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Abstract. This is an introduction to the finite groups, with focus on the groups of
permutations or reflections, and more generally, on the finite groups of unitary matrices.
We first discuss the basics of group theory, both results and examples, notably with
a study of the reflection groups, the Sylow theorems, and the structure result for the
finite abelian groups. Then we go into the study of representation theory, and of other
more advanced aspects, notably with results about the subgroups of SU2, SO3. We
then discuss, using representation theory, a number of advanced analytic aspects, for
the most in relation with questions coming from probability. Finally, we provide a brief
introduction to the various possible generalizations of the finite groups.



Preface

There is a lot of symmetry in the real world, surrounding us. Minerals, plants, animals,
we all have interesting symmetry features, witnessing for some built-in symmetry, in the
various laws of mathematics, physics, chemistry and biology, having produced us.

Mathematically speaking, understanding this symmetry is a key problem. Have a look
for instance at the snowflake pictured below, isn’t this beautiful, by all possible beauty
standards in this world, and wouldn’t you like to know more about its symmetry:

•

• • •

• •

• • • • •

• •

• • •

•
Actually, understanding why snowflakes are made like this is a quite difficult question,

requiring you to know well all basic mathematics, all basic physics, including quantum
mechanics, and then a bit of quantum chemistry, and some advanced thermodynamics
too. So, perhaps not the easiest example to start with. Maybe, for later.

More modestly, what we can do, as mathematicians, is to have at least a good under-
standing of abstract, mathematical symmetry. And here, things are quite straightforward.
Symmetries are encoded by mathematical objects called groups, and the simplest such
groups are those which are finite. So, as a reasonable objective, let us try to understand
the finite groups. And for the laws of nature, and snowflakes, these can come later.

This book is an introduction to the finite groups, with focus on the groups of permu-
tations or reflections, and more generally, on the finite groups of unitary matrices. The
text is organized quite symmetrically, in 4 parts, each having 4 chapters, each having 4
sections, plus an informal exercise section at the end, as follows:
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4 PREFACE

Part I discusses the basics of group theory, notably with a study of the reflection
groups, the Sylow theorems, and the structure result for the finite abelian groups.

Part II goes into representation theory, and other advanced aspects, notably with
results about diagrams and easiness, and about the subgroups of SU2, SO3.

Part III discusses, using representation theory techniques, a number of advanced an-
alytic aspects, for the most in relation with questions coming from probability.

Part IV provides a brief introduction to the various generalizations of the finite groups,
such as the compact groups, the discrete groups, and the finite quantum groups.

And this is pretty much all that I have to say, in this preface, and in the hope that
you will like the table of contents, and why not, enjoy reading the whole book too.

Let me also mention that, contrary to what most technical book authors say about
their books, as being concieved and written and fine-tuned over an extremely long period
of time, this book was written quite quickly. Simply because I just love this stuff.

And thanks here to my cats, for teaching me this, once you are really interested in
something, just go for it, with maximum speed, and no questions asked.

Cergy, May 2025

Teo Banica
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Part I

Finite groups



And I miss you
Like the deserts miss the rain

And I miss you
Like the deserts miss the rain



CHAPTER 1

Group theory

1a. Group theory

Symmetries are encoded by groups, and with the groups being something very simple,
namely some sets, with a composition operation, which must satisfy what we should
expect from a “multiplication”. The precise definition of the groups is as follows:

Definition 1.1. A group is a set G endowed with a multiplication operation

(g, h)→ gh

which must satisfy the following conditions:

(1) Associativity: we have, (gh)k = g(hk), for any g, h, k ∈ G.
(2) Unit: there is an element 1 ∈ G such that g1 = 1g = g, for any g ∈ G.
(3) Inverses: for any g ∈ G there is g−1 ∈ G such that gg−1 = g−1g = 1.

The multiplication law is not necessarily commutative. In the case where it is, in the
sense that gh = hg, for any g, h ∈ G, we call G abelian, en hommage to Abel, and we
usually denote its multiplication, unit and inverse operation as follows:

(g, h)→ g + h , 0 ∈ G , g → −g

However, this is not a general rule, and rather the converse is true, in the sense that
if a group is denoted as above, this means that the group must be abelian.

There are many examples of groups, with typically the basic systems of numbers that
we know being abelian groups, and the basic sets of matrices being non-abelian groups.
But again, this is of course not a general rule. Here are some basic illustrations:

Proposition 1.2. We have the following groups, and non-groups:

(1) (Z,+) is a group.
(2) (Q,+), (R,+), (C,+) are groups as well.
(3) (N,+) is not a group.
(4) (Q∗, · ) is a group.
(5) (R∗, · ), (C∗, · ) are groups as well.
(6) (N∗, · ), (Z∗, · ) are not groups.
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12 1. GROUP THEORY

Proof. All this is clear from the definition of the groups, as follows:

(1) The group axioms are indeed satisfied for Z, with the sum g + h being the usual
sum, 0 being the usual 0, and −g being the usual −g.

(2) Once again, the axioms are satisfied for Q,R,C, with the remark that for Q we
are using here the fact that the sum of two rational numbers is rational, coming from:

a

b
+
c

d
=
ad+ bc

bd

(3) In N we do not have inverses, so we do not have a group:

−1 /∈ N

(4) The group axioms are indeed satisfied for Q∗, with the product gh being the usual
product, 1 being the usual 1, and g−1 being the usual g−1. Observe that we must remove
indeed the element 0 ∈ Q, because in a group, any element must be invertible.

(5) Once again, the axioms are satisfied for R∗,C∗, with the remark that for C we are
using here the fact that the nonzero complex numbers can be inverted, coming from:

zz̄ = |z|2

(6) Here in N∗,Z∗ we do not have inverses, so we do not have groups, as claimed. □

There are many interesting groups coming from linear algebra, as follows:

Theorem 1.3. We have the following groups:

(1) (RN ,+) and (CN ,+).
(2) (MN(R),+) and (MN(C),+).
(3) (GLN(R), · ) and (GLN(C), · ), the invertible matrices.
(4) (SLN(R), · ) and (SLN(C), · ), with S standing for “special”, meaning det = 1.
(5) (ON , · ) and (UN , · ), the orthogonal and unitary matrices.
(6) (SON , · ) and (SUN , · ), with S standing as above for det = 1.

Proof. All this is clear from definitions, and from our linear algebra knowledge:

(1) The axioms are indeed clearly satisfied for RN ,CN , with the sum being the usual
sum of vectors, −v being the usual −v, and the null vector 0 being the unit.

(2) Once again, the axioms are clearly satisfied for MN(R),MN(C), with the sum
being the usual sum of matrices, −M being the usual −M , and the null matrix 0 being
the unit. Observe that what we have here is in fact a particular case of (1), because any
N ×N matrix can be regarded as a N2 × 1 vector, and so at the group level we have:

(MN(R),+) ≃ (RN2

,+) , (MN(C),+) ≃ (CN2

,+)
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(3) Regarding now GLN(R), GLN(C), these are groups because the product of invert-
ible matrices is invertible, according to the following formula:

(AB)−1 = B−1A−1

Observe that at N = 1 we obtain the groups (R∗, ·), (C∗, ·). At N ≥ 2 the groups
GLN(R), GLN(C) are not abelian, because we do not have AB = BA in general.

(4) The sets SLN(R), SLN(C) formed by the real and complex matrices of determinant
1 are subgroups of the groups in (3), because of the following formula, which shows that
the matrices satisfying detA = 1 are stable under multiplication:

det(AB) = det(A) det(B)

(5) Regarding now ON , UN , here the group property is clear too from definitions, and
is best seen by using the associated linear maps, because the composition of two isometries
is an isometry. Equivalently, assuming U∗ = U−1 and V ∗ = V −1, we have:

(UV )∗ = V ∗U∗ = V −1U−1 = (UV )−1

(6) The sets of matrices SON , SUN in the statement are obtained by intersecting the
groups in (4) and (5), and so they are groups indeed:

SON = ON ∩ SLN(R)

SUN = UN ∩ SLN(C)
Thus, all the sets in the statement are indeed groups, as claimed. □

Summarizing, the notion of group is something extremely wide. Now back to Definition
1.1, because of this, at that level of generality, there is nothing much that can be said.
Let us record, however, as our first theorem regarding the arbitrary groups:

Theorem 1.4. Given a group (G, ·), we have the formula

(g−1)−1 = g

valid for any element g ∈ G.

Proof. This is clear from the definition of the inverses. Assume indeed that:

gg−1 = g−1g = 1

But this shows that g is the inverse of g−1, as claimed. □

As a comment here, the above result, while being something trivial, has led to a lot
of controversy among mathematicians and physicists, in recent times. The point indeed
is that, for the needs of quantum mechanics, the notion of group must be replaced with
something more general, called “quantum group”, and there are two schools here:
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(1) Certain people, including that unfriendly mathematics or physics professor whose
classes no one understands, believe that God is someone nasty, who created quantum
mechanics by using some complicated quantum groups, satisfying (g−1)−1 ̸= g.

(2) On the opposite, some other mathematicians and physicists, who are typically more
relaxed, and better dressed too, and loving life in general, prefer either to use beautiful
quantum groups, satisfying (g−1)−1 = g, or not to use quantum groups at all.

Easy choice you would say, but the problem is that, due to some bizarre reasons, the
quantum group theory with (g−1)−1 = g is quite recent, and relatively obscure. For a
brief account of what can be done here, mathematically, have a look at my book [9].

1b. Finite groups

In order to have now some theory going, we obviously have to impose some conditions
on the groups that we consider. With this idea in mind, let us work out some examples,
in the finite group case. The simplest possible finite group is the cyclic group ZN :

Definition 1.5. The cyclic group ZN is defined as follows:

(1) As the additive group of remainders modulo N .
(2) As the multiplicative group of the N-th roots of unity.

The two definitions are equivalent, because if we set w = e2πi/N , then any remainder
modulo N defines a N -th root of unity, according to the following formula:

k → wk

We obtain in this way all the N -roots of unity, and so our correspondence is bijec-
tive. Moreover, our correspondence transforms the sum of remainders modulo N into the
multiplication of the N -th roots of unity, due to the following formula:

wkwl = wk+l

Thus, the groups defined in (1,2) above are isomorphic, via k → wk, and we agree to
denote by ZN the corresponding group. Observe that this group ZN is abelian. We will
be back to the finite abelian groups later, on several occasions.

As a second basic example of a finite group, we have the symmetric group SN . This
is again something very familiar, appearing as follows:

Definition 1.6. A permutation of {1, . . . , N} is a bijection, as follows:

σ : {1, . . . , N} → {1, . . . , N}

The set of such permutations is denoted SN .
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There are many possible notations for the permutations, the basic one consisting in
writing the numbers 1, . . . , N , and below them, their permuted versions:

σ =

(
1 2 3 4 5
2 1 4 5 3

)
Another method, which is faster, and that I personally prefer, remember that time is

money, is by denoting the permutations as diagrams, acting from top to bottom:

σ =

Here are some basic properties of the permutations:

Theorem 1.7. The permutations have the following properties:

(1) There are N ! of them.
(2) They from a group.

Proof. In order to construct a permutation σ ∈ SN , we have:

– N choices for the value of σ(N).
– (N − 1) choices for the value of σ(N − 1).
– (N − 2) choices for the value of σ(N − 2).
...
– and so on, up to 1 choice for the value of σ(1).

Thus, we have N ! choices, as claimed. As for the second assertion, this is clear. □

The symmetric groups SN are key objects of group theory, and they have many in-
teresting properties. We will be back to them on many occasions, in what follows, and
notably in chapter 2 below, with a systematic study of them.

As a third interesting example now of a finite group, which is something more ad-
vanced, we have the dihedral group DN , which appears as follows:

Definition 1.8. The dihedral group DN is the symmetry group of

• •

• •

• •

• •
that is, of the regular polygon having N vertices.
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In order to understand how this works, here are the basic examples of regular N -gons,
at small values of the parameter N ∈ N, along with their symmetry groups:

N = 2. Here the N -gon is just a segment, and its symmetries are obviously the identity
id, plus the symmetry τ with respect to the middle of the segment:

• •

Thus we have D2 = {id, τ}, which in group theory terms means D2 = Z2.

N = 3. Here the N -gon is an equilateral triangle, and we have 6 symmetries, the
rotations of angles 0◦, 120◦, 240◦, and the symmetries with respect to the altitudes:

•

• •

Alternatively, we can say that the symmetries are all the 3! = 6 possible permutations
of the vertices, and so that in group theory terms, we have D3 = S3.

N = 4. Here the N -gon is a square, and as symmetries we have 4 rotations, of angles
0◦, 90◦, 180◦, 270◦, as well as 4 symmetries, with respect to the 4 symmetry axes, which
are the 2 diagonals, and the 2 segments joining the midpoints of opposite sides:

• •

• •

Thus, we obtain as symmetry group some sort of product between Z4 and Z2. Observe
however that this product is not the usual one, our group being not abelian.

N = 5. Here the N -gon is a regular pentagon, and as symmetries we have 5 rotations,
of angles 0◦, 72◦, 144◦, 216◦, 288◦, as well as 5 symmetries, with respect to the 5 symmetry
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axes, which join the vertices to the midpoints of the opposite sides:

•

• •

• •
N = 6. Here the N -gon is a regular hexagon, and we have 6 rotations, of angles

0◦, 60◦, 120◦, 180◦, 240◦, 300◦, and 6 symmetries, with respect to the 6 symmetry axes,
which are the 3 diagonals, and the 3 segments joining the midpoints of opposite sides:

•

• •

• •

•
We can see from the above that the various dihedral groups DN have many common

features, and that there are some differences as well. In general, we have:

Proposition 1.9. The dihedral group DN has 2N elements, as follows:

(1) We have N rotations R1, . . . , RN , with Rk being the rotation of angle 2kπ/N .
When labeling the vertices of the N-gon 1, . . . , N , the rotation formula is:

Rk : i→ k + i

(2) We have N symmetries S1, . . . , SN , with Sk being the symmetry with respect to
the Ox axis rotated by kπ/N . The symmetry formula is:

Sk : i→ k − i

Proof. This is clear, indeed. To be more precise, DN consists of:

(1) The N rotations, of angles 2kπ/N with k = 1, . . . , N . But these are exactly the
rotations R1, . . . , RN from the statement.

(2) The N symmetries with respect to the N possible symmetry axes, which are the
N medians of the N -gon when N is odd, and are the N/2 diagonals plus the N/2 lines
connecting the midpoints of opposite edges, when N is even. But these are exactly the
symmetries S1, . . . , SN from the statement. □
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With the above description of DN in hand, we can forget if we want about geometry
and the regular N -gon, and talk about DN abstractly, as follows:

Theorem 1.10. The dihedral group DN is the group having 2N elements, R1, . . . , RN

and S1, . . . , SN , called rotations and symmetries, which multiply as follows,

RkRl = Rk+l

RkSl = Sk+l

SkRl = Sk−l

SkSl = Rk−l

with all the indices being taken modulo N .

Proof. With notations from Proposition 1.9, the various compositions between ro-
tations and symmetries can be computed as follows:

RkRl : i→ l + i→ k + l + i

RkSl : i→ l − i→ k + l − i
SkRl : i→ l + i→ k − l − i
SkSl : i→ l − i→ k − l + i

But these are exactly the formulae for Rk+l, Sk+l, Sk−l, Rk−l, as stated. Now since a
group is uniquely determined by its multiplication rules, this gives the result. □

The above result is very nice, and we can even write a nice multiplication table, based
on it. We will be back to DN , on a more systematic basis, in chapter 3 below.

1c. Symmetry groups

As a continuation of the above material, many interesting things can be said about
the symmetry groups of the finite graphs, notably with various decomposition results for
them. Let us start our study here with something very basic, as follows:

Theorem 1.11. Given a finite graph X, with vertices denoted 1, . . . , N , the symme-
tries of X, which are the permutations σ ∈ SN leaving invariant the edges,

i− j =⇒ σ(i)− σ(j)
form a subgroup of the symmetric group, as follows, called symmetry group of X:

G(X) ⊂ SN

As basic examples, for the empty graph, or for the simplex, we have G(X) = SN .

Proof. Here the first assertion, regarding the group property of G(X), is clear from
definitions, because the symmetries of X are stable under composition. The second as-
sertion, regarding the empty graph and the simplex, is clear as well. □
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Let us work out now some more examples. As a first result, dealing with the simplest
graph ever, passed the empty graphs and the simplices, we have:

Proposition 1.12. The symmetry group of the regular N-gon

• •

• •

• •

• •

is the dihedral group DN = ZN ⋊ Z2.

Proof. This is something that we know well from the above, and with the remark,
which is something new, that the notation DN for the group that we get, which is the
correct one, is justified by the general group theory discussion before, with N standing for
the natural “dimensionality” of this group. To be more precise, geometrically speaking,
the regular N -gon is best viewed in RN , with vertices 1, . . . , N at the standard basis:

1 = (1, 0, 0, . . . , 0, 0)

2 = (0, 1, 0, . . . , 0, 0)

...

N = (0, 0, 0, . . . , 0, 1)

But, with this interpretation in mind, we are led to an embedding as follows:

DN ⊂ SN ⊂ ON

We conclude from this that N is the correct dimensionality of our group, and so is
the correct label to be attached to the dihedral symbol D. Of course, you might find
this overly philosophical, or even a bit futile, but listen to this, there are two types of
mathematicians in this world, those who use DN and those who use D2N , and do not ask
me why, but it is better to be in the first category, mathematicians using DN . □

Moving ahead, the problem is now, is Proposition 1.12 good news, or bad news? I don’t
know about you, but personally I feel quite frustrated by the fact that the computation
there leads to DN = ZN ⋊ Z2, instead to ZN itself. I mean, how can a theory be serious,
if there is no room there, or even an Emperor’s throne, for the cyclic group ZN .

So, let us fix this. It is obvious that the construction in Theorem 1.11 will work
perfectly well for the oriented graphs, or for the colored graphs, so let us formulate:
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Definition 1.13. Given a generalized graph X, with vertices denoted 1, . . . , N , the
symmetries of X, which are the permutations σ ∈ SN leaving invariant the edges,

i− j =⇒ σ(i)− σ(j)
with their orientations and colors, form a subgroup of the symmetric group

G(X) ⊂ SN

called symmetry group of X.

Here, as before with the construction in Theorem 1.11, the fact that we obtain indeed
a group is clear from definitions. Now with this convention in hand, we have:

Proposition 1.14. The symmetry group of the oriented N-gon

• // •
��

•

??

•
��

•

OO

•
��

•

__

•oo

is the cyclic group ZN .

Proof. This is clear from definitions, because once we choose a vertex i and denote
its image by σ(i) = i+ k, the permutation σ ∈ SN leaving invariant the edges, with their
orientation, must map σ(i + 1) = i + k + 1, σ(i + 2) = i + k + 2 and so on, and so must
be an element of the cyclic group, in remainder modulo N notation σ = k ∈ ZN . □

With this done, and the authority of ZN restored, let us work out some general prop-
erties of the construction X → G(X). For simplicity we will restrict the attention to the
usual graphs, as in Theorem 1.11, but pretty much everything will extend to the case
of oriented or colored graphs. In fact, our policy in what follows will be that of saying
nothing when things extend, and making a comment, when things do not extend.

As a first result, coming as a useful complement to Theorem 1.11, we have:

Theorem 1.15. Having a group action on a graph G↷ X is the same as saying that
the action of G leaves invariant the adjacency matrix d, in the sense that:

dij = dg(i)g(j) , ∀g ∈ G
Equivalently, the action must preserve the spectral projections of d:

d =
∑
λ

λPλ =⇒ (Pλ)ij = (Pλ)g(i)g(j)

Thus, the symmetry group G(X) ⊂ SN is the subgroup preserving the eigenspaces of d.
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Proof. As before with Theorem 1.11, a lot of talking in the statement, with every-
thing being trivial, coming from definitions, and with the statement itself being called
Theorem instead of Proposition just due to its theoretical importance. □

Observe that Theorem 1.15 naturally leads us into colored graphs, because while the
adjacency matrix is symmetric and binary, d ∈ MN(0, 1)

symm, the spectral projections
Pλ are also symmetric, but no longer binary, Pλ ∈MN(R)symm. Moreover, these spectral
projections Pλ can have 0 on the diagonal, pushing us into allowing self-edges in our
colored graph formalism. We are led in this way to the following statement:

Theorem 1.16. Having a group action on a colored graph G ↷ X is the same as
saying that the action of G leaves invariant the adjacency matrix d:

dij = dg(i)g(j) , ∀g ∈ G

Equivalently, the action must preserve the spectral projections of d, as follows:

d =
∑
λ

λPλ =⇒ (Pλ)ij = (Pλ)g(i)g(j)

Moreover, when allowing self-edges, each Pλ will correspond to a colored graph Xλ.

Proof. This follows indeed from the above discussion, and with some extra discussion
regarding the precise colors that we use, as follows:

(1) When using real colors, the result follows from the linear algebra result regarding
the diagonalization of real symmetric matrices, which tells us that the spectral projections
of any such matrix d ∈MN(R)symm are also real and symmetric, Pλ ∈MN(R)symm.

(2) When using complex colors, the result follows from the linear algebra result regard-
ing the diagonalization of complex self-adjoint matrices, which tells us that the spectral
projections of any such matrix d ∈MN(C)sa are also self-adjoint, Pλ ∈MN(C)sa. □

The point with the perspective brought by the above results is that, when using
permutation group tools for the study of the groups G ⊂ SN acting on our graph, G↷ X,
what will eventually happen is that these tools, once sufficiently advanced, will become
very close to the regular tools for the study of d, namely the same sort of mixture of linear
algebra, calculus and probability, so in the end we will have a unified theory.

But probably too much talking, just trust me, we won’t be doing groups and algebra
here just because we are scared by analysis, and by the true graph problems. Quite the
opposite. And we will see illustrations for this harmony and unity later on.

Leaving now the oriented or colored graphs aside, as per our general graph policy
explained above, as a second general result about X → G(X), we have:
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Theorem 1.17. The construction X → G(X) has the property

G(X) = G(Xc)

where X → Xc is the complementation operation.

Proof. This is clear from the construction of G(X) from Theorem 1.11, and follows
as well from the interpretation in Theorem 1.18, because the adjacency matrices of X,
Xc are related by the following formula, where IN is the all-one matrix:

dX + dXc = IN − 1N

Indeed, since on the right we have the adjacency matrix of the simplex, which com-
mutes with everything, commutation with dX is equivalent to commutation with dXc , and
this gives the result, via the interpretation of G(X) coming from Theorem 1.15. □

In order to reach now to more advanced results, it is convenient to enlarge the attention
to the colored graphs. Indeed, for the colored graphs, we can formulate:

Theorem 1.18. Having an action on a colored graph G ↷ X is the same as saying
that the action leaves invariant the color components of X. Equivalently, with

d =
∑
c∈C

cdc

being the color decomposition of the adjacency matrix, with color components

(dc)ij =

{
1 if dij = c

0 otherwise

the action must leave invariant all these color components dc. Thus, the symmetry group
G(X) ⊂ SN is the subgroup which preserves all these matrices dc.

Proof. As before with our other statements here, in the present first chapter of this
book, a lot of talking in the statement, with everything there being trivial. □

I have this feeling that you might get to sleep, on the occasion of the present section,
which is overly theoretical, this is how things are, we have to have some theory started,
right. But, in the case it is so, I have something interesting for you, in relation with the
above. Indeed, by combining Theorem 1.16 with Theorem 1.18, both trivialities, we are
led to the following enigmatic statement, which all of the sudden wakes us up:

Theorem 1.19. Given an adjacency matrix of a graph X, which can be taken in a
colored graph sense, d ∈MN(C), or even binary as usual,

d ∈MN(0, 1)

a group action G ↷ X must preserve all “spectral-color” components of this matrix,
obtained by succesively applying the spectral decomposition, and color decomposition.
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Proof. This is clear indeed by combining Theorem 1.16 and Theorem 1.18, and
with the remark that, indeed, even for a usual binary matrix d ∈ MN(0, 1) this leads
to something non-trivial, because the spectral components of this matrix are no longer
binary, and so all of the sudden, we are into colors and everything. □

With the above result in hand, which is something quite unexpected, we are led into
a quite interesting linear algebra question, which is surely new for you, namely:

Question 1.20. What are the spectral-color components of a matrix d ∈ MN(C), or
even of a usual binary matrix d ∈MN(0, 1)?

This question is something non-trivial, and we will be back to this on several occasions,
and notably at the end of this book, when talking planar algebras in the sense of Jones
[60], which provide the good framework for the study of such questions.

1d. Rotation groups

In the continuous case now, that we need to know about too, we will be mainly
interested in the unitary group UN , in its real version, which is the orthogonal group ON ,
and in various technical versions of these basic groups ON , UN . So, let us start with:

Theorem 1.21. We have the following results:

(1) The rotations of RN form the orthogonal group ON , which is given by:

ON =
{
U ∈MN(R)

∣∣∣U t = U−1
}

(2) The rotations of CN form the unitary group UN , which is given by:

UN =
{
U ∈MN(C)

∣∣∣U∗ = U−1
}

In addition, we can restrict the attention to the rotations of the corresponding spheres.

Proof. This is something that we already know, the idea being as follows:

(1) We know from linear algebra that a linear map T : RN → RN , written as T (x) =
Ux with U ∈ MN(R), is a rotation, in the sense that it preserves the distances and the
angles, precisely when the associated matrix U is orthogonal, in the following sense:

U t = U−1

Thus, we obtain the result. As for the last assertion, this is clear as well, because an
isometry of RN is the same as an isometry of the unit sphere SN−1

R ⊂ RN .

(2) We know from linear algebra that a linear map T : CN → CN , written as T (x) =
Ux with U ∈ MN(C), is a rotation, in the sense that it preserves the distances and the
scalar products, precisely when the associated matrix U is unitary, in the following sense:

U∗ = U−1
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Thus, we obtain the result. As for the last assertion, this is clear as well, because an
isometry of CN is the same as an isometry of the unit sphere SN−1

C ⊂ CN . □

In order to introduce some further continuous groups G ⊂ UN , we will need:

Proposition 1.22. We have the following results:

(1) For an orthogonal matrix U ∈ ON we have detU ∈ {±1}.
(2) For a unitary matrix U ∈ UN we have detU ∈ T.

Proof. This is clear from the equations defining ON , UN , as follows:

(1) We have indeed the following implications:

U ∈ ON =⇒ U t = U−1

=⇒ detU t = detU−1

=⇒ detU = (detU)−1

=⇒ detU ∈ {±1}
(2) We have indeed the following implications:

U ∈ UN =⇒ U∗ = U−1

=⇒ detU∗ = detU−1

=⇒ detU = (detU)−1

=⇒ detU ∈ T
Here we have used the fact that z̄ = z−1 means zz̄ = 1, and so z ∈ T. □

We can now introduce the subgroups SON ⊂ ON and SUN ⊂ UN , as being the
subgroups consisting of the rotations which preserve the orientation, as follows:

Theorem 1.23. The following are groups of matrices,

SON =
{
U ∈ ON

∣∣∣ detU = 1
}

, SUN =
{
U ∈ UN

∣∣∣ detU = 1
}

consisting of the rotations which preserve the orientation.

Proof. The fact that we have indeed groups follows from the properties of the de-
terminant, of from the property of preserving the orientation, which is clear as well. □

Summarizing, we have constructed so far 4 continuous groups of matrices, consisting
of various rotations, with inclusions between them, as follows:

SUN // UN

SON

OO

// ON

OO
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At N = 1 the situation is trivial, and we obtain very simple groups, as follows:

Proposition 1.24. The basic continuous groups at N = 1 are

{1} // T

{1}

OO

// {±1}

OO

or, equivalently, are the following cyclic groups,

Z1
// Z∞

Z1

OO

// Z2

OO

with the convention that Zs is the group of s-th roots of unity.

Proof. This is clear from definitions, because for a 1×1 matrix the unitarity condition
reads Ū = U−1, and so U ∈ T, and this gives all the results. □

At N = 2 now, let us first discuss the real case. The result here is as follows:

Theorem 1.25. We have the following results:

(1) SO2 is the group of usual rotations in the plane, which are given by:

Rt =

(
cos t − sin t
sin t cos t

)
(2) O2 consists in addition of the usual symmetries in the plane, given by:

St =

(
cos t sin t
sin t − cos t

)
(3) Abstractly speaking, we have isomorphisms as follows:

SO2 ≃ T , O2 = T ⋊ Z2

(4) When discretizing all this, by replacing the 2-dimensional unit sphere T by the
regular N-gon, the latter isomorphism discretizes as DN = ZN ⋊ Z2.

Proof. This follows from some elementary computations, as follows:

(1) The first assertion is clear, because only the rotations of the plane in the usual
sense preserve the orientation. As for the formula of Rt, this is something that we know
well from linear algebra, obtained by computing Rt

(
1
0

)
and Rt

(
0
1

)
.
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(2) The first assertion is clear, because rotations left aside, we are left with the sym-
metries of the plane, in the usual sense. As for formula of St, this is something that we
know well too, obtained by computing St

(
1
0

)
and St

(
0
1

)
.

(3) The first assertion is clear, because the angles t ∈ R, taken as usual modulo 2π,
form the group T. As for the second assertion, the proof here is similar to the proof of
the crossed product decomposition DN = ZN ⋊ Z2 for the dihedral groups.

(4) This is something more speculative, the idea here being that the isomorphism
O2 = T ⋊ Z2 appears from DN = ZN ⋊ Z2 by taking the N →∞ limit. □

Moving forward, let us keep working out what happens at N = 2, but this time with
a study in the complex case. We first have here the following key result:

Theorem 1.26. We have the following formula,

SU2 =

{(
a b
−b̄ ā

) ∣∣∣ |a|2 + |b|2 = 1

}
which makes SU2 isomorphic to the unit sphere S1

C ⊂ C2.

Proof. Consider indeed an arbitrary 2× 2 matrix, written as follows:

U =

(
a b
c d

)
Assuming that we have detU = 1, the inverse must be given by:

U−1 =

(
d −b
−c a

)
On the other hand, assuming U ∈ U2, the inverse must be the adjoint:

U−1 =

(
ā c̄
b̄ d̄

)
We are therefore led to the following equations, for the matrix entries:

d = ā , c = −b̄

Thus our matrix must be of the following special form:

U =

(
a b
−b̄ ā

)
Moreover, since the determinant is 1, we must have, as stated:

|a|2 + |b|2 = 1
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Thus, we are done with one inclusion. As for the converse, this is clear, the matrices
in the statement being unitaries, and of determinant 1, and so being elements of SU2.
Finally, regarding the last assertion, recall that the unit sphere S1

C ⊂ C2 is given by:

S1
C =

{
(a, b)

∣∣∣ |a|2 + |b|2 = 1
}

Thus, we have an isomorphism of compact spaces, as follows:

SU2 ≃ S1
C ,

(
a b
−b̄ ā

)
→ (a, b)

We have therefore proved our theorem. □

Regarding now the unitary group U2, the result here is similar, as follows:

Theorem 1.27. We have the following formula,

U2 =

{
d

(
a b
−b̄ ā

) ∣∣∣ |a|2 + |b|2 = 1, |d| = 1

}
which makes U2 be a quotient compact space, as follows,

S1
C × T→ U2

but with this parametrization being no longer bijective.

Proof. In one sense, this is clear from Theorem 1.26, because we have:

|d| = 1 =⇒ dSU2 ⊂ U2

In the other sense, let us pick an arbitrary matrix U ∈ U2. We have then:

| det(U)|2 = det(U)det(U)

= det(U) det(U∗)

= det(UU∗)

= det(1)

= 1

Consider now the following complex number, defined up to a sign choice:

d =
√
detU

We know from Proposition 1.22 that we have |d| = 1. Thus the rescaled matrix
V = U/d is unitary, V ∈ U2. As for the determinant of this matrix, this is given by:

det(V ) = det(U/d)

= det(U)/d2

= det(U)/ det(U)

= 1
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Thus we have V ∈ SU2, and so we can write, with |a|2 + |b|2 = 1:

V =

(
a b
−b̄ ā

)
Thus the matrix U = dV appears as in the statement. Finally, observe that the result

that we have just proved provides us with a quotient map as follows:

S1
C × T→ U2 , ((a, b), d)→ d

(
a b
−b̄ ā

)
However, the parametrization is no longer bijective, because when we globally switch

signs, the element ((−a,−b),−d) produces the same element of U2. □

At a more specialized level now, we first have the groups BN , CN , consisting of the
orthogonal and unitary bistochastic matrices. Let us start with:

Definition 1.28. A square matrix M ∈MN(C) is called bistochastic if each row and
each column sum up to the same number:

M11 . . . M1N → λ
...

...
MN1 . . . MNN → λ
↓ ↓
λ λ

If this happens only for the rows, or only for the columns, the matrix is called row-
stochastic, respectively column-stochastic.

In what follows we will be interested in the unitary bistochastic matrices, which are
quite interesting objects. As a first result, regarding such matrices, we have:

Proposition 1.29. For a unitary matrix U ∈ UN , the following are equivalent:

(1) H is bistochastic, with sums λ.
(2) H is row stochastic, with sums λ, and |λ| = 1.
(3) H is column stochastic, with sums λ, and |λ| = 1.

Proof. By using a symmetry argument we just need to prove (1) ⇐⇒ (2), and
both the implications are elementary, as follows:
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(1) =⇒ (2) If we denote by U1, . . . , UN ∈ CN the rows of U , we have indeed:

1 =
∑
i

< U1, Ui >

=
∑
j

U1j

∑
i

Ūij

=
∑
j

U1j · λ̄

= |λ|2

(2) =⇒ (1) Consider the all-one vector ξ = (1)i ∈ CN . The fact that U is row-
stochastic with sums λ reads:∑

j

Uij = λ,∀i ⇐⇒
∑
j

Uijξj = λξi, ∀i

⇐⇒ Uξ = λξ

Also, the fact that U is column-stochastic with sums λ reads:∑
i

Uij = λ,∀j ⇐⇒
∑
j

Uijξi = λξj, ∀j

⇐⇒ U tξ = λξ

We must prove that the first condition implies the second one, provided that the row
sum λ satisfies |λ| = 1. But this follows from the following computation:

Uξ = λξ =⇒ U∗Uξ = λU∗ξ

=⇒ ξ = λU∗ξ

=⇒ ξ = λ̄U tξ

=⇒ U tξ = λξ

Thus, we have proved both the implications, and we are done. □

The unitary bistochastic matrices are stable under a number of operations, and in
particular under taking products. Thus, these matrices form a group. We have:

Theorem 1.30. The real and complex bistochastic groups, which are the sets

BN ⊂ ON , CN ⊂ UN

consisting of matrices which are bistochastic, are isomorphic to ON−1, UN−1.

Proof. Let us pick a matrix F ∈ UN satisfying the following condition, where
e0, . . . , eN−1 is the standard basis of CN , and where ξ is the all-one vector:

Fe0 =
1√
N
ξ
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We have then, by using the above property of F :

uξ = ξ ⇐⇒ uFe0 = Fe0

⇐⇒ F ∗uFe0 = e0

⇐⇒ F ∗uF = diag(1, w)

Thus we have isomorphisms as in the statement, given by wij → (F ∗uF )ij. □

We will be back to BN , CN later. Moving ahead now, as yet another basic example of
a continuous group, we have the symplectic group SpN . Let us begin with:

Definition 1.31. The “super-space” C̄N is the usual space CN , with its standard basis
{e1, . . . , eN}, with a chosen sign ε = ±1, and a chosen involution on the indices:

i→ ī

The “super-identity” matrix is Jij = δij̄ for i ≤ j and Jij = εδij̄ for i ≥ j.

Up to a permutation of the indices, we have a decomposition N = 2p + q, such that
the involution is, in standard permutation notation:

(12) . . . (2p− 1, 2p)(2p+ 1) . . . (q)

Thus, up to a base change, the super-identity is as follows, where N = 2p + q and
ε = ±1, with the 1q block at right disappearing if ε = −1:

J =



0 1
ε1 0(0)

. . .
0 1
ε1 0(p)

1(1)
. . .

1(q)


In the case ε = 1, the super-identity is the following matrix:

J+(p, q) =



0 1
1 0(1)

. . .
0 1
1 0(p)

1(1)
. . .

1(q)


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In the case ε = −1 now, the diagonal terms vanish, and the super-identity is:

J−(p, 0) =


0 1
−1 0(1)

. . .
0 1
−1 0(p)


With the above notions in hand, we have the following result:

Theorem 1.32. The super-orthogonal group, which is by definition

ŌN =
{
U ∈ UN

∣∣∣U = JŪJ−1
}

with J being the super-identity matrix, is as follows:

(1) At ε = 1 we have ŌN = ON .
(2) At ε = −1 we have ŌN = SpN .

Proof. These results are both elementary, as follows:

(1) At ε = −1 this follows from definitions.

(2) At ε = 1 now, consider the root of unity ρ = eπi/4, and let:

Γ =
1√
2

(
ρ ρ7

ρ3 ρ5

)
Then this matrix Γ is unitary, and we have the following formula:

Γ

(
0 1
1 0

)
Γt = 1

Thus the following matrix is unitary as well, and satisfies CJCt = 1:

C =


Γ(1)

. . .

Γ(p)

1q


Thus in terms of V = CUC∗ the relations U = JŪJ−1 = unitary simply read:

V = V̄ = unitary

Thus we obtain an isomorphism ŌN = ON as in the statement. □

Regarding now SpN , we have the following result:
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Theorem 1.33. The symplectic group SpN ⊂ UN , which is by definition

SpN =
{
U ∈ UN

∣∣∣U = JŪJ−1
}

consists of the SU2 patterned matrices,

U =

 a b . . .
−b̄ ā
...

. . .


which are unitary, U ∈ UN . In particular, we have Sp2 = SU2.

Proof. This follows indeed from definitions, because the condition U = JŪJ−1 cor-
responds precisely to the fact that U must be a SU2-patterned matrix. □

We will be back later to the symplectic groups, towards the end of the present book,
with more results about them. In the meantime, have a look at the mechanics book of
Arnold [2], which explains what the symplectic groups and geometry are good for.

1e. Exercises

Exercises:

Exercise 1.34.

Exercise 1.35.

Exercise 1.36.

Exercise 1.37.

Exercise 1.38.

Exercise 1.39.

Exercise 1.40.

Exercise 1.41.

Bonus exercise.



CHAPTER 2

Permutations

2a. Symmetric groups

Let us go back now to the symmetric groups, which are fundamental objects in group
theory, as we will soon discover. These groups are constructed as follows:

Definition 2.1. A permutation of {1, . . . , N} is a bijection, as follows:

σ : {1, . . . , N} → {1, . . . , N}
The set of such permutations is denoted SN .

There are many possible notations for the permutations, the basic one consisting in
writing the numbers 1, . . . , N , and below them, their permuted versions:

σ =

(
1 2 3 4 5
2 1 4 5 3

)
Another method, which is faster, and that I personally prefer, remember that time is

money, is by denoting the permutations as diagrams, acting from top to bottom:

σ =

Here are some basic properties of the permutations:

Theorem 2.2. The permutations have the following properties:

(1) There are N ! of them.
(2) They from a group.

Proof. In order to construct a permutation σ ∈ SN , we have:

– N choices for the value of σ(N).
– (N − 1) choices for the value of σ(N − 1).
– (N − 2) choices for the value of σ(N − 2).
...
– and so on, up to 1 choice for the value of σ(1).

Thus, we have N ! choices, as claimed. As for the second assertion, this is clear. □

33
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At the level of the general theory now, by using the symmetric groups, we have the
following fundamental result regarding the finite groups, due to Cayley:

Theorem 2.3. Given a finite group G, we have an embedding as follows,

G ⊂ SN , g → (h→ gh)

with N = |G|. Thus, any finite group is a permutation group.

Proof. Given a group element g ∈ G, we can associate to it the following map:

σg : G→ G , h→ gh

Since gh = gh′ implies h = h′, this map is bijective, and so is a permutation of G,
viewed as a set. Thus, with N = |G|, we can view this map as a usual permutation,
σG ∈ SN . Summarizing, we have constructed so far a map as follows:

G→ SN , g → σg

Our first claim is that this is a group morphism. Indeed, this follows from:

σgσh(k) = σg(hk) = ghk = σgh(k)

It remains to prove that this group morphism is injective. But this follows from:

g ̸= h =⇒ σg(1) ̸= σh(1)

=⇒ σg ̸= σh

Thus, we are led to the conclusion in the statement. □

Observe that in the above statement the embedding G ⊂ SN that we constructed
depends on a particular writing G = {g1, . . . , gN}, which is needed in order to identify
the permutations of G with the elements of the symmetric group SN . This is not very
good, in practice, and as an illustration, for the basic examples of groups that we know,
the Cayley theorem provides us with embeddings as follows:

ZN ⊂ SN , DN ⊂ S2N , SN ⊂ SN ! , HN ⊂ S2NN !

And here the first embedding is the good one, the second one is not the best possible
one, but can be useful, and the third and fourth embeddings are useless. Thus, as a
conclusion, the Cayley theorem remains something quite theoretical. We will be back to
this later on, with a systematic study of the “representation” problem.

Getting back now to our main series of finite groups, ZN ⊂ DN ⊂ SN ⊂ HN , these are
of course permutation groups, according to the above. However, and perhaps even more
interestingly, these are as well subgroups of the orthogonal group ON :

ZN ⊂ DN ⊂ SN ⊂ HN ⊂ ON
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Indeed, we have HN ⊂ ON , because any transformation of the unit cube in RN must
extend into an isometry of the whole RN , in the obvious way. Now in view of this, it
makes sense to look at the finite subgroups G ⊂ ON . With two remarks, namely:

(1) Although we do not have examples yet, following our general “complex is better
than real” philosophy, it is better to look at the general subgroups G ⊂ UN .

(2) Also, it is better to upgrade our study to the case where G is compact, and this
in order to cover some interesting continuous groups, such as ON , UN , SON , SUN .

Long story short, we are led in this way to the study of the closed subgroups G ⊂ UN .
Let us start our discussion here with the following simple fact:

Proposition 2.4. The closed subgroups G ⊂ UN are precisely the closed sets of
matrices G ⊂ UN satisfying the following conditions:

(1) U, V ∈ G =⇒ UV ∈ G.
(2) 1 ∈ G.
(3) U ∈ G =⇒ U−1 ∈ G.

Proof. This is clear from definitions, the only point with this statement being the
fact that a subset G ⊂ UN can be a group or not, as indicated above. □

It is possible to get beyond this, first with a result stating that any closed subgroup
G ⊂ UN is a smooth manifold, and then with a result stating that, conversely, any smooth
compact group appears as a closed subgroup G ⊂ UN of some unitary group. However,
all this is quite advanced, and we will not need it, in what follows.

As a second result now regarding the closed subgroups G ⊂ UN , let us prove that any
finite group G appears in this way. This is something more or less clear from what we
have, but let us make this precise. We first have the following key result:

Theorem 2.5. We have a group embedding as follows, obtained by regarding SN as
the permutation group of the N coordinate axes of RN ,

SN ⊂ ON

which makes σ ∈ SN correspond to the matrix having 1 on row i and column σ(i), for any
i, and having 0 entries elsewhere.

Proof. The first assertion is clear, because the permutations of the N coordinate
axes of RN are isometries. Regarding now the explicit formula, we have by definition:

σ(ej) = eσ(j)
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Thus, the permutation matrix corresponding to σ is given by:

σij =

{
1 if σ(j) = i

0 otherwise

Thus, we are led to the formula in the statement. □

We can combine the above result with the Cayley theorem, and we obtain the following
result, which is something very nice, having theoretical importance:

Theorem 2.6. Given a finite group G, we have an embedding as follows,

G ⊂ ON , g → (eh → egh)

with N = |G|. Thus, any finite group is an orthogonal matrix group.

Proof. The Cayley theorem gives an embedding as follows:

G ⊂ SN , g → (h→ gh)

On the other hand, Theorem 2.5 provides us with an embedding as follows:

SN ⊂ ON , σ → (ei → eσ(i))

Thus, we are led to the conclusion in the statement. □

The same remarks as for the Cayley theorem apply. First, the embedding G ⊂ ON

that we constructed depends on a particular writing G = {g1, . . . , gN}. And also, for the
basic examples of groups that we know, the embeddings that we obtain are as follows:

ZN ⊂ ON , DN ⊂ O2N , SN ⊂ ON ! , HN ⊂ O2NN !

Summarizing, all this is not very good, and in order to advance, it is probably better
to forget about the Cayley theorem, and build on Theorem 2.5 instead.

In relation with the basic groups, we have here the following result:

Theorem 2.7. We have the following finite groups of matrices:

(1) ZN ⊂ ON , the cyclic permutation matrices.
(2) DN ⊂ ON , the dihedral permutation matrices.
(3) SN ⊂ ON , the permutation matrices.
(4) HN ⊂ ON , the signed permutation matrices.

Proof. This is something self-explanatory, the idea being that Theorem 2.5 provides
us with embeddings as follows, given by the permutation matrices:

ZN ⊂ DN ⊂ SN ⊂ ON

In addition, looking back at the definition ofHN , this group inserts into the embedding
on the right, SN ⊂ HN ⊂ ON . Thus, we are led to the conclusion that all our 4 groups
appear as groups of suitable “permutation type matrices”. To be more precise:
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(1) The cyclic permutation matrices are by definition the matrices as follows, with 0
entries elsewhere, and form a group, which is isomorphic to the cyclic group ZN :

U =



1
1

. . .
1

1
. . .

1


(2) The dihedral matrices are the above cyclic permutation matrices, plus some suit-

able symmetry permutation matrices, and form a group which is isomorphic to DN .

(3) The permutation matrices, which by Theorem 2.5 form a group which is isomorphic
to SN , are the 0− 1 matrices having exactly one 1 on each row and column.

(4) Finally, regarding the signed permutation matrices, these are by definition the
(−1)− 0− 1 matrices having exactly one nonzero entry on each row and column, and we
know that these matrices form a group, which is isomorphic to HN . □

We will be back to the permutation matrices, later in this chapter.

2b. Cycles, signature

We would like to discuss now some useful decomposition results, for the permutations.
For this purpose, we will need some basic abstract results, about the abstract groups,
which are good to know. Let us start with the following basic fact:

Theorem 2.8. Given a finite group G and a subgroup H ⊂ G, the sets

G/H = {gH
∣∣∣g ∈ G} , H\G = {Hg

∣∣∣g ∈ G}
both consist of partitions of G into subsets of size H, and we have the formula

|G| = |H| · |G/H| = |H| · |H\G|
which shows that the order of the subgroup divides the order of the group:

|H|
∣∣ |G|

When H ⊂ G is normal, gH = Hg for any g ∈ G, the space G/H = H\G is a group.

Proof. There are several assertions here, but these are all trivial, when deduced in
the precise order indicated in the statement. To be more precise, the partition claim for
G/H can be deduced as follows, and the proof for H\G is similar:

gH ∩ kH ̸= ∅ ⇐⇒ g−1k ∈ H ⇐⇒ gH = kH
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With this in hand, the cardinality formulae are all clear, and it remains to prove the
last assertion. But here, the point is that when H ⊂ G is normal, we have:

gH = kH, sH = tH =⇒ gsH = gtH = gHt = kHt = ktH

Thus G/H = H\G is a indeed group, with multiplication (gH)(sH) = gsH. □

As a main consequence of the above result, which is equally famous, we have:

Theorem 2.9. Given a finite group G, any g ∈ G generates a cyclic subgroup

< g >= {1, g, g2, . . . , gk−1}
with k = ord(g) being the smallest number k ∈ N satisfying gk = 1. Also, we have

ord(g)
∣∣ |G|

that is, the order of any group element divides the order of the group.

Proof. As before with Theorem 2.8, we have opted here for a long collection of
statements, which are all trivial, when deduced in the above precise order. To be more
precise, consider the semigroup < g >⊂ G formed by the sequence of powers of g:

< g >= {1, g, g2, g3, . . .} ⊂ G

Since G was assumed to be finite, the sequence of powers must cycle, gn = gm for
some n < m, and so we have gk = 1, with k = m− n. Thus, we have in fact:

< g >= {1, g, g2, . . . , gk−1}
Moreover, we can choose k ∈ N to be minimal with this property, and with this choice,

we have a set without repetitions. Thus < g >⊂ G is indeed a group, and more specifically
a cyclic group, of order k = ord(g). Finally, ord(g) | |G| follows from Theorem 2.8. □

With this, we can now talk about the cycle decomposition of permutations. Many
interesting things can be said here, of all difficulty levels.

At a more advanced level now, we have the following result, that you surely know
from linear algebra, and more specifically, from the theory of the determinant:

Theorem 2.10. The permutations have a signature function

ε : SN → {±1}
which can be defined in the following equivalent ways:

(1) As (−1)c, where c is the number of inversions.
(2) As (−1)t, where t is the number of transpositions.
(3) As (−1)o, where o is the number of odd cycles.
(4) As (−1)x, where x is the number of crossings.
(5) As the sign of the corresponding permuted basis of RN .
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Proof. We have explain what the numbers c, t, o, x appearing in (1-4) exactly are,
then why they are well-defined modulo 2, then why they are equal to each other, and
finally why the constructions (1-4) yield the same sign as (5). Let us begin with the first
two steps, namely precise definition of the numbers c, t, o, x, modulo 2:

(1) The idea here is that given any two numbers i < j among 1, . . . , N , the permutation
can either keep them in the same order, σ(i) < σ(j), or invert them:

σ(j) > σ(i)

Now by making i < j vary over all pairs of numbers in 1, . . . , N , we can count the
number of inversions, and call it c. This is an integer, c ∈ N, which is well-defined.

(2) Here the idea, which is something quite intuitive, is that any permutation appears
as a product of switches, also called transpositions:

i↔ j

The decomposition as a product of transpositions is not unique, but the number t of
the needed transpositions is unique, when considered modulo 2. This follows for instance
from the equivalence of (2) with (1,3,4,5), explained below.

(3) Here the point is that any permutation decomposes, in a unique way, as a product
of cycles, which are by definition permutations of the following type:

i1 → i2 → i3 → . . . . . .→ ik → i1

Some of these cycles have even length, and some others have odd length. By counting
those having odd length, we obtain a well-defined number o ∈ N.

(4) Here the method is that of drawing the permutation, as we usually do, and by
avoiding triple crossings, and then counting the number of crossings. This number x
depends on the way we draw the permutations, but modulo 2, we always get the same
number. Indeed, this follows from the fact that we can continuously pass from a drawing
to each other, and that when doing so, the number of crossings can only jump by ±2.

Summarizing, we have 4 different definitions for the signature of the permutations,
which all make sense, constructed according to (1-4) above. Regarding now the fact that
we always obtain the same number, this can be established as follows:

(1)=(2) This is clear, because any transposition inverts once, modulo 2.

(1)=(3) This is clear as well, because the odd cycles invert once, modulo 2.

(1)=(4) This comes from the fact that the crossings correspond to inversions.

(2)=(3) This follows by decomposing the cycles into transpositions.

(2)=(4) This comes from the fact that the crossings correspond to transpositions.

(3)=(4) This follows by drawing a product of cycles, and counting the crossings.
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Finally, in what regards the equivalence of all these constructions with (5), here sim-
plest is to use (2). Indeed, we already know that the sign of a system of vectors switches
when interchanging two vectors, and so the equivalence between (2,5) is clear. □

As already mentioned, the permutations and their signature are key ingredients in
linear algebra, in the theory of the determinant. It is tempting to take a break at this
point from group theory, and talk a bit about this, but would this linear algebra intermezzo
be really welcome. Not clear, so time to ask the cat. And cat declares:

Cat 2.11. We cats, both Eastern and Western, know well about the determinant, we
need that in our daily work. As for you guys, humans, no idea about it.

Okay, thanks cat, so not clear what to do, and since we doubt, let’s just go for it. The
determinant of a matrix is by definition the signed volume of the parallelepiped formed
by its column vectors. In other words, we have the following formula, with vi ∈ RN :

det(v1 . . . vN) = ±vol < v1, . . . , vN >

The point now is that, by playing with Thales and other elementary geometry tools,
we are led to some rules for computing the determinants, that you surely know well. And,
once we know this, permutations and their signature come into play, as follows:

Theorem 2.12. We have the following formula for the determinant,

detA =
∑
σ∈SN

ε(σ)A1σ(1) . . . ANσ(N)

with the signature function being the one introduced above.

Proof. This follows by recurrence over N ∈ N, as follows:

(1) When developing the determinant over the first column, we obtain a signed sum of
N determinants of size (N−1)×(N−1). But each of these determinants can be computed
by developing over the first column too, and so on, and we are led to the conclusion that
we have a formula as in the statement, with ε(σ) ∈ {−1, 1} being certain coefficients.

(2) But these latter coefficients ε(σ) ∈ {−1, 1} can only be the signatures of the
corresponding permutations σ ∈ SN , with this being something that can be viewed again
by recurrence, with either of the definitions (1-5) in Theorem 2.10 for the signature. □

The above result is something quite tricky, and in order to get familiar with it, there is
nothing better than doing some computations. As a first, basic example, in 2 dimensions
we recover the usual formula of the determinant, the details being as follows:∣∣∣∣a b

c d

∣∣∣∣ = ε(| |) · ad+ ε(/\) · cb = ad− bc
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In 3 dimensions now, we recover the well-known Sarrus formula:∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = aei+ bfg + cdh− ceg − bdi− afh

Observe that the triangles in the Sarrus formula correspond to the permutations of
{1, 2, 3}, and their signs correspond to the signatures of these permutations:

det =

∗ ∗
∗

+

 ∗
∗

∗

+

 ∗
∗
∗


−

 ∗
∗

∗

+

 ∗
∗

∗

+

∗ ∗
∗


In 4 dimensions, the formula of the determinant is as follows:

Theorem 2.13. The determinant of the 4× 4 matrices is given by∣∣∣∣∣∣∣∣
a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4
d1 d2 d3 d4

∣∣∣∣∣∣∣∣
= a1b2c3d4 − a1b2c4d3 − a1b3c2d4 + a1b3c4d2 + a1b4c2d3 − a1b4c3d2
− a2b1c3d4 + a2b1c4d3 + a2b3c1d4 − a2b3c4d1 − a2b4c1d3 + a2b4c3d1

+ a3b1c2d4 + a3b1c4d2 − a3b2c1d4 + a3b2c4d1 + a3b4c1d2 − a3b4c2d1
− a4b1c2d3 + a4b1c3d2 − a4b2c1d3 − a4b2c3d1 − a4b3c1d2 + a4b3c2d1

with the generic term being of the following form, with σ ∈ S4,

±aσ(1)bσ(2)cσ(3)dσ(4)
and with the sign being ε(σ), computable by using Theorem 2.10.

Proof. We can indeed recover this formula as well as a particular case of Theorem
2.12. To be more precise, the permutations in the statement are listed according to the
lexicographic order, and the computation of the corresponding signatures is something
elementary, by using the various rules from Theorem 2.10. □

Finally, still talking linear algebra, we have the following key result, which is something
that you surely know, but whose proof requires Theorem 2.12, using permutations:

Theorem 2.14. We have the formula

detA = detAt

valid for any square matrix A.
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Proof. This follows from the formula in Theorem 2.12. Indeed, we have:

detAt =
∑
σ∈SN

ε(σ)(At)1σ(1) . . . (A
t)Nσ(N)

=
∑
σ∈SN

ε(σ)Aσ(1)1 . . . Aσ(N)N

=
∑
σ∈SN

ε(σ)A1σ−1(1) . . . ANσ−1(N)

=
∑
σ∈SN

ε(σ−1)A1σ−1(1) . . . ANσ−1(N)

=
∑
σ∈SN

ε(σ)A1σ(1) . . . ANσ(N)

= detA

Thus, we are led to the formula in the statement. □

Getting back now to groups, as another illustration for the above, we have:

Theorem 2.15. We have the following formula,

AN = SN ∩ SON

with the intersection being computed inside ON .

Proof. Consider indeed the standard embedding SN ⊂ ON , obtained by permuting
the coordinate axes of RN , which in practice is given by the permutation matrices. The
determinant of a permutation σ ∈ SN is then its signature, and this gives the result. □

So long for applications of the symmetric groups. We will be back to this.

2c. Derangements

As a continuation of the above, the permutations having no fixed points at all are
called derangements, and the first question which appears, which is a classical question
in combinatorics, is that of counting these derangements.

For this purpose, we will need the inclusion-exclusion principle, which is as follows:

Theorem 2.16. We have the following formula,∣∣∣∣∣
(⋃

i

Ai

)c∣∣∣∣∣ = |A| −∑
i

|Ai|+
∑
i<j

|Ai ∩ Aj| −
∑
i<j<k

|Ai ∩ Aj ∩ Ak|+ . . .

called inclusion-exclusion principle.
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Proof. This is indeed quite clear, by thinking a bit, as follows:

(1) In order to count (∪iAi)c, we certainly have to start with |A|.

(2) Then, we obviously have to remove each |Ai|, and so remove
∑

i |Ai|.

(3) But then, we have to put back each |Ai ∩ Aj|, and so put back
∑

i<j |Ai ∩ Aj|.

(4) Then, we must remove each |Ai ∩ Aj ∩ Ak|, so remove
∑

i<j<k |Ai ∩ Aj ∩ Ak|.

...

(5) And so on, which leads to the formula in the statement. □

Now back to the derangements, we have the following key result:

Theorem 2.17. The probability for a random permutation σ ∈ SN to be a derangement
is given by the following formula:

P = 1− 1

1!
+

1

2!
− . . .+ (−1)N−1 1

(N − 1)!
+ (−1)N 1

N !

Thus we have the following asymptotic formula, in the N →∞ limit,

P ≃ 1

e

where e = 2.7182 . . . is the usual constant from analysis.

Proof. This is something very classical, which is best viewed by using the inclusion-
exclusion principle. Consider indeed the following sets:

SiN =
{
σ ∈ SN

∣∣∣σ(i) = i
}

The set of permutations having no fixed points is then:

XN =

(⋃
i

SiN

)c

In order to compute now the cardinality |XN |, consider as well the following sets,
depending on indices i1 < . . . < ik, obtained by taking intersections:

Si1...ikN = Si1N
⋂

. . .
⋂

SikN

Observe that we have the following formula:

Si1...ikN =
{
σ ∈ SN

∣∣∣σ(i1) = i1, . . . , σ(ik) = ik

}
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The inclusion-exclusion principle tells us that we have:

|XN |
= |SN | −

∑
i

|SiN |+
∑
i<j

|SiN ∩ S
j
N | − . . .+ (−1)N

∑
i1<...<iN

|Si1N ∪ . . . ∪ S
iN
N |

= |SN | −
∑
i

|SiN |+
∑
i<j

|SijN | − . . .+ (−1)N
∑

i1<...<iN

|Si1...iNN |

Thus, the probability that we are interested in is given by:

P =
1

N !

(
|SN | −

∑
i

|SiN |+
∑
i<j

|SijN | − . . .+ (−1)N
∑

i1<...<iN

|Si1...iNN |

)

=
1

N !

N∑
k=0

(−1)k
∑

i1<...<ik

|Si1...ikN |

=
1

N !

N∑
k=0

(−1)k
∑

i1<...<ik

(N − k)!

=
1

N !

N∑
k=0

(−1)k
(
N

k

)
(N − k)!

=
N∑
k=0

(−1)k

k!

= 1− 1

1!
+

1

2!
− . . .+ (−1)N−1 1

(N − 1)!
+ (−1)N 1

N !

Since at the end we have the standard expansion of 1
e
, we obtain the result. □

More generally now, we have the following result, improving the above:

Theorem 2.18. The probability for a random permutation σ ∈ SN to have exactly k
fixed points, with k ∈ N, is given by the following formula:

P =
1

k!

(
1− 1

1!
+

1

2!
− . . .+ (−1)N−1 1

(N − 1)!
+ (−1)N 1

N !

)
Thus we have the following approximation formula,

P ≃ 1

ek!
in the N →∞ limit.

Proof. We already know, from Theorem 2.17, that this formula holds at k = 0. In
the general case now, we have to count the permutations σ ∈ SN having exactly k points.
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Since having such a permutation amounts in choosing k points among 1, . . . , N , and then
permuting the N − k points left, without fixed points allowed, we have:

#
{
σ ∈ SN

∣∣∣χ(σ) = k
}

=

(
N

k

)
#
{
σ ∈ SN−k

∣∣∣χ(σ) = 0
}

=
N !

k!(N − k)!
#
{
σ ∈ SN−k

∣∣∣χ(σ) = 0
}

= N !× 1

k!
×

#
{
σ ∈ SN−k

∣∣∣χ(σ) = 0
}

(N − k)!
Now by dividing everything by N !, we obtain from this the following formula:

#
{
σ ∈ SN

∣∣∣χ(σ) = k
}

N !
=

1

k!
×

#
{
σ ∈ SN−k

∣∣∣χ(σ) = 0
}

(N − k)!
By using now the computation at k = 0, that we already have, from Theorem 2.17, it

follows that with N →∞ we have the following estimate:

P (χ = k) ≃ 1

k!
· P (χ = 0)

≃ 1

k!
· 1
e

Thus, we are led to the conclusion in the statement. □

In order to interpret what we found, let us recall the following key definition:

Definition 2.19. The Poisson law of parameter 1 is the following measure,

p1 =
1

e

∑
k≥0

δk
k!

and the Poisson law of parameter t > 0 is the following measure,

pt = e−t
∑
k≥0

tk

k!
δk

with the letter “p” standing for Poisson.

We are using here some simplified notations for these laws. Observe that our laws
have indeed mass 1, as they should, due to the following key formula:

et =
∑
k≥0

tk

k!

These laws appear a bit everywhere, in the discrete context, the reasons for this coming
from the Poisson Limit Theorem (PLT). In relation with permutations, we have:
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Theorem 2.20. The number of fixed points, viewed as random variable,

χ : SN → N

follows the Poisson law p1, in the N →∞ limit.

Proof. This is indeed a fancy reformulation of what we found in Theorem 2.18, by
using the probabilistic notions from Definition 2.19. □

As a natural question now, that you might have, can we recover as well the parametric
Poisson laws, pt with t > 0, via permutations? In answer, yes, the result being:

Theorem 2.21. Given a number t ∈ (0, 1], the number of fixed points of permutations
σ ∈ SN among {1, . . . , [tN ]}, viewed as random variable

χt : SN → N

follows the Poisson law pt, in the N →∞ limit.

Proof. As before in the proof of Theorem 2.17, we get by inclusion-exclusion:

P (χt = 0) =
1

N !

[tN ]∑
r=0

(−1)r
∑

k1<...<kr<[tN ]

|Sk1N ∩ . . . ∩ S
kr
N |

=
1

N !

[tN ]∑
r=0

(−1)r
(
[tN ]

r

)
(N − r)!

=

[tN ]∑
r=0

(−1)r

r!
· [tN ]!(N − r)!
N !([tN ]− r)!

Now with N →∞, we obtain from this the following estimate:

P (χt = 0) ≃
[tN ]∑
r=0

(−1)r

r!
· tr ≃ e−t

More generally, by counting the permutations σ ∈ SN having exactly r fixed points
among 1, . . . , [tN ], as in the proof of Theorem 2.18, we obtain:

P (χt = r) ≃ tr

r!et

Thus, we obtain in the limit a Poisson law of parameter t, as stated. □

Many other things can be said, as a continuation of this. We will be back to this, on
several occasions, in what follows, and notably in Part III of the present book.
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2d. Finite fields

Ready for some spectacular applications of finite group theory, and more specifically,
of the symmetric groups? Let us start with the following key definition:

Definition 2.22. A field is a set F with a sum operation + and a product operation
×, subject to the following conditions:

(1) a + b = b + a, a + (b + c) = (a + b) + c, there exists 0 ∈ F such that a + 0 = 0,
and any a ∈ F has an inverse −a ∈ F , satisfying a+ (−a) = 0.

(2) ab = ba, a(bc) = (ab)c, there exists 1 ∈ F such that a1 = a, and any a ̸= 0 has a
multiplicative inverse a−1 ∈ F , satisfying aa−1 = 1.

(3) The sum and product are compatible via a(b+ c) = ab+ ac.

Normally the simplest field is Q, but, purely mathematically speaking, this is not
exactly true, because, by a strange twist of fate, the numbers 0, 1, whose presence in a
field is mandatory, 0, 1 ∈ F , can form themselves a field, with addition as follows:

1 + 1 = 0

To be more precise, according to our field axioms, we certainly must have:

0 + 0 = 0× 0 = 0× 1 = 1× 0 = 0

0 + 1 = 1 + 0 = 1× 1 = 1

Thus, everything regarding the addition and multiplication of 0, 1 is uniquely deter-
mined, except for the value of 1 + 1. And here, you would say that we should normally
set 1 + 1 = 2, with 2 ̸= 0 being a new field element, but the point is that 1 + 1 = 0 is
something natural too, this being the addition modulo 2:

1 + 1 = 0(2)

And, what we get in this way is a field, denoted as follows:

F2 = {0, 1}

Let us summarize this finding, along with a bit more, obtained by suitably replacing
our 2, used for addition, with an arbitrary prime number p, as follows:

Theorem 2.23. Given a field F , define its characteristic p = char(F ) as being the
smallest p ∈ N such that the following happens, and as p = 0, if this never happens:

1 + . . .+ 1︸ ︷︷ ︸
p times

= 0

Then, assuming p > 0, this characteristic p must be a prime number, we have a field
embedding Fp ⊂ F , and q = |F | must be of the form q = pk, with k ∈ N.
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Proof. Very crowded statement that we have here, the idea being as follows:

(1) The fact that p > 0 must be prime comes by contradiction, by using:

(1 + . . .+ 1︸ ︷︷ ︸
a times

)× (1 + . . .+ 1︸ ︷︷ ︸
b times

) = 1 + . . .+ 1︸ ︷︷ ︸
ab times

Indeed, assuming that we have p = ab with a, b > 1, the above formula corresponds
to an equality of type AB = 0 with A,B ̸= 0 inside F , which is impossible.

(2) Back to the general case, F has a smallest subfield E ⊂ F , called prime field,
consisting of the various sums 1 + . . . + 1, and their quotients. In the case p = 0 we
obviously have E = Q. In the case p > 0 now, the multiplication formula in (1) shows
that the set S = {1 + . . .+ 1} is stable under taking quotients, and so E = S.

(3) Now with E = S in hand, we obviously have (E,+) = Zp, and since the multipli-
cation is given by the formula in (1), we conclude that we have E = Fp, as a field. Thus,
in the case p > 0, we have constructed an embedding Fp ⊂ F , as claimed.

(4) In the context of the above embedding Fp ⊂ F , we can say that F is a vector space
over Fp, and so we have |F | = pk, with k ∈ N being the dimension of this space. □

In order to further advance, in our understanding of the finite fields, let us start with
the following key theorem of Fermat, for the usual integers:

Theorem 2.24. We have the following congruence, for any prime p,

ap = a(p)

called Fermat’s little theorem.

Proof. The simplest way is to do this by recurrence on a ∈ N, as follows:

(a+ 1)p =

p∑
k=0

(
p

k

)
ak

= ap + 1(p)

= a+ 1(p)

Here we have used the fact that all non-trivial binomial coefficients
(
p
k

)
are multiples

of p, as shown by a close inspection of these binomial coeffients, given by:(
p

k

)
=
p(p− 1) . . . (p− k + 1)

k!

Thus, we have the result for any a ∈ N, and with the case p = 2 being trivial, we can
assume p ≥ 3, and here by using a→ −a we get it for any a ∈ Z, as desired. □

The Fermat theorem is particularly interesting when extended from the integers to
the arbitrary field case. In order to discuss this question, let us start with:
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Proposition 2.25. In a field F of characteristic p > 0 we have

(a+ b)p = ap + bp

for any two elements a, b ∈ F .

Proof. We have indeed the computation, exactly as in the proof of Fermat, by using
the fact that the non-trivial binomial coefficients are all multiples of p:

(a+ b)p =

p∑
k=0

(
p

k

)
akbp−k = ap + bp

Thus, we are led to the conclusion in the statement. □

Observe that we can iterate the Fermat formula, and we obtain (a+ b)r = ar + br for
any power r = ps. In particular we have, with q = |F |, the following formula:

(a+ b)q = aq + bq

But this is something quite interesting, showing that the following subset of F , which
is closed under multiplication, is closed under addition too, and so is a subfield:

E =
{
a ∈ F

∣∣∣aq = a
}

So, what is this subfield E ⊂ F? In the lack of examples, or general theory for subfields
E ⊂ F , we are a bit in the dark here, but it seems quite reasonable to conjecture that we
have E = F . Thus, our conjecture would be that we have the following formula, for any
a ∈ F , and with this being the field extension of the Fermat theorem itself:

aq = a

Now that we have our conjecture, let us think at a potential proof. And here, by
looking at the proof of the Fermat theorem, the recurrence method from there, based on
a→ a+ 1, cannot work as such, and must be suitably fine-tuned.

Thinking a bit, the recurrence from the proof of Fermat somehow rests on the fact
that the additive group Z is singly generated, by 1 ∈ Z. Thus, we need some sort of field
extension of this single generation result, and in the lack of something additive here, the
following theorem, which is something multiplicative, comes to the rescue:

Theorem 2.26. Given a field F , any finite subgroup of its multiplicative group

G ⊂ F − {0}
must be cyclic.

Proof. This can be done via some standard arithmetics, as follows:

(1) Let us pick an element g ∈ G of highest order, n = ord(g). Our claim, which will
easily prove the result, is that the order m = ord(h) of any h ∈ G satisfies m|n.



50 2. PERMUTATIONS

(2) In order to prove this claim, let d = (m,n), write d = am+ bn with a, b ∈ Z, and
set k = gahb. We have then the following computations:

km = gamhbm = gam = gd−bn = gd

kn = ganhbn = hbn = hd−am = hd

By using either of these formulae, say the first one, we obtain:

k[m,n] = kmn/d = (km)n/d = (gd)n/d = gn = 1

Thus ord(k)|[m,n], and our claim is that we have in fact ord(k) = [m,n].

(3) In order to prove this latter claim, assume first that we are in the case d = 1.
But here the result is clear, because the formulae in (2) read g = km, h = gn, and since
n = ord(g),m = ord(g) are prime to each other, we conclude that we have ord(k) = mn,
as desired. As for the general case, where d is arbitrary, this follows from this.

(4) Summarizing, we have proved our claim in (2). Now since the order n = ord(g)
was assumed to be maximal, we must have [m,n]|n, and so m|n. Thus, we have proved
our claim in (1), namely that the order m = ord(h) of any h ∈ G satisfies m|n.

(5) But with this claim in hand, the result follows. Indeed, since the polynomial xn−1
has all the elements h ∈ G as roots, its degree must satisfy n ≥ |G|. On the other hand,
from n = ord(g) with g ∈ G, we have n||G|. We therefore conclude that we have n = |G|,
which shows that G is indeed cyclic, generated by the element g ∈ G. □

We can now extend the Fermat theorem to the finite fields, as follows:

Theorem 2.27. Given a finite field F , with q = |F | we have

aq = a

for any a ∈ F .
Proof. According to Theorem 2.26 the multiplicative group F − {0} is cyclic, of

order q − 1. Thus, the following formula is satisfied, for any a ∈ F − {0}:
aq−1 = 1

Now by multiplying by a, we are led to the conclusion in the statement, with of course
the remark that the formula there trivially holds for a = 0. □

The Fermat polynomial Xp −X is something very useful, and its field generalization
Xq−X, with q = pk prime power, can be used in order to elucidate the structure of finite
fields. In order to discuss this question, let us start with a basic fact, as follows:

Proposition 2.28. Given a finite field F , we have

Xq −X =
∏
a∈F

(X − a)

with q = |F |.
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Proof. We know from the Fermat theorem above that we have aq = a, for any a ∈ F .
We conclude from this that all the elements a ∈ F are roots of the polynomial Xq −X,
and so this polynomial must factorize as in the statement. □

The continuation of the story is more complicated. We first have:

Theorem 2.29. Given a field extension E ⊂ F , we can talk about its Galois group G,
as the group of automorphisms of F fixing E. The intermediate fields

E ⊂ K ⊂ F

are then in correspondence with the subgroups H ⊂ G, with such a field K corresponding
to the subgroup H consisting of automorphisms g ∈ G fixing K.

Proof. This is something self-explanatory, and follows indeed from some algebra,
under suitable assumptions, in order for that algebra to properly apply. □

Getting now towards polynomials and their roots, we have here:

Theorem 2.30. Given a field F and a polynomial P ∈ F [X], we can talk about the
abstract splitting field of P , where this polynomial decomposes as:

P (X) = c
∏
i

(X − ai)

In particular, any field F has a certain algebraic closure F̄ , where all the polynomials
P ∈ F [X], and in fact all polynomials P ∈ F̄ [X] too, have roots.

Proof. This is again something self-explanatory, which follows from Theorem 2.29
and from some extra algebra, under suitable assumptions, in order for that extra algebra
to properly apply. Regarding the construction at the end, as main example here we have
R̄ = C. However, as an interesting fact, Q̄ ⊂ C is a proper subfield. □

Good news, with this in hand, we can now elucidate the structure of finite fields:

Theorem 2.31. For any prime power q = pk there is a unique field Fq having q
elements. At k = 1 this is the usual Fp. In general, this is the splitting field of:

P = Xq −X

Moreover, we can construct an explicit model for Fq, at q = p2 or higher, as

Fq = Fp[X]/(Q)

with Q ∈ Fp[X] being a suitable irreducible polynomial, of degree k.

Proof. There are several assertions here, the idea being as follows:
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(1) The first assertion, regarding the existence and uniqueness of Fq, follows from
Theorem 2.27 and Theorem 2.30. Indeed, we know from Theorem 2.27 that given a finite
field, |F | = q with k ∈ N, the Fermat polynomial P = Xq −X factorizes as follows:

Xq −X =
∏
a∈F

(X − a)

But this shows, via the general theory from Theorem 2.30, that our field F must be
the splitting field of P , and so is unique. As for the existence, this follows again from
Theorem 2.30, telling us that the splitting field always exists.

(2) In what regards now the modeling of Fq, at q = p there is nothing to do, because
we have our usual Fp here. At q = p2 and higher, by standard commutative algebra we
have an isomorphism as follows, whenever Q ∈ Fp[X] is taken irreducible:

Fq = Fp[X]/(Q)

(3) Regarding now the best choice of the irreducible polynomial Q ∈ Fp[X], providing
us with a good model for the finite field Fq, that we can use in practice, this question
depends on the value of q = pk, and many things can be said here. All in all, our models
are quite similar to C = R[i], with i being a formal number satisfying i2 = −1.

(4) To be more precise, at the simplest exponent, q = 4, to start with, we can use
Q = X2 + X + 1, with this being actually the unique possible choice of a degree 2
irreducible polynomial Q ∈ F2[X], and this leads to a model as follows:

F4 =
{
0, 1, a, a+ 1

∣∣∣ a2 = a+ 1
}

To be more precise here, we assume of course that the characteristic of our model is
p = 2, which reads x+ x = 0 for any x, and so determines the addition table. As for the
multiplication table, this is uniquely determined by a2 = −a− 1 = a+ 1.

(5) Next, at exponents of type q = p2 with p ≥ 3 prime, we can use Q = X2− r, with
r being a non-square modulo p, and with (p− 1)/2 choices here. We are led to:

Fp2 =
{
a+ bγ

∣∣∣ γ2 = r
}

Here, as before with F4, our formula is something self-explanatory. Observe the anal-
ogy with C = R[i], with i being a formal number satisfying i2 = −1.

(6) Finally, at q = pk with k ≥ 3 things become more complicated, but the main idea
remains the same. We have for instance models for F8, F27 using Q = X3−X − 1, and a
model for F16 using Q = X4 +X + 1. Many other things can be said here. □

As another application of the above, which motivated Galois, we have:
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Theorem 2.32. Unlike in degree N ≤ 4, there is no formula for the roots of polyno-
mials of degree N = 5 and higher, with the reason for this, coming from Galois theory,
being that S5 is not solvable. The simplest numeric example is P = X5 −X − 1.

Proof. This is something quite tricky, the idea being as follows:

(1) The first assertion, for generic polynomials, is due to Abel-Ruffini, but Galois
theory helps in better understanding this, and comes with a number of bonus points too,
namely the possibility of formulating a finer result, with Abel-Ruffini’s original “generic”,
which was something algebraic, being now replaced by an analytic “generic”, and also
with the possibility of dealing with concrete polynomials, such as P = X5 −X − 1.

(2) Regarding now the details of the Galois proof of the Abel-Ruffini theorem, assume
that the roots of a polynomial P ∈ F [X] can be computed by using iterated roots, a bit
as for the degree 2 equation, or for the degree 3 and 4 equations, via Cardano. Then,
algebrically speaking, this gives rise to a tower of fields as folows, with F0 = F , and each
Fi+1 being obtained from Fi by adding a root, Fi+1 = Fi(xi), with x

ni
i ∈ Fi:

F0 ⊂ F1 ⊂ . . . ⊂ Fk

(3) In order for Galois theory to apply well to this situation, we must make all the
extensions normal, which amounts in replacing each Fi+1 = Fi(xi) by its extension Ki(xi),
with Ki extending Fi by adding a ni-th root of unity. Thus, with this replacement, we
can assume that the tower in (2) in normal, meaning that all Galois groups are cyclic.

(4) Now by Galois theory, at the level of the corresponding Galois groups we obtain a
tower of groups as follows as follows, which is a resolution of the last group Gk, the Galois
group of P , in the sense of group theory, in the sense that all quotients are cyclic:

G1 ⊂ G2 ⊂ . . . ⊂ Gk

As a conclusion, Galois theory tells us that if the roots of a polynomial P ∈ F [X] can
be computed by using iterated roots, then its Galois group G = Gk must be solvable.

(5) In the generic case, the conclusion is that Galois theory tells us that, in order for
all polynomials of degree 5 to be solvable, via square roots, the group S5, which appears
there as Galois group, must be solvable, in the sense of group theory. But this is wrong,
because the alternating subgroup A5 ⊂ S5 is simple, and therefore not solvable.

(6) Finally, regarding the polynomial P = X5−X−1, some elementary computations
here, based on arithmetic over F2,F3, and involving various cycles of length 2, 3, 5, show
that its Galois group is S5. Thus, we have our counterexample.

(7) To be more precise, our polynomial factorizes over F2 as follows:

X5 −X − 1 = (X2 +X + 1)(X3 +X2 + 1)
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We deduce from this the existence of an element τσ ∈ G ⊂ S5, with τ ∈ S5 being a
transposition, and with σ ∈ S5 being a 3-cycle, disjoint from it. Thus, we have:

τ = (τσ)3 ∈ G
(8) On the other hand since P = X5 −X − 1 is irreducible over F5, we have as well

available a certain 5-cycle ρ ∈ G. Now since < τ, ρ >= S5, we conclude that the Galois
group of P is full, G = S5, and by (4) and (5) we have our counterexample.

(9) Finally, as mentioned in (1), all this shows as well that a random polynomial of
degree 5 or higher is not solvable by square roots, and with this being an elementary
consequence of the main result from (5), via some standard analysis arguments. □

2e. Exercises

Exercises:

Exercise 2.33.

Exercise 2.34.

Exercise 2.35.

Exercise 2.36.

Exercise 2.37.

Exercise 2.38.

Exercise 2.39.

Exercise 2.40.

Bonus exercise.



CHAPTER 3

Reflection groups

3a. Product operations

We discuss in this chapter more complicated symmetry groups. As a starting point
here, we have the following result regarding the dihedral group DN , from chapter 1:

Theorem 3.1. The dihedral group DN is the group having 2N elements, R1, . . . , RN

and S1, . . . , SN , called rotations and symmetries, which multiply as follows,

RkRl = Rk+l

RkSl = Sk+l
SkRl = Sk−l
SkSl = Rk−l

with all the indices being taken modulo N .

Proof. This is something that we know well from chapter 1, and we refer to the
material there for full explanations on this result, and for more about it. □

Observe now that DN has the same cardinality as EN = ZN ×Z2. We obviously don’t
have DN ≃ EN , because DN is not abelian, while EN is. So, our next goal will be that of
proving that DN appears by “twisting” EN . In order to do this, let us start with:

Proposition 3.2. The group EN = ZN × Z2 is the group having 2N elements,
r1, . . . , rN and s1, . . . , sN , which multiply according to the following rules,

rkrl = rk+l

rksl = sk+l
skrl = sk+l
sksl = rk+l

with all the indices being taken modulo N .

Proof. With the notation Z2 = {1, τ}, the elements of the product group EN =
ZN × Z2 can be labeled r1, . . . , rN and s1, . . . , sN , as follows:

rk = (k, 1) , sk = (k, τ)

These elements multiply then according to the formulae in the statement. Now since
a group is uniquely determined by its multiplication rules, this gives the result. □

55
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Let us compare now Theorem 3.1 and Proposition 3.2. In order to formally obtain
DN from EN , we must twist some of the multiplication rules of EN , namely:

skrl = sk+l → sk−l

sksl = rk+l → rk−l
Informally, this amounts in following the rule “τ switches the sign of what comes

afterwards”, and we are led in this way to the following definition:

Definition 3.3. Given two groups A,G, with an action A↷ G, the crossed product

P = G⋊ A

is the set G× A, with multiplication (g, a)(h, b) = (gha, ab).

It is routine to check that P is indeed a group. Observe that when the action is trivial,
ha = h for any a ∈ A and h ∈ H, we obtain the usual product G× A.

Now with this technology in hand, by getting back to the dihedral group DN , we can
improve Theorem 3.1, into a final result on the subject, as follows:

Theorem 3.4. We have a crossed product decomposition as follows,

DN = ZN ⋊ Z2

with Z2 = {1, τ} acting on ZN via switching signs, kτ = −k.

Proof. We have an action Z2 ↷ ZN given by the formula in the statement, namely
kτ = −k, so we can consider the corresponding crossed product group:

PN = ZN ⋊ Z2

In order to understand the structure of PN , we follow Proposition 3.2. The elements
of PN can indeed be labeled ρ1, . . . , ρN and σ1, . . . , σN , as follows:

ρk = (k, 1) , σk = (k, τ)

Now when computing the products of such elements, we basically obtain the formulae
in Proposition 3.2, perturbed as in Definition 3.3. To be more precise, we have:

ρkρl = ρk+l

ρkσl = σk+l
σkρl = σk+l
σkσl = ρk+l

But these are exactly the multiplication formulae for DN , from Theorem 3.1. Thus,
we have an isomorphism DN ≃ PN given by Rk → ρk and Sk → σk, as desired. □

More generally now, for the transitive graphs, that we are mostly interested in, the
point is that at very small values of the order, N = 2, . . . , 9, these always decompose as
products, via three main types of graph products, constructed as follows:
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Definition 3.5. Given two finite graphs X, Y , we can construct:

(1) The direct product X × Y has vertex set X × Y , and edges:

(i, α)− (j, β)⇐⇒ i− j, α− β

(2) The Cartesian product X □Y has vertex set X × Y , and edges:

(i, α)− (j, β)⇐⇒ i = j, α− β or i− j, α = β

(3) The lexicographic product X ◦ Y has vertex set X × Y , and edges:

(i, α)− (j, β)⇐⇒ α− β or α = β, i− j

We call these three products the standard products of graphs.

Several comments can be made here. First, the direct product X ×Y is the usual one
in a categorical sense, and we will leave clarifying this observation as an exercise. The
Cartesian product X □Y is quite natural too from a geometric perspective, for instance
because a product by a segment gives a prism. As for the lexicographic product X ◦ Y ,
this is something interesting too, obtained by putting a copy of X at each vertex of Y .

At the level of symmetry groups, several things can be said, and we first have:

Theorem 3.6. We have group embeddings as follows, for any graphs X, Y ,

G(X)×G(Y ) ⊂ G(X × Y )

G(X)×G(Y ) ⊂ G(X □Y )

G(X) ≀G(Y ) ⊂ G(X ◦ Y )

but these embeddings are not always isomorphisms.

Proof. The fact that we have indeed embeddings as above is clear from definitions.
As for the counterexamples, in each case, these are easy to construct as well, provided by
our study of small graphs, at N = 2, . . . , 11, and we will leave this as an exercise. □

The problem now is that of deciding when the embeddings in Theorem 3.6 are iso-
morphisms. In order to discusss this, we first have the following basic fact:

Theorem 3.7. Given a subgroup G ⊂ SN , regarded as matrix group via

G ⊂ SN ⊂ ON

the standard coordinates of the group elements, uij(g) = gij, are given by:

uij = χ
(
σ ∈ G

∣∣∣σ(j) = i
)

Moreover, these functions uij : G→ C generate the algebra C(G).
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Proof. Here the first assertion comes from the fact that the entries of the permutation
matrices σ ∈ SN ⊂ ON , acting as σ(ei) = eσ(i), are given by the following formula:

σij =

{
1 if σ(j) = i

0 otherwise

As for the second assertion, this comes from the Stone-Weierstrass theorem, because
the coordinate functions uij : G→ C obviously separate the group elements σ ∈ G. □

We are led in this way to the following definition:

Definition 3.8. The magic matrix associated to a permutation group G ⊂ SN is the
N ×N matrix of characteristic functions

uij = χ
(
σ ∈ G

∣∣∣σ(j) = i
)

with the name “magic” coming from the fact that, on each row and each column, these
characteristic functions sum up to 1.

The interest in this notion comes from the fact, that we know from Theorem 3.7, that
the entries of the magic matrix generate the algebra of functions on our group:

C(G) =< uij >

We will talk more in detail later about such matrices, and their correspondence with
the subgroups G ⊂ SN , and what can be done with it, in the general framework of
representation theory. However, for making our point, here is the general principle:

Principle 3.9. Everything that you can do with your group G ⊂ SN can be expressed
in terms of the magic matrix u = (uij), quite often with good results.

This principle comes from the above Stone-Weierstrass result, C(G) =< uij >. Indeed,
when coupled with some basic spectral theory, and more specifically with the Gelfand
theorem from operator algebras, this result tells us that our group G appears as the
spectrum of the algebra < uij >, therefore leading to the above principle.

As an illustration for all this, in relation with the graphs, we have:

Theorem 3.10. Given a subgroup G ⊂ SN , the transpose of its action map X×G→ X
on the set X = {1, . . . , N}, given by (i, σ)→ σ(i), is given by:

Φ(ei) =
∑
j

ej ⊗ uji

Also, in the case where we have a graph with N vertices, the action of G on the vertex
set X leaves invariant the edges precisely when we have

du = ud

with d being as usual the adjacency matrix of the graph.
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Proof. There are several things going on here, the idea being as follows:

(1) Given a subgroup G ⊂ SN , if we set X = {1, . . . , N}, we have indeed an action
map as follows, and with the reasons of using X×G instead of the perhaps more familiar
G×X being dictated by some quantum algebra, that we will do later in this book:

a : X ×G→ X , a(i, σ) = σ(i)

(2) Now by transposing this map, we obtain a morphism of algebras, as follows:

Φ : C(X)→ C(X)⊗ C(G) , Φ(f)(i, σ) = f(σ(i))

When evaluated on the Dirac masses, this map Φ is then given by:

Φ(ei)(j, σ) = ei(σ(j)) = δσ(j)i

Thus, in tensor product notation, we have the following formula, as desired:

Φ(ei)(j, σ) =

(∑
j

ej ⊗ uji

)
(j, σ)

(3) Regarding now the second assertion, observe first that we have:

(du)ij(σ) =
∑
k

dikukj(σ) =
∑
k

dikδσ(j)k = diσ(j)

On the other hand, we have as well the following formula:

(ud)ij(σ) =
∑
k

uik(σ)dkj =
∑
k

δσ(k)idkj = dσ−1(i)j

Thus du = ud reformulates as dij = dσ(i)σ(j), which gives the result. □

Back to graphs, we want to know when the embeddings in Theorem 3.6 are isomor-
phisms. In what regards the first two products, we have here the following result:

Theorem 3.11. Let X and Y be finite connected regular graphs. If their spectra {λ}
and {µ} do not contain 0 and satisfy{

λi/λj
}
∩
{
µk/µl

}
= {1}

then G(X × Y ) = G(X)×G(Y ). Also, if their spectra satisfy{
λi − λj

}
∩
{
µk − µl

}
= {0}

then G(X □Y ) = G(X)×G(Y ).

Proof. This is something quite standard, the idea being as follows:

(1) First, we know from Theorem 3.6 that we have embeddings as follows, valid for
any two graphs X, Y , and coming from definitions:

G(X)×G(Y ) ⊂ G(X × Y )

G(X)×G(Y ) ⊂ G(X □Y )
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(2) Now let λ1 be the valence of X. Since X is regular we have λ1 ∈ Sp(X), with 1 as
eigenvector, and since X is connected λ1 has multiplicity 1. Thus if P1 is the orthogonal
projection onto C1, the spectral decomposition of dX is of the following form:

dX = λ1P1 +
∑
i ̸=1

λiPi

We have a similar formula for the adjacency matrix dY , namely:

dY = µ1Q1 +
∑
j ̸=1

µjQj

(3) But this gives the following formulae for the graph products:

dX×Y =
∑
ij

(λiµj)Pi ⊗Qj

dX □Y =
∑
ij

(λi + µi)Pi ⊗Qj

Here the projections form partitions of unity, and the scalar are distinct, so these are
spectral decompositions. The coactions will commute with any of the spectral projections,
and so with both P1 ⊗ 1, 1 ⊗ Q1. In both cases the universal coaction v is the tensor
product of its restrictions to the images of P1 ⊗ 1, 1⊗Q1, which gives the result. □

Regarding now the lexicographic product, things here are more tricky. Let us first
recall that the lexicographic product of two graphs X ◦ Y is obtained by putting a copy
of X at each vertex of Y , the formula for the edges being as follows:

(i, α)− (j, β)⇐⇒ α− β or α = β, i− j

In what regards now the computation of the symmetry group, as before we must do
here some spectral theory, and we are led in this way to the following result:

Theorem 3.12. Let X, Y be regular graphs, with X connected. If their spectra {λi}
and {µj} satisfy the condition{

λ1 − λi
∣∣i ̸= 1

}
∩
{
− nµj

}
= ∅

where n and λ1 are the order and valence of X, then G(X ◦ Y ) = G(X) ≀G(Y ).

Proof. This is something quite tricky, the idea being as follows:

(1) First, we know from Theorem 3.6 that we have an embedding as follows, valid for
any two graphs X, Y , and coming from definitions:

G(X) ≀G(Y ) ⊂ G(X ◦ Y )
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(2) We denote by Pi, Qj the spectral projections corresponding to λi, µj. Since X is
connected we have P1 = I/n, and we obtain:

dX◦Y = dX ⊗ 1 + I⊗ dY

=

(∑
i

λiPi

)
⊗

(∑
j

Qj

)
+ (nP1)⊗

(∑
i

µjQj

)
=

∑
j

(λ1 + nµj)(P1 ⊗Qj) +
∑
i ̸=1

λi(Pi ⊗ 1)

In this formula the projections form a partition of unity and the scalars are distinct,
so this is the spectral decomposition of dX◦Y .

(3) Now let W be the universal magic matrix for X ◦Y . Then W must commute with
all spectral projections, and in particular:

[W,P1 ⊗Qj] = 0

Summing over j gives [W,P1 ⊗ 1] = 0, so 1 ⊗ C(Y ) is invariant under the coaction.
So, consider the restriction of W , which gives a coaction of G(X ◦ Y ) on 1⊗ C(Y ), that
we can denote as follows, with y being a certain magic unitary:

W (1⊗ ea) =
∑
b

1⊗ eb ⊗ yba

(4) On the other hand, according to our definition of W , we can write:

W (ei ⊗ 1) =
∑
jb

ej ⊗ eb ⊗ xbji

By multiplying by the previous relation, found in (3), we obtain:

W (ei ⊗ ea) =
∑
jb

ej ⊗ eb ⊗ ybaxbji

=
∑
jb

ej ⊗ eb ⊗ xbjiyba

But this shows that the coefficients of W are of the following form:

Wjb,ia = ybax
b
ji = xbjiyba

(5) In order to advance, consider now the following matrix:

xb = (xbij)
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Since the map W above is a morphism of algebras, each row of xb is a partition of
unity. Also, by using the antipode map S, which is transpose to g → g−1, we have:

S

(∑
j

xbji

)
= S

(∑
ja

xbjiyba

)

= S

(∑
ja

Wjb,ia

)
=

∑
ja

Wia,jb

=
∑
ja

xaijyab

=
∑
a

yab

= 1

(6) We check now that both xa, y commute with dX , dY . We have:

(dX◦Y )ia,jb = (dX)ijδab + (dY )ab

Thus the two products between W and dX◦Y are given by:

(WdX◦Y )ia,kc =
∑
j

Wia,jc(dX)jk +
∑
jb

Wia,jb(dY )bc

(dX◦YW )ia,kc =
∑
j

(dX)ijWja,kc +
∑
jb

(dY )abWjb,kc

(7) Now since the magic matrix W commutes by definition with dX◦Y , the terms on
the right in the above equations are equal, and by summing over c we get:∑

j

xaij(dX)jk +
∑
cb

yab(dY )bc =
∑
j

(dX)ijx
a
jk +

∑
cb

(dY )abybc

The second sums in both terms are equal to the valence of Y , so we get [xa, dX ] = 0.
Now once again from the formula coming from [W,dX◦Y ] = 0, we get:

[y, dY ] = 0

(8) Summing up, the coefficients of W are of the following form, where xb are magic
unitaries commuting with dX , and y is a magic unitary commuting with dY :

Wjb,ia = xbjiyba

But this gives a morphism C(G(X) ≀ G(Y )) → G(X ◦ Y ) mapping u
(b)
ji → xbji and

vba → yba, which is inverse to the morphism in (1), as desired. □
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3b. Hyperoctahedral groups

At a more advanced level now, we first have the hyperoctahedral group HN . This
group is something quite tricky, which appears as follows:

Definition 3.13. The hyperoctahedral group HN is the group of symmetries of the
unit cube in RN ,

• •

• •

• •

• •
viewed as a graph, or equivalently, as a metric space.

Here the equivalence at the end is clear from definitions, because any symmetry of the
cube graph must preserve the lengths of the edges, and so we have:

G(□graph) = G(□metric)

The hyperoctahedral group is a quite interesting group, whose definition, as a sym-
metry group, reminds that of the dihedral group DN . So, let us start our study in the
same way as we did for DN , with a discussion at small values of N ∈ N:

N = 1. Here the 1-cube is the segment, whose symmetries are the identity id, plus
the symmetry τ with respect to the middle of the segment:

• •

Thus, we obtain the group with 2 elements, which is a very familiar object:

H1 = D2 = S2 = Z2

N = 2. Here the 2-cube is the square, whose symmetries are the 4 rotations, of angles
0◦, 90◦, 180◦, 270◦, and the 4 symmetries with respect to the 4 symmetry axes, which are
the 2 diagonals, and the 2 segments joining the midpoints of opposite sides:

• •

• •
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Thus, we obtain a group with 8 elements, which again is a very familiar object:

H2 = D4 = Z4 ⋊ Z2

N = 3. Here the 3-cube is the usual cube in R3, pictured as follows:

• •

• •

• •

• •
However, in relation with the symmetries, the situation now is considerably more

complicated, because, thinking well, this cube has no less than 48 symmetries. Precisely
identifying and counting these symmetries is actually an excellent exercise.

All this looks quite complicated, but fortunately we can count HN , at N = 3, and at
higher N as well, by using some tricks, the result being as follows:

Theorem 3.14. We have the cardinality formula

|HN | = 2NN !

coming from the fact that HN is the symmetry group of the coordinate axes of RN .

Proof. This follows from some geometric thinking, as follows:

(1) Consider the standard cube in RN , centered at 0, and having as vertices the points
having coordinates ±1. With this picture in hand, it is clear that the symmetries of the
cube coincide with the symmetries of the N coordinate axes of RN .

(2) In order to count now these latter symmetries, a bit as we did for the dihedral
group, observe first that we have N ! permutations of these N coordinate axes.

(3) But each of these permutations of the coordinate axes σ ∈ SN can be further
“decorated” by a sign vector e ∈ {±1}N , consisting of the possible ±1 flips which can be
applied to each coordinate axis, at the arrival.

(4) And the point is that, obviously, we obtain in this way all the elements of HN .
Thus, we have the following formula, for the cardinality of HN :

|HN | = |SN | · |ZN2 | = N ! · 2N

Thus, we are led to the conclusions in the statement. □

As in the dihedral group case, it is possible to go beyond this, with a crossed product
decomposition, of quite special type, called wreath product decomposition:
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Theorem 3.15. We have a wreath product decomposition as follows,

HN = Z2 ≀ SN
which means by definition that we have a crossed product decomposition

HN = ZN2 ⋊ SN

with the permutations σ ∈ SN acting on the elements e ∈ ZN2 as follows:

σ(e1, . . . , ek) = (eσ(1), . . . , eσ(k))

In particular we have, as found before, the cardinality formula |HN | = 2NN !.

Proof. As explained in the proof of Theorem 3.14, the elements of HN can be iden-
tified with the pairs g = (e, σ) consisting of a permutation σ ∈ SN , and a sign vector
e ∈ ZN2 , so that at the level of the cardinalities, we have the following formula:

|HN | = |ZN2 × SN |
To be more precise, given an element g ∈ HN , the element σ ∈ SN is the corresponding

permutation of the N coordinate axes, regarded as unoriented lines in RN , and e ∈ ZN2
is the vector collecting the possible flips of these coordinate axes, at the arrival. Now
observe that the product formula for two such pairs g = (e, σ) is as follows, with the
permutations σ ∈ SN acting on the elements f ∈ ZN2 as in the statement:

(e, σ)(f, τ) = (efσ, στ)

Thus, we are precisely in the framework of the crossed products, as constructed in
chapter 1, and we conclude that we have a crossed product decomposition, as follows:

HN = ZN2 ⋊ SN

Thus, we are led to the conclusion in the statement, with the formula HN = Z2 ≀ SN
being just a shorthand for the decomposition HN = ZN2 ⋊ SN that we found. □

We will be back to the hyperoctahedral groups later on, on several occasions, with
further results about them, both of algebraic and of analytic type.

3c. Complex reflections

The groups that we studied so far are all groups of orthogonal matrices. When looking
into general unitary matrices, we led to the following interesting class of groups:

Definition 3.16. The complex reflection group Hs
N ⊂ UN , depending on parameters

N ∈ N , s ∈ N ∪ {∞}
is the group of permutation-type matrices with s-th roots of unity as entries,

Hs
N =MN(Zs ∪ {0}) ∩ UN

with the convention Z∞ = T, at s =∞.
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This construction is something quite tricky, that will keep as busy, for the remainder
of this section. As a first observation, at s = 1, 2 we obtain the following groups:

H1
N = SN , H2

N = HN

Another important particular case of the above construction is s = ∞, where we
obtain a group which is actually not finite, but is still compact, denoted as follows:

KN ⊂ UN

This latter group KN is called full complex reflection group, and will appear many
times, in what follows. Let us summarize now these observations, as follows:

Proposition 3.17. The complex reflection groups Hs
N ⊂ UN are as follows:

(1) At s = 1 we have H1
N = SN , having cardinality |SN | = N !.

(2) At s = 2 we have H2
N = HN , having cardinality |HN | = 2NN !.

(3) At s =∞ we have H∞
N = KN , having cardinality |KN | =∞.

Proof. This is clear indeed from the above discussion, and with the cardinality results
at s = 1 and s = 2 being something that we know well. □

Let us record as well the following result, which is elementary too:

Proposition 3.18. We have inclusions as follows, for any r, s:

r|s =⇒ Hr ⊂ Hs

In particular, we have inclusions SN ⊂ Hs
N ⊂ KN , for any s.

Proof. With the cyclic group Zs being viewed as group of the s-th roots of unity, in
the complex plane, as in Definition 3.16, we have inclusions as follows:

r|s =⇒ Zr ⊂ Zs
Thu, with the group Hs

N constructed as in Definition 3.16, for r|s we have:

Hr
N = MN(Zr ∪ {0}) ∩ UN
⊂ MN(Zs ∪ {0}) ∩ UN
= Hs

N

Finally, the last assertion is clear, and comes as well from this, since for any s:

1|s|∞
Thus, we are led to the conclusions in the statement. □

In general, in analogy with what we know about SN , HN , we first have:

Proposition 3.19. The number of elements of Hs
N with s ∈ N is:

|Hs
N | = sNN !

At s =∞, the group KN = H∞
N that we obtain is infinite.
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Proof. This is indeed clear from our definition of Hs
N , as a matrix group as above,

because there are N ! choices for a permutation-type matrix, and then sN choices for the
corresponding s-roots of unity, which must decorate the N nonzero entries. □

Once again in analogy with what we know at s = 1, 2, we have as well:

Theorem 3.20. We have a wreath product decomposition

Hs
N = ZNs ⋊ SN = Zs ≀ SN

with the permutations σ ∈ SN acting on the elements e ∈ ZNs as follows:

σ(e1, . . . , ek) = (eσ(1), . . . , eσ(k))

In particular we have, as found before, the cardinality formula |Hs
N | = sNN !.

Proof. As explained in the proof of Proposition 3.19, the elements of Hs
N can be

identified with the pairs g = (e, σ) consisting of a permutation σ ∈ SN , and a decorating
vector e ∈ ZNs , so that at the level of the cardinalities, we have:

|HN | = |ZNs × SN |
Now observe that the product formula for two such pairs g = (e, σ) is as follows, with

the permutations σ ∈ SN acting on the elements f ∈ ZNs as in the statement:

(e, σ)(f, τ) = (efσ, στ)

Thus, we are in the framework of the crossed products, and we obtain Hs
N = ZNs ⋊SN .

But this can be written, by definition, as Hs
N = Zs ≀ SN , and we are done. □

Finally, in relation with graph symmetries, the above groups appear as follows:

Theorem 3.21. The complex reflection group Hs
N appears as symmetry group,

Hs
N = G(NCs)

with NCs consisting of N disjoint copies of the oriented cycle Cs.

Proof. This is something elementary, the idea being as follows:

(1) Consider first the oriented cycle Cs, which looks as follows:

• // •
��

•

??

•
��

•

OO

•
��

•

__

•oo

It is then clear that the symmetry group of this graph is the cyclic group Zs.
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(2) In the general case now, where we have N ∈ N disjoint copies of the above cycle
Cs, we must suitably combine the corresponding N copies of the cyclic group Zs. But
this leads to the wreath product group Hs

N = Zs ≀ SN , as stated. □

3d. Reflection groups

Back to the rotation groups, in the real case, we have the following result:

Proposition 3.22. We have a decomposition as follows, with SO−1
N consisting by

definition of the orthogonal matrices having determinant −1:

ON = SON ∪ SO−1
N

Moreover, when N is odd the set SO−1
N is simply given by SO−1

N = −SON .

Proof. The first assertion is clear from definitions, because the determinant of an
orthogonal matrix must be ±1. The second assertion is clear too. Finally, when N is
even the situation is a bit more complicated, and requires complex numbers. □

In the complex case now, the result is simpler, as follows:

Proposition 3.23. We have a decomposition as follows, with SUd
N consisting by def-

inition of the unitary matrices having determinant d ∈ T:

ON =
⋃
d∈T

SUd
N

Moreover, the components are SUd
N = f · SUN , where f ∈ T is such that fN = d.

Proof. This is clear from definitions, and from the fact that the determinant of a
unitary matrix belongs to T, by extracting a suitable square root of the determinant. □

It is possible to use the decomposition in Proposition 3.23 in order to say more about
what happens in the real case, in the context of Proposition 3.22, but we will not get
into this. We will basically stop here with our study of ON , UN , and of their versions
SON , SUN . As a last result on the subject, however, let us record:

Theorem 3.24. We have subgroups of ON , UN constructed via the condition

(detU)d = 1

with d ∈ N ∪ {∞}, which generalize both ON , UN and SON , SUN .

Proof. This is indeed from definitions, and from the multiplicativity property of the
determinant. We will be back to these groups, which are quite specialized, later on. □

With this discussed, let us go back now to the complex reflection groups from the
previous section, and make a link with the material there. We first have:
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Theorem 3.25. The full complex reflection group KN ⊂ UN , given by

KN =MN(T ∪ {0}) ∩ UN
has a wreath product decomposition as follows,

KN = T ≀ SN
with SN acting on TN in the standard way, by permuting the factors.

Proof. This is something that we know from before, appearing as the s =∞ partic-
ular case of the results established there for the complex reflection groups Hs

N . □

By using the above full complex reflection group KN , we can talk in fact about the
reflection subgroup of any compact group G ⊂ UN , as follows:

Definition 3.26. Given G ⊂ UN , we define its reflection subgroup to be

K = G ∩KN

with the intersection taken inside UN .

This notion is something quite interesting, leading us into the question of understand-
ing what the subgroups of KN are. We have here the following construction:

Theorem 3.27. We have subgroups of the basic complex reflection groups,

Hsd
N ⊂ Hs

N

constructed via the following condition, with d ∈ N ∪ {∞},
(detU)d = 1

which generalize all the complex reflection groups that we have so far.

Proof. Here the first assertion is clear from definitions, and from the multiplicativity
of the determinant. As for the second assertion, this is rather a remark, coming from the
fact that the alternating group AN , which is the only finite group so far not fitting into
the series {Hs

N}, is indeed of this type, obtained from H1
N = SN by using d = 1. □

The point now is that, by a well-known and deep result in group theory, the com-
plex reflection groups consist of the series {Hsd

N } constructed above, and of a number of
exceptional groups, which can be fully classified. To be more precise, we have:

Theorem 3.28. The irreducible complex reflection groups are

Hsd
N =

{
U ∈ Hs

N

∣∣∣(detU)d = 1
}

along with 34 exceptional examples.

Proof. This is something quite advanced, and we refer here to the paper of Shephard
and Todd [87], and to the subsequent literature on the subject. □
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3e. Exercises

Exercises:

Exercise 3.29.

Exercise 3.30.

Exercise 3.31.

Exercise 3.32.

Exercise 3.33.

Exercise 3.34.

Exercise 3.35.

Exercise 3.36.

Bonus exercise.



CHAPTER 4

Abelian groups

4a. Group duals

We have seen so far that the basic examples of groups, even taken finite, lead us into
linear algebra, and more specifically, into the study of groups of unitary matrices:

G ⊂ UN

This is indeed a good idea, and we will systematically do this in this book, starting
from the next chapter. Before getting into this, however, let us go back to the definition
of the abstract groups, from the beginning of chapter 1, and make a last attempt of
developing some useful general theory there, without relation to linear algebra.

Basic common sense suggests looking into the case of the finite abelian groups, which
can only be far less complicated than the arbitrary finite groups. However, as somewhat
a surprise, this leads us again into linear algebra, due to the following fact:

Theorem 4.1. Let us call representation of a finite group G any morphism

u : G→ UN

to a unitary group. Then the 1-dimensional representations are the morphisms

χ : G→ T

called characters of G, and these characters form a finite abelian group Ĝ.

Proof. Regarding the first assertion, this is just some philosophy, making the link
with matrices and linear algebra, and coming from U1 = T. So, let us prove now the

second assertion, stating that the set of characters Ĝ = {χ : G → T} is a finite abelian
group. There are several things to be proved here, the idea being as follows:

(1) Our first claim is that Ĝ is a group, with the pointwise multiplication, namely:

(χρ)(g) = χ(g)ρ(g)

Indeed, if χ, ρ are characters, so is χρ, and so the multiplication is well-defined on Ĝ.
Regarding the unit, this is the trivial character, constructed as follows:

1 : G→ T , g → 1

71
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Finally, we have inverses, with the inverse of χ : G→ T being its conjugate:

χ̄ : G→ T , g → χ(g)

(2) Our next claim is that Ĝ is finite. Indeed, given a group element g ∈ G, we can
talk about its order, which is smallest integer k ∈ N such that gk = 1. Now assuming
that we have a character χ : G→ T, we have the following formula:

χ(g)k = 1

Thus χ(g) must be one of the k-th roots of unity, and in particular there are finitely
many choices for χ(g). Thus, there are finitely many choices for χ, as desired.

(3) Finally, the fact that Ĝ is abelian follows from definitions, because the pointwise
multiplication of functions, and in particular of characters, is commutative. □

The above construction is quite interesting, especially in the case where the starting
finite group G is abelian itself, and as an illustration here, we have:

Theorem 4.2. The character group operation G → Ĝ for the finite abelian groups,
called Pontrjagin duality, has the following properties:

(1) The dual of a cyclic group is the group itself, ẐN = ZN .
(2) The dual of a product is the product of duals, Ĝ×H = Ĝ× Ĥ.

(3) Any product of cyclic groups G = ZN1 × . . .× ZNk
is self-dual, G = Ĝ.

Proof. We have several things to be proved, the idea being as follows:

(1) A character χ : ZN → T is uniquely determined by its value z = χ(g) on the
standard generator g ∈ ZN . But this value must satisfy:

zN = 1

Thus we must have z ∈ ZN , with the cyclic group ZN being regarded this time as
being the group of N -th roots of unity. Now conversely, any N -th root of unity z ∈ ZN
defines a character χ : ZN → T, by setting, for any r ∈ N:

χ(gr) = zr

Thus we have an identification ẐN = ZN , as claimed.

(2) A character of a product of groups χ : G×H → T must satisfy:

χ(g, h) = χ [(g, 1)(1, h)] = χ(g, 1)χ(1, h)

Thus χ must appear as the product of its restrictions χ|G, χ|H , which must be both
characters, and this gives the identification in the statement.

(3) This follows from (1) and (2). Alternatively, any character χ : G→ T is uniquely
determined by its values χ(g1), . . . , χ(gk) on the standard generators of ZN1 , . . . ,ZNk

,

which must belong to ZN1 , . . . ,ZNk
⊂ T, and this gives Ĝ = G, as claimed. □
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4b. Some analysis

We can get some further insight into group duality by using some standard spectral
theory methods. Let us begin with the following basic fact from analysis:

Theorem 4.3. Given a Hilbert space H, consider the linear operators T : H → H,
and for each such operator define its norm by the following formula:

||T || = sup
||x||=1

||Tx||

The operators which are bounded, ||T || < ∞, form then a complex algebra B(H), which
is complete with respect to ||.||. When H comes with a basis {ei}i∈I , we have

B(H) ⊂ L(H) ⊂MI(C)

where L(H) is the algebra of all linear operators T : H → H, and L(H) ⊂ MI(C) is the
correspondence T →M obtained via the usual linear algebra formulae, namely:

T (x) =Mx , Mij =< Tej, ei >

In infinite dimensions, none of the above two inclusions is an equality.

Proof. This is something straightforward, the idea being as follows:

(1) The fact that we have indeed an algebra, satisfying the product condition in the
statement, follows from the following estimates, which are all elementary:

||S + T || ≤ ||S||+ ||T || , ||λT || = |λ| · ||T || , ||ST || ≤ ||S|| · ||T ||

(2) Regarding now the completness assertion, if {Tn} ⊂ B(H) is Cauchy then {Tnx}
is Cauchy for any x ∈ H, so we can define the limit T = limn→∞ Tn by setting:

Tx = lim
n→∞

Tnx

Let us first check that the application x→ Tx is linear. We have:

T (x+ y) = lim
n→∞

Tn(x+ y)

= lim
n→∞

Tn(x) + Tn(y)

= lim
n→∞

Tn(x) + lim
n→∞

Tn(y)

= T (x) + T (y)

Similarly, we have T (λx) = λT (x), and we conclude that T ∈ L(H).
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(3) With this done, it remains to prove now that we have T ∈ B(H), and that Tn → T
in norm. For this purpose, observe that we have:

||Tn − Tm|| ≤ ε , ∀n,m ≥ N =⇒ ||Tnx− Tmx|| ≤ ε , ∀||x|| = 1 , ∀n,m ≥ N

=⇒ ||Tnx− Tx|| ≤ ε , ∀||x|| = 1 , ∀n ≥ N

=⇒ ||TNx− Tx|| ≤ ε , ∀||x|| = 1

=⇒ ||TN − T || ≤ ε

But this gives both T ∈ B(H), and TN → T in norm, and we are done.

(4) Regarding the embeddings, the correspondence T →M in the statement is indeed
linear, and its kernel is {0}, so we have indeed an embedding as follows, as claimed:

L(H) ⊂MI(C)

In finite dimensions we have an isomorphism, because any M ∈ MN(C) determines
an operator T : CN → CN , given by < Tej, ei >= Mij. However, in infinite dimensions,
we have matrices not producing operators, as for instance the all-one matrix.

(5) As for the examples of linear operators which are not bounded, these are more
complicated, coming from logic, and we will not really need them in what follows. □

Summarizing, the correct infinite analogue of the algebra MN(C) is not the infinite
matrix algebra MI(C), which is actually not even an algebra, when |I| = ∞, but rather
the algebra B(H) of bounded linear operators T : H → H on a Hilbert space H.

Moving on, everything advanced that you know about MN(C), be that projections,
rotations, other special matrices, or spectral theorems, uses adjoint matrices. So, let us
talk now about adjoint operators, in our framework. The result here is as follows:

Theorem 4.4. Any bounded operator T ∈ B(H) has an adjoint T ∗ ∈ B(H), given by
the following formula, valid for any two vectors x, y ∈ H:

< Tx, y >=< x, T ∗y >

The operation T → T ∗ is then an isometric involution of B(H), and we have:

||TT ∗|| = ||T ||2

When H comes with an orthonormal basis {ei}i∈I , we have (T ∗)ij = T ji.

Proof. As before, all this is standard material. Given an operator T ∈ B(H), let us
pick a vector y ∈ H, and consider the following linear form:

x→< Tx, y >
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This linear form must then come from a scalar product with a vector T ∗y, as in the
statement, and we obtain in this way a definition for T ∗, namely y → T ∗y. It is then
routine to check that we have indeed T ∗ ∈ B(H), with this coming from:

||T ∗|| = ||T ||
The fact that T → T ∗ is then an involution of B(H) is routine too. Regarding now

the formula ||TT ∗|| = ||T ||2, in one sense we have the following estimate:

||TT ∗|| ≤ ||T || · ||T ∗|| = ||T ||2

In the other sense, we have the following estimate:

||T ||2 = sup
||x||=1

| < Tx, Tx > |

= sup
||x||=1

| < x, T ∗Tx > |

≤ ||T ∗T ||
Now by replacing in this formula T → T ∗ we obtain ||T ||2 ≤ ||TT ∗||, as desired.

Finally, (T ∗)ij = T ji is clear from the formula Tij =< Tej, ei >, applied to T, T ∗. □

Getting now back to algebra, in view of the above, let us formulate:

Definition 4.5. An abstract operator algebra, or C∗-algebra, is a complex algebra A
having a norm ||.|| and an involution ∗, subject to the following conditions:

(1) A is closed with respect to the norm.
(2) We have ||aa∗|| = ||a||2, for any a ∈ A.

As a basic example, the algebraMN(C) of the complex N×N matrices is a C∗-algebra,
with the usual matrix norm and involution of matrices, namely:

||M || = sup
||x||=1

||Mx|| , (M∗)ij = M̄ji

More generally, we know from Theorem 4.3 and Theorem 4.4 that the algebra B(H) of
the bounded linear operators T : H → H on a complex Hilbert space H is a C∗-algebra,
with the usual norm and involution of the linear operators, namely:

||T || = sup
||x||=1

||Tx|| , (T ∗)ij = T̄ji

But, let us stay for the moment with the usual matrices. Any ∗-subalgebra A ⊂MN(C)
is automatically closed, so is a C∗-algebra. In fact, we have the following result:

Theorem 4.6. The finite dimensional C∗-algebras are exactly the algebras

A =Mn1(C)⊕ . . .⊕Mnk
(C)

with norm ||(a1, . . . , ak)|| = supi ||ai||, and involution (a1, . . . , ak)
∗ = (a∗1, . . . , a

∗
k).
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Proof. This is something very standard. Consider indeed an arbitrary ∗-algebra
of the N × N matrices, A ⊂ MN(C). Let us first look at the center of this algebra,
Z(A) = A ∩ A′. This center, viewed as an algebra, is then of the following form:

Z(A) ≃ Ck

Consider now the standard basis e1, . . . , ek ∈ Ck, and let p1, . . . , pk ∈ Z(A) be the
images of these vectors via the above identification. In other words, these elements
p1, . . . , pk ∈ A are central minimal projections, summing up to 1:

p1 + . . .+ pk = 1

The idea is then that this partition of the unity will eventually lead to the block
decomposition of A, as in the statement. We prove this in 4 steps, as follows:

Step 1. We first construct the matrix blocks, our claim here being that each of the
following linear subspaces of A are non-unital ∗-subalgebras of A:

Ai = piApi

But this is clear, with the fact that each Ai is closed under the various non-unital
∗-subalgebra operations coming from the projection equations p2i = p∗i = pi.

Step 2. We prove now that the above algebras Ai ⊂ A are in a direct sum position,
in the sense that we have a non-unital ∗-algebra sum decomposition, as follows:

A = A1 ⊕ . . .⊕ Ak
As with any direct sum question, we have two things to be proved here. First, by

using the formula p1+ . . .+pk = 1 and the projection equations p2i = p∗i = pi, we conclude
that we have the needed generation property, namely:

A1 + . . .+ Ak = A

As for the fact that the sum is indeed direct, this follows as well from the formula
p1 + . . .+ pk = 1, and from the projection equations p2i = p∗i = pi.

Step 3. Our claim now, which will finish the proof, is that each of the ∗-subalgebras
Ai = piApi constructed above is in fact a full matrix algebra. To be more precise, with
ni = rank(pi), our claim is that we have isomorphisms, as follows:

Ai ≃Mni
(C)

In order to prove this claim, recall that the projections pi ∈ A were chosen central
and minimal. Thus, the center of each of the algebras Ai reduces to the scalars:

Z(Ai) = C

But this shows, either via a direct computation, or via the bicommutant theorem, that
the each of the algebras Ai is a full matrix algebra, as claimed.
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Step 4. We can now obtain the result, by putting together what we have. Indeed, by
using the results from Step 2 and Step 3, we obtain an isomorphism as follows:

A ≃Mn1(C)⊕ . . .⊕Mnk
(C)

In addition to this, a careful look at the isomorphisms established in Step 3 shows
that at the global level, of the algebra A itself, the above isomorphism simply comes by
twisting the following standard multimatrix embedding, discussed in the beginning of the
proof, (1) above, by a certain unitary matrix U ∈ UN :

Mn1(C)⊕ . . .⊕Mnk
(C) ⊂MN(C)

Now by putting everything together, we obtain the result. □

Let us develop now the theory of the arbitrary C∗-algebras. We first have:

Theorem 4.7. Given an element a ∈ A of a C∗-algebra, define its spectrum as:

σ(a) =
{
λ ∈ C

∣∣∣a− λ /∈ A−1
}

The following spectral theory results hold, exactly as in the A = B(H) case:

(1) We have σ(ab) ∪ {0} = σ(ba) ∪ {0}.
(2) We have σ(f(a)) = f(σ(a)), for any f ∈ C(X) having poles outside σ(a).
(3) The spectrum σ(a) is compact, non-empty, and contained in D0(||a||).
(4) The spectra of unitaries (u∗ = u−1) and self-adjoints (a = a∗) are on T,R.
(5) The spectral radius of normal elements (aa∗ = a∗a) is given by ρ(a) = ||a||.

In addition, assuming a ∈ A ⊂ B, the spectra of a with respect to A and to B coincide.

Proof. Here the assertions (1-5), which are formulated a bit informally, are well-
known for the full operator algebra A = B(H), and the proof in general is similar:

(1) Assuming that 1− ab is invertible, with inverse c, we have abc = cab = c− 1, and
it follows that 1 − ba is invertible too, with inverse 1 + bca. Thus σ(ab), σ(ba) agree on
1 ∈ C, and by linearity, it follows that σ(ab), σ(ba) agree on any point λ ∈ C∗.

(2) The formula σ(f(a)) = f(σ(a)) is clear for polynomials, f ∈ C[X], by factorizing
f − λ, with λ ∈ C. Then, the extension to the rational functions is straightforward,
because P (a)/Q(a)− λ is invertible precisely when P (a)− λQ(a) is.

(3) By using 1/(1− b) = 1+ b+ b2 + . . . for ||b|| < 1 we obtain that a− λ is invertible
for |λ| > ||a||, and so σ(a) ⊂ D0(||a||). It is also clear that σ(a) is closed, so what we
have is a compact set. Finally, assuming σ(a) = ∅ the function f(λ) = φ((a − λ)−1) is
well-defined, for any φ ∈ A∗, and by Liouville we get f = 0, contradiction.

(4) Assuming u∗ = u−1 we have ||u|| = 1, and so σ(u) ⊂ D0(1). But with f(z) = z−1

we obtain via (2) that we have as well σ(u) ⊂ f(D0(1)), and this gives σ(u) ⊂ T. As
for the result regarding the self-adjoints, this can be obtained from the result for the
unitaries, by using (2) with functions of type f(z) = (z + it)/(z − it), with t ∈ R.
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(5) It is routine to check, by integrating quantities of type zn/(z− a) over circles cen-
tered at the origin, and estimating, that the spectral radius is given by ρ(a) = lim ||an||1/n.
But in the self-adjoint case, a = a∗, this gives ρ(a) = ||a||, by using exponents of type
n = 2k, and then the extension to the general normal case is straightforward.

(6) Regarding now the last assertion, the inclusion σB(a) ⊂ σA(a) is clear. For the
converse, assume a− λ ∈ B−1, and set b = (a− λ)∗(a− λ). We have then:

σA(b)− σB(b) =
{
µ ∈ C− σB(b)

∣∣∣(b− µ)−1 ∈ B − A
}

Thus this difference in an open subset of C. On the other hand b being self-adjoint,
its two spectra are both real, and so is their difference. Thus the two spectra of b are
equal, and in particular b is invertible in A, and so a− λ ∈ A−1, as desired. □

With these ingredients, we can now a prove a key result, as follows:

Theorem 4.8 (Gelfand). If X is a compact space, the algebra C(X) of continuous
functions on it f : X → C is a C∗-algebra, with usual norm and involution, namely:

||f || = sup
x∈X
|f(x)| , f ∗(x) = f(x)

Conversely, any commutative C∗-algebra is of this form, A = C(X), with

X =
{
χ : A→ C , normed algebra character

}
with topology making continuous the evaluation maps eva : χ→ χ(a).

Proof. There are several things going on here, the idea being as follows:

(1) The first assertion is clear from definitions. Observe that we have indeed:

||ff ∗|| = sup
x∈X
|f(x)|2 = ||f ||2

Observe also that the algebra C(X) is commutative, because fg = gf .

(2) Conversely, given a commutative C∗-algebra A, let us define X as in the statement.
Then X is compact, and a→ eva is a morphism of algebras, as follows:

ev : A→ C(X)

(3) We first prove that ev is involutive. We use the following formula, which is similar
to the z = Re(z) + iIm(z) decomposition formula for usual complex numbers:

a =
a+ a∗

2
+ i · a− a

∗

2i

Thus it is enough to prove eva∗ = ev∗a for the self-adjoint elements a. But this is the
same as proving that a = a∗ implies that eva is a real function, which is in turn true, by
Theorem 4.7, because eva(χ) = χ(a) is an element of σ(a), contained in R.
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(4) Since A is commutative, each element is normal, so ev is isometric:

||eva|| = ρ(a) = ||a||
It remains to prove that ev is surjective. But this follows from the Stone-Weierstrass

theorem, because ev(A) is a closed subalgebra of C(X), which separates the points. □

Now back to groups and duality, we are led in this way to the following result:

Theorem 4.9. Given a finite abelian group G, we have an isomorphism of commuta-
tive C∗-algebras as follows, obtained by linearizing/delinearizing the characters:

C[G] ≃ C(Ĝ)

Also, the Pontrjagin duality is indeed a duality, in the sense that we have G =
̂̂
G.

Proof. We have several assertions here, the idea being as follows:

(1) Given a finite abelian group G, consider indeed the group algebra C[G], having as
elements the formal combinations of elements of G, and with involution given by:

g∗ = g−1

This ∗-algebra is then a C∗-algebra, with norm coming by acting C[G] on itself, and
so by the Gelfand theorem we obtain an isomorphism as follows:

C[G] = C(X)

To be more precise, X is the space of the ∗-algebra characters as follows:

χ : C[G]→ C

The point now is that by delinearizing, such a ∗-algebra character must come from a
usual group character of G, obtained by restricting to G, as follows:

χ : G→ T

Thus we have X = Ĝ, and we are led to the isomorphism in the statement, namely:

C[G] ≃ C(Ĝ)

(2) In order to prove now the second assertion, consider the following group morphism,
which is available for any finite group G, not necessarily abelian:

G→ ̂̂
G , g → (χ→ χ(g))

Our claim is that in the case where G is abelian, this is an isomorphism. As a first
observation, we only need to prove that this morphism is injective or surjective, because
the cardinalities match, according to the following formula, coming from (1):

|G| = dimC[G] = dimC(Ĝ) = |Ĝ|
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(3) We will prove that the above morphism is injective. For this purpose, let us
compute its kernel. We know that g ∈ G is in the kernel when the following happens:

χ(g) = 1 , ∀χ ∈ Ĝ

But this means precisely that g ∈ C[G] is mapped, via the isomorphism C[G] ≃ C(Ĝ)

constructed in (1), to the constant function 1 ∈ C(Ĝ), and now by getting back to C[G]
via our isomorphism, this shows that we have indeed g = 1, which ends the proof. □

4c. Sylow theorems

Sylow theorems.

4d. Abelian groups

With the above ingredients in hand, we can go back to the finite abelian groups. We
have the following result, which is something remarkable, refining all the above:

Theorem 4.10. The finite abelian groups are the following groups,

G = ZN1 × . . .× ZNk

and these groups are all self-dual, G = Ĝ.

Proof. This is something quite tricky, the idea being as follows:

(1) In order to prove our result, assume that G is finite and abelian. For any prime
number p ∈ N, let us define Gp ⊂ G to be the subset of elements having as order a power
of p. Equivalently, this subset Gp ⊂ G can be defined as follows:

Gp =
{
g ∈ G

∣∣∣∃k ∈ N, gpk = 1
}

(2) It is then routine to check, based on definitions, that each Gp is a subgroup. Our
claim now is that we have a direct product decomposition as follows:

G =
∏
p

Gp

(3) Indeed, by using the fact that our group G is abelian, we have a morphism as
follows, with the order of the factors when computing

∏
p gp being irrelevant:∏

p

Gp → G , (gp)→
∏
p

gp

Moreover, it is routine to check that this morphism is both injective and surjective,
via some simple manipulations, so we have our group decomposition, as in (2).
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(4) Thus, we are left with proving that each component Gp decomposes as a product
of cyclic groups, having as orders powers of p, as follows:

Gp = Zpr1 × . . .× Zprs
But this is something that can be checked by recurrence on |Gp|, via some routine

computations, and so we are led to the conclusion in the statement.

(5) Finally, the fact that the finite abelian groups are self-dual, G = Ĝ, follows from
the structure result that we just proved, and from Theorem 4.2 (3). □

So long for finite abelian groups. All the above was of course a bit quick, and for further
details on all this, and especially on Theorem 4.10, which is something non-trivial, and
for some generalizations as well, to the case of suitable non-finite abelian groups, we refer
to the algebra book of Lang [64], where all this material is carefully explained.

We can feel that all this is related to Fourier analysis, and we have:

Fact 4.11. The following happen, regarding the locally compact abelian groups:

(1) What we did in the finite case, namely group characters, and construction and
basic properties of the dual, can be extended to them.

(2) As basic examples of this, besides what we have in the finite case, and notably

ẐN = ZN , we have Ẑ = T, T̂ = Z, and also R̂ = R.
(3) With some care for analytic aspects, C∗(G) ≃ C(Ĝ) remains true in this setting,

and in the case G = R, this isomorphism is the Fourier transform.

Obviously, all this is a bit heavy, but you get the point, we have 3 types of Fourier
analysis in life, namely the “standard” one that we previously learned in this chapter,
corresponding to G = R, then another one that we skipped, and that we encourage
you to learn, called the “Fourier series” one, corresponding to G = Z,T, and finally the
“discrete” one that we started to learn, over G = ZN and other finite abelian groups.

In practice, all this is a bit complicated, and back now to the finite abelian groups, let
us work out a softer version of all the above, which is what is really needed, in practice,
when doing discrete Fourier analysis. For G = ZN , what we need is:

Definition 4.12. The Fourier matrix FN is the following matrix, with w = e2πi/N :

FN =


1 1 1 . . . 1
1 w w2 . . . wN−1

1 w2 w4 . . . w2(N−1)

...
...

...
...

1 wN−1 w2(N−1) . . . w(N−1)2


That is, FN = (wij)ij, with indices i, j ∈ {0, 1, . . . , N − 1}, taken modulo N .
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Observe that this matrix is Hadamard, in the sense that its entries are on the unit
circle, and the rows are pairwise orthogonal, the result here being as follows:

Theorem 4.13. The Fourier matrix, constructed as above,

FN = (wij) , w = e2πi/N

is a complex Hadamard matrix, in dephased form.

Proof. By using the standard fact that the averages of complex numbers correspond
to barycenters, we conclude that the scalar products between the rows of FN are:

< Ra, Rb > =
∑
j

wajw−bj

=
∑
j

w(a−b)j

= Nδab

Thus FN is indeed a complex Hadamard matrix. As for the fact that FN is dephased,
this follows from our convention i, j = 0, 1, . . . , N − 1, which is there for this. □

More generally now, we have the following result:

Theorem 4.14. Given a finite abelian group G, with dual group Ĝ = {χ : G → T},
consider the corresponding Fourier coupling, namely:

FG : G× Ĝ→ T , (i, χ)→ χ(i)

(1) Via the standard isomorphism G ≃ Ĝ, this Fourier coupling can be regarded as a
square matrix, FG ∈MG(T), which is a complex Hadamard matrix.

(2) In the case of the cyclic group G = ZN we obtain in this way, via the standard
identification ZN = {1, . . . , N}, the Fourier matrix FN .

(3) In general, when using a decomposition G = ZN1 × . . .× ZNk
, the corresponding

Fourier matrix is given by FG = FN1 ⊗ . . .⊗ FNk
.

Proof. This follows indeed by using the above finite abelian group theory:

(1) With the identification G ≃ Ĝ made our matrix is given by (FG)iχ = χ(i), and the
scalar products between the rows are computed as follows:

< Ri, Rj >=
∑
χ

χ(i)χ(j) =
∑
χ

χ(i− j) = |G| · δij

Thus, we obtain indeed a complex Hadamard matrix.

(2) This follows from the well-known and elementary fact that, via the identifications

ZN = ẐN = {1, . . . , N}, the Fourier coupling here is as follows, with w = e2πi/N :

(i, j)→ wij
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(3) We use here the following formula that we know, for the duals of products:

Ĥ ×K = Ĥ × K̂
At the level of the corresponding Fourier couplings, we obtain from this:

FH×K = FH ⊗ FK
Now by decomposing G into cyclic groups, as in the statement, and by using (2) for

the cyclic components, we obtain the formula in the statement. □

As a nice application of discrete Fourier analysis, we have:

Theorem 4.15. For a matrix M ∈MN(C), the following are equivalent:

(1) M is circulant, Mij = ξj−i, for a certain vector ξ ∈ CN .
(2) M is Fourier-diagonal, M = FNQF

∗
N , for a certain diagonal matrix Q.

Moreover, if these conditions hold, then ξ = F ∗
Nq, where q = (Q11, . . . , QNN).

Proof. This follows from some computations with roots of unity, as follows:

(1) =⇒ (2) Assuming Mij = ξj−i, the matrix Q = F ∗
NMFN is indeed diagonal, as

shown by the following computation:

Qij =
∑
kl

wjl−ikξl−k

=
∑
kr

wj(k+r)−ikξr

= Nδij
∑
r

wjrξr

(2) =⇒ (1) Assuming Q = diag(q1, . . . , qN), the matrix M = FNQF
∗
N is indeed

circulant, as shown by the following computation:

Mij =
∑
k

wikQkkw
−jk =

∑
k

w(i−j)kqk

Indeed, since the last term depends only on j − i, we have Mij = ξj−i, with ξi =∑
k w

−ikqk = (F ∗
Nq)i. Thus, we are led to the conclusions in the statement. □

As an illustration for the above result, the all-one matrix diagonalizes as follows:

Theorem 4.16. The flat matrix IN diagonalizes as follows,
1 . . . . . . 1
...

...
...

...
1 . . . . . . 1

 =
1

N
FN


N

0
. . .

0

F ∗
N

with FN = (wij)ij being the Fourier matrix.



84 4. ABELIAN GROUPS

Proof. This follows from Theorem 4.15, but let us see as well how the direct proof
goes. We must find the 0-eigenvectors of IN , which amounts in solving:

x0 + . . .+ xN−1 = 0

For this purpose, we use the root of unity w = e2πi/N , and more specifically, the
following standard formula, coming by computing a barycenter, in the obvious way:

N−1∑
i=0

wij = Nδj0

This formula shows that for j = 1, . . . , N −1, the vector vj = (wij)i is a 0-eigenvector.
Moreover, these vectors are pairwise orthogonal, because we have:

< vj, vk >=
∑
i

wij−ik = Nδjk

Thus, we have our basis {v1, . . . , vN−1} of 0-eigenvectors, and since the N -eigenvector
is ξ = v0, the passage matrix P that we are looking is given by:

P =
[
v0 v1 . . . vN−1

]
But this is precisely the Fourier matrix, P = FN . In order to finish now, observe that

the above computation of < vi, vj > shows that FN/
√
N is unitary, and so:

F−1
N =

1

N
F ∗
N

Thus, we are led to the diagonalization formula in the statement. □

There are many other interesting illustrations of Theorem 4.15, the general idea being
that, in everything regarding the circulant matrices, we must use Fourier.

Next, we have the following result, which is standard in discrete Fourier analysis,
extending what we previously knew from the above, in the circulant case:

Theorem 4.17. For a matrix A ∈MN(C), the following are equivalent,

(1) A is G-invariant, Aij = ξj−i, for a certain vector ξ ∈ CN ,
(2) A is Fourier-diagonal, A = FGQF

∗
G, for a certain diagonal matrix Q,

and if so, ξ = F ∗
Gq, where q ∈ CN is the vector formed by the diagonal entries of Q.

Proof. This is something that we know from the above in the cyclic case, G = ZN ,
and the proof in general is similar, by using matrix indices as follows:

i, j ∈ G
To be more precise, in order to get started, with our generalization, let us decompose

our finite abelian group G as a product of cyclic groups, as follows:

G = ZN1 × . . .× ZNs
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The corresponding Fourier matrix decomposes then as well, as follows:

FG = FN1 ⊗ . . .⊗ FNs

Now if we set wi = e2πi/Ni , this means that we have the following formula:

(FG)ij = wi1j11 . . . wisjss

We can now prove the equivalence in the statement, as follows:

(1) =⇒ (2) Assuming Aij = ξj−i, the matrix Q = F ∗
GAFG is diagonal, as shown by

the following computation, with all indices being group elements:

Qij =
∑
kl

(FG)kiAkl(FG)lj

=
∑
kl

w−k1i1
1 . . . w−ksis

s · ξl−k · wl1j11 . . . wlsjss

=
∑
kl

wl1j1−k1i11 . . . wlsjs−ksiss ξl−k

=
∑
kr

w
(k1+r1)j1−k1i1
1 . . . w(ks+rs)js−ksis

s ξr

=
∑
r

wr1j11 . . . wrsjss ξr
∑
k

w
k1(j1−i1)
1 . . . wks(js−is)s

=
∑
r

wr1j11 . . . wrsjss ξr ·N1δi1j1 . . . Nsδisjs

= Nδij
∑
r

(FG)jrξr

(2) =⇒ (1) Assuming Q = diag(q1, . . . , qN), the matrix A = FGQF
∗
G is G-invariant,

as shown by the following computation, again with all indices being group elements:

Aij =
∑
kl

(FG)ikQkk(FG)kj

=
∑
k

wi1k11 . . . wiskss · qk · w−j1k1
1 . . . w−jsks

s

=
∑
k

w
(i1−j1)k1
1 . . . w(is−js)ks

s qk
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To be more precise, in this formula the last term depends only on j − i, and so shows
that we have Aij = ξj−i, with ξ being the following vector:

ξi =
∑
k

w−i1k1
1 . . . w−isks

s qk

=
∑
k

(F ∗
G)ikqk

= (F ∗
Gq)i

Thus, we are led to the conclusions in the statement. □

Many other things can be said, as a continuation of the above.

4e. Exercises

Exercises:

Exercise 4.18.

Exercise 4.19.

Exercise 4.20.

Exercise 4.21.

Exercise 4.22.

Exercise 4.23.

Exercise 4.24.

Exercise 4.25.

Bonus exercise.
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Red, red wine
Goes to my head

Make me forget that I
Still need her so



CHAPTER 5

Representations

5a. Representations

We have seen in the previous chapter that the 1-dimensional unitary representations
χ : G→ T of a finite group G, also called characters, led to some interesting insight into
the structure of G, notably with some remarkable results, in the abelian case.

In this chapter, and in fact in this whole Part II of the present book, we discuss what
can be done with the unitary representations u : G → UN , in the general case, N ∈ N.
We will see that there is some non-trivial theory here, called Peter-Weyl theory for finite
groups, extending, in a subtle way, what we know about the finite abelian groups.

Let us start with something very basic, and intuitive too, that we already met in the
previous chapter, in the one-dimensional case N = 1, namely:

Definition 5.1. A representation of a finite group G is a morphism as follows:

u : G→ UN

The character of such a representation is the function χ : G→ C given by

g → Tr(ug)

where Tr is the usual trace of the N ×N matrices, Tr(M) =
∑

iMii.

As a first comment here, as mentioned above, we have already met such things in
chapter 4, in the case N = 1. To be more precise, in the case N = 1 we have U1 = T, and
so both the representation, and its character, are a group morphism as follows:

u = χ : G→ T

As a basic example here, for any finite group we always have available the trivial
1-dimensional representation, or character, which is by definition as follows:

u : G→ U1 , g → (1)

As another example, when our finite group G appears as a group of unitary matrices,
G ⊂ UN , the embedding G ⊂ UN itself is a representation, called fundamental one:

u : G ⊂ UN , g → g

89
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In this situation, there are many other representations of G, which are equally inter-
esting. For instance, we can define the representation conjugate to u, as being:

ū : G ⊂ UN , g → ḡ

In order to clarify all this, and see which representations are available, let us first
discuss the various operations on the representations.

The result here, which is something very standard, is as follows:

Proposition 5.2. The representations of a finite group G are subject to:

(1) Making sums. Given representations u, v, having dimensions N,M , their sum is
the N +M-dimensional representation u+ v = diag(u, v).

(2) Making products. Given representations u, v, having dimensions N,M , their ten-
sor product is the NM-dimensional representation (u⊗ v)ia,jb = uijvab.

(3) Taking conjugates. Given a representation u, having dimension N , its complex
conjugate is the N-dimensional representation (ū)ij = ūij.

(4) Spinning by unitaries. Given a representation u, having dimension N , and a
unitary V ∈ UN , we can spin u by this unitary, u→ V uV ∗.

Proof. The fact that the operations in the statement are indeed well-defined, among
maps from G to unitary groups, can be checked as follows:

(1) This follows from the trivial fact that if g ∈ UN and h ∈ UM are two unitaries,
then their diagonal sum is a unitary too, as follows:(

g 0
0 h

)
∈ UN+M

(2) This follows from the fact that if g ∈ UN and h ∈ UM are two unitaries, then
g ⊗ h ∈ UNM is a unitary too. Given unitaries g, h, let us set indeed:

(g ⊗ h)ia,jb = gijhab

This matrix is then a unitary too, as shown by the following computation:

[(g ⊗ h)(g ⊗ h)∗]ia,jb =
∑
kc

(g ⊗ h)ia,kc((g ⊗ h)∗)kc,jb

=
∑
kc

(g ⊗ h)ia,kc(g ⊗ h)jb,kc

=
∑
kc

gikhacḡjkh̄bc

=
∑
k

gikḡjk
∑
c

hach̄bc

= δijδab



5A. REPRESENTATIONS 91

(3) This simply follows from the fact that if g ∈ UN is unitary, then so is its complex
conjugate, ḡ ∈ UN , and this due to the following formula, obtained by conjugating:

g∗ = g−1 =⇒ gt = ḡ−1

(4) This is clear as well, because if g ∈ UN is unitary, and V ∈ UN is another unitary,
then we can spin g by this unitary, and we obtain a unitary as follows:

V gV ∗ ∈ UN

Thus, our operations are well-defined, and this leads to the above conclusions. □

In relation now with characters, we have the following result:

Proposition 5.3. We have the following formulae, regarding characters

χu+v = χu + χv , χu⊗v = χuχv

χū = χ̄u , χV uV ∗ = χu

in relation with the basic operations for the representations.

Proof. All these assertions are elementary, by using the following well-known trace
formulae, valid for any two square matrices g, h, and any unitary V :

Tr(diag(g, h)) = Tr(g) + Tr(h) , T r(g ⊗ h) = Tr(g)Tr(h)

Tr(ḡ) = Tr(g) , T r(V gV ∗) = Tr(g)

To be more precise, the first formula is clear from definitions. Regarding now the
second formula, the computation here is immediate too, as follows:

Tr(g ⊗ h) =
∑
ia

(g ⊗ h)ia,ia

=
∑
ia

giihaa

= Tr(g)Tr(h)

Regarding now the third formula, this is clear from definitions, by conjugating. Finally,
regarding the fourth formula, this can be established as follows:

Tr(V gV ∗) = Tr(gV ∗V ) = Tr(g)

Thus, we are led to the conclusions in the statement. □

Assume now that we are given a finite group G ⊂ UN . By using the above operations,
we can construct a whole family of representations of G, as follows:
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Definition 5.4. Given a finite group G ⊂ UN , its Peter-Weyl representations are the
tensor products between the fundamental representation and its conjugate:

u : G ⊂ UN , ū : G ⊂ UN

We denote these tensor products u⊗k, with k = ◦ • • ◦ . . . being a colored integer, with the
colored tensor powers being defined according to the rules

u⊗◦ = u , u⊗• = ū , u⊗kl = u⊗k ⊗ u⊗l

and with the convention that u⊗∅ is the trivial representation 1 : G→ U1.

Here are a few examples of such Peter-Weyl representations, namely those coming
from the colored integers of length 2, to be often used in what follows:

u⊗◦◦ = u⊗ u , u⊗◦• = u⊗ ū

u⊗•◦ = ū⊗ u , u⊗•• = ū⊗ ū
In relation now with characters, we have the following result:

Proposition 5.5. The characters of Peter-Weyl representations are given by

χu⊗k = (χu)
k

with the colored powers of a variable χ being by definition given by

χ◦ = χ , χ• = χ̄ , χkl = χkχl

and with the convention that χ∅ equals by definition 1.

Proof. This follows indeed from the additivity, multiplicativity and conjugation for-
mulae established in Proposition 5.3, via the conventions in Definition 5.4. □

Given a closed subgroup G ⊂ UN , we would like to understand its Peter-Weyl repre-
sentations, and compute the expectations of the characters of these representations. In
order to do so, let us formulate the following key definition:

Definition 5.6. Given a finite group G, and two of its representations,

u : G→ UN , v : G→ UM

we define the linear space of intertwiners between these representations as being

Hom(u, v) =
{
T ∈MM×N(C)

∣∣∣Tug = vgT,∀g ∈ G
}

and we use the following conventions:

(1) We use the notations Fix(u) = Hom(1, u), and End(u) = Hom(u, u).
(2) We write u ∼ v when Hom(u, v) contains an invertible element.
(3) We say that u is irreducible, and write u ∈ Irr(G), when End(u) = C1.
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In the above the terminology is very standard, with Hom and End standing respec-
tively for “homomorphisms” and “endomorphisms”, and with Fix standing for “fixed
points”. In practice, it is useful to think of the representations of G as being the objects
of some kind of abstract combinatorial structure associated to G, and of the intertwiners
between these representations as being the “arrows” between these objects.

We have in fact the following result, which clarifies all this:

Theorem 5.7. The following happen:

(1) The intertwiners are stable under composition:

T ∈ Hom(u, v) , S ∈ Hom(v, w) =⇒ ST ∈ Hom(u,w)

(2) The intertwiners are stable under taking tensor products:

S ∈ Hom(u, v) , T ∈ Hom(w, t) =⇒ S ⊗ T ∈ Hom(u⊗ w, v ⊗ t)

(3) The intertwiners are stable under taking adjoints:

T ∈ Hom(u, v) =⇒ T ∗ ∈ Hom(v, u)

(4) Thus, the Hom spaces form a tensor ∗-category.

Proof. All this is clear from definitions, the verifications being as follows:

(1) This follows indeed from the following computation, valid for any g ∈ G:

STug = SvgT = wgST

(2) Again, this is clear, because we have the following computation:

(S ⊗ T )(ug ⊗ wg) = Sug ⊗ Twg
= vgS ⊗ tgT
= (vg ⊗ tg)(S ⊗ T )

(3) This follows from the following computation, valid for any g ∈ G:

Tug = vgT =⇒ u∗gT
∗ = T ∗v∗g

=⇒ T ∗vg = ugT
∗

(4) This is just an abstract conclusion of (1,2,3), with a tensor ∗-category being by
definition an abstract beast satisfying these conditions (1,2,3). We will be back to tensor
categories later on in this book, with more details on all this. □
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5b. Peter-Weyl

Our claim now is that Theorem 5.7 gives us everything that we need, in order to have
some advanced representation theory started, for our finite groups G. Indeed, as a main
consequence of Theorem 5.7, we have the following key result:

Theorem 5.8. Given a representation u : G→ UN , the linear space

End(u) ⊂MN(C)
is a ∗-algebra, with respect to the usual involution of the matrices.

Proof. We know from Theorem 5.7 (1) that End(u) is a subalgebra of MN(C), and
we know as well from Theorem 5.7 (3) that this subalgebra is stable under the involution
∗. Thus, what we have here is a ∗-subalgebra of MN(C), as claimed. □

The point now is that we can combine the above result with the following standard
fact, from advanced linear algebra, that we know well from chapter 4:

Theorem 5.9. Let A ⊂MN(C) be a ∗-algebra.
(1) We can write 1 = p1 + . . .+ pk, with pi ∈ A being central minimal projections.
(2) The linear spaces Ai = piApi are non-unital ∗-subalgebras of A.
(3) We have a non-unital ∗-algebra sum decomposition A = A1 ⊕ . . .⊕ Ak.
(4) We have unital ∗-algebra isomorphisms Ai ≃Mni

(C), with ni = rank(pi).
(5) Thus, we have a ∗-algebra isomorphism A ≃Mn1(C)⊕ . . .⊕Mnk

(C).

Proof. This is indeed something very standard, that we know well from chapter 4,
and we refer to the material there for the proof, and for various comments. □

Good news, we can now formulate our first Peter-Weyl theorem, as follows:

Theorem 5.10 (PW1). Let u : G → UN be a representation, consider the algebra
A = End(u), and write its unit as above, with pi being central minimal projections:

1 = p1 + . . .+ pk

The representation u decomposes then as a direct sum, as follows,

u = u1 + . . .+ uk

with each ui being an irreducible representation, obtained by restricting u to Im(pi).

Proof. This basically follows from Theorem 5.8 and Theorem 5.9, as follows:

(1) As a first observation, by replacing G with its image u(G) ⊂ UN , we can assume
if we want that our representation u is faithful, G ⊂u UN . However, this replacement will
not be really needed, and we will keep using u : G→ UN , as above.

(2) In order to prove the result, we will need some preliminaries. We first associate to
our representation u : G→ UN the corresponding action map on CN . If a linear subspace
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V ⊂ CN is invariant, the restriction of the action map to V is an action map too, which
must come from a subrepresentation v ⊂ u. This is clear indeed from definitions, and
with the remark that the unitaries, being isometries, restrict indeed into unitaries.

(3) Consider now a projection p ∈ End(u). From pu = up we obtain that the linear
space V = Im(p) is invariant under u, and so this space must come from a subrepresen-
tation v ⊂ u. It is routine to check that the operation p → v maps subprojections to
subrepresentations, and minimal projections to irreducible representations.

(4) To be more precise here, the condition p ∈ End(u) reformulates as follows:

pug = ugp , ∀g ∈ G
As for the condition that V = Im(p) is invariant, this reformulates as follows:

pugp = ugp , ∀g ∈ G
Thus, we are in need of a technical linear algebra result, stating that for a projection

P ∈MN(C) and a unitary U ∈ UN , the following happens:

PUP = UP =⇒ PU = UP

(5) But this can be established with some C∗-algebra know-how, as follows:

tr[(PU − UP )(PU − UP )∗] = tr[(PU − UP )(U∗P − PU∗)]

= tr[P − PUPU∗ − UPU∗P + UPU∗]

= tr[P − UPU∗ − UPU∗ + UPU∗]

= tr[P − UPU∗]

= 0

Indeed, by positivity this gives PU − UP = 0, as desired.

(6) With these preliminaries in hand, let us decompose the algebra End(u) as in
Theorem 5.9, by using the decomposition 1 = p1 + . . . + pk into minimal projections. If
we denote by ui ⊂ u the subrepresentation coming from the vector space Vi = Im(pi),
then we obtain in this way a decomposition u = u1 + . . .+ uk, as in the statement. □

In order to formulate our second Peter-Weyl theorem, let us formulate:

Definition 5.11. Given a finite subgroup G ⊂ UN , and a unitary representation
v : G→ UM , the space of coefficients of this representation is:

Cv =
{
f ◦ v

∣∣∣f ∈MM(C)∗
}

In other words, by delinearizing, Cν ⊂ C(G) is the following linear space,

Cv = span
[
g → (vg)ij

]
with g → (vg)ij being the standard matrix coefficients of v : G→ UM .
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As a basic example of coefficient we have, besides the matrix coefficients g → (vg)ij,
the character, which appears as the diagonal sum of these coefficients:

χv(g) =
∑
i

(vg)ii

Here is now our second Peter-Weyl theorem, complementing Theorem 5.10:

Theorem 5.12 (PW2). Given a subgroup G ⊂u UN , any irreducible representation

v : G→ UM

appears inside a tensor product of the fundamental representation u and its adjoint ū.

Proof. In order to prove the result, we will use the following three elementary facts,
regarding the spaces of coefficients introduced above:

(1) The construction v → Cv is functorial, in the sense that it maps subrepresentations
into linear subspaces. This is indeed something which is routine to check.

(2) By the Stone-Weierstrass theorem, which tells us that we have < gij >= C(G),
we conclude that have an inclusion of linear spaces as follows:

Cv ⊂< gij >

(3) By definition of the Peter-Weyl representations, as arbitrary tensor products be-
tween the fundamental representation u and its conjugate ū, we have:

< gij >=
∑
k

Cu⊗k

(4) Now by putting together the observations (2,3) we conclude that we must have an
inclusion as follows, for certain exponents k1, . . . , kp:

Cv ⊂ Cu⊗k1⊕...⊕π⊗kp

By using now the functoriality result from (1), we deduce from this that we have an
inclusion of representations, as follows:

v ⊂ u⊗k1 ⊕ . . .⊕ u⊗kp

Together with Theorem 5.10, this leads to the conclusion in the statement. □

As a conclusion to what we have so far, the problem to be solved is that of splitting
the Peter-Weyl representations into sums of irreducible representations.
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5c. More Peter-Weyl

In order to further advance, and complete the Peter-Weyl theory, we need to talk about
integration over G. In the present finite group case the situation is trivial, as follows:

Proposition 5.13. Any finite group G has a unique probability measure which is
invariant under left and right translations,

µ(E) = µ(gE) = µ(Eg)

and this is the normalized counting measure on G, given by µ(E) = |E|/|G|.
Proof. The uniformity condition in the statement gives, with E = {h}:

µ{h} = µ{gh} = µ{hg}
Thus µ must be the usual counting measure, normalized as to have mass 1. □

However, for our purposes here, we need to know more about averaging over G. It is
convenient to work with the integration functionals with respect to the various measures
on G, instead of the measures themselves. Let us begin with the following key result:

Proposition 5.14. Given a unital positive linear form φ : C(G)→ C, the limit∫
φ

f = lim
n→∞

1

n

n∑
k=1

φ∗k(f)

exists, and for a coefficient of a representation f = (τ ⊗ id)v we have∫
φ

f = τ(P )

where P is the orthogonal projection onto the 1-eigenspace of (id⊗ φ)v.
Proof. By linearity it is enough to prove the first assertion for functions of the

following type, where v is a Peter-Weyl representation, and τ is a linear form:

f = (τ ⊗ id)v
Thus we are led into the second assertion, and more precisely we can have the whole

result proved if we can establish the following formula, with f = (τ ⊗ id)v:

lim
n→∞

1

n

n∑
k=1

φ∗k(f) = τ(P )

In order to prove this latter formula, observe that we have:

φ∗k(f) = (τ ⊗ φ∗k)v = τ((id⊗ φ∗k)v)

Let us set M = (id⊗ φ)v. In terms of this matrix, we have:

((id⊗ φ∗k)v)i0ik+1
=
∑
i1...ik

Mi0i1 . . .Mikik+1
= (Mk)i0ik+1



98 5. REPRESENTATIONS

Thus we have the following formula, for any k ∈ N:
(id⊗ φ∗k)v =Mk

It follows that our Cesàro limit is given by the following formula:

lim
n→∞

1

n

n∑
k=1

φ∗k(f) = lim
n→∞

1

n

n∑
k=1

τ(Mk)

= τ

(
lim
n→∞

1

n

n∑
k=1

Mk

)
Now since v is unitary we have ||v|| = 1, and so ||M || ≤ 1. Thus the last Cesàro limit

converges, and equals the orthogonal projection onto the 1-eigenspace of M :

lim
n→∞

1

n

n∑
k=1

Mk = P

Thus our initial Cesàro limit converges as well, to τ(P ), as desired. □

The point now is that when the linear form φ ∈ C(G)∗ from the above result is chosen
to be faithful, we obtain the following finer result:

Proposition 5.15. Given a faithful unital linear form φ ∈ C(G)∗, the limit∫
φ

f = lim
n→∞

1

n

n∑
k=1

φ∗k(f)

exists, and is independent of φ, given on coefficients of representations by(
id⊗

∫
φ

)
v = P

where P is the orthogonal projection onto the space Fix(v) =
{
ξ ∈ Cn

∣∣vξ = ξ
}
.

Proof. In view of Proposition 5.14, it remains to prove that when φ is faithful, the
1-eigenspace of the matrix M = (id⊗ φ)v equals the space Fix(v).

“⊃” This is clear, and for any φ, because we have the following implication:

vξ = ξ =⇒ Mξ = ξ

“⊂” Here we must prove that, when φ is faithful, we have:

Mξ = ξ =⇒ vξ = ξ

For this purpose, assume that we have Mξ = ξ, and consider the following function:

f =
∑
i

(∑
j

vijξj − ξi

)(∑
k

vikξk − ξi

)∗
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We must prove that we have f = 0. Since v is unitary, we have:

f =
∑
ijk

vijv
∗
ikξj ξ̄k −

1

N
vijξj ξ̄i −

1

N
v∗ikξiξ̄k +

1

N2
ξiξ̄i

=
∑
j

|ξj|2 −
∑
ij

vijξj ξ̄i −
∑
ik

v∗ikξiξ̄k +
∑
i

|ξi|2

= ||ξ||2− < vξ, ξ > −< vξ, ξ >+ ||ξ||2

= 2(||ξ||2 −Re(< vξ, ξ >))

By using now our assumption Mξ = ξ, we obtain from this:

φ(f) = 2φ(||ξ||2 −Re(< vξ, ξ >))

= 2(||ξ||2 −Re(< Mξ, ξ >))

= 2(||ξ||2 − ||ξ||2)
= 0

Now since φ is faithful, this gives f = 0, and so vξ = ξ, as claimed. □

We can now formulate a main result, as follows:

Theorem 5.16. Any finite group G has a unique Haar integration, which can be
constructed by starting with any faithful positive unital state φ ∈ C(G)∗, and setting:∫

G

= lim
n→∞

1

n

n∑
k=1

φ∗k

Moreover, for any representation v we have the formula(
id⊗

∫
G

)
v = P

where P is the orthogonal projection onto Fix(v) =
{
ξ ∈ Cn

∣∣vξ = ξ
}
.

Proof. We can prove this from what we have, in several steps, as follows:

(1) Let us first go back to the general context of Proposition 5.14. Since convolving
one more time with φ will not change the Cesàro limit appearing there, the functional∫
φ
∈ C(G)∗ constructed there has the following invariance property:∫

φ

∗φ = φ ∗
∫
φ

=

∫
φ

In the case where φ is assumed to be faithful, as in Proposition 5.15, our claim is that
we have the following formula, valid this time for any ψ ∈ C(G)∗:∫

φ

∗ψ = ψ ∗
∫
φ

= ψ(1)

∫
φ
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Moreover, it is enough to prove this formula on a coefficient of a representation:

f = (τ ⊗ id)v

(2) In order to do so, consider the following two matrices:

P =

(
id⊗

∫
φ

)
v , Q = (id⊗ ψ)v

We have then the following two computations, involving these matrices:(∫
φ

∗ψ
)
f =

(
τ ⊗

∫
φ

⊗ψ
)
(v12v13) = τ(PQ)

(
ψ ∗

∫
φ

)
f =

(
τ ⊗ ψ ⊗

∫
φ

)
(v12v13) = τ(QP )

Also, regarding the term on the right in our formula in (1), this is given by:

ψ(1)

∫
φ

f = ψ(1)τ(P )

We conclude from all this that our claim is equivalent to the following equality:

PQ = QP = ψ(1)P

(3) But this latter equality holds indeed, coming from the fact, that we know from
Proposition 5.15, that P = (id⊗

∫
φ
)v equals the orthogonal projection onto Fix(v). Thus,

we have proved our claim in (1), namely that the following formula holds:∫
φ

∗ψ = ψ ∗
∫
φ

= ψ(1)

∫
φ

(4) In order to finish now, it is convenient to introduce the following abstract operation,
on the continuous functions f, f ′ : C(G)→ C on our group:

∆(f ⊗ f ′)(g ⊗ h) = f(g)f ′(h)

With this convention, the formula that we established above can be written as:

ψ

(∫
φ

⊗ id
)
∆ = ψ

(
id⊗

∫
φ

)
∆ = ψ

∫
φ

(.)1

This formula being true for any ψ ∈ C(G)∗, we can simply delete ψ. We conclude
that the following invariance formula holds indeed, with

∫
G
=
∫
φ
:(∫

G

⊗ id
)
∆ =

(
id⊗

∫
G

)
∆ =

∫
G

(.)1

But this is exactly the left and right invariance formula we were looking for.
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(5) Finally, in order to prove the uniqueness assertion, assuming that we have two
invariant integrals

∫
G
,
∫ ′
G
, we have, according to the above invariance formula:(∫

G

⊗
∫ ′

G

)
∆ =

(∫ ′

G

⊗
∫
G

)
∆ =

∫
G

(.)1 =

∫ ′

G

(.)1

Thus we have
∫
G
=
∫ ′
G
, and this finishes the proof. □

Summarizing, we can now integrate over G. As a first application, we have:

Theorem 5.17. Given a finite group G, we have the following formula, valid for any
unitary group representation v : G→ UM :∫

G

χv = dim(Fix(v))

In particular, in the unitary matrix group case, G ⊂u UN , the moments of the main
character χ = χu are given by the following formula:∫

G

χk = dim(Fix(u⊗k))

Thus, knowing the law of χ is the same as knowing the dimensions on the right.

Proof. We have three assertions here, the idea being as follows:

(1) Given a unitary representation v : G → UM as in the statement, its character χv
is a coefficient, so we can use the integration formula for coefficients in Theorem 5.16. If
we denote by P the projection onto Fix(v), that formula gives, as desired:∫

G

χv = Tr(P )

= dim(Im(P ))

= dim(Fix(v))

(2) This follows from (1), applied to the Peter-Weyl representations, as follows:∫
G

χk =

∫
G

χku

=

∫
G

χu⊗k

= dim(Fix(u⊗k))

(3) This follows from (2), and from the standard fact, which follows from definitions,
that a probability measure is uniquely determined by its moments. □
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As a key remark now, the integration formula in Theorem 5.16 allows the computation
for the truncated characters too, because these truncated characters are coefficients as
well. To be more precise, all the probabilistic questions about G, regarding characters,
or truncated characters, or more complicated variables, require a good knowledge of the
integration over G, and more precisely, of the various polynomial integrals over G:

Definition 5.18. Given a finite subgroup G ⊂ UN , the quantities

Ik =

∫
G

ge1i1j1 . . . g
ek
ikjk

dg

depending on a colored integer k = e1 . . . ek, are called polynomial integrals over G.

As a first observation, the knowledge of these integrals is the same as the knowledge of
the integration functional over G. Indeed, since the coordinate functions g → gij separate
the points of G, we can apply the Stone-Weierstrass theorem, and we obtain:

C(G) =< gij >

Thus, by linearity, the computation of any functional f : C(G) → C, and in partic-
ular of the integration functional, reduces to the computation of this functional on the
polynomials of the coordinate functions g → gij and their conjugates g → ḡij.

By using now Peter-Weyl theory, everything reduces to algebra, as follows:

Theorem 5.19. The Haar integration over a closed subgroup G ⊂u UN is given on
the dense subalgebra of smooth functions by the Weingarten formula∫

G

ge1i1j1 . . . g
ek
ikjk

dg =
∑

π,σ∈Dk

δπ(i)δσ(j)Wk(π, σ)

valid for any colored integer k = e1 . . . ek and any multi-indices i, j, where Dk is a linear
basis of Fix(u⊗k), the associated generalized Kronecker symbols are given by

δπ(i) =< π, ei1 ⊗ . . .⊗ eik >

and Wk = G−1
k is the inverse of the Gram matrix, Gk(π, σ) =< π, σ >.

Proof. We know from Peter-Weyl theory that the integrals in the statement form
altogether the orthogonal projection P k onto the following space:

Fix(u⊗k) = span(Dk)

Consider now the following linear map, with Dk = {ξk} being as in the statement:

E(x) =
∑
π∈Dk

< x, ξπ > ξπ
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By a standard linear algebra computation, it follows that we have P = WE, where
W is the inverse of the restriction of E to the following space:

K = span
(
Tπ

∣∣∣π ∈ Dk

)
But this restriction is precisely the linear map given by the matrix Gk, and soW itself

is the linear map given by the matrix Wk, and this gives the result. □

We will be back to this in Part III below, with some concrete applications.

In order to further develop now the Peter-Weyl theory, which is something very useful,
we will need the following result, which is of independent interest:

Proposition 5.20. We have a Frobenius type isomorphism

Hom(v, w) ≃ Fix(v ⊗ w̄)

valid for any two representations v, w.

Proof. According to the definitions, we have the following equivalences:

T ∈ Hom(v, w) ⇐⇒ Tv = wT

⇐⇒
∑
j

Tajvji =
∑
b

wabTbi,∀a, i

On the other hand, we have as well the following equivalences:

T ∈ Fix(v ⊗ w̄) ⇐⇒ (v ⊗ w̄)T = ξ

⇐⇒
∑
jb

vijw
∗
abTbj = Tai∀a, i

With these formulae in hand, both inclusions follow from the unitarity of v, w. □

We can now formulate our third Peter-Weyl theorem, as follows:

Theorem 5.21 (PW3). We have a direct sum decomposition of linear spaces

C(G) =
⊕

v∈Irr(G)

Mdim(v)(C)

with the summands being pairwise orthogonal with respect to the scalar product

< a, b >=

∫
G

ab∗

where
∫
G
is the averaging over G.
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Proof. This is something more tricky, the idea being as follows:

(1) By combining the previous two Peter-Weyl results, from Theorem 5.10 and Theo-
rem 5.12, we deduce that we have a linear space decomposition as follows:

C(G) =
∑

v∈Irr(G)

Cv =
∑

v∈Irr(G)

Mdim(v)(C)

Thus, in order to conclude, it is enough to prove that for any two irreducible corepre-
sentations v, w ∈ Irr(A), the corresponding spaces of coefficients are orthogonal:

v ̸∼ w =⇒ Cv ⊥ Cw

(2) We will need the basic fact, whose proof is elementary, that for any representation
v we have the following formula, where P is the orthogonal projection on Fix(v):(

id⊗
∫
G

)
v = P

(3) We will also need the basic fact, that we know from the above, that for any two
representations v, w we have an isomorphism as follows, called Frobenius isomorphism:

Hom(v, w) ≃ Fix(v ⊗ w̄)
(4) Now back to our orthogonality question from (1), let us set indeed:

Pia,jb =

∫
G

vijw
∗
ab

Then P is the orthogonal projection onto the following vector space:

Fix(v ⊗ w̄) ≃ Hom(v, w) = {0}
Thus we have P = 0, and this gives the result. □

Finally, we have the following result, completing the Peter-Weyl theory:

Theorem 5.22 (PW4). The characters of irreducible representations belong to

C(G)central =
{
f ∈ C(G)

∣∣∣f(gh) = f(hg), ∀g, h ∈ G
}

called algebra of central functions on G, and form an orthonormal basis of it.

Proof. We have several things to be proved, the idea being as follows:

(1) Observe first that C(G)central is indeed an algebra, which contains all the charac-
ters. Conversely, consider a function f ∈ C(G), written as follows:

f =
∑

v∈Irr(G)

fv

The condition f ∈ C(G)central states then that for any v ∈ Irr(G), we must have:

fv ∈ C(G)central
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But this means precisely that the coefficient fv must be a scalar multiple of χv, and
so the characters form a basis of C(G)central, as stated.

(2) The fact that we have an orthogonal basis follows from Theorem 5.21.

(3) As for the fact that the characters have norm 1, this follows from:∫
G

χvχ
∗
v =

∑
ij

∫
G

viiv
∗
jj

=
∑
i

1

N

= 1

Here we have used the fact that the above integrals
∫
G
vijv

∗
kl form the orthogonal

projection onto the following vector space:

Fix(v ⊗ v̄) ≃ End(v) = C1
Thus, the proof of our theorem is now complete. □

5d. Central functions

As a key observation now, complementing Theorem 5.22, observe that a function
f : G → C is central, in the sense that it satisfies f(gh) = f(hg), precisely when it
satisfies the following condition, saying that it must be constant on conjugacy classes:

f(ghg−1) = f(h),∀g, h ∈ G
Thus, in the finite group case for instance, the algebra of central functions is something

which is very easy to compute, and this gives useful information about Rep(G). We will
not get into this here, but some of our exercises will be about this.

As a basic illustration for all this, which clarifies some previous considerations from
chapter 4, in relation with our study there of the abelian groups, we have:

Theorem 5.23. For a compact abelian group G the irreducible representations are all

1-dimensional, and form the dual discrete abelian group Ĝ.

Proof. This is clear from the Peter-Weyl theory, because when G is abelian any
function f : G → C is central, and so the algebra of central functions is C(G) itself, and
so the irreducible representations u ∈ Irr(G) coincide with their characters χu ∈ Ĝ. □

So long for Peter-Weyl theory. As a comment, our approach here to this theory, which
was rather functional analytic, was motivated by what we will be doing later in this book,
in relation with compact groups, and with quantum groups too.

For a more standard presentation of the Peter-Weyl theory for finite groups, there are
many good books available, such as the book of Serre [85].
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5e. Exercises

Exercises:

Exercise 5.24.

Exercise 5.25.

Exercise 5.26.

Exercise 5.27.

Exercise 5.28.

Exercise 5.29.

Exercise 5.30.

Exercise 5.31.

Bonus exercise.



CHAPTER 6

Tannakian duality

6a. Generalities

We have seen that, no matter what we want to do with G ⊂ UN , we must compute
the spaces Fix(u⊗k). In the case G ⊂ ON , it is convenient to introduce:

Definition 6.1. Associated to any closed subgroup G ⊂ ON are the vector spaces

Ckl =
{
T ∈ L(H⊗k, H⊗l)

∣∣∣Tg⊗k = g⊗lT,∀g ∈ G
}

where H = CN . We call Tannakian category of G the collection of spaces C = (Ckl).

Observe that, due to g ∈ G ⊂ ON ⊂ L(H), we have g⊗k ∈ L(H⊗k) for any k, so the
equality Tg⊗k = g⊗lT makes indeed sense, as an equality of maps as follows:

Tg⊗k, g⊗lT ∈ L(H⊗k, H⊗l)

It is also clear by definition that each Ckl is a complex vector space. Moreover, it is
also clear by definition that C = (Ckl) is indeed a category, in the sense that:

T ∈ Ckl , S ∈ Clm =⇒ ST ∈ Ckm
Quite remarkably, the closed subgroup G ⊂ ON can be reconstructed from its Tan-

nakian category C = (Ckl), and in a very simple way. More precisely, we have:

Claim 6.2. Given a closed subgroup G ⊂ ON , we have

G =
{
g ∈ ON

∣∣∣Tg⊗k = g⊗lT,∀k, l, ∀T ∈ Ckl
}

where C = (Ckl) is the associated Tannakian category.

So, this is what we will be talking about in this chapter. Let us begin with some
simple observations. We first have the following elementary result:

Proposition 6.3. Given a closed subgroup G ⊂ ON , set as before

Ckl =
{
T ∈ L(H⊗k, H⊗l)

∣∣∣Tg⊗k = g⊗lT,∀g ∈ G
}

where H = CN , and then set as in Claim 6.2:

G̃ =
{
g ∈ ON

∣∣∣Tg⊗k = g⊗lT,∀k, l, ∀T ∈ Ckl
}

Then G̃ is closed subgroup of ON , and we have inclusions G ⊂ G̃ ⊂ ON .

107
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Proof. Let us first prove that G̃ is a group. Assuming g, h ∈ G̃, we have gh ∈ G̃,
due to the following computation, valid for any k, l and any T ∈ Ckl:

T (gh)⊗k = Tg⊗kh⊗k

= g⊗lTh⊗k

= g⊗lh⊗lT

= (gh)⊗lT

Also, we have 1 ∈ G̃, trivially. Finally, assuming g ∈ G̃, we have:

T (g−1)⊗k = (g−1)⊗l[g⊗lT ](g−1)⊗k

= (g−1)⊗l[Tg⊗k](g−1)⊗k

= (g−1)⊗lT

Thus we have g−1 ∈ G̃, and so G̃ is a group, as claimed. Finally, the fact that we have

an inclusion G ⊂ G̃, and that G̃ ⊂ ON is closed, are both clear from definitions. □

Let us work out some examples too. The orthogonal diagonal matrices form a subgroup
ZN2 ⊂ ON , and for the subgroups G ⊂ ZN2 our theory is quite exciting, as follows:

Theorem 6.4. For the abelian groups of diagonal matrices, G ⊂ ZN2 , we have

Ckl =
{
T ∈ L(H⊗k, H⊗l)

∣∣∣∃g ∈ G, gi1 . . . gik ̸= gj1 . . . gjl =⇒ Tj1...jl,i1...ik = 0
}

with the notation g = diag(g1, . . . , gN), and Claim 6.2 holds when |G| = 1, 2, 2N−1, 2N .

Proof. We have several things to be proved, the idea being as follows:

(1) Case G = {1}. Here we obviously have, for any two integers k, l, the following
formula, which confirms the general formula in the statement:

Ckl = L(H⊗k, H⊗l)

Regarding now Claim 6.2, consider the intermediate subgroup G ⊂ G̃ ⊂ ON , con-
structed in Proposition 6.3, that we must prove to be equal to G itself. Since any element

g ∈ G̃ must commute with the algebra C11 =MN(C), we must have:

g = ±1

But from the relation T = gT , which must hold for any T ∈ C01 = H, we conclude

that we must have g = 1, so we obtain G̃ = {1}, as desired.

(2) Case G = Z2, with this meaning G = {1,−1}. This is something just a bit more
complicated. Let us look at the relations defining Ckl, namely:

Tg⊗k = g⊗lT
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These relations are automatic for g = 1. As for the other group element, namely
g = −1, here the relations hold either when k + l is even, or when T = 0. Thus, we have
the following formula, which confirms again the general formula in the statement:

Ckl =

{
L(H⊗k, H⊗l) (k + l ∈ 2N)
{0} (k + l /∈ 2N)

As for Claim 6.2 for our group, this follows from the computation done in (1) above,

the point being that g ∈ G̃ commutes with C11 =MN(C) precisely when g = ±1.

(3) General case G ⊂ ZN2 . Let us look at the relations defining Ckl. We have:

T ∈ Ckl ⇐⇒ Tg⊗k = g⊗lT,∀g ∈ G
⇐⇒ (Tg⊗k)ji = (g⊗lT )ji, ∀i, j,∀g ∈ G
⇐⇒ Tj1...,jl,i1...ikgi1 . . . gik = gj1 . . . gjlTj1...,jk,i1...il ,∀i, j, ∀g ∈ G
⇐⇒ (gj1 . . . gik − gj1 . . . gjl)Tj1...,jl,i1...ik ,∀i, j,∀g ∈ G

Thus, we are led to the formula in the statement, namely:

Ckl =
{
T ∈ L(H⊗k, H⊗l)

∣∣∣∃g ∈ G, gi1 . . . gik ̸= gj1 . . . gjl =⇒ Tj1...jl,i1...ik = 0
}

(4) Case G = ZN2 . Here the formula from (3) can be turned into something better,
because due to the fact that the entries g1, . . . , gN ∈ {−1, 1} of a group element g ∈ G can
take all possible values, we have the following equivalence, with the symbol { }2 standing
for set with repetitions, with the pairs of elements of type {x, x} removed:

gi1 . . . gik = gj1 . . . gjl ,∀g ∈ G ⇐⇒ {i1, . . . , ik}2 = {j1, . . . , jl}2
Thus, in this case we obtain the following formula, with { }2 being as above:

Ckl =
{
T ∈ L(H⊗k, H⊗l)

∣∣∣{i1, . . . , ik}2 ̸= {j1, . . . , jl}2 =⇒ Tj1...jl,i1...ik = 0
}

Regarding now Claim 6.2, the idea is that, a bit as for G = Z2, we can get away with
the commutation with C11. Indeed, according to the above formulae, we have:

C11 =
{
T ∈MN(C)

∣∣∣i ̸= j =⇒ Tij = 0
}

Thus we have C11 = ∆, with ∆ ⊂ MN(C) being the algebra of diagonal matrices.

Now if we construct G ⊂ G̃ ⊂ ON as before, we have, as desired:

g ∈ G̃ =⇒ g ∈ C ′
11 = ∆′ = ∆

=⇒ g ∈ ∆ ∩ON = G

(5) Before getting into more examples, let us go back to the case where G ⊂ ZN2 is
arbitrary, and have a look at Claim 6.2 in this case. We know that we have {1} ⊂ G ⊂ ZN2 ,
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and by functoriality, at the level of the associated C11 spaces, we have:

∆ ⊂ C11 ⊂MN(C)

Now construct the intermediate group G ⊂ G̃ ⊂ ON as before. For g ∈ G̃ we have:

g ∈ C ′
11 ∩ON ⊂ ∆′ ∩ON = ∆ ∩ON = ZN2

Thus, we have G ⊂ G̃ ⊂ ZN2 . This looks encouraging, because our Claim 6.2 becomes
now something regarding the abelian groups, that can be normally solved with group
theory. However, as we will soon discover, the combinatorics can be quite complicated.

(6) General case |G| = 2. This is the same as saying that G ≃ Z2, or equivalently,
that G = {1, g} with g ∈ Z2, g ̸= 1. By permuting the basis of RN we can assume that
our non-trivial group element g ∈ G is as follows, for a certain integer M < N :

g =

(
1M 0
0 −1N−M

)
By using the general formula found in (3), we obtain the following formula:

C11 =
{
T ∈MN(C)

∣∣∣Tij = 0 when i ≤M, j > M or i > M, j ≤M
}

But this means that, in this case, the algebra C11 is block-diagonal, as follows:

C11 =

{(
A 0
0 B

) ∣∣∣A ∈MM(C), B ∈MN−M(C)
}

Now since any element h ∈ G̃ must commute with this algebra, we must have:

G̃ ⊂
{(

1 0
0 1

)
,

(
1 0
0 −1

)
,

(
−1 0
0 1

)
,

(
−1 0
0 −1

)}
Summarizing, well done, but we are still not there. In order to finish we must use, as

in (1), the relations T = hT with T ∈ C01. In order to do so, by using again the general
formula from (3), this time with k = 0, l = 1, we obtain the following formula:

C01 =
{
T ∈ CN

∣∣∣j > M =⇒ Tj = 0
}

But this formula tells us that the space C01 appears as follows:

C01 =

{(
ξ

0

)∣∣∣ ξ ∈ CM

}
Now since any element h ∈ G̃ must satisfy T = hT , for any T ∈ C01, this rules out

half of the 4 solutions found above, and we end up with G̃ = {1, g}, as desired.
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(7) A next step would be to investigate the case |G| = 4. Here we haveG = {1, g, h, gh}
with g, h ∈ Z2 − {1} distinct, and by permuting the basis, we can assume that:

g =


1

1
−1

−1

 , h =


1
−1

1
−1

 , gh =


1
−1

−1
1


However, the computations as in the proof of (6) become quite complicated, and

in addition we won’t get away in this case with C11, C01 only, so all this becomes too
technically involved, and we will stop here, in the lack of a better idea.

(8) Case |G| = 2N−1. This is the last situation, announced in the statement, still
having a reasonably simple direct proof, and we will discuss this now. At the level of
examples, given a non-empty subset I ⊂ {1, . . . , N}, we have an example, as follows:

GI =

{
g ∈ ZN2

∣∣∣∏
i∈I

gi = 1

}
Indeed, this set GI ⊂ ZN2 is clearly a group, and since it is obtained by using one

binary relation, namely
∏

i gi = ±1 being assumed to be 1, the number of elements is:

|GI | =
|ZN2 |
2

=
2N

2
= 2N−1

Our claim now is that all the index 2 subgroups G ⊂ ZN2 appear in this way. Indeed,
by taking duals these subgroups correspond to the order 2 subgroups H ⊂ ZN2 , and since
we must have H = {1, g} with g ̸= 1, we have 2N − 1 choices for such subgroups. But
this equals the number of choices for a non-empty subset I ⊂ {1, . . . , N}, as desired.

(9) Case |G| = 2N−1, continuation. We know from the above that we have G = GI , for
a certain non-empty subset I ⊂ {1, . . . , N}, and we must prove Claim 6.2 for this group.
In order to do so, let us go back to the formula of Ckl found in (4) for the group ZN2 . In
the case of the subgroup GI ⊂ ZN2 , which appears via the relation

∏
i gi = 1, that formula

adapts as follows, with the symbol { }2I standing for set with repetitions, with the pairs
of elements of type {x, x} removed, and with the subsets equal to I being removed too:

Ckl =
{
T ∈ L(H⊗k, H⊗l)

∣∣∣{i1, . . . , ik}2I ̸= {j1, . . . , jl}2I =⇒ Tj1...jl,i1...ik = 0
}

In order to prove now Claim 6.2 for our group, we already know from (5) that we have

G̃ ⊂ ZN2 . It is also clear that, given h ∈ G̃, when using T = hT with T ∈ C01, or more
generally T = h⊗lT with T ∈ C0l at small values of l ∈ N, we won’t obtain anything new.
However, at l = |I| we do obtain a constraint, and since this constaint must cut the target

group ZN2 by at least half, we end up with G = G̃, as desired. □
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The proof of Theorem 6.4 contains many interesting computations, that are useful in
everyday life, and among the many things that can be highlighted, we have:

Fact 6.5. The diagonal part of C = (Ckl), formed by the algebras

Ckk =
{
T ∈ L(H⊗k)

∣∣∣Tg⊗k = g⊗kT,∀g ∈ G
}

does not determine G. For instance G = {1},Z2 are not distinguished by it.

Obviously, this is something quite annoying, because there are countless temptations
to use ∆C = (Ckk) instead of C, for instance because the spaces Ckk are algebras, and
also, at a more advanced level, because ∆C is a planar algebra in the sense of Jones [59].
But, we are not allowed to do this, at least in general. More on this later.

What we have so far is quite interesting, and suggests further working on our problem.
Unfortunately, at the other end, where G ⊂ ON is big, things become fairly complicated,
and the only result that we can state and prove with bare hands is:

Proposition 6.6. Our Claim 6.2 holds for G = ON itself, trivially.

Proof. For the orthogonal group G = ON itself we have indeed G̃ = G, due to

the inclusions G ⊂ G̃ ⊂ ON . Observe however that some mystery remains for this group
G = ON , because the spaces Ckl do not look easy to compute. We will be back to this. □

As a conclusion now, we are definitely into interesting mathematics, and Claim 6.2 is
definitely worth some attention, and a proof. So, time for a theorem about it:

Theorem 6.7. Given a closed subgroup G ⊂ ON , we have

G =
{
g ∈ ON

∣∣∣Tg⊗k = g⊗lT,∀k, l, ∀T ∈ Ckl
}

where C = (Ckl) is the associated Tannakian category.

Proof. We already know that this is something non-trivial. However, this can be
proved by using either Peter-Weyl theory, or Tannakian duality, as follows:

(1) Consider, as before in Proposition 6.3 and afterwards, the following set:

G̃ =
{
g ∈ ON

∣∣∣Tg⊗k = g⊗lT,∀k, l, ∀T ∈ Ckl
}

We know that G̃ ⊂ ON is a closed subgroup, and that G ⊂ G̃. Thus, we have an
intermediate subgroup as follows, that we want to prove to be equal to G itself:

G ⊂ G̃ ⊂ ON

(2) In order to prove this, consider the Tannakian category of G̃, namely:

C̃kl =
{
T ∈ L(H⊗k, H⊗l)

∣∣∣Tg⊗k = g⊗lT,∀g ∈ G̃
}
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By functoriality, from G ⊂ G̃ we obtain C̃ ⊂ C. On the other hand, according to the

definition of G̃, we have C ⊂ C̃. Thus, we have the following equality:

C = C̃

(3) Assume now by contradiction that G ⊂ G̃ is not an equality. Then, at the level of
algebras of functions, the following quotient map is not an isomorphism either:

C(G̃)→ C(G)

On the other hand, we know from Peter-Weyl that we have decompositions as follows,
with the sums being over all the irreducible unitary representations:

C(G̃) =
⊕

π∈Irr(G̃)
Mdimπ(C) , C(G) =

⊕
ν∈Irr(G)

Mdim ν(C)

Now observe that each unitary representation π : G̃→ UK restricts into a certain rep-

resentation π′ : G → UK . Since the quotient map C(G̃) → C(G) is not an isomorphism,
we conclude that there is at least one representation π satisfying:

π ∈ Irr(G̃) , π′ /∈ Irr(G)

(4) We are now in position to conclude. By using Peter-Weyl theory again, the above

representation π ∈ Irr(G̃) appears in a certain tensor power of the fundamental repre-

sentation u : G̃ ⊂ UN . Thus, we have inclusions of representations, as follows:

π ∈ u⊗k , π′ ∈ u′⊗k

Now since we know that π is irreducible, and that π′ is not, by using one more time
Peter-Weyl theory, we conclude that we have a strict inequality, as follows:

dim(C̃kk) = dim(End(u⊗k)) < dim(End(u′⊗k)) = dim(Ckk)

But this contradicts the equality C = C̃ found in (2), which finishes the proof.

(5) Alternatively, we can use Tannakian duality. This duality states that any com-
pact group G appears as the group of endomorphisms of the canonical inclusion functor
Rep(G) ⊂ H, where Rep(G) is the category of final dimensional continuous unitary rep-
resentations of G, and H is the category of finite dimensional Hilbert spaces.

(6) Now in the case of a closed subgroup G ⊂u ON , we know from Peter-Weyl theory
that any r ∈ Rep(G) appears as a subrepresentation r ∈ u⊗k. In categorical terms, this
means that, with suitable definitions, Rep(G) appears as a “completion” of the category
C = (Ckl). Thus C uniquely determines G, and we obtain the result. □

All the above was of course quite brief, but we will be back to this topic, and to
Tannakian duality in general, on numerous occasions, in what follows.
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6b. Tensor categories

Getting started now with some more systematic theory, let us first formulate:

Definition 6.8. The Tannakian category associated to a closed subgroup G ⊂u UN is
the collection C = (C(k, l)) of vector spaces

C(k, l) = Hom(u⊗k, u⊗l)

where the representations u⊗k with k = ◦ • • ◦ . . . colored integer, defined by

u⊗∅ = 1 , u⊗◦ = u , u⊗• = ū

and multiplicativity, u⊗kl = u⊗k ⊗ u⊗l, are the Peter-Weyl representations.

Here are a few examples of such representations, namely those coming from the colored
integers of length 2, to be often used in what follows:

u⊗◦◦ = u⊗ u , u⊗◦• = u⊗ ū
u⊗•◦ = ū⊗ u , u⊗•• = ū⊗ ū

As a first observation, the knowledge of the Tannakian category is more or less the
same thing as the knowledge of the fixed point spaces, which appear as:

Fix(u⊗k) = C(0, k)

Indeed, these latter spaces fully determine all the spaces C(k, l), because of the Frobe-
nius isomorphisms, which for the Peter-Weyl representations read:

C(k, l) = Hom(u⊗k, u⊗l)

≃ Hom(1, ū⊗k ⊗ u⊗l)
= Hom(1, u⊗k̄l)

= Fix(u⊗k̄l)

We would like to first make a summary of what we have so far, regarding these spaces
C(k, l), coming from the general theory developed in chapter 5. We will need:

Definition 6.9. Let H be a finite dimensional Hilbert space. A tensor category over
H is a collection C = (C(k, l)) of linear spaces

C(k, l) ⊂ L(H⊗k, H⊗l)

satisfying the following conditions:

(1) S, T ∈ C implies S ⊗ T ∈ C.
(2) If S, T ∈ C are composable, then ST ∈ C.
(3) T ∈ C implies T ∗ ∈ C.
(4) Each C(k, k) contains the identity operator.
(5) C(∅, k) with k = ◦•, •◦ contain the operator R : 1→

∑
i ei ⊗ ei.

(6) C(kl, lk) with k, l = ◦, • contain the flip operator Σ : a⊗ b→ b⊗ a.
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Here the tensor powers H⊗k, which are Hilbert spaces depending on a colored integer
k = ◦ • • ◦ . . . , are defined by the following formulae, and multiplicativity:

H⊗∅ = C , H⊗◦ = H , H⊗• = H̄ ≃ H

With these conventions, we have the following result, summarizing our knowledge on
the subject, coming from the results from the previous chapter:

Theorem 6.10. For a closed subgroup G ⊂u UN , the associated Tannakian category

C(k, l) = Hom(u⊗k, u⊗l)

is a tensor category over the Hilbert space H = CN .

Proof. We know that the fundamental representation u acts on the Hilbert space
H = CN , and that its conjugate ū acts on the Hilbert space H̄ = CN . Now by multi-
plicativity we conclude that any Peter-Weyl representation u⊗k acts on the Hilbert space
H⊗k, so that we have embeddings as in Definition 6.9, as follows:

C(k, l) ⊂ L(H⊗k, H⊗l)

Regarding now the fact that the axioms (1-6) in Definition 6.9 are indeed satisfied,
this is something that we basically already know, as follows:

(1,2,3) These results follow from definitions, and were explained in chapter 5.

(4) This is something trivial, coming from definitions.

(5) This follows from the fact that each element g ∈ G is a unitary, which can be
reformulated as follows, with R : 1→

∑
i ei ⊗ ei being the map in Definition 6.9:

R ∈ Hom(1, g ⊗ ḡ) , R ∈ Hom(1, ḡ ⊗ g)

Indeed, given an arbitrary matrix g ∈MN(C), we have the following computation:

(g ⊗ ḡ)(R(1)⊗ 1) =

(∑
ijkl

eij ⊗ ekl ⊗ gij ḡkl

)(∑
a

ea ⊗ ea ⊗ 1

)
=

∑
ika

ei ⊗ ek ⊗ giaḡ∗ka

=
∑
ik

ei ⊗ ek ⊗ (gg∗)ik

We conclude from this that we have the following equivalence:

R ∈ Hom(1, g ⊗ ḡ) ⇐⇒ gg∗ = 1

By replacing g with its conjugate matrix ḡ, we have as well:

R ∈ Hom(1, ḡ ⊗ g) ⇐⇒ ḡgt = 1
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Thus, the two intertwining conditions in Definition 6.9 (5) are both equivalent to the
fact that g is unitary, and so these conditions are indeed satisfied, as desired.

(6) This is again something elementary, coming from the fact that the various matrix
coefficients g → gij and their complex conjugates g → ḡij commute with each other. To
be more precise, with Σ : a⊗ b→ b⊗ a being the flip operator, we have:

(g ⊗ h)(Σ⊗ id)(ea ⊗ eb ⊗ 1) =

(∑
ijkl

eij ⊗ ekl ⊗ gijhkl

)
(eb ⊗ ea ⊗ 1)

=
∑
ik

ei ⊗ ek ⊗ gibhka

On the other hand, we have as well the following computation:

(Σ⊗ id)(h⊗ g)(ea ⊗ eb ⊗ 1) = (Σ⊗ id)

(∑
ijkl

eij ⊗ ekl ⊗ hijgkl

)
(ea ⊗ eb ⊗ 1)

= (Σ⊗ id)

(∑
ik

ei ⊗ ek ⊗ hiagkb

)
=

∑
ik

ek ⊗ ei ⊗ hiagkb

=
∑
ik

ei ⊗ ek ⊗ hkagib

Now since functions commute, gibhka = hkagib, this gives the result. □

With the above in hand, our purpose now will be that of showing that any closed
subgroup G ⊂ UN is uniquely determined by its Tannakian category C = (C(k, l)):

G↔ C

This result, known as Tannakian duality, is something quite deep, and very useful.
Indeed, the idea is that what we would have here is a “linearization” of G, allowing us to
do combinatorics, and ultimately reach to very concrete and powerful results, regarding
G itself. And as a consequence, solve our probability questions left.

Getting started now, we want to construct a correspondence G↔ C, and we already
know from Theorem 6.10 how the correspondence G→ C appears, namely via:

C(k, l) = Hom(u⊗k, u⊗l)

Regarding now the construction in the other sense, C → G, this is something very
simple as well, coming from the following elementary result:
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Theorem 6.11. Given a tensor category C = (C(k, l)) over the space H ≃ CN ,

G =
{
g ∈ UN

∣∣∣Tg⊗k = g⊗lT , ∀k, l, ∀T ∈ C(k, l)
}

is a closed subgroup G ⊂ UN .

Proof. Consider indeed the closed subset G ⊂ UN constructed in the statement. We
want to prove that G is indeed a group, and the verifications here go as follows:

(1) Given two matrices g, h ∈ G, their product satisfies gh ∈ G, due to the following
computation, valid for any k, l and any T ∈ C(k, l):

T (gh)⊗k = Tg⊗kh⊗k

= g⊗lTh⊗k

= g⊗lh⊗lT

= (gh)⊗lT

(2) Also, we have 1 ∈ G, trivially. Finally, for g ∈ G and T ∈ C(k, l), we have:

T (g−1)⊗k = (g−1)⊗l[g⊗lT ](g−1)⊗k

= (g−1)⊗l[Tg⊗k](g−1)⊗k

= (g−1)⊗lT

Thus we have g−1 ∈ G, and so G is a group, as claimed. □

Summarizing, we have so far precise axioms for the tensor categories C = (C(k, l)),
given in Definition 6.9, as well as correspondences as follows:

G→ C , C → G

We will show in what follows that these correspondences are inverse to each other. In
order to get started, we first have the following technical result:

Theorem 6.12. If we denote the correspondences in Theorem 6.9 and 6.10, between
closed subgroups G ⊂ UN and tensor categories C = (C(k, l)) over H = CN , as

G→ CG , C → GC

then we have embeddings as follows, for any G and C respectively,

G ⊂ GCG
, C ⊂ CGC

and proving that these correspondences are inverse to each other amounts in proving

CGC
⊂ C

for any tensor category C = (C(k, l)) over the space H = CN .

Proof. This is something trivial, with the embeddings G ⊂ GCG
and C ⊂ CGC

being
both clear from definitions, and with the last assertion coming from this. □
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In order to establish Tannakian duality, we will need some abstract constructions.
Following Malacarne [72], let us start with the following elementary fact:

Proposition 6.13. Given a tensor category C = C((k, l)) over a Hilbert space H,

EC =
⊕
k,l

C(k, l) ⊂
⊕
k,l

B(H⊗k, H⊗l) ⊂ B

(⊕
k

H⊗k

)
is a closed ∗-subalgebra. Also, inside this algebra,

E
(s)
C =

⊕
|k|,|l|≤s

C(k, l) ⊂
⊕

|k|,|l|≤s

B(H⊗k, H⊗l) = B

⊕
|k|≤s

H⊗k


is a finite dimensional ∗-subalgebra.

Proof. This is clear indeed from the categorical axioms from Definition 6.9. □

Now back to our reconstruction question, we want to prove C = CGC
, which is the

same as proving EC = ECGC
. We will use a standard commutant trick, as follows:

Theorem 6.14. For any ∗-algebra A ⊂MN(C) we have the equality

A = A′′

where prime denotes the commutant, X ′ =
{
T ∈MN(C)

∣∣Tx = xT,∀x ∈ X
}
.

Proof. This is a particular case of von Neumann’s bicommutant theorem, which
follows from the explicit description of A worked out in chapter 4, namely:

A =Mn1(C)⊕ . . .⊕Mnk
(C)

Indeed, the center of each matrix algebra being reduced to the scalars, the commutant
of this algebra is as follows, with each copy of C corresponding to a matrix block:

A′ = C⊕ . . .⊕ C
Now when taking once again the commutant, the computation is trivial, and we obtain

in this way A itself, and this leads to the conclusion in the statement. □

By using now the bicommutant theorem, we have:

Proposition 6.15. Given a Tannakian category C, the following are equivalent:

(1) C = CGC
.

(2) EC = ECGC
.

(3) E
(s)
C = E

(s)
CGC

, for any s ∈ N.
(4) E

(s)′

C = E
(s)′

CGC
, for any s ∈ N.

In addition, the inclusions ⊂, ⊂, ⊂, ⊃ are automatically satisfied.
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Proof. This follows from the above results, as follows:

(1) ⇐⇒ (2) This is clear from definitions.

(2) ⇐⇒ (3) This is clear from definitions as well.

(3) ⇐⇒ (4) This comes from the bicommutant theorem. As for the last assertion,
we have indeed C ⊂ CGC

from Theorem 6.12, and this shows that we have as well:

EC ⊂ ECGC

We therefore obtain by truncating E
(s)
C ⊂ E

(s)
CGC

, and by taking the commutants, this

gives E
(s)
C ⊃ E

(s)
CGC

. Thus, we are led to the conclusion in the statement. □

Summarizing, we would like to prove that we have E
(s)′

C ⊂ E
(s)′

CGC
. Let us first study

the commutant on the right. As a first observation, we have:

Proposition 6.16. We have the following equality,

E
(s)
CG

= End

⊕
|k|≤s

u⊗k


between subalgebras of B

(⊕
|k|≤sH

⊗k
)
.

Proof. We know that the category CG is by definition given by:

CG(k, l) = Hom(u⊗k, u⊗l)

Thus, the corresponding algebra E
(s)
CG

appears as follows:

E
(s)
CG

=
⊕

|k|,|l|≤s

Hom(u⊗k, u⊗l) ⊂
⊕

|k|,|l|≤s

B(H⊗k, H⊗l) = B

⊕
|k|≤s

H⊗k


On the other hand, the algebra of intertwiners of

⊕
|k|≤s u

⊗k is given by:

End

⊕
|k|≤s

u⊗k

 =
⊕

|k|,|l|≤s

Hom(u⊗k, u⊗l) ⊂
⊕

|k|,|l|≤s

B(H⊗k, H⊗l) = B

⊕
|k|≤s

H⊗k


Thus we have indeed the same algebra, and we are done. □

We have to compute the commutant of the above algebra. For this purpose, we can
use the following general result, valid for any representation of a compact group:
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Proposition 6.17. Given a unitary group representation v : G → Un we have an
algebra representation as follows,

πv : C(G)
∗ →Mn(C) , φ→ (φ(vij))ij

whose image is given by Im(πv) = End(v)′.

Proof. The first assertion is clear, with the multiplicativity claim for πv coming from
the following computation, where ∆ : C(G)→ C(G)⊗ C(G) is the comultiplication:

(πv(φ ∗ ψ))ij = (φ⊗ ψ)∆(vij)

=
∑
k

φ(vik)ψ(vkj)

=
∑
k

(πv(φ))ik(πv(ψ))kj

= (πv(φ)πv(ψ))ij

Let us establish now the equality in the statement, namely:

Im(πv) = End(v)′

Let us first prove the inclusion ⊂. Given φ ∈ C(G)∗ and T ∈ End(v), we have:

[πv(φ), T ] = 0 ⇐⇒
∑
k

φ(vik)Tkj =
∑
k

Tikφ(vkj),∀i, j

⇐⇒ φ

(∑
k

vikTkj

)
= φ

(∑
k

Tikvkj

)
,∀i, j

⇐⇒ φ((vT )ij) = φ((Tv)ij),∀i, j
But this latter formula is true, because T ∈ End(v) means that we have:

vT = Tv

As for the converse inclusion ⊃, the proof is quite similar. Indeed, by using the
bicommutant theorem, this is the same as proving that we have:

Im(πv)
′ ⊂ End(v)

But, by using the above equivalences, we have the following computation:

T ∈ Im(πv)
′ ⇐⇒ [πv(φ), T ] = 0,∀φ
⇐⇒ φ((vT )ij) = φ((Tv)ij),∀φ, i, j
⇐⇒ vT = Tv

Thus, we have obtained the desired inclusion, and we are done. □

By combining the above results, we obtain the following technical statement:
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Theorem 6.18. We have the following equality,

E
(s)′

CG
= Im(πv)

where the representation v is the following direct sum,

v =
⊕
|k|≤s

u⊗k

and where the algebra representation πv : C(G)
∗ →Mn(C) is given by φ→ (φ(vij))ij.

Proof. This follows indeed by combining the above results, and more precisely by
combining Proposition 6.16 and Proposition 6.17. □

6c. The correspondence

We recall that we want to prove that we have E
(s)′

C ⊂ E
(s)′

CGC
, for any s ∈ N. And for

this purpose, we must first refine Theorem 6.18, in the case G = GC .

Generally speaking, in order to prove anything about GC , we are in need of an explicit
model for this group. In order to construct such a model, let < uij > be the free ∗-algebra
over dim(H)2 variables, with comultiplication and counit as follows:

∆(uij) =
∑
k

uik ⊗ ukj , ε(uij) = δij

Following [72], we can model this ∗-bialgebra, in the following way:

Proposition 6.19. Consider the following pair of dual vector spaces,

F =
⊕
k

B
(
H⊗k) , F ∗ =

⊕
k

B
(
H⊗k)∗

and let fij, f
∗
ij ∈ F ∗ be the standard generators of B(H)∗, B(H̄)∗.

(1) F ∗ is a ∗-algebra, with multiplication ⊗ and involution as follows:

fij ↔ f ∗
ij

(2) F ∗ is a ∗-bialgebra, with ∗-bialgebra operations as follows:

∆(fij) =
∑
k

fik ⊗ fkj , ε(fij) = δij

(3) We have a ∗-bialgebra isomorphism < uij >≃ F ∗, given by uij → fij.

Proof. Since F ∗ is spanned by the various tensor products between the variables
fij, f

∗
ij, we have a vector space isomorphism as follows:

< uij >≃ F ∗ , uij → fij , u∗ij → f ∗
ij

The corresponding ∗-bialgebra structure induced on the vector space F ∗ is then the
one in the statement, and this gives the result. □
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Now back to our group GC , we have the following modeling result for it:

Proposition 6.20. The smooth part of the algebra AC = C(GC) is given by

AC ≃ F ∗/J

where J ⊂ F ∗ is the ideal coming from the following relations, for any i, j,∑
p1,...,pk

Ti1...il,p1...pkfp1j1 ⊗ . . .⊗ fpkjk =
∑
q1,...,ql

Tq1...ql,j1...jkfi1q1 ⊗ . . .⊗ filql

one for each pair of colored integers k, l, and each T ∈ C(k, l).

Proof. As a first observation, AC appears as enveloping C∗-algebra of the following
universal ∗-algebra, where u = (uij) is regarded as a formal corepresentation:

AC =
〈
(uij)i,j=1,...,N

∣∣∣T ∈ Hom(u⊗k, u⊗l),∀k, l, ∀T ∈ C(k, l)
〉

With this observation in hand, the conclusion is that we have a formula as follows,
where I is the ideal coming from the relations T ∈ Hom(u⊗k, u⊗l), with T ∈ C(k, l):

AC =< uij > /I

Now if we denote by J ⊂ F ∗ the image of the ideal I via the ∗-algebra isomorphism
< uij >≃ F ∗ from Proposition 6.22, we obtain an identification as follows:

AC ≃ F ∗/J

With standard multi-index notations, and by assuming now that k, l ∈ N are usual
integers, for simplifying the presentation, the general case being similar, a relation of type
T ∈ Hom(u⊗k, u⊗l) inside < uij > is equivalent to the following conditions:∑

p1,...,pk

Ti1...il,p1...pkup1j1 . . . upkjk =
∑
q1,...,ql

Tq1...ql,j1...jkui1q1 . . . uilql

Now by recalling that the isomorphism of ∗-algebras < uij >→ F ∗ is given by
uij → fij, and that the multiplication operation of F ∗ corresponds to the tensor product
operation ⊗, we conclude that J ⊂ F ∗ is the ideal from the statement. □

With the above result in hand, let us go back to Theorem 6.18. We have:

Proposition 6.21. The linear space A∗
C is given by the formula

A∗
C =

{
a ∈ F

∣∣∣Tak = alT,∀T ∈ C(k, l)
}

and the representation

πv : A∗
C → B

⊕
|k|≤s

H⊗k


appears diagonally, by truncating, πv : a→ (ak)kk.
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Proof. We know from Proposition 6.20 that we have an identification of ∗-bialgebras
AC ≃ F ∗/J . But this gives a quotient map, as follows:

F ∗ → AC
At the dual level, this gives A∗

C ⊂ F . To be more precise, we have:

A∗
C =

{
a ∈ F

∣∣∣f(a) = 0,∀f ∈ J
}

Now since J =< fT >, where fT are the relations in Proposition 6.20, we obtain:

A∗
C =

{
a ∈ F

∣∣∣fT (a) = 0,∀T ∈ C
}

Given T ∈ C(k, l), for an arbitrary element a = (ak), we have:

fT (a) = 0

⇐⇒
∑

p1,...,pk

Ti1...il,p1...pk(ak)p1...pk,j1...jk =
∑
q1,...,ql

Tq1...ql,j1...jk(al)i1...il,q1...ql ,∀i, j

⇐⇒ (Tak)i1...il,j1...jk = (alT )i1...il,j1...jk ,∀i, j
⇐⇒ Tak = alT

Thus, A∗
C is given by the formula in the statement. It remains to compute πv:

πv : A∗
C → B

⊕
|k|≤s

H⊗k


With a = (ak), we have the following computation:

πv(a)i1...ik,j1...jk = a(vi1...ik,j1...jk)

= (fi1j1 ⊗ . . .⊗ fikjk)(a)
= (ak)i1...ik,j1...jk

Thus, our representation πv appears diagonally, by truncating, as claimed. □

In order to further advance, consider the following vector spaces:

Fs =
⊕
|k|≤s

B
(
H⊗k) , F ∗

s =
⊕
|k|≤s

B
(
H⊗k)∗

We denote by a→ as the truncation operation F → Fs. We have:

Proposition 6.22. The following hold:

(1) E
(s)′

C ⊂ Fs.
(2) E ′

C ⊂ F .
(3) A∗

C = E ′
C.

(4) Im(πv) = (E ′
C)s.
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Proof. These results basically follow from what we have, as follows:

(1) We have an inclusion as follows, as a diagonal subalgebra:

Fs ⊂ B

⊕
|k|≤s

H⊗k


The commutant of this algebra is then given by:

F ′
s =

{
b ∈ Fs

∣∣∣b = (bk), bk ∈ C,∀k
}

On the other hand, we know from the identity axiom for the category C that we have

F ′
s ⊂ E

(s)
C . Thus, our result follows from the bicommutant theorem, as follows:

F ′
s ⊂ E

(s)
C =⇒ Fs ⊃ E

(s)′

C

(2) This follows from (1), by taking inductive limits.

(3) With the present notations, the formula of A∗
C from Proposition 6.21 reads A∗

C =
F ∩ E ′

C . Now since by (2) we have E ′
C ⊂ F , we obtain from this A∗

C = E ′
C .

(4) This follows from (3), and from the formula of πν in Proposition 6.21. □

Following [72], we can now state and prove our main result, as follows:

Theorem 6.23. The Tannakian duality constructions

C → GC , G→ CG

are inverse to each other.

Proof. According to our various results above, we have to prove that, for any Tan-
nakian category C, and any s ∈ N, we have an inclusion as follows:

E
(s)′

C ⊂ (E ′
C)s

By taking duals, this is the same as proving that we have:{
f ∈ F ∗

s

∣∣∣f|(E′
C)s = 0

}
⊂
{
f ∈ F ∗

s

∣∣∣f|E(s)′
C

= 0
}

In order to do so, we use the following formula, from Proposition 6.22:

A∗
C = E ′

C

We know from the above that we have an identification as follows:

AC = F ∗/J

We conclude that the ideal J is given by the following formula:

J =
{
f ∈ F ∗

∣∣∣f|E′
C
= 0
}
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Our claim is that we have the following formula, for any s ∈ N:

J ∩ F ∗
s =

{
f ∈ F ∗

s

∣∣∣f|E(s)′
C

= 0
}

Indeed, let us denote by Xs the spaces on the right. The axioms for C show that these
spaces are increasing, that their union X = ∪sXs is an ideal, and that:

Xs = X ∩ F ∗
s

We must prove that we have J = X, and this can be done as follows:

“⊂” This follows from the following fact, for any T ∈ C(k, l) with |k|, |l| ≤ s:

(fT )|{T}′ = 0 =⇒ (fT )|E(s)′
C

= 0

=⇒ fT ∈ Xs

“⊃” This follows from our description of J , because from E
(s)
C ⊂ EC we obtain:

f|E(s)′
C

= 0 =⇒ f|E′
C
= 0

Summarizing, we have proved our claim. On the other hand, we have:

J ∩ F ∗
s =

{
f ∈ F ∗

∣∣∣f|E′
C
= 0
}
∩ F ∗

s

=
{
f ∈ F ∗

s

∣∣∣f|E′
C
= 0
}

=
{
f ∈ F ∗

s

∣∣∣f|(E′
C)s = 0

}
Thus, our claim is exactly the inclusion that we wanted to prove, and we are done. □

6d. Brauer theorems

Time for some applications. Let us start with the following definition:

Definition 6.24. Given a pairing π ∈ P2(k, l) and an integer N ∈ N, we can construct
a linear map between tensor powers of CN ,

Tπ : (CN)⊗k → (CN)⊗l

by the following formula, with e1, . . . , eN being the standard basis of CN ,

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

and with the coefficients on the right being Kronecker type symbols,

δπ

(
i1 . . . ik
j1 . . . jl

)
∈ {0, 1}

whose values depend on whether the indices fit or not.
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To be more precise here, we put the multi-indices i = (i1, . . . , ik) and j = (j1, . . . , jl)
on the legs of our pairing π, in the obvious way. In the case where all strings of π join
pairs of equal indices of i, j, we set δπ(

i
j) = 1. Otherwise, we set δπ(

i
j) = 0.

The point with the above definition comes from the fact that most of the “familiar”
maps, in the Tannakian context, are of the above form. Here are some examples:

Proposition 6.25. The correspondence π → Tπ has the following properties:

(1) T∩ = (1→
∑

i ei ⊗ ei).
(2) T∪ = (ei ⊗ ej → δij).
(3) T||...|| = id.
(4) T/\ = (ea ⊗ eb → eb ⊗ ea).

Proof. We can assume that all legs of π are colored ◦, and then:

(1) We have ∩ ∈ P2(∅, ◦◦), and T∩ : C→ CN ⊗ CN can be computed as follows:

T∩(1) =
∑
ij

δ∩(i j)ei ⊗ ej

=
∑
ij

δijei ⊗ ej

=
∑
i

ei ⊗ ei

(2) Here we have ∪ ∈ P2(◦◦, ∅), and the map T∩ : CN ⊗ CN → C is given by:

T∩(ei ⊗ ej) = δ∩(i j) = δij

(3) Consider indeed the “identity” pairing || . . . || ∈ P2(k, k), with k = ◦ ◦ . . . ◦ ◦. The
corresponding linear map is then the identity, because we have:

T||...||(ei1 ⊗ . . .⊗ eik) =
∑
j1...jk

δ||...||

(
i1 . . . ik
j1 . . . jk

)
ej1 ⊗ . . .⊗ ejk

=
∑
j1...jk

δi1j1 . . . δikjkej1 ⊗ . . .⊗ ejk

= ei1 ⊗ . . .⊗ eik

(4) For the basic crossing /\ ∈ P2(◦◦, ◦◦), the corresponding linear map is as follows:

T/\ : CN ⊗ CN → CN ⊗ CN
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This linear map can be computed as follows:

T/\(ei ⊗ ej) =
∑
kl

δ/\

(
i j
k l

)
ek ⊗ el

=
∑
kl

δilδjkek ⊗ el

= ej ⊗ ei

Thus we obtain the flip operator Σ(a⊗ b) = b⊗ a, as claimed. □

The relation with the Tannakian categories comes from the following key result:

Proposition 6.26. The assignement π → Tπ is categorical, in the sense that

Tπ ⊗ Tσ = T[πσ] , TπTσ = N c(π,σ)T[σπ ] , T ∗
π = Tπ∗

where c(π, σ) is the number of circles appearing in the middle, when concatenating.

Proof. The concatenation axiom follows from the following computation:

(Tπ ⊗ Tσ)(ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

=
∑
j1...jq

∑
l1...ls

δπ

(
i1 . . . ip
j1 . . . jq

)
δσ

(
k1 . . . kr
l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

=
∑
j1...jq

∑
l1...ls

δ[πσ]

(
i1 . . . ip k1 . . . kr
j1 . . . jq l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

= T[πσ](ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

The composition axiom follows from the following computation:

TπTσ(ei1 ⊗ . . .⊗ eip)

=
∑
j1...jq

δσ

(
i1 . . . ip
j1 . . . jq

) ∑
k1...kr

δπ

(
j1 . . . jq
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

=
∑
k1...kr

N c(π,σ)δ[σπ ]

(
i1 . . . ip
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

= N c(π,σ)T[σπ ](ei1 ⊗ . . .⊗ eip)
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Finally, the involution axiom follows from the following computation:

T ∗
π (ej1 ⊗ . . .⊗ ejq)

=
∑
i1...ip

< T ∗
π (ej1 ⊗ . . .⊗ ejq), ei1 ⊗ . . .⊗ eip > ei1 ⊗ . . .⊗ eip

=
∑
i1...ip

δπ

(
i1 . . . ip
j1 . . . jq

)
ei1 ⊗ . . .⊗ eip

= Tπ∗(ej1 ⊗ . . .⊗ ejq)
Summarizing, our correspondence is indeed categorical. □

The above result suggests the following general definition:

Definition 6.27. Let P2(k, l) be the set of pairings between an upper colored integer
k, and a lower colored integer l. A collection of subsets

D =
⊔
k,l

D(k, l)

with D(k, l) ⊂ P2(k, l) is called a category of pairings when it has the following properties:

(1) Stability under the horizontal concatenation, (π, σ)→ [πσ].
(2) Stability under vertical concatenation (π, σ)→ [σπ], with matching middle symbols.
(3) Stability under the upside-down turning ∗, with switching of colors, ◦ ↔ •.
(4) Each set P (k, k) contains the identity partition || . . . ||.
(5) The sets P (∅, ◦•) and P (∅, •◦) both contain the semicircle ∩.
(6) The sets P (k, k̄) with |k| = 2 contain the crossing partition /\.

Observe the similarity with the axioms for Tannakian categories, given earlier in this
chapter. In relation with the compact groups, we have the following result:

Theorem 6.28. Each category of pairings, in the above sense,

D = (D(k, l))

produces a family of compact groups G = (GN), one for each N ∈ N, via the formula

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

and the Tannakian duality correspondence.

Proof. Given an integer N ∈ N, consider the correspondence π → Tπ constructed in
Definition 6.24, and then the collection of linear spaces in the statement, namely:

Ckl = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

According to Proposition 6.26, and to our axioms for the categories of partitions, from
Definition 6.27, this collection of spaces C = (Ckl) satisfies the axioms for the Tannakian
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categories, from the beginning of this chapter. Thus the Tannakian duality result there
applies, and provides us with a closed subgroup GN ⊂ UN such that:

Ckl = Hom(u⊗k, u⊗l)

Thus, we are led to the conclusion in the statement. □

We can establish now a useful result, namely the Brauer theorem for UN :

Theorem 6.29. For the unitary group UN we have

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ P2(k, l)
)

where P2 denotes as usual the category of all matching pairings.

Proof. Consider the spaces on the right in the statement, namely:

Ckl = span
(
Tπ

∣∣∣π ∈ P2(k, l)
)

According to Proposition 6.26 these spaces form a tensor category. Thus, by Tannakian
duality, these spaces must come from a certain closed subgroup G ⊂ UN . To be more
precise, if we denote by v the fundamental representation of G, then:

Ckl = Hom(v⊗k, v⊗l)

We must prove that we have G = UN . For this purpose, let us recall that the unitary
group UN is defined via the following relations:

u∗ = u−1 , ut = ū−1

But these relations tell us precisely that the following two operators must be in the
associated Tannakian category C:

Tπ : π = ∩
◦• ,

∩
•◦

Thus the associated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< ∩
◦• ,

∩
•◦ >= P2

Thus, we are led to the conclusion in the statement. □

Regarding the orthogonal group ON , we have here a similar result, as follows:

Theorem 6.30. For the orthogonal group ON we have

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ P2(k, l)
)

where P2 denotes as usual the category of all pairings.
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Proof. Consider the spaces on the right in the statement, namely:

Ckl = span
(
Tπ

∣∣∣π ∈ P2(k, l)
)

According to Proposition 6.26 these spaces form a tensor category. Thus, by Tannakian
duality, these spaces must come from a certain closed subgroup G ⊂ UN . To be more
precise, if we denote by v the fundamental representation of G, then:

Ckl = Hom(v⊗k, v⊗l)

We must prove that we have G = ON . For this purpose, let us recall that the orthog-
onal group ON ⊂ UN is defined by imposing the following relations:

uij = ūij

But these relations tell us precisely that the following two operators must be in the
associated Tannakian category C:

Tπ : π = |◦• , |•◦
Thus the associated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< P2, |◦•, |•◦ >= P2

Thus, we are led to the conclusion in the statement. □

6e. Exercises

Exercises:

Exercise 6.31.

Exercise 6.32.

Exercise 6.33.

Exercise 6.34.

Exercise 6.35.

Exercise 6.36.

Exercise 6.37.

Exercise 6.38.

Bonus exercise.



CHAPTER 7

Diagrams, easiness

7a. Easy groups

We have seen in the previous chapter that the Tannakian duals of the groups ON , UN
are very simple objects. To be more precise, the Brauer theorem for these two groups
states that we have equalities as follows, with D = P2,P2 respectively:

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

Our goal here will be that of axiomatizing and studying the closed subgroups G ⊂ UN
which are of this type, but with D being allowed to be, more generally, a category of
partitions. We will call such groups “easy”, and our results will be as follows:

(1) At the level of the continuous examples, we will see that besides ON , UN , we
have the bistochastic groups BN , CN . This is something which is interesting, and also
instructive, making it clear why we have to upgrade, from pairings to partitions.

(2) At the level of discrete examples, we have none so far, but we will see that the
symmetric group SN , the hyperoctahedral group HN , and more generally the complex
reflection groups Hs

N with s ∈ N ∪ {∞}, are all easy, in the above generalized sense.

(3) Still at the level of the basic examples, some key Lie groups such as SU2, SO3, or
the symplectic group SpN , are not easy, but the point is that these are however covered
by a suitable “super-easiness” version of the easiness, as defined above.

(4) At the level of the general theory, we will develop some algebraic theory in this
chapter, for the most in relation with various product operations, the idea being that in
the easy case, everything eventually reduces to computations with partitions.

(5) Also at the level of the general theory, we will develop as well some analytic
theory, later in Part III, based on the same idea, namely that in the easy case, everything
eventually reduces to some elementary computations with partitions.

All this sounds quite exciting, good theory that we will be developing here, hope you
agree with me. In order to get started now, let us formulate the following key definition,
extending to the case of arbitrary partitions what we already know about pairings:

131
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Definition 7.1. Given a partition π ∈ P (k, l) and an integer N ∈ N, we define

Tπ : (CN)⊗k → (CN)⊗l

by the following formula, with e1, . . . , eN being the standard basis of CN ,

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

and with the coefficients on the right being Kronecker type symbols.

To be more precise here, in order to compute the Kronecker type symbols δπ(
i
j) ∈

{0, 1}, we proceed exactly as in the pairing case, namely by putting the multi-indices
i = (i1, . . . , ik) and j = (j1, . . . , jl) on the legs of π, in the obvious way. In case all the
blocks of π contain equal indices of i, j, we set δπ(

i
j) = 1. Otherwise, we set δπ(

i
j) = 0.

With the above notion in hand, we can now formulate the following key definition,
motivated by the Brauer theorems for ON , UN , as indicated before:

Definition 7.2. A closed subgroup G ⊂ UN is called easy when

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

for any two colored integers k, l = ◦ • ◦ • . . . , for certain sets of partitions

D(k, l) ⊂ P (k, l)

where π → Tπ is the standard implementation of the partitions, as linear maps.

In other words, we call a group G easy when its Tannakian category appears in the
simplest possible way: from the linear maps associated to partitions. The terminology is
quite natural, because Tannakian duality is basically our only serious tool.

As basic examples, the orthogonal and unitary groups ON , UN are both easy, coming
respectively from the following collections of sets of partitions:

P2 =
⊔
k,l

P2(k, l) , P2 =
⊔
k,l

P2(k, l)

In the general case now, as an important theoretical remark, in the context of Defini-
tion 7.2, consider the following collection of sets of partitions:

D =
⊔
k,l

D(k, l)

This collection of sets D obviously determines G, but the converse is not true. Indeed,
at N = 1 for instance, both the choices D = P2,P2 produce the same easy group, namely
G = {1}. We will be back to this issue on several occasions, with results about it.
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In order to advance, our first goal will be that of establishing a duality between easy
groups and certain special classes of collections of sets as above, namely:

D =
⊔
k,l

D(k, l)

Let us begin with a general definition, as follows:

Definition 7.3. Let P (k, l) be the set of partitions between an upper colored integer
k, and a lower colored integer l. A collection of subsets

D =
⊔
k,l

D(k, l)

with D(k, l) ⊂ P (k, l) is called a category of partitions when it has the following properties:

(1) Stability under the horizontal concatenation, (π, σ)→ [πσ].
(2) Stability under vertical concatenation (π, σ)→ [σπ], with matching middle symbols.
(3) Stability under the upside-down turning ∗, with switching of colors, ◦ ↔ •.
(4) Each set P (k, k) contains the identity partition || . . . ||.
(5) The sets P (∅, ◦•) and P (∅, •◦) both contain the semicircle ∩.
(6) The sets P (k, k̄) with |k| = 2 contain the crossing partition /\.

As before, this is something that we already met in chapter 6, but for the pairings
only. Observe the similarity with the axioms for Tannakian categories, also from chapter
6. We will see in a moment that this similarity can be turned into something very precise,
the idea being that such a category produces a family of easy quantum groups (GN)N∈N,
one for each N ∈ N, via the formula in Definition 7.1, and Tannakian duality.

As basic examples, that we have already met in chapter 6, in connection with the
representation theory ofON , UN , we have the categories P2,P2 of pairings, and of matching
pairings. Further basic examples include the categories P, Peven of all partitions, and of
all partitions whose blocks have even size. We will see in a moment that these latter
categories are related to the symmetric and hyperoctahedral groups SN , HN .

The relation with the Tannakian categories comes from the following result:

Proposition 7.4. The assignement π → Tπ is categorical, in the sense that

Tπ ⊗ Tσ = T[πσ] , TπTσ = N c(π,σ)T[σπ ] , T ∗
π = Tπ∗

where c(π, σ) are certain integers, coming from the erased components in the middle.
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Proof. This is something that we already know for pairings, and the proof in general
is similar. The concatenation axiom follows from the following computation:

(Tπ ⊗ Tσ)(ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

=
∑
j1...jq

∑
l1...ls

δπ

(
i1 . . . ip
j1 . . . jq

)
δσ

(
k1 . . . kr
l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

=
∑
j1...jq

∑
l1...ls

δ[πσ]

(
i1 . . . ip k1 . . . kr
j1 . . . jq l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

= T[πσ](ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

The composition axiom follows from the following computation:

TπTσ(ei1 ⊗ . . .⊗ eip)

=
∑
j1...jq

δσ

(
i1 . . . ip
j1 . . . jq

) ∑
k1...kr

δπ

(
j1 . . . jq
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

=
∑
k1...kr

N c(π,σ)δ[σπ ]

(
i1 . . . ip
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

= N c(π,σ)T[σπ ](ei1 ⊗ . . .⊗ eip)

Finally, the involution axiom follows from the following computation:

T ∗
π (ej1 ⊗ . . .⊗ ejq)

=
∑
i1...ip

< T ∗
π (ej1 ⊗ . . .⊗ ejq), ei1 ⊗ . . .⊗ eip > ei1 ⊗ . . .⊗ eip

=
∑
i1...ip

δπ

(
i1 . . . ip
j1 . . . jq

)
ei1 ⊗ . . .⊗ eip

= Tπ∗(ej1 ⊗ . . .⊗ ejq)

Summarizing, our correspondence is indeed categorical. □

Time now to put everyting together. All the above was pure combinatorics, and in
relation with the compact groups, we have the following result:

Theorem 7.5. Each category of partitions D = (D(k, l)) produces a family of compact
groups G = (GN), one for each N ∈ N, via the formula

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

and the Tannakian duality correspondence.
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Proof. Given an integer N ∈ N, consider the correspondence π → Tπ constructed in
Definition 7.1, and then the collection of linear spaces in the statement, namely:

Ckl = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

According to the formulae in Proposition 7.4, and to our axioms for the categories
of partitions, from Definition 7.3, this collection of spaces C = (Ckl) satisfies the axioms
for the Tannakian categories, from chapter 6. Thus the Tannakian duality result there
applies, and provides us with a closed subgroup GN ⊂ UN such that:

Ckl = Hom(u⊗k, u⊗l)

Thus, we are led to the conclusion in the statement. □

In relation with the easiness property, we can now formulate a key result, which can
serve as an alternative definition for the easy groups, as follows:

Theorem 7.6. A closed subgroup G ⊂ UN is easy precisely when

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

for any colored integers k, l, for a certain category of partitions D ⊂ P .

Proof. This basically follows from Theorem 7.5, as follows:

(1) In one sense, we know from Theorem 7.5 that any category of partitions D ⊂ P
produces a family of closed groups G ⊂ UN , one for each N ∈ N, according to Tannakian
duality and to the Hom space formula there, namely:

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

But these groups G ⊂ UN are indeed easy, in the sense of Definition 7.2.

(2) In the other sense now, assume that G ⊂ UN is easy, in the sense of Definition 7.2,
coming via the above Hom space formula, from a collection of sets as follows:

D =
⊔
k,l

D(k, l)

Consider now the category of partitions D̃ =< D > generated by this family. This is
by definition the smallest category of partitions containing D, whose existence follows by
starting with D, and performing the various categorical operations, namely horizontal and
vertical concatenation, and upside-down turning. It follows then, via another application
of Tannakian duality, that we have the following formula, for any k, l:

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D̃(k, l)
)

Thus, our group G ⊂ UN can be viewed as well as coming from D̃, and so appearing
as particular case of the construction in Theorem 7.5, and this gives the result. □
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As already mentioned above, Theorem 7.6 can be regarded as an alternative definition
for easiness, with the assumption that D ⊂ P must be a category of partitions being
added. In what follows we will rather use this new definition, which is more precise.

Generally speaking, the same comments as before apply. First, G is easy when its
Tannakian category appears in the simplest possible way: from a category of partitions.
The terminology is quite natural, because Tannakian duality is our only serious tool.

Also, the category of partitions D is not unique, for instance because at N = 1 all the
categories of partitions produce the same easy group, namely G = {1}. We will be back
to this issue on several occasions, with various results about it.

We will see in what follows that many interesting examples of compact quantum
groups are easy. Moreover, most of the known series of “basic” compact quantum groups,
G = (GN) with N ∈ N, can be in principle made fit into some suitable extensions of the
easy quantum group formalism. We will discuss this too, in what follows.

The notion of easiness goes back to the results of Brauer in [13] regarding the orthog-
onal group ON , and the unitary group UN , which reformulate as follows:

Theorem 7.7. We have the following results:

(1) The unitary group UN is easy, coming from the category P2.
(2) The orthogonal group ON is easy as well, coming from the category P2.

Proof. This is something that we already know, from chapter 6, based on Tannakian
duality, the idea of the proof being as follows:

(1) The group UN being defined via the relations u∗ = u−1, ut = ū−1, the associated
Tannakian category is C = span(Tπ|π ∈ D), with:

D =< ∩
◦• ,

∩
•◦ >= P2

(2) The group ON ⊂ UN being defined by imposing the relations uij = ūij, the
associated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< P2, |◦•, |•◦ >= P2

Thus, we are led to the conclusion in the statement. □

There are many other examples of easy groups, and we will gradually explore this. To
start with, we have the following interesting result, still in the continuous case:

Theorem 7.8. We have the following results:

(1) The unitary bistochastic group CN is easy, coming from the category P12 of match-
ing singletons and pairings.

(2) The orthogonal bistochastic group BN is easy, coming from the category P12 of
singletons and pairings.
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Proof. The proof here is similar to the proof of Theorem 7.7. To be more precise,
we can use the results there, and the proof goes as follows:

(1) The group CN ⊂ UN is defined by imposing the following relations, with ξ being
the all-one vector, which correspond to the bistochasticity condition:

uξ = ξ , ūξ = ξ

But these relations tell us precisely that the following two operators, with the partitions
on the right being singletons, must be in the associated Tannakian category C:

Tπ : π = |◦ , |•
Thus the associated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< P2, |◦, |• >= P12

Thus, we are led to the conclusion in the statement.

(2) In order to deal now with the real bistochastic group BN , we can either use a
similar argument, or simply use the following intersection formula:

BN = CN ∩ON

Indeed, at the categorical level, this intersection formula tells us that the associated
Tannakian category is given by C = span(Tπ|π ∈ D), with:

D =< P12, P2 >= P12

Thus, we are led to the conclusion in the statement. □

As a comment here, we have used in the above the fact, which is something quite
trivial, that the category of partitions associated to an intersection of easy quantum
groups is generated by the corresponding categories of partitions. We will be back to this,
and to some other product operations as well, with similar results, later on.

We can put now the results that we have together, as follows:

Theorem 7.9. The basic unitary and bistochastic groups,

CN // UN

BN

OO

// ON

OO

are all easy, coming from the various categories of singletons and pairings.
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Proof. We know from the above that the groups in the statement are indeed easy,
the corresponding diagram of categories of partitions being as follows:

P12

��

P2
oo

��
P12 P2

oo

Thus, we are led to the conclusion in the statement. □

Summarizing, what we have so far is a general notion of “easiness”, coming from the
Brauer theorems for ON , UN , and their straightforward extensions to BN , CN .

7b. Reflection groups

In view of the above, the notion of easiness is a quite interesting one, deserving a full,
systematic investigation. As a first natural question that we would like to solve, we would
like to compute the easy group associated to the category of all partitions P itself. And
here, no surprise, we are led to the most basic, but non-trivial, classical group that we
know, namely the symmetric group SN . To be more precise, we have the following Brauer
type theorem for SN , which answers our question formulated above:

Theorem 7.10. The symmetric group SN , regarded as group of unitary matrices,

SN ⊂ ON ⊂ UN

via the permutation matrices, is easy, coming from the category of all partitions P .

Proof. Consider indeed the group SN , regarded as a group of unitary matrices, with
each permutation σ ∈ SN corresponding to the associated permutation matrix:

σ(ei) = eσ(i)

Consider as well the easy group G ⊂ ON coming from the category of all partitions
P . Since P is generated by the one-block “fork” partition Y ∈ P (2, 1), we have:

C(G) = C(ON)
/〈

TY ∈ Hom(u⊗2, u)
〉

The linear map associated to Y is given by the following formula:

TY (ei ⊗ ej) = δijei

In order to do the computations, we use the following formulae:

u = (uij)ij , u⊗2 = (uijukl)ik,jl , TY = (δijk)i,jk
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We therefore obtain the following formula:

(TY u
⊗2)i,jk =

∑
lm

(TY )i,lm(u
⊗2)lm,jk = uijuik

On the other hand, we have as well the following formula:

(uTY )i,jk =
∑
l

uil(TY )l,jk = δjkuij

Thus, the relation defining G ⊂ ON reformulates as follows:

TY ∈ Hom(u⊗2, u) ⇐⇒ uijuik = δjkuij,∀i, j, k

In other words, the elements uij must be projections, which must be pairwise orthog-
onal on the rows of u = (uij). We conclude that G ⊂ ON is the subgroup of matrices
g ∈ ON having the property gij ∈ {0, 1}. Thus we have G = SN , as desired. □

As a continuation of this, let us discuss now the hyperoctahedral group HN . The
result here is quite similar to the one for the symmetric groups, as follows:

Theorem 7.11. The hyperoctahedral group HN , regarded as a group of matrices,

SN ⊂ HN ⊂ ON

is easy, coming from the category of partitions with even blocks Peven.

Proof. This follows as usual from Tannakian duality. To be more precise, consider
the following one-block partition, which, as the name indicates, looks like a H letter:

H ∈ P (2, 2)

The linear map associated to this partition is then given by:

TH(ei ⊗ ej) = δijei ⊗ ei

By using this formula, we have the following computation:

(TH ⊗ id)u⊗2(ea ⊗ eb) = (TH ⊗ id)

(∑
ijkl

eij ⊗ ekl ⊗ uijukl

)
(ea ⊗ eb)

= (TH ⊗ id)

(∑
ik

ei ⊗ ek ⊗ uiaukb

)
=

∑
i

ei ⊗ ei ⊗ uiauib
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On the other hand, we have as well the following computation:

u⊗2(TH ⊗ id)(ea ⊗ eb) = δab

(∑
ijkl

eij ⊗ ekl ⊗ uijukl

)
(ea ⊗ ea)

= δab
∑
ij

ei ⊗ ek ⊗ uiauka

We conclude from this that we have the following equivalence:

TH ∈ End(u⊗2) ⇐⇒ δikuiauib = δabuiauka,∀i, k, a, b
But the relations on the right tell us that the entries of u = (uij) must satisfy αβ = 0

on each row and column of u, and so that the corresponding closed subgroup G ⊂ ON

consists of the matrices g ∈ ON which are permutation-like, with ±1 nonzero entries.
Thus, the corresponding group is G = HN , and as a conclusion to this, we have:

C(HN) = C(ON)
/〈

TH ∈ End(u⊗2)
〉

According now to our conventions for easiness, this means that the hyperoctahedral
group HN is easy, coming from the following category of partitions:

D =< H >

But the category on the right can be computed by drawing pictures, and we have:

< H >= Peven

Thus, we are led to the conclusion in the statement. □

More generally now, we have in fact the following grand result, regarding the series of
complex reflection groups Hs

N , which covers both the groups SN , HN :

Theorem 7.12. The complex reflection group Hs
N = Zs ≀SN is easy, the corresponding

category P s consisting of the partitions satisfying the condition

#◦ = # • (s)
as a weighted sum, in each block. In particular, we have the following results:

(1) SN is easy, coming from the category P .
(2) HN = Z2 ≀ SN is easy, coming from the category Peven.
(3) KN = T ≀ SN is easy, coming from the category Peven.

Proof. This is something that we already know at s = 1, 2, from Theorems 7.10 and
7.11. In general, the proof is similar, based on Tannakian duality. To be more precise, in
what regards the main assertion, the idea here is that the one-block partition π ∈ P (s),
which generates the category of partitions P s in the statement, implements the relations
producing the subgroup Hs

N ⊂ SN . As for the last assertions, these are all elementary:
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(1) At s = 1 we know that we have H1
N = SN . Regarding now the corresponding

category, here the condition #◦ = # • (1) is automatic, and so P 1 = P .

(2) At s = 2 we know that we have H2
N = HN . Regarding now the corresponding

category, here the condition #◦ = # • (2) reformulates as follows:

# ◦+#• = 0(2)

Thus each block must have even size, and we obtain, as claimed, P 2 = Peven.

(3) At s = ∞ we know that we have H∞
N = KN . Regarding now the corresponding

category, here the condition #◦ = # • (∞) reads:

#◦ = #•

But this is the condition defining Peven, and so P∞ = Peven, as claimed. □

Summarizing, we have many examples. In fact, our list of easy groups has currently
become quite big, and here is a selection of the main results that we have so far:

Theorem 7.13. We have a diagram of compact groups as follows,

KN
// UN

HN

OO

// ON

OO

where HN = Z2 ≀ SN and KN = T ≀ SN , and all these groups are easy.

Proof. This follows from the above results. To be more precise, we know that the
above groups are all easy, the corresponding categories of partitions being as follows:

Peven

��

P2
oo

��
Peven P2

oo

Thus, we are led to the conclusion in the statement. □

Summarizing, most of the groups that we investigated in this book are covered by
the easy group formalism. One exception is the symplectic group SpN , but this group is
covered as well, by a suitable extension of the easy group formalism. See [16].
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7c. Basic operations

Let us discuss now some basic composition operations, in general, and for the easy
groups. We will be mainly interested in the following operations:

Definition 7.14. The closed subgroups of UN are subject to intersection and genera-
tion operations, constructed as follows:

(1) Intersection: H ∩K is the usual intersection of H,K.
(2) Generation: < H,K > is the closed subgroup generated by H,K.

Alternatively, we can define these operations at the function algebra level, by perform-
ing certain operations on the associated ideals, as follows:

Proposition 7.15. Assuming that we have presentation results as follows,

C(H) = C(UN)/I , C(K) = C(UN)/J

the groups H ∩K and < H,K > are given by the following formulae,

C(H ∩K) = C(UN)/ < I, J >

C(< H,K >) = C(UN)/(I ∩ J)
at the level of the associated algebras of functions.

Proof. This is indeed clear from the definition of the operations ∩ and < , >, as
formulated above, and from the Stone-Weierstrass theorem. □

In what follows we will need Tannakian formulations of the above two operations. The
result here, that we have already used a couple of times in the above, is as follows:

Theorem 7.16. The intersection and generation operations ∩ and < ,> can be con-
structed via the Tannakian correspondence G→ CG, as follows:

(1) Intersection: defined via CG∩H =< CG, CH >.
(2) Generation: defined via C<G,H> = CG ∩ CH .

Proof. This follows from Proposition 7.15, and from Tannakian duality. Indeed, it
follows from Tannakian duality that given a closed subgroup G ⊂ UN , with fundamental
representation v, the algebra of functions C(G) has the following presentation:

C(G) = C(UN)
/〈

T ∈ Hom(u⊗k, u⊗l)
∣∣∣∀k,∀l,∀T ∈ Hom(v⊗k, v⊗l)

〉
In other words, given a closed subgroup G ⊂ UN , we have a presentation of the

following type, with IG being the ideal coming from the Tannakian category of G:

C(G) = C(UN)/IG

But this leads to the conclusion in the statement. □

In relation now with our easiness questions, we first have the following result:
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Proposition 7.17. Assuming that H,K are easy, then so is H ∩K, and we have

DH∩K =< DH , DK >

at the level of the corresponding categories of partitions.

Proof. We have indeed the following computation:

CH∩K = < CH , CK >

= < span(DH), span(DK) >

= span(< DH , DK >)

Thus, by Tannakian duality we obtain the result. □

Regarding now the generation operation, the situation here is more complicated, due
to a number of technical reasons, and we only have the following statement:

Proposition 7.18. Assuming that H,K are easy, we have an inclusion

< H,K >⊂ {H,K}
coming from an inclusion of Tannakian categories as follows,

CH ∩ CK ⊃ span(DH ∩DK)

where {H,K} is the easy group having as category of partitions DH ∩DK.

Proof. This follows from the definition and properties of the generation operation,
explained above, and from the following computation:

C<H,K> = CH ∩ CK
= span(DH) ∩ span(DK)

⊃ span(DH ∩DK)

Indeed, by Tannakian duality we obtain from this all the assertions. □

It is not clear if the inclusions in Proposition 7.18 are isomorphisms or not, and this
even under a supplementary N >> 0 assumption. Technically speaking, the problem
comes from the fact that the operation π → Tπ does not produce linearly independent
maps, and so all that we are doing is sensitive to the value of N ∈ N. The subject here is
quite technical, to be further developed in Part III below, with probabilistic motivations
in mind, without however solving the present algebraic questions.

Summarizing, we have some problems here, and we must proceed as follows:

Theorem 7.19. The intersection and easy generation operations ∩ and { , } can be
constructed via the Tannakian correspondence G→ DG, as follows:

(1) Intersection: defined via DG∩H =< DG, DH >.
(2) Easy generation: defined via D{G,H} = DG ∩DH .
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Proof. Here the situation is as follows:

(1) This is a true and honest result, coming from Proposition 7.17.

(2) This is more of an empty statement, coming from Proposition 7.18. □

As already mentioned, there is some interesting mathematics still to be worked out,
in relation with all this, and we will be back to this later, with further details. With the
above notions in hand, however, even if not fully satisfactory, we can formulate a nice
result, which improves our main result so far, namely Theorem 7.13, as follows:

Theorem 7.20. The basic unitary and reflection groups, namely

KN
// UN

HN

OO

// ON

OO

are all easy, and they form an intersection and easy generation diagram, in the sense that
the above square diagram satisfies UN = {KN , ON}, and HN = KN ∩ON .

Proof. We know from Theorem 7.13 that the groups in the statement are easy, the
corresponding categories of partitions being as follows:

Peven

��

P2
oo

��
Peven P2

oo

Now observe that this latter diagram is an intersection and generation diagram. By
using Theorem 7.19, this reformulates into the fact that the diagram of quantum groups
is an intersection and easy generation diagram, as claimed. □

It is possible to further improve the above result, by proving that the diagram there
is actually a plain generation diagram. However, this is something more technical, and
for a discussion here, you can check for instance my quantum group book [9].

Moving forward, as a continuation of the above, it is possible to develop some more
general theory, along the above lines. Given a closed subgroup G ⊂ UN , we can talk

about its “easy envelope”, which is the smallest easy group G̃ containing G. This easy
envelope appears by definition as an intermediate closed subgroup, as follows:

G ⊂ G̃ ⊂ UN
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With this notion in hand, Proposition 7.18 can be refined into a result stating that
given two easy groups H,K, we have inclusions as follows:

< H,K >⊂ ˜< H,K > ⊂ {H,K}
In order to discuss all this, let us start with the following definition:

Definition 7.21. A closed subgroup G ⊂ UN is called homogeneous when

SN ⊂ G ⊂ UN

with SN ⊂ UN being the standard embedding, via permutation matrices.

We will be interested in such groups, which cover for instance all the easy groups, and
many more. At the Tannakian level, we have the following result:

Theorem 7.22. The homogeneous groups SN ⊂ G ⊂ UN are in one-to-one correspon-
dence with the intermediate tensor categories

span
(
Tπ

∣∣∣π ∈ P2

)
⊂ C ⊂ span

(
Tπ

∣∣∣π ∈ P)
where P is the category of all partitions, P2 is the category of the matching pairings, and
π → Tπ is the standard implementation of partitions, as linear maps.

Proof. This follows from Tannakian duality, and from the Brauer type results for
SN , UN . To be more precise, we know from Tannakian duality that each closed subgroup
G ⊂ UN can be reconstructed from its Tannakian category C = (C(k, l)), as follows:

C(G) = C(UN)
/〈

T ∈ Hom(u⊗k, u⊗l)
∣∣∣∀k, l, ∀T ∈ C(k, l)〉

Thus we have a one-to-one correspondence G ↔ C, given by Tannakian duality,
and since the endpoints G = SN , UN are both easy, corresponding to the categories
C = span(Tπ|π ∈ D) with D = P,P2, this gives the result. □

Our purpose now will be that of using the Tannakian result in Theorem 7.22, in
order to introduce and study a combinatorial notion of “easiness level”, for the arbitrary
intermediate groups SN ⊂ G ⊂ UN . Let us begin with the following simple fact:

Proposition 7.23. Given a homogeneous group SN ⊂ G ⊂ UN , with associated
Tannakian category C = (C(k, l)), the sets

D1(k, l) =
{
π ∈ P (k, l)

∣∣∣Tπ ∈ C(k, l)}
form a category of partitions, in the sense of Definition 7.3.

Proof. We use the basic categorical properties of the correspondence π → Tπ between
partitions and linear maps, that we established in the above, namely:

T[πσ] = Tπ ⊗ Tσ , T[σπ ] ∼ TπTσ , Tπ∗ = T ∗
π
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Together with the fact that C is a tensor category, we deduce from these formulae
that we have the following implication:

π, σ ∈ D1 =⇒ Tπ, Tσ ∈ C
=⇒ Tπ ⊗ Tσ ∈ C
=⇒ T[πσ] ∈ C
=⇒ [πσ] ∈ D1

On the other hand, we have as well the following implication:

π, σ ∈ D1 =⇒ Tπ, Tσ ∈ C
=⇒ TπTσ ∈ C
=⇒ T[σπ ] ∈ C
=⇒ [σπ] ∈ D1

Finally, we have as well the following implication:

π ∈ D1 =⇒ Tπ ∈ C
=⇒ T ∗

π ∈ C
=⇒ Tπ∗ ∈ C
=⇒ π∗ ∈ D1

Thus D1 is indeed a category of partitions, as claimed. □

We can further refine the above observation, in the following way:

Proposition 7.24. Given a compact group SN ⊂ G ⊂ UN , construct D1 ⊂ P as
above, and let SN ⊂ G1 ⊂ UN be the easy group associated to D1. Then:

(1) We have G ⊂ G1, as subgroups of UN .
(2) G1 is the smallest easy group containing G.
(3) G is easy precisely when G ⊂ G1 is an isomorphism.

Proof. All this is elementary, the proofs being as follows:

(1) We know that the Tannakian category of G1 is given by:

C1
kl = span

(
Tπ

∣∣∣π ∈ D1(k, l)
)

Thus we have C1 ⊂ C, and so G ⊂ G1, as subgroups of UN .

(2) Assuming that we have G ⊂ G′, with G′ easy, coming from a Tannakian category
C ′ = span(D′), we must have C ′ ⊂ C, and so D′ ⊂ D1. Thus, G1 ⊂ G′, as desired.

(3) This is a trivial consequence of (2). □

Summarizing, we have now a notion of “easy envelope”, as follows:
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Definition 7.25. The easy envelope of a homogeneous group SN ⊂ G ⊂ UN is the
easy group SN ⊂ G1 ⊂ UN associated to the category of partitions

D1(k, l) =
{
π ∈ P (k, l)

∣∣∣Tπ ∈ C(k, l)}
where C = (C(k, l)) is the Tannakian category of G.

At the level of examples, most of the known homogeneous groups SN ⊂ G ⊂ UN are
in fact easy. However, there are non-easy interesting examples as well, such as the generic
reflection groups Hsd

N from chapter 3, and we will certainly have an exercise at the end of
this chapter, regarding the computation of the corresponding easy envelopes.

As a technical observation now, we can in fact generalize the above construction to
any closed subgroup G ⊂ UN , and we have the following result:

Proposition 7.26. Given a closed subgroup G ⊂ UN , construct D
1 ⊂ P as above,

and let SN ⊂ G1 ⊂ UN be the easy group associated to D1. We have then

G1 = (< G,SN >)1

where < G,SN >⊂ UN is the smallest closed subgroup containing G,SN .

Proof. According to our Tannakian results, the subgroup < G,SN >⊂ UN in the
statement exists indeed, and can be obtained by intersecting categories, as follows:

C<G,SN> = CG ∩ CSN

We conclude from this that for any π ∈ P (k, l) we have:

Tπ ∈ C<G,SN>(k, l) ⇐⇒ Tπ ∈ CG(k, l)
It follows that the D1 categories for the groups < G,SN > and G coincide, and so the

easy envelopes (< G,SN >)1 and G1 coincide as well, as stated. □

In order now to fine-tune all this, by using an arbitrary parameter p ∈ N, which can
be thought of as being an “easiness level”, we can proceed as follows:

Definition 7.27. Given a compact group SN ⊂ G ⊂ UN , and an integer p ∈ N, we
construct the family of linear spaces

Ep(k, l) =
{
α1Tπ1 + . . .+ αpTπp ∈ C(k, l)

∣∣∣αi ∈ C, πi ∈ P (k, l)
}

and we denote by Cp the smallest tensor category containing Ep = (Ep(k, l)), and by
SN ⊂ Gp ⊂ UN the compact group corresponding to this category Cp.

As a first observation, at p = 1 we have C1 = E1 = span(D1), where D1 is the
category of partitions constructed in Proposition 7.24. Thus the group G1 constructed
above coincides with the “easy envelope” of G, from Definition 7.25.
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In the general case, p ∈ N, the family Ep = (Ep(k, l)) constructed above is not neces-
sarily a tensor category, but we can of course consider the tensor category Cp generated
by it, as indicated. Finally, in the above definition we have used of course the Tannakian
duality results, in order to perform the operation Cp → Gp.

In practice, the construction in Definition 7.27 is often something quite complicated,
and it is convenient to use the following observation:

Proposition 7.28. The category Cp constructed above is generated by the spaces

Ep(l) =
{
α1Tπ1 + . . .+ αpTπp ∈ C(l)

∣∣∣αi ∈ C, πi ∈ P (l)
}

where C(l) = C(0, l), P (l) = P (0, l), with l ranging over the colored integers.

Proof. We use the well-known fact, that we know from chapter 5, that given a closed
subgroup G ⊂ UN , we have a Frobenius type isomorphism, as follows:

Hom(u⊗k, u⊗l) ≃ Fix(u⊗k̄l)

If we apply this to the group Gp, we obtain an isomorphism as follows:

C(k, l) ≃ C(k̄l)

On the other hand, we have as well an isomorphism P (k, l) ≃ P (k̄l), obtained by
performing a counterclockwise rotation to the partitions π ∈ P (k, l). According to the
above definition of the spaces Ep(k, l), this induces an isomorphism as follows:

Ep(k, l) ≃ Ep(k̄l)

We deduce from this that for any partitions π1, . . . , πp ∈ C(k, l), having rotated ver-
sions ρ1, . . . , ρp ∈ C(k̄l), and for any scalars α1, . . . , αp ∈ C, we have:

α1Tπ1 + . . .+ αpTπp ∈ C(k, l) ⇐⇒ α1Tρ1 + . . .+ αpTρp ∈ C(k̄l)

But this gives the conclusion in the statement, and we are done. □

The main properties of the construction G→ Gp can be summarized as follows:

Theorem 7.29. Given a compact group SN ⊂ G ⊂ UN , the compact groups Gp

constructed above form a decreasing family, whose intersection is G:

G =
⋂
p∈N

Gp

Moreover, G is easy when this decreasing limit is stationary, G = G1.
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Proof. By definition of Ep(k, l), and by using Proposition 7.28, these linear spaces
form an increasing filtration of C(k, l). The same remains true when completing into
tensor categories, and so we have an increasing filtration, as follows:

C =
⋃
p∈N

Cp

At the compact group level now, we obtain the decreasing intersection in the statement.
Finally, the last assertion is clear from Proposition 7.28. □

As a main consequence of the above results, we can now formulate:

Definition 7.30. We say that a homogeneous compact group

SN ⊂ G ⊂ UN

is easy at order p when G = Gp, with p being chosen minimal with this property.

Observe that the order 1 notion corresponds to the usual easiness. In general, all this
is quite abstract, but there are several explicit examples, that can be worked out. For
more on all this, you can check my quantum group book [9].

7d. Classification results

Let us go back now to plain easiness, and discuss some classification results, following
the old papers, and then the more recent paper of Tarrago-Weber [89]. In order to cut
from the complexity, we must impose an extra axiom, and we will use here:

Theorem 7.31. For an easy group G = (GN), coming from a category of partitions
D ⊂ P , the following conditions are equivalent:

(1) GN−1 = GN ∩ UN−1, via the embedding UN−1 ⊂ UN given by u→ diag(u, 1).
(2) GN−1 = GN ∩ UN−1, via the N possible diagonal embeddings UN−1 ⊂ UN .
(3) D is stable under the operation which consists in removing blocks.

If these conditions are satisfied, we say that G = (GN) is uniform.

Proof. We use the general easiness theory explained above, as follows:

(1) ⇐⇒ (2) This is something standard, coming from the inclusion SN ⊂ GN , which
makes everything SN -invariant. The result follows as well from the proof of (1) ⇐⇒ (3)
below, which can be converted into a proof of (2) ⇐⇒ (3), in the obvious way.

(1) ⇐⇒ (3) Given a subgroup K ⊂ UN−1, with fundamental representation u,
consider the N ×N matrix v = diag(u, 1). Our claim is that for any π ∈ P (k) we have:

ξπ ∈ Fix(v⊗k) ⇐⇒ ξπ′ ∈ Fix(v⊗k′), ∀π′ ∈ P (k′), π′ ⊂ π
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In order to prove this, we must study the condition on the left. We have:

ξπ ∈ Fix(v⊗k) ⇐⇒ (v⊗kξπ)i1...ik = (ξπ)i1...ik ,∀i
⇐⇒

∑
j

(v⊗k)i1...ik,j1...jk(ξπ)j1...jk = (ξπ)i1...ik ,∀i

⇐⇒
∑
j

δπ(j1, . . . , jk)vi1j1 . . . vikjk = δπ(i1, . . . , ik),∀i

Now let us recall that our representation has the special form v = diag(u, 1). We
conclude from this that for any index a ∈ {1, . . . , k}, we must have:

ia = N =⇒ ja = N

With this observation in hand, if we denote by i′, j′ the multi-indices obtained from
i, j obtained by erasing all the above ia = ja = N values, and by k′ ≤ k the common
length of these new multi-indices, our condition becomes:∑

j′

δπ(j1, . . . , jk)(v
⊗k′)i′j′ = δπ(i1, . . . , ik),∀i

Here the index j is by definition obtained from j′ by filling with N values. In order
to finish now, we have two cases, depending on i, as follows:

Case 1. Assume that the index set {a|ia = N} corresponds to a certain subpartition
π′ ⊂ π. In this case, the N values will not matter, and our formula becomes:∑

j′

δπ(j
′
1, . . . , j

′
k′)(v

⊗k′)i′j′ = δπ(i
′
1, . . . , i

′
k′)

Case 2. Assume now the opposite, namely that the set {a|ia = N} does not correspond
to a subpartition π′ ⊂ π. In this case the indices mix, and our formula reads:

0 = 0

Thus, we are led to ξπ′ ∈ Fix(v⊗k′), for any subpartition π′ ⊂ π, as claimed.

Now with this claim in hand, the result follows from Tannakian duality. □

We can now formulate a first classification result, as follows:

Theorem 7.32. The uniform orthogonal easy groups are as follows,

BN
// ON

SN

OO

// HN

OO

and this diagram is an intersection and easy generation diagram.
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Proof. We know that the quantum groups in the statement are indeed easy and
uniform, the corresponding categories of partitions being as follows:

P12

��

P2

��

oo

P Pevenoo

Since this latter diagram is an intersection and generation diagram, we conclude that
we have an intersection and easy generation diagram of quantum groups, as stated. Re-
garding now the classification, consider an arbitrary easy group, as follows:

SN ⊂ GN ⊂ ON

This group must then come from a category of partitions, as follows:

P2 ⊂ D ⊂ P

Now if we assume G = (GN) to be uniform, this category of partitions D is uniquely
determined by the subset L ⊂ N consisting of the sizes of the blocks of the partitions in
D. Our claim now is that the admissible sets are as follows:

(1) L = {2}, producing ON .

(2) L = {1, 2}, producing BN .

(3) L = {2, 4, 6, . . .}, producing HN .

(4) L = {1, 2, 3, . . .}, producing SN .

Indeed, in one sense, this follows from our easiness results for ON , BN , HN , SN . In the
other sense now, assume that L ⊂ N is such that the set PL consisting of partitions whose
sizes of the blocks belong to L is a category of partitions. We know from the axioms
of the categories of partitions that the semicircle ∩ must be in the category, so we have
2 ∈ L. Our claim is that the following conditions must be satisfied as well:

k, l ∈ L, k > l =⇒ k − l ∈ L

k ∈ L, k ≥ 2 =⇒ 2k − 2 ∈ L
Indeed, we will prove that both conditions follow from the axioms of the categories of

partitions. Let us denote by bk ∈ P (0, k) the one-block partition, as follows:

bk =

{
⊓⊓ . . . ⊓
1 2 . . . k

}
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For k > l, we can write bk−l in the following way:

bk−l =


⊓⊓ . . . . . . . . . . . . ⊓
1 2 . . . l l + 1 . . . k
⊔⊔ . . . ⊔ | . . . |

1 . . . k − l


In other words, we have the following formula:

bk−l = (b∗l ⊗ |⊗k−l)bk
Since all the terms of this composition are in PL, we have bk−l ∈ PL, and this proves

our first formula. As for the second formula, this can be proved in a similar way, by
capping two adjacent k-blocks with a 2-block, in the middle.

With the above two formulae in hand, we can conclude in the following way:

Case 1. Assume 1 ∈ L. By using the first formula with l = 1 we get:

k ∈ L =⇒ k − 1 ∈ L

This condition shows that we must have L = {1, 2, . . . ,m}, for a certain number
m ∈ {1, 2, . . . ,∞}. On the other hand, by using the second formula we get:

m ∈ L =⇒ 2m− 2 ∈ L
=⇒ 2m− 2 ≤ m

=⇒ m ∈ {1, 2,∞}

The case m = 1 being excluded by the condition 2 ∈ L, we reach to one of the two
sets producing the groups SN , BN .

Case 2. Assume 1 /∈ L. By using the first formula with l = 2 we get:

k ∈ L =⇒ k − 2 ∈ L

This condition shows that we must have L = {2, 4, . . . , 2p}, for a certain number
p ∈ {1, 2, . . . ,∞}. On the other hand, by using the second formula we get:

2p ∈ L =⇒ 4p− 2 ∈ L
=⇒ 4p− 2 ≤ 2p

=⇒ p ∈ {1,∞}

Thus L must be one of the two sets producing ON , HN , and we are done. □

All the above is very nice, but the continuation of the story is more complicated. When
lifting the uniformity assumption, the final classification results become more technical,
due to the presence of various copies of Z2, that can be added, while keeping the easiness
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property still true. To be more precise, in the real case it is known that we have exactly
6 solutions, which are as follows, with the convention G′

N = GN × Z2:

BN
// B′

N
// ON

SN

OO

// S ′
N

OO

// HN

OO

In the unitary case now, the classification is quite similar, but more complicated, as
explained in the paper of Tarrago-Weber [89]. In particular we have:

Theorem 7.33. The uniform easy groups which are purely unitary, in the sense that
they appear as complexifications of real easy groups, are as follows,

CN // UN

SN

OO

// KN

OO

and this diagram is an intersection and easy generation diagram.

Proof. We know from the above that the groups in the statement are indeed easy
and uniform, the corresponding categories of partitions being as follows:

P12

��

P2

��

oo

P Pevenoo

Since this latter diagram is an intersection and generation diagram, we conclude that
we have an intersection and easy generation diagram of groups, as stated. As for the
uniqueness result, the proof here is similar to the proof from the real case, from Theorem
7.32, by examining the possible sizes of the blocks of the partitions in the category, and
doing some direct combinatorics. For details here, we refer to Tarrago-Weber [89]. □

Finally, let us mention that the easy quantum group formalism can be extended into
a “super-easy” group formalism, covering as well the symplectic group SpN . This is
something a bit technical, and we refer here to the paper of Collins-Śniady [16].
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7e. Exercises

Exercises:

Exercise 7.34.

Exercise 7.35.

Exercise 7.36.

Exercise 7.37.

Exercise 7.38.

Exercise 7.39.

Exercise 7.40.

Exercise 7.41.

Bonus exercise.



CHAPTER 8

Low dimensions

8a. Rotation groups

In this chapter we study the finite subgroups of the rotation groups, in low dimensions.
Things will be quite technical here, mixing representation theory and other methods.

To start with, here is a useful reformulation of our main result so far regarding SU2,
obtained by further building on the parametrization from chapter 1:

Theorem 8.1. We have the formula

SU2 =

{(
x+ iy z + it
−z + it x− iy

) ∣∣∣ x2 + y2 + z2 + t2 = 1

}
which makes SU2 isomorphic to the unit real sphere S3

R ⊂ R3.

Proof. We recall from chapter 1 that we have the following formula:

SU2 =

{(
a b
−b̄ ā

) ∣∣∣ |a|2 + |b|2 = 1

}
Now let us write our parameters a, b ∈ C, which belong to the complex unit sphere

S1
C ⊂ C2, in terms of their real and imaginary parts, as follows:

a = x+ iy , b = z + it

In terms of x, y, z, t ∈ R, our formula for a generic matrix U ∈ SU2 becomes the one
in the statement. As for the condition to be satisfied by the parameters x, y, z, t ∈ R, this
comes the condition |a|2 + |b|2 = 1 to be satisfied by a, b ∈ C, which reads:

x2 + y2 + z2 + t2 = 1

Thus, we are led to the conclusion in the statement. Regarding now the last assertion,
recall that the unit sphere S3

R ⊂ R4 is given by:

S3
R =

{
(x, y, z, t)

∣∣∣ x2 + y2 + z2 + t2 = 1
}

Thus, we have an isomorphism of compact spaces, as follows:

SU2 ≃ S3
R ,

(
x+ iy z + it
−z + it x− iy

)
→ (x, y, z, t)

We have therefore proved our theorem. □

155
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As a philosophical comment here, the above parametrization of SU2 is something very
nice, because the parameters (x, y, z, t) range now over the sphere of space-time. Thus,
we are probably doing some kind of physics here. More on this later.

Regarding now the group U2, we have here a similar result, as follows:

Theorem 8.2. We have the following formula,

U2 =

{
(p+ iq)

(
x+ iy z + it
−z + it x− iy

) ∣∣∣ x2 + y2 + z2 + t2 = 1, p2 + q2 = 1

}
which makes U2 be a quotient compact space, as follows,

S3
R × S1

R → U2

but with this parametrization being no longer bijective.

Proof. We recall from chapter 1 that we have the following formula:

U2 =

{
d

(
a b
−b̄ ā

) ∣∣∣ |a|2 + |b|2 = 1, |d| = 1

}
Now let us write our parameters a, b ∈ C, which belong to the complex unit sphere

S1
C ⊂ C2, and d ∈ T, in terms of their real and imaginary parts, as follows:

a = x+ iy , b = z + it , d = p+ iq

In terms of these new parameters x, y, z, t, p, q ∈ R, our formula for a generic matrix
U ∈ SU2, that we established before, reads:

U = (p+ iq)

(
x+ iy z + it
−z + it x− iy

)
As for the condition to be satisfied by the parameters x, y, z, t, p, q ∈ R, this comes

the conditions |a|2 + |b|2 = 1 and |d| = 1 to be satisfied by a, b, d ∈ C, which read:

x2 + y2 + z2 + t2 = 1 , p2 + q2 = 1

Thus, we are led to the conclusion in the statement. Regarding now the last assertion,
recall that the unit spheres S3

R ⊂ R4 and S1
R ⊂ R2 are given by:

S3
R =

{
(x, y, z, t)

∣∣∣ x2 + y2 + z2 + t2 = 1
}

S1
R =

{
(p, q)

∣∣∣ p2 + q2 = 1
}

Thus, we have quotient map of compact spaces, as follows:

S3
R × S1

R → U2 , ((x, y, z, t), (p, q))→ (p+ iq)

(
x+ iy z + it
−z + it x− iy

)
However, the parametrization is no longer bijective, because when we globally switch

signs, the element ((−x,−y,−z,−t), (−p,−q)) produces the same element of U2. □
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Here is now another reformulation of our main result so far, regarding SU2, obtained
by further building on the parametrization from Theorem 8.1:

Theorem 8.3. We have the following formula,

SU2 =
{
xc1 + yc2 + zc3 + tc4

∣∣∣ x2 + y2 + z2 + t2 = 1
}

where c1, c2, c3, c4 are matrices given by

c1 =

(
1 0
0 1

)
, c2 =

(
i 0
0 −i

)
c3 =

(
0 1
−1 0

)
, c4 =

(
0 i
i 0

)
called Pauli spin matrices.

Proof. We recall from Theorem 8.1 that the group SU2 can be parametrized by the
real sphere S3

R ⊂ R4, in the following way:

SU2 =

{(
x+ iy z + it
−z + it x− iy

) ∣∣∣ x2 + y2 + z2 + t2 = 1

}
Thus, the elements U ∈ SU2 are precisely the matrices as follows, depending on

parameters x, y, z, t ∈ R satisfying x2 + y2 + z2 + t2 = 1:

U = x

(
1 0
0 1

)
+ y

(
i 0
0 −i

)
+ z

(
0 1
−1 0

)
+ t

(
0 i
i 0

)
But this gives the formula for SU2 in the statement. □

The above result is often the most convenient one, when dealing with SU2. This is
because the Pauli matrices have a number of remarkable properties, which are very useful
when doing computations. These properties can be summarized as follows:

Theorem 8.4. The Pauli matrices multiply according to the formulae

c22 = c23 = c24 = −1
c2c3 = −c3c2 = c4

c3c4 = −c4c3 = c2

c4c2 = −c2c4 = c3

they conjugate according to the following rules,

c∗1 = c1 , c
∗
2 = −c2 , c∗3 = −c3 , c∗4 = −c4

and they form an orthonormal basis of M2(C), with respect to the scalar product

< a, b >= tr(ab∗)

with tr :M2(C)→ C being the normalized trace of 2× 2 matrices, tr = Tr/2.
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Proof. The first two assertions, regarding the multiplication and conjugation rules
for the Pauli matrices, follow from some elementary computations. As for the last as-
sertion, this follows by using these rules. Indeed, the fact that the Pauli matrices are
pairwise orthogonal follows from computations of the following type, for i ̸= j:

< ci, cj >= tr(cic
∗
j) = tr(±cicj) = tr(±ck) = 0

As for the fact that the Pauli matrices have norm 1, this follows from:

< ci, ci >= tr(cic
∗
i ) = tr(±c2i ) = tr(c1) = 1

Thus, we are led to the conclusion in the statement. □

We should mention here that the Pauli matrices are cult objects in physics, due to the
fact that they describe the spin of the electron. Indeed, a bit like our Earth spins around
its axis, the electrons spin too. And it took scientists a lot of skill in order to understand
the physics and mathematics of the spin, the conclusion being that the Schrödinger wave
function space for the electron H = L2(R3) has to be enlarged with a copy of the space
K = C2, via a direct sum, as to take into account the spin, and with this spin being
described by the Pauli matrices, in some appropriate, quantum mechanical sense.

As usual, we refer to Feynman [33], Griffiths [41] or Weinberg [94] for more on all
this. And with the remark that the Pauli matrices are actually subject to several possible
normalizations, depending on formalism, but let us not get into all this here.

8b. Euler-Rodrigues

Back to mathematics, let us discuss now the basic unitary groups in 3 or more di-
mensions. The situation here becomes fairly complicated, but it is possible however to
explicitly compute the rotation groups SO3 and O3, and explaining this result, due to
Euler-Rodrigues, which is something non-trivial and very useful, will be our next goal.

The proof of the Euler-Rodrigues formula is something quite tricky. Let us start with
the following construction, whose usefulness will become clear in a moment:

Proposition 8.5. The adjoint action SU2 ↷M2(C), given by

TU(M) = UMU∗

leaves invariant the following real vector subspace of M2(C),

E = spanR(c1, c2, c3, c4)

and we obtain in this way a group morphism SU2 → GL4(R).
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Proof. We have two assertions to be proved, as follows:

(1) We must first prove that, with E ⊂ M2(C) being the real vector space in the
statement, we have the following implication:

U ∈ SU2,M ∈ E =⇒ UMU∗ ∈ E

But this is clear from the multiplication rules for the Pauli matrices, from Theorem
8.4. Indeed, let us write our matrices U,M as follows:

U = xc1 + yc2 + zc3 + tc4

M = ac1 + bc2 + cc3 + dc4

We know that the coefficients x, y, z, t and a, b, c, d are real, due to U ∈ SU2 and
M ∈ E. The point now is that when computing UMU∗, by using the various rules from
Theorem 8.4, we obtain a matrix of the same type, namely a combination of c1, c2, c3, c4,
with real coefficients. Thus, we have UMU∗ ∈ E, as desired.

(2) In order to conclude, let us identify E ≃ R4, by using the basis c1, c2, c3, c4. The
result found in (1) shows that we have a correspondence as follows:

SU2 →M4(R) , U → (TU)|E

Now observe that for any U ∈ SU2 and any M ∈M2(C) we have:

TU∗TU(M) = U∗UMU∗U =M

Thus TU∗ = T−1
U , and so the correspondence that we found can be written as:

SU2 → GL4(R) , U → (TU)|E

But this a group morphism, due to the following computation:

TUTV (M) = UVMV ∗U∗ = TUV (M)

Thus, we are led to the conclusion in the statement. □

The point now, which makes the link with SO3, and which will ultimately elucidate
the structure of SO3, is that Proposition 8.5 can be improved as follows:

Theorem 8.6. The adjoint action SU2 ↷M2(C), given by

TU(M) = UMU∗

leaves invariant the following real vector subspace of M2(C),

F = spanR(c2, c3, c4)

and we obtain in this way a group morphism SU2 → SO3.
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Proof. We can do this in several steps, as follows:

(1) Our first claim is that the group morphism SU2 → GL4(R) constructed in Propo-
sition 8.3 is in fact a morphism SU2 → O4. In order to prove this, recall the following
formula, valid for any U ∈ SU2, from the proof of Proposition 8.5:

TU∗ = T−1
U

We want to prove that the matrices TU ∈ GL4(R) are orthogonal, and in view of the
above formula, it is enough to prove that we have:

T ∗
U = (TU)

t

So, let us prove this. For any two matrices M,N ∈ E, we have:

< TU∗(M), N > = < U∗MU,N >

= tr(U∗MUN)

= tr(MUNU∗)

On the other hand, we have as well the following formula:

< (TU)
t(M), N > = < M,TU(N) >

= < M,UNU∗ >

= tr(MUNU∗)

Thus we have indeed T ∗
U = (TU)

t, which proves our SU2 → O4 claim.

(2) In order now to finish, recall that we have by definition c1 = 1, as a matrix. Thus,
the action of SU2 on the vector c1 ∈ E is given by:

TU(c1) = Uc1U
∗ = UU∗ = 1 = c1

We conclude that c1 ∈ E is invariant under SU2, and by orthogonality the following
subspace of E must be invariant as well under the action of SU2:

e⊥1 = spanR(c2, c3, c4)

Now if we call this subspace F , and we identify F ≃ R3 by using the basis c2, c3, c4,
we obtain by restriction to F a morphism of groups as follows:

SU2 → O3

But since this morphism is continuous and SU2 is connected, its image must be con-
nected too. Now since the target group decomposes as O3 = SO3 ⊔ (−SO3), and 1 ∈ SU2

gets mapped to 1 ∈ SO3, the whole image must lie inside SO3, and we are done. □

The above result is quite interesting, because we will see in a moment that the mor-
phism SU2 → SO3 constructed there is surjective. Thus, we will have a way of parametriz-
ing the elements V ∈ SO3 by elements U ∈ SO2, and so ultimately by parameters
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(x, y, z, t) ∈ S3
R. In order to work out all this, let us start with the following result,

coming as a continuation of Proposition 8.5, independently of Theorem 8.6:

Theorem 8.7. With respect to the standard basis c1, c2, c3, c4 of the vector space R4 =
span(c1, c2, c3, c4), the morphism T : SU2 → GL4(R) is given by:

TU =


1 0 0 0
0 x2 + y2 − z2 − t2 2(yz − xt) 2(xz + yt)
0 2(xt+ yz) x2 + z2 − y2 − t2 2(zt− xy)
0 2(yt− xz) 2(xy + zt) x2 + t2 − y2 − z2


Thus, when looking at T as a group morphism SU2 → O4, what we have in fact is a group
morphism SU2 → O3, and even SU2 → SO3.

Proof. With notations from Proposition 8.5 and its proof, let us first look at the
action L : SU2 ↷ R4 by left multiplication, which is by definition given by:

LU(M) = UM

In order to compute the matrix of this action, let us write, as usual:

U = xc1 + yc2 + zc3 + tc4

M = ac1 + bc2 + cc3 + dc4

By using the multiplication formulae in Theorem 8.4, we obtain:

UM = (xc1 + yc2 + zc3 + tc4)(ac1 + bc2 + cc3 + dc4)

= (xa− yb− zc− td)c1
+ (xb+ ya+ zd− tc)c2
+ (xc− yd+ za+ tb)c3

+ (xd+ yc− zb+ ta)c4

We conclude that the matrix of the left action considered above is:

LU =


x −y −z −t
y x −t z
z t x −y
t −z y x


Similarly, let us look now at the action R : SU2 ↷ R4 by right multiplication, which

is by definition given by the following formula:

RU(M) =MU∗

In order to compute the matrix of this action, let us write, as before:

U = xc1 + yc2 + zc3 + tc4

M = ac1 + bc2 + cc3 + dc4
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By using the multiplication formulae in Theorem 8.4, we obtain:

MU∗ = (ac1 + bc2 + cc3 + dc4)(xc1 − yc2 − zc3 − tc4)
= (ax+ by + cz + dt)c1

+ (−ay + bx− ct+ dz)c2

+ (−az + bt+ cx− dy)c3
+ (−at− bz + cy + dx)c4

We conclude that the matrix of the right action considered above is:

RU =


x y z t
−y x −t z
−z t x −y
−t −z y x


Now by composing, the matrix of the adjoint matrix in the statement is:

TU = RULU

=


x y z t
−y x −t z
−z t x −y
−t −z y x



x −y −z −t
y x −t z
z t x −y
t −z y x



=


1 0 0 0
0 x2 + y2 − z2 − t2 2(yz − xt) 2(xz + yt)
0 2(xt+ yz) x2 + z2 − y2 − t2 2(zt− xy)
0 2(yt− xz) 2(xy + zt) x2 + t2 − y2 − z2


Thus, we have indeed the formula in the statement. As for the remaining assertions,

these are all clear either from this formula, or from Theorem 8.6. □

We can now formulate the Euler-Rodrigues result, as follows:

Theorem 8.8. We have a double cover map, obtained via the adjoint representation,

SU2 → SO3

and this map produces the Euler-Rodrigues formula

U =

x2 + y2 − z2 − t2 2(yz − xt) 2(xz + yt)
2(xt+ yz) x2 + z2 − y2 − t2 2(zt− xy)
2(yt− xz) 2(xy + zt) x2 + t2 − y2 − z2


for the generic elements of SO3.

Proof. We know from the above that we have a group morphism SU2 → SO3, given
by the formula in the statement, and the problem now is that of proving that this is a
double cover map, in the sense that it is surjective, and with kernel {±1}.
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(1) Regarding the kernel, this is elementary to compute, as follows:

ker(SU2 → SO3) =
{
U ∈ SU2

∣∣∣TU(M) =M,∀M ∈ E
}

=
{
U ∈ SU2

∣∣∣UM =MU, ∀M ∈ E
}

=
{
U ∈ SU2

∣∣∣Uci = ciU,∀i
}

= {±1}
(2) Thus, we are done with this, and as a side remark here, this result shows that our

morphism SU2 → SO3 is ultimately a morphism as follows:

PU2 ⊂ SO3 , PU2 = SU2/{±1}
Here P stands for “projective”, and it is possible to say more about the construction

G → PG, which can be performed for any subgroup G ⊂ UN . But we will not get here
into this, our next goal being anyway that of proving that we have PU2 = SO3.

(3) We must prove now that the morphism SU2 → SO3 is surjective. This is something
non-trivial, and there are several advanced proofs for this, as follows:

– A first proof is by using Lie theory. To be more precise, the tangent spaces at 1
of both SU2 and SO3 can be explicitly computed, by doing some linear algebra, and the
morphism SU2 → SO3 follows to be surjective around 1, and then globally.

– Another proof is via representation theory, as developed above, in chapters 5-7.
Indeed, the representations of SU2 and SO3 are subject to very similar formulae, called
Clebsch-Gordan rules, and this shows that SU2 → SO3 is surjective.

– Yet another advanced proof, which is actually quite bordeline for what can be called
“proof”, is by using the ADE/McKay classification of the subgroups G ⊂ SO3, which
shows that there is no room strictly inside SO3 for something as big as PU2.

(4) In short, with some good knowledge of group theory, we are done. However, this
is not our case, and we will present in what follows a more pedestrian proof, which was
actually the original proof, based on the fact that any rotation U ∈ SO3 has an axis.

(5) As a first computation, let us prove that any rotation U ∈ Im(SU2 → SO3) has
an axis. We must look for fixed points of such rotations, and by linearity it is enough to
look for fixed points belonging to the sphere S2

R ⊂ R3. Now recall that in our picture for
the quotient map SU2 → SO3, the space R3 appears as F = spanR(c2, c3, c4), naturally
embedded into the space R4 appearing as E = spanR(c1, c2, c3, c4). Thus, we must look
for fixed points belonging to the sphere S3

R ⊂ R4 whose first coordinate vanishes. But, in
our R4 = E picture, this sphere S3

R is the group SU2. Thus, we must look for fixed points
V ∈ SU2 whose first coordinate with respect to c1, c2, c3, c4 vanishes, which amounts in
saying that the diagonal entries of V must be purely imaginary numbers.
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(6) Long story short, via our various identifications, we are led into solving the equation
UV = V U with U, V ∈ SU2, and with V having a purely imaginary diagonal. So, with
standard notations for SU2, we must solve the following equation, with p ∈ iR:(

a b
−b̄ ā

)(
p q
−q̄ p̄

)
=

(
p q
−q̄ p̄

)(
a b
−b̄ ā

)
(7) But this is something which is routine. Indeed, by identifying coefficients we obtain

the following equations, each appearing twice:

bq̄ = b̄q , b(p− p̄) = (a− ā)q
In the case b = 0 the only equation which is left is q = 0, and reminding that we must

have p ∈ iR, we do have solutions, namely two of them, as follows:

V = ±
(
i 0
0 i

)
(8) In the remaining case b ̸= 0, the first equation reads bq̄ ∈ R, so we must have q = λb

with λ ∈ R. Now with this substitution made, the second equation reads p− p̄ = λ(a− ā),
and since we must have p ∈ iR, this gives 2p = λ(a− ā). Thus, our equations are:

q = λb , p = λ · a− ā
2

Getting back now to our problem about finding fixed points, assuming |a|2 + |b|2 = 1
we must find λ ∈ R such that the above numbers p, q satisfy |p|2 + |q|2 = 1. But:

|p|2 + |q|2 = |λb|2 +
∣∣∣∣λ · a− ā2

∣∣∣∣2
= λ2(|b|2 + Im(a)2)

= λ2(1−Re(a)2)
Thus, we have again two solutions to our fixed point problem, given by:

λ = ± 1√
1−Re(a)2

(9) Summarizing, we have proved that any rotation U ∈ Im(SU2 → SO3) has an
axis, and with the direction of this axis, corresponding to a pair of opposite points on the
sphere S2

R ⊂ R3, being given by the above formulae, via S2
R ⊂ S3

R = SU2.

(10) In order to finish, we must argue that any rotation U ∈ SO3 has an axis. But
this follows for instance from some topology, by using the induced map S2

R → S2
R. Now

since U ∈ SO3 is uniquely determined by its rotation axis, which can be regarded as a
point of S2

R/{±1}, plus its rotation angle t ∈ [0, 2π), by using S2
R ⊂ S3

R = SU2 as in (9)
we are led to the conclusion that U is uniquely determined by an element of SU2/{±1},
and so appears indeed via the Euler-Rodrigues formula, as desired. □
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So long for the Euler-Rodrigues formula. As already mentioned, all the above is just
the tip of the iceberg, and there are many more things that can be said, which are all
interesting, and worth learning. We will be back to this.

Regarding now O3, the extension from SO3 is very simple, as follows:

Theorem 8.9. We have the Euler-Rodrigues formula

U = ±

x2 + y2 − z2 − t2 2(yz − xt) 2(xz + yt)
2(xt+ yz) x2 + z2 − y2 − t2 2(zt− xy)
2(yt− xz) 2(xy + zt) x2 + t2 − y2 − z2


for the generic elements of O3.

Proof. This follows from Theorem 8.8, because the determinant of an orthogonal
matrix U ∈ O3 must satisfy detU = ±1, and in the case detU = −1, we have:

det(−U) = (−1)3 detU = − detU = 1

Thus, assuming detU = −1, we can therefore rescale U into an element −U ∈ SO3,
and this leads to the conclusion in the statement. □

8c. Clebsch-Gordan

As a last piece of Lie group theory, we are now in position of dealing, in a quite
conceptual way, with both the representations and the subgroups of SU2 and SO3. The
idea will be, as before, that of using the following key isomorphism:

SU2 ≃ S3
R

In order to get started with our study, we would first like to understand how the
various products of coordinates integrate over spheres. Let us start with the case N = 2.
Here the sphere is the unit circle T, and with z = eit the coordinates are cos t, sin t. We
can first integrate arbitrary powers of these coordinates, as follows:

Proposition 8.10. We have the following formulae,∫ π/2

0

cosp t dt =

∫ π/2

0

sinp t dt =
(π
2

)ε(p) p!!

(p+ 1)!!

where ε(p) = 1 if p is even, and ε(p) = 0 if p is odd, and where

m!! = (m− 1)(m− 3)(m− 5) . . .

with the product ending at 2 if m is odd, and ending at 1 if m is even.
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Proof. Let us first compute the integral on the left Ip. We have:

(cosp t sin t)′ = p cosp−1 t(− sin t) sin t+ cosp t cos t

= p cosp+1 t− p cosp−1 t+ cosp+1 t

= (p+ 1) cosp+1 t− p cosp−1 t

By integrating between 0 and π/2, we obtain the following formula:

(p+ 1)Ip+1 = pIp−1

Thus we can compute Ip by recurrence, and we obtain:

Ip =
p− 1

p
Ip−2

=
p− 1

p
· p− 3

p− 2
Ip−4

=
p− 1

p
· p− 3

p− 2
· p− 5

p− 4
Ip−6

...

=
p!!

(p+ 1)!!
I1−ε(p)

On the other hand, at p = 0 we have the following formula:

I0 =

∫ π/2

0

1 dt =
π

2

Also, at p = 1 we have the following formula:

I1 =

∫ π/2

0

cos t dt = 1

Thus, we obtain the result, by recurrence. As for the second formula, regarding sin t,
this follows from the first formula, with the change of variables t = π

2
− s. □

Next, we have the following formula, which is more general:

Theorem 8.11. We have the following formula,∫ π/2

0

cosp t sinq t dt =
(π
2

)ε(p)ε(q) p!!q!!

(p+ q + 1)!!

where ε(p) = 1 if p is even, and ε(p) = 0 if p is odd, and where

m!! = (m− 1)(m− 3)(m− 5) . . .

with the product ending at 2 if m is odd, and ending at 1 if m is even.
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Proof. Let Ipq be the integral in the statement. In order to do the partial integration,
observe that we have:

(cosp t sinq t)′ = p cosp−1 t(− sin t) sinq t

+ cosp t · q sinq−1 t cos t

= −p cosp−1 t sinq+1 t+ q cosp+1 t sinq−1 t

By integrating between 0 and π/2, we obtain, for p, q > 0:

pIp−1,q+1 = qIp+1,q−1

Thus, we can compute Ipq by recurrence. When q is even we have:

Ipq =
q − 1

p+ 1
Ip+2,q−2

=
q − 1

p+ 1
· q − 3

p+ 3
Ip+4,q−4

=
q − 1

p+ 1
· q − 3

p+ 3
· q − 5

p+ 5
Ip+6,q−6

=
...

=
p!!q!!

(p+ q)!!
Ip+q

But the last term comes from the formulae in chapter 5, and we obtain the result:

Ipq =
p!!q!!

(p+ q)!!
Ip+q

=
p!!q!!

(p+ q)!!

(π
2

)ε(p+q) (p+ q)!!

(p+ q + 1)!!

=
(π
2

)ε(p)ε(q) p!!q!!

(p+ q + 1)!!

Observe that this gives the result for p even as well, by symmetry. Indeed, we have
Ipq = Iqp, by using the following change of variables:

t =
π

2
− s
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In the remaining case now, where both p, q are odd, we can use once again the formula
pIp−1,q+1 = qIp+1,q−1 established above, and the recurrence goes as follows:

Ipq =
q − 1

p+ 1
Ip+2,q−2

=
q − 1

p+ 1
· q − 3

p+ 3
Ip+4,q−4

=
q − 1

p+ 1
· q − 3

p+ 3
· q − 5

p+ 5
Ip+6,q−6

=
...

=
p!!q!!

(p+ q − 1)!!
Ip+q−1,1

In order to compute the last term, observe that we have:

Ip1 =

∫ π/2

0

cosp t sin t dt

= − 1

p+ 1

∫ π/2

0

(cosp+1 t)′ dt

=
1

p+ 1

Thus, we can finish our computation in the case p, q odd, as follows:

Ipq =
p!!q!!

(p+ q − 1)!!
Ip+q−1,1

=
p!!q!!

(p+ q − 1)!!
· 1

p+ q

=
p!!q!!

(p+ q + 1)!!

Thus, we obtain the formula in the statement, the exponent of π/2 appearing there
being ε(p)ε(q) = 0 · 0 = 0 in the present case, and this finishes the proof. □

As an application of Theorem 8.11, we can now compute the volumes of spheres:

Theorem 8.12. The volume of the unit sphere in RN is given by

V =
(π
2

)[N/2] 2N

(N + 1)!!

with our usual double factorial convention, N !! = (N − 1)(N − 3)(N − 5) . . .
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Proof. If we denote by B+ the positive part of the unit sphere, we have:

V + =

∫
B+

1

=

∫ 1

0

∫ π/2

0

. . .

∫ π/2

0

rN−1 sinN−2 t1 . . . sin tN−2 drdt1 . . . dtN−1

=

∫ 1

0

rN−1 dr

∫ π/2

0

sinN−2 t1 dt1 . . .

∫ π/2

0

sin tN−2dtN−2

∫ π/2

0

1dtN−1

=
1

N
×
(π
2

)[N/2]
× (N − 2)!!

(N − 1)!!
· (N − 3)!!

(N − 2)!!
. . .

2!!

3!!
· 1!!
2!!
· 1

=
1

N
×
(π
2

)[N/2]
× 1

(N − 1)!!

=
(π
2

)[N/2] 1

(N + 1)!!

Thus, we are led to the formula in the statement. □

Next, we can now integrate over the spheres, as follows:

Theorem 8.13. The polynomial integrals over the unit sphere SN−1
R ⊂ RN , with

respect to the normalized, mass 1 measure, are given by the following formula,∫
SN−1
R

xk11 . . . xkNN dx =
(N − 1)!!k1!! . . . kN !!

(N + Σki − 1)!!

valid when all exponents ki are even. If an exponent is odd, the integral vanishes.

Proof. Assume first that one of the exponents ki is odd. We can make then the
following change of variables, which shows that the integral in the statement vanishes:

xi → −xi
Assume now that all the exponents ki are even. As a first observation, the result holds

indeed at N = 2, due to the formula from Theorem 8.11, which reads:∫ π/2

0

cosp t sinq t dt =
(π
2

)ε(p)ε(q) p!!q!!

(p+ q + 1)!!

=
p!!q!!

(p+ q + 1)!!

Indeed, this formula computes the integral in the statement over the first quadrant.
But since the exponents p, q ∈ N are assumed to be even, the integrals over the other
quadrants are given by the same formula, so when averaging we obtain the result.
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In the general case now, where the dimension N ∈ N is arbitrary, the integral in the
statement can be written in spherical coordinates, as follows:

I =
2N

A

∫ π/2

0

. . .

∫ π/2

0

xk11 . . . xkNN J dt1 . . . dtN−1

Here A is the area of the sphere, J is the Jacobian, and the 2N factor comes from the
restriction to the 1/2N part of the sphere where all the coordinates are positive. According
to Theorem 8.12, the normalization constant in front of the integral is:

2N

A
=

(
2

π

)[N/2]

(N − 1)!!

As for the unnormalized integral, this is given by:

I ′ =

∫ π/2

0

. . .

∫ π/2

0

(cos t1)
k1(sin t1 cos t2)

k2

...

(sin t1 sin t2 . . . sin tN−2 cos tN−1)
kN−1

(sin t1 sin t2 . . . sin tN−2 sin tN−1)
kN

sinN−2 t1 sin
N−3 t2 . . . sin

2 tN−3 sin tN−2

dt1 . . . dtN−1

By rearranging the terms, we obtain:

I ′ =

∫ π/2

0

cosk1 t1 sin
k2+...+kN+N−2 t1 dt1∫ π/2

0

cosk2 t2 sin
k3+...+kN+N−3 t2 dt2

...∫ π/2

0

coskN−2 tN−2 sin
kN−1+kN+1 tN−2 dtN−2∫ π/2

0

coskN−1 tN−1 sin
kN tN−1 dtN−1
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Now by using the above-mentioned formula at N = 2, this gives:

I ′ =
k1!!(k2 + . . .+ kN +N − 2)!!

(k1 + . . .+ kN +N − 1)!!

(π
2

)ε(N−2)

k2!!(k3 + . . .+ kN +N − 3)!!

(k2 + . . .+ kN +N − 2)!!

(π
2

)ε(N−3)

...
kN−2!!(kN−1 + kN + 1)!!

(kN−2 + kN−1 + lN + 2)!!

(π
2

)ε(1)
kN−1!!kN !!

(kN−1 + kN + 1)!!

(π
2

)ε(0)
Now let F be the part involving the double factorials, and P be the part involving the

powers of π/2, so that I ′ = F · P . Regarding F , by cancelling terms we have:

F =
k1!! . . . kN !!

(Σki +N − 1)!!

As in what regards P , by summing the exponents, we obtain P =
(
π
2

)[N/2]
. We can

now put everything together, and we obtain:

I =
2N

A
× F × P

=

(
2

π

)[N/2]

(N − 1)!!× k1!! . . . kN !!

(Σki +N − 1)!!
×
(π
2

)[N/2]
=

(N − 1)!!k1!! . . . kN !!

(Σki +N − 1)!!

Thus, we are led to the conclusion in the statement. □

Good news, we can now come back to SU2, and we have the following result:

Theorem 8.14. The irreducible representations of SU2 are all self-adjoint, and can
be labelled by positive integers, with their fusion rules being as follows,

rk ⊗ rl = r|k−l| + r|k−l|+2 + . . .+ rk+l

called Clebsch-Gordan rules. The corresponding dimensions are dim rk = k + 1.

Proof. There are several proofs for this fact, the simplest one, with the knowledge
that we have, being via purely algebraic methods, as follows:

(1) Our first claim is that we have the following estimate, telling us that the even
moments of the main character are smaller than the Catalan numbers:∫

SU2

χ2k ≤ Ck
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But this is something which is elementary, obtained by using SU2 ≃ S3
R and standard

spherical integrals, and with the stronger statement that we have in fact equality =.
However, for the purposes of what follows, the above ≤ estimate will do.

(2) Alternatively, the above estimate can be deduced with purely algebraic methods,
by using an easiness type argument for SU2, as follows:∫

SU2

χ2k = dim(Fix(u⊗2k))

= dim
(
span

(
T ′
π

∣∣∣π ∈ NC2(2k)
))

≤ |NC2(2k)|
= Ck

To be more precise, SU2 is not exactly easy, but rather “super-easy”, coming from
a different implementation π → T ′

π of the pairings, involving some signs. And with this
being proved exactly as the Brauer theorem for ON , with modifications where needed.

(3) Long story short, we have our estimate in (1), and this is all that we need. Our
claim is that we can construct, by recurrence on k ∈ N, a sequence rk of irreducible,
self-adjoint and distinct representations of SU2, satisfying:

r0 = 1 , r1 = u , rk + rk−2 = rk−1 ⊗ r1

Indeed, assume that r0, . . . , rk−1 are constructed, and let us construct rk. We have:

rk−1 + rk−3 = rk−2 ⊗ r1

Thus rk−1 ⊂ rk−2 ⊗ r1, and since rk−2 is irreducible, by Frobenius we have:

rk−2 ⊂ rk−1 ⊗ r1

We conclude there exists a certain representation rk such that:

rk + rk−2 = rk−1 ⊗ r1

(4) By recurrence, rk is self-adjoint. Now observe that according to our recurrence
formula, we can split u⊗k as a sum of the following type, with positive coefficients:

u⊗k = ckrk + ck−2rk−2 + . . .

We conclude by Peter-Weyl that we have an inequality as follows, with equality pre-
cisely when rk is irreducible, and non-equivalent to the other summands ri:∑

i

c2i ≤ dim(End(u⊗k))
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(5) But by (1) the number on the right is ≤ Ck, and some straightforward combina-
torics, based on the fusion rules, shows that the number on the left is Ck as well:

Ck =
∑
i

c2i ≤ dim(End(u⊗k)) =

∫
SU2

χ2k ≤ Ck

Thus we have equality in our estimate, so our representation rk is irreducible, and
non-equivalent to rk−2, rk−4, . . . Moreover, this representation rk is not equivalent to
rk−1, rk−3, . . . either, with this coming from rp ⊂ u⊗p for any p, and from:

dim(Fix(u⊗2s+1)) =

∫
SU2

χ2s+1 = 0

(6) Thus, we proved our claim. Now since each irreducible representation of SU2

appears into some u⊗k, and we know how to decompose each u⊗k into sums of represen-
tations rk, these representations rk are all the irreducible representations of SU2, and we
are done with the main assertion. As for the dimension formula, this is clear. □

Regarding now SO3, we have here a similar result, as follows:

Theorem 8.15. The irreducible representations of SO3 are all self-adjoint, and can
be labelled by positive integers, with their fusion rules being as follows,

rk ⊗ rl = r|k−l| + r|k−l|+1 + . . .+ rk+l

also called Clebsch-Gordan rules. The corresponding dimensions are dim rk = 2k + 1.

Proof. As before with SU2, there are many possible proofs here, which are all in-
structive. Here is our take on the subject, in the spirit of our proof for SU2:

(1) Our first claim is that we have the following formula, telling us that the moments
of the main character equal the Catalan numbers:∫

SO3

χk = Ck

But this is something that we know from before, coming from Euler-Rodrigues. Al-
ternatively, this can be deduced as well from Tannakian duality, a bit as for SU2.

(2) Our claim now is that we can construct, by recurrence on k ∈ N, a sequence rk of
irreducible, self-adjoint and distinct representations of SO3, satisfying:

r0 = 1 , r1 = u− 1 , rk + rk−1 + rk−2 = rk−1 ⊗ r1
Indeed, assume that r0, . . . , rk−1 are constructed, and let us construct rk. The Frobe-

nius trick from the proof for SU2 will no longer work, due to some technical reasons, so
we have to invoke (1). To be more precise, by integrating characters we obtain:

rk−1, rk−2 ⊂ rk−1 ⊗ r1
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Thus there exists a representation rk such that:

rk−1 ⊗ r1 = rk + rk−1 + rk−2

(3) Once again by integrating characters, we conclude that rk is irreducible, and
non-equivalent to r1, . . . , rk−1, and this proves our claim. Also, since any irreducible
representation of SO3 must appear in some tensor power of u, and we can decompose
each u⊗k into sums of representations rp, we conclude that these representations rp are
all the irreducible representations of SO3. Finally, the dimension formula is clear. □

There are of course many other things that can be said about SU2 and SO3. For
instance, with the proof of Theorem 8.14 and Theorem 8.15 done in a purely algebraic
fashion, by using the super-easiness property of SU2 and SO3, the Euler-Rodrigues formula
can be deduced afterwards from this, without any single computation, the argument being
that by Peter-Weyl the embedding PU2 ⊂ SO3 must be indeed an equality.

8d. McKay subgroups

McKay subgroups.

8e. Exercises

Exercises:

Exercise 8.16.

Exercise 8.17.

Exercise 8.18.

Exercise 8.19.

Exercise 8.20.

Exercise 8.21.

Exercise 8.22.

Exercise 8.23.

Bonus exercise.



Part III

Analytic aspects



It was dark all around, there was frost in the ground
When the tigers broke free

And no one survived
From the Royal Fusiliers Company Z



CHAPTER 9

Character laws

9a. Poisson laws

Welcome to analysis. You would probably say, not much analysis to do on a finite
group G. But this is wrong, with many interesting computations, which require some
good analysis knowledge, being possible to invent. We will discuss all this in the present
Part III, with an overview of what can be done, and with the main results on the subject
explained. And, coming after, Part IV will be actually quite analytic too.

As a first topic of discussion, we would like to know more about something quite
mysterious, that we discovered a long time ago, in chapter 2, namely:

Fact 9.1. For the symmetric group SN , the number of fixed points, regarded as variable

χ : SN → N
follows with N →∞ limit the Poisson law p1. More generally, given a number t ∈ (0, 1],
the number of fixed points among {1, . . . , [tN ]}, regarded as variable

χt : SN → N
follows with N →∞ limit the Poisson law pt.

So, what to do with this? Many things. To start with, in order to know what we are
talking about, we need a crash course in discrete probability. Let us start with:

Definition 9.2. The Poisson law of parameter 1 is the following measure,

p1 =
1

e

∑
k≥0

δk
k!

and the Poisson law of parameter t > 0 is the following measure,

pt = e−t
∑
k≥0

tk

k!
δk

with the letter “p” standing for Poisson.

We will see in the moment why these measures appear a bit everywhere, in the discrete
context, the reasons for this coming from the Poisson Limit Theorem (PLT). For the
moment, let us first develop some general theory. We first have:

177
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Proposition 9.3. The mean and variance of pt are given by:

E = t , V = t

In particular for the Poisson law p1 we have E = 1, V = 1.

Proof. We have two computations to be performed, as follows:

(1) Regarding the mean, this can be computed as follows:

E = e−t
∑
k≥0

tk

k!
· k

= e−t
∑
k≥1

tk

(k − 1)!

= e−t
∑
l≥0

tl+1

l!

= te−t
∑
l≥0

tl

l!

= t

(2) For the variance, we first compute the second moment, as follows:

M2 = e−t
∑
k≥0

tk

k!
· k2

= e−t
∑
k≥1

tkk

(k − 1)!

= e−t
∑
l≥0

tl+1(l + 1)

l!

= te−t
∑
l≥0

tll

l!
+ te−t

∑
l≥0

tl

l!

= te−t
∑
l≥1

tl

(l − 1)!
+ t

= t2e−t
∑
m≥0

tm

m!
+ t

= t2 + t

Thus the variance is V =M2 − E2 = (t2 + t)− t2 = t, as claimed. □
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At the theoretical level now, we first have the following result:

Theorem 9.4. We have the following formula, for any s, t > 0,

ps ∗ pt = ps+t

so the Poisson laws form a convolution semigroup.

Proof. By using δk ∗ δl = δk+l and the binomial formula, we obtain:

ps ∗ pt = e−s
∑
k

sk

k!
δk ∗ e−t

∑
l

tl

l!
δl

= e−s−t
∑
n

δn
∑
k+l=n

sktl

k!l!

= e−s−t
∑
n

δn
n!

∑
k+l=n

n!

k!l!
sktl

= e−s−t
∑
n

(s+ t)n

n!
δn

= ps+t

Thus, we are led to the conclusion in the statement. □

Next in line, we have the following result, which is fundamental as well:

Theorem 9.5. The Poisson laws appear as formal exponentials

pt =
∑
k

tk(δ1 − δ0)∗k

k!

with respect to the convolution of measures ∗.
Proof. By using the binomial formula, the measure on the right is:

µ =
∑
k

tk

k!

∑
r+s=k

(−1)s k!
r!s!

δr

=
∑
k

tk
∑
r+s=k

(−1)s δr
r!s!

=
∑
r

trδr
r!

∑
s

(−1)sts

s!

=
1

et

∑
r

trδr
r!

= pt

Thus, we are led to the conclusion in the statement. □
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Regarding now the Fourier transform computation, this is as follows:

Theorem 9.6. The Fourier transform of pt is given by

Fpt(y) = exp
(
(eiy − 1)t

)
for any t > 0.

Proof. We have indeed the following computation:

Fpt(y) = e−t
∑
k

tk

k!
Fδk(y)

= e−t
∑
k

tk

k!
eiky

= e−t
∑
k

(eiyt)k

k!

= exp(−t) exp(eiyt)
= exp

(
(eiy − 1)t

)
Thus, we obtain the formula in the statement. □

Observe that the above result provides us with an alternative proof for Theorem 9.4,
due to the fact that the logarithm of the Fourier transform is linear in t.

We can now establish the Poisson Limit Theorem, as follows:

Theorem 9.7 (PLT). We have the following convergence, in moments,((
1− t

n

)
δ0 +

t

n
δ1

)∗n

→ pt

for any t > 0.

Proof. Let us denote by νn the measure under the convolution sign. We have the
following computation, for the Fourier transform of the limit:

Fδr(y) = eiry =⇒ Fνn(y) =

(
1− t

n

)
+
t

n
eiy

=⇒ Fν∗nn (y) =

((
1− t

n

)
+
t

n
eiy
)n

=⇒ Fν∗nn (y) =

(
1 +

(eiy − 1)t

n

)n
=⇒ F (y) = exp

(
(eiy − 1)t

)
Thus, we obtain indeed the Fourier transform of pt, as desired. □
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At the level of moments now, things are quite subtle. We first have:

Theorem 9.8. The moments of p1 are the Bell numbers,

Mk(p1) = |P (k)|
where P (k) is the set of partitions of {1, . . . , k}.

Proof. The moments of p1 are given by the following formula:

Mk =
1

e

∑
r

rk

r!

We therefore have the following recurrence formula for these moments:

Mk+1 =
1

e

∑
r

(r + 1)k+1

(r + 1)!

=
1

e

∑
r

rk

r!

(
1 +

1

r

)k
=

1

e

∑
r

rk

r!

∑
s

(
k

s

)
r−s

=
∑
s

(
k

s

)
· 1
e

∑
r

rk−s

r!

=
∑
s

(
k

s

)
Mk−s

With this done, let us try now to find a recurrence for the Bell numbers, Bk = |P (k)|.
A partition of {1, . . . , k+1} appears by choosing s neighbors for 1, among the k numbers
available, and then partitioning the k − s elements left. Thus, we have:

Bk+1 =
∑
s

(
k

s

)
Bk−s

Thus, our moments Mk satisfy the same recurrence as the numbers Bk. Regarding
now the initial values, in what concerns the first moment of p1, we have:

M1 =
1

e

∑
r

r

r!
= 1

Also, by using the above recurrence for the numbers Mk, we obtain from this:

M2 =
∑
s

(
1

s

)
Mk−s = 1 + 1 = 2

On the other hand, B1 = 1 and B2 = 2. Thus we obtain Mk = Bk, as claimed. □



182 9. CHARACTER LAWS

More generally now, we have the following result, dealing with the case t > 0:

Theorem 9.9. The moments of pt with t > 0 are given by

Mk(pt) =
∑

π∈P (k)

t|π|

where |.| is the number of blocks.

Proof. The moments of the Poisson law pt with t > 0 are given by:

Mk = e−t
∑
r

trrk

r!

We have the following recurrence formula for these moments:

Mk+1 = e−t
∑
r

tr+1(r + 1)k+1

(r + 1)!

= e−t
∑
r

tr+1rk

r!

(
1 +

1

r

)k
= e−t

∑
r

tr+1rk

r!

∑
s

(
k

s

)
r−s

=
∑
s

(
k

s

)
· e−t

∑
r

tr+1rk−s

r!

= t
∑
s

(
k

s

)
Mk−s

Regarding now the initial values, the first moment of pt is given by:

M1 = e−t
∑
r

trr

r!
= e−t

∑
r

tr

(r − 1)!
= t

Now by using the above recurrence we obtain from this:

M2 = t
∑
s

(
1

s

)
Mk−s = t(1 + t) = t+ t2

On the other hand, consider the numbers in the statement, namely:

Sk =
∑

π∈P (k)

t|π|
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Since a partition of {1, . . . , k + 1} appears by choosing s neighbors for 1, among the
k numbers available, and then partitioning the k − s elements left, we have:

Sk+1 = t
∑
s

(
k

s

)
Sk−s

As for the initial values of these numbers, these are S1 = t, S2 = t + t2. Thus the
initial values coincide, and so these numbers are the moments of pt, as stated. □

9b. Symmetric groups

Back now to group theory and to our Fact 9.1, we would like to make a connection
with the representation theory machinery developed in Part II. So, let us formulate the
following definition, fine-tuning the notion of character from there:

Definition 9.10. Given a subgroup G ⊂ UN , we can talk about its main character:

χ : G→ C , g → Tr(g)

More generally, given a number t ∈ (0, 1], we can talk about the variable

χt : G→ C , g →
[tN ]∑
i=1

gii

called truncated character.

Observe the similarity with what we have in Fact 9.1. In fact, this is not just a
similarity, but rather something very precise, the point being that we have:

Theorem 9.11. For the symmetric group SN , regarded as group of permutation ma-
trices, SN ⊂ ON , the main character counts the number of fixed points:

χ(g) = #
{
i ∈ {1, . . . , N}

∣∣∣σ(i) = i
}

More generally, the truncated characters count the following fixed points:

χt(g) = #
{
i ∈ {1, . . . , [tN ]}

∣∣∣σ(i) = i
}

The same goes for any G ⊂ SN , regarded as a matrix group via G ⊂ SN ⊂ ON .

Proof. According to our definition of the embedding SN ⊂ ON , given by the permu-
tation matrices, the formula for the corresponding coordinates is as follows:

gij = χ
(
σ ∈ SN

∣∣∣σ(j) = i
)



184 9. CHARACTER LAWS

But with this formula in hand, the character formulae in the statement follow from it,
by summing over i = j. To be more precise, we have:

χt(σ) =

[tN ]∑
i=1

σii

=

[tN ]∑
i=1

δσ(i)i

= #
{
i ∈ {1, . . . , [tN ]}

∣∣∣σ(i) = i
}

Thus, we are led to the conclusions in the statement. □

The point now is that, with the above interpretation of characters in hand, what we
have in Fact 9.1 reformulates into something quite conceptual, as follows:

Fact 9.12 (update). For the symmetric group SN , the main character

χ : SN → N

follows with N →∞ limit the Poisson law p1. More generally, the truncated character

χt : SN → N

follows with N →∞ limit the Poisson law pt, for any t ∈ (0, 1].

Very nice all this, and needless to say, this is not exactly a Fact, but rather a Theorem,
coming from the computations in chapter 2. In what follows, in the remainder of this
chapter, we will explore various versions and generalizations of this result.

As a first task, still staying with the symmetric group SN itself, let us improve as
well the proof that we have, for Fact 9.12. We can indeed replace the inclusion-exclusion
computations from chapter 2 with something more conceptual and analytic, namely:

Theorem 9.13. Consider the symmetric group SN , with its standard coordinates:

gij = χ
(
σ ∈ SN

∣∣∣σ(j) = i
)

The products of these coordinates span the algebra C(SN), and we have∫
SN

gi1j1 . . . gikjk =

{
(N−| ker i|)!

N !
if ker i = ker j

0 otherwise

where ker i denotes as usual the partition of {1, . . . , k} whose blocks collect the equal indices
of i, and where |.| denotes the number of blocks.
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Proof. The first assertion follows from the Stone-Weierstrass theorem, because the
standard coordinates gij separate the points of SN , and so the algebra < gij > that they
generate must be equal to the whole function algebra C(SN):

< gij >= C(SN)

Regarding now the second assertion, according to the definition of the matrix coordi-
nates gij, the integrals in the statement are given by:∫

SN

gi1j1 . . . gikjk =
1

N !
#
{
σ ∈ SN

∣∣∣σ(j1) = i1, . . . , σ(jk) = ik

}
Now observe that the existence of σ ∈ SN as above requires:

im = in ⇐⇒ jm = jn

Thus, the above integral vanishes when:

ker i ̸= ker j

Regarding now the case ker i = ker j, if we denote by b ∈ {1, . . . , k} the number of
blocks of this partition ker i = ker j, we have N − b points to be sent bijectively to N − b
points, and so (N − b)! solutions, and the integral is (N−b)!

N !
, as claimed. □

As an illustration for the above formula, we can recover the computation of the as-
ymptotic laws of the truncated characters χt. We have indeed:

Theorem 9.14. For the symmetric group SN ⊂ ON , regarded as a compact group of
matrices, SN ⊂ ON , via the standard permutation matrices, the truncated character

χt(g) =

[tN ]∑
i=1

gii

counts the number of fixed points among {1, . . . , [tN ]}, and its law with respect to the
counting measure becomes, with N →∞, a Poisson law of parameter t.

Proof. The first assertion comes from the following formula:

gij = χ
(
σ
∣∣∣σ(j) = i

)
Regarding now the second assertion, we can use here the integration formula in The-

orem 9.13. With Skb being the Stirling numbers, counting the partitions of {1, . . . , k}
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having exactly b blocks, we have indeed the following formula:∫
SN

χkt =

[tN ]∑
i1...ik=1

∫
SN

gi1i1 . . . gikik

=
∑

π∈P (k)

[tN ]!

([tN ]− |π|!)
· (N − |π|!)

N !

=

[tN ]∑
b=1

[tN ]!

([tN ]− b)!
· (N − b)!

N !
· Skb

In particular with N →∞ we obtain the following formula:

lim
N→∞

∫
SN

χkt =
k∑
b=1

Skbt
b

But this is the k-th moment of the Poisson law pt, and so we are done. □

As another result now regarding SN , here is a useful related formula:

Theorem 9.15. We have the law formula

law(g11 + . . .+ gss) =
s!

N !

s∑
p=0

(N − p)!
(s− p)!

· (δ1 − δ0)
∗p

p!

where gij are the standard coordinates of SN ⊂ ON .

Proof. We have the following moment formula, where mf is the number of permu-
tations of {1, . . . , N} having exactly f fixed points in the set {1, . . . , s}:∫

SN

(u11 + . . .+ uss)
k =

1

N !

s∑
f=0

mff
k

Thus the law in the statement, say νsN , is the following average of Dirac masses:

νsN =
1

N !

s∑
f=0

mf δf

Now observe that the permutations contributing to mf are obtained by choosing f
points in the set {1, . . . , s}, then by permuting the remaining N − f points in {1, . . . , n}
in such a way that there is no fixed point in {1, . . . , s}. But these latter permutations are
counted as follows: we start with all permutations, we substract those having one fixed
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point, we add those having two fixed points, and so on. We obtain in this way:

νsN =
1

N !

s∑
f=0

(
s
f

)(s−f∑
k=0

(−1)k
(
s− f
k

)
(N − f − k)!

)
δf

=
s∑

f=0

s−f∑
k=0

(−1)k 1

N !
· s!

f !(s− f)!
· (s− f)!(N − f − k)!

k!(s− f − k)!
δf

=
s!

N !

s∑
f=0

s−f∑
k=0

(−1)k(N − f − k)!
f !k!(s− f − k)!

δf

We can proceed as follows, by using the new index p = f + k:

νsN =
s!

N !

s∑
p=0

p∑
k=0

(−1)k(N − p)!
(p− k)!k!(s− p)!

δp−k

=
s!

N !

s∑
p=0

(N − p)!
(s− p)!p!

p∑
k=0

(−1)k
(
p
k

)
δp−k

=
s!

N !

s∑
p=0

(N − p)!
(s− p)!

· (δ1 − δ0)
∗p

p!

Here ∗ is convolution of real measures, and the assertion follows. □

Observe that the above formula is finer than most of our previous formulae, which
were asymptotic, because it is valid at any N ∈ N. We can use this formula as follows:

Theorem 9.16. Let gij be the standard coordinates of C(SN).

(1) u11 + . . .+ uss with s = o(N) is a projection of trace s/N .
(2) u11 + . . .+ uss with s = tN + o(N) is Poisson of parameter t.

Proof. We can use indeed the formula in Theorem 9.15, as follows:

(1) With s fixed and N →∞ we have the following estimate:

law(u11 + . . .+ uss)

=
s∑

p=0

(N − p)!
N !

· s!

(s− p)!
· (δ1 − δ0)

∗p

p!

= δ0 +
s

N
(δ1 − δ0) +O(N−2)

But the law on the right is that of a projection of trace s/N , as desired.
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(2) We have a law formula of the following type:

law(u11 + . . .+ uss) =
s∑

p=0

cp ·
(δ1 − δ0)∗p

p!

The coefficients cp can be estimated by using the Stirling formula, as follows:

cp =
(tN)!

N !
· (N − p)!
(tN − p)!

≃ (tN)tN

NN
· (N − p)N−p

(tN − p)tN−p

=

(
tN

tN − p

)tN−p(
N − p
N

)N−p(
tN

N

)p
But the last expression can be estimated by using the definition of the exponentials,

and we obtain in this way the following estimate:

cp ≃ epe−ptp = tp

We can now compute the Fourier transform with respect to a variable y:

F (law(u11 + . . .+ uss)) ≃
s∑

p=0

tp · (e
y − 1)p

p!

= et(e
y−1)

But this is precisely the Fourier transform of the Poisson law pt, as desired. □

Let us discuss now, as an instructive variation of the above, the computation for the
alternating group AN ⊂ SN . We first have the following result:

Theorem 9.17. Consider the alternating group AN , regarded as group of permutation
matrices, with its standard coordinates:

gij = χ
(
σ ∈ AN

∣∣∣σ(j) = i
)

The products of these coordinates span the algebra C(AN), and we have∫
AN

gi1j1 . . . gikjk ≃

{
(N−| ker i|)!

N !
if ker i = ker j

0 otherwise

with N →∞, where ker i denotes as usual the partition of {1, . . . , k} whose blocks collect
the equal indices of i, and where |.| denotes the number of blocks.
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Proof. The first assertion follows from the Stone-Weierstrass theorem. Regarding
now the second assertion, the integrals in the statement are given by:∫

AN

gi1j1 . . . gikjk =
1

N !/2
#
{
σ ∈ AN

∣∣∣σ(j1) = i1, . . . , σ(jk) = ik

}
Now observe that, as before for SN , the above integral vanishes when ker i ̸= ker j.

Regarding now the case ker i = ker j, if we denote by b ∈ {1, . . . , k} the number of blocks
of this partition ker i = ker j, we have N − b points to be sent bijectively to N − b points.
But when assuming N >> 0, and more specifically N > k, half of these bijections will be
alternating, and so we have (N − b)!/2 solutions. Thus, the integral is:∫

AN

gi1j1 . . . gikjk =
1

N !/2
#
{
σ ∈ AN

∣∣∣σ(j1) = i1, . . . , σ(jk) = ik

}
=

(N − b)!/2
N !/2

=
(N − b)!
N !

Thus, we are led to the conclusion in the statement. □

At the level of truncated characters now, we have the following result:

Theorem 9.18. For the alternating group AN ⊂ ON , regarded as a compact group of
matrices, AN ⊂ ON , via the standard permutation matrices, the truncated character

χt(g) =

[tN ]∑
i=1

gii

counts the number of fixed points among {1, . . . , [tN ]}, and its law with respect to the
counting measure becomes, with N →∞, a Poisson law of parameter t.

Proof. We can use here the formula in Theorem 9.17. With Skb being the Stirling
numbers, counting the partitions of {1, . . . , k} having exactly b blocks, we have:∫

AN

χkt =

[tN ]∑
i1...ik=1

∫
AN

gi1i1 . . . gikik

≃
∑

π∈P (k)

[tN ]!

([tN ]− |π|!)
· (N − |π|!)

N !

=

[tN ]∑
b=1

[tN ]!

([tN ]− b)!
· (N − b)!

N !
· Skb

In particular with N →∞ we obtain the k-th moment of pt, as desired. □



190 9. CHARACTER LAWS

9c. Bessel laws

Regarding now the character laws for HN , we can compute them by using the same
method as for the symmetric group SN , namely inclusion-exclusion, and we have:

Theorem 9.19. For the hyperoctahedral group HN ⊂ ON , the law of the variable

χt =

[tN ]∑
i=1

gii

becomes in the N →∞ limit the measure

bt = e−t
∞∑

k=−∞

δk

∞∑
p=0

(t/2)|k|+2p

(|k|+ p)!p!

where δk is the Dirac mass at k ∈ Z.

Proof. We regard HN as being the symmetry group of the graph IN = {I1, . . . , IN}
formed by N segments. The diagonal coefficients are given by:

uii(g) =


0 if g moves I i

1 if g fixes I i

−1 if g returns I i

We denote by ↑ g, ↓ g the number of segments among {I1, . . . , Is} which are fixed,
respectively returned by an element g ∈ HN . With this notation, we have:

u11 + . . .+ uss =↑ g− ↓ g

Let us denote by PN probabilities computed over the group HN . The density of the
law of u11 + . . .+ uss at a point k ≥ 0 is then given by the following formula:

D(k) = PN(↑ g− ↓ g = k)

=
∞∑
p=0

PN(↑ g = k + p, ↓ g = p)

Assume first that we have t = 1. We use the fact, that we know well from chapter 11,
that the probability of σ ∈ SN to have no fixed points is asymptotically given by:

P0 =
1

e

Thus the probability of σ ∈ SN to have m fixed points is asymptotically given by:

Pm =
1

em!
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In terms of probabilities over HN , we obtain from this, as desired:

lim
N→∞

D(k) = lim
N→∞

∞∑
p=0

(1/2)k+2p

(
k + 2p
k + p

)
PN(↑ g+ ↓ g = k + 2p)

=
∞∑
p=0

(1/2)k+2p

(
k + 2p
k + p

)
1

e(k + 2p)!

=
1

e

∞∑
p=0

(1/2)k+2p

(k + p)!p!

As for the general case 0 < t ≤ 1, here the result follows by performing some modifi-
cations in the above computation. The asymptotic density is computed as follows:

lim
N→∞

D(k) = lim
N→∞

∞∑
p=0

(1/2)k+2p

(
k + 2p
k + p

)
PN(↑ g+ ↓ g = k + 2p)

=
∞∑
p=0

(1/2)k+2p

(
k + 2p
k + p

)
tk+2p

et(k + 2p)!

= e−t
∞∑
p=0

(t/2)k+2p

(k + p)!p!

Together with D(−k) = D(k), this gives the formula in the statement. □

The above result is quite interesting, because the densities there are the Bessel func-
tions of the first kind. Due to this fact, the limiting measures are called Bessel laws:

Definition 9.20. The Bessel law of parameter t > 0 is the measure

bt = e−t
∞∑

k=−∞

δk fk(t/2)

with the density being the following function,

fk(t) =
∞∑
p=0

t|k|+2p

(|k|+ p)!p!

Bessel function of the first kind.

Let us study now these Bessel laws. We first have the following result:

Theorem 9.21. The Bessel laws bt have the property

bs ∗ bt = bs+t

so they form a truncated one-parameter semigroup with respect to convolution.
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Proof. We use the formula in Definition 9.20, namely:

bt = e−t
∞∑

k=−∞

δk fk(t/2)

The Fourier transform of this measure is given by:

Fbt(y) = e−t
∞∑

k=−∞

eky fk(t/2)

We compute now the derivative with respect to t:

Fbt(y)
′ = −Fbt(y) +

e−t

2

∞∑
k=−∞

eky f ′
k(t/2)

On the other hand, the derivative of fk with k ≥ 1 is given by:

f ′
k(t) =

∞∑
p=0

(k + 2p)tk+2p−1

(k + p)!p!

=
∞∑
p=0

(k + p)tk+2p−1

(k + p)!p!
+

∞∑
p=0

p tk+2p−1

(k + p)!p!

=
∞∑
p=0

tk+2p−1

(k + p− 1)!p!
+

∞∑
p=1

tk+2p−1

(k + p)!(p− 1)!

=
∞∑
p=0

t(k−1)+2p

((k − 1) + p)!p!
+

∞∑
p=1

t(k+1)+2(p−1)

((k + 1) + (p− 1))!(p− 1)!

= fk−1(t) + fk+1(t)

This computation works in fact for any k, so we get:

Fbt(y)
′ = −Fbt(y) +

e−t

2

∞∑
k=−∞

eky(fk−1(t/2) + fk+1(t/2))

= −Fbt(y) +
e−t

2

∞∑
k=−∞

e(k+1)yfk(t/2) + e(k−1)yfk(t/2)

= −Fbt(y) +
ey + e−y

2
Fbt(y)

=

(
ey + e−y

2
− 1

)
Fbt(y)

Thus the log of the Fourier transform is linear in t, and we get the assertion. □
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In order to further discuss all this, we will need a number of probabilistic preliminaries.
We recall that, conceptually speaking, the Poisson laws are the laws appearing via the
Poisson Limit Theorem (PLT). In order to generalize this construction, as to cover for
instance for Bessel laws that we found in connection with the hyperoctahedral group HN ,
we have the following notion, extending the Poisson limit theory:

Definition 9.22. Associated to any compactly supported positive measure ν on R is
the probability measure

pν = lim
n→∞

((
1− c

n

)
δ0 +

1

n
ν

)∗n

where c = mass(ν), called compound Poisson law.

In other words, what we are doing here is to generalize the construction in the Poisson
Limit Theorem, by allowing the only parameter there, which was the positive real number
t > 0, to be replaced by a certain probability measure ν, of arbitrary mass c > 0.

In what follows we will be interested in the case where ν is discrete, as is for instance
the case for the measure ν = tδ1 with t > 0, which produces via the above procedure the
Poisson laws. To be more precise, we will be mainly interested in the case where ν is a
multiple of the uniform measure on the s-th roots of unity. More on this later.

The following result allows us to detect compound Poisson laws:

Proposition 9.23. For a discrete measure, ν =
∑s

i=1 ciδzi with ci > 0 and zi ∈ R,
we have the formula

Fpν (y) = exp

(
s∑
i=1

ci(e
iyzi − 1)

)
where F denotes as usual the Fourier transform.

Proof. Let µn be the measure appearing in Definition 9.22, namely:

µn =
(
1− c

n

)
δ0 +

1

n
ν

We have the following computation, in the context of Definition 9.22:

Fµn(y) =
(
1− c

n

)
+

1

n

s∑
i=1

cie
iyzi

=⇒ Fµ∗nn (y) =

((
1− c

n

)
+

1

n

s∑
i=1

cie
iyzi

)n

=⇒ Fpν (y) = exp

(
s∑
i=1

ci(e
iyzi − 1)

)
Thus, we have obtained the formula in the statement. □
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We have as well the following result, providing an alternative to Definition 9.22, and
which will be our formulation of the Compound Poisson Limit Theorem (CPLT):

Theorem 9.24. For a discrete measure, written as

ν =
s∑
i=1

ciδzi

with ci > 0 and zi ∈ R, we have the formula

pν = law

(
s∑
i=1

ziαi

)
where the variables αi are Poisson (ci), independent.

Proof. Let α be the sum of Poisson variables in the statement:

α =
s∑
i=1

ziαi

By using some well-known Fourier transform formulae, we have:

Fαi
(y) = exp(ci(e

iy − 1) =⇒ Fziαi
(y) = exp(ci(e

iyzi − 1))

=⇒ Fα(y) = exp

(
s∑
i=1

ci(e
iyzi − 1)

)
Thus we have the same formula as in Proposition 9.23, as desired. □

Getting back now to the Bessel laws, we have the following result:

Theorem 9.25. The Bessel laws bt are compound Poisson laws, given by

bt = ptε

where ε = 1
2
(δ−1 + δ1) is the uniform measure on Z2.

Proof. This follows indeed by comparing the formula of the Fourier transform of bt,
from the proof of Theorem 9.21, with the formula in Proposition 9.23. □

Getting now to the examples, let us start with the following definition:

Definition 9.26. The Bessel law of level s ∈ N ∪ {∞} and parameter t > 0 is

bst = ptεs

with εs being the uniform measure on the s-th roots of unity.

Of particular interest are the cases s = 1, 2,∞, where we obtain the Poisson laws pt,
and then certain measures bt, Bt, called real and purely complex Bessel laws:

b1t = pt , b2t = bt , b∞t = Bt

As a basic result on the Bessel laws, generalizing those about pt, we have:
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Theorem 9.27. The Fourier transform of bst is given by

logF s
t (z) = t (exps z − 1)

where exps z is the level s exponential function, given by the formula

exps z =
∞∑
k=0

zsk

(sk)!

so in particular the measures bst have the property bst ∗ bst′ = bst+t′.

Proof. We know from Theorem 9.24 that bst appears as follows, with a1, . . . , as being
independent, each of them following the Poisson law of parameter t/s, and w = e2πi/s:

bst = law

(
s∑

k=1

wkak

)
We have the following computation, for the corresponding Fourier transform:

logF (z) =
s∑

k=1

logFak(w
kz)

=
s∑

k=1

t

s

(
exp(wkz)− 1

)
= t

((
1

s

s∑
k=1

exp(wkz)

)
− 1

)
= t (exps z − 1)

Thus, we are led to the conclusions in the statement. □

Let us study now the density of bst . We have here the following result:

Theorem 9.28. We have the formula

bst = e−t
∞∑
p1=0

. . .

∞∑
ps=0

1

p1! . . . ps!

(
t

s

)p1+...+ps
δ

(
s∑

k=1

wkpk

)
where w = e2πi/s, and the δ symbol is a Dirac mass.

Proof. The Fourier transform of the measure on the right is given by:

F (z) = e−t
∞∑
p1=0

. . .
∞∑
ps=0

1

p1! . . . ps!

(
t

s

)p1+...+ps
exp

(
s∑

k=1

wkpkz

)

= e−t
∞∑
r=0

(
t

s

)r ∑
Σpi=r

exp
(∑s

k=1w
kpkz

)
p1! . . . ps!
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We multiply now by et, and we compute the derivative with respect to t:

(etF (z))′ =
∞∑
r=1

r

s

(
t

s

)r−1 ∑
Σpi=r

exp
(∑s

k=1w
kpkz

)
p1! . . . ps!

=
1

s

∞∑
r=1

(
t

s

)r−1 ∑
Σpi=r

s∑
l=1

exp
(∑s

k=1w
kpkz

)
p1! . . . pl−1!(pl − 1)!pl+1! . . . ps!

By using the variable u = r − 1, we obtain from this the following formula:

(etF (z))′ =
1

s

∞∑
u=0

(
t

s

)u ∑
Σqi=u

s∑
l=1

exp
(
wlz +

∑s
k=1w

kqkz
)

q1! . . . qs!

=

(
1

s

s∑
l=1

exp(wlz)

)(
∞∑
u=0

(
t

s

)u ∑
Σqi=u

exp
(∑s

k=1w
kqkz

)
q1! . . . qs!

)
= (exps z)(e

tF (z))

But this gives logF = t(exps z − 1), as in Theorem 9.27, as desired. □

Getting back now to group theory, we have here the following result:

Theorem 9.29. For the complex reflection group Hs
N we have, with N →∞:

χt ∼ bst

Moreover, the asymptotic moments of this variable are the numbers

Mk(b
s
t) =

∑
π∈P s(k)

t|π|

where P s(k) are the partitions of {1, . . . , k} satisfying #◦ = # • (s), in each block.

Proof. This is something quite technical, the idea being as follows:

(1) At s = 1 the reflection group is H1
N = SN , the Bessel law is the Poisson law,

b1t = pt, and the formula χt ∼ pt with N → ∞ is something that we know. As for the
moment formula, where P 1 = P , this is something that we know too.

(2) At s = 2 the reflection group is H2
N = HN , the Bessel law is b2t = bt, and the

formula χt ∼ bt with N → ∞ is something that we know. As for the moment formula,
where P 2 = Peven, this is something more technical, which can be established too.

(3) At s = ∞ the reflection group is H∞
N = KN , the Bessel law is b∞t = Bt, and the

formula χt ∼ Bt with N →∞ is something that can be proved as for SN , HN . As for the
moment formula, where P∞ = Peven, this can be established too.
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(4) In the general case, s ∈ N ∪ {∞}, the formula χt ∼ bst with N → ∞ can be
established like for SN , HN , and the moment formula is something more technical. For
details on all this, and for the whole story, you can have a look at my book [7]. □

9d. Further results

We have the following formula, in the general easy group setting:

Proposition 9.30. The moments of truncated characters are given by the formula∫
G

(g11 + . . .+ gss)
k = Tr(WkNGks)

where GkN and WkN = G−1
kN are the associated Gram and Weingarten matrices.

Proof. We have indeed the following computation:∫
G

(g11 + . . .+ gss)
k =

s∑
i1=1

. . .
s∑

ik=1

∫
G

gi1i1 . . . gikik

=
∑

π,σ∈D(k)

WkN(π, σ)
s∑

i1=1

. . .
s∑

ik=1

δπ(i)δσ(i)

=
∑

π,σ∈D(k)

WkN(π, σ)Gks(σ, π)

= Tr(WkNGks)

Thus, we have obtained the formula in the statement. □

In order to further process now the above formula, and reach to concrete results, we
can impose the uniformity condition. To be more precise, we obtain in this way:

Theorem 9.31. For a uniform easy group G = (GN), we have the formula

lim
N→∞

∫
GN

χkt =
∑

π∈D(k)

t|π|

with D ⊂ P being the associated category of partitions.

Proof. We use the general moment formula from Proposition 9.30. By setting s =
[tN ], with t > 0 being a given parameter, this formula becomes:∫

GN

χkt = Tr(WkNGk[tN ])

The point now is that in the uniform case the Gram and Weingarten matrices are
asymptotically diagonal, and this leads to the formula in the statement. □

We can now recover our character results, as follows:
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Theorem 9.32. With N →∞, the laws of truncated characters are as follows:

(1) For ON we obtain the Gaussian law gt.
(2) For UN we obtain the complex Gaussian law Gt.
(3) For SN we obtain the Poisson law pt.
(4) For HN we obtain the Bessel law bt.
(5) For Hs

N we obtain the generalized Bessel law bst .
(6) For KN we obtain the complex Bessel law Bt.

Also, for BN , CN and for SpN we obtain modified normal laws.

Proof. We use the formula that we found in Theorem 9.31, namely:

lim
N→∞

∫
GN

χkt =
∑

π∈D(k)

t|π|

By doing now some combinatorics, for instance in relation with the cumulants, this
gives the results. We refer here to [7] and various related papers. □

9e. Exercises

Exercises:

Exercise 9.33.

Exercise 9.34.

Exercise 9.35.

Exercise 9.36.

Exercise 9.37.

Exercise 9.38.

Exercise 9.39.

Exercise 9.40.

Bonus exercise.



CHAPTER 10

Gram determinants

10a. Gram determinants

Let us discuss now a key algebraic problem, that we already met in chapter 9, namely
the linear independence of the vectors ξπ. We first have:

Definition 10.1. Let P (k) be the set of partitions of {1, . . . , k}, and π, σ ∈ P (k).
(1) We write π ≤ σ if each block of π is contained in a block of σ.
(2) We let π ∨ σ ∈ P (k) be the partition obtained by superposing π, σ.

Also, we denote by |.| the number of blocks of the partitions π ∈ P (k).

As an illustration here, at k = 2 we have P (2) = {||,⊓}, and we have:

|| ≤ ⊓

Also, at k = 3 we have P (3) = {|||,⊓|,⊓| , |⊓,⊓⊓}, and the order relation is as follows:

||| ≤ ⊓| , ⊓| , |⊓ ≤ ⊓⊓

In relation with our linear independence questions, the idea will be that of using:

Proposition 10.2. The Gram matrix of the vectors ξπ is given by the formula

< ξπ, ξσ >= N |π∨σ|

where ∨ is the superposition operation, and |.| is the number of blocks.

Proof. According to the formula of the vectors ξπ, we have:

< ξπ, ξσ > =
∑
i1...ik

δπ(i1, . . . , ik)δσ(i1, . . . , ik)

=
∑
i1...ik

δπ∨σ(i1, . . . , ik)

= N |π∨σ|

Thus, we have obtained the formula in the statement. □

In order to study the Gram matrixGk(π, σ) = N |π∨σ|, and more specifically to compute
its determinant, we will use several standard facts about partitions. We have:

199
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Definition 10.3. The Möbius function of any lattice, and so of P , is given by

µ(π, σ) =


1 if π = σ

−
∑

π≤τ<σ µ(π, τ) if π < σ

0 if π ̸≤ σ

with the construction being performed by recurrence.

As an illustration here, for P (2) = {||,⊓}, we have by definition:

µ(||, ||) = µ(⊓,⊓) = 1

Also, || < ⊓, with no intermediate partition in between, so we obtain:

µ(||,⊓) = −µ(||, ||) = −1
Finally, we have ⊓ ̸≤ ||, and so we have as well the following formula:

µ(⊓, ||) = 0

Back to the general case now, the main interest in the Möbius function comes from
the Möbius inversion formula, which states that the following happens:

f(σ) =
∑
π≤σ

g(π) =⇒ g(σ) =
∑
π≤σ

µ(π, σ)f(π)

In linear algebra terms, the statement and proof of this formula are as follows:

Theorem 10.4. The inverse of the adjacency matrix of P (k), given by

Ak(π, σ) =

{
1 if π ≤ σ

0 if π ̸≤ σ

is the Möbius matrix of P , given by Mk(π, σ) = µ(π, σ).

Proof. This is well-known, coming for instance from the fact that Ak is upper trian-
gular. Indeed, when inverting, we are led into the recurrence from Definition 10.3. □

10b. Symmetric groups

Now back to our Gram matrix considerations, we have the following key result:

Proposition 10.5. The Gram matrix of the vectors ξπ with π ∈ P (k),
Gπσ = N |π∨σ|

decomposes as a product of upper/lower triangular matrices, Gk = AkLk, where

Lk(π, σ) =

{
N(N − 1) . . . (N − |π|+ 1) if σ ≤ π

0 otherwise

and where Ak is the adjacency matrix of P (k).
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Proof. We have the following computation, based on Proposition 10.2:

Gk(π, σ) = N |π∨σ|

= #
{
i1, . . . , ik ∈ {1, . . . , N}

∣∣∣ ker i ≥ π ∨ σ
}

=
∑
τ≥π∨σ

#
{
i1, . . . , ik ∈ {1, . . . , N}

∣∣∣ ker i = τ
}

=
∑
τ≥π∨σ

N(N − 1) . . . (N − |τ |+ 1)

According now to the definition of Ak, Lk, this formula reads:

Gk(π, σ) =
∑
τ≥π

Lk(τ, σ)

=
∑
τ

Ak(π, τ)Lk(τ, σ)

= (AkLk)(π, σ)

Thus, we are led to the formula in the statement. □

As an illustration for the above result, at k = 2 we have P (2) = {||,⊓}, and the above
decomposition G2 = A2L2 appears as follows:(

N2 N
N N

)
=

(
1 1
0 1

)(
N2 −N 0
N N

)
We are led in this way to the following formula, due to Lindstöm [69]:

Theorem 10.6. The determinant of the Gram matrix Gk is given by

det(Gk) =
∏

π∈P (k)

N !

(N − |π|)!

with the convention that in the case N < k we obtain 0.

Proof. If we order P (k) as usual, with respect to the number of blocks, and then
lexicographically, Ak is upper triangular, and Lk is lower triangular. Thus, we have:

det(Gk) = det(Ak) det(Lk)

= det(Lk)

=
∏
π

Lk(π, π)

=
∏
π

N(N − 1) . . . (N − |π|+ 1)

Thus, we are led to the formula in the statement. □
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10c. Reflection groups

We discuss now the systematic computation of the Gram determinants. Let us begin
with some simple observations, coming from definitions:

Proposition 10.7. Let Dk(N) = det(GkN), viewed as element of Z[N ].

(1) Dk is monic, of degree sk =
∑

π∈D(k) |π|.
(2) We have nbk |Dk, where bk = |D(k)|.

Proof. Here (1) follows from |π∨σ| ≤ |π|, with equality if and only if σ ≤ π. Indeed,
from the inequality we get deg(Dk) ≤ sk. Now the coefficient of N sk is the signed number
of permutations f : D(k) → D(k) satisfying f(π) ≤ π for any π, and since there is only
one such permutation, namely the identity, we obtain that this coefficient is 1. As for (2),
this is clear from the definition of Dk, and from |π ∨ σ| ≥ 1. □

We can reformulate Proposition 10.7, in the following way:

Proposition 10.8. With Dk(N) = det(GkN) and Tk(t) = Tr(Gkt), we have:

(1) Dk(N) = N sk(1 +O(N−1)) as N →∞, where sk = T ′
k(1).

(2) Dk(N) = O(nbk) as N → 0, where bk = Tk(1).

Proof. This is a reformulation of Proposition 10.7, using a variable t around 1. Note
that in (2) we regard the variable N as a formal parameter, going to 0. □

The trace can be understood in terms of the associated Stirling numbers, as follows:

Proposition 10.9. We have the formula

Tk(t) =
k∑
r=1

Skrt
r

where Skr = #{π ∈ D(k) : |π| = r} are the Stirling numbers.

Proof. This is indeed clear from definitions. □

Another interpretation of the trace, analytic this time, is as follows:

Proposition 10.10. For any t ∈ (0, 1] we have the formula

Tk(t) = lim
n→∞

∫
G×

n

χkt

where χt =
∑[tn]

i=1 uii are the truncated characters of the group.

Proof. As explained in chapter 9, this follows from the Weingarten formula. □

Getting now to concrete computations, for the reflection groups, we have here:
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Theorem 10.11. For SN , HN we have

det(GkN) =
∏

π∈D(k)

N !

(N − |π|)!

where |.| is the number of blocks.

Proof. We use the fact that the partitions have the property of forming semilattices
under ∨. The proof uses the upper triangularization procedure in [69] together with the
explicit knowledge of the Möbius function on D(k) as in [55]. Consider the following
matrix, obtained by making determinant-preserving operations:

G′
kN(π, σ) =

∑
π≤τ

µ(π, τ)N |τ∨σ|

It follows from the Möbius inversion formula that we have:

G′
kN(π, σ) =

{
N(N − 1) . . . (N − |σ|+ 1) if π ≤ σ

0 otherwise

Thus the matrix is upper triangular, and by computing the product on the diagonal
we obtain the formula in the statement. □

A first remarkable feature of the above result is that the Gram determinant for the
groups SN , HN can be computed from the trace. Indeed, the Gram matrix trace gives the
Stirling numbers, which in turn give the Gram matrix determinant.

However, the connecting formula is quite complicated, so let us just record here:

Theorem 10.12. With Dk(N) = det(GkN) and Tk(t) = Tr(Gkt) we have

Dk(N) = N sk
(
1− zk

2
N−1 +O(N−2)

)
where sk = T ′

k(1) and zk = T ′′
k (1).

Proof. In terms of Stirling numbers, the formula in Theorem 10.11 reads:

Dk(N) =
k∏
r=1

(
N !

(N − r)!

)Skr

We use now the following basic estimate:

N !

(N − r)!
= N r

r−1∏
s=1

(
1− s

N

)
= N r

(
1− r(r − 1)

2
N−1 +O(N−2)

)
Together with Tk(t) =

∑k
r=1 Skrt

r, this gives the result. □

Observe that the above discussion raises the general question on whether the Gram
matrix determinant can be computed or not from the Gram matrix trace.
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10d. Further results

The above computations can be thought of as corresponding to the groups SN , HN ,
but we can do such things for any easy group. As a first illustration, let us discuss the
case of the orthogonal group ON . Here the combinatorics is that of the Young diagrams.
We denote by |.| the number of boxes, and we use quantity fλ, which gives the number
of standard Young tableaux of shape λ. We have then the following result:

Theorem 10.13. The determinant of the Gram matrix of ON is given by

det(GkN) =
∏

|λ|=k/2

fN(λ)
f2λ

where the quantities on the right are fN(λ) =
∏

(i,j)∈λ(N + 2j − i− 1).

Proof. For the group ON the Gram matrix is diagonalizable, as follows:

GkN =
∑

|λ|=k/2

fN(λ)P2λ

Here 1 =
∑
P2λ is the standard partition of unity associated to the Young diagrams

having k/2 boxes, and the coefficients fN(λ) are those in the statement. Now since we
have Tr(P2λ) = f 2λ, this gives the formula in the statement. □

In order to deal now with O+
N , S

+
N , we will need the following well-known fact:

Proposition 10.14. We have a bijection NC(k) ≃ NC2(2k), as follows:

(1) The application NC(k)→ NC2(2k) is the “fattening” one, obtained by doubling
all the legs, and doubling all the strings as well.

(2) Its inverse NC2(2k) → NC(k) is the “shrinking” application, obtained by col-
lapsing pairs of consecutive neighbors.

Proof. The fact that the above two operations are indeed inverse to each other is
clear, by drawing pictures, and computing the corresponding compositions. □

At the level of the associated Gram matrices, the result is as follows:

Proposition 10.15. The Gram matrices of NC2(2k) ≃ NC(k) are related by

G2k,n(π, σ) = nk(∆−1
knGk,n2∆−1

kn )(π
′, σ′)

where π → π′ is the shrinking operation, and ∆kn is the diagonal of Gkn.

Proof. In the context of the bijection from Proposition 10.14, we have:

|π ∨ σ| = k + 2|π′ ∨ σ′| − |π′| − |σ′|
We therefore have the following formula, valid for any n ∈ N:

n|π∨σ| = nk+2|π′∨σ′|−|π′|−|σ′|

Thus, we are led to the formula in the statement. □
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Now back to O+
N , S

+
N , let us begin with some examples. We first have:

Proposition 10.16. The first Gram matrices and determinants for O+
N are

det

(
N2 N
N N2

)
= N2(N2 − 1)

det


N3 N2 N2 N2 N
N2 N3 N N N2

N2 N N3 N N2

N2 N N N3 N2

N N2 N2 N2 N3

 = N5(N2 − 1)4(N2 − 2)

with the matrices being written by using the lexicographic order on NC2(2k).

Proof. The formula at k = 2, where NC2(4) = {⊓⊓,
⋂
∩ }, is clear from definitions.

At k = 3 however, things are tricky. The partitions here are as follows:

NC(3) = {|||,⊓|,⊓| , |⊓,⊓⊓}

The Gram matrix and its determinant are, according to Theorem 10.6:

det


N3 N2 N2 N2 N
N2 N2 N N N
N2 N N2 N N
N2 N N N2 N
N N N N N

 = N5(N − 1)4(N − 2)

By using now Proposition 10.15, this gives the formula in the statement. □

In general, such tricks won’t work, because NC(k) is strictly smaller than P (k) at
k ≥ 4. However, following Di Francesco [19], we have the following result:

Theorem 10.17. The determinant of the Gram matrix for O+
N is given by

det(GkN) =

[k/2]∏
r=1

Pr(N)dk/2,r

where Pr are the Chebycheff polynomials, given by

P0 = 1 , P1 = X , Pr+1 = XPr − Pr−1

and dkr = fkr − fk,r+1, with fkr being the following numbers, depending on k, r ∈ Z,

fkr =

(
2k

k − r

)
−
(

2k

k − r − 1

)
with the convention fkr = 0 for k /∈ Z.
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Proof. This is something quite technical, obtained by using a decomposition as fol-
lows of the Gram matrix GkN , with the matrix TkN being lower triangular:

GkN = TkNT
t
kN

Thus, a bit as in the proof of the Lindstöm formula, we obtain the result, but the
problem lies however in the construction of TkN , which is non-trivial. See [19]. □

Moving ahead now, regarding S+
N , also following Di Francesco [19], we have:

Theorem 10.18. The determinant of the Gram matrix for S+
N is given by

det(GkN) = (
√
N)ak

k∏
r=1

Pr(
√
N)dkr

where Pr are the Chebycheff polynomials, given by

P0 = 1 , P1 = X , Pr+1 = XPr − Pr−1

and dkr = fkr − fk,r+1, with fkr being the following numbers, depending on k, r ∈ Z,

fkr =

(
2k

k − r

)
−
(

2k

k − r − 1

)
with the convention fkr = 0 for k /∈ Z, and where ak =

∑
π∈P(k)(2|π| − k).

Proof. This follows indeed from Theorem 10.17, by using Proposition 10.15. □

10e. Exercises

Exercises:

Exercise 10.19.

Exercise 10.20.

Exercise 10.21.

Exercise 10.22.

Exercise 10.23.

Exercise 10.24.

Exercise 10.25.

Exercise 10.26.

Bonus exercise.
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Part IV

Generalizations



Never mind
I’ll find someone like you
I wish nothing but the best

For you too



CHAPTER 13

Discrete groups

13a. Discrete groups

Discrete groups.

13b. Random walks

Random walks.

13c. Group algebras

In order to talk about group algebras, at a more advanced level, we first need to know
more about operator algebras. The result that we will need is as follows:

Proposition 13.1. For a subalgebra A ⊂ B(H), the following are equivalent:

(1) A is closed under the weak operator topology, making each of the linear maps
T →< Tx, y > continuous.

(2) A is closed under the strong operator topology, making each of the linear maps
T → Tx continuous.

In the case where these conditions are satisfied, A is closed under the norm topology.

Proof. There are several statements here, the proof being as follows:

(1) It is clear that the norm topology is stronger than the strong operator topology,
which is in turn stronger than the weak operator topology. At the level of the subsets
S ⊂ B(H) which are closed things get reversed, in the sense that weakly closed implies
strongly closed, which in turn implies norm closed. Thus, we are left with proving that
for any algebra A ⊂ B(H), strongly closed implies weakly closed.

(2) Consider the Hilbert space obtained by summing n times H with itself:

K = H ⊕ . . .⊕H
The operators over K can be regarded as being square matrices with entries in B(H),

and in particular, we have a representation π : B(H)→ B(K), as follows:

π(T ) =

T . . .
T


213
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Assume now that we are given an operator T ∈ Ā, with the bar denoting the weak
closure. We have then, by using the Hahn-Banach theorem, for any x ∈ K:

T ∈ Ā =⇒ π(T ) ∈ π(A)
=⇒ π(T )x ∈ π(A)x

=⇒ π(T )x ∈ π(A)x
||.||

Now observe that the last formula tells us that for any x = (x1, . . . , xn), and any ε > 0,
we can find S ∈ A such that the following holds, for any i:

||Sxi − Txi|| < ε

Thus T belongs to the strong operator closure of A, as desired. □

Observe that in the above the terminology is a bit confusing, because the norm topol-
ogy is stronger than the strong operator topology. As a solution, we agree to call the
norm topology “strong”, and the weak and strong operator topologies “weak”, whenever
these two topologies coincide. With this convention made, the algebras A ⊂ B(H) in
Proposition 13.1 are those which are weakly closed. Thus, we can now formulate:

Definition 13.2. A von Neumann algebra is an operator algebra

A ⊂ B(H)

which is closed under the weak topology.

These algebras will be our main objects of study, in what follows. As basic examples,
we have the algebra B(H) itself, then the singly generated algebras, A =< T > with
T ∈ B(H), and then the multiply generated algebras, A =< Ti > with Ti ∈ B(H). But
for the moment, let us keep things simple, and build directly on Definition 13.2, by using
basic functional analysis methods. We will need the following key result:

Theorem 13.3. For an operator algebra A ⊂ B(H), we have

A′′ = Ā

with A′′ being the bicommutant inside B(H), and Ā being the weak closure.

Proof. We can prove this by double inclusion, as follows:

“⊃” Since any operator commutes with the operators that it commutes with, we have
a trivial inclusion S ⊂ S ′′, valid for any set S ⊂ B(H). In particular, we have:

A ⊂ A′′
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Our claim now is that the algebra A′′ is closed, with respect to the strong operator
topology. Indeed, assuming that we have Ti → T in this topology, we have:

Ti ∈ A′′ =⇒ STi = TiS, ∀S ∈ A′

=⇒ ST = TS, ∀S ∈ A′

=⇒ T ∈ A

Thus our claim is proved, and together with Proposition 13.1, which allows us to pass
from the strong to the weak operator topology, this gives Ā ⊂ A′′, as desired.

“⊂” Here we must prove that we have the following implication, valid for any T ∈
B(H), with the bar denoting as usual the weak operator closure:

T ∈ A′′ =⇒ T ∈ Ā

For this purpose, we use the same amplification trick as in the proof of Proposition
13.1. Consider the Hilbert space obtained by summing n times H with itself:

K = H ⊕ . . .⊕H

The operators over K can be regarded as being square matrices with entries in B(H),
and in particular, we have a representation π : B(H)→ B(K), as follows:

π(T ) =

T . . .
T


The idea will be that of doing the computations in this representation. First, in this

representation, the image of our algebra A ⊂ B(H) is given by:

π(A) =


T . . .

T

∣∣∣T ∈ A


We can compute the commutant of this image, exactly as in the usual scalar matrix
case, and we obtain the following formula:

π(A)′ =


S11 . . . S1n

...
...

Sn1 . . . Snn

∣∣∣Sij ∈ A′


We conclude from this that, given an operator T ∈ A′′ as above, we have:T . . .

T

 ∈ π(A)′′
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In other words, the conclusion of all this is that we have:

T ∈ A′′ =⇒ π(T ) ∈ π(A)′′

Now given a vector x ∈ K, consider the orthogonal projection P ∈ B(K) on the norm
closure of the vector space π(A)x ⊂ K. Since the subspace π(A)x ⊂ K is invariant under
the action of π(A), so is its norm closure inside K, and we obtain from this:

P ∈ π(A)′

By combining this with what we found above, we conclude that we have:

T ∈ A′′ =⇒ π(T )P = Pπ(T )

Since this holds for any x ∈ K, we conclude that any operator T ∈ A′′ belongs to
the strong operator closure of A. By using now Proposition 13.1, which allows us to pass
from the strong to the weak operator closure, we conclude that we have:

A′′ ⊂ Ā

Thus, we have the desired reverse inclusion, and this finishes the proof. □

Now by getting back to the von Neumann algebras, from Definition 13.2, we have the
following result, which is a reformulation of Theorem 13.3, by using this notion:

Theorem 13.4. For an operator algebra A ⊂ B(H), the following are equivalent:

(1) A is weakly closed, so it is a von Neumann algebra.
(2) A equals its algebraic bicommutant A′′, taken inside B(H).

Proof. This follows from the formula A′′ = Ā from Theorem 13.3, along with the
trivial fact that the commutants are automatically weakly closed. □

The above statement, called bicommutant theorem, and due to von Neumann, is quite
interesting, philosophically speaking. Among others, it shows that the von Neumann
algebras are exactly the commutants of the self-adjoint sets of operators:

Proposition 13.5. Given a subset S ⊂ B(H) which is closed under ∗, the commutant

A = S ′

is a von Neumann algebra. Any von Neumann algebra appears in this way.

Proof. We have two assertions here, the idea being as follows:

(1) Given S ⊂ B(H) satisfying S = S∗, the commutant A = S ′ satisfies A = A∗, and
is also weakly closed. Thus, A is a von Neumann algebra. Note that this follows as well
from the following “tricommutant formula”, which follows from Theorem 13.4:

S ′′′ = S ′

(2) Given a von Neumann algebra A ⊂ B(H), we can take S = A′. Then S is closed
under the involution, and we have S ′ = A, as desired. □
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As an interesting consequence of Theorem 13.4, we have:

Proposition 13.6. Given a von Neumann algebra A ⊂ B(H), its center

Z(A) = A ∩ A′

regarded as an algebra Z(A) ⊂ B(H), is a von Neumann algebra too.

Proof. This follows from the fact that the commutants are weakly closed, that we
know from the above, which shows that A′ ⊂ B(H) is a von Neumann algebra. Thus, the
intersection Z(A) = A ∩ A′ must be a von Neumann algebra too, as claimed. □

In order to develop some general theory, let us start by investigating the finite dimen-
sional case. Here the ambient algebra is B(H) =MN(C), any linear subspace A ⊂ B(H)
is automatically closed, for all 3 topologies in Proposition 13.1, and we have:

Theorem 13.7. The ∗-algebras A ⊂MN(C) are exactly the algebras of the form

A =Mn1(C)⊕ . . .⊕Mnk
(C)

depending on parameters k ∈ N and n1, . . . , nk ∈ N satisfying

n1 + . . .+ nk = N

embedded into MN(C) via the obvious block embedding, twisted by a unitary U ∈ UN .
Proof. This is something algebraic, that we know from chapter 4, and which, retro-

spectively thinking, is based on the “center philosophy” from Proposition 13.6. □

In relation with the bicommutant theorem, we have the following result, which fully
clarifies the situation, with a very explicit proof, in finite dimensions:

Proposition 13.8. Consider a ∗-algebra A ⊂MN(C), written as above:

A =Mn1(C)⊕ . . .⊕Mnk
(C)

The commutant of this algebra is then, with respect with the block decomposition used,

A′ = C⊕ . . .⊕ C
and by taking one more time the commutant we obtain A itself, A = A′′.

Proof. Let us decompose indeed our algebra A as in Theorem 13.7:

A =Mn1(C)⊕ . . .⊕Mnk
(C)

The center of each matrix algebra being reduced to the scalars, the commutant of this
algebra is then as follows, with each copy of C corresponding to a matrix block:

A′ = C⊕ . . .⊕ C
By taking once again the commutant we obtain A itself, and we are done. □

As another interesting application of Theorem 13.7, clarifying this time the relation
with operator theory, in finite dimensions, we have the following result:
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Theorem 13.9. Given an operator T ∈ B(H) in finite dimensions, H = CN , the von
Neumann algebra A =< T > that it generates inside B(H) =MN(C) is

A =Mn1(C)⊕ . . .⊕Mnk
(C)

with the sizes of the blocks n1, . . . , nk ∈ N coming from the spectral theory of the associated
matrix M ∈MN(C). In the normal case TT ∗ = T ∗T , this decomposition comes from

T = UDU∗

with D ∈MN(C) diagonal, and with U ∈ UN unitary.

Proof. This is something which is routine, by using the standard linear algebra and
spectral theory for the usual matrices M ∈MN(C). To be more precise:

(1) The fact that A =< T > decomposes into a direct sum of matrix algebras is
something that we already know, coming from Theorem 13.7.

(2) By using standard linear algebra, we can compute the block sizes n1, . . . , nk ∈ N,
from the knowledge of the spectral theory of the associated matrix M ∈MN(C).

(3) In the normal case, TT ∗ = T ∗T , we can simply invoke the spectral theorem, and
by suitably changing the basis, we are led to the conclusion in the statement. □

Let us get now to infinite dimensions, with Theorem 13.9 as our main source of in-
spiration. The same argument applies, provided that we are in the normal case, and we
have the following result, summarizing our basic knowledge here:

Theorem 13.10. Given a bounded operator T ∈ B(H) which is normal, TT ∗ = T ∗T ,
the von Neumann algebra A =< T > that it generates inside B(H) is

< T >= L∞(σ(T ))

with σ(T ) ⊂ C being as usual its spectrum.

Proof. The measurable functional calculus theorem for the normal operators tells us
that we have a weakly continuous morphism of ∗-algebras, as follows:

L∞(σ(T ))→ B(H) , f → f(T )

Moreover, by the general properties of the measurable calculus, also established in
chapter 5, this morphism is injective, and its image is the weakly closed algebra < T >
generated by T, T ∗. Thus, we obtain the isomorphism in the statement. □

More generally now, along the same lines, we have the following result:

Theorem 13.11. Given operators Ti ∈ B(H) which are normal, and which commute,
the von Neumann algebra A =< Ti > that these operators generates inside B(H) is

< Ti >= L∞(X)

with X being a certain measured space, associated to the family {Ti}.
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Proof. This is once again routine, by using the spectral theory for the families of
commuting normal operators Ti ∈ B(H). □

As a fundamental consequence now of the above results, we have:

Theorem 13.12. The commutative von Neumann algebras are the algebras

A = L∞(X)

with X being a measured space.

Proof. We have two assertions to be proved, the idea being as follows:

(1) In one sense, we must prove that given a measured space X, we can realize the
A = L∞(X) as a von Neumann algebra, on a certain Hilbert space H. But this is
something that we know since chapter 4, the representation being as follows:

L∞(X) ⊂ B(L2(X)) , f → (g → fg)

(2) In the other sense, given a commutative von Neumann algebra A ⊂ B(H), we
must construct a certain measured space X, and an identification A = L∞(X). But this
follows from Theorem 13.11, because we can write our algebra as follows:

A =< Ti >

To be more precise, A being commutative, any element T ∈ A is normal, so we can
pick a basis {Ti} ⊂ A, and then we have A =< Ti > as above, with Ti ∈ B(H) being
commuting normal operators. Thus Theorem 13.11 applies, and gives the result.

(3) Alternatively, and more explicitly, we can deduce this from Theorem 13.10, applied
with T = T ∗. Indeed, by using T = Re(T )+ iIm(T ), we conclude that any von Neumann
algebra A ⊂ B(H) is generated by its self-adjoint elements T ∈ A. Moreover, by using
measurable functional calculus, we conclude that A is linearly generated by its projections.
But then, assuming A = span{pi}, with pi being projections, we can set:

T =
∞∑
i=0

pi
3i

Then T = T ∗, and by functional calculus we have p0 ∈< T >, then p1 ∈< T >, and
so on. Thus A =< T >, and A = L∞(X) comes now via Theorem 13.10, as claimed. □

Now forgetting about Gelfand, and taking Theorem 13.12 as such, tentative foundation
for the theory that we want to develop, as a first consequence of this, we have:

Theorem 13.13. Given a von Neumann algebra A ⊂ B(H), we have

Z(A) = L∞(X)

with X being a certain measured space.
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Proof. We know from Proposition 13.6 that the center Z(A) ⊂ B(H) is a von
Neumann algebra. Thus Theorem 13.12 applies, and gives the result. □

It is possible to further build on this, with a powerful decomposition result as follows,
over the measured space X constructed in Theorem 13.14:

A =

∫
X

Ax dx

But more on this later, after developing the appropriate tools for this program, which
is something non-trivial. Among others, before getting into such things, we will have to
study the von Neumann algebras A having trivial center, Z(A) = C, called factors, which
include the fibers Ax in the above decomposition result. More on this later.

13d. Amenability

Amenability.

13e. Exercises

Exercises:

Exercise 13.14.

Exercise 13.15.

Exercise 13.16.

Exercise 13.17.

Exercise 13.18.

Exercise 13.19.

Exercise 13.20.

Exercise 13.21.

Bonus exercise.



CHAPTER 14

Compact groups

14a. Compact groups

We have seen so far the foundations and basic results of classical probability. Before
stepping into more complicated things, such as random matrices and free probability, we
would like to clarify one important question which appeared several times, namely the
computation of integrals over the compact groups of unitary matrices G ⊂ UN , and its
probabilistic consequences. The precise question that we have in mind is:

Question 14.1. Given a compact group G ⊂ UN , how to compute the integrals

Ieij =

∫
G

ge1i1j1 . . . g
ek
ikjk

dg

depending on multi-indices i, j, and of a colored integer exponent e = ◦ • • ◦ . . .? Then,
how to use this formula in order to compute the laws of variables of type

fP = P
(
{gij}i,j=1,...,N

)
depending on a polynomial P? What about the N →∞ asymptotics of such laws?

All this is quite subtle, and as a basic illustration for this, we have a fundamental
result from chapter 3, stating that for G = SN the law of the variable χ =

∑
i gii can

be explicitly computed, and becomes Poisson (1) with N → ∞. This is something truly
remarkable, and it is this kind of result that we would like to systematically have.

We will discuss this in this whole chapter, and later on too. This might seem of course
quite long, but believe me, it is worth the effort, because it is quite hard to do any type of
advanced probability theory without knowing the answer to Question 14.1. But probably
enough advertisement, let us get to work. Following Weyl, we first have:

Definition 14.2. A unitary representation of a compact group G is a continuous
group morphism into a unitary group

v : G→ UN , g → vg

which can be faithful or not. The character of such a representation is the function

χ : G→ C , g → Tr(vg)

where Tr is the usual, unnormalized trace of the N ×N matrices.

221
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At the level of examples, most of the compact groups that we met so far, finite or
continuous, naturally appear as closed subgroups G ⊂ UN . In this case, the embedding
G ⊂ UN is of course a representation, called fundamental representation. In general now,
let us first discuss the various operations on the representations. We have here:

Proposition 14.3. The representations of a compact group G are subject to:

(1) Making sums. Given representations v, w, of dimensions N,M , their sum is the
N +M-dimensional representation v + w = diag(v, w).

(2) Making products. Given representations v, w, of dimensions N,M , their product
is the NM-dimensional representation (v ⊗ w)ia,jb = vijwab.

(3) Taking conjugates. Given a N-dimensional representation v, its conjugate is the
N-dimensional representation (v̄)ij = v̄ij.

(4) Spinning by unitaries. Given a N-dimensional representation v, and a unitary
U ∈ UN , we can spin v by this unitary, v → UvU∗.

Proof. The fact that the operations in the statement are indeed well-defined, among
morphisms from G to unitary groups, is indeed clear from definitions. □

In relation now with characters, we have the following result:

Proposition 14.4. We have the following formulae, regarding characters

χv+w = χv + χw , χv⊗w = χvχw , χv̄ = χ̄v , χUvU∗ = χv

in relation with the basic operations for the representations.

Proof. All these assertions are elementary, by using the following well-known trace
formulae, valid for any square matrices V,W , and any unitary U :

Tr(diag(V,W )) = Tr(V ) + Tr(W ) , T r(V ⊗W ) = Tr(V )Tr(W )

Tr(V̄ ) = Tr(V ) , T r(UV U∗) = Tr(V )

Thus, we are led to the formulae in the statement. □

Assume now that we are given a closed subgroup G ⊂ UN . By using the above
operations, we can construct a whole family of representations of G, as follows:

Definition 14.5. Given a closed subgroup G ⊂ UN , its Peter-Weyl representations
are the various tensor products between the fundamental representation and its conjugate:

v : G ⊂ UN , v̄ : G ⊂ UN

We denote these tensor products v⊗k, with k = ◦ • • ◦ . . . being a colored integer, with the
colored tensor powers being defined according to the rules

v⊗◦ = v , v⊗• = v̄ , v⊗kl = v⊗k ⊗ v⊗l

and with the convention that v⊗∅ is the trivial representation 1 : G→ U1.
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Here are a few examples of such representations, namely those coming from the colored
integers of length 2, which will often appear in what follows:

v⊗◦◦ = v ⊗ v , v⊗◦• = v ⊗ v̄

v⊗•◦ = v̄ ⊗ v , v⊗•• = v̄ ⊗ v̄
In relation now with characters, we have the following result:

Proposition 14.6. The characters of the Peter-Weyl representations are given by

χv⊗k = (χv)
k

with the colored powers being given by χ◦ = χ, χ• = χ̄ and multiplicativity.

Proof. This follows indeed from the additivity, multiplicativity and conjugation for-
mulae from Proposition 14.4, via the conventions in Definition 14.5. □

Getting back now to our motivations, we can see the interest in the above construc-
tions. Indeed, the joint moments of the main character χ = χv and its adjoint χ̄ = χv̄ are
the expectations of the characters of various Peter-Weyl representations:∫

G

χk =

∫
G

χv⊗k

In order to advance, we must develop some general theory. Let us start with:

Definition 14.7. Given a compact group G, and two of its representations,

v : G→ UN , w : G→ UM

we define the space of intertwiners between these representations as being

Hom(v, w) =
{
T ∈MM×N(C)

∣∣∣Tvg = wgT,∀g ∈ G
}

and we use the following conventions:

(1) We use the notations Fix(v) = Hom(1, v), and End(v) = Hom(v, v).
(2) We write v ∼ w when Hom(v, w) contains an invertible element.
(3) We say that v is irreducible, and write v ∈ Irr(G), when End(v) = C1.

The terminology here is standard, with Fix, Hom, End standing for fixed points, homo-
morphisms and endomorphisms. We will see later that irreducible means indecomposable,
in a suitable sense. Here are now a few basic results, regarding these spaces:

Proposition 14.8. The spaces of intertwiners have the following properties:

(1) T ∈ Hom(v, w), S ∈ Hom(w, z) =⇒ ST ∈ Hom(v, z).
(2) S ∈ Hom(v, w), T ∈ Hom(z, t) =⇒ S ⊗ T ∈ Hom(v ⊗ z, w ⊗ t).
(3) T ∈ Hom(v, w) =⇒ T ∗ ∈ Hom(w, v).

In abstract terms, we say that the Hom spaces form a tensor ∗-category.
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Proof. All the formulae in the statement are indeed clear from definitions, via ele-
mentary computations. As for the last assertion, this is something coming from (1,2,3).
We will be back to tensor categories later on, with more details on this latter fact. □

As a main consequence of the above result, we have:

Proposition 14.9. Given a representation v : G→ UN , the linear space

End(v) ⊂MN(C)
is a ∗-algebra, with respect to the usual involution of the matrices.

Proof. By definition, End(v) is a linear subspace of MN(C). We know from Propo-
sition 14.8 (1) that this subspace End(v) is a subalgebra of MN(C), and then we know
as well from Proposition 14.8 (3) that this subalgebra is stable under the involution ∗.
Thus, what we have here is a ∗-subalgebra of MN(C), as claimed. □

In order to exploit the above fact, we will need a basic result from linear algebra,
stating that any ∗-algebra A ⊂MN(C) decomposes as a direct sum, as follows:

A ≃MN1(C)⊕ . . .⊕MNk
(C)

Indeed, let us write the unit 1 ∈ A as 1 = p1 + . . . + pk, with pi ∈ A being central
minimal projections. Then each of the spaces Ai = piApi is a subalgebra of A, and we
have a decomposition A = A1 ⊕ . . . ⊕ Ak. But since each central projection pi ∈ A was
chosen minimal, we have Ai ≃MNi

(C), with Ni = rank(pi), as desired.

We can now formulate our first Peter-Weyl type theorem, as follows:

Theorem 14.10 (Peter-Weyl 1). Let v : G → UN be a representation, consider the
algebra A = End(v), and write its unit 1 = p1 + . . .+ pk as above. We have then

v = v1 + . . .+ vk

with each vi being an irreducible representation, obtained by restricting v to Im(pi).

Proof. This basically follows from Proposition 14.9, as follows:

(1) We first associate to our representation v : G→ UN the corresponding action map
on CN . If a linear subspace W ⊂ CN is invariant, the restriction of the action map to W
is an action map too, which must come from a subrepresentation w ⊂ v.

(2) Consider now a projection p ∈ End(v). From pv = vp we obtain that the linear
space W = Im(p) is invariant under v, and so this space must come from a subrepresen-
tation w ⊂ v. It is routine to check that the operation p → w maps subprojections to
subrepresentations, and minimal projections to irreducible representations.

(3) With these preliminaries in hand, let us decompose the algebra End(v) as above,
by using the decomposition 1 = p1 + . . . + pk into central minimal projections. If we



14B. HAAR INTEGRATION 225

denote by vi ⊂ v the subrepresentation coming from the vector space Vi = Im(pi), then
we obtain in this way a decomposition v = v1 + . . .+ vk, as in the statement. □

Here is now our second Peter-Weyl theorem, complementing Theorem 14.10:

Theorem 14.11 (Peter-Weyl 2). Given a closed subgroup G ⊂v UN , any of its irre-
ducible smooth representations

w : G→ UM

appears inside a tensor product of the fundamental representation v and its adjoint v̄.

Proof. Given a representation w : G → UM , we define the space of coefficients
Cw ⊂ C(G) of this representation as being the following linear space:

Cw = span
[
g → w(g)ij

]
With this notion in hand, the result can be deduced as follows:

(1) The construction w → Cw is functorial, in the sense that it maps subrepresentations
into linear subspaces. This is indeed something which is routine to check.

(2) A closed subgroup G ⊂v UN is a Lie group, and a representation w : G → UM is
smooth when we have an inclusion Cw ⊂< Cv >. This is indeed well-known.

(3) By definition of the Peter-Weyl representations, as arbitrary tensor products be-
tween the fundamental representation v and its conjugate v̄, we have:

< Cv >=
∑
k

Cv⊗k

(4) Now by putting together the above observations (2,3) we conclude that we must
have an inclusion as follows, for certain exponents k1, . . . , kp:

Cw ⊂ Cv⊗k1⊕...⊕v⊗kp

(5) By using now (1), we deduce that we have an inclusion w ⊂ v⊗k1 ⊕ . . .⊕ v⊗kp , and
by applying Theorem 14.10, this leads to the conclusion in the statement. □

14b. Haar integration

In order to further advance with Peter-Weyl theory, we need to talk about integration
over G. In the finite group case the situation is trivial, as follows:

Proposition 14.12. Any finite group G has a unique probability measure which is
invariant under left and right translations,

µ(E) = µ(gE) = µ(Eg)

and this is the normalized counting measure on G, given by µ(E) = |E|/|G|.

Proof. This is indeed something trivial, which follows from definitions. □
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In the general, continuous case, let us begin with the following key result:

Proposition 14.13. Given a unital positive linear form ψ : C(G)→ C, the limit∫
φ

f = lim
n→∞

1

n

n∑
k=1

ψ∗k(f)

exists, and for a coefficient of a representation f = (τ ⊗ id)w we have∫
φ

f = τ(P )

where P is the orthogonal projection onto the 1-eigenspace of (id⊗ ψ)w.

Proof. By linearity it is enough to prove the first assertion for functions of the
following type, where w is a Peter-Weyl representation, and τ is a linear form:

f = (τ ⊗ id)w
Thus we are led into the second assertion, and more precisely we can have the whole

result proved if we can establish the following formula, with f = (τ ⊗ id)w:

lim
n→∞

1

n

n∑
k=1

ψ∗k(f) = τ(P )

In order to prove this latter formula, observe that we have:

ψ∗k(f) = (τ ⊗ ψ∗k)w = τ((id⊗ ψ∗k)w)

Let us set M = (id⊗ ψ)w. In terms of this matrix, we have:

((id⊗ ψ∗k)w)i0ik+1
=
∑
i1...ik

Mi0i1 . . .Mikik+1
= (Mk)i0ik+1

Thus we have the following formula, valid for any k ∈ N:
(id⊗ ψ∗k)w =Mk

It follows that our Cesàro limit is given by the following formula:

lim
n→∞

1

n

n∑
k=1

ψ∗k(f) = lim
n→∞

1

n

n∑
k=1

τ(Mk) = τ

(
lim
n→∞

1

n

n∑
k=1

Mk

)
Now since w is unitary we have ||w|| = 1, and so ||M || ≤ 1. Thus the last Cesàro limit

converges, and equals the orthogonal projection onto the 1-eigenspace of M :

lim
n→∞

1

n

n∑
k=1

Mk = P

Thus our initial Cesàro limit converges as well, to τ(P ), as desired. □

When the linear form ψ ∈ C(G)∗ is faithful, we have the following finer result:
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Proposition 14.14. Given a faithful unital linear form ψ ∈ C(G)∗, the limit∫
ψ

f = lim
n→∞

1

n

n∑
k=1

ψ∗k(f)

exists, and is independent of ψ, given on coefficients of representations by(
id⊗

∫
ψ

)
w = P

where P is the orthogonal projection onto the space Fix(w) =
{
ξ ∈ Cn

∣∣wξ = ξ
}
.

Proof. In view of Proposition 14.13, it remains to prove that when ψ is faithful, the
1-eigenspace of the matrix M = (id⊗ ψ)w equals the space Fix(w).

“⊃” This is clear, and for any ψ, because we have the following implication:

wξ = ξ =⇒ Mξ = ξ

“⊂” Here we must prove that, when ψ is faithful, we have:

Mξ = ξ =⇒ wξ = ξ

For this purpose, assume that we have Mξ = ξ, and consider the following function:

f =
∑
i

(∑
j

wijξj − ξi

)(∑
k

wikξk − ξi

)∗

We must prove that we have f = 0. Since v is unitary, we have:

f =
∑
ijk

wijw
∗
ikξj ξ̄k −

1

N
wijξj ξ̄i −

1

N
w∗
ikξiξ̄k +

1

N2
ξiξ̄i

=
∑
j

|ξj|2 −
∑
ij

wijξj ξ̄i −
∑
ik

w∗
ikξiξ̄k +

∑
i

|ξi|2

= ||ξ||2− < wξ, ξ > −< wξ, ξ >+ ||ξ||2

= 2(||ξ||2 −Re(< wξ, ξ >))

By using now our assumption Mξ = ξ, we obtain from this:

ψ(f) = 2ψ(||ξ||2 −Re(< wξ, ξ >))

= 2(||ξ||2 −Re(< Mξ, ξ >))

= 2(||ξ||2 − ||ξ||2)
= 0

Now since ψ is faithful, this gives f = 0, and so wξ = ξ, as claimed. □

We can now formulate a main result, as follows:
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Theorem 14.15. Any compact group G has a unique Haar integration, which can be
constructed by starting with any faithful positive unital form ψ ∈ C(G)∗, and setting:∫

G

= lim
n→∞

1

n

n∑
k=1

ψ∗k

Moreover, for any representation w we have the formula(
id⊗

∫
G

)
w = P

where P is the orthogonal projection onto Fix(w) =
{
ξ ∈ Cn

∣∣wξ = ξ
}
.

Proof. Let us first go back to the general context of Proposition 14.13. Since convolv-
ing one more time with ψ will not change the Cesàro limit appearing there, the functional∫
ψ
∈ C(G)∗ constructed there has the following invariance property:∫

ψ

∗ψ = ψ ∗
∫
ψ

=

∫
ψ

In the case where ψ is assumed to be faithful, as in Proposition 14.14, our claim is
that we have the following formula, valid this time for any φ ∈ C(G)∗:∫

ψ

∗φ = φ ∗
∫
ψ

= φ(1)

∫
ψ

Indeed, it is enough to prove this formula on a coefficient of a corepresentation:

f = (τ ⊗ id)w
In order to do so, consider the following two matrices:

P =

(
id⊗

∫
ψ

)
w , Q = (id⊗ φ)w

We have then the following formulae, which all follow from definitions:(∫
ψ

∗φ
)
f = τ(PQ) ,

(
φ ∗

∫
ψ

)
f = τ(QP ) , φ(1)

∫
ψ

f = φ(1)τ(P )

Thus, in order to prove our claim, it is enough to establish the following formula:

PQ = QP = ψ(1)P

But this follows from the fact, from Proposition 14.14, that P = (id ⊗
∫
ψ
)w is the

orthogonal projection onto Fix(w). Thus, we proved our claim. Now observe that, with
∆f(g ⊗ h) = f(gh), this formula that we proved can be written as follows:

φ

(∫
ψ

⊗ id
)
∆ = φ

(
id⊗

∫
ψ

)
∆ = φ

∫
ψ

(.)1
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This formula being true for any φ ∈ C(G)∗, we can simply delete φ, and we conclude
that

∫
G
=
∫
ψ
has the required left and right invariance property, namely:(∫

G

⊗ id
)
∆ =

(
id⊗

∫
G

)
∆ =

∫
G

(.)1

Finally, the uniqueness is clear as well, because if we have two invariant integrals∫
G
,
∫ ′
G
, then their convolution equals on one hand

∫
G
, and on the other hand,

∫ ′
G
. □

Summarizing, we know how to integrate over G. Before getting into probabilistic
applications, let us develop however more Peter-Weyl theory. We will need:

Proposition 14.16. We have a Frobenius type isomorphism

Hom(v, w) ≃ Fix(v ⊗ w̄)
valid for any two representations v, w.

Proof. According to definitions, we have the following equivalences:

T ∈ Hom(v, w) ⇐⇒ Tv = wT

⇐⇒
∑
i

Taivij =
∑
b

wabTbj, ∀a, j

On the other hand, we have as well the following equivalences:

T ∈ Fix(v ⊗ w̄) ⇐⇒ (v ⊗ w̄)T = ξ

⇐⇒
∑
bi

vjiw̄abTbi = Taj∀a, j

With these formulae in hand, both inclusions follow from the unitarity of v, w. □

We can now formulate a third Peter-Weyl theorem, as follows:

Theorem 14.17 (Peter-Weyl 3). The dense subalgebra C(G) ⊂ C(G) generated by the
coefficients of the fundamental representation decomposes as a direct sum

C(G) =
⊕

w∈Irr(G)

Mdim(w)(C)

with the summands being pairwise orthogonal with respect to the scalar product

< f, g >=

∫
G

fḡ

where
∫
G
is the Haar integration over G.

Proof. By combining the previous two Peter-Weyl results, Theorems 14.10 and 14.11,
we deduce that we have a linear space decomposition as follows:

C(G) =
∑

w∈Irr(G)

Cw =
∑

w∈Irr(G)

Mdim(w)(C)
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Thus, in order to conclude, it is enough to prove that for any two irreducible repre-
sentations v, w ∈ Irr(G), the corresponding spaces of coefficients are orthogonal:

v ̸∼ w =⇒ Cv ⊥ Cw

But this follows from Theorem 14.15, via Proposition 14.16. Let us set indeed:

Pia,jb =

∫
G

vijw̄ab

Then P is the orthogonal projection onto the following vector space:

Fix(v ⊗ w̄) ≃ Hom(v, w) = {0}

Thus we have P = 0, and this gives the result. □

Finally, we have the following result, completing the Peter-Weyl theory:

Theorem 14.18 (Peter-Weyl 4). The characters of irreducible representations belong
to the algebra

C(G)central =
{
f ∈ C(G)

∣∣∣f(gh) = f(hg),∀g, h ∈ G
}

called algebra of central functions on G, and form an orthonormal basis of it.

Proof. Observe first that C(G)central is indeed an algebra, which contains all the
characters. Conversely, consider a function f ∈ C(G), written as follows:

f =
∑

w∈Irr(G)

fw

The condition f ∈ C(G)central states then that for any w ∈ Irr(G), we must have:

fw ∈ C(G)central

But this means that fw must be a scalar multiple of χw, so the characters form a basis
of C(G)central, as stated. Also, the fact that we have an orthogonal basis follows from
Theorem 14.17. As for the fact that the characters have norm 1, this follows from:∫

G

χwχ̄w =
∑
ij

∫
G

wiiw̄jj =
∑
i

1

M
= 1

Here we have used the fact, coming from Theorem 14.15 and Proposition 14.16, that
the integrals

∫
G
wijw̄kl form the orthogonal projection onto the following vector space:

Fix(w ⊗ w̄) ≃ End(w) = C1

Thus, the proof of our theorem is now complete. □
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14c. Diagrams, easiness

In view of the above results, no matter on what we want to do with our group, we
must compute the spaces Fix(v⊗k). It is technically convenient to slightly enlarge the
class of spaces to be computed, by talking about Tannakian categories, as follows:

Definition 14.19. The Tannakian category associated to a closed subgroup G ⊂v UN
is the collection CG = (CG(k, l)) of vector spaces

CG(k, l) = Hom(v⊗k, v⊗l)

where the representations v⊗k with k = ◦ • • ◦ . . . colored integer, defined by

v⊗∅ = 1 , v⊗◦ = v , v⊗• = v̄

and multiplicativity, v⊗kl = v⊗k ⊗ v⊗l, are the Peter-Weyl representations.

Let us make a summary of what we have so far, regarding these spaces CG(k, l). In
order to formulate our result, let us start with the following definition:

Definition 14.20. Let H be a finite dimensional Hilbert space. A tensor category
over H is a collection C = (C(k, l)) of linear spaces

C(k, l) ⊂ L(H⊗k, H⊗l)

satisfying the following conditions:

(1) S, T ∈ C implies S ⊗ T ∈ C.
(2) If S, T ∈ C are composable, then ST ∈ C.
(3) T ∈ C implies T ∗ ∈ C.
(4) C(k, k) contains the identity operator.
(5) C(∅, k) with k = ◦•, •◦ contain the operator R : 1→

∑
i ei ⊗ ei.

(6) C(kl, lk) with k, l = ◦, • contain the flip operator Σ : a⊗ b→ b⊗ a.

Here the tensor power Hilbert spaces H⊗k, with k = ◦ • • ◦ . . . being a colored integer,
are defined by the following formulae, and multiplicativity:

H⊗∅ = C , H⊗◦ = H , H⊗• = H̄ ≃ H

With these conventions, we have the following result, summarizing our knowledge on
the subject, coming from the results established in the above:

Theorem 14.21. For a closed subgroup G ⊂v UN , the associated Tannakian category

CG(k, l) = Hom(v⊗k, v⊗l)

is a tensor category over the Hilbert space H = CN .
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Proof. We know that the fundamental representation v acts on the Hilbert space
H = CN , and that its conjugate v̄ acts on the Hilbert space H̄ = CN . Now by multi-
plicativity we conclude that any Peter-Weyl representation v⊗k acts on the Hilbert space
H⊗k, and so that we have embeddings as in Definition 14.20, as follows:

CG(k, l) ⊂ L(H⊗k, H⊗l)

Regarding now the fact that the axioms (1-6) in Definition 14.20 are indeed satisfied,
this is something that we basically already know. To be more precise, (1-4) are clear, and
(5) follows from the fact that each element g ∈ G is a unitary, which gives:

R ∈ Hom(1, g ⊗ ḡ) , R ∈ Hom(1, ḡ ⊗ g)

As for (6), this is something trivial, coming from the fact that the matrix coefficients
g → gij and their complex conjugates g → ḡij commute with each other. □

Our purpose now will be that of showing that any closed subgroup G ⊂ UN is uniquely
determined by its Tannakian category CG = (CG(k, l)). This result, known as Tannakian
duality, is something quite deep, and extremely useful. Indeed, the idea is that what
we would have here is a “linearization” of G, allowing us to do combinatorics, and to
ultimately reach to concrete and powerful results, regarding G itself. We first have:

Theorem 14.22. Given a tensor category C = (C(k, l)) over a finite dimensional
Hilbert space H ≃ CN , the following construction,

GC =
{
g ∈ UN

∣∣∣Tg⊗k = g⊗lT , ∀k, l, ∀T ∈ C(k, l)
}

produces a closed subgroup GC ⊂ UN .

Proof. This is something elementary, with the fact that the closed subset GC ⊂ UN
constructed in the statement is indeed stable under the multiplication, unit and inversion
operation for the unitary matrices g ∈ UN being clear from definitions. □

We can now formulate the Tannakian duality result, as follows:

Theorem 14.23. The above Tannakian constructions

G→ CG , C → GC

are bijective, and inverse to each other.

Proof. This is something quite technical, obtained by doing some abstract algebra,
and for details here, we refer to the Tannakian duality literature. The whole subject is
actually, in modern times, for the most part of quantum algebra, and you can consult
here various quantum group papers and books, for details on the above. □

In order to reach now to more concrete things, following Brauer, we have:
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Definition 14.24. Let P (k, l) be the set of partitions between an upper colored integer
k, and a lower colored integer l. A collection of subsets

D =
⊔
k,l

D(k, l)

with D(k, l) ⊂ P (k, l) is called a category of partitions when it has the following properties:

(1) Stability under the horizontal concatenation, (π, σ)→ [πσ].
(2) Stability under vertical concatenation (π, σ)→ [σπ], with matching middle symbols.
(3) Stability under the upside-down turning ∗, with switching of colors, ◦ ↔ •.
(4) Each set P (k, k) contains the identity partition || . . . ||.
(5) The sets P (∅, ◦•) and P (∅, •◦) both contain the semicircle ∩.
(6) The sets P (k, k̄) with |k| = 2 contain the crossing partition /\.

There are many examples of such categories, as for instance the category of all pairings
P2, or of all matching pairings P2. We will be back to examples in a moment.

Let us formulate as well the following definition:

Definition 14.25. Given a partition π ∈ P (k, l) and an integer N ∈ N, we can
construct a linear map between tensor powers of CN ,

Tπ : (CN)⊗k → (CN)⊗l

by the following formula, with e1, . . . , eN being the standard basis of CN ,

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

and with the coefficients on the right being Kronecker type symbols,

δπ

(
i1 . . . ik
j1 . . . jl

)
∈ {0, 1}

whose values depend on whether the indices fit or not.

To be more precise, we put the indices of i, j on the legs of π, in the obvious way. In
case all the blocks of π contain equal indices of i, j, we set δπ(

i
j) = 1. Otherwise, we set

δπ(
i
j) = 0. The relation with the Tannakian categories comes from:

Proposition 14.26. The assignement π → Tπ is categorical, in the sense that

Tπ ⊗ Tν = T[πν] , TπTν = N c(π,ν)T[νπ ] , T ∗
π = Tπ∗

where c(π, ν) are certain integers, coming from the erased components in the middle.
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Proof. This is something elementary, the computations being as follows:

(1) The concatenation axiom can be checked as follows:

(Tπ ⊗ Tν)(ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

=
∑
j1...jq

∑
l1...ls

δπ

(
i1 . . . ip
j1 . . . jq

)
δν

(
k1 . . . kr
l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

=
∑
j1...jq

∑
l1...ls

δ[πν]

(
i1 . . . ip k1 . . . kr
j1 . . . jq l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

= T[πν](ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

(2) The composition axiom can be checked as follows:

TπTν(ei1 ⊗ . . .⊗ eip)

=
∑
j1...jq

δν

(
i1 . . . ip
j1 . . . jq

) ∑
k1...kr

δπ

(
j1 . . . jq
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

=
∑
k1...kr

N c(π,ν)δ[νπ ]

(
i1 . . . ip
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

= N c(π,ν)T[νπ ](ei1 ⊗ . . .⊗ eip)

(3) Finally, the involution axiom can be checked as follows:

T ∗
π (ej1 ⊗ . . .⊗ ejq)

=
∑
i1...ip

< T ∗
π (ej1 ⊗ . . .⊗ ejq), ei1 ⊗ . . .⊗ eip > ei1 ⊗ . . .⊗ eip

=
∑
i1...ip

δπ

(
i1 . . . ip
j1 . . . jq

)
ei1 ⊗ . . .⊗ eip

= Tπ∗(ej1 ⊗ . . .⊗ ejq)

Summarizing, our correspondence is indeed categorical. □

In relation now with the groups, we have the following result:

Theorem 14.27. Each category of partitions D = (D(k, l)) produces a family of com-
pact groups G = (GN), with GN ⊂v UN , via the formula

Hom(v⊗k, v⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

and the Tannakian duality correspondence.
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Proof. Given an integer N ∈ N, consider the correspondence π → Tπ constructed in
Definition 14.25, and then the collection of linear spaces in the statement, namely:

C(k, l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

According to Proposition 14.26, and to our axioms for the categories of partitions,
from Definition 14.24, this collection of spaces C = (C(k, l)) satisfies the axioms for the
Tannakian categories, from Definition 14.20. Thus the Tannakian duality result, Theorem
14.23, applies, and provides us with a closed subgroup GN ⊂v UN such that:

C(k, l) = Hom(v⊗k, v⊗l)

Thus, we are led to the conclusion in the statement. □

We can now formulate a key definition, as follows:

Definition 14.28. A closed subgroup G ⊂v UN is called easy when we have

Hom(v⊗k, v⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

for any colored integers k, l, for a certain category of partitions D ⊂ P .

The notion of easiness goes back to the results of Brauer regarding the orthogonal
group ON , and the unitary group UN , which can be formulated as follows:

Theorem 14.29. We have the following results:

(1) UN is easy, coming from the category of matching pairings P2.
(2) ON is easy too, coming from the category of all pairings P2.

Proof. This is something very standard, the idea being as follows:

(1) The group UN being defined via the relations v∗ = v−1, vt = v̄−1, the associated
Tannakian category is C = span(Tπ|π ∈ D), with:

D =< ∩
◦• ,

∩
•◦ >= P2

(2) The group ON ⊂ UN being defined by imposing the relations vij = v̄ij, the associ-
ated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< P2, |◦•, |•◦ >= P2

Thus, we are led to the conclusion in the statement. □

Beyond this, a first natural question is that of computing the easy group associated
to the category P itself, and we have here the following Brauer type theorem:

Theorem 14.30. The symmetric group SN , regarded as group of unitary matrices,

SN ⊂ ON ⊂ UN

via the permutation matrices, is easy, coming from the category of all partitions P .
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Proof. Consider the easy group G ⊂ ON coming from the category of all partitions
P . Since P is generated by the one-block partition Y ∈ P (2, 1), we have:

C(G) = C(ON)
/〈

TY ∈ Hom(v⊗2, v)
〉

The linear map associated to Y is given by the following formula:

TY (ei ⊗ ej) = δijei

Thus, the relation defining the above group G ⊂ ON reformulates as follows:

TY ∈ Hom(v⊗2, v) ⇐⇒ vijvik = δjkvij,∀i, j, k

In other words, the elements vij must be projections, and these projections must be
pairwise orthogonal on the rows of v = (vij). We conclude that G ⊂ ON is the subgroup of
matrices g ∈ ON having the property gij ∈ {0, 1}. Thus we have G = SN , as claimed. □

In fact, we have the following general easiness result, regarding the series of complex
reflection groups Hs

N ⊂ UN , that we introduced in chapter 3:

Theorem 14.31. The group Hs
N = Zs ≀ SN is easy, the corresponding category P s

consisting of the partitions satisfying #◦ = # • (s) in each block. In particular:

(1) SN is easy, coming from the category P .
(2) HN is easy, coming from the category Peven.
(3) KN is easy, coming from the category Peven.

Proof. This is something that we already know at s = 1, from Theorem 14.30. In
general, the proof is similar, based on Tannakian duality. To be more precise, in what
regards the main assertion, the idea here is that the one-block partition π ∈ P (s), which
generates the category P s, implements the relations producing the subgroup Hs

N ⊂ UN .
As for the last assertions, these follow from the following observations:

(1) At s = 1 we know that we have H1
N = SN . Regarding now the corresponding

category, here the condition #◦ = # • (1) is automatic, and so P 1 = P .

(2) At s = 2 we know that we have H2
N = HN . Regarding now the corresponding

category, here the condition #◦ = # • (2) reformulates as follows:

# ◦+#• = 0(2)

Thus each block must have even size, and we obtain, as claimed, P 2 = Peven.

(3) At s = ∞ we know that we have H∞
N = KN . Regarding now the corresponding

category, here the condition #◦ = # • (∞) reads:

#◦ = #•

But this is the condition defining Peven, and so P∞ = Peven, as claimed. □
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Let us go back now to probability questions, with the aim of applying the above
abstract theory, to questions regarding characters. The situation here is as follows:

(1) Given a closed subgroup G ⊂v UN , we know from Peter-Weyl that the moments
of the main character count the fixed points of the representations v⊗k.

(2) On the other hand, assuming that our group G ⊂v UN is easy, coming from a
category of partitions D = (D(k, l)), the space formed by these fixed points is spanned
by the following vectors, indexed by partitions π belonging to the set D(k) = D(0, k):

ξπ =
∑
i1...ik

δπ
(
i1 . . . ik

)
ei1 ⊗ . . .⊗ eik

(3) Thus, we are left with investigating linear independence questions for the vectors
ξπ, and once these questions solved, to compute the moments of χ.

In order to investigate linear independence questions for the vectors ξπ, we will use
the Gram matrix of these vectors. Let us begin with some standard definitions:

Definition 14.32. Let P (k) be the set of partitions of {1, . . . , k}, and let π, ν ∈ P (k).
(1) We write π ≤ ν if each block of π is contained in a block of ν.
(2) We let π ∨ ν ∈ P (k) be the partition obtained by superposing π, ν.

As an illustration here, at k = 2 we have P (2) = {||,⊓}, and the order is:

|| ≤ ⊓
At k = 3 we have P (3) = {|||,⊓|,⊓| , |⊓,⊓⊓}, and the order relation is as follows:

||| ≤ ⊓|,⊓| , |⊓ ≤ ⊓⊓
Observe also that we have π, ν ≤ π ∨ ν. In fact, π ∨ ν is the smallest partition with

this property, called supremum of π, ν. Now back to the easy groups, we have:

Proposition 14.33. The Gram matrix GkN(π, ν) =< ξπ, ξν > is given by

GkN(π, ν) = N |π∨ν|

where |.| is the number of blocks.

Proof. According to our formula of the vectors ξπ, we have:

< ξπ, ξν > =
∑
i1...ik

δπ(i1, . . . , ik)δν(i1, . . . , ik)

=
∑
i1...ik

δπ∨ν(i1, . . . , ik)

= N |π∨ν|

Thus, we have obtained the formula in the statement. □
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In order to study the Gram matrix, and more specifically to compute its determinant,
we will need several standard facts about the partitions. We first have:

Definition 14.34. The Möbius function of any lattice, and so of P , is given by

µ(π, ν) =


1 if π = ν

−
∑

π≤τ<ν µ(π, τ) if π < ν

0 if π ̸≤ ν

with the construction being performed by recurrence.

As an illustration here, let us go back to the set of 2-point partitions, P (2) = {||,⊓}.
Here we have by definition:

µ(||, ||) = µ(⊓,⊓) = 1

Also, we know that we have || < ⊓, with no intermediate partition in between, and so
the above recurrence procedure gives the following formular:

µ(||,⊓) = −µ(||, ||) = −1

Finally, we have ⊓ ̸≤ ||, which gives µ(⊓, ||) = 0. Thus, as a conclusion, the Möbius
matrix Mπν = µ(π, ν) of the lattice P (2) = {||,⊓} is as follows:

M =

(
1 −1
0 1

)
The interest in the Möbius function comes from the Möbius inversion formula:

f(ν) =
∑
π≤ν

g(π) =⇒ g(ν) =
∑
π≤ν

µ(π, ν)f(π)

In linear algebra terms, the statement and proof of this formula are as follows:

Theorem 14.35. The inverse of the adjacency matrix of P , given by

Aπν =

{
1 if π ≤ ν

0 if π ̸≤ ν

is the Möbius matrix of P , given by Mπν = µ(π, ν).

Proof. This is well-known, coming for instance from the fact that A is upper trian-
gular. Thus, when inverting, we are led into the recurrence from Definition 14.34. □

As an illustration here, for P (2) the formula M = A−1 appears as follows:(
1 −1
0 1

)
=

(
1 1
0 1

)−1

Now back to our Gram matrix considerations, we have the following result:
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Proposition 14.36. The Gram matrix is given by GkN = AL, where

L(π, ν) =

{
N(N − 1) . . . (N − |π|+ 1) if ν ≤ π

0 otherwise

and where A =M−1 is the adjacency matrix of P (k).

Proof. We have the following computation:

N |π∨ν| = #
{
i1, . . . , ik ∈ {1, . . . , N}

∣∣∣ ker i ≥ π ∨ ν
}

=
∑
τ≥π∨ν

#
{
i1, . . . , ik ∈ {1, . . . , N}

∣∣∣ ker i = τ
}

=
∑
τ≥π∨ν

N(N − 1) . . . (N − |τ |+ 1)

According to Proposition 14.33 and to the definition of A,L, this formula reads:

(GkN)πν =
∑
τ≥π

Lτν =
∑
τ

AπτLτν = (AL)πν

Thus, we obtain the formula in the statement. □

With the above result in hand, we can now investigate the linear independence prop-
erties of the vectors ξπ. To be more precise, we have the following result:

Theorem 14.37. The determinant of the Gram matrix GkN is given by

det(GkN) =
∏

π∈P (k)

N !

(N − |π|)!

and in particular, for N ≥ k, the vectors {ξπ|π ∈ P (k)} are linearly independent.

Proof. According to the formula in Proposition 14.36, we have:

det(GkN) = det(A) det(L)

Now if we order P (k) as usual, with respect to the number of blocks, and then lex-
icographically, we see that A is upper triangular, and that L is lower triangular. Thus
det(A) can be computed simply by making the product on the diagonal, and we obtain
1. As for det(L), this can computed as well by making the product on the diagonal, and
we obtain the number in the statement, with the technical remark that in the case N < k
the convention is that we obtain a vanishing determinant. □

Now back to the laws of characters, we can formulate:
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Proposition 14.38. For an easy group G = (GN), coming from a category of parti-
tions D = (D(k, l)), the asymptotic moments of the main character are given by

lim
N→∞

∫
GN

χk = #D(k)

where D(k) = D(∅, k), with the limiting sequence on the left consisting of certain integers,
and being stationary at least starting from the k-th term.

Proof. This follows indeed from the Peter-Weyl theory, by using the linear indepen-
dence result for the vectors ξπ coming from Theorem 14.37. □

With these preliminaries in hand, we can now state and prove:

Theorem 14.39. In the N → ∞ limit, the laws of the main character for the main
easy groups, real and complex, and discrete and continuous, are as follows,

KN
// UN

HN

OO

// ON

OO

:

B1
// G1

b1

OO

// g1

OO

with these laws, namely the real and complex Gaussian and Bessel laws, being the main
limiting laws in real and complex, and discrete and continuous probability.

Proof. This follows from the above results. To be more precise, we know that the
above groups are all easy, the corresponding categories of partitions being as follows:

Peven

��

P2
oo

��
Peven P2

oo

Thus, we can use Proposition 14.38, are we are led into counting partitions, and then
recovering the measures via their moments, and this leads to the result. □

14d. Weingarten formula

Our aim now is to go beyond what we have, with results regarding the truncated
characters. Let us start with a general formula coming from Peter-Weyl, namely:
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Theorem 14.40. The Haar integration over a closed subgroup G ⊂v UN is given on
the dense subalgebra of smooth functions by the Weingarten type formula∫

G

ge1i1j1 . . . g
ek
ikjk

dg =
∑

π,ν∈D(k)

δπ(i)δσ(j)Wk(π, ν)

valid for any colored integer k = e1 . . . ek and any multi-indices i, j, where D(k) is a linear
basis of Fix(v⊗k), the associated generalized Kronecker symbols are given by

δπ(i) =< π, ei1 ⊗ . . .⊗ eik >

and Wk = G−1
k is the inverse of the Gram matrix, Gk(π, ν) =< π, ν >.

Proof. This is something very standard, coming from the fact that the above inte-
grals form altogether the orthogonal projection P k onto the following space:

Fix(v⊗k) = span(D(k))

Consider now the following linear map, with D(k) = {ξk} being as in the statement:

E(x) =
∑

π∈D(k)

< x, ξπ > ξπ

By a standard linear algebra computation, it follows that we have P = WE, where
W is the inverse of the restriction of E to the following space:

K = span
(
Tπ

∣∣∣π ∈ D(k)
)

But this restriction is the linear map given by the matrix Gk, and so W is the linear
map given by the inverse matrix Wk = G−1

k , and this gives the result. □

In the easy case, we have the following more concrete result:

Theorem 14.41. For an easy group G ⊂ UN , coming from a category of partitions
D = (D(k, l)), we have the Weingarten formula∫

G

ge1i1j1 . . . g
ek
ikjk

dg =
∑

π,ν∈D(k)

δπ(i)δν(j)WkN(π, ν)

for any k = e1 . . . ek and any i, j, where D(k) = D(∅, k), δ are usual Kronecker type
symbols, checking whether the indices match, and WkN = G−1

kN , with

GkN(π, ν) = N |π∨ν|

where |.| is the number of blocks.



242 14. COMPACT GROUPS

Proof. We use the abstract Weingarten formula, from Theorem 14.40. Indeed, the
Kronecker type symbols there are then the usual ones, as shown by:

δξπ(i) = < ξπ, ei1 ⊗ . . .⊗ eik >

=

〈∑
j

δπ(j1, . . . , jk)ej1 ⊗ . . .⊗ ejk , ei1 ⊗ . . .⊗ eik

〉
= δπ(i1, . . . , ik)

The Gram matrix being as well the correct one, we obtain the result. □

Let us go back now to the general easy groups G ⊂ UN , with the idea in mind of
computing the laws of truncated characters. First, we have the following formula:

Proposition 14.42. The moments of truncated characters are given by the formula∫
G

(g11 + . . .+ gss)
kdg = Tr(WkNGks)

where GkN and WkN = G−1
kN are the associated Gram and Weingarten matrices.

Proof. We have indeed the following computation:∫
G

(g11 + . . .+ gss)
kdg =

s∑
i1=1

. . .
s∑

ik=1

∫
G

gi1i1 . . . gikik dg

=
∑

π,ν∈D(k)

WkN(π, ν)
s∑

i1=1

. . .
s∑

ik=1

δπ(i)δν(i)

=
∑

π,ν∈D(k)

WkN(π, ν)Gks(ν, π)

= Tr(WkNGks)

Thus, we have reached to the formula in the statement. □

In order to process now the above formula, and reach to concrete results, we must
impose on our group a uniformity condition. Let us start with:

Proposition 14.43. For an easy group G = (GN), coming from a category of parti-
tions D ⊂ P , the following conditions are equivalent:

(1) GN−1 = GN ∩ UN−1, via the embedding UN−1 ⊂ UN given by u→ diag(u, 1).
(2) GN−1 = GN ∩ UN−1, via the N possible diagonal embeddings UN−1 ⊂ UN .
(3) D is stable under the operation which consists in removing blocks.

If these conditions are satisfied, we say that G = (GN) is uniform.
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Proof. The equivalence (1) ⇐⇒ (2) comes from the inclusion SN ⊂ GN , which
makes everything SN -invariant. Regarding (1) ⇐⇒ (3), given a subgroup K ⊂v UN−1,
consider the matrix u = diag(v, 1). Our claim is that for any π ∈ P (k) we have:

ξπ ∈ Fix(u⊗k) ⇐⇒ ξπ′ ∈ Fix(u⊗k′), ∀π′ ∈ P (k′), π′ ⊂ π

In order to prove this claim, we must study the condition on the left. We have:

ξπ ∈ Fix(v⊗k) ⇐⇒ (u⊗kξπ)i1...ik = (ξπ)i1...ik , ∀i
⇐⇒

∑
j

(u⊗k)i1...ik,j1...jk(ξπ)j1...jk = (ξπ)i1...ik ,∀i

⇐⇒
∑
j

δπ(j1, . . . , jk)ui1j1 . . . uikjk = δπ(i1, . . . , ik),∀i

Now let us recall that our representation has the special form u = diag(v, 1). We
conclude from this that for any index a ∈ {1, . . . , k}, we have:

ia = N =⇒ ja = N

With this observation in hand, if we denote by i′, j′ the multi-indices obtained from
i, j obtained by erasing all the above ia = ja = N values, and by k′ ≤ k the common
length of these new multi-indices, our condition becomes:∑

j′

δπ(j1, . . . , jk)(u
⊗k′)i′j′ = δπ(i1, . . . , ik),∀i

Here the index j is by definition obtained from the index j′ by filling with N values.
In order to finish now, we have two cases, depending on i, as follows:

Case 1. Assume that the index set {a|ia = N} corresponds to a certain subpartition
π′ ⊂ π. In this case, the N values will not matter, and our formula becomes:∑

j′

δπ(j
′
1, . . . , j

′
k′)(u

⊗k′)i′j′ = δπ(i
′
1, . . . , i

′
k′)

Case 2. Assume now the opposite, namely that the set {a|ia = N} does not correspond
to a subpartition π′ ⊂ π. In this case the indices mix, and our formula reads 0 = 0. Thus
we have ξπ′ ∈ Fix(u⊗k′) in both cases, for any subpartition π′ ⊂ π, as desired. □

Now back to the laws of truncated characters, we have the following result:

Theorem 14.44. For a uniform easy group G = (GN), we have the formula

lim
N→∞

∫
GN

χkt =
∑

π∈D(k)

t|π|

with D ⊂ P being the associated category of partitions.
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Proof. We use Proposition 14.42. With s = [tN ], the formula there becomes:∫
GN

χkt = Tr(WkNGk[tN ])

The point now is that in the uniform case the Gram matrix, and so the Weingarten
matrix too, is asymptotically diagonal. Thus, we obtain the following estimate:∫

GN

χkt ≃
∑

π∈D(k)

WkN(π, π)Gk[tN ](π, π)

≃
∑

π∈D(k)

N−|π|(tN)|π|

=
∑

π∈D(k)

t|π|

Thus, we are led to the formula in the statement. □

We can now enlarge our collection of truncated character results, and we have:

Theorem 14.45. With N →∞, the laws of truncated characters are as follows:

(1) For ON we obtain the Gaussian law gt.
(2) For UN we obtain the complex Gaussian law Gt.
(3) For SN we obtain the Poisson law pt.
(4) For HN we obtain the Bessel law bt.
(5) For Hs

N we obtain the generalized Bessel law bst .
(6) For KN we obtain the complex Bessel law Bt.

Proof. We already know these results at t = 1. In the general case, t > 0, these
follow via some standard combinatorics, from the formula in Theorem 14.44. □

14e. Exercises

Exercises:

Exercise 14.46.

Exercise 14.47.

Exercise 14.48.

Exercise 14.49.

Exercise 14.50.

Exercise 14.51.

Exercise 14.52.

Exercise 14.53.

Bonus exercise.



CHAPTER 15

Quantum groups

15a. Quantum groups

What is a quantum space? Good question, most likely requiring a deep understanding
of the nuclear reactors, and other such pieces of modern machinery.

Fortunately, the mathematical solution to our problem exists, due to Gelfand, with
the starting definition here, that we already met in chapter 4, being as follows:

Definition 15.1. A C∗-algebra is a complex algebra A, having a norm ||.|| making it
a Banach algebra, and an involution ∗, related to the norm by the formula

||aa∗|| = ||a||2

which must hold for any a ∈ A.
As a basic example, the full operator algebra B(H) is a C∗-algebra, and so is any

norm closed ∗-subalgebra A ⊂ B(H). It is possible to prove that a converse of this holds,
in the sense that any C∗-algebra appears as an operator algebra, A ⊂ B(H).

The key result about the C∗-algebras, due Gelfand, is as follows:

Theorem 15.2. Any commutative C∗-algebra A is of the form

A = C(X)

with X = Spec(A) being the space of Banach algebra characters χ : A→ C.
Proof. This is something that we know too from chapter 4, the idea being that with

X as in the statement, we have a morphism of algebras as follows:

ev : A→ C(X) , a→ eva = [χ→ χ(a)]

In order to prove that ev is involutive, we can argue that it is enough to prove that
we have eva∗ = ev∗a for the self-adjoint elements a. But this follows from:

eva(χ) = χ(a) ∈ σ(a) ⊂ R
Next, since A is commutative, each element is normal, so ev is isometric:

||eva|| = ρ(a) = ||a||
It remains to prove that ev is surjective. But this follows from the Stone-Weierstrass

theorem, because ev(A) is a closed subalgebra of C(X), which separates the points. □

245
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In view of Theorem 15.2, we can formulate the following definition:

Definition 15.3. Given an arbitrary C∗-algebra A, we can write

A = C(X)

and call the abstract space X a compact quantum space.

In other words, we can define the category of compact quantum spaces X as being
the category of the C∗-algebras A, with the arrows reversed. A morphism f : X → Y
corresponds by definition to a morphism Φ : C(Y ) → C(X), a product of spaces X × Y
corresponds by definition to a product of algebras C(X)⊗ C(Y ), and so on.

All this is of course a bit speculative, and as a first true result, we have:

Theorem 15.4. The finite quantum spaces are exactly the disjoint unions of type

X =MN1 ⊔ . . . ⊔MNk

where MN is the finite quantum space given by C(MN) =MN(C).

Proof. For a compact quantum spaceX, coming from a C∗-algebra A via the formula
A = C(X), being finite can only mean that the following number is finite:

|X| = dimCA <∞
Thus, we are led to the conclusion that we must have:

C(X) =MN1(C)⊕ . . .⊕MNk
(C)

But since direct sums of algebras A correspond to disjoint unions of quantum spaces
X, via the correspondence A = C(X), this leads to the conclusion in the statement. □

Finally, at the general level, we have as well the following key result:

Theorem 15.5. Any C∗-algebra appears as an operator algebra:

A ⊂ B(H)

Moreover, when A is separable, which is usually the case, H can be taken separable.

Proof. Let us first prove that the result holds in the commutative case, A = C(X).
Here, we can pick a positive measure on X, and construct our embedding as follows:

C(X) ⊂ B(L2(X)) , f → [g → fg]

In general the proof is similar, the idea being that given a C∗-algebra A we can
construct a Hilbert space H = L2(A), and then an embedding as above:

A ⊂ B(L2(A)) , a→ [b→ ab]

Finally, the last assertion is clear, because when A is separable, meaning that it has a
countable algebraic basis, so does the associated Hilbert space H = L2(A). □
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We are ready now to introduce the quantum groups. The axioms here, due to
Woronowicz [100], and slightly modified for our purposes, are as follows:

Definition 15.6. A Woronowicz algebra is a C∗-algebra A, given with a unitary
matrix u ∈MN(A) whose coefficients generate A, such that the formulae

∆(uij) =
∑
k

uik ⊗ ukj , ε(uij) = δij , S(uij) = u∗ji

define morphisms of C∗-algebras ∆ : A → A ⊗ A, ε : A → C and S : A → Aopp, called
comultiplication, counit and antipode.

Here the tensor product needed for ∆ can be any C∗-algebra tensor product, and more
on this later. In order to get rid of redundancies, coming from this and from amenability
issues, we will divide everything by an equivalence relation, as follows:

Definition 15.7. We agree to identify two Woronowicz algebras, (A, u) = (B, v),
when we have an isomorphism of ∗-algebras

< uij >≃< vij >

mapping standard coordinates to standard coordinates, uij → vij.

We say that A is cocommutative when Σ∆ = ∆, where Σ(a ⊗ b) = b ⊗ a is the flip.
We have then the following key result, from [100], providing us with examples:

Theorem 15.8. The following are Woronowicz algebras, which are commutative, re-
spectively cocommutative:

(1) C(G), with G ⊂ UN compact Lie group. Here the structural maps are:

∆(φ) =
[
(g, h)→ φ(gh)

]
, ε(φ) = φ(1) , S(φ) =

[
g → φ(g−1)

]
(2) C∗(Γ), with FN → Γ finitely generated group. Here the structural maps are:

∆(g) = g ⊗ g , ε(g) = 1 , S(g) = g−1

Moreover, we obtain in this way all the commutative/cocommutative algebras.

Proof. In both cases, we first have to exhibit a certain matrix u, and then prove
that we have indeed a Woronowicz algebra. The constructions are as follows:

(1) For the first assertion, we can use the matrix u = (uij) formed by the standard
matrix coordinates of G, which is by definition given by:

g =

u11(g) . . . u1N(g)
...

...
uN1(g) . . . uNN(g)


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(2) For the second assertion, we can use the diagonal matrix formed by generators:

u =

g1 0
. . .

0 gN


Finally, regarding the last assertion, in the commutative case this follows from the

Gelfand theorem, and in the cocommutative case, we will be back to this. □

In order to get now to quantum groups, we will need as well:

Proposition 15.9. Assuming that G ⊂ UN is abelian, we have an identification of
Woronowicz algebras C(G) = C∗(Γ), with Γ being the Pontrjagin dual of G:

Γ =
{
χ : G→ T

}
Conversely, assuming that FN → Γ is abelian, we have an identification of Woronowicz
algebras C∗(Γ) = C(G), with G being the Pontrjagin dual of Γ:

G =
{
χ : Γ→ T

}
Thus, the Woronowicz algebras which are both commutative and cocommutative are exactly
those of type A = C(G) = C∗(Γ), with G,Γ being abelian, in Pontrjagin duality.

Proof. This follows from the Gelfand theorem applied to C∗(Γ), and from the fact
that the characters of a group algebra come from the characters of the group. □

In view of this result, and of the findings from Theorem 15.8 too, we have the following
definition, complementing Definition 15.6 and Definition 15.7:

Definition 15.10. Given a Woronowicz algebra, we write it as follows, and call G a
compact quantum Lie group, and Γ a finitely generated discrete quantum group:

A = C(G) = C∗(Γ)

Also, we say that G,Γ are dual to each other, and write G = Γ̂,Γ = Ĝ.

Let us discuss now some tools for studying the Woronowicz algebras, and the under-
lying quantum groups. First, we have the following result:

Proposition 15.11. Let (A, u) be a Woronowicz algebra.

(1) ∆, ε satisfy the usual axioms for a comultiplication and a counit, namely:

(∆⊗ id)∆ = (id⊗∆)∆

(ε⊗ id)∆ = (id⊗ ε)∆ = id

(2) S satisfies the antipode axiom, on the ∗-algebra generated by entries of u:

m(S ⊗ id)∆ = m(id⊗ S)∆ = ε(.)1

(3) In addition, the square of the antipode is the identity, S2 = id.
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Proof. As a first observation, the result holds in the commutative case, A = C(G)
with G ⊂ UN . Indeed, here we know from Theorem 15.8 that ∆, ε, S appear as functional
analytic transposes of the multiplication, unit and inverse maps m,u, i:

∆ = mt , ε = ut , S = it

Thus, the various conditions in the statement on ∆, ε, S simply come from the group
axioms satisfied bym,u, i. Observe also that the result holds as well in the cocommutative
case, A = C∗(Γ) with FN → Γ. In general now, the first axiom follows from:

(∆⊗ id)∆(uij) = (id⊗∆)∆(uij) =
∑
kl

uik ⊗ ukl ⊗ ulj

As for the other axioms, the verifications here are similar. □

In order to reach now to more advanced results, the idea will be that of doing repre-
sentation theory. Following Woronowicz [100], let us start with the following definition:

Definition 15.12. Given (A, u), we call corepresentation of it any unitary matrix
v ∈Mn(A), with A =< uij >, satisfying the same conditions as u, namely:

∆(vij) =
∑
k

vik ⊗ vkj , ε(vij) = δij , S(vij) = v∗ji

We also say that v is a representation of the underlying compact quantum group G.

In the commutative case, A = C(G) with G ⊂ UN , we obtain in this way the finite
dimensional unitary smooth representations v : G→ Un, via the following formula:

v(g) =

v11(g) . . . v1n(g)
...

...
vn1(g) . . . vnn(g)


With this convention, we have the following fundamental result, from [100]:

Theorem 15.13. Any Woronowicz algebra has a unique Haar integration functional,(∫
G

⊗id
)
∆ =

(
id⊗

∫
G

)
∆ =

∫
G

(.)1

which can be constructed by starting with any faithful positive form φ ∈ A∗, and setting∫
G

= lim
n→∞

1

n

n∑
k=1

φ∗k

where ϕ ∗ ψ = (ϕ⊗ ψ)∆. Moreover, for any corepresentation v ∈Mn(C)⊗ A we have(
id⊗

∫
G

)
v = P

where P is the orthogonal projection onto Fix(v) = {ξ ∈ Cn|vξ = ξ}.
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Proof. Following [100], this can be done in 3 steps, as follows:

(1) Given φ ∈ A∗, our claim is that the following limit converges, for any a ∈ A:∫
φ

a = lim
n→∞

1

n

n∑
k=1

φ∗k(a)

Indeed, by linearity we can assume that a ∈ A is the coefficient of certain corepresen-
tation, a = (τ ⊗ id)v. But in this case, an elementary computation gives the following
formula, with Pφ being the orthogonal projection onto the 1-eigenspace of (id⊗ φ)v:(

id⊗
∫
φ

)
v = Pφ

(2) Since vξ = ξ implies [(id⊗ φ)v]ξ = ξ, we have Pφ ≥ P , where P is the orthogonal
projection onto the fixed point space in the statement, namely:

Fix(v) =
{
ξ ∈ Cn

∣∣∣vξ = ξ
}

The point now is that when φ ∈ A∗ is faithful, by using a standard positivity trick,
we can prove that we have Pφ = P , exactly as in the classical case.

(3) With the above formula in hand, the left and right invariance of
∫
G
=
∫
φ
is clear

on coefficients, and so in general, and this gives all the assertions. See [100]. □

We can now develop, again following [100], the Peter-Weyl theory for the corepresen-
tations of A. Consider the dense subalgebra A ⊂ A generated by the coefficients of the
fundamental corepresentation u, and endow it with the following scalar product:

< a, b >=

∫
G

ab∗

With this convention, we have the following result, also from [100]:

Theorem 15.14. We have the following Peter-Weyl type results:

(1) Any corepresentation decomposes as a sum of irreducible corepresentations.
(2) Each irreducible corepresentation appears inside a certain u⊗k.
(3) A =

⊕
v∈Irr(A)Mdim(v)(C), the summands being pairwise orthogonal.

(4) The characters of irreducible corepresentations form an orthonormal system.

Proof. This is something that we met in chapters 5 and 14, in the case where G ⊂ UN
is a finite group, or more generally a compact group. In general, when G is a compact
quantum group, the proof is quite similar, by using Theorem 15.13. □

Finally, no discussion about compact and discrete quantum groups would be complete
without a word on amenability. The result here, again from [100], is as follows:
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Theorem 15.15. Let Afull be the enveloping C
∗-algebra of A, and Ared be the quotient

of A by the null ideal of the Haar integration. The following are then equivalent:

(1) The Haar functional of Afull is faithful.
(2) The projection map Afull → Ared is an isomorphism.
(3) The counit map ε : Afull → C factorizes through Ared.
(4) We have N ∈ σ(Re(χu)), the spectrum being taken inside Ared.

If this is the case, we say that the underlying discrete quantum group Γ is amenable.

Proof. This is well-known in the group dual case, A = C∗(Γ), with Γ being a usual
discrete group. In general, the result follows by adapting the group dual case proof:

(1) ⇐⇒ (2) This simply follows from the fact that the GNS construction for the
algebra Afull with respect to the Haar functional produces the algebra Ared.

(2) ⇐⇒ (3) Here =⇒ is trivial, and conversely, a counit ε : Ared → C produces an

isomorphism Φ : Ared → Afull, by slicing the map ∆̃ : Ared → Ared ⊗ Afull.
(3) ⇐⇒ (4) Here =⇒ is clear, coming from ε(N −Re(χ(u))) = 0, and the converse

can be proved by doing some functional analysis. See [100]. □

This was for the basic theory of the quantum groups in the sense of Woronowicz,
quickly explained. For more on all this, we have for instance my book [8].

15b. Quantum permutations

Following Wang, let us discuss now the construction and basic properties of the quan-
tum permutation group S+

N . Let us first look at SN . We have here:

Theorem 15.16. The algebra of functions on SN has the following presentation,

C(SN) = C∗
comm

(
(uij)i,j=1,...,N

∣∣∣u = magic
)

and the multiplication, unit and inversion map of SN appear from the maps

∆(uij) =
∑
k

uik ⊗ ukj , ε(uij) = δij , S(uij) = uji

defined at the algebraic level, of functions on SN , by transposing.

Proof. This is something that we know from chapter 4, coming from the Gelfand
theorem, applied to the universal algebra in the statement. Indeed, that algebra follows
to be of the form A = C(X), with X being a certain compact space. Now since we have
coordinates uij : X → R, we have an embedding X ⊂ MN(R). Also, since we know that
these coordinates form a magic matrix, the elements g ∈ X must be 0-1 matrices, having
exactly one 1 entry on each row and each column, and so X = SN , as desired. □

Following now Wang, we can liberate SN , as follows:
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Theorem 15.17. The following universal C∗-algebra, with magic meaning as usual
formed by projections (p2 = p∗ = p), summing up to 1 on each row and each column,

C(S+
N) = C∗

(
(uij)i,j=1,...,N

∣∣∣u = magic
)

is a Woronowicz algebra, with comultiplication, counit and antipode given by:

∆(uij) =
∑
k

uik ⊗ ukj , ε(uij) = δij , S(uij) = uji

Thus the space S+
N is a compact quantum group, called quantum permutation group.

Proof. As a first observation, the universal C∗-algebra in the statement is indeed
well-defined, because the conditions p2 = p∗ = p satisfied by the coordinates give:

||uij|| ≤ 1

In order to prove now that we have a Woronowicz algebra, we must construct maps
∆, ε, S given by the formulae in the statement. Consider the following matrices:

u∆ij =
∑
k

uik ⊗ ukj , uεij = δij , uSij = uji

Our claim is that, since u is magic, so are these three matrices. Indeed, regarding u∆,
its entries are idempotents, as shown by the following computation:

(u∆ij)
2 =

∑
kl

uikuil ⊗ ukjulj =
∑
kl

δkluik ⊗ δklukj = u∆ij

These elements are self-adjoint as well, as shown by the following computation:

(u∆ij)
∗ =

∑
k

u∗ik ⊗ u∗kj =
∑
k

uik ⊗ ukj = u∆ij

The row and column sums for the matrix u∆ can be computed as follows:∑
j

u∆ij =
∑
jk

uik ⊗ ukj =
∑
k

uik ⊗ 1 = 1

∑
i

u∆ij =
∑
ik

uik ⊗ ukj =
∑
k

1⊗ ukj = 1

Thus, u∆ is magic. Regarding now uε, uS, these matrices are magic too, and this for
obvious reasons. Thus, all our three matrices u∆, uε, uS are magic, so we can define ∆, ε, S
by the formulae in the statement, by using the universality property of C(S+

N). □

Our first task now is to make sure that Theorem 15.17 produces indeed a new quantum
group, which does not collapse to SN . Following Wang, we have:
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Theorem 15.18. We have an embedding SN ⊂ S+
N , given at the algebra level by:

uij → χ
(
σ ∈ SN

∣∣∣σ(j) = i
)

This is an isomorphism at N ≤ 3, but not at N ≥ 4, where S+
N is not classical, nor finite.

Proof. The fact that we have indeed an embedding as above follows from Theorem
15.16. Observe that in fact more is true, because Theorems 15.16 and 15.17 give:

C(SN) = C(S+
N)
/〈

ab = ba
〉

Regarding now the second assertion, we can prove this in four steps, as follows:

Case N = 2. The fact that S+
2 is indeed classical, and hence collapses to S2, is trivial,

because the 2× 2 magic matrices are as follows, with p being a projection:

U =

(
p 1− p

1− p p

)
Thus C(S+

2 ) is commutative, and equals its biggest commutative quotient, C(S2).

Case N = 3. It is enough to check that u11, u22 commute. But this follows from:

u11u22 = u11u22(u11 + u12 + u13)

= u11u22u11 + u11u22u13

= u11u22u11 + u11(1− u21 − u23)u13
= u11u22u11

Indeed, by conjugating, u22u11 = u11u22u11, so u11u22 = u22u11, as desired.

Case N = 4. Consider the following matrix, with p, q being projections:

U =


p 1− p 0 0

1− p p 0 0
0 0 q 1− q
0 0 1− q q


This matrix is magic, and we can choose p, q ∈ B(H) as for the algebra < p, q > to be

noncommutative and infinite dimensional. We conclude that C(S+
4 ) is noncommutative

and infinite dimensional as well, and so S+
4 is non-classical and infinite, as claimed.

Case N ≥ 5. Here we can use the standard embedding S+
4 ⊂ S+

N , obtained at the level
of the corresponding magic matrices in the following way:

u→
(
u 0
0 1N−4

)
Indeed, with this in hand, the fact that S+

4 is a non-classical, infinite compact quantum
group implies that S+

N with N ≥ 5 has these two properties as well. □
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As a first observation, as a matter of doublechecking our findings, we are not wrong
with our formalism, because as discovered once again by Wang, we have as well:

Theorem 15.19. The quantum permutation group S+
N acts on the set X = {1, . . . , N},

the corresponding coaction map Φ : C(X)→ C(X)⊗ C(S+
N) being given by:

Φ(ei) =
∑
j

ej ⊗ uji

In fact, S+
N is the biggest compact quantum group acting on X, by leaving the counting

measure invariant, in the sense that (tr ⊗ id)Φ = tr(.)1, where tr(ei) =
1
N
,∀i.

Proof. Our claim is that given a compact matrix quantum group G, the follow-
ing formula defines a morphism of algebras, which is a coaction map, leaving the trace
invariant, precisely when the matrix u = (uij) is a magic corepresentation of C(G):

Φ(ei) =
∑
j

ej ⊗ uji

Indeed, let us first determine when Φ is multiplicative. We have:

Φ(ei)Φ(ek) =
∑
jl

ejel ⊗ ujiulk =
∑
j

ej ⊗ ujiujk

Φ(eiek) = δikΦ(ei) = δik
∑
j

ej ⊗ uji

We conclude that the multiplicativity of Φ is equivalent to the following conditions:

ujiujk = δikuji , ∀i, j, k

Similarly, Φ is unital when
∑

i uji = 1, ∀j. Finally, the fact that Φ is a ∗-morphism
translates into uij = u∗ij, ∀i, j. Summing up, in order for Φ(ei) =

∑
j ej ⊗ uji to be a

morphism of C∗-algebras, the elements uij must be projections, summing up to 1 on each
row of u. Regarding now the preservation of the trace, observe that we have:

(tr ⊗ id)Φ(ei) =
1

N

∑
j

uji

Thus the trace is preserved precisely when the elements uij sum up to 1 on each of
the columns of u. We conclude from this that Φ(ei) =

∑
j ej ⊗ uji is a morphism of

C∗-algebras preserving the trace precisely when u is magic, and this gives the result. □

Many other things can be said about S+
N . We will be back to this.
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15c. Liberation theory

In order to study S+
N , and better understand the liberation operation SN → S+

N , we
can use representation theory. We have the following version of Tannakian duality:

Theorem 15.20. The following operations are inverse to each other:

(1) The construction A → C, which associates to any Woronowicz algebra A the
tensor category formed by the intertwiner spaces Ckl = Hom(u⊗k, u⊗l).

(2) The construction C → A, which associates to a tensor category C the Woronowicz
algebra A presented by the relations T ∈ Hom(u⊗k, u⊗l), with T ∈ Ckl.

Proof. This is something quite deep, with the idea being as follows:

– We have indeed a construction A → C as above, whose output is a tensor C∗-
subcategory with duals of the tensor C∗-category of Hilbert spaces.

– We have as well a construction C → A as above, simply by dividing the free ∗-algebra
on N2 variables by the relations in the statement.

Some elementary algebra shows then that C = CAC
implies A = ACA

, and also that
C ⊂ CAC

is automatic. Thus we are left with proving CAC
⊂ C, and this can be done by

doing some algebra, and using von Neumann’s bicommutant theorem. See [8]. □

We will need as well the notion of “easiness”. Let us start with the following definition:

Definition 15.21. Let P (k, l) be the set of partitions between an upper row of k
points, and a lower row of l points. A set D =

⊔
k,lD(k, l) with D(k, l) ⊂ P (k, l) is called

a category of partitions when it has the following properties:

(1) Stability under the horizontal concatenation, (π, σ)→ [πσ].
(2) Stability under the vertical concatenation, (π, σ)→ [σπ].
(3) Stability under the upside-down turning, π → π∗.
(4) Each set P (k, k) contains the identity partition || . . . ||.
(5) The set P (0, 2) contains the semicircle partition ∩.
Observe that this is precisely the definition that we used in chapter 7, with the condi-

tion there on the basic crossing /\, which produces commutativity via Tannakian duality,
removed. In relation with the quantum groups, we have the following notion:

Definition 15.22. A compact quantum matrix group G is called easy when

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

for any colored integers k, l, for certain sets of partitions D(k, l) ⊂ P (k, l), where

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

with the Kronecker type symbols δπ ∈ {0, 1} depending on whether the indices fit or not.
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Again, this is something coming as a continuation of the material from chapter 7, and
for more on this definition, and its meaning, we refer to the material there.

Many things can be said here, but getting now straight to the point, we have:

Theorem 15.23. We have the following results:

(1) SN is easy, coming from the category of all partitions P .
(2) S+

N is easy, coming from the category of all noncrossing partitions NC.

Proof. This is something quite fundamental, with the proof, using the above Tan-
nakian results and subsequent easiness theory, being as follows:

(1) S+
N . We know that this quantum group comes from the magic condition. In order

to interpret this magic condition, consider the fork partition:

Y ∈ P (2, 1)

By arguing as in chapter 7, we conclude that we have the following equivalence:

TY ∈ Hom(u⊗2, u) ⇐⇒ uijuik = δjkuij,∀i, j, k

The condition on the right being equivalent to the magic condition, we conclude that
S+
N is indeed easy, the corresponding category of partitions being, as desired:

D =< Y >= NC

(2) SN . Here there is no need for new computations, because we have:

SN = S+
N ∩ON

At the categorical level means that SN is easy, coming from:

< NC, /\ >= P

Thus, we are led to the conclusions in the statement. □

Summarizing, we have now a good understanding of the liberation operation SN → S+
N ,

the idea being that this comes, via Tannakian duality, from P → NC:

Theorem 15.24. The operation SN → S+
N is an easy liberation, in the sense that it

appears, at the level of the corresponding categories of partitions, from P → NC.

Proof. This follows indeed from Theorem 15.23. □

Many other things can be said here, with results for the reflection groups too.

In order to go further in this direction, we will need the following result, with ∗ being
the classical convolution, and ⊞ being Voiculescu’s free convolution operation [91]:
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Theorem 15.25. The following Poisson type limits converge, for any t > 0,

pt = lim
n→∞

((
1− 1

n

)
δ0 +

1

n
δt

)∗n

πt = lim
n→∞

((
1− 1

n

)
δ0 +

1

n
δt

)⊞n

the limiting measures being the Poisson law pt, and the Marchenko-Pastur law πt,

pt =
1

et

∞∑
k=0

tkδk
k!

πt = max(1− t, 0)δ0 +
√

4t− (x− 1− t)2
2πx

dx

whose moments are given by the following formulae:

Mk(pt) =
∑

π∈P (k)

t|π| , Mk(πt) =
∑

π∈NC(k)

t|π|

The Marchenko-Pastur measure πt is also called free Poisson law.

Proof. This is something quite advanced, related to probability theory, free proba-
bility theory, and random matrices, the idea being as follows:

(1) The first step is that of finding suitable functional transforms, which linearize the
convolution operations in the statement. In the classical case this is the logarithm of the
Fourier transform logF , and in the free case this is Voiculescu’s R-transform.

(2) With these tools in hand, the above limiting theorems can be proved in a standard
way, a bit as when proving the Central Limit Theorem. The computations give the
moment formulae in the statement, and the density computations are standard as well.

(3) Finally, in order for the discussion to be complete, what still remains to be ex-
plained is the precise nature of the “liberation” operation pt → πt, as well as the random
matrix occurrence of πt. This is more technical, and we refer here to [74], [91]. □

Getting back now to quantum permutations, the results here are as follows:

Theorem 15.26. The law of the main character, given by

χ =
∑
i

uii

for SN/S
+
N becomes p1/π1 with N →∞. As for the truncated character

χt =

[tN ]∑
i=1

uii

for SN/S
+
N , with t ∈ (0, 1], this becomes pt/πt with N →∞.
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Proof. This is again something quite technical, the idea being as follows:

(1) In the classical case this is well-known, and follows by using the inclusion-exclusion
principle, and then letting N →∞, as explained in chapter 2.

(2) In the free case there is no such simple argument, and we must use what we know
about S+

N , namely its easiness property. We know from easiness that we have:

Fix(u⊗k) = span(NC(k))

On the other hand, a direct computation shows that the partitions in P (k), and in
particular those in NC(k), implemented as linear maps via the operation π → Tπ from
Definition 15.22, become linearly independent with N ≥ k. Thus we have, as desired:∫

S+
N

χk = dim
(
Fix(u⊗k)

)
= dim

(
span

(
Tπ

∣∣∣π ∈ NC(k)))
≃ |NC(k)|
=

∑
π∈NC(k)

1|π|

(3) In the general case now, where our parameter is an arbitrary number t ∈ (0, 1],
the above computation does not apply, but we can still get away with Peter-Weyl theory.
Indeed, we know from Theorem 15.13 how to compute the Haar integration of S+

N , out of
the knowledge of the fixed point spaces Fix(u⊗k), and in practice, by using easiness, this
leads to the following formula, called Weingarten integration formula:∫

S+
N

ui1j1 . . . uikjk =
∑

π,σ∈NC(k)

δπ(i)δσ(j)WkN(π, σ)

Here the δ symbols are Kronecker type symbols, checking whether the indices fit or not
with the partitions, and WkN = G−1

kN , with GkN(π, σ) = N |π∨σ|, where |.| is the number
of blocks. Now by using this formula for computing the moments of χt, we obtain:∫

S+
N

χkt =

[tN ]∑
i1=1

. . .

[tN ]∑
ik=1

∫
ui1i1 . . . uikik

=
∑

π,σ∈NC(k)

WkN(π, σ)

[tN ]∑
i1=1

. . .

[tN ]∑
ik=1

δπ(i)δσ(i)

=
∑

π,σ∈NC(k)

WkN(π, σ)Gk[tN ](σ, π)

= Tr(WkNGk[tN ])
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(4) The point now is that with N →∞ the Gram matrix GkN , and so the Weingarten
matrix WkN too, becomes asymptotically diagonal. We therefore obtain:∫

S+
N

χkt ≃
∑

π∈NC(k)

t|π|

Thus, we are led to the conclusion in the statement. For details, see [9]. □

15d. Quantum reflections

Getting now to quantum reflections, whose construction and properties we would like
to explain now, we first have the following result, which is something very standard:

Theorem 15.27. Consider the graph consisting of N segments.

(1) Its symmetry group is the hyperoctahedral group HN = Z2 ≀ SN .
(2) Its quantum symmetry group is the quantum group H+

N = Z2 ≀∗ S+
N .

Proof. This is something very standard, the idea being as follows:

(1) This is clear indeed from definitions, and with the remark that the group HN

appears as well as the symmetry group of the hypercube, G(□N) = HN .

(2) This is something which is standard too, a bit like in the classical case, and with
the remark that for the hypercube we obtain something different, G(□N) = O−1

N . □

In order to further study H+
N , we first have the following result:

Proposition 15.28. The algebra C(H+
N) can be presented in two ways, as follows:

(1) As the universal algebra generated by the entries of a 2N × 2N magic unitary
having the “sudoku” pattern w = (ab

b
a), with a, b being square matrices.

(2) As the universal algebra generated by the entries of a N × N orthogonal matrix
which is “cubic”, in the sense that uijuik = ujiuki = 0, for any j ̸= k.

As for C(HN), this has similar presentations, among the commutative algebras.

Proof. We must prove that the algebras As, Ac coming from (1,2) coincide. We can
define a morphism Ac → As by the following formula:

φ(uij) = aij − bij
We construct now the inverse morphism. Consider the following elements:

αij =
u2ij + uij

2
, βij =

u2ij − uij
2

These are projections, and the following matrix is a sudoku unitary:

M =

(
(αij) (βij)
(βij) (αij)

)
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Thus we can define a morphism As → Ac by the following formula:

ψ(aij) =
u2ij + uij

2
, ψ(bij) =

u2ij − uij
2

We check now the fact that ψ, φ are indeed inverse morphisms:

ψφ(uij) = ψ(aij − bij) =
u2ij + uij

2
−
u2ij − uij

2
= uij

As for the other composition, we have the following computation:

φψ(aij) = φ

(
u2ij + uij

2

)
=

(aij − bij)2 + (aij − bij)
2

= aij

A similar computation gives φψ(bij) = bij, as desired. As for the final assertion,
regarding C(HN), this follows from the above results, by taking classical versions. □

We can now work out the easiness property of HN , H
+
N , with respect to the cubic

representations, and we are led to the following result:

Theorem 15.29. The quantum groups HN , H
+
N are both easy, as follows:

(1) HN corresponds to the category Peven.
(2) H+

N corresponds to the category NCeven.

Proof. This is something quite routine, the idea being as follows:

(1) We know that H+
N ⊂ O+

N appears via the cubic relations, namely:

uijuik = ujiuki = 0 , ∀j ̸= k

Our claim is that, in Tannakian terms, these relations reformulate as follows, with
H ∈ P (2, 2) being the 1-block partition, joining all 4 points:

TH ∈ End(u⊗2)

(2) In order to prove our claim, observe first that we have, by definition of TH :

TH(ei ⊗ ej) = δijei ⊗ ei
With this formula in hand, we have the following computation:

THu
⊗2(ei ⊗ ej ⊗ 1) = TH

(∑
abij

eai ⊗ ebj ⊗ uaiubj

)
(ei ⊗ ej ⊗ 1)

= TH
∑
ab

ea ⊗ eb ⊗ uaiubj

=
∑
a

ea ⊗ ea ⊗ uaiuaj
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On the other hand, we have as well the following computation:

u⊗2TH(ei ⊗ ej ⊗ 1) = δiju
⊗2(ei ⊗ ej ⊗ 1)

= δij

(∑
abij

eai ⊗ ebj ⊗ uaiubj

)
(ei ⊗ ej ⊗ 1)

= δij
∑
ab

ea ⊗ eb ⊗ uaiubi

We conclude that THu
⊗2 = u⊗2TH means that u is cubic, as desired.

(3) With our claim proved, we can go back to H+
N . Indeed, it follows from Tannakian

duality that this quantum group is easy, coming from the following category:

D =< H >= NCeven

(4) But this proves as well the result for HN . Indeed, since this group is the classical
version of H+

N , we have as desired easiness, the corresponding category being:

E =< NCeven, /\ >= Peven

Thus, we are led to the conclusions in the statement. □

As an immediate consequence of the above result, we have:

Theorem 15.30. The operation HN → H+
N is a liberation in the sense of easy quantum

groups, in the sense that the category of partitions for H+
N appears as

D+ = D ∩NC

with D being the category of partitions for HN .

Proof. We already know, from definitions, that HN → H+
N is a liberation, in the

sense that the classical version of H+
N is HN . However, by using Theorem 15.29, we can

see that much more is true, in the sense that HN → H+
N is an easy quantum group

liberation, as stated, and with this coming from NCeven = Peven ∩NC. □

The free analogues of the reflection groups Hs
N can be constructed as follows:

Definition 15.31. The algebra C(Hs+
N ) is the universal C∗-algebra generated by N2

normal elements uij, subject to the following relations,

(1) u = (uij) is unitary,
(2) ut = (uji) is unitary,
(3) pij = uiju

∗
ij is a projection,

(4) usij = pij,

with Woronowicz algebra maps ∆, ε, S constructed by universality.



262 15. QUANTUM GROUPS

Here we allow the value s = ∞, with the convention that the last axiom simply
disappears in this case. Observe that at s < ∞ the normality condition is actually
redundant. This is because a partial isometry a subject to the relation aa∗ = as is
normal. As a first result now, making the connection with Hs

N , we have:

Theorem 15.32. We have an inclusion of quantum groups

Hs
N ⊂ Hs+

N

which is a liberation, in the sense that the classical version of Hs+
N , obtained by dividing

by the commutator ideal, is the group Hs
N .

Proof. This follows as before for ON ⊂ O+
N or for SN ⊂ S+

N , by using the Gelfand
theorem, applied to the quotient of C(Hs+

N ) by its commutator ideal. □

In analogy with the results from the real case, we have the following result:

Proposition 15.33. The algebras C(Hs+
N ) with s = 1, 2,∞, and their presentation

relations in terms of the entries of the matrix u = (uij), are as follows:

(1) For C(H1+
N ) = C(S+

N), the matrix u is magic: all its entries are projections,
summing up to 1 on each row and column.

(2) For C(H2+
N ) = C(H+

N) the matrix u is cubic: it is orthogonal, and the products
of pairs of distinct entries on the same row or the same column vanish.

(3) For C(H∞+
N ) = C(K+

N) the matrix u is unitary, its transpose is unitary, and all
its entries are normal partial isometries.

Proof. This is something elementary, the idea being as follows:

(1) This follows from definitions and from standard operator algebra tricks.

(2) This follows as well from definitions and standard operator algebra tricks.

(3) This is just a translation of the definition of C(Hs+
N ), at s =∞. □

Let us prove now that Hs+
N with s < ∞ is a quantum permutation group. For this

purpose, we must change the fundamental representation. Let us start with:

Definition 15.34. A (s,N)-sudoku matrix is a magic unitary of size sN , of the form

m =


a0 a1 . . . as−1

as−1 a0 . . . as−2

...
...

...
a1 a2 . . . a0


where a0, . . . , as−1 are N ×N matrices.
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The basic examples of such matrices come from the group Hs
n. Indeed, with w = e2πi/s,

each of the N2 matrix coordinates uij : H
s
N → C takes values in the following set:

S = {0} ∪ {1, w, . . . , ws−1}

Thus, this coordinate function uij : H
s
N → C decomposes as follows:

uij =
s−1∑
r=0

wrarij

Here each function arij is a function taking values in {0, 1}, and so is a projection in
the C∗-algebra sense, and it follows from definitions that these projections form indeed a
sudoku matrix. Now with this notion in hand, we have the following result:

Theorem 15.35. The following happen:

(1) The algebra C(Hs
N) is isomorphic to the universal commutative C∗-algebra gen-

erated by the entries of a (s,N)-sudoku matrix.
(2) The algebra C(Hs+

N ) is isomorphic to the universal C∗-algebra generated by the
entries of a (s,N)-sudoku matrix.

Proof. The first assertion follows from the second one, via Theorem 15.32. In order
to prove the second assertion, consider the universal algebra in the statement, namely:

A = C∗
(
apij

∣∣∣ (aq−pij

)
pi,qj

= (s,N)− sudoku
)

Consider also the algebra C(Hs+
N ). According to Definition 15.31, this is presented by

certain relations R, that we will call here level s cubic conditions:

C(Hs+
N ) = C∗

(
uij

∣∣∣ u = N ×N level s cubic
)

We will construct a pair of inverse morphisms between these algebras.

(1) Our first claim is that Uij =
∑

pw
−papij is a level s cubic unitary. Indeed, by using

the sudoku condition, the verification of (1-4) in Definition 15.31 is routine.

(2) Our second claim is that the elements Apij = 1
s

∑
r w

rpurij, with the convention

u0ij = pij, form a level s sudoku unitary. Once again, the proof here is routine.

(3) According to the above, we can define a morphism Φ : C(Hs+
N )→ A by the formula

Φ(uij) = Uij, and a morphism Ψ : A→ C(Hs+
N ) by the formula Ψ(apij) = Apij.
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(4) We check now the fact that Φ,Ψ are indeed inverse morphisms:

ΨΦ(uij) =
∑
p

w−pApij

=
1

s

∑
p

w−p
∑
r

wrpurij

=
1

s

∑
pr

w(r−1)purij

= uij

As for the other composition, we have the following computation:

ΦΨ(apij) =
1

s

∑
r

wrpU r
ij

=
1

s

∑
r

wrp
∑
q

w−rqaqij

=
1

s

∑
q

aqij
∑
r

wr(p−q)

= apij

Thus we have an isomorphism C(Hs+
N ) = A, as claimed. □

In order to further advance, we will need the following simple fact:

Proposition 15.36. A sN × sN magic unitary commutes with the matrix

Σ =


0 IN 0 . . . 0
0 0 IN . . . 0
...

...
. . .

0 0 0 . . . IN
IN 0 0 . . . 0


if and only if it is a sudoku matrix in the sense of Definition 15.34.

Proof. This follows from the fact that commutation with Σ means that the matrix
is circulant. Thus, we obtain the sudoku relations from Definition 15.34. □

Now let Zs be the oriented cycle with s vertices, and consider the graph NZs consisting
of N disjoint copies of it. Observe that, with a suitable labeling of the vertices, the
adjacency matrix of this graph is the above matrix Σ. We obtain from this:

Theorem 15.37. We have the following results:

(1) Hs
N is the symmetry group of NZs.

(2) Hs+
N is the quantum symmetry group of NZs.
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Proof. This is something elementary, the idea being as follows:

(1) This follows from definitions.

(2) This follows from Theorem 15.35 and Proposition 15.36, because the algebra
C(Hs+

N ) is the quotient of the algebra C(S+
sN) by the relations making the fundamen-

tal corepresentation commute with the adjacency matrix of NZs. □

Next in line, we must talk about wreath products. We have here:

Theorem 15.38. We have the following results:

(1) Hs
N = Zs ≀ SN .

(2) Hs+
N = Zs ≀∗ S+

N .

Proof. This follows from the following formulae, valid for any connected graph X,
and explained before, in chapter 5, applied to the graph Zs:

G(NX) = G(X) ≀ SN , G+(NX) = G+(X) ≀∗ S+
N

Alternatively, (1) follows from definitions, and (2) can be proved directly, by con-
structing a pair of inverse morphisms. For details here, we refer to [9]. □

Regarding now the easiness property of Hs
N , H

s+
N , we already know that this happens

at s = 1, 2. The point is that this happens at s =∞ too, the result being as follows:

Theorem 15.39. The quantum groups KN , K
+
N are easy, the corresponding categories

Peven ⊂ P , NCeven ⊂ NC

consisting of the partitions satisfying #◦ = #•, as a weighted equality, in each block.

Proof. This is something which is routine, along the lines of the proof of Theorem
15.29, and for details here, we refer for instancd to [9]. □

More generally now, we have the following result:

Theorem 15.40. The quantum groups Hs
N , H

s+
N are easy, the corresponding categories

P s ⊂ P , NCs ⊂ NC

consisting of partitions satisfying #◦ = # • (s), as a weighted sum, in each block.

Proof. Observe that the result holds at s = 1, trivially, then at s = 2 as well, where
our condition is equivalent to #◦ = # • (2) in each block, as found in Theorem 15.29,
and finally at s = ∞ too, as explained in Theorem 15.39. In general, this follows as in
the case of HN , H

+
N , by using the one-block partition in P (s, s). □

Good news, we can now formulate a nice and conceptual result, as follows:
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Theorem 15.41. We have quantum rotation and reflection groups, as follows,

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

<<

which are all easy, the corresponding categories of partitions being as follows,

NCeven

{{

��

NC2

��

oo

��

NCeven

��

NC2

��

oo

Peven

{{

P2

��

oo

Peven P2
oo

with on top, the symbol NC standing everywhere for noncrossing partitions.

Proof. This follows indeed by putting together all the above results. □

In order to discuss now probabilistic aspects, we will need:

Definition 15.42. The Bessel and free Bessel laws, depending on parameters s ∈
N ∪ {∞} and t > 0, are the following compound Poisson and free Poisson laws,

bst = ptεs , βst = πtεs

with εs being the uniform measure on the s-th roots of unity. In particular:

(1) At s = 1 we recover the Poisson laws pt, πt.
(2) At s = 2 we have the real Bessel laws bt, βt.
(3) At s =∞ we have the complex Bessel laws Bt,Bt.

Here the terminology comes from the fact that the density of the measure bt from (2)
is a Bessel function of the first kind, the formula being as follows:

bt = e−t
∞∑

r=−∞

δr

∞∑
p=0

(t/2)|r|+2p

(|r|+ p)!p!

Good news, with the above general theory in hand, we can now formulate our truncated
character results for the main examples of easy quantum groups, as follows:
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Theorem 15.43. For the main quantum rotation and reflection groups,

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

<<

the corresponding truncated characters follow with N →∞ the laws

Bt Γt

βt γt

Bt Gt

bt gt

which are the main limiting laws in classical and free probability.

Proof. We know from Theorem 15.41 that the above quantum groups are all easy,
coming from the following categories of partitions:

NCeven

zz

��

NC2

��

oo

��

NCeven

��

NC2

��

oo

Peven

zz

P2

��

oo

Peven P2
oo

(1) At t = 1, we can use the following general formula, coming from Peter-Weyl:

lim
N→∞

∫
GN

χk = |D(k)|

But this gives the laws in the statement, via some standard calculus.
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(2) In order to compute now the asymptotic laws of truncated characters, at any t > 0,
we can use the following general moment formula, as in the classical case:∫

G

(u11 + . . .+ uss)
k = Tr(WkNGks)

To be more precise, what happens is that in each of the cases under consideration, the
Gram matrix is asymptotically diagonal, and so the Weingarten matrix is asymptotically
diagonal too. Thus, in the limit we obtain the following moment formula:

lim
N→∞

∫
GN

χkt =
∑

π∈D(k)

t|π|

But this gives the laws in the statement, via some standard calculus. □

15e. Exercises

Exercises:

Exercise 15.44.

Exercise 15.45.

Exercise 15.46.

Exercise 15.47.

Exercise 15.48.

Exercise 15.49.

Exercise 15.50.

Exercise 15.51.

Bonus exercise.



CHAPTER 16

Planar algebras

16a. Planar algebras

The Temperley-Lieb category that we met before is more than a category, it is a planar
algebra. In order to explain this fact, which will be of key importance in what follows,
following Jones [60], let us start with the following general definition:

Definition 16.1. The planar algebras are defined as follows:

(1) We consider rectangles in the plane, with the sides parallel to the coordinate axes,
and taken up to planar isotopy, and we call such rectangles boxes.

(2) A labeled box is a box with 2n marked points on its boundary, n on its upper side,
and n on its lower side, for some integer n ∈ N.

(3) A tangle is labeled box, containing a number of labeled boxes, with all marked
points, on the big and small boxes, being connected by noncrossing strings.

(4) A planar algebra is a sequence of finite dimensional vector spaces P = (Pn),
together with linear maps Pn1 ⊗ . . . ⊗ Pnk

→ Pn, one for each tangle, such that
the gluing of tangles corresponds to the composition of linear maps.

In this definition we are using rectangles, but everything being up to isotopy, we could
have used instead circles with marked points, as in [60]. Our choice for using rectangles
comes from the main examples that we have in mind, to be discussed below, where the
planar algebra structure is best viewed by using rectangles, as above.

This being said, when convenient, we agree to use circles with marked points for the
outer box, or for the inner boxes, or for both, with the convention that the marked point
is the lower left corner of the rectangle. Here is a planar tangle, drawn in this way, with
the marked points on both circles being by definition those at South-West:

⃝
⃝

And, exercise for you to see what this tangle becomes, in rectangular notation.

269
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Getting back now to what Definition 16.1 says, in relation with the tangle pictured
above, that tangle has two inner boxes, having respectively 2 × 2 = 4 and 2 × 3 = 6
marked points on their boundaries, and the outer box has 2× 4 = 8 marked points on its
boundary. Thus, that tangle π must produce a linear map as follows:

Tπ : P2 ⊗ P3 → P4

You get the point, I hope, Definition 16.1 is something very useful in the context of
algebra, in order to index various possible operations on a sequence of finite dimensional
vector spaces P = (Pn), by diagrams as above. Of course, all this remains very vague for
the moment, but we will see many examples and illustrations, in what follows.

Getting now to the essence of Definition 16.1, that lies in the axiom (4) there, com-
patibility of the gluing of the tangles with the composition of the multilinear maps. We
will comment on this later, once we will have some examples of planar algebras. In the
meantime, let us mention that it is possible to be more abstract here, by talking about
the planar operad, and planar algebras as modules over this operad. But again, we will
comment on this later, once we will have some examples of planar algebras.

Finally, let us mention now that Definition 16.1 is something quite simplified. As
explained in [60], in order for subfactors to produce planar algebras and vice versa, there
are quite a number of supplementary axioms that must be added. More on this later.

But probably too much talking, let us see some illustrations for this. As a first, very
basic example of a planar algebra, we have the Temperley-Lieb algebra:

Theorem 16.2. The Temperley-Lieb algebra TLN , viewed as graded algebra

TLN = (TLN(n))n∈N

is a planar algebra, with the corresponding linear maps associated to the planar tangles

TLN(n1)⊗ . . .⊗ TLN(nk)→ TLN(n)

appearing by putting the various TLN(ni) diagrams into the small boxes of the given tangle,
which produces a TLN(n) diagram.

Proof. This is something trivial, which follows from definitions:

(1) Assume indeed that we are given a planar tangle π, as in Definition 16.1, consisting
of a box having 2n marked points on its boundary, and containing k small boxes, having
respectively 2n1, . . . , 2nk marked points on their boundaries, and then a total of n+Σni
noncrossing strings, connecting the various 2n+ Σ2ni marked points.

(2) We want to associate to this tangle π a linear map as follows:

Tπ : TLN(n1)⊗ . . .⊗ TLN(nk)→ TLN(n)
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For this purpose, by linearity, it is enough to construct elements as follows, for any
choice of Temperley-Lieb diagrams σi ∈ TLN(ni), with i = 1, . . . , k:

Tπ(σ1 ⊗ . . .⊗ σk) ∈ TLN(n)

(3) But constructing such an element is obvious, just by putting the various diagrams
σi ∈ TLN(ni) into the small boxes the given tangle π. Indeed, this procedure produces a
certain diagram in TLN(n), that we can call Tπ(σ1 ⊗ . . .⊗ σk), as above.

(4) Finally, we have to check that everything is well-defined up to planar isotopy, and
that the gluing of tangles corresponds to the composition of linear maps. But both these
checks are trivial, coming from the definition of TLN , and we are done. □

As a conclusion to all this, P = TLN is indeed a planar algebra, but of somewhat
“trivial” type, with the triviality coming from the fact that, in this case, the elements of
P are planar diagrams themselves, and so the planar structure appears trivially.

The Temperley-Lieb planar algebra TLN is however an important planar algebra,
because it is the “smallest” one, appearing inside the planar algebra of any subfactor.
But more on this later, when talking about planar algebras and subfactors.

Moving ahead now, here is our second basic example of a planar algebra, which is
also “trivial” in the above sense, with the elements of the planar algebra being planar
diagrams themselves, but which appears in a bit more complicated way:

Theorem 16.3. The Fuss-Catalan algebra FCN,M , obtained by coloring the Temperley-
Lieb diagrams with black and white colors, clockwise, as follows,

◦ • • ◦ ◦ • • ◦ . . . . . . . . . ◦ • • ◦

and keeping those diagrams whose strings connect either ◦−◦ or •−•, is a planar algebra,
with again the corresponding linear maps associated to the planar tangles

FCN,M(n1)⊗ . . .⊗ FCN,M(nk)→ FCN,M(n)

appearing by putting the various FCN,M(ni) diagrams into the small boxes of the given
tangle, which produces a FCN,M(n) diagram.

Proof. The proof here is nearly identical to the proof of Theorem 16.2, with the only
change appearing at the level of the colors. To be more precise:

(1) Forgetting about upper and lower sequences of points, which must be joined by
strings, a Temperley-Lieb diagram can be thought of as being a collection of strings, say
black strings, which compose in the obvious way, with the rule that the value of the circle,
which is now a black circle, is N . And it is this obvious composition rule that gives the
planar algebra structure, as explained in the proof of Theorem 16.2.
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(2) Similarly, forgetting about points, a Fuss-Catalan diagram can be thought of as
being a collection of strings, which come now in two colors, black and white. These Fuss-
Catalan diagrams compose then in the obvious way, with the rule that the value of the
black circle is N , and the value of the white circle isM . And it is this obvious composition
rule that gives the planar algebra structure, as before for TLN . □

Even more generally now, we can talk about the multicolored Fuss-Catalan algebra,
generalizing both the Temperley-Lieb and Fuss-Catalan algebras, as follows:

Theorem 16.4. The multicolored Fuss-Catalan algebra FCN1,...,Ns, obtained by color-
ing the Temperley-Lieb diagrams with s colors, clockwise, as follows,

1 . . . ss . . . 11 . . . ss . . . 1 . . . . . . . . . 1 . . . ss . . . 1

and keeping those diagrams whose strings connect i − i, is a planar algebra, with again
the corresponding linear maps associated to the planar tangles

FCN1,...,Ns(n1)⊗ . . .⊗ FCN1,...,Ns(nk)→ FCN1,...,Ns(n)

appearing by putting the various FCN1,...,Ns(ni) diagrams into the small boxes of the given
tangle, which produces a FCN1,...,Ns(n) diagram.

Proof. This is a straightforward remake of Theorems 16.2 and 16.3, which correspond
respectively to the cases s = 1, 2, with the only thing that must be added being the fact
that the values of the circles of colors 1, . . . , s are respectively the numbers N1, . . . , Ns.
And with this we are led, as before, to the conclusions in the statement. □

Getting back now to generalities, and to Definition 16.1 as stated, that of a general
planar algebra, we have so far a few illustrations for it, which, while all important, are
all “trivial”, with the planar structure simply coming from the fact that, in all the above
cases, the elements of the planar algebra are planar diagrams themselves.

In general, the planar algebras can be more complicated than this, and we will see
some further examples in a moment. However, the idea is very simple, namely:

Principle 16.5. The elements of a planar algebra are not necessarily diagrams, but
they behave like diagrams.

And important principle this is. If there is something to be known, in order to under-
stand planar algebras, and the whole quantum algebra theory based on them, it is this
principle. But, do we really understand this principle? Not yet, because as already men-
tioned, our examples so far of planar algebras, namely Temperley-Lieb and Fuss-Catalan,
are both “trivial”, with the elements of the planar algebra being themselves diagrams.

Nevermind. We will get to understand this principle, via more examples, and via some
theory too. And, once this chapter read, Principle 16.5 will be understood.
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16b. Basic tangles

What is next? Instead of looking right away for further examples, which can be
substantially more complicated than Temperley-Lieb and Fuss-Catalan, let us enjoy what
we have. To be more precise, with these two basic examples in hand, Temperley-Lieb and
Fuss-Catalan, let us try to say more about the arbitrary planar algebras, as in Definition
16.1, with a bit of inspiration from what happens for these examples.

To start with, we have a number of remarkable planar tangles, whose algebraic action
must be well understood, before anything. The first basic tangle is as follows:

Example 16.6. The identity tangle is the following tangle, with 2n outer legs,

. . .

. . .

and this tangle must act via the identity, Tπ(x) = x, for any x ∈ Pn.
To be more precise here, consider the tangle in the statement, π. Since applying this

tangle obviously does nothing, this tangle must act via the identity map, as stated.

As a more interesting example now, bringing an associative algebra structure to each
of the vector spaces Pn that our planar algebra is made of, we have:

Example 16.7. The multiplication tangle is as follows, with 2n outer legs,

. . .

. . .

. . .

and this must implement a multiplication map, Tπ(x⊗ y) = xy, for any x, y ∈ Pn.
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Again, this is something quite self-explanatory, the idea being that the tangle in the
statement, or rather its action on Pn, must be an associative multiplication.

Along the same lines, bringing more basic structure to our sequence of vector spaces
P = (Pn), which are now a sequence of associative algebras P = (Pn), we have:

Example 16.8. The inclusion tangle is as follows, with 2n+ 2 outer legs,

. . .

. . .

and this tangle must act via an inclusion, Tπ(x) = x, for any x ∈ Pn.

Again, this is something quite self-explanatory, the idea being that the tangle in the
statement, or rather its action Pn → Pn+1, must be an inclusion of algebras.

As a conclusion to all this, we already have some interesting structure on our planar
algebras, getting well beyond what is totally obvious from Definition 16.1, as follows:

Conclusion 16.9. Any planar algebra P = (Pn) is naturally a graded associative
algebra over the complex numbers, with multiplication and inclusion maps coming from
the action of the multiplication and inclusion tangles, pictured above.

Which looks quite interesting, especially in view of the fact that, due to this coming
from the study of some trivial tangles, this can only be the tip of the iceberg. So, let us
explore some more what the basic tangles are, and what can be done with them.

Coming first in our second batch of examples, we have:
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Example 16.10. The expectation tangle is as follows, with 2n outer legs,

. . .

. . .

and this tangle must act via an expectation, Tπ : Pn+1 → Pn.

To be more precise, this is something a bit more advanced, the idea here being that the
linear map Tπ : Pn+1 → Pn associated to the above expectation tangle must be a section,
and bimodule map, with respect to the canonical inclusion of algebras Pn ⊂ Pn+1, that
we constructed before. We will be back to this, with more details, later.

Along the same lines, again at the level of more specialized tangles, we have:

Example 16.11. The Jones projection tangle is as follows, with 2n outer legs,

. . .

and this tangle corresponds to a rescaled projection Tπ ∈ Pn.

Again, this is something quite self-explanatory, the idea being that, with no inner box
present, the Jones projection tangle must simply correspond to a certain element Tπ ∈ Pn.
But this element must be an idempotent, up to a N factor, as said above.

Very good all this, so let us upgrade Conclusion 16.9, as follows:

Conclusion 16.12 (upgrade). Any planar algebra P = (Pn) is naturally a graded as-
sociative algebra, via the action of the multiplication and inclusion tangles, and in addition
we have, a bit as for the Temperley-Lieb algebra, expectations and Jones projections.
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As already mentioned in the above, in what concerns the last part, regarding the
expectations and the Jones projections, this is something a bit more specialized, and
definitely in need of more discussion. We will come back to this, a bit later.

Moving ahead, let us discuss now a third batch of basic planar tangles, that we will
heavily use as well in what follows. First we have the rotation, which is as follows:

Example 16.13. The rotation tangle is as follows, with 2n outer legs,

. . .

. . .

and this tangle must act via a rotation Tπ : Pn → Pn.

Again, this is something quite self-explanatory, the idea being that the linear map
Tπ : Pn → Pn associated to the above rotation tangle must produce the identity, when
raised to the power n, a bit like the usual rotation in the plane, of angle 2π/n, does.

As a last basic tangle, we have the shift, which is constructed as follows:

Example 16.14. The shift tangle is as follows, with 2n+ 2 outer legs,

. . .

. . .

and this tangle must act via a shift, Tπ : Pn → Pn+2.
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Again, this is something quite self-explanatory, and with the remark of course that
the shift is not to be confused with the double inclusion map Pn → Pn+2. We will get
back to this, shift and its properties, with more details, later in this chapter.

As a grand conclusion now to what we did so far, we have:

Conclusion 16.15 (final upgrade). Any planar algebra P = (Pn) is naturally a graded
associative algebra, and in addition we have, a bit as for the Temperley-Lieb algebra, or
for the Fuss-Catalan one, expectations, Jones projections, rotations and shifts.

Which is good knowledge, and we will be back to this, with further details, later on.
In any case, we can see here some good evidence for what we said in Principle 16.5,
namely that the elements of a planar algebra are not necessarily diagrams, but behave
like diagrams. And, more on this on several occassions, in what follows.

Getting back now to theory, we have the following remarkable result, which is some-
thing that we will heavily use, in what follows, for all sorts of purposes:

Theorem 16.16. The following tangles generate the set of all tangles, via gluing:

(1) Multiplications.
(2) Inclusions.
(3) Expectations.
(4) Jones projections.
(5) Rotations, or shifts.

Proof. This is something well-known and elementary, obtained by “chopping” the
various planar tangles into small pieces, as in the above list:

(1) To start with, in what regards the list itself, this is the one coming from the above
examples, with the identities, which bring nothing to our generation problem, removed.

(2) As a subtlety now, at the end we have a choice, between the rotation and the shift.
This is something quite important for the applications, which come in two flavors.

(3) As for the proof, as indicated above, both the results, the one with rotations, and
the one with shifts, follow by chopping the tangles, in the obvious way. See [60]. □

There are many more things that can be said, along these lines, that is, generalities
and basic algebra, in relation with Definition 16.1. We will be back to this later.

16c. Tensor and spin

Let us discuss now some further examples of planar algebras, which are of less trivial
nature than TLN and FCN,M , and are of particular interest in relation with algebra and
topology. These are the tensor and spin planar algebras TN ,SN . Let us start with:
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Definition 16.17. The tensor planar algebra TN is the sequence of vector spaces

Pk =MN(C)⊗k

with the multilinear maps Tπ : Pk1 ⊗ . . .⊗ Pkr → Pk being given by the formula

Tπ(ei1 ⊗ . . .⊗ eir) =
∑
j

δπ(i1, . . . , ir : j)ej

with the Kronecker symbols δπ being 1 if the indices fit, and being 0 otherwise.

In other words, we put the indices of the basic tensors on the marked points of the
small boxes, in the obvious way, and the coefficients of the output tensor are then given
by Kronecker symbols, δπ ∈ {0, 1}, which are themselves defined as follows:

– δπ = 1 when all strings join pairs of equal indices.

– δπ = 0 otherwise.

The fact that we have indeed a planar algebra is something elementary, and for full
details here, we refer to Jones’ paper [60]. As illustrations for all this, we have:

Example 16.18. Identity.

We recall that the identity 1k is the (k, k)-tangle having vertical strings only. The
solutions of δ1k(x, y) = 1 being the pairs of the form (x, x), this tangle acts as follows:

1k

(
j1 . . . jk
i1 . . . ik

)
=

(
j1 . . . jk
i1 . . . ik

)
But this action is the identity, as it should.

Example 16.19. Multiplication.

The multiplication Mk is the (k, k, k)-tangle having 2 input boxes, one on top of the
other, and vertical strings only. This tangle acts in the following way:

Mk

((
j1 . . . jk
i1 . . . ik

)
⊗
(
l1 . . . lk
m1 . . . mk

))
= δj1m1 . . . δjkmk

(
l1 . . . lk
i1 . . . ik

)
Again, this action is the multiplication, as it should.

Example 16.20. Inclusion.

The inclusion Ik is the (k, k+1)-tangle which looks like 1k, but has one more vertical
string, at right of the input box. Given x, the solutions of δIk(x, y) = 1 are the elements
y obtained from x by adding to the right a vector of the form (ll), and so:

Ik

(
j1 . . . jk
i1 . . . ik

)
=
∑
l

(
j1 . . . jk l
i1 . . . ik l

)
Once again, what we have here is what we can expect from an inclusion.
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Example 16.21. Expectation.

The expectation Uk is the (k+1, k)-tangle which looks like 1k, but has one more string,
connecting the extra 2 input points, both at right of the input box:

Uk

(
j1 . . . jk jk+1

i1 . . . ik ik+1

)
= δik+1jk+1

(
j1 . . . jk
i1 . . . ik

)
This map satisfies then the usual requirements for an expectation.

Example 16.22. Jones projection.

The Jones projection Ek is a (0, k+2)-tangle, having no input box. There are k vertical
strings joining the first k upper points to the first k lower points, counting from left to
right. The remaining upper 2 points are connected by a semicircle, and the remaining
lower 2 points are also connected by a semicircle. We have:

Ek(1) =
∑
ijl

(
i1 . . . ik j j
i1 . . . ik l l

)
The elements ek = N−1Ek(1) are then projections, and define a representation of the

infinite Temperley-Lieb algebra of index N inside the inductive limit algebra SN .

Example 16.23. Rotation.

The rotation Rk is the (k, k)-tangle which looks like 1k, but the first 2 input points
are connected to the last 2 output points, and the same happens at right:

Rk =
⋒ | | | ||
|| ||
|| | | | ⋓

The action of Rk on the standard basis is by rotation of the indices, as follows:

Rk(ei1i2...ik) = ei2...iki1

Thus, what we have indeed is a rotation map.

Example 16.24. Shift.

As for the shift Sk, this is the (k, k + 2)-tangle which looks like 1k, but has two more
vertical strings, at left of the input box. This tangle acts as follows:

Sk

(
j1 . . . jk
i1 . . . ik

)
=
∑
lm

(
l m j1 . . . jk
l m i1 . . . ik

)
Observe that Sk is an inclusion of algebras, which is different from Ik+1Ik.
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Finally, in order for our discussion to be complete, we must talk as well about the
∗-structure of the spin planar algebra. Once again this is constructed as in the easy
quantum group calculus, by turning upside-down the diagrams, as follows:(

j1 . . . jk
i1 . . . ik

)∗

=

(
i1 . . . ik
j1 . . . jk

)
As before, we refer to Jones’ paper [60] for more on all this.

Let us discuss now a second planar algebra of the same type, which is important as
well for various reasons, namely the spin planar algebra SN . This planar algebra appears
somewhat as a “square root” of the tensor planar algebra TN , and its construction is quite
similar, but by using this time the algebra CN instead of the algebra MN(C).

There is one subtlety, however, coming from the fact that the general planar algebra
formalism, from Definition 16.1, requires the tensors to have even length. Note that this
was automatic for the tensor planar TN , where the tensors of MN(C) have length 2. In
the case of the spin planar algebra SN , we want the vector spaces to be:

Pk = (CN)⊗k

Thus, we must double the indices of the tensors, in the following way:

Definition 16.25. We write the standard basis of (CN)⊗k in 2× k matrix form,

ei1...ik =

(
i1 i1 i2 i2 i3 . . . . . .
ik ik ik−1 . . . . . . . . . . . .

)
by duplicating the indices, and then writing them clockwise, starting from top left.

Now with this convention in hand for the tensors, we can formulate the construction
of the spin planar algebra SN , also from [60], as follows:

Definition 16.26. The spin planar algebra SN is the sequence of vector spaces

Pk = (CN)⊗k

written as above, with the multiplinear maps Tπ : Pk1 ⊗ . . .⊗ Pkr → Pk being given by

Tπ(ei1 ⊗ . . .⊗ eir) =
∑
j

δπ(i1, . . . , ir : j)ej

with the Kronecker symbols δπ being 1 if the indices fit, and being 0 otherwise.

In other words, we are using exactly the same construction as for the tensor planar
algebra TN , but with MN(C) replaced by CN , with the indices doubled, as in Definition
16.25. As before with the tensor planar algebra TN , the fact that the spin planar algebra
SN is indeed a planar algebra is something rather trivial, coming from definitions.
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Observe however that, unlike our previous planar algebras TLN and FCN,M , which
were “trivial” planar algebras, their elements being planar diagrams themselves, the planar
algebras TN and SN are not trivial, their elements being not exactly planar diagrams.

Let us also mention that the tensor and spin planar algebras TN and SN are important
for a number of reasons, in the context of group theory, algebra and topology, to be
discussed later, at the end of the present chapter, and later on too.

Getting back now to the planar algebra structure of TN and SN , which is something
quite fundamental, worth being well understood, let us have here some more discussion.
Generally speaking, the planar calculus for tensors is quite simple, and does not really
require diagrams. Indeed, it suffices to imagine that the way various indices appear, travel
around and dissapear is by following some obvious strings connecting them.

Here are some illustrations for this general principle, for the spin planar algebra SN ,
in relation with the various basic planar tangles, that we know well:

Example 16.27. Identity.

The identity 1k is the (k, k)-tangle having vertical strings only. The solutions of
δ1k(x, y) = 1 being the pairs of the form (x, x), this tangle 1k acts as follows:

1k

(
j1 . . . jk
i1 . . . ik

)
=

(
j1 . . . jk
i1 . . . ik

)
But this action is the identity, as it should.

Example 16.28. Multiplication.

The multiplication Mk is the (k, k, k)-tangle having 2 input boxes, one on top of the
other, and vertical strings only. This tangle acts in the following way:

Mk

((
j1 . . . jk
i1 . . . ik

)
⊗
(
l1 . . . lk
m1 . . . mk

))
= δj1m1 . . . δjkmk

(
l1 . . . lk
i1 . . . ik

)
Again, this action is the multiplication, as it should. Observe that, in the present

context of the spin planar algebra, this multiplication is commutative.

Example 16.29. Inclusion.

The inclusion Ik is the (k, k+1)-tangle which looks like 1k, but has one more vertical
string, at right of the input box. Given x, the solutions of δIk(x, y) = 1 are the elements
y obtained from x by adding to the right a vector of the form (ll), and so:

Ik

(
j1 . . . jk
i1 . . . ik

)
=
∑
l

(
j1 . . . jk l
i1 . . . ik l

)
Once again, what we have here is what we can expect from an inclusion.
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Example 16.30. Expectation.

The expectation Uk is the (k+1, k)-tangle which looks like 1k, but has one more string,
connecting the extra 2 input points, both at right of the input box:

Uk

(
j1 . . . jk jk+1

i1 . . . ik ik+1

)
= δik+1jk+1

(
j1 . . . jk
i1 . . . ik

)
This map satisfies then the usual requirements for an expectation.

Example 16.31. Jones projection.

The Jones projection Ek is a (0, k+2)-tangle, having no input box. There are k vertical
strings joining the first k upper points to the first k lower points, counting from left to
right. The remaining upper 2 points are connected by a semicircle, and the remaining
lower 2 points are also connected by a semicircle. We have:

Ek(1) =
∑
ijl

(
i1 . . . ik j j
i1 . . . ik l l

)
The elements ek = N−1Ek(1) are then projections, and define a representation of the

infinite Temperley-Lieb algebra of index N inside the inductive limit algebra SN .

Example 16.32. Rotation.

The rotation Rk is the (k, k)-tangle which looks like 1k, but the first 2 input points
are connected to the last 2 output points, and the same happens at right:

Rk =
⋒ | | | ||
|| ||
|| | | | ⋓

The action of Rk on the standard basis is by rotation of the indices, as follows:

Rk(ei1i2...ik) = ei2...iki1

Thus, what we have indeed is a rotation map.

Example 16.33. Shift.

As for the shift Sk, this is the (k, k + 2)-tangle which looks like 1k, but has two more
vertical strings, at left of the input box. This tangle acts as follows:

Sk

(
j1 . . . jk
i1 . . . ik

)
=
∑
lm

(
l m j1 . . . jk
l m i1 . . . ik

)
Observe that Sk is an inclusion of algebras, which is different from Ik+1Ik.
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Finally, in order for our discussion to be complete, we must talk as well about the
∗-structure of the spin planar algebra. Once again this is constructed as in the easy
quantum group calculus, by turning upside-down the diagrams, as follows:(

j1 . . . jk
i1 . . . ik

)∗

=

(
i1 . . . ik
j1 . . . jk

)
As before, we refer to Jones’ paper [60] for more on all this.

Getting back now to quantum groups, following [9], we have the following result:

Theorem 16.34. Given G ⊂ S+
N , consider the tensor powers of the associated coaction

map on C(X), where X = {1, . . . , N}, which are the folowing linear maps:

Φk : C(Xk)→ C(Xk)⊗ C(G)

ei1...ik →
∑
j1...jk

ej1...jk ⊗ uj1i1 . . . ujkik

The fixed point spaces of these coactions, which are by definition the spaces

Pk =
{
x ∈ C(Xk)

∣∣∣Φk(x) = 1⊗ x
}

are given by Pk = Fix(u⊗k), and form a subalgebra of the spin planar algebra SN .

Proof. Since the map Φ is a coaction, its tensor powers Φk are coactions too, and at
the level of fixed point algebras we have the following formula:

Pk = Fix(u⊗k)

In order to prove now the planar algebra assertion, we will use Theorem 16.16. Con-
sider the rotation Rk. Rotating, then applying Φk, and rotating backwards by R−1

k is the
same as applying Φk, then rotating each k-fold product of coefficients of Φ. Thus the
elements obtained by rotating, then applying Φk, or by applying Φk, then rotating, differ
by a sum of Dirac masses tensored with commutators in A = C(G):

ΦkRk(x)− (Rk ⊗ id)Φk(x) ∈ C(Xk)⊗ [A,A]

Now let
∫
A
be the Haar functional of A, and consider the conditional expectation onto

the fixed point algebra Pk, which is given by the following formula:

ϕk =

(
id⊗

∫
A

)
Φk

Since
∫
A
is a trace, it vanishes on commutators. Thus Rk commutes with ϕk:

ϕkRk = Rkϕk
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The commutation relation ϕkT = Tϕl holds in fact for any (l, k)-tangle T . These
tangles are called annular, and the proof is by verification on generators of the annular
category. In particular we obtain, for any annular tangle T :

ϕkTϕl = Tϕl

We conclude from this that the annular category is contained in the suboperad P ′ ⊂ P
of the planar operad consisting of tangles T satisfying the following condition, where
ϕ = (ϕk), and where i(.) is the number of input boxes:

ϕTϕ⊗i(T ) = Tϕ⊗i(T )

On the other hand the multiplicativity of Φk gives Mk ∈ P ′. Now since the planar
operad P is generated by multiplications and annular tangles, it follows that we have
P ′ = P . Thus for any tangle T the corresponding multilinear map between spaces Pk(X)
restricts to a multilinear map between spaces Pk. In other words, the action of the planar
operad P restricts to P , and makes it a subalgebra of SN , as claimed. □

As a second result now, also from [9], completing our study, we have:

Theorem 16.35. We have a bijection between quantum permutation groups and sub-
algebras of the spin planar algebra,

(G ⊂ S+
N) ←→ (Q ⊂ SN)

given in one sense by the construction in Theorem 16.34, and in the other sense by a
suitable modification of Tannakian duality.

Proof. The idea is that this will follow by applying Tannakian duality to the annular
category over Q. Let n,m be positive integers. To any element Tn+m ∈ Qn+m we associate
a linear map Lnm(Tn+m) : Pn(X)→ Pm(X) in the following way:

Lnm

 | | |Tn+m
| | |

 :

 |an
|

→

| | ∩
Tn+m|
| | | |
an| | |
∪ | |


That is, we consider the planar (n, n +m,m)-tangle having an small input n-box, a

big input n + m-box and an output m-box, with strings as on the picture of the right.
This defines a certain multilinear map, as follows:

Pn(X)⊗ Pn+m(X)→ Pm(X)

If we put the element Tn+m in the big input box, we obtain in this way a certain linear
map Pn(X)→ Pm(X), that we call Lnm. With this convention, let us set:

Qnm =
{
Lnm(Tn+m) : Pn(X)→ Pm(X)

∣∣∣Tn+m ∈ Qn+m

}
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These spaces form a Tannakian category, so by [100] we obtain a Woronowicz algebra
(A, u), such that the following equalities hold, for any m,n:

Hom(u⊗m, u⊗n) = Qmn

We prove that u is a magic unitary. We have Hom(1, u⊗2) = Q02 = Q2, so the unit of
Q2 must be a fixed vector of u⊗2. But u⊗2 acts on the unit of Q2 as follows:

u⊗2(1) = u⊗2

(∑
i

(
i i
i i

))

=
∑
ikl

(
k k
l l

)
⊗ ukiuli

=
∑
kl

(
k k
l l

)
⊗ (uut)kl

From u⊗2(1) = 1⊗1 ve get that uut is the identity matrix. Together with the unitarity
of u, this gives the following formulae:

ut = u∗ = u−1

Consider the Jones projection E1 ∈ Q3. After isotoping, L21(E1) looks as follows:

L21

(∣∣∣∪∩
)

:

 | |i
j
i
j

| |

 →
 |i

j
i
j ⊃
|

 = δij

 |i
i

|


In other words, the linear map M = L21(E1) is the multiplication δi ⊗ δj → δijδi:

M

(
i i
j j

)
= δij

(
i
i

)
In order to finish, consider the following element of C(X)⊗ A:

(M ⊗ id)u⊗2

((
i i
j j

)
⊗ 1

)
=
∑
k

(
k
k

)
δk ⊗ ukiukj

Since M ∈ Q21 = Hom(u⊗2, u), this equals the following element of C(X)⊗ A:

u(M ⊗ id)
((

i i
j j

)
⊗ 1

)
=
∑
k

(
k
k

)
δk ⊗ δijuki

Thus we have ukiukj = δijuki for any i, j, k, which shows that u is a magic unitary.
Now if P is the planar algebra associated to u, we have Hom(1, v⊗n) = Pn = Qn, as
desired. As for the uniqueness, this is clear from the Peter-Weyl theory. □

Back now to our favorite business, graph symmetries, we have the following result:
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Theorem 16.36. The planar algebra associated to G+(X) is equal to the planar algebra
generated by d, viewed as a 2-box in the spin planar algebra SN , with N = |X|.

Proof. We recall from the above that any quantum permutation group G ⊂ S+
N

produces a subalgebra P ⊂ SN of the spin planar algebra, given by:

Pk = Fix(u⊗k)

In our case, the idea is that G = G+(X) comes via the relation d ∈ End(u), but we
can view this relation, via Frobenius duality, as a relation of the following type:

ξd ∈ Fix(u⊗2)

Indeed, let us view the adjacency matrix d ∈MN(0, 1) as a 2-box in SN , by using the
canonical identification between MN(C) and the algebra of 2-boxes SN(2):

(dij)↔
∑
ij

dij

(
i i
j j

)
Let P be the planar algebra associated to G+(X) and let Q be the planar algebra

generated by d. The action of u⊗2 on d viewed as a 2-box is given by:

u⊗2

(∑
ij

dij

(
i i
j j

))
=
∑
ijkl

dij

(
k k
l l

)
⊗ ukiulj =

∑
kl

(
k k
l l

)
⊗ (udut)kl

Since v is a magic unitary commuting with d we have:

udut = duut = d

But this means that d, viewed as a 2-box, is in the algebra P2 of fixed points of u⊗2.
Thus Q ⊂ P . As for P ⊂ Q, this follows from the duality found above. □

Generally speaking, the above material, when coupled with what we did in this book
about graphs, leads us into the classification of the subalgebras of the spin planar algebra
generated by a 2-box. But this can be regarded as a particular case of the Bisch-Jones
question of classifying, in general, the planar algebras generated by a 2-box.

16d. Finite depth

Following Jones [57], let us discuss now the relation with subfactor theory. We have
already met II1 factors in chapter 13, but what about morphisms, between such factors.
And here, a natural idea is that of looking at the inclusions of such factors:

Definition 16.37. A subfactor is an inclusion of II1 factors A0 ⊂ A1.

So, these will be the objects that we will be interested in, in what follows. Now given
a subfactor A0 ⊂ A1, a first question is that of defining its index, measuring how big A1

is, when compared to A0. But this can be done as follows:



16D. FINITE DEPTH 287

Proposition 16.38. Given an inclusion of II1 factors A0 ⊂ A1, the number

N =
dimA0 H

dimA1 H

is independent of the ambient Hilbert space H, and is called index.

Proof. This is standard, with the fact that the index as defined by the above formula
is indeed independent of the ambient Hilbert space H coming from the various properties
of the coupling constant, coming from the work of Murray and von Neumann. □

Following Jones [57], let us start with the following standard result:

Proposition 16.39. Associated to any subfactor A0 ⊂ A1 is the orthogonal projection

e : L2(A1)→ L2(A0)

producing the conditional expectation E : A1 → A0 via the following formula:

exe = E(x)e

This projection is called Jones projection for the subfactor A0 ⊂ A1.

Proof. This is indeed somehing quite routine. □

Quite remarkably, the subfactor A0 ⊂ A1, as well as its commutant, can be recovered
from the knowledge of this projection, in the following way:

Proposition 16.40. Given a subfactor A0 ⊂ A1, with Jones projection e, we have

A0 = A1 ∩ {e}′ , A′
0 = (A′

1 ∩ {e})′′

as equalities of von Neumann algebras, acting on the space L2(A1).

Proof. The above two formulae both follow from exe = E(x)e, via some elementary
computations, and for details here, we refer to Jones’ paper [57]. □

We are now ready to formulate a key definition, as follows:

Definition 16.41. Associated to any subfactor A0 ⊂ A1 is the basic construction

A0 ⊂e A1 ⊂ A2

with A2 =< A1, e > being the algebra generated by A1 and by the Jones projection

e : L2(A1)→ L2(A0)

acting on the Hilbert space L2(A1).

The idea now, following [57], will be that A1 ⊂ A2 appears as a kind of “reflection” of
A0 ⊂ A1, and also that the basic construction can be iterated, and with all this leading
to non-trivial results. To be more precise, following [57], we have:
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Theorem 16.42. Associated to any subfactor A0 ⊂ A1 is the Jones tower

A0 ⊂e1 A1 ⊂e2 A2 ⊂e3 A3 ⊂ . . . . . .

with the Jones projections having the following properties:

(1) e2i = ei = e∗i .
(2) eiej = ejei for |i− j| ≥ 2.
(3) eiei±1ei = [A1 : A0]

−1ei.
(4) tr(wen+1) = [A1 : A0]

−1tr(w), for any word w ∈< e1, . . . , en >.

Proof. This follows indeed by doing some computations. See [57]. □

The relations found in Theorem 16.42 are in fact well-known, from the standard theory
of the Temperley-Lieb algebra. This algebra, discovered by Temperley and Lieb in the
context of statistical mechanics, has a very simple definition, as follows:

Definition 16.43. The Temperley-Lieb algebra of index N ∈ [1,∞) is defined as

TLN(k) = span(NC2(k, k))

with product given by vertical concatenation, with the rule

⃝ = N

for the closed circles that might appear when concatenating.

As already mentioned, this algebra was discovered by Temperley and Lieb in the
context of general statistical mechanics, and we refer here to the physics literature. In
what concerns us, still following Jones’ paper [57], we have the following result:

Theorem 16.44. Given a subfactor A0 ⊂ A1, construct its the Jones tower:

A0 ⊂e1 A1 ⊂e2 A2 ⊂e3 A3 ⊂ . . . . . .

The rescaled sequence of projections e1, e2, e3, . . . ∈ B(H) produces then a representation

TLN ⊂ B(H)

of the Temperley-Lieb algebra of index N = [A1 : A0].

Proof. We know from Theorem 16.42 that the rescaled sequence of Jones projections
e1, e2, e3, . . . ∈ B(H) behaves algebrically exactly as the following TLN diagrams:

ε1 =
∪
∩ , ε2 = | ∪∩ , ε3 = || ∪∩ , . . .

But these diagrams generate TLN , and so we have an embedding TLN ⊂ B(H), where
H is the Hilbert space where our subfactor A0 ⊂ A1 lives, as claimed. □

As an interesting consequence of Theorem 16.44, somehow contradicting the “contin-
uous geometry” philosophy that has being going on so far, in relation with the II1 factors,
we have the following surprising result, also from Jones’ original paper [57]:
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Theorem 16.45. The index of subfactors A0 ⊂ A1 is “quantized” in the [1, 4] range,

N ∈
{
4 cos2

(π
n

) ∣∣∣n ≥ 3
}
∪ [4,∞]

with the obstruction coming from the existence of the representation TLN ⊂ B(H).

Proof. This comes from the basic construction, and more specifically from the com-
binatorics of the Jones projections e1, e2, e3, . . ., the idea being as folows:

(1) When performing a basic construction, we obtain, by trace manipulations on e1:

N /∈ (1, 2)

With a double basic construction, we obtain, by trace manipulations on < e1, e2 >:

N /∈

(
2,

3 +
√
5

2

)
With a triple basic construction, we obtain, by trace manipulations on < e1, e2, e3 >:

N /∈

(
3 +
√
5

2
, 3

)
Thus, we are led to the conclusion in the statement, by a kind of recurrence, involving

a certain family of orthogonal polynomials.

(2) In practice now, the most elegant way of proving the result is by using the
fundamental fact, explained in Theorem 16.44, that that sequence of Jones projections
e1, e2, e3, . . . ⊂ B(H) generate a copy of the Temperley-Lieb algebra of index N :

TLN ⊂ B(H)

With this result in hand, we must prove that such a representation cannot exist in
index N < 4, unless we are in the following special situation:

N = 4 cos2
(π
n

)
But this can be proved by using some suitable trace and positivity manipulations on

TLN , as in (2) above. For full details here, we refer to [57]. □

In relation now with subfactors, the result, which extends Theorem 16.44, and which
was found by Jones in [60], almost 20 years after [57], is as follows:

Theorem 16.46. Given a subfactor A0 ⊂ A1, the collection P = (Pn) of linear spaces

Pn = A′
0 ∩ An

has a planar algebra structure, extending the planar algebra structure of TLN .
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Proof. We know from Theorem 16.44 that we have an inclusion as follows, coming
from the basic construction, and with TLN itself being a planar algebra:

TLN ⊂ P

Thus, the whole point is that of proving that the trivial planar algebra structure of
TLN extends into a planar algebra structure of P . But this can be done via a long
algebraic study, and for the full computation here, we refer to Jones’ paper [60]. □

As a first illustration for the above result, we have:

Theorem 16.47. We have the following universality results:

(1) The Temperley-Lieb algebra TLN appears inside the planar algebra of any sub-
factor A0 ⊂ A1 having index N .

(2) The Fuss-Catalan algebra FCN,M appears inside the planar algebra of any sub-
factor A0 ⊂ A1, in the presence of an intermediate subfactor A0 ⊂ B ⊂ A1.

Proof. Here the first assertion is something that we already know, from Theorem
16.46, and the second assertion is something quite standard as well, by carefully working
out the basic construction for A0 ⊂ A1, in the presence of an intermediate subfactor
A0 ⊂ B ⊂ A1. For details here, we refer to the papers of Bisch and Jones. □

As a consequence of the above, in relation with classification questions, we have:

Theorem 16.48. The principal graph of a subfactor having index N ≤ 4 must be one
of the Coxeter-Dynkin graphs of type ADE.

Proof. This follows indeed from the well-known formula N = ||X||2, and from the
considerations from the proof of the Jones index restriction theorem. □

More in detail now, the usual Coxeter-Dynkin graphs are as follows:

An = • − ◦ − ◦ · · · ◦ − ◦ − ◦ A∞ = • − ◦ − ◦ − ◦ · · ·

Dn = • − ◦ − ◦ · · · ◦ −

◦
|
◦ − ◦

Ã2n =

◦− ◦ − ◦ · · · ◦ − ◦ −◦
| |
• − ◦ − ◦ − ◦ − ◦ − ◦ A−∞,∞ =

◦− ◦ − ◦ − ◦ · · ·
|
•− ◦ − ◦ − ◦ · · ·

D̃n = • −

◦
|
◦ − ◦ · · · ◦ −

◦
|
◦ − ◦ D∞ = • −

◦
|
◦ − ◦ − ◦ · · ·
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Here the graphs An with n ≥ 2 and Dn with n ≥ 3 have by definition n vertices each,
Ã2n with n ≥ 1 has 2n vertices, and D̃n with n ≥ 4 has n + 1 vertices. Thus, the first
graph in each series is by definition as follows:

A2 = • − ◦ D3 =

◦
|
• − ◦ Ã2 =

◦
||
• D̃4 = • −

◦ ◦
\ /
◦ − ◦

There are also a number of exceptional Coxeter-Dynkin graphs. First we have:

E6 = • − ◦ −

◦
|
◦ − ◦ − ◦

E7 = • − ◦ − ◦ −

◦
|
◦ − ◦ − ◦

E8 = • − ◦ − ◦ − ◦ −

◦
|
◦ − ◦ − ◦

Also, we have as well index 4 versions of the above exceptional graphs, as follows:

Ẽ6 = • − ◦ −

◦
|
◦
|
◦− ◦ − ◦

Ẽ7 = • − ◦ − ◦ −

◦
|
◦ − ◦ − ◦ − ◦

Ẽ8 = • − ◦ − ◦ − ◦ − ◦ −

◦
|
◦ − ◦ − ◦

Getting back now to Theorem 16.48, with this list in hand, the story is not over here,
because we still have to understand which of these graphs can really appear as principal
graphs of subfactors. The result here, in a simplified version, is as follows:

Theorem 16.49. The principal graphs of subfactors of index ≤ 4 are:

(1) Index < 4 graphs: An, Deven, E6, E8.
(2) Index 4 finite graphs: Ã2n, D̃n, Ẽ6, Ẽ7, Ẽ8.
(3) Index 4 infinite graphs: A∞, A−∞,∞, D∞.
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Proof. As already mentioned, this is something quite heavy, with contributions by
many authors. Observe that the graphs Dodd and E7 don’t appear in the above list. This
is one of the subtle points of subfactor theory. For a discussion here, see [57]. □

Regarding now the subfactors of index N ∈ (4, 5], and also of small index above 5,
these can be classified, but this is a long and complicated story. Let us just record here
the result in index 5, which is something quite easy to formulate, as follows:

Theorem 16.50. The principal graphs of the irreducible index 5 subfactors are:

(1) A∞, and a non-extremal perturbation of A
(1)
∞ .

(2) The McKay graphs of Z5, D5, GA1(5), A5, S5.
(3) The twists of the McKay graphs of A5, S5.

Proof. This is a heavy result, and there is a long story with this. □

As a comment here, the above N = 5 result was much harder to obtain than the
classification in index N = 4, obtained as a consequence of Theorem 16.48. However, at
the level of the explicit construction of such subfactors, things are quite similar at N = 4
and N = 5, with the fixed point subfactors associated to quantum permutation groups
G ⊂ S+

N providing most of the examples. We refer here to the literature.

In index N = 6 now, the subfactors cannot be classified, at least in general, due
to several uncountable families, coming from groups, group duals, and more generally
compact quantum groups. The exact assumption to be added is not known yet.

16e. Exercises

Congratulations for having read this book, and no exercises for this final chapter.
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[71] S. Majid, Foundations of quantum group theory, Cambridge Univ. Press (1995).

[72] S. Malacarne, Woronowicz’s Tannaka-Krein duality and free orthogonal quantum groups, Math.

Scand. 122 (2018), 151–160.

[73] Y.I. Manin, Quantum groups and noncommutative geometry, Springer (2018).

[74] V.A. Marchenko and L.A. Pastur, Distribution of eigenvalues in certain sets of random matrices,

Mat. Sb. 72 (1967), 507–536.

[75] M.L. Mehta, Random matrices, Elsevier (2004).

[76] S. Montgomery, Hopf algebras and their actions on rings, AMS (1993).

[77] M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, Cambridge Univ.

Press (2000).



296 BIBLIOGRAPHY

[78] P. Petersen, Linear algebra, Springer (2012).

[79] D.E. Radford, Hopf algebras, World Scientific (2011).

[80] W. Rudin, Principles of mathematical analysis, McGraw-Hill (1964).

[81] W. Rudin, Real and complex analysis, McGraw-Hill (1966).

[82] W. Rudin, Fourier analysis on groups, Dover (1972).

[83] D.V. Schroeder, An introduction to thermal physics, Oxford Univ. Press (1999).

[84] J.P. Serre, A course in arithmetic, Springer (1973).

[85] J.P. Serre, Linear representations of finite groups, Springer (1977).

[86] I.R. Shafarevich, Basic algebraic geometry, Springer (1974).

[87] G.C. Shephard and J.A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274–304.

[88] M.E. Sweedler, Hopf algebras, W.A. Benjamin (1969).

[89] P. Tarrago and M. Weber, Unitary easy quantum groups: the free case and the group case, Int.

Math. Res. Not. 18 (2017), 5710–5750.

[90] J.R. Taylor, Classical mechanics, Univ. Science Books (2003).

[91] D.V. Voiculescu, K.J. Dykema and A. Nica, Free random variables, AMS (1992).

[92] J. von Neumann, Mathematical foundations of quantum mechanics, Princeton Univ. Press (1955).

[93] S. Weinberg, Foundations of modern physics, Cambridge Univ. Press (2011).

[94] S. Weinberg, Lectures on quantum mechanics, Cambridge Univ. Press (2012).

[95] D. Weingarten, Asymptotic behavior of group integrals in the limit of infinite rank, J. Math. Phys.

19 (1978), 999–1001.

[96] H. Weyl, The theory of groups and quantum mechanics, Princeton Univ. Press (1931).

[97] H. Weyl, The classical groups: their invariants and representations, Princeton Univ. Press (1939).

[98] H. Weyl, Space, time, matter, Princeton Univ. Press (1918).

[99] E. Wigner, Characteristic vectors of bordered matrices with infinite dimensions, Ann. of Math. 62

(1955), 548–564.

[100] S.L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613–665.



Index

abelian group, 11, 108
abstract algebra, 75
ADE, 290, 291
adjacency matrix, 20
adjoint operator, 74
algebra character, 78
algebra of characters, 104
algebraic closure, 51
algebrically closed, 51
amenability, 247
antipode, 247
associativity, 11
asymptotic characters, 239
automorphism group, 18

Banach algebra, 75
basic construction, 287
basic tensors, 277
Bell numbers, 181
Bernoulli laws, 180
Bessel function, 191
Bessel law, 191, 194, 196, 240, 266
bicommutant theorem, 118
binary matrix, 35
binomial coefficient, 48
bistochastic group, 29, 136
bistochastic matrix, 28
bounded operator, 73
box, 269
Brauer theorem, 129, 136, 138–140, 235, 256,

265

Cartesian product, 56
Catalan numbers, 173
category of partitions, 128, 133, 232, 255
Cayley embedding, 34, 36

central function, 104
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Möbius function, 199, 238
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Möbius matrix, 200
magic matrix, 251
magic unitary, 251
main character, 101, 183, 190, 257
maps associated to partitions, 125, 131, 233
Marchenko-Pastur law, 173, 257
matching pairings, 128, 235
McKay graph, 292
meander determinant, 205, 206
moments, 101
moments of characters, 239

multimatrix algebra, 75
multiplication, 11
multiplication table, 18
multiplication tangle, 273

noncommutative space, 246
noncrossing pairings, 288
norm of operator, 73
normal law, 240
normal subgroup, 37
normed algebra, 75
number of inversions, 38

odd cycles, 38
operator algebra, 75, 94
order of element, 38
order of group, 37
order on partitions, 199, 237
oriented polygon, 20
orthogonal group, 12, 23, 136, 235
orthogonal matrix, 23
orthogonal polynomials, 288
orthonormal system, 250

partitions, 181
Pauli matrices, 157
permutation, 14
permutation group, 14, 33, 34, 36
permutation matrix, 35
Peter-Weyl, 94, 96, 103, 104, 224, 225, 229, 230
Peter-Weyl representations, 91, 114, 222, 231
Peter-Weyl theorem, 250
Peter-Weyl theory, 112
planar algebra, 112, 269, 289
planar tangle, 269
PLT, 180
Poisson law, 45, 257
Poisson Limit Theorem, 180
polynomial integrals, 102, 184
Pontrjagin duality, 248
positive characteristic, 47
prime field, 47
principal graph, 290, 291
product of cyclic groups, 72
product of representations, 90, 222

quantized index, 288
quantum group, 13, 248



300 INDEX

quantum permutation, 254
quantum permutation group, 251
quantum reflection, 265
quantum reflection group, 265
quantum rotation, 265
quantum space, 246

random permutation, 43
real Bessel law, 240
real rotation, 23
reflection group, 236, 265
regular graph, 59
regular polygon, 15
representation, 71, 89, 221, 249
right cosets, 37
roots, 52
roots of unity, 14
rotation, 162
rotation tangle, 276
rotations, 17
row-stochastic, 28

Sarrus formula, 40
self-dual group, 72
self-edges, 21
semicircle law, 171
separable extension, 51
Shephard-Todd, 69
shift tangle, 276
shrinking of partitions, 204
signature, 14, 33, 38
simplex, 18
smooth representation, 225
soft Tannakian duality, 255
space of coefficients, 95
special linear group, 12
special orthogonal group, 12, 24
special rotation group, 24
special unitary group, 12, 24
spectral decomposition, 22
spectral projections, 20
spectral radius, 77
spectral-color components, 22
spectrum, 77
spectrum of algebra, 78
spin algebra, 280
spin planar algebra, 280
spinned representation, 90

splitting field, 51
square of antipode, 248
standard coaction, 254
standard cube, 265, 266
subfactor, 286, 288
subgroup, 37
sudoku matrix, 259, 262
sum of representations, 90, 222
super-identity, 30
super-orthogonal group, 31
super-space, 30
supremum of partitions, 199
symmetric group, 14, 33, 138, 183, 235, 251
symmetries, 17
symmetry group, 15, 18
symplectic group, 31

Tannakian category, 107, 114, 231
Tannakian duality, 112, 124, 232, 234, 255
Temperley-Lieb, 290
Temperley-Lieb algebra, 288
tensor algebra, 277
tensor category, 93, 107, 114, 223, 231
trace of representation, 89
transpose matrix, 41
transpositions, 38
trigonometric integral, 165
truncated character, 243, 257, 266
truncated characters, 242

uniform group, 149, 242, 243
uniqueness of finite fields, 51
unit sphere, 26
unitary group, 12, 23, 136, 235
unitary matrix, 23

value of circle, 288
volume of parallelepiped, 40
volume of sphere, 168

Weingarten formula, 102, 240, 241, 257
Weingarten matrix, 102, 240
Wigner law, 171
Woronowicz algebra, 247
wreath product, 57, 64, 67

Young tableaux, 204


	Preface
	Part I. Finite groups
	Chapter 1. Group theory
	1a. Group theory
	1b. Finite groups
	1c. Symmetry groups
	1d. Rotation groups
	1e. Exercises

	Chapter 2. Permutations
	2a. Symmetric groups
	2b. Cycles, signature
	2c. Derangements
	2d. Finite fields
	2e. Exercises

	Chapter 3. Reflection groups
	3a. Product operations
	3b. Hyperoctahedral groups
	3c. Complex reflections
	3d. Reflection groups
	3e. Exercises

	Chapter 4. Abelian groups
	4a. Group duals
	4b. Some analysis
	4c. Sylow theorems
	4d. Abelian groups
	4e. Exercises


	Part II. Representations
	Chapter 5. Representations
	5a. Representations
	5b. Peter-Weyl
	5c. More Peter-Weyl
	5d. Central functions
	5e. Exercises

	Chapter 6. Tannakian duality
	6a. Generalities
	6b. Tensor categories
	6c. The correspondence
	6d. Brauer theorems
	6e. Exercises

	Chapter 7. Diagrams, easiness
	7a. Easy groups
	7b. Reflection groups
	7c. Basic operations
	7d. Classification results
	7e. Exercises

	Chapter 8. Low dimensions
	8a. Rotation groups
	8b. Euler-Rodrigues
	8c. Clebsch-Gordan
	8d. McKay subgroups
	8e. Exercises


	Part III. Analytic aspects
	Chapter 9. Character laws
	9a. Poisson laws
	9b. Symmetric groups
	9c. Bessel laws
	9d. Further results
	9e. Exercises

	Chapter 10. Gram determinants
	10a. Gram determinants
	10b. Symmetric groups
	10c. Reflection groups
	10d. Further results
	10e. Exercises

	Chapter 11. De Finetti theorems
	11a. Invariant sequences
	11b. De Finetti theorems
	11c. Weak versions
	11d. Reflection groups
	11e. Exercises

	Chapter 12. Random walks
	12a. Random walks
	12b. Basic results
	12c. Product operations
	12d. Further variables
	12e. Exercises


	Part IV. Generalizations
	Chapter 13. Discrete groups
	13a. Discrete groups
	13b. Random walks
	13c. Group algebras
	13d. Amenability
	13e. Exercises

	Chapter 14. Compact groups
	14a. Compact groups
	14b. Haar integration
	14c. Diagrams, easiness
	14d. Weingarten formula
	14e. Exercises

	Chapter 15. Quantum groups
	15a. Quantum groups
	15b. Quantum permutations
	15c. Liberation theory
	15d. Quantum reflections
	15e. Exercises

	Chapter 16. Planar algebras
	16a. Planar algebras
	16b. Basic tangles
	16c. Tensor and spin
	16d. Finite depth
	16e. Exercises

	Bibliography
	Index


