direct computation, from the definitions, as follows:

tanhx+ tanh y

1 + tanhx tanh y
=

(
ex − e−x

ex + e−x
+
ey − e−y

ey + e−y

)/(
1 +

ex − e−x

ex + e−x
· e

y − e−y

ey + e−y

)
=

(ex − e−x)(ey + e−y) + (ex + e−x)(ey − e−y)
(ex + e−x)(ey + e−y) + (ex − e−x)(ey + e−y)

=
2(ex+y − e−x−y)
2(ex+y + e−x−y)

= tanh(x+ y)

Thus, we are led to the conclusion in the statement. □

Very nice all this, hope you agree. As a conclusion, passing from the Riemann stere-
ographic projection sum to the Einstein summation basically amounts in replacing:

tan→ tanh

Let us formulate as well this finding more philosophically, as follows:

Conclusion 14.19. The Einstein speed summation in 1D is the imaginary analogue
of the summation on [−1, 1] obtained via the Riemann stereographic projection.

As a continuation of this, many other things can be said about relativity, with the next
obvious challenge being that of understanding what happens to the Einstein summation
formula when passing to 3D. And here, the summation formula is as follows, making
appear the vector products × that our cat advisor was talking about, in chapter 12:

u+e v =
1

1+ < u, v >

(
u+ v +

u× (u× v)
1 +

√
1− ||u||2

)
Well, quite interesting all this, hope you agree with me, and the temptation is high to

keep talking about this, in the remainder of this chapter, and even of this book.

This being said, let us be reasonable. As mathematicians, we definitely have good
reasons for adopting sinh, cosh, tanh, as trigonometric functions. But then we can talk
about secondary and inverse functions too, in the obvious way, which leads us to:

Conclusion 14.20 (mathematics). There are in fact 24 trigonometric functions,

sin cos tan sec csc cot
arcsin arccos arctan arcsec arccsc arccot
sinh cosh tanh sech csch coth

arcsinh arccosh arctanh arcsech arccsch arccoth

with the hyperbolic ones being useful in relativity, and perhaps in other physics too.
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Getting back now to what we know how to do, with precision and speed, namely
computing derivatives, and then Taylor series, we first have the following result:

Theorem 14.21. The derivatives of basic hyperbolic trigonometric functions are

(sinhx)′ = coshx , (coshx)′ = sinhx , (tanhx)′ =
1

cosh2 x
and the derivatives of secondary hyperbolic trigonometric functions are

(sechx)′ = − sinhx

cosh2 x
, (cschx)′ = − coshx

sinh2 x
, (cothx)′ = − 1

sinh2 x
provided that the denominators do not vanish.

Proof. This is indeed something very standard, say exercise for you. □

Regarding the inverse hyperbolic trigonometric functions, we have:

Theorem 14.22. The derivatives of basic inverse hyperbolic functions are given by

(arcsinhx)′ =
1√

1 + x2
, (arccoshx)′ =

1√
x2 − 1

, (arctanhx)′ =
1

1− x2

and the derivatives of secondary inverse hyperbolic functions are given by

(arcsechx)′ = − 1

|x|
√
1 + x2

, (arccschx)′ = − 1

|x|
√
1− x2

, (arccothx)′ =
1

1− x2

provided that the denominators do not vanish.

Proof. This is again something very standard, again exercise for you. □

Regarding now the Taylor series, we first have the following result:

Theorem 14.23. The Taylor series of sinh, cosh are given by

sinhx =
∞∑
n=0

x2n+1

(2n+ 1)!
, coshx =

∞∑
n=0

x2n

(2n)!

the Taylor series of tanh, sech are given by

tanhx =
∞∑
n=0

T2n+1

(2n+ 1)!
x2n+1 , sechx =

∞∑
n=0

E2n

(2n)!
x2n

and the Taylor series of csch, coth are given by

x cschx = 1−
∞∑
n=1

(4n − 2)B2n

(2n)!
x2n , x cothx = 1 +

∞∑
n=1

4nB2n

(2n)!
x2n

with Bk, Ek, Tk being the Bernoulli, Euler and tangent numbers.

Proof. This is again something very standard, again exercise for you. □
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Finally, regarding the Taylor series of the inverse functions, we have:

Theorem 14.24. The Taylor series of arcsinh, arccosh are given by

arcsinhx =
∞∑
n=0

(−1)n Dn

4n(2n+ 1)
x2n+1 , arccoshx = log(2x)− 1

2

∞∑
n=1

Dn

4nn
x−2n

the Taylor series of arctanh, arcsech are given by

arctanhx =
∞∑
n=0

x2n+1

2n+ 1
, arcsechx = log

(
2

x

)
− 1

2

∞∑
n=1

Dn

4nn
x2n

and the Taylor series of arccsch and arccoth are given by

arccschx =
∞∑
n=0

(−1)n Dn

4n(2n+ 1)
x−(2n+1) , arccothx =

∞∑
n=0

x−(2n+1)

2n+ 1

with Dn =
(
2n
n

)
being the central binomial coefficients.

Proof. This is again something very standard, again exercise for you. □

And with this, good news, done with all 24 trigonometric functions. Memorize all
this, which is useful, and pass the word to your children, and grandchildren.

14e. Exercises

This was a quite tough calculus chapter, no wonder we had only Theorems here, with
not a single Proposition present, and as exercises on all this, we have:

Exercise 14.25. Finish the computations for tan.

Exercise 14.26. Finish the computations for sec.

Exercise 14.27. Finish the computations for csc.

Exercise 14.28. Finish the computations for cot.

Exercise 14.29. Finish the computations for tanh.

Exercise 14.30. Finish the computations for sech.

Exercise 14.31. Finish the computations for csch.

Exercise 14.32. Finish the computations for coth.

As bonus exercise, and no surprise here, read some relativity theory, in 1D, 2D, 3D,
and special and general, say from the book of Einstein [31], which is a must-read.



CHAPTER 15

Sums, estimates

15a. Integration theory

With the trigonometric functions reasonably understood, time to focus now on e, π,
which are at the origins of trigonometry. Here are some questions, regarding e:

Questions 15.1. Regarding e, which produces trigonometry via eit = cos t+ i sin t:

(1) e is most likely irrational, but why?
(2) In fact, e is most likely transcendental, but why?
(3) How to reach to the known figure e = 2.71828 . . .?
(4) What else can be said, of fundamental nature, about e?

And in the hope that you agree with me, all these questions look important, worth
some study. As for the number π, our questions regarding it are identical, as follows:

Questions 15.2. Regarding π, which needs no presentation either:

(1) π is most likely irrational, but why?
(2) In fact, π is most likely transcendental, but why?
(3) How to reach to the known figure π = 3.14159 . . .?
(4) What else can be said, of fundamental nature, about π?

In answe to all this, more calculus, I guess. So, let us start with some calculus basics,
coming as a continuation of the material from chapter 13. What we discussed there,
derivatives, was in fact only half of the story. The other half of the story, that we will
discuss now, involves the integrals, which are constructed as follows:

Definition 15.3. The integral of a continuous function f : [a, b]→ R, denoted∫ b

a

f(x)dx

is the area below the graph of f , signed + where f ≥ 0, and signed − where f ≤ 0.

We have already met in fact this notion, in chapter 7, and we refer to the material
there for more explanations, and for some computations too, notably for f(x) = x2.

Generally speaking, in order to compute integrals, we can use our geometric knowledge.
Here are some basic results, coming from various areas that we know how to compute:

345
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Proposition 15.4. We have the following results:

(1) When f is linear, we have the following formula:∫ b

a

f(x)dx = (b− a) · f(a) + f(b)

2

(2) In fact, when f is piecewise linear on [a = a1, a2, . . . , an = b], we have:∫ b

a

f(x)dx =
n−1∑
i=1

(ai+1 − ai) ·
f(ai) + f(ai+1)

2

(3) We have as well the formula
∫ 1

−1

√
1− x2 dx = π/2.

Proof. These results all follow from basic geometry, as follows:

(1) Assuming f ≥ 0, we must compute the area of a trapezoid having sides f(a), f(b),
and height b−a. But this is the same as the area of a rectangle having side (f(a)+f(b))/2
and height b− a, and we obtain (b− a)(f(a) + f(b))/2, as claimed.

(2) This is clear indeed from the formula found in (1), by additivity.

(3) The integral in the statement is by definition the area of the upper unit half-disc.
But since the area of the whole unit disc is π, this half-disc area is π/2. □

As an interesting observation, (2) in the above result makes it quite clear that f does
not necessarily need to be continuous, in order to talk about its integral. Indeed, assuming
that f is piecewise linear on [a = a1, a2, . . . , an = b], but not necessarily continuous, we
can still talk about its integral, in the obvious way, exactly as in Definition 15.3, and we
have an explicit formula for this integral, generalizing the one found in (2), namely:∫ b

a

f(x)dx =
n−1∑
i=1

(ai+1 − ai) ·
f(a+i ) + f(a−i+1)

2

Based on this observation, let us upgrade our formalism, as follows:

Definition 15.5. We say that a function f : [a, b] → R is integrable when the area
below its graph is computable. In this case we denote by∫ b

a

f(x)dx

this area, signed + where f ≥ 0, and signed − where f ≤ 0.

As basic examples of integrable functions, we have the continuous ones, somewhat
for obvious reasons, and we will take this as granted. As further examples, we have
the functions which are piecewise linear, or piecewise continuous. As another class of
examples, the monotone, or piecewise monotone functions, can be shown to be integrable
as well. But all this is rather philosophy, let us not bother much with this.
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Getting to work now, here are some general results regarding the integrals:

Proposition 15.6. We have the following formulae,∫ b

a

f(x) + g(x)dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx

∫ b

a

λf(x) = λ

∫ b

a

f(x)

valid for any functions f, g and any scalar λ ∈ R.

Proof. Both these formulae are indeed clear from definitions. □

Moving ahead, passed the above elementary results, we must do some analysis, in
order to compute integrals. This is something quite tricky, and we have here:

Theorem 15.7. We have the Riemann integration formula,∫ b

a

f(x)dx = (b− a)× lim
N→∞

1

N

N∑
k=1

f

(
a+

b− a
N
· k
)

which can serve as a definition for the integral.

Proof. This is standard, by drawing rectangles. We have indeed the following for-
mula, which can stand as a definition for the signed area below the graph of f :∫ b

a

f(x)dx = lim
N→∞

1

N

N∑
k=1

b− a
N
· f
(
a+

b− a
N
· k
)

Thus, we are led to the formula in the statement. □

Observe that the above formula suggests that
∫ b
a
f(x)dx is the length of the interval

[a, b], namely b − a, times the average of f on the interval [a, b]. Thinking a bit, this is
indeed something true, with no need for Riemann sums, coming directly from Definition
15.3, because area means side times average height. Thus, we can formulate:

Theorem 15.8. The integral of a function f : [a, b]→ R is given by∫ b

a

f(x)dx = (b− a)× A(f)

where A(f) is the average of f over the interval [a, b].

Proof. As explained above, this is clear from Definition 15.3, via some geometric
thinking. Alternatively, this is something which certainly comes from Theorem 15.7. □
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The point of view in Theorem 15.8 is something quite useful, and as an illustration
for this, let us review the results that we already have, by using this interpretation. First,
we have the formula for linear functions from Proposition 15.4, namely:∫ b

a

f(x)dx = (b− a) · f(a) + f(b)

2

But this formula is totally obvious with our new viewpoint, from Theorem 15.8. The
same goes for the results in Proposition 15.6, which become even more obvious with the
viewpoint from Theorem 15.8. However, not everything trivializes in this way, and the
result which is left, namely the formula

∫ 1

−1

√
1− x2 dx = π/2 from Proposition 15.4 (3),

not only does not trivialize, but becomes quite opaque with our new philosophy.

Going ahead with more interpretations of the integral, we have:

Theorem 15.9. We have the Monte Carlo integration formula,∫ b

a

f(x)dx = (b− a)× lim
N→∞

1

N

N∑
k=1

f(xi)

with x1, . . . , xN ∈ [a, b] being random.

Proof. We recall from Theorem 15.7 that the idea is that we have a formula as
follows, with the points x1, . . . , xN ∈ [a, b] being uniformly distributed:∫ b

a

f(x)dx = (b− a)× lim
N→∞

1

N

N∑
k=1

f(xi)

But this works as well when the points x1, . . . , xN ∈ [a, b] are randomly distributed,
for somewhat obvious reasons, and this gives the result. □

Observe that Monte Carlo integration works better than Riemann, when it comes
to computing as usual, by estimating, and refining the estimate. Also, Monte Carlo is
smarter than Riemann, because the symmetries of the function can fool Riemann, but
not Monte Carlo. All this is good to know, say when integrating by using a computer.

Finally, here is one more useful interpretation of the integral:

Theorem 15.10. The integral of a function f : [a, b]→ R is given by∫ b

a

f(x)dx = (b− a)× E(f)

where E(f) is the expectation of f , regarded as random variable.

Proof. This is just some sort of fancy reformulation of Theorem 15.9, the idea being
that what we can “expect” from a random variable is of course its average. □
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Going ahead with more theory, here is one key result regarding the integrals:

Theorem 15.11. Given a continuous function f : [a, b]→ R, we have

∃c ∈ [a, b] ,

∫ b

a

f(x)dx = (b− a)f(c)

with this being called mean value property.

Proof. We have indeed the following trivial estimate:

min(f) ≤
∫ b
a
f(x)dx

b− a
≤ max(f)

Since f must takes all values on [min(f),max(f)], we get a c ∈ [a, b] such that:∫ b
a
f(x)dx

b− a
= f(c)

Thus, we are led to the conclusion in the statement. □

Next, we have the following key result, called fundamental theorem of calculus:

Theorem 15.12. Given a continuous function f : [a, b]→ R, if we set

F (x) =

∫ x

a

f(s)ds

then F ′ = f . That is, the derivative of the integral is the function itself.

Proof. This follows from the Riemann integration picture, and more specifically,
from the mean value property from Theorem 15.11. Indeed, we have:

F (x+ t)− F (x)
t

=
1

t

∫ x+t

x

f(x)dx

On the other hand, our function f being continuous, by using the mean value property
from Theorem 15.11, we can find a number c ∈ [x, x+ t] such that:

1

t

∫ x+t

x

f(x)dx = f(x)

Thus, putting our formulae together, we conclude that we have:

F (x+ t)− F (x)
t

= f(c)

Now with t → 0, no matter how the number c ∈ [x, x + t] varies, one thing that we
can be sure about is that we have c→ x. Thus, by continuity of f , we obtain:

lim
t→0

F (x+ t)− F (x)
t

= f(x)

But this means exactly that we have F ′ = f , and we are done. □
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We have as well the following result, which is something equivalent, and a hair more
beautiful, also called fundamental theorem of calculus:

Theorem 15.13. Given a function F : R→ R, we have∫ b

a

F ′(x)dx = F (b)− F (a)

for any interval [a, b].

Proof. As already mentioned, this is something which follows from Theorem 15.12,
and is in fact equivalent to it. Indeed, consider the following function:

G(s) =

∫ s

a

F ′(x)dx

By using Theorem 15.12 we have G′ = F ′, and so our functions F,G differ by a
constant. But with s = a we have G(a) = 0, and so the constant is F (a), and we get:

F (s) = G(s) + F (a)

Now with s = b this gives F (b) = G(b) + F (a), which reads:

F (b) =

∫ b

a

F ′(x)dx+ F (a)

Thus, we are led to the conclusion in the statement. □

The fundamental theorem of calculus is something quite powerful, and as an illustra-
tion for this, destroying our previous ad-hoc computations from chapter 7, we have:

Theorem 15.14. We have the following integration formulae,∫ b

a

xpdx =
bp+1 − ap+1

p+ 1
,

∫ b

a

1

x
dx = log

(
b

a

)
∫ b

a

sinx dx = cos a− cos b ,

∫ b

a

cosx dx = sin b− sin a∫ b

a

exdx = eb − ea ,

∫ b

a

log x dx = b log b− a log a− b+ a

all obtained, in case you ever forget them, via the fundamental theorem of calculus.

Proof. This is indeed something self-explanatory, with only the last formula being
in need of some explanations. So, we are looking for a function F satisfying:

F ′(x) = log x

In order to solve this, speaking logarithm and derivatives, what we know is:

(log x)′ =
1

x
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But then, in order to make appear log on the right, the idea is quite clear, namely
multiplying on the left by x. We obtain in this way the following formula:

(x log x)′ = 1 · log x+ x · 1
x
= log x+ 1

We are almost there, all we have to do now is to substract x from the left, as to get:

(x log x− x)′ = log x

But this this formula in hand, we can go back to our problem, and we get the result. □

Getting back now to theory, inspired by the above, let us formulate:

Definition 15.15. Given f , we call primitive of f any function F satisfying:

F ′ = f

We denote such primitives by
∫
f , and also call them indefinite integrals.

Observe that the primitives are unique up to an additive constant, in the sense that if
F is a primitive, then so is F +c, for any c ∈ R, and conversely, if F,G are two primitives,
then we must have G = F + c, for some c ∈ R, with this latter fact coming from a result
from chapter 13, saying that the derivative vanishes when the function is constant.

As for the convention at the end, F =
∫
f , this comes from the fundamental theorem

of calculus, which can be written as follows, by using this convention:∫ b

a

f(x)dx =

(∫
f

)
(b)−

(∫
f

)
(a)

By the way, observe that there is no contradiction here, coming from the indeterminacy
of
∫
f . Indeed, when adding a constant c ∈ R to the chosen primitive

∫
f , when conputing

the above difference the c quantities will cancel, and we will obtain the same result.

We can now reformulate Theorem 15.14 in a more digest form, as follows:

Theorem 15.16. We have the following formulae for primitives,∫
xp =

xp+1

p+ 1
,

∫
1

x
= log x∫

sinx = − cosx ,

∫
cosx = sinx∫

ex = ex ,

∫
log x = x log x− x

allowing us to compute the corresponding definite integrals too.

Proof. Here the various formulae in the statement follow from Theorem 15.14, and
the last assertion comes from the integration formula given after Definition 15.15. □
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Getting back now to theory, we have the following very useful result:

Theorem 15.17. We have the formula∫
f ′g +

∫
fg′ = fg

called integration by parts.

Proof. This follows by integrating the Leibnitz formula, namely:

(fg)′ = f ′g + fg′

Indeed, with our convention for primitives, this gives the above formula. □

It is then possible to pass to usual integrals, and we obtain a formula here as well, as
follows, also called integration by parts, with the convention [φ]ba = φ(b)− φ(a):∫ b

a

f ′g +

∫ b

a

fg′ =
[
fg
]b
a

In practice, the most interesting case is that when fg vanishes on the boundary {a, b}
of our interval, leading to the following formula:∫ b

a

f ′g = −
∫ b

a

fg′

Examples of this usually come with [a, b] = [−∞,∞], and more on this later. Now
still at the theoretical level, we have as well the following result:

Theorem 15.18. We have the change of variable formula∫ b

a

f(x)dx =

∫ d

c

f(φ(t))φ′(t)dt

where c = φ−1(a) and d = φ−1(b).

Proof. This follows with f = F ′, from the following differentiation rule, that we
know from chapter 13, and whose proof is something elementary:

(Fφ)′(t) = F ′(φ(t))φ′(t)

Indeed, by integrating between c and d, we obtain the result. □

And with this, we have now in our pocket the full collection of basic calculus tools.
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15b. More on e, pi

Time now for some tough computations, in order to answer our various questions,
from the beginning of this chapter. We first have the following result, about e:

Theorem 15.19. The number e from analysis, given by

e =
∞∑
k=0

1

k!

which numerically means e = 2.7182818284 . . . , is irrational.

Proof. Many things can be said here, as follows:

(1) To start with, the series of e converges very fast, as shown by:

e =
N−1∑
k=0

1

k!
+

1

N !

(
1 +

1

N + 1
+

1

(N + 1)(N + 2)
+ . . .

)

<
N−1∑
k=0

1

k!
+

1

N !

(
1 +

1

N + 1
+

1

(N + 1)2
+ . . .

)

=
N−1∑
k=0

1

k!
+

1

N !

(
1 +

1

N

)

=
N∑
k=0

1

k!
+

1

N ·N !

Indeed, the error term in the approximation is really tiny, the estimate being:

N∑
k=0

1

k!
< e <

N∑
k=0

1

k!
+

1

N ·N !

(2) Now by using this, you can easily compute the decimals of e. Actually, you can’t
call yourself mathematician, or scientist, if you haven’t done this by hand, just for the
fun, but just in case, here is how the approximation goes, for small values of N :

N = 2 =⇒ 2.5 < e < 2.75

N = 3 =⇒ 2.666 . . . < e < 2.722 . . .

N = 4 =⇒ 2.70833 . . . < e < 2.71875 . . .

N = 5 =⇒ 2.71666 . . . < e < 2.71833 . . .

N = 6 =⇒ 2.71805 . . . < e < 2.71828 . . .

N = 7 =⇒ 2.71825 . . . < e < 2.71828 . . .

Thus, first 4 decimals computed, and I would leave the continuation to you.
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(3) Getting now to irrationality, a look at e = 2.7182818284 . . . might suggest that the
81, 82, 84 . . . values might eventually, after some internal fight, decide for a winner, and
so that e might be rational. However, this is wrong, and e is in fact irrational.

(4) So, let us prove now this, that e is irrational. Following Fourier, we will do this
by contradiction. So, assume e = m/n, and let us look at the following number:

x = n!

(
e−

n∑
k=0

1

k!

)
As a first observation, x is an integer, as shown by the following computation:

x = n!

(
m

n
−

n∑
k=0

1

k!

)

= m(n− 1)!−
n∑
k=0

n(n− 1) . . . (n− k + 1)

(5) On the other hand x > 0, and we have as well the following estimate:

x = n!
∞∑

k=n+1

1

k!

=
1

n+ 1
+

1

(n+ 1)(n+ 2)
+ . . .

<
1

n+ 1
+

1

(n+ 1)2
+ . . .

=
1

n

Thus x ∈ (0, 1), which contradicts our previous finding x ∈ Z, as desired. □

As a continuation, we have the following result, which is substantially harder:

Theorem 15.20. The number e is transcendental.

Proof. Assume by contradiction that e is algebraic, with this meaning that it is a
root of a polynomial with integer coefficients, ci ∈ Z, as follows:

c0 + c1e+ . . .+ cne
n = 0

(1) Following Hermite, consider the following polynomials, and we will see later why:

fk(x) = xk [(x− 1) . . . (x− n)]k+1

Consider also the following quantities, that we will study more in detail later:

Ak =

∫ ∞

0

fk(x)e
−xdx
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By multiplying our equation for e by this quantity Ak, we obtain:

c0

∫ ∞

0

fk(x)e
−xdx+ c1

∫ ∞

0

fk(x)e
1−xdx+ . . . cn

∫ ∞

0

fk(x)e
n−xdx = 0

(2) Here comes the trick. Consider the following two quantities:

P = c0

∫ ∞

0

fk(x)e
−xdx+ c1

∫ ∞

1

fk(x)e
1−xdx+ . . .+ cn

∫ ∞

n

fk(x)e
n−xdx

Q = c1

∫ 1

0

fk(x)e
−xdx+ . . .+ cn

∫ n

0

fk(x)e
n−xdx

In terms of these quantities, the formula that we found in (1) reads:

P +Q = 0

(3) Now let us look at P . Our claim is that this is an integer, P ∈ Z, and that there
are arbitrarily large numbers k >> 0 for which the following holds:

P

k!
∈ Z− {0}

Indeed, according to our formula above defining P , we have:

P =
n∑
r=0

cr

∫ ∞

r

fk(x)e
r−xdx

=
n∑
r=0

cr

∫ ∞

0

fk(x+ r)e−xdx

=

∫ ∞

0

(
n∑
r=0

crfk(x+ r)

)
e−xdx

On the other hand, integrating such functions is easy, according to:∫ ∞

0

xse−xdx =

∫ ∞

0

(
xs+1

s+ 1

)′

e−xdx

=

∫ ∞

0

xs+1

s+ 1
e−xdx

=
1

s+ 1

∫ ∞

0

xs+1e−xdx

Thus, we are led by recurrence on s ∈ N to the following formula:∫ ∞

0

xse−xdx = s!
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For a linear combination now, we are led to the following formula:

g(x) =
∑
s

asx
s =⇒

∫ ∞

0

g(x)e−xdx =
∑
s

ass!

But this shows that we have indeed P ∈ Z, and also, via a bit of study based on the
exact formula of fk, from the beginning of (1), that we have in fact:

P

k!
∈ Z

Finally, we still have to prove that we have P ̸= 0, for arbitrarily large numbers
k >> 0. But the point here is that for k + 1 > n, |c0|, chosen prime, a detailed study of
our integral shows that we have (k + 1)̸ |P , and so P ̸= 0 indeed, as desired.

(4) With this done, let us look now at Q. Our claim is that for k >> 0 we have:∣∣∣∣Qk!
∣∣∣∣ < 1

Indeed, by using the exact formula of fk, from the beginning of (1), we have:

fk(x)e
−x = xk [(x− 1) . . . (x− n)]k+1 e−x

= [x(x− 1) . . . (x− n)]k × (x− 1) . . . (x− n)e−x

We conclude that for x ∈ [0, n] we have an estimate as follows, with G,H > 0 being
certain constants, appearing as maxima of the two components appearing above:

|fk(x)e−x| < GkH

Now by integrating, we obtain from this the following estimate for Q itself:

|Q| =

∣∣∣∣c1 ∫ 1

0

fk(x)e
−xdx+ . . .+ cne

n

∫ n

0

fk(x)e
−xdx

∣∣∣∣
≤ |c1|

∫ 1

0

|fk(x)e−x|dx+ . . .+ |cn|en
∫ n

0

|fk(x)e−x|dx

≤ |c1| ·GkH + . . .+ |cn|en · nGkH

= (|c1|e+ . . .+ |cn|en)
n(n+ 1)

2
GkH

But in this estimate the only term depending on k is the power Gk, and since since k!
grows much faster than this power Gk, this proves our claim:∣∣∣∣Qk!

∣∣∣∣ ≈ Gk

k!
→ 0

(5) And with this, done, because what we found in (3,4) contradicts the formula
P +Q = 0 from (2). Thus e is indeed transcendental, as claimed. □
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As a continuation of the above material, let us prove now, a bit as for e before, that
π is irrational, and even transcendental. The result here is as follows:

Theorem 15.21. The number π = 3.14159 . . . has the following properties:

(1) It is irrational.
(2) It is transcendental.

Proof. This is indeed something quite routine, by using the same ideas as before for
e, but with everything being now a bit more technical, the idea being as follows:

(1) In what regards the irrationality of π, no simple argument as for e is available, so
we rather have to take our inspiration from the Hermite proof of the transcendence of e,
given above. With this idea in mind, consider the following quantities:

In(t) =

∫ 1

−1

(1− x2)n cos(xt)dx

By double partial integration we obtain the following formula:

In(t) =

∫ 1

−1

(1− x2)n cos(xt)dx

=

∫ 1

−1

2nx(1− x2)n−1 sin(xt)

t
dx

=
2n

t

∫ 1

−1

x(1− x2)n−1 sin(xt)dx

=
2n

t

∫ 1

−1

[
(1− x2)n−1 − 2(n− 1)x2(1− x2)n−2

] cos(xt)
t

dx

=
2n

t2

∫ 1

−1

(1− x2)n−2
[
1− x2 − 2(n− 1)x2

]
cos(xt)dx

=
2n

t2

∫ 1

−1

(1− x2)n−2
[
1− (2n− 1)x2

]
cos(xt)dx

=
2n

t2

∫ 1

−1

(1− x2)n−2
[
(2n− 1)(1− x2)− (2n− 2)

]
cos(xt)dx

=
2n

t2
[
(2n− 1)In−1(t)− (2n− 2)In−2(t)

]
Thus, we have the following recurrence relation for our quantities:

t2In(t) = 2n(2n− 1)In−1(t)− 4n(n− 1)In−2(t)

In terms of Jn(t) = t2n+1In(t), this recurrence formula becomes:

Jn(t) = 2n(2n− 1)Jn−1(t)− 4n(n− 1)t2Jn−2(t)
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Regarding now the initial data, for this latter recurrence, this is as follows:

J0(t) = 2 sin t , J1(t) = −4t cos t+ 4 sin t

We conclude from this that we must have a formula as follows, with Pn, Qn being
certain polynomials of degree ≤ n, with integer coefficients:

Jn(t) = n!(Pn(t) sin t+Qn(t) cos t)

Now observe that with t = π/2, we obtain from this the following formula:(π
2

)2n+1

In

(π
2

)
= n!Pn

(π
2

)
Assume now by contradiction that π is rational, so that π/2 = a/b with a, b ∈ N. We

can rewrite the formula found above in the following more convenient way:

a2n+1

n!
In

(a
b

)
= b2n+1Pn

(a
b

)
But, by definition of the integrals In, we have In(a/b) = In(π/2) ∈ (0, 2). Thus with

n >> 0 the number on the left belongs to (0, 1), which is contradictory, because the
number on the right is an integer. We conclude that π is irrational, as claimed.

(2) Regarding now the transcendence of π, again it is possible to adapt the ideas
of Hermite for e, from the proof of Theorem 15.20, but this remains something quite
technical. Instead, it is better to have an algebraic look at this, by using the Lindemann-
Weierstrass theorem, which states that if a1, . . . , an ∈ C are algebrically independent over
Q, then ea1 , . . . , ean are algebrically independent too over Q. To be more precise:

– To start with, observe that the Lindemann-Weierstrass theorem shows with n = 1
that e = e1 is transcendental. Thus, this is definitely something non-trivial.

– However, this is something that can be proved, with some knowledge of algebra and
field theory. For more on this, you can consult any advanced number theory book.

– And, in relation with π, we can use again n = 1, but this time in conjunction with
the Euler formula eπi = −1, and we obtain that π is transcendental. □

So, this was for the story with π, quickly told, and in practice, in order to fully
understand all this, there are of course many things to be learned. So, find a good old
book on number theory, such as Hardy and Wright [50], and start reading.

15c. Playing games

Still talking about e, π, I don’t know about you, but personally I would like to have
more interpretations of them. And, regarding e, here is something quite interesting:
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Theorem 15.22. The probability for a random permutation σ ∈ SN to be a derange-
ment, that is, to have no fixed points, is given by the following formula:

P = 1− 1

1!
+

1

2!
− 1

3!
+ . . .+ (−1)N 1

N !

Thus we have the following asymptotic formula, in the N →∞ limit,

P ≃ 1

e

with e = 2.71828 . . . being the usual constant from analysis.

Proof. This is something very classical, and beautiful, which is best viewed by using
the inclusion-exclusion principle. Consider indeed the following sets:

SiN =
{
σ ∈ SN

∣∣∣σ(i) = i
}

By inclusion-exclusion, the probability that we are interested in is given by:

P =
1

N !

(
|SN | −

∑
i

|SiN |+
∑
i<j

|SiN ∩ S
j
N | − . . .+ (−1)N

∑
i1<...<iN

|Si1N ∩ . . . ∩ S
iN
N |

)

=
1

N !

N∑
k=0

(−1)k
∑

i1<...<ik

(N − k)!

=
1

N !

N∑
k=0

(−1)k
(
N

k

)
(N − k)!

=
N∑
k=0

(−1)k

k!

Thus, we are led to the conclusions in the statement. □

In order to further build on this, let us formulate the following key definition:

Definition 15.23. The Poisson law of parameter 1 is the following measure,

p1 =
1

e

∑
k

δk
k!

and the Poisson law of parameter t > 0 is the following measure,

pt = e−t
∑
k

tk

k!
δk

with the letter “p” standing for Poisson.
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Observe that our laws have indeed mass 1, as they should, and this due to:

et =
∑
k

tk

k!

Getting back now to permutations, we have the following result:

Theorem 15.24. The main character of SN , which counts the fixed points,

χ(σ) = #
{
i ∈ {1, . . . , N}

∣∣∣σ(i) = i
}

follows the Poisson law p1, in the N →∞ limit. More generally, the variable

χt(σ) = #
{
i ∈ {1, . . . , [tN ]}

∣∣∣σ(i) = i
}

with t ∈ (0, 1] follows the Poisson law pt, in the N →∞ limit.

Proof. We have two assertions to be proved, the idea being as follows:

(1) In order to establish the first result in the statement, regarding the main character,
we must prove the following formula, for any r ∈ N, in the N →∞ limit:

P (χ = r) ≃ 1

r!e

We already know, from Theorem 15.22, that this formula holds at r = 0:

P (χ = 0) ≃ 1

e

In the general case, we have to count the permutations σ ∈ SN having exactly r points.
Now since having such a permutation amounts in choosing r points among 1, . . . , N , and
then permuting the N − r points left, without fixed points allowed, we have:

#
{
σ ∈ SN

∣∣∣χ(σ) = r
}

=

(
N

r

)
#
{
σ ∈ SN−r

∣∣∣χ(σ) = 0
}

=
N !

r!(N − r)!
#
{
σ ∈ SN−r

∣∣∣χ(σ) = 0
}

= N !× 1

r!
×

#
{
σ ∈ SN−r

∣∣∣χ(σ) = 0
}

(N − r)!

By dividing everything by N !, we obtain from this the following formula:

#
{
σ ∈ SN

∣∣∣χ(σ) = r
}

N !
=

1

r!
×

#
{
σ ∈ SN−r

∣∣∣χ(σ) = 0
}

(N − r)!
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Now by using the computation at r = 0, that we already have, from Theorem 15.22,
it follows that with N →∞ we have the following estimate:

P (χ = r) ≃ 1

r!
· P (χ = 0) ≃ 1

r!
· 1
e

Thus, we obtain as limiting measure the Poisson law of parameter 1, as stated.

(2) Regarding now the second assertion, involving an arbitrary parameter t ∈ (0, 1],
the proof here is similar. To be more precise, by using the inclusion-exclusion principle,
as in the proof of Theorem 15.22, we first have the following formula:

P (χt = 0) ≃ 1

et

But then, we can generalize this formula, by proceeding as in (1) above, into:

P (χt = r) ≃ tr

r!et

Thus, we obtain as limiting measure the Poisson law of parameter t, as stated. □

Quite nice, all the above. In relation with π now, and along the same lines, connections
with probability and games, we have the following remarkable result, due to Buffon:

Theorem 15.25. The probability for a needle of length 1, when trown on a grid of
parallel 1-spaced lines, to intersect one line, is:

P =
2

π

Moreover, we have generalizations of this result, with needles of arbitrary length, thrown
over a grid of parallel lines, with arbitrary spacing.

Proof. This is something quite tricky, and mandatory for properly learning proba-
bility theory, and science in general, because there are several possible modelings of the
problem, leading, quite surprisingly, to different values of P . And, obviously, only one
such modeling can be the correct one. We will leave this as an exercise, and enjoy. □

15d. Basel formula

We are not done with our mathematics, because when looking at the list of questions
from the beginning of this chapter, all solved, save for the most important one:

Question 15.26. Is there any magic formula for π, allowing us to reach to

π = 3.1415926535 . . .

and why not, to do some other things, too?

In answer to this, following Euler, we have the following remarkable result:
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Theorem 15.27. We have the following formula, due to Euler,

∞∑
n=1

1

n2
=
π2

6

answering the Basel problem, asking for the computation of this sum.

Proof. The original proof of Euler is as follows, based on the fact that the zeroes of
sinx/x appear precisely at the points x = kπ, with k ∈ Z:

sinx

x
= 1− x2

3!
+
x4

5!
− x6

7!
+ . . .

=
(
1− x

π

)(
1 +

x

π

)(
1− x

2π

)(
1 +

x

2π

)
. . .

=

(
1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)
. . .

= 1− 1

π2

∞∑
n=1

1

n2
x2 + . . .

However, in practice, all this needs a bit more justification, of course. □

Summarizing, Question 15.26 solved, save for fully understanding the proof of the
Basel formula. In order to discuss this, let us formulate the following key definition:

Definition 15.28. The Riemann zeta function is given by

ζ(s) =
∞∑
n=1

1

ns

with the exponent being an integer s ≥ 2.

According to Euler we have the following formula, that we would like to fully under-
stand, and why not generalize too, into formulae for ζ(s) at higher values of s ≥ 2:

ζ(s) =
π2

6

In order to discuss this, we will need the following well-known fact:

Theorem 15.29. We can talk about the gamma function

Γ(s) =

∫ ∞

0

xs−1e−x dx

extending the usual factorial of integers, Γ(s) = (s− 1)!.



15D. BASEL FORMULA 363

Proof. The integral converges indeed, and by partial integration we have:

Γ(s+ 1) =

∫ ∞

0

xse−x dx

=

∫ ∞

0

sxs−1e−x dx

= sΓ(s)

Regarding now the case s ∈ N, for the initial value s = 1 we have:

Γ(1) =

∫ ∞

0

e−xdx = 1

Thus, for s ∈ N we have indeed Γ(s) = (s− 1)!, as claimed. □

Getting now to zeta, we can formulate a key result about it, as follows:

Theorem 15.30. We have the following formula,

ζ(s) =
1

Γ(s)

∫ ∞

0

xs−1

ex − 1
dx

valid for any s ∈ C with Re(s) > 1.

Proof. We have indeed the following computation:∫ ∞

0

xs−1

ex − 1
dx =

∫ ∞

0

xs−1

ex
· 1

1− e−x
dx

=

∫ ∞

0

xs−1(e−x + e−2x + e−3x + . . .)

=
∞∑
n=1

∫ ∞

0

xs−1e−nx dx

=
∞∑
n=1

∫ ∞

0

(y
n

)s−1

e−y
dy

n

=
∞∑
n=1

1

ns

∫ ∞

0

ys−1e−y dy

= ζ(s)Γ(s)

Thus, we are led to the formula in the statement. □

At a more advanced level now, we can try to compute particular values of ζ. Things
are quite tricky here, and we have the following result, which is of interest to us:
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Theorem 15.31. We have the following formula, for the even integers s = 2k,

ζ(2k) = (−1)k+1 (2π)
2kB2k

2 · (2k)!

with Bn being the Bernoulli numbers, which in practice gives the formulae

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
, ζ(8) =

π8

9450
, . . .

generalizing the formula ζ(2) = π2/6 of Euler, solving the Basel problem.

Proof. This is something quite tricky, the idea being as follows:

(1) We have the following computation, based on the formula in Theorem 15.30:

ζ(2k) =
1

Γ(2k)

∫ ∞

0

x2k−1

ex − 1
dx

=
1

(2k − 1)!

∫ ∞

0

x2k−1

ex − 1
dx

=
1

(2k − 1)!

∫ ∞

0

(2πt)2k−1

e2πt − 1
2πdt

=
(2π)2k

(2k − 1)!

∫ ∞

0

t2k−1

e2πt − 1
dt

(2) But, we recognize on the right the integral giving rise to the even Bernoulli num-
bers, with one of the many definitions of these numbers being as follows:

B2k = 4k(−1)k+1

∫ ∞

0

t2k−1

e2πt − 1
dt

Thus, we can finish our computation of the values ζ(2k) as follows:

ζ(2k) =
(2π)2k

(2k − 1)!
· (−1)k+1B2k

4k

= (−1)k+1 (2π)
2kB2k

2 · (2k)!

(3) Regarding now the Bernoulli numbers, there is a long story here. At the beginning,
we have the following formula of Bernoulli, standing as a definition for them:

n−1∑
k=0

km =
1

m+ 1

m∑
k=0

Bkn
m+1−k
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This leads to the following recurrence relation, which computes them:

Bm = − 1

m+ 1

m−1∑
k=0

(
m+ 1

k

)
Bk

In practice, we can see that the odd Bernoulli numbers all vanish, except for the first
one, B1 = −1/2, and that the even Bernoulli numbers are as follows:

1

6
, − 1

30
,

1

42
, − 1

30
,

5

66
, − 691

2730
,

7

6
, . . .

(4) For analytic purposes, the Bernoulli numbers are best viewed as follows, with this
coming from the fact that the coefficients satisfy the above recurrence relation:

x

ex − 1
=

∞∑
n=0

Bn
xn

n!

= 1− 1

2
x+

1

6
· x

2

2!
− 1

30
· x

4

4!
+

1

42
· x

6

6!
− 1

30
· x

8

8!
+ . . .

Observe that all this is related as well to the hyperbolic functions, via:

x

2

(
coth

x

2
− 1
)
=

x

ex − 1
=

∞∑
n=0

Bn
xn

n!

The point now is that, in relation with our zeta business, the above analytic formulae
give, after some calculus, the formula that we used in (3), namely:

B2k = 4k(−1)k+1

∫ ∞

0

t2k−1

e2πt − 1
dt

(5) Finally, no discussion about the Bernoulli numbers would be complete without
mentioning the Euler-Maclaurin formula, involving them, which is as follows:

n−1∑
k=0

f(x) ≃
∫ n

0

f(x)dx− 1

2
(f(n)− f(0))

+
1

6
· f

′(n)− f ′(0)

2!
− 1

30
· f

(3)(n)− f (3)(0)

4!

+
1

42
· f

(5)(n)− f (5)(0)

6!
− 1

30
· f

(7)(n)− f (7)(0)

8!
+ . . .

(6) And there is more coming from the complex extension of the zeta function, by
analytic continuation, which is something quite standard. Indeed, the values of zeta at
the negative integers 0,−1,−2,−3, . . . are not ∞, but are rather given by:

ζ(−n) = (−1)nBn+1

n+ 1
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Alternatively, we have the following formula for the Bernoulli numbers:

Bn = (−1)n−1nζ(1− n)

(7) In any case, we are led to the various conclusions in the statement, both theoretical
and numeric. And exercise for you of course to learn more about the Bernoulli numbers,
and beware of the freakish notations used by mathematicians there. □

As a more digest form of Theorem 15.31, let us record as well:

Theorem 15.32. The generating function of the numbers ζ(2k) with k ∈ N is

∞∑
k=0

ζ(2k)x2k = −πx
2

cot(πx)

and with this generalizing the formula involving Bernoulli numbers.

Proof. This is something tricky, again, the idea being as follows:

(1) A version of the recurrence formula for Bernoulli numbers is as follows:

B2n = − 1

n+ 1/2

n−1∑
k=1

(
2n

2k

)
B2kB2n−2k

Now observe that this formula can be written in the following way:

B2n

(2n)!
= − 1

n+ 1/2

n−1∑
k=1

B2k

(2k)!
· B2n−2k

(2n− 2k)!

In view of Theorem 15.31, we obtain the following formula, valid at any n > 1:

ζ(2n) =
1

n+ 1/2

n−1∑
k=1

ζ(2k)ζ(2n− 2k)

(2) But this allows the computation of the series in the statement, by squaring that
series. Indeed, consider the following modified version of that series:

f(x) = 2
∞∑
k=0

ζ(2k)
(x
π

)2k
By squaring, and using the recurrence formula for the numbers ζ(2n) found in (1),

with some care at the values n = 0, 1, not covered by that formula, we obtain:

f 2 + f + x2 = xf ′
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(3) But this is precisely the functional equation satisfied by g(x) = −x cotx. Indeed,
by using the well-known formula cot′ = − cot2−1, we have:

xg′ = x(− cotx− x cot′ x)
= x(− cotx+ x cot2 x+ x)

= g + g2 + x2

(4) We conclude that we have f = g, which reads:

2
∞∑
k=0

ζ(2k)
(x
π

)2k
= −x cotx

Now by replacing x→ πx, we obtain the formula in the statement. □

Regarding now the values ζ(2k + 1) with k ∈ N, the story here is more complicated,
with the first such number being the Apéry constant, given by:

ζ(3) =
∞∑
n=1

1

n3

There has been a lot of work on this number, by Apéry and others, and on the higher
ξ(2k + 1) values as well. Let us record here the following result, a bit of physics flavor:

Theorem 15.33. We have the following formula,

ζ(s) =

∫ 1

0

. . .

∫ 1

0

dx1 . . . dxs
1− x1 . . . xs

valid for any s ∈ N, s ≥ 2.

Proof. This follows as usual from some calculus, the idea being as follows:

(1) At s = 2 we have the following computation, using Theorem 15.30:∫ 1

0

∫ 1

0

1

1− xy
dxdy =

∫ 1

0

[
− log(1− xy)

y

]1
0

dy

= −
∫ 1

0

log(1− y)
y

dy

= −
∫ ∞

0

log(e−t)

1− e−t
e−tdt

=

∫ ∞

0

t

et − 1
dt

= ζ(2)Γ(2)

= ζ(2)
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(2) In the general case, s ∈ N, the best is to start with the following formula:

1

1− x1 . . . xs
=

∞∑
n=0

(x1 . . . xs)
n

Thus, the integral in the statement is given by the following formula:∫ 1

0

. . .

∫ 1

0

dx1 . . . dxs
1− x1 . . . xs

=
∞∑
n=0

∫ 1

0

. . .

∫ 1

0

(x1 . . . xs)
ndx1 . . . dxs

But this leads to the formula in the statement, after some computations. □

Many other things can be said about the Riemann zeta function and its special values,
as a continuation of the above. Check here any advanced number theory book.

15e. Exercises

This was yet another key calculus chapter, and as exercises, we have:

Exercise 15.34. Meditate on the random numbers needed for Monte Carlo.

Exercise 15.35. Find, then sell, a good algorithm for generating random numbers.

Exercise 15.36. Understand when exactly the integrals commute with limits, or sums.

Exercise 15.37. Find exercises about computing primitives, and solve them.

Exercise 15.38. Clarify all the details in relation with the transcedentality of e.

Exercise 15.39. Clarify all the details in relation with the irrationality of π.

Exercise 15.40. Clarify all the details in relation with the transcedentality of π.

Exercise 15.41. Experiment, abstractly and concretely, with the Buffon needle.

As bonus exercise, and no surprise here, read more about the zeta function.



CHAPTER 16

Spherical integrals

16a. Advanced calculus

Time to end this book, and looking back at the list of questions that we formulated
at the beginning of the present Part IV, there are still many things to be discussed.
These concern for the most analysis in arbitrary N dimensions, and the role of π and
trigonometry there. We will be here, in this final chapter, for discussing this.

As a bonus, we will discuss as well the remaining 1-variable question that we have left,
which concerns the study of the integrals of the following type, which will turn to appear
quite naturally in relation with the N variable questions to be investigated here:

I =

∫ b

a

sinp t cosp t dt

Getting started now, multivariable calculus is a matter of merging the linear algebra
material from chapter 12, concerning the linear maps f : RN → RM , and the basic calculus
from chapter 13, concerning the arbitary maps f : R→ R. We have indeed the following
result, to start with, at order 1, which creates a wide bridge between these topics:

Theorem 16.1. The derivative of a function f : RN → RM , making the formula

f(x+ t) ≃ f(x) + f ′(x)t

work, must be the matrix of partial derivatives at x, namely

f ′(x) =

(
dfi
dxj

(x)

)
ij

∈MM×N(R)

acting on the vectors t ∈ RN by usual multiplication.

Proof. As a first observation, the formula in the statement makes sense indeed, as
an equality, or rather approximation, of vectors in RM , as follows:

f

 x1 + t1
...

xN + tN

 ≃ f

x1
...
xN

+


df1
dx1

(x) . . . df1
dxN

(x)
...

...
dfM
dx1

(x) . . . dfM
dxN

(x)


 t1

...
tN


In order to prove now this formula, we can proceed by recurrence, as follows:

369
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(1) First of all, at N =M = 1 what we have is a usual 1-variable function f : R→ R,
and the formula in the statement is something that we know well, namely:

f(x+ t) ≃ f(x) + f ′(x)t

(2) Let us discuss now the case N = 2,M = 1. Here what we have is a function
f : R2 → R, and by using twice the basic approximation result from (1), we obtain:

f

(
x1 + t1
x2 + t2

)
≃ f

(
x1 + t1
x2

)
+

df

dx2
(x)t2

≃ f

(
x1
x2

)
+

df

dx1
(x)t1 +

df

dx2
(x)t2

= f

(
x1
x2

)
+
(
df
dx1

(x) df
dx2

(x)
)(t1

t2

)
(3) More generally, we can deal in this way with the case N ∈ N,M = 1, by recurrence.

But this gives the result in the general case N,M ∈ N too. Indeed, let us write:

f =

 f1
...
fM


We can apply our result to each of the components fi : RN → R, and we get:

fi

 x1 + t1
...

xN + tN

 ≃ fi

x1
...
xN

+
(
dfi
dx1

(x) . . . dfi
dxN

(x)
) t1

...
tN


But this is precisely what we want, at the level of the global map f : RN → RM . □

As a technical complement to the above result, further clarifying things, we have:

Theorem 16.2. For a function f : X → RM , with X ⊂ RN , the following conditions
are equivalent, and in this case we say that f is continuously differentiable:

(1) f is differentiable, and the map x→ f ′(x) is continuous.
(2) f has partial derivatives, which are continuous with respect to x ∈ X.

If these conditions are satisfied, f ′(x) is the matrix fomed by the partial derivatives at x.

Proof. We already know, from Theorem 16.1, that the last assertion holds. Regard-
ing now the proof of the equivalence, this goes as follows:

(1) =⇒ (2) Assuming that f is differentiable, we know from Theorem 16.1 that f ′(x)
must be the matrix fomed by the partial derivatives at x. Thus, for any x, y ∈ X:

dfi
dxj

(x)− dfi
dxj

(y) = f ′(x)ij − f ′(y)ij
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By applying now the absolute value, we obtain from this the following estimate:∣∣∣∣ dfidxj
(x)− dfi

dxj
(y)

∣∣∣∣ = |f ′(x)ij − f ′(y)ij|

= |(f ′(x)− f ′(y))ij|
≤ ||f ′(x)− f ′(y)||

But this gives the result, because if the map x → f ′(x) is assumed to be continuous,
then the partial derivatives follow to be continuous with respect to x ∈ X.

(2) =⇒ (1) This is something more technical. For simplicity, let us assume M = 1,
the proof in general being similar. Given x ∈ X and ε > 0, let us pick r > 0 such that
the ball B = Bx(r) belongs to X, and such that the following happens, over B:∣∣∣∣ dfdxj (x)− df

dxj
(y)

∣∣∣∣ < ε

N

Our claim is that, with this choice made, we have the following estimate, for any
t ∈ RN satisfying ||t|| < r, with A being the vector of partial derivatives at x:

|f(x+ t)− f(x)− At| ≤ ε||t||
In order to prove this claim, the idea will be that of suitably applying the mean value

theorem, over the N directions of RN . Indeed, consider the following vectors:

t(k) =



t1
...
tk
0
...
0


In terms of these vectors, we have the following formula:

f(x+ t)− f(x) =
N∑
j=1

f(x+ t(j))− f(x+ t(j−1))

Also, the mean value theorem gives a formula as follows, with sj ∈ [0, 1]:

f(x+ t(j))− f(x+ t(j−1)) =
df

dxj
(x+ sjt

(j) + (1− sj)t(j−1)) · tj

But, according to our assumption on r > 0 from the beginning, the derivative on the
right differs from df

dxj
(x) by something which is smaller than ε/N :∣∣∣∣ dfdxj (x+ sjt

(j) + (1− sj)t(j−1))− df

dxj
(x)

∣∣∣∣ < ε

N
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Now by putting everything together, we obtain the following estimate:

|f(x+ t)− f(x)− At| ≤
N∑
j=1

∣∣∣∣f(x+ t(j))− f(x+ t(j−1))− df

dxj
(x) · tj

∣∣∣∣
=

N∑
j=1

∣∣∣∣ dfdxj (x+ sjt
(j) + (1− sj)t(j−1)) · tj −

df

dxj
(x) · tj

∣∣∣∣
≤

N∑
j=1

ε

N
· |tj|

≤ ε||t||
Thus we have proved our claim, and this gives the result. □

Moving on, with this done, our next task will be that of extending to several variables
our basic results from one-variable calculus. As a standard result here, we have:

Theorem 16.3. We have the chain derivative formula

(f ◦ g)′(x) = f ′(g(x)) · g′(x)
as an equality of matrices.

Proof. This is something standard in one variable, and in several variables the proof
is similar, by using the abstract notion of derivative coming from Theorem 16.1. To be
more precise, consider a composition of functions, as follows:

f : RN → RM , g : RK → RN , f ◦ g : RK → RM

According to Theorem 16.1, the derivatives of these functions are certain linear maps,
corresponding to certain rectangular matrices, as follows:

f ′(g(x)) ∈MM×N(R) , g′(x) ∈MN×K(R) (f ◦ g)′(x) ∈MM×K(R)
Thus, our formula makes sense indeed. As for proof, this comes from:

(f ◦ g)(x+ t) = f(g(x+ t))

≃ f(g(x) + g′(x)t)

≃ f(g(x)) + f ′(g(x))g′(x)t

Thus, we are led to the conclusion in the statement. □

Also, again in analogy with what we know well from chapter 13, we have:

Theorem 16.4. The Taylor formula at order 1 for a function f : RN → R is

f(x+ t) ≃ f(x) + f ′(x)t

and in particular, in order for x to be a local extremum, we must have f ′(x) = 0.
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Proof. Here the first assertion is something that we know, and the second assertion
follows from it. Indeed, let us look at the order 1 term, given by:

f ′(x)t =
N∑
i=1

df

dxi
ti

Now since this linear combination of the entries of t ∈ RN can range among positives
and negatives, unless all the coefficients are zero, which means f ′(x) = 0, we are led to
the conclusion that local extremum needs f ′(x) = 0 to hold, as stated. □

Moving on, we can talk as well about higher derivatives, simply by performing the
operation of taking derivatives recursively. As a first result here, we have:

Theorem 16.5. The double derivatives of a function f : R2 → R satisfy

d2f

dxdy
=

d2f

dydx

called Clairaut formula.

Proof. Given z = (a, b), consider the following functions, with h, k ∈ R small:

u(h, k) = f(a+ h, b+ k)− f(a+ h, b)

v(h, k) = f(a+ h, b+ k)− f(a, b+ k)

w(h, k) = f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b)

By the mean value theorem, for h, k ̸= 0 we can find α, β ∈ R such that:

w(h, k) = u(h, k)− u(0, k)

= h · d
dx

u(αh, k)

= h

(
d

dx
f(a+ αh, b+ k)− d

dx
f(a+ αh, b)

)
= hk · d

dy
· d
dx

f(a+ αh, b+ βk)

Similarly, again for h, k ̸= 0, we can find γ, δ ∈ R such that:

w(h, k) = v(h, k)− v(h, 0)

= k · d
dy

v(h, δk)

= k

(
d

dy
f(a+ h, b+ δk)− d

dy
f(a, b+ δk)

)
= hk · d

dx
· d
dy

f(a+ γh, b+ δk)
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Now by dividing everything by hk ̸= 0, we conclude from this that the following
equality holds, with the numbers α, β, γ, δ ∈ R being found as above:

d

dy
· d
dx

f(a+ αh, b+ βk) =
d

dx
· d
dy

f(a+ γh, b+ δk)

But with h, k → 0 we get from this the Clairaut formula at z = (a, b), as desired. □

In arbitrary dimensions now, we have the following result:

Theorem 16.6. Given f : RN → R, we can talk about its higher derivatives,

dkf

dxi1 . . . dxik
=

d

dxi1
· · · d

dxik
(f)

provided that these derivatives exist indeed. Moreover, due to the Clairaut formula,

d2f

dxidxj
=

d2f

dxjdxi

the order in which these higher derivatives are computed is irrelevant.

Proof. This is indeed something self-explanatory, based on the Clairaut formula from
Theorem 16.5, applied to the various 2-variable restrictions of f : RN → R. □

All this is very nice, and as an illustration, let us work out in detail the case k = 2.
Here things are quite special, and we can formulate the following definition:

Definition 16.7. Given a twice differentiable function f : RN → R, we set

f ′′(x) =

(
d2f

dxidxj

)
ij

which is a symmetric matrix, called Hessian matrix of f at the point x ∈ RN .

To be more precise, we know that when f : RN → R is twice differentiable, its order 2
partial derivatives are the numbers in the statement. Now since these numbers naturally
form a N ×N matrix, the temptation is high to call this matrix f ′′(x), and so we will do.
And finally, we know from Clairaut that this matrix is symmetric:

f ′′(x)ij = f ′′(x)ji

Observe that at N = 1 this is compatible with the usual definition of the second
derivative f ′′, because in this case, the 1× 1 matrix from Definition 16.7 is:

f ′′(x) = (f ′′(x)) ∈M1×1(R)
As a word of warning, however, never use Definition 16.7 for functions f : RN → RM ,

where the second derivative can only be something more complicated. Also, never attempt
either to do something similar at k = 3 or higher, for functions f : RN → R with N > 1,
because again, that beast has too many indices, for being a true, honest matrix.
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Back now to our usual business, approximation, we have the following result:

Theorem 16.8. Given a twice differentiable function f : RN → R, we have

f(x+ t) ≃ f(x) + f ′(x)t+
< f ′′(x)t, t >

2

where f ′′(x) ∈MN(R) stands as usual for the Hessian matrix.

Proof. This is something very standard, the idea being as follows:

(1) As a first observation, at N = 1 the Hessian matrix is the usual f ′′(x), and the
formula in the statement is something that we know well from basic calculus, namely:

f(x+ t) ≃ f(x) + f ′(x)t+
f ′′(x)t2

2

(2) In general now, this is in fact something which does not need a new proof, because
it follows from the one-variable formula above, applied to the restriction of f to the
following segment in RN , which can be regarded as being a one-variable interval:

I = [x, x+ t]

To be more precise, let y ∈ RN , and consider the following function, with r ∈ R:
g(r) = f(x+ ry)

We know from (1) that the Taylor formula for g, at the point r = 0, reads:

g(r) ≃ g(0) + g′(0)r +
g′′(0)r2

2
And our claim is that, with t = ry, this is precisely the formula in the statement.

(3) So, let us see if our claim is correct. By using the chain rule, we have the following
formula, with on the right, as usual, a row vector multiplied by a column vector:

g′(r) = f ′(x+ ry) · y
By using again the chain rule, we can compute the second derivative as well:

g′′(r) = (f ′(x+ ry) · y)′

=

(∑
i

df

dxi
(x+ ry) · yi

)′

=
∑
i

∑
j

d2f

dxidxj
(x+ ry) · d(x+ ry)j

dr
· yi

=
∑
i

∑
j

d2f

dxidxj
(x+ ry) · yiyj

= < f ′′(x+ ry)y, y >
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(4) Time now to conclude. We know that we have g(r) = f(x+ ry), and according to
our various computations above, we have the following formulae:

g(0) = f(x) , g′(0) = f ′(x) , g′′(0) =< f ′′(x)y, y >

Buit with this data in hand, the usual Taylor formula for our one variable function g,
at order 2, at the point r = 0, takes the following form, with t = ry:

f(x+ ry) ≃ f(x) + f ′(x)ry +
< f ′′(x)y, y > r2

2

= f(x) + f ′(x)t+
< f ′′(x)t, t >

2

Thus, we have obtained the formula in the statement. □

We can go back now to local extrema, and we have, improving Theorem 16.4:

Theorem 16.9. In order for a twice differentiable function f : RN → R to have a
local minimum or maximum at x ∈ RN , the first derivative must vanish there,

f ′(x) = 0

and the Hessian must be positive or negative, in the sense that the quantities

< f ′′(x)t, t >∈ R

must keep a constant sign, positive or negative, when t ∈ RN varies.

Proof. This comes from Theorem 16.8. Consider indeed the formula there, namely:

f(x+ t) ≃ f(x) + f ′(x)t+
< f ′′(x)t, t >

2

We know from Theorem 16.4 that, in order for our function to have a local minimum
or maximum at x ∈ RN , the first derivative must vanish there, f ′(x) = 0. Moreover, with
this assumption made, the approximation that we have around x becomes:

f(x+ t) ≃ f(x) +
< f ′′(x)t, t >

2

Thus, we are led to the conclusion in the statement. □

At higher order now, things become more complicated, as follows:

Theorem 16.10. Given an order k differentiable function f : RN → R, we have

f(x+ t) ≃ f(x) + f ′(x)t+
< f ′′(x)t, t >

2
+ . . .

and this can help in identifying the local extrema, a bit as in the one-variable case.
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Proof. The study here is very similar to that at k = 2, from the proof of Theorem
16.8, with everything coming from the usual Taylor formula, applied on:

I = [x, x+ t]

Thus, it is pretty much clear that we are led to the conclusion in the statement. We
will leave some study here as an instructive exercise. □

Now back to order 2, where most problems usually take place, the story is not over
with Theorem 16.9. Indeed, the Hessian matrix being symmetric, the linear algebra theory
from chapter 12 applies to it, and shows that it is diagonalizable. Thus, we can formulate
the following result, complementing what was said in Theorem 16.9:

Theorem 16.11. Given a symmetric matrix A ∈ MN(R), as for instance a Hessian
matrix A = f ′′(x), with eigenvalues λ1, . . . , λN ∈ R, the following happen,

(1) < At, t >≥ 0 for any t ∈ RN precisely when λ1, . . . , λN ≥ 0.
(2) < At, t >> 0 for any t ̸= 0 precisely when λ1, . . . , λN > 0.
(3) < At, t >≤ 0 for any t ∈ RN precisely when λ1, . . . , λN ≤ 0.
(4) < At, t >< 0 for any t ̸= 0 precisely when λ1, . . . , λN < 0.

and with this helping identifying the minima and maxima of functions f : RN → R.

Proof. This is something self-explanatory, coming from our results from chapter 12,
and with the last assertion being something that we know, from Theorem 16.9. □

As a comment, the above result is of course not the end of the story with the extrema
of functions f : RN → R, because depending on how the Hessian A = f ′′(x) looks like, we
might been in need of a study at higher order, as suggested in Theorem 16.10. We will
leave some exploration here, examples and conclusions, as an instructive exercise.

16b. Spherical coordinates

With the derivatives of the functions f : RN → RM understood, time now to discuss
the integrals. We are led in this way to the following question:

Question 16.12. How to integrate the functions f : RN → R,

f →
∫
RN

f(z)dz

in analogy with what we know about integrating functions f : R→ R?

In answer, and taking N = 2 for simplifying, I bet that your answer would be that we
can define the multivariable integral simply by iterating, as follows:∫

R2

f(z)dz =

∫
R

∫
R
f(x, y)dxdy =

∫
R

∫
R
f(x, y)dydx

However, there is a major bug with all this, coming from the following result:
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Theorem 16.13. The Fubini formula, namely∫
R

∫
R
f(x, y)dxdy =

∫
R

∫
R
f(x, y)dydx

can fail, for certain suitably chosen functions.

Proof. We have indeed the following computation, no question about this:∫ 1

0

∫ 1

0

y2 − x2

(x2 + y2)2
dxdy =

∫ 1

0

[
x

x2 + y2

]1
0

dy

=

∫ 1

0

1

1 + y2
dy

=
π

4

On the other hand, by using this, and symmetry, we have as well:∫ 1

0

∫ 1

0

y2 − x2

(x2 + y2)2
dydx =

∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2
dxdy

= −
∫ 1

0

∫ 1

0

y2 − x2

(x2 + y2)2
dxdy

= −π
4

Thus Fubini can fail for certain functions, as said in the statement. Damn. □

What do do? Well, there is a mathematical answer to this, which is however something
quite complicated, whose essentials can be summarized as follows:

Theorem 16.14 (Measure theory). We can rigorously integrate the functions

f : RN → R

and assuming that f is measurable and integrable, in the sense that we have∫
RN

|f(z)|dz <∞

we have the following equalities, for any decomposition N = N1 +N2:∫
RN1

∫
RN2

f(x, y)dydx =

∫
RN2

∫
RN1

f(x, y)dxdy =

∫
RN

f(z)dz

Moreover, the same holds when f : RN → R is assumed positive, and measurable.

Proof. This is something quite long and complicated, due to Lebesgue, Riesz, Borel,
Fubini, Tonelli and others, traditionally learned in measure theory class. Alternatively,
have a look at the first few dozen pages of Rudin [79], which explain all this. □
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Summarizing, we can talk about multiple integrals. Getting now to general theory and
rules, for computing such integrals, the key result here is the change of variable formula.
In order to discuss this, let us start with something that we know well, in 1D:

Proposition 16.15. We have the change of variable formula∫ b

a

f(x)dx =

∫ d

c

f(φ(t))φ′(t)dt

where c = φ−1(a) and d = φ−1(b).

Proof. This follows with f = F ′, via the following differentiation rule:

(Fφ)′(t) = F ′(φ(t))φ′(t)

Indeed, by integrating between c and d, we obtain the result. □

In several variables now, we can only expect the above φ′(t) factor to get replaced by
something similar, a sort of “derivative of φ, arising as a real number”. But this can only
be the determinant det(φ′(t)), right, and with this in mind, we are led to:

Theorem 16.16. Given a transformation φ = (φ1, . . . , φN), we have∫
E

f(x)dx =

∫
φ−1(E)

f(φ(t))|Jφ(t)|dt

with the Jφ quantity, called Jacobian, being given by

Jφ(t) = det

[(
dφi
dxj

(x)

)
ij

]
and with this generalizing the one-variable formula from Proposition 16.15.

Proof. This is something quite tricky, the idea being as follows:

(1) Observe first that this generalizes indeed the change of variable formula in 1
dimension, from Proposition 16.15, the point here being that the absolute value on the
derivative appears as to compensate for the lack of explicit bounds for the integral.

(2) As a second observation, we can assume if we want, by linearity, that we are dealing
with the constant function f = 1. For this function, our formula reads:

vol(E) =

∫
φ−1(E)

|Jφ(t)|dt

In terms of D = φ−1(E), this amounts in proving that we have:

vol(φ(D)) =

∫
D

|Jφ(t)|dt
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Now since this latter formula is additive with respect to D, it is enough to prove it
for small cubes D. And here, as a first remark, our formula is clear for the linear maps
φ, by using the definition of the determinant of real matrices, as a signed volume.

(3) However, the extension of this to the case of non-linear maps φ is something which
looks non-trivial, so we will not follow this path, in what follows. So, while the above
f = 1 discussion is certainly something nice, our theorem is still in need of a proof.

(4) In order to prove the theorem, as stated, let us rather focus on the transformations
used φ, instead of the functions to be integrated f . Our first claim is that the validity of
the theorem is stable under taking compositions of such transformations φ.

(5) In order to prove this claim, consider a composition, as follows:

φ : E → F , ψ : D → E , φ ◦ ψ : D → F

Assuming that the theorem holds for φ, ψ, we have the following computation:∫
F

f(x)dx =

∫
E

f(φ(s))|Jφ(s)|ds

=

∫
D

f(φ ◦ ψ(t))|Jφ(ψ(t))| · |Jψ(t)|dt

=

∫
D

f(φ ◦ ψ(t))|Jφ◦ψ(t)|dt

Thus, our theorem holds as well for φ ◦ ψ, and we have proved our claim.

(6) Next, as a key ingredient, let us examine the case where we are in N = 2 dimen-
sions, and our transformation φ has one of the following special forms:

φ(x, y) = (ψ(x, y), y) , φ(x, y) = (x, ψ(x, y))

By symmetry, it is enough to deal with the first case. Here the Jacobian is dψ/dx, and
by replacing if needed ψ → −ψ, we can assume that this Jacobian is positive, dψ/dx > 0.
Now by assuming as before that D = φ−1(E) is a rectangle, D = [a, b] × [c, d], we can
prove our formula by using the change of variables in 1 dimension, as follows:∫

E

f(s)ds =

∫
φ(D)

f(x, y)dxdy

=

∫ d

c

∫ ψ(b,y)

ψ(a,y)

f(x, y)dxdy

=

∫ d

c

∫ b

a

f(ψ(x, y), y)
dψ

dx
dxdy

=

∫
D

f(φ(t))Jφ(t)dt
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(7) But with this, we can now prove the theorem, in N = 2 dimensions. Indeed, given
a transformation φ = (φ1, φ2), consider the following two transformations:

ϕ(x, y) = (φ1(x, y), y) , ψ(x, y) = (x, φ2 ◦ ϕ−1(x, y))

We have then φ = ψ ◦ϕ, and by using (6) for ψ, ϕ, which are of the special form there,
and then (3) for composing, we conclude that the theorem holds for φ, as desired.

(8) Thus, theorem proved in N = 2 dimensions, and the extension of the above proof
to arbitrary N dimensions is straightforward, that we will leave this as an exercise. □

Time now do some exciting computations, with the technology that we have. In what
regards the applications of Theorem 16.16, these often come via:

Proposition 16.17. We have polar coordinates in 2 dimensions,{
x = r cos t

y = r sin t

the corresponding Jacobian being J = r.

Proof. This is elementary, the Jacobian being:

J =

∣∣∣∣∣∣
d(r cos t)

dr
d(r cos t)

dt

d(r sin t)
dr

d(r sin t)
dt

∣∣∣∣∣∣
=

∣∣∣∣cos t −r sin tsin t r cos t

∣∣∣∣
= r cos2 t+ r sin2 t

= r

Thus, we have indeed the formula in the statement. □

We can now compute the Gauss integral, which is the best calculus formula ever:

Theorem 16.18. We have the following formula,∫
R
e−x

2

dx =
√
π

called Gauss integral formula.
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Proof. Let I be the above integral. By using polar coordinates, we obtain:

I2 =

∫
R

∫
R
e−x

2−y2dxdy

=

∫ 2π

0

∫ ∞

0

e−r
2

rdrdt

= 2π

∫ ∞

0

(
−e

−r2

2

)′

dr

= 2π

[
0−

(
−1

2

)]
= π

Thus, we are led to the formula in the statement. □

Moving now to 3 dimensions, we have here the following result:

Proposition 16.19. We have spherical coordinates in 3 dimensions,
x = r cos s

y = r sin s cos t

z = r sin s sin t

the corresponding Jacobian being J(r, s, t) = r2 sin s.

Proof. The fact that we have indeed spherical coordinates is clear. Regarding now
the Jacobian, this is given by the following formula:

J(r, s, t)

=

∣∣∣∣∣∣
cos s −r sin s 0

sin s cos t r cos s cos t −r sin s sin t
sin s sin t r cos s sin t r sin s cos t

∣∣∣∣∣∣
= r2 sin s sin t

∣∣∣∣ cos s −r sin s
sin s sin t r cos s sin t

∣∣∣∣+ r sin s cos t

∣∣∣∣ cos s −r sin s
sin s cos t r cos s cos t

∣∣∣∣
= r sin s sin2 t

∣∣∣∣cos s −r sin ssin s r cos s

∣∣∣∣+ r sin s cos2 t

∣∣∣∣cos s −r sin ssin s r cos s

∣∣∣∣
= r sin s(sin2 t+ cos2 t)

∣∣∣∣cos s −r sin ssin s r cos s

∣∣∣∣
= r sin s× 1× r
= r2 sin s

Thus, we have indeed the formula in the statement. □
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Let us work out now the general spherical coordinate formula, in arbitrary N dimen-
sions. The formula here, which generalizes those at N = 2, 3, is as follows:

Theorem 16.20. We have spherical coordinates in N dimensions,

x1 = r cos t1
x2 = r sin t1 cos t2
...

xN−1 = r sin t1 sin t2 . . . sin tN−2 cos tN−1

xN = r sin t1 sin t2 . . . sin tN−2 sin tN−1

the corresponding Jacobian being given by the following formula,

J(r, t) = rN−1 sinN−2 t1 sin
N−3 t2 . . . sin

2 tN−3 sin tN−2

and with this generalizing the known formulae at N = 2, 3.

Proof. As before, the fact that we have spherical coordinates is clear. Regarding
now the Jacobian, also as before, by developing over the last column, we have:

JN = r sin t1 . . . sin tN−2 sin tN−1 × sin tN−1JN−1

+ r sin t1 . . . sin tN−2 cos tN−1 × cos tN−1JN−1

= r sin t1 . . . sin tN−2(sin
2 tN−1 + cos2 tN−1)JN−1

= r sin t1 . . . sin tN−2JN−1

Thus, we obtain the formula in the statement, by recurrence. □

As an application, let us compute the volumes of spheres. For this purpose, we must
understand how the products of coordinates integrate over spheres. Let us start with the
case N = 2. Here the sphere is the unit circle T, and with z = eit the coordinates are
cos t, sin t. We can first integrate arbitrary powers of these coordinates, as follows:

Theorem 16.21 (Wallis). We have the following formulae,∫ π/2

0

cosp t dt =

∫ π/2

0

sinp t dt =
(π
2

)ε(p) p!!

(p+ 1)!!

where ε(p) = 1 if p is even, and ε(p) = 0 if p is odd, and where

m!! = (m− 1)(m− 3)(m− 5) . . .

with the product ending at 2 if m is odd, and ending at 1 if m is even.

Proof. Let us first compute the integral on the left in the statement:

Ip =

∫ π/2

0

cosp t dt
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We do this by partial integration. We have the following formula:

(cosp t sin t)′ = p cosp−1 t(− sin t) sin t+ cosp t cos t

= p cosp+1 t− p cosp−1 t+ cosp+1 t

= (p+ 1) cosp+1 t− p cosp−1 t

By integrating between 0 and π/2, we obtain the following formula:

(p+ 1)Ip+1 = pIp−1

Thus we can compute Ip by recurrence, and we obtain:

Ip =
p− 1

p
Ip−2

=
p− 1

p
· p− 3

p− 2
Ip−4

=
p− 1

p
· p− 3

p− 2
· p− 5

p− 4
Ip−6

...

=
p!!

(p+ 1)!!
I1−ε(p)

But I0 =
π
2
and I1 = 1, so we get the result. As for the second formula, this follows from

the first one, with t = π
2
− s. Thus, we have proved both formulae in the statement. □

We can now compute the volume of the sphere, as follows:

Theorem 16.22. The volume of the unit sphere in RN is given by

V =
(π
2

)[N/2] 2N

(N + 1)!!

with our usual convention N !! = (N − 1)(N − 3)(N − 5) . . .

Proof. Let us denote by B+ the positive part of the unit sphere, or rather unit ball
B, obtained by cutting this unit ball in 2N parts. At the level of volumes, we have:

V = 2NV +
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We have the following computation, using spherical coordinates:

V + =

∫
B+

1

=

∫ 1

0

∫ π/2

0

. . .

∫ π/2

0

rN−1 sinN−2 t1 . . . sin tN−2 drdt1 . . . dtN−1

=

∫ 1

0

rN−1 dr

∫ π/2

0

sinN−2 t1 dt1 . . .

∫ π/2

0

sin tN−2dtN−2

∫ π/2

0

1dtN−1

=
1

N
×
(π
2

)[N/2]
× (N − 2)!!

(N − 1)!!
· (N − 3)!!

(N − 2)!!
. . .

2!!

3!!
· 1!!
2!!
· 1

=
1

N
×
(π
2

)[N/2]
× 1

(N − 1)!!

=
(π
2

)[N/2] 1

(N + 1)!!

Thus, we obtain the formula in the statement. □

16c. Normal variables

We have kept the best for the end. By using the Gauss formula
∫
R e

−x2 =
√
π from

Theorem 16.18, we can now introduce the normal laws, as follows:

Definition 16.23. The normal law of parameter 1 is the following measure:

g1 =
1√
2π
e−x

2/2dx

More generally, the normal law of parameter t > 0 is the following measure:

gt =
1√
2πt

e−x
2/2tdx

These are also called Gaussian distributions, with “g” standing for Gauss.

Observe that the above laws have indeed mass 1, as they should. This follows indeed
from the Gauss formula, which gives, with x =

√
2t y:∫

R
e−x

2/2tdx =

∫
R
e−y

2√
2t dy

=
√
2t

∫
R
e−y

2

dy

=
√
2πt

Generally speaking, the normal laws appear as bit everywhere, in real life. The reasons
behind this phenomenon come from the Central Limit Theorem (CLT), that we will
explain in a moment, after developing some general theory. As a first result, we have:
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Proposition 16.24. We have the variance formula

V (gt) = t

valid for any t > 0.

Proof. The first moment is 0, because our normal law gt is centered. As for the
second moment, this can be computed as follows:

M2 =
1√
2πt

∫
R
x2e−x

2/2tdx

=
1√
2πt

∫
R
(tx)

(
−e−x2/2t

)′
dx

=
1√
2πt

∫
R
te−x

2/2tdx

= t

We conclude from this that the variance is V =M2 = t. □

More generally now, the moments of the normal law are as follows:

Theorem 16.25. The even moments of the normal law are the numbers

Mk(gt) = tk/2 × k!!

where k!! = (k − 1)(k − 3)(k − 5) . . . , and the odd moments vanish.

Proof. We have the following computation, valid for any integer k ∈ N:

Mk =
1√
2πt

∫
R
yke−y

2/2tdy

=
1√
2πt

∫
R
(tyk−1)

(
−e−y2/2t

)′
dy

=
1√
2πt

∫
R
t(k − 1)yk−2e−y

2/2tdy

= t(k − 1)× 1√
2πt

∫
R
yk−2e−y

2/2tdy

= t(k − 1)Mk−2

Now recall from the proof of Proposition 16.24 that we have M1 = 0, M2 = t. Thus
by recurrence, we are led to the formula in the statement. □

Here is another general result, which is the key one for the study of the normal laws,
regarding the computation of their Fourier transform Ff (x) = E(eixf ) :
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Theorem 16.26. We have the following formula, valid for any t > 0:

Fgt(x) = e−tx
2/2

In particular, the normal laws satisfy gs ∗ gt = gs+t, for any s, t > 0.

Proof. The Fourier transform formula can be established as follows:

Fgt(x) =
1√
2πt

∫
R
e−y

2/2t+ixydy

=
1√
2πt

∫
R
e−(y/

√
2t−
√
t/2ix)2−tx2/2dy

=
1√
2πt

∫
R
e−z

2−tx2/2
√
2tdz

=
1√
π
e−tx

2/2

∫
R
e−z

2

dz

=
1√
π
e−tx

2/2 ·
√
π

= e−tx
2/2

As for the last assertion, this follows from the fact that logFgt is linear in t, via the
well-known fact that the logarithm of the Fourier transform linearizes the convolution. □

We are now ready to state and prove the Central Limit Theorem, as follows:

Theorem 16.27 (CLT). Given random variables f1, f2, f3, . . . ∈ L∞(X) which are
i.i.d., centered, and with variance t > 0, we have, with n→∞, in moments,

1√
n

n∑
i=1

fi ∼ gt

with gt being the Gaussian law of parameter t.

Proof. The Fourier transform Ff (x) = E(eixf ) is given by the following formula:

Ff (x) = E

(
∞∑
k=0

(ixf)k

k!

)

=
∞∑
k=0

(ix)kE(fk)

k!

=
∞∑
k=0

ikMk(f)

k!
xk
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Thus, the Fourier transform of the variable in the statement is given by:

F (x) =

[
Ff

(
x√
n

)]n
=

[
1− tx2

2n
+O(n−2)

]n
≃

[
1− tx2

2n

]n
≃ e−tx

2/2

But this latter function being the Fourier transform of gt, we obtain the result. □

So long for the basics of probability theory, quickly discussed. In fact, we have already
met probability in chapter 15, with a mysterious occurrence of the Poisson laws there.
For more on all this, and related topics, you can have a look at my book [11].

16d. Hyperspherical laws

Let us discuss now the computation of arbitrary integrals over the sphere. We will
need a technical result extending the Wallis formula from Theorem 16.21, as follows:

Theorem 16.28 (Wallis 2). We have the following formula,∫ π/2

0

cosp t sinq t dt =
(π
2

)ε(p)ε(q) p!!q!!

(p+ q + 1)!!

where ε(p) = 1 if p is even, and ε(p) = 0 if p is odd, and where

m!! = (m− 1)(m− 3)(m− 5) . . .

with the product ending at 2 if m is odd, and ending at 1 if m is even.

Proof. We use the same idea as for Theorem 16.21. Let Ipq be the integral in the
statement. In order to do the partial integration, observe that we have:

(cosp t sinq t)′ = p cosp−1 t(− sin t) sinq t

+ cosp t · q sinq−1 t cos t

= −p cosp−1 t sinq+1 t+ q cosp+1 t sinq−1 t

By integrating between 0 and π/2, we obtain, for p, q > 0:

pIp−1,q+1 = qIp+1,q−1
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Thus, we can compute Ipq by recurrence. When q is even we have:

Ipq =
q − 1

p+ 1
Ip+2,q−2

=
q − 1

p+ 1
· q − 3

p+ 3
Ip+4,q−4

=
q − 1

p+ 1
· q − 3

p+ 3
· q − 5

p+ 5
Ip+6,q−6

=
...

=
p!!q!!

(p+ q)!!
Ip+q

But the last term comes from the formula in Theorem 16.21, and we obtain the result:

Ipq =
p!!q!!

(p+ q)!!
Ip+q

=
p!!q!!

(p+ q)!!

(π
2

)ε(p+q) (p+ q)!!

(p+ q + 1)!!

=
(π
2

)ε(p)ε(q) p!!q!!

(p+ q + 1)!!

Observe that this gives the result for p even as well, by symmetry. Indeed, we have
Ipq = Iqp, by using the following change of variables:

t =
π

2
− s

In the remaining case now, where both p, q are odd, we can use once again the formula
pIp−1,q+1 = qIp+1,q−1 established above, and the recurrence goes as follows:

Ipq =
q − 1

p+ 1
Ip+2,q−2

=
q − 1

p+ 1
· q − 3

p+ 3
Ip+4,q−4

=
q − 1

p+ 1
· q − 3

p+ 3
· q − 5

p+ 5
Ip+6,q−6

=
...

=
p!!q!!

(p+ q − 1)!!
Ip+q−1,1

Thus, we are led to the formula in the statement. □

Goood news, we can now integrate over the spheres, as follows:
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Theorem 16.29 (Wallis 3). The polynomial integrals over the unit sphere SN−1
R ⊂ RN ,

with respect to the normalized, mass 1 measure, are given by the following formula,∫
SN−1
R

xk11 . . . xkNN dx =
(N − 1)!!k1!! . . . kN !!

(N + Σki − 1)!!

valid when all exponents ki are even. If an exponent ki is odd, the integral vanishes.

Proof. Assume first that one of the exponents ki is odd. We can make then the
following change of variables, which shows that the integral in the statement vanishes:

xi → −xi

Assume now that all exponents ki are even. As a first observation, the result holds
indeed at N = 2, due to the formula from Theorem 16.28, which reads:∫ π/2

0

cosp t sinq t dt =
(π
2

)ε(p)ε(q) p!!q!!

(p+ q + 1)!!
=

p!!q!!

(p+ q + 1)!!

In the general case now, where the dimension N ∈ N is arbitrary, the integral in the
statement can be written in spherical coordinates, as follows:

I =
2N

A

∫ π/2

0

. . .

∫ π/2

0

xk11 . . . xkNN J dt1 . . . dtN−1

Here A is the area of the sphere, J is the Jacobian, and the 2N factor comes from the
restriction to the 1/2N part of the sphere where all the coordinates are positive. According
to Theorem 16.22, coupled with a standard “pizza” argument, for passing from volumes
to areas, the normalization constant in front of the integral is as follows:

2N

A
=

(
2

π

)[N/2]

(N − 1)!!

As for the unnormalized integral, this is given by:

I ′ =

∫ π/2

0

. . .

∫ π/2

0

(cos t1)
k1(sin t1 cos t2)

k2

...

(sin t1 sin t2 . . . sin tN−2 cos tN−1)
kN−1

(sin t1 sin t2 . . . sin tN−2 sin tN−1)
kN

sinN−2 t1 sin
N−3 t2 . . . sin

2 tN−3 sin tN−2

dt1 . . . dtN−1



16D. HYPERSPHERICAL LAWS 391

By rearranging the terms, we obtain:

I ′ =

∫ π/2

0

cosk1 t1 sin
k2+...+kN+N−2 t1 dt1∫ π/2

0

cosk2 t2 sin
k3+...+kN+N−3 t2 dt2

...∫ π/2

0

coskN−2 tN−2 sin
kN−1+kN+1 tN−2 dtN−2∫ π/2

0

coskN−1 tN−1 sin
kN tN−1 dtN−1

Now by using the above-mentioned formula at N = 2, this gives:

I ′ =
k1!!(k2 + . . .+ kN +N − 2)!!

(k1 + . . .+ kN +N − 1)!!

(π
2

)ε(N−2)

k2!!(k3 + . . .+ kN +N − 3)!!

(k2 + . . .+ kN +N − 2)!!

(π
2

)ε(N−3)

...
kN−2!!(kN−1 + kN + 1)!!

(kN−2 + kN−1 + lN + 2)!!

(π
2

)ε(1)
kN−1!!kN !!

(kN−1 + kN + 1)!!

(π
2

)ε(0)
Now let F be the part involving the double factorials, and P be the part involving the

powers of π/2, so that I ′ = F · P . Regarding F , by cancelling terms we have:

F =
k1!! . . . kN !!

(Σki +N − 1)!!

As in what regards P , by summing the exponents, we obtain P =
(
π
2

)[N/2]
. We can

now put everything together, and we obtain:

I =
2N

A
× F × P

=

(
2

π

)[N/2]

(N − 1)!!× k1!! . . . kN !!

(Σki +N − 1)!!
×
(π
2

)[N/2]
=

(N − 1)!!k1!! . . . kN !!

(Σki +N − 1)!!

Thus, we are led to the conclusion in the statement. □
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Now back to probability, as an application of the above formula, we have:

Theorem 16.30. The moments of the hyperspherical variables are∫
SN−1
R

xpi dx =
(N − 1)!!p!!

(N + p− 1)!!

and the rescaled variables yi =
√
Nxi become normal and independent with N →∞.

Proof. We have two assertions here, the idea being as follows:

(1) The moment formula in the statement follows from the general formula from
Theorem 16.29. As a consequence, with N →∞ we have the following estimate:∫

SN−1
R

xpi dx ≃ N−p/2 × p!!

= N−p/2Mp(g1)

By comparing now with the moment formula in Theorem 16.25, we conclude that the
rescaled variables

√
Nxi become normal with N →∞, as claimed.

(2) As for the proof of the asymptotic independence, this is standard too, once again
by using Theorem 16.29. Indeed, the joint moments of x1, . . . , xN are given by:∫

SN−1
R

xk11 . . . xkNN dx =
(N − 1)!!k1!! . . . kN !!

(N + Σki − 1)!!

≃ N−Σki × k1!! . . . kN !!
By rescaling, the joint moments of the variables yi =

√
Nxi are given by:∫

SN−1
R

yk11 . . . ykNN dx ≃ k1!! . . . kN !!

Thus, we have multiplicativity, and so independence with N →∞, as claimed. □

16e. Exercises

Congratulations for having read this book, and no exercises for this final chapter.
However, if interested in learning more geometry and trigonometry, both theory and ap-
plications, there are plenty of good choices here, with basically any advanced mathematics
or physics book having concrete formulae inside doing the job. So, have a look at the
various books referenced below, normally only good material there, and choose one.
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[50] G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, Oxford Univ. Press (1938).

[51] J. Harris, Algebraic geometry, Springer (1992).

[52] R. Hartshorne, Algebraic geometry, Springer (1977).

[53] A. Hatcher, Algebraic topology, Cambridge Univ. Press (2002).

[54] H. Hofer and E. Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser (1994).
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continuously differentiable, 370
convex, 307
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Einstein formula, 341
Einstein principles, 338
ellipse, 233, 235, 243
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Euclid theorem, 45
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Euler formula, 257
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exp, 302, 316
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homothety, 61
Humbert cubic, 275
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hyperbolic geometry, 341
hyperspherical law, 392
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local maximum, 306, 310, 376
local minimum, 306, 310, 376
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log, 302, 316
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Mandelbrot set, 278
matrix, 228
matrix multiplication, 228, 231
maximal area, 140

maximum, 306
maximum area, 73
mean value, 306
mean value property, 306, 349
medians, 33, 211
Menelaus theorem, 81
minimum, 306
Minkowski inequality, 313
modulus, 239, 254, 258, 300
modulus of complex number, 251
multiplication of complex numbers, 258

Nagel point, 94
Napoleon configuration, 270
Napoleon points, 270
Netwon law, 243
nine-point circle, 59, 62
Noetherian ring, 294
non-degenerate curve, 240, 273
norm of vector, 206
normal subgroup, 293
normed space, 314
Nullstellensatz, 296
numeric angles, 40

oblique coordinates, 207
obtuse angle, 110
orthocenter, 47, 88
orthogonal vectors, 283

p-norm, 314
Pappus theorem, 25, 28
parabola, 235, 243
parallel, 14
parallel lines, 101
parallelogram identity, 283
parametric coordinates, 240
partial derivatives, 369
Pascal theorem, 97, 237
passage matrix, 287
perpendicular bisectors, 47
perspective, 101, 233
perspectivity, 20
physical barycenter, 37
pi, 159
plane curve, 240, 273
planet, 243
polar coordinates, 239, 240, 251, 258
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polar geometry, 22
polar line, 22
polar writing, 257
polarization identity, 283
polynomial, 259, 315
polynomial lemniscate, 277, 278
power function, 301
power of point, 58
powers of complex number, 252
product of functions, 304
product of polynomials, 240, 273
projection, 226, 230
projective space, 101
proportions, 16
Pythagoras equation, 45
Pythagoras theorem, 43

quadrilateral, 70
quartic, 242
quotient group, 293
quotient ring, 293

radius of incircle, 68
reflection, 254
right angle, 40, 43
right triangle, 41, 43, 107
roots, 266
roots of polynomial, 259
roots of unity, 267, 268
rotation, 225, 230

scalar product, 115, 283
Schwarz formula, 374
secant, 58, 120
second derivative, 307, 309, 374
second derivatives, 373
self-duality, 25
self-intersection, 241
semiperimeter, 69
sextic, 274
similar triangles, 39
similarity, 39
sin, 107, 302, 316
sine, 107
sine of sum, 129
singularity, 240, 273
sinusoidal spiral, 275
Solar system, 243

solid edges, 34
solid triangle, 34
spectral theorem, 289
speed addition, 339
speed of light, 338
spherical integral, 389
square root, 253, 259, 260, 319
stelloid, 278
sum of angles, 40, 129
sun of three angles, 142
symmedian, 222
symmedian point, 222
symmetric matrix, 289, 374
symmetry, 225, 230

tan, 305
tangent, 119
tangent of sum, 129
tangent of sums, 148
Taylor formula, 309, 314–316
Thales theorem, 16
third roots of unity, 270
Torricelli circles, 270
Torricelli point, 270
translation, 226
trefoil, 274
triangle, 33, 211
trilinear coordinates, 220
triple angle, 143
Tschirnhausen curve, 241
twice differentiable, 307
two-sided ideal, 293

uniform convergence, 197
union of curves, 240, 273

vacuum, 338
vector, 250
vector norm, 283
vector product, 284
volume of sphere, 384

Wallis formula, 383, 388, 389
weights, 90

Young inequality, 312

zeta function, 363
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