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Abstract. This is an introduction to quantum projective manifolds. We first review
the general theory of quantum algebraic manifolds, taken in an operator algebra sense,
and under a number of supplementary axioms, including the fact that the corresponding
integration functional must be a trace. Then we discuss in detail what happens in the
projective manifold case, with this assumption bringing many simplifications. We then
go for an even more detailed study of the quantum projective manifolds, by working out
a number of relevant abstract algebra methods. Finally, we discuss a number of analytic
aspects, on one hand in relation with the underlying differential geometry, and on the
other hand, in relation with the notion of matrix models for our manifolds.



Preface

What is a quantum manifold? Good question, certainly requiring us to know both
some mathematics, and some quantum physics, and unfortunately, with the quantum
physics which is required being, for the moment, most likely beyond our reach.

There is of course a long story here, which is something quite subjective, but to
put things squarely, in quantum physics the master theorem is the Standard Model for
elementary particles, going back to the 1970s. This model has not changed much, despite
50 years of efforts, of both applied mathematicians, and theoretical physicists. The main
challenge is to go beyond this model, and the one who will eventually do that, one day,
will be most likely entitled to teach us what the quantum manifolds really are.

Nevermind. These things are obviously difficult, but life goes on, mathematics goes
on too, with or without knowing what we’re doing, and having more classes of quantum
manifold wannabees constructed, and abstractly studied, can only be a good thing.

The present book is an introduction to the quantum projective manifolds, basically
taken in an algebraic geometry sense, but with a bit of differential geometry flavor too,
and with everything being taken in an operator algebra sense. In short, expect some
tricky combination of axioms, inspired by some physics that we don’t have yet, and then
a lot of mathematics, making some sense or not, time will tell, based on these axioms.

The book is organized in four parts, as follows:

(1) We first review the general theory of quantum algebraic manifolds, taken in an
operator algebra sense, and under a number of supplementary axioms, including the fact
that the corresponding integration functional must be a trace.

(2) Then we discuss in detail what happens in the projective manifold case, with the
projectivity assumption bringing many simplifications, somehow in analogy with the same
simplification phenomenon, well-known to appear in the classical manifold case.

(3) We then go for an even more detailed study of the quantum projective manifolds,
by working out a number of relevant abstract algebra methods, in analogy with the well-
known results regarding the correspondence between classical manifolds and ideals.
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4 PREFACE

(4) Finally, we discuss a number of analytic aspects, on one hand in relation with
the underlying differential geometry, comprising a Laplace operator, and an integration
functional, and on the other hand, in relation with matrix models for our manifolds.

Many thanks to my colleagues and collaborators, for substantial joint work on this,
and on related topics. Thanks as well to my cats, for some help with the algebra.

Cergy, March 2025

Teo Banica
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Part I

Quantum manifolds



Bang bang, he shot me down
Bang bang, I hit the ground
Bang bang, that awful sound

Bang bang, my baby shot me down



CHAPTER 1

Free spheres

1a. Free tori

Welcome to noncommutative geometry. Many speculatory things can be said here, so
let us start our journey with the following definition, which is something rock-solid:

Definition 1.1. The free torus T+
N is the dual of the free group FN ,

T+
N = F̂N

in analogy with the fact that the usual torus TN = TN appears as

TN = ẐN

with on the right the group ZN being the free abelian group.

Before getting into details regarding all this, recall that RN is as interesting as CN .
So, let us formulate as well the real version of Definition 1.1, as follows:

Definition 1.2. The free real torus, or free cube, T+
N is the dual

T+
N = L̂N

of the group LN = FN/ < g2i = 1 >, in analogy with the fact that the usual cube is

TN = ẐN
2

with on the right the group ZN
2 being the free real abelian group.

Here the “real” at the end stands for the fact that the generators must satisfy the
real reflection condition g2 = 1. As for the fact that “real torus = cube”, as stated, this
needs some thinking, and in the hope that, after such thinking, you will agree with me
that there is indeed a standard torus inside RN , and that is the unit cube.

Summarizing, all this sounds good, we have a beginning of free geometry, both real
and complex, worth developing, by knowing at least what the torus of each theory is. In

practice now, at the level of details, in order to talk about T+
N = F̂N and T+

N = L̂N we
need an extension of the usual Pontrjagin duality theory for the abelian groups, and this
is best done via operator algebras, and the related notion of compact quantum group.
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1b. Quantum spaces

In view of the above, in order to fully understand what happens, let us start with
operator algebras. You have probably already heard about infinite matrices, operators
and operator algebras, from Heisenberg, Schrödinger, Dirac and others. As a starting
point for this, we need a complex Hilbert space H, with the main example in mind being
the space H = L2(R3) of the wave functions of the electron. So, let us formulate:

Definition 1.3. A Hilbert space is a complex vector space H, given with a scalar
product < x, y >, satisfying the following conditions:

(1) < x, y > is linear in x, and antilinear in y.
(2) < x, y > =< y, x >, for any x, y.
(3) < x, x >> 0, for any x ̸= 0.
(4) H is complete with respect to the norm ||x|| = √

< x, x >.

Moving ahead, we need to talk about operators. Again, you might have heard of
these from Heisenberg, Schrödinger, Dirac and others, and with the theory being quite
complicated to read and digest, because these operators, while fortunately self-adjoint,
are unfortunately unbounded. However, for our purposes here, we will only need bounded
operators. So, let us formulate, as a first theorem for our book:

Theorem 1.4. The linear operators T : H → H which are bounded, meaning that

||T || = sup
||x||≤1

||Tx||

is finite, form a complex algebra B(H), having the following properties:

(1) B(H) is complete with respect to ||.||, so we have a Banach algebra.
(2) B(H) has an involution T → T ∗, given by < Tx, y >=< x, T ∗y >.

In addition, the norm and involution are related by the formula ||TT ∗|| = ||T ||2.

Proof. The fact that we have an algebra is clear, and the completness comes from
the fact that, assuming that {Tn} ⊂ B(H) is Cauchy, then {Tnx} is Cauchy for any
x ∈ H, so we can define the limit T = limn→∞ Tn by setting:

Tx = lim
n→∞

Tnx

Regarding T → T ∗, this comes from the fact that φ(x) =< Tx, y > being a linear
form φ : H → C, we must have φ(x) =< x, T ∗y >, for a certain vector T ∗y ∈ H. Thus
we have a well-defined involution T → T ∗, which stays inside B(H), because:

||T || = sup
||x||=1

sup
||y||=1

< Tx, y >

= sup
||y||=1

sup
||x||=1

< x, T ∗y >

= ||T ∗||
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Regarding now the last assertion, observe first that we have:

||TT ∗|| ≤ ||T || · ||T ∗|| = ||T ||2

On the other hand, we have as well the following estimate:

||T ||2 = sup
||x||=1

| < Tx, Tx > |

= sup
||x||=1

| < x, T ∗Tx > |

≤ ||T ∗T ||
By replacing T → T ∗ we obtain from this ||T ||2 ≤ ||TT ∗||, so we are done. □

Observe that when H comes with an orthonormal basis {ei}i∈I , the linear map T →M
given by Mij =< Tej, ei > produces an embedding as follows:

B(H) ⊂MI(C)
Moreover, in this picture the operation T → T ∗ takes a very simple form, namely:

(M∗)ij =M ji

Moving ahead, the conditions found in Theorem 1.4 suggest formulating:

Definition 1.5. A C∗-algebra is a complex algebra A, having:

(1) A norm a→ ||a||, making it a Banach algebra.
(2) An involution a→ a∗, satisfying ||aa∗|| = ||a||2.

As basic examples, we have B(H) itself, as well as any norm closed ∗-subalgebra
A ⊂ B(H). It is possible to prove that any C∗-algebra appears in this way, but we will
not need in what follows this deep result, called GNS theorem after Gelfand, Naimark,
Segal. So, let us simply agree that, by definition, the C∗-algebras A are some sort of
“generalized operator algebras”, and their elements a ∈ A can be thought of as being
some kind of “generalized operators”, on some Hilbert space which is not present.

In practice, this vague idea is all that we need. Indeed, by taking some inspiration
from linear algebra, we can emulate spectral theory in our setting, as follows:

Theorem 1.6. Given a ∈ A, define its spectrum as being the set

σ(a) =
{
λ ∈ C

∣∣∣a− λ ̸∈ A−1
}

and its spectral radius ρ(a) as the radius of the smallest centered disk containing σ(a).

(1) The spectrum of a norm one element is in the unit disk.
(2) The spectrum of a unitary element (a∗ = a−1) is on the unit circle.
(3) The spectrum of a self-adjoint element (a = a∗) consists of real numbers.
(4) The spectral radius of a normal element (aa∗ = a∗a) is equal to its norm.
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Proof. Our first claim is that for any polynomial f ∈ C[X], and more generally for
any rational function f ∈ C(X) having poles outside σ(a), we have:

σ(f(a)) = f(σ(a))

This indeed something well-known for the usual matrices. In the general case, assume
first that we have a polynomial, f ∈ C[X]. If we pick an arbitrary number λ ∈ C, and
write f(X)− λ = c(X − r1) . . . (X − rk), we have then, as desired:

λ /∈ σ(f(a)) ⇐⇒ f(a)− λ ∈ A−1

⇐⇒ c(a− r1) . . . (a− rk) ∈ A−1

⇐⇒ a− r1, . . . , a− rk ∈ A−1

⇐⇒ r1, . . . , rk /∈ σ(a)

⇐⇒ λ /∈ f(σ(a))

Assume now that we are in the general case, f ∈ C(X). We pick λ ∈ C, we write
f = P/Q, and we set F = P − λQ. By using the above finding, we obtain, as desired:

λ ∈ σ(f(a)) ⇐⇒ F (a) /∈ A−1

⇐⇒ 0 ∈ σ(F (a))

⇐⇒ 0 ∈ F (σ(a))

⇐⇒ ∃µ ∈ σ(a), F (µ) = 0

⇐⇒ λ ∈ f(σ(a))

Regarding now the assertions in the statement, these basically follows from this:

(1) This comes from the following formula, valid when ||a|| < 1:

1

1− a
= 1 + a+ a2 + . . .

(2) Assuming a∗ = a−1, if we denote by D the unit disk, we have, by using (1):

||a|| = 1 =⇒ σ(a) ⊂ D

||a−1|| = 1 =⇒ σ(a−1) ⊂ D

On the other hand, by using the rational function f(z) = z−1, we have:

σ(a−1) ⊂ D =⇒ σ(a) ⊂ D−1

Now by putting everything together we obtain, as desired:

σ(a) ⊂ D ∩D−1 = T
(3) This follows from (2), by using the rational function f(z) = (z + it)/(z − it).

Indeed, for t >> 0 we have the following computation:(
a+ it

a− it

)∗

=
a− it

a+ it
=

(
a+ it

a− it

)−1
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Thus the element f(a) is a unitary, and by using (2) its spectrum is contained in T.
We conclude from this that we have, as desired, f(σ(a)) = σ(f(a)) ⊂ T.

(4) We already know that we have ρ(a) ≤ ||a||, for any a ∈ A. For the reverse
inequality, when a is normal, we fix a number ρ > ρ(a). We have then:∫

|z|=ρ

zn

z − a
dz =

∫
|z|=ρ

∞∑
k=0

zn−k−1ak dz

=
∞∑
k=0

(∫
|z|=ρ

zn−k−1dz

)
ak

= an−1

By applying the norm and taking n-th roots we obtain from this formula:

ρ ≥ lim
n→∞

||an||1/n

When a = a∗ we have ||an|| = ||a||n for any exponent of type n = 2k, by using the
C∗-algebra condition ||aa∗|| = ||a||2, and by taking n-th roots we get, as desired:

ρ(a) ≥ ||a||
In the general normal case now, aa∗ = a∗a, we have an(an)∗ = (aa∗)n, and by using

this, along with the result for self-adjoints, applied to aa∗, we obtain:

ρ(a) ≥ lim
n→∞

||an||1/n

=
√

lim
n→∞

||an(an)∗||1/n

=
√

lim
n→∞

||(aa∗)n||1/n

=
√
ρ(aa∗)

=
√
||a||2

= ||a||
Thus, we are led to the conclusion in the statement. □

Generally speaking, Theorem 1.6 is all that you need to know, for doing further oper-
ator algebras, only military grade weapons there. As a main application, we have:

Theorem 1.7 (Gelfand). If X is a compact space, the algebra C(X) of continuous
functions f : X → C is a commutative C∗-algebra, with structure as follows:

(1) The norm is the usual sup norm, ||f || = supx∈X |f(x)|.
(2) The involution is the usual involution, f ∗(x) = f(x).

Conversely, any commutative C∗-algebra is of the form C(X), with its “spectrum” X =
Spec(A) appearing as the space of characters χ : A→ C.
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Proof. Given a commutative C∗-algebra A, we can define indeed X to be the set
of characters χ : A → C, with the topology making continuous all the evaluation maps
eva : χ→ χ(a). Then X is a compact space, and a→ eva is a morphism of algebras:

ev : A→ C(X)

We first prove that ev is involutive. We use the following formula:

a =
a+ a∗

2
− i · i(a− a∗)

2

Thus it is enough to prove the equality eva∗ = ev∗a for self-adjoint elements a. But
this is the same as proving that a = a∗ implies that eva is a real function, which is in
turn true, because eva(χ) = χ(a) is an element of σ(a), contained in R. So, claim proved.
Also, since A is commutative, each element is normal, so ev is isometric:

||eva|| = ρ(a) = ||a||
It remains to prove that ev is surjective. But this follows from the Stone-Weierstrass

theorem, because ev(A) is a closed subalgebra of C(X), which separates the points. □

The Gelfand theorem suggests formulating the following definition:

Definition 1.8. Given a C∗-algebra A, not necessarily commutative, we write

A = C(X)

and call the abstract object X a “compact quantum space”.

This might look quite revolutionary, but in practice, this definition changes nothing
to what we have been doing so far, namely studying the C∗-algebras. So, we will keep
studying the C∗-algebras, but by using the above fancy quantum space terminology. For
instance whenever we have a morphism Φ : A → B, we will write A = C(X), B = C(Y ),
and rather speak of the corresponding morphism ϕ : Y → X. And so on.

Let us discuss now the other basic result regarding the C∗-algebras, namely the GNS
representation theorem. We will need some more spectral theory, as follows:

Proposition 1.9. For a normal element a ∈ A, the following are equivalent:

(1) a is positive, in the sense that σ(a) ⊂ [0,∞).
(2) a = b2, for some b ∈ A satisfying b = b∗.
(3) a = cc∗, for some c ∈ A.

Proof. This is something very standard, as follows:

(1) =⇒ (2) Since our element a is normal the algebra < a > that is generates is
commutative, and by using the Gelfand theorem, we can set b =

√
a.

(2) =⇒ (3) This is trivial, because we can set c = b.
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(3) =⇒ (1) We can proceed here by contradiction. By multiplying c by a suitable
element of < cc∗ >, we are led to the existence of an element d ̸= 0 satisfying −dd∗ ≥ 0.
By writing now d = x+ iy with x = x∗, y = y∗ we have:

dd∗ + d∗d = 2(x2 + y2) ≥ 0

Thus d∗d ≥ 0. But this contradicts the elementary fact that σ(dd∗), σ(d∗d) must
coincide outside {0}, which can be checked by explicit inversion. □

Here is now the GNS representation theorem, along with the idea of the proof:

Theorem 1.10 (GNS theorem). Let A be a C∗-algebra.

(1) A appears as a closed ∗-subalgebra A ⊂ B(H), for some Hilbert space H.
(2) When A is separable (usually the case), H can be chosen to be separable.
(3) When A is finite dimensional, H can be chosen to be finite dimensional.

Proof. Let us first discuss the commutative case, A = C(X). Our claim here is that
if we pick a probability measure on X, we have an embedding as follows:

C(X) ⊂ B(L2(X)) , f → (g → fg)

Indeed, given a function f ∈ C(X), consider the operator Tf (g) = fg, acting on
H = L2(X). Observe that Tf is indeed well-defined, and bounded as well, because:

||fg||2 =

√∫
X

|f(x)|2|g(x)|2dx ≤ ||f ||∞||g||2

Thus, f → Tf provides us with a C∗-algebra embedding C(X) ⊂ B(H), as claimed.
In general now, assuming that a linear form φ : A → C has some suitable positivity
properties, making it analogous to the integration functionals

∫
X

: A → C from the
commutative case, we can define a scalar product on A, by the following formula:

< a, b >= φ(ab∗)

By completing we obtain a Hilbert space H, and we have an embedding as follows:

A ⊂ B(H) , a→ (b→ ab)

Thus we obtain the assertion (1), and a careful examination of the construction A→
H, outlined above, shows that the assertions (2,3) are in fact proved as well. □

Good time now to get back towards Definitions 1.1 and 1.2. We will need:

Theorem 1.11. Let Γ be a discrete group, and consider the complex group algebra
C[Γ], with involution given by the fact that all group elements are unitaries, g∗ = g−1.

(1) The maximal C∗-seminorm on C[Γ] is a C∗-norm, and the closure of C[Γ] with
respect to this norm is a C∗-algebra, denoted C∗(Γ).

(2) When Γ is abelian, we have an isomorphism C∗(Γ) ≃ C(G), where G = Γ̂ is its
Pontrjagin dual, formed by the characters χ : Γ → T.
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Proof. All this is very standard, the idea being as follows:

(1) In order to prove the result, we must find a ∗-algebra embedding C[Γ] ⊂ B(H),
with H being a Hilbert space. For this purpose, consider the space H = l2(Γ), having
{h}h∈Γ as orthonormal basis. Our claim is that we have an embedding, as follows:

π : C[Γ] ⊂ B(H) , π(g)(h) = gh

Indeed, since π(g) maps the basis {h}h∈Γ into itself, this operator is well-defined,
bounded, and is an isometry. It is also clear from the formula π(g)(h) = gh that g →
π(g) is a morphism of algebras, and since this morphism maps the unitaries g ∈ Γ into
isometries, this is a morphism of ∗-algebras. Finally, the faithfulness of π is clear.

(2) Since Γ is abelian, the corresponding group algebra A = C∗(Γ) is commutative.
Thus, we can apply the Gelfand theorem, and we obtain A = C(X), with:

X = Spec(A)

But the spectrum X = Spec(A), consisting of the characters χ : C∗(Γ) → C, can be

identified with the Pontrjagin dual G = Γ̂, and this gives the result. □

The above result suggests the following definition:

Definition 1.12. Given a discrete group Γ, the compact quantum space G given by

C(G) = C∗(Γ)

is called abstract dual of Γ, and is denoted G = Γ̂.

Good news, this definition is exactly what we need, in order to understand the meaning
of Definitions 1.1 and 1.2. To be more precise, we have the following result:

Theorem 1.13. The basic tori are all group duals, as follows,

T+
N

// T+
N

TN //

OO

TN

OO

=

L̂N
// F̂N

ZN
2

//

OO

TN

OO

where FN = Z∗N is the free group on N generators, and LN = Z∗N
2 is its real version.

Proof. The basic tori appear indeed as group duals, and together with the Fourier
transform identifications from Theorem 1.11 (2), this gives the result. □

Moving ahead, now that we have our formalism, we can start developing free geometry.
As a first objective, we would like to better understand the relation between the classical
and free tori. In order to discuss this, let us introduce the following notion:
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Definition 1.14. Given a compact quantum space X, its classical version is the usual
compact space Xclass ⊂ X obtained by dividing C(X) by its commutator ideal:

C(Xclass) = C(X)/I , I =< [a, b] >

In this situation, we also say that X appears as a “liberation” of X.

In other words, the space Xclass appears as the Gelfand spectrum of the commutative
C∗-algebra C(X)/I. Observe in particular that Xclass is indeed a classical space.

In relation now with our tori, we have the following result:

Theorem 1.15. We have inclusions between the various tori, as follows,

T+
N

// T+
N

TN //

OO

TN

OO

and the free tori on top appear as liberations of the tori on the bottom.

Proof. This is indeed clear from definitions, because commutativity of a group alge-
bra means precisely that the group in question is abelian. □

1c. Free spheres

In order to extend now the free geometries that we have, real and complex, let us
begin with the spheres. Following [13], we have the following notions:

Definition 1.16. We have free real and complex spheres, defined via

C(SN−1
R,+ ) = C∗

(
x1, . . . , xN

∣∣∣xi = x∗i ,
∑
i

x2i = 1

)

C(SN−1
C,+ ) = C∗

(
x1, . . . , xN

∣∣∣∑
i

xix
∗
i =

∑
i

x∗ixi = 1

)
where the symbol C∗ stands for universal enveloping C∗-algebra.

Here the fact that these algebras are indeed well-defined comes from the following
estimate, which shows that the biggest C∗-norms on these ∗-algebras are bounded:

||xi||2 = ||xix∗i || ≤

∣∣∣∣∣
∣∣∣∣∣∑

i

xix
∗
i

∣∣∣∣∣
∣∣∣∣∣ = 1

As a first result now, regarding the above free spheres, we have:
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Theorem 1.17. We have embeddings of compact quantum spaces, as follows,

SN−1
R,+

// SN−1
C,+

SN−1
R

//

OO

SN−1
C

OO

and the spaces on top appear as liberations of the spaces on the bottom.

Proof. The first assertion, regarding the inclusions, comes from the fact that at the
level of the associated C∗-algebras, we have surjective maps, as follows:

C(SN−1
R,+ )

��

C(SN−1
C,+ )

��

oo

C(SN−1
R ) C(SN−1

C )oo

For the second assertion, we must establish the following isomorphisms, where the
symbol C∗

comm stands for “universal commutative C∗-algebra generated by”:

C(SN−1
R ) = C∗

comm

(
x1, . . . , xN

∣∣∣xi = x∗i ,
∑
i

x2i = 1

)

C(SN−1
C ) = C∗

comm

(
x1, . . . , xN

∣∣∣∑
i

xix
∗
i =

∑
i

x∗ixi = 1

)
It is enough to establish the second isomorphism. So, consider the second universal

commutative C∗-algebra A constructed above. Since the standard coordinates on SN−1
C

satisfy the defining relations for A, we have a quotient map of as follows:

A→ C(SN−1
C )

Conversely, let us write A = C(S), by using the Gelfand theorem. The variables
x1, . . . , xN become in this way true coordinates, providing us with an embedding S ⊂ CN .
Also, the quadratic relations become

∑
i |xi|2 = 1, so we have S ⊂ SN−1

C . Thus, we have
a quotient map C(SN−1

C ) → A, as desired, and this gives all the results. □

1d. Algebraic manifolds

By using the free spheres constructed above, we can now formulate:
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Definition 1.18. A real algebraic manifold X ⊂ SN−1
C,+ is a closed quantum subspace

defined, at the level of the corresponding C∗-algebra, by a formula of type

C(X) = C(SN−1
C,+ )

/〈
fi(x1, . . . , xN) = 0

〉
for certain family of noncommutative polynomials, as follows:

fi ∈ C < x1, . . . , xN >

We denote by C(X) the ∗-subalgebra of C(X) generated by the coordinates x1, . . . , xN .

As a basic example here, we have the free real sphere SN−1
R,+ . The classical spheres

SN−1
C , SN−1

R , and their real submanifolds, are covered as well by this formalism. At the
level of the general theory, we have the following version of the Gelfand theorem:

Theorem 1.19. If X ⊂ SN−1
C,+ is an algebraic manifold, as above, we have

Xclass =
{
x ∈ SN−1

C

∣∣∣fi(x1, . . . , xN) = 0
}

and X appears as a liberation of Xclass.

Proof. This is something that we already met, in the context of the free spheres. In
general, the proof is similar, by using the Gelfand theorem. Indeed, if we denote by X ′

class

the manifold constructed in the statement, then we have a quotient map of C∗-algebras
as follows, mapping standard coordinates to standard coordinates:

C(Xclass) → C(X ′
class)

Conversely now, from X ⊂ SN−1
C,+ we obtain Xclass ⊂ SN−1

C . Now since the relations
defining X ′

class are satisfied by Xclass, we obtain an inclusion Xclass ⊂ X ′
class. Thus, at

the level of algebras of continuous functions, we have a quotient map of C∗-algebras as
follows, mapping standard coordinates to standard coordinates:

C(X ′
class) → C(Xclass)

Thus, we have constructed a pair of inverse morphisms, and we are done. □

Finally, once again at the level of the general theory, we have:

Definition 1.20. We agree to identify two real algebraic submanifolds X, Y ⊂ SN−1
C,+

when we have a ∗-algebra isomorphism between ∗-algebras of coordinates
f : C(Y ) → C(X)

mapping standard coordinates to standard coordinates.

We will see later the reasons for making this convention, coming from amenability.
Now back to the tori, as constructed before, we can see that these are examples of algebraic
manifolds, in the sense of Definition 1.18. In fact, we have the following result:
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Theorem 1.21. The four main quantum spheres produce the main quantum tori

SN−1
R,+

// SN−1
C,+

SN−1
R

//

OO

SN−1
C

OO

→

T+
N

// T+
N

TN //

OO

TN

OO

via the formula T = S ∩ T+
N , with the intersection being taken inside SN−1

C,+ .

Proof. This comes from the above results, the situation being as follows:

(1) Free complex case. Here the formula in the statement reads T+
N = SN−1

C,+ ∩ T+
N .

But this is something trivial, because we have T+
N ⊂ SN−1

C,+ .

(2) Free real case. Here the formula in the statement reads T+
N = SN−1

R,+ ∩ T+
N . But

this is clear as well, the real version of T+
N being T+

N .

(3) Classical complex case. Here the formula in the statement reads TN = SN−1
C ∩T+

N .
But this is clear as well, the classical version of T+

N being TN .

(4) Classical real case. Here the formula in the statement reads TN = SN−1
R ∩T+

N . But
this follows by intersecting the formulae from the proof of (2) and (3). □

1e. Exercises

Exercises:

Exercise 1.22.

Exercise 1.23.

Exercise 1.24.

Exercise 1.25.

Exercise 1.26.

Exercise 1.27.

Exercise 1.28.

Exercise 1.29.

Bonus exercise.



CHAPTER 2

Free rotations

2a. Quantum groups

In order to better understand the structure of SN−1
R,+ , SN−1

C,+ , we need to talk about free
rotations. Following Woronowicz [99], let us start with:

Definition 2.1. A Woronowicz algebra is a C∗-algebra A, given with a unitary matrix
u ∈MN(A) whose coefficients generate A, such that the formulae

∆(uij) =
∑
k

uik ⊗ ukj , ε(uij) = δij , S(uij) = u∗ji

define morphisms of C∗-algebras as follows,

∆ : A→ A⊗ A , ε : A→ C , S : A→ Aopp

called comultiplication, counit and antipode.

Obviously, this is something tricky, and we will see details in a moment, the idea being
that these are the axioms which best fit with what we want to do, in this book. Let us
also mention, technically, that ⊗ in the above can be any topological tensor product, and
with the choice of ⊗ being irrelevant, but more on this later. Also, Aopp is the opposite
algebra, with multiplication a · b = ba, and more on this later too.

We say that A is cocommutative when Σ∆ = ∆, where Σ(a ⊗ b) = b ⊗ a is the flip.
With this convention, we have the following key result, from Woronowicz [99]:

Proposition 2.2. The following are Woronowicz algebras:

(1) C(G), with G ⊂ UN compact Lie group. Here the structural maps are:

∆(φ) = (g, h) → φ(gh) , ε(φ) = φ(1) , S(φ) = g → φ(g−1)

(2) C∗(Γ), with FN → Γ finitely generated group. Here the structural maps are:

∆(g) = g ⊗ g , ε(g) = 1 , S(g) = g−1

Moreover, we obtain in this way all the commutative/cocommutative algebras.

Proof. This is something very standard, the idea being as follows:

23
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(1) Given G ⊂ UN , we can set A = C(G), which is a Woronowicz algebra, together
with the matrix u = (uij) formed by coordinates of G, given by:

g =

u11(g) . . . u1N(g)
...

...
uN1(g) . . . uNN(g)


Conversely, if (A, u) is a commutative Woronowicz algebra, by using the Gelfand

theorem we can write A = C(X), with X being a certain compact space. The coordinates
uij give then an embedding X ⊂ MN(C), and since the matrix u = (uij) is unitary we
actually obtain an embedding X ⊂ UN , and finally by using the maps ∆, ε, S we conclude
that our compact subspace X ⊂ UN is in fact a compact Lie group, as desired.

(2) Consider a finitely generated group FN → Γ. We can set A = C∗(Γ), which is
by definition the completion of the complex group algebra C[Γ], with involution given by
g∗ = g−1, for any g ∈ Γ, with respect to the biggest C∗-norm, and we obtain a Woronowicz
algebra, together with the diagonal matrix formed by the generators of Γ:

u =

g1 0
. . .

0 gN


Conversely, if (A, u) is a cocommutative Woronowicz algebra, the Peter-Weyl theory

of Woronowicz, to be explained below, shows that the irreducible corepresentations of A
are all 1-dimensional, and form a group Γ, and so we have A = C∗(Γ), as desired. Thus,
theorem proved, modulo a representation theory discussion, to come soon. □

In general now, the structural maps ∆, ε, S have the following properties:

Proposition 2.3. Let (A, u) be a Woronowicz algebra.

(1) ∆, ε satisfy the usual axioms for a comultiplication and a counit, namely:

(∆⊗ id)∆ = (id⊗∆)∆

(ε⊗ id)∆ = (id⊗ ε)∆ = id

(2) S satisfies the antipode axiom, on the ∗-subalgebra generated by entries of u:

m(S ⊗ id)∆ = m(id⊗ S)∆ = ε(.)1

(3) In addition, the square of the antipode is the identity, S2 = id.

Proof. Observe first that the result holds in the case where A is commutative. In-
deed, by using Proposition 2.2 (1) we can write:

∆ = mt , ε = ut , S = it
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The 3 conditions in the statement come then by transposition from the basic 3 group
theory conditions satisfied by m,u, i, which are as follows, with δ(g) = (g, g):

m(m× id) = m(id×m)

m(id× u) = m(u× id) = id

m(id× i)δ = m(i× id)δ = 1

Observe also that the result holds as well in the case where A is cocommutative, by
using Proposition 2.2 (1). In the general case now, the proof goes as follows:

(1) We have the following computation:

(∆⊗ id)∆(uij) =
∑
l

∆(uil)⊗ ulj =
∑
kl

uik ⊗ ukl ⊗ ulj

We have as well the following computation, which gives the first formula:

(id⊗∆)∆(uij) =
∑
k

uik ⊗∆(ukj) =
∑
kl

uik ⊗ ukl ⊗ ulj

On the other hand, we have the following computation:

(id⊗ ε)∆(uij) =
∑
k

uik ⊗ ε(ukj) = uij

We have as well the following computation, which gives the second formula:

(ε⊗ id)∆(uij) =
∑
k

ε(uik)⊗ ukj = uij

(2) By using the fact that the matrix u = (uij) is unitary, we obtain:

m(id⊗ S)∆(uij) =
∑
k

uikS(ukj)

=
∑
k

uiku
∗
jk

= (uu∗)ij

= δij

We have as well the following computation, which gives the result:

m(S ⊗ id)∆(uij) =
∑
k

S(uik)ukj

=
∑
k

u∗kiukj

= (u∗u)ij

= δij

(3) Finally, the formula S2 = id holds as well on generators, and so in general too. □
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Let us record as well the following technical result:

Proposition 2.4. Given a Woronowicz algebra (A, u), we have ut = ū−1, so u is
biunitary, in the sense that it is unitary, with unitary transpose.

Proof. We have the following computation, based on the fact that u is unitary:

(uu∗)ij = δij =⇒
∑
k

S(uiku
∗
jk) = δij

=⇒
∑
k

ukju
∗
ki = δij

=⇒ (utū)ji = δij

Similarly, we have the following computation, once agan using the unitarity of u:

(u∗u)ij = δij =⇒
∑
k

S(u∗kiukj) = δij

=⇒
∑
k

u∗jkuik = δij

=⇒ (ūut)ji = δij

Thus, we are led to the conclusion in the statement. □

Summarizing, the Woronowicz algebras appear to have nice properties. In view of
Proposition 2.2 and Proposition 2.3, we can formulate the following definition:

Definition 2.5. Given a Woronowicz algebra A, we formally write

A = C(G) = C∗(Γ)

and call G compact quantum group, and Γ discrete quantum group.

When A is commutative and cocommutative, G and Γ are usual abelian groups, dual

to each other. In general, we still agree to write G = Γ̂,Γ = Ĝ, but in a formal sense. As
a final piece of general theory now, let us complement Definition 2.1 with:

Definition 2.6. Given two Woronowicz algebras (A, u) and (B, v), we write

A ≃ B

and identify the corresponding quantum groups, when we have an isomorphism

< uij >≃< vij >

of ∗-algebras, mapping standard coordinates to standard coordinates.

With this convention, which is in tune with our conventions for algebraic manifolds
from chapter 1, and more on this later, any compact or discrete quantum group corre-
sponds to a unique Woronowicz algebra, up to equivalence. Also, we can see now why in
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Definition 2.1 the choice of the exact topological tensor product ⊗ is irrelevant. Indeed,
no matter what tensor product ⊗ we use there, we end up with the same Woronowicz
algebra, and the same compact and discrete quantum groups, up to equivalence.

In practice, we will use in what follows the simplest such tensor product ⊗, which
is the maximal one, obtained as completion of the usual algebraic tensor product with
respect to the biggest C∗-norm. With the remark that this product is something rather
abstract, and so can be treated, in practice, as a usual algebraic tensor product.

Moving ahead now, let us call corepresentation of A any unitary matrix v ∈ Mn(A),
where A =< uij >, satisfying the same conditions are those satisfied by u, namely:

∆(vij) =
∑
k

vik ⊗ vkj , ε(vij) = δij , S(vij) = v∗ji

These corepresentations can be then thought of as corresponding to the finite di-
mensional unitary smooth representations of the underlying compact quantum group G.
Following Woronowicz [99], we have the following key result:

Theorem 2.7. Any Woronowicz algebra has a unique Haar integration functional,(∫
G

⊗id
)
∆ =

(
id⊗

∫
G

)
∆ =

∫
G

(.)1

which can be constructed by starting with any faithful positive form φ ∈ A∗, and setting∫
G

= lim
n→∞

1

n

n∑
k=1

φ∗k

where ϕ ∗ ψ = (ϕ⊗ ψ)∆. Moreover, for any corepresentation v ∈Mn(C)⊗ A we have(
id⊗

∫
G

)
v = P

where P is the orthogonal projection onto Fix(v) = {ξ ∈ Cn|vξ = ξ}.

Proof. Following [99], this can be done in 3 steps, as follows:

(1) Given φ ∈ A∗, our claim is that the following limit converges, for any a ∈ A:∫
φ

a = lim
n→∞

1

n

n∑
k=1

φ∗k(a)

Indeed, we can assume, by linearity, that a is the coefficient of a corepresentation:

a = (τ ⊗ id)v
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But in this case, an elementary computation shows that we have the following formula,
where Pφ is the orthogonal projection onto the 1-eigenspace of (id⊗ φ)v:(

id⊗
∫
φ

)
v = Pφ

(2) Since vξ = ξ implies [(id⊗ φ)v]ξ = ξ, we have Pφ ≥ P , where P is the orthogonal
projection onto the following fixed point space:

Fix(v) =
{
ξ ∈ Cn

∣∣∣vξ = ξ
}

The point now is that when φ ∈ A∗ is faithful, by using a standard positivity trick,
one can prove that we have Pφ = P . Assume indeed Pφξ = ξ, and let us set:

a =
∑
i

(∑
j

vijξj − ξi

)(∑
k

vikξk − ξi

)∗

We must prove that we have a = 0. Since v is biunitary, we have:

a =
∑
i

(∑
j

(
vijξj −

1

N
ξi

))(∑
k

(
v∗ikξ̄k −

1

N
ξ̄i

))

=
∑
ijk

vijv
∗
ikξj ξ̄k −

1

N
vijξj ξ̄i −

1

N
v∗ikξiξ̄k +

1

N2
ξiξ̄i

=
∑
j

|ξj|2 −
∑
ij

vijξj ξ̄i −
∑
ik

v∗ikξiξ̄k +
∑
i

|ξi|2

= ||ξ||2− < vξ, ξ > −< vξ, ξ >+ ||ξ||2

= 2(||ξ||2 −Re(< vξ, ξ >))

By using now our assumption Pφξ = ξ, we obtain from this:

φ(a) = 2φ(||ξ||2 −Re(< vξ, ξ >))

= 2(||ξ||2 −Re(< Pφξ, ξ >))

= 2(||ξ||2 − ||ξ||2)
= 0

Now since φ is faithful, this gives a = 0, and so vξ = ξ. Thus
∫
φ
is independent of φ,

and is given on coefficients a = (τ ⊗ id)v by the following formula:(
id⊗

∫
φ

)
v = P

(3) With the above formula in hand, the left and right invariance of
∫
G
=
∫
φ
is clear

on coefficients, and so in general, and this gives all the assertions. See [99]. □
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Consider the dense ∗-subalgebra A ⊂ A generated by the coefficients of the funda-
mental corepresentation u, and endow it with the following scalar product:

< a, b >=

∫
G

ab∗

We have then the following result, also due to Woronowicz [99]:

Theorem 2.8. We have the following Peter-Weyl type results:

(1) Any corepresentation decomposes as a sum of irreducible corepresentations.
(2) Each irreducible corepresentation appears inside a certain u⊗k.
(3) A =

⊕
v∈Irr(A)Mdim(v)(C), the summands being pairwise orthogonal.

(4) The characters of irreducible corepresentations form an orthonormal system.

Proof. All these results are from [99], the idea being as follows:

(1) Given a corepresentation v ∈Mn(A), consider its interwiner algebra:

End(v) =
{
T ∈Mn(C)

∣∣∣Tv = vT
}

It is elementary to see that this is a finite dimensional C∗-algebra, and we conclude
from this that we have a decomposition as follows:

End(v) =Mn1(C)⊕ . . .⊕Mnk
(C)

To be more precise, such a decomposition appears by writing the unit of our algebra
as a sum of minimal projections, as follows, and then working out the details:

1 = p1 + . . .+ pk

But this decomposition allows us to define subcorepresentations vi ⊂ v, which are
irreducible, so we obtain, as desired, a decomposition v = v1 + . . .+ vk.

(2) To any corepresentation v ∈ Mn(A) we associate its space of coefficients, given
by C(v) = span(vij). The construction v → C(v) is then functorial, in the sense that it
maps subcorepresentations into subspaces. Observe also that we have:

A =
∑

k∈N∗N

C(u⊗k)

Now given an arbitrary corepresentation v ∈ Mn(A), the corresponding coefficient
space is a finite dimensional subspace C(v) ⊂ A, and so we must have, for certain positive
integers k1, . . . , kp, an inclusion of vector spaces, as follows:

C(v) ⊂ C(u⊗k1 ⊕ . . .⊕ u⊗kp)

We deduce from this that we have an inclusion of corepresentations, as follows:

v ⊂ u⊗k1 ⊕ . . .⊕ u⊗kp

Thus, by using (1), we are led to the conclusion in the statement.
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(3) By using (1) and (2), we obtain a linear space decomposition as follows:

A =
∑

v∈Irr(A)

C(v) =
∑

v∈Irr(A)

Mdim(v)(C)

In order to conclude, it is enough to prove that for any two irreducible corepresenta-
tions v, w ∈ Irr(A), the corresponding spaces of coefficients are orthogonal:

v ̸∼ w =⇒ C(v) ⊥ C(w)

As a first observation, which follows from an elementary computation, for any two
corepresentations v, w we have a Frobenius type isomorphism, as follows:

Hom(v, w) ≃ Fix(v̄ ⊗ w)

Now let us set Pia,jb =
∫
G
vijw

∗
ab. According to Theorem 2.7, the matrix P is the

orthogonal projection onto the following vector space:

Fix(v ⊗ w̄) ≃ Hom(v̄, w̄) = {0}

Thus we have P = 0, and so C(v) ⊥ C(w), which gives the result.

(4) The algebra Acentral contains indeed all the characters, because we have:

Σ∆(χv) =
∑
ij

vji ⊗ vij = ∆(χv)

The fact that the characters span Acentral, and form an orthogonal basis of it, follow
from (3). Finally, regarding the norm 1 assertion, consider the following integrals:

Pik,jl =

∫
G

vijv
∗
kl

We know from Theorem 2.7 that these integrals form the orthogonal projection onto
Fix(v ⊗ v̄) ≃ End(v̄) = C1. By using this fact, we obtain the following formula:∫

G

χvχ
∗
v =

∑
ij

∫
G

viiv
∗
jj =

∑
i

1

N
= 1

Thus the characters have indeed norm 1, and we are done. □

We refer to Woronowicz [99] for full details on all the above, and for some applications
as well. Let us just record here the fact that in the cocommutative case, we obtain from
(4) that the irreducible corepresentations must be all 1-dimensional, and so that we must
have A = C∗(Γ) for some discrete group Γ, as mentioned in Proposition 2.2.

At a more technical level now, we have a number of more advanced results, from
Woronowicz [99], [100] and other papers, that must be known as well. We will present
them quickly, and for details you check my book [9]. First we have:
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Theorem 2.9. Let Afull be the enveloping C
∗-algebra of A, and let Ared be the quotient

of A by the null ideal of the Haar integration. The following are then equivalent:

(1) The Haar functional of Afull is faithful.
(2) The projection map Afull → Ared is an isomorphism.
(3) The counit map ε : Afull → C factorizes through Ared.
(4) We have N ∈ σ(Re(χu)), the spectrum being taken inside Ared.

If this is the case, we say that the underlying discrete quantum group Γ is amenable.

Proof. This is well-known in the group dual case, A = C∗(Γ), with Γ being a usual
discrete group. In general, the result follows by adapting the group dual case proof:

(1) ⇐⇒ (2) This simply follows from the fact that the GNS construction for the
algebra Afull with respect to the Haar functional produces the algebra Ared.

(2) ⇐⇒ (3) Here =⇒ is trivial, and conversely, a counit map ε : Ared → C produces
an isomorphism Ared → Afull, via a formula of type (ε⊗ id)Φ.

(3) ⇐⇒ (4) Here =⇒ is clear, coming from ε(N −Re(χ(u))) = 0, and the converse
can be proved by doing some standard functional analysis. □

Yet another important result is Tannakian duality, as follows:

Theorem 2.10. The following operations are inverse to each other:

(1) The construction A → C, which associates to any Woronowicz algebra A the
tensor category formed by the intertwiner spaces Ckl = Hom(u⊗k, u⊗l).

(2) The construction C → A, which associates to a tensor category C the Woronowicz
algebra A presented by the relations T ∈ Hom(u⊗k, u⊗l), with T ∈ Ckl.

Proof. This is something quite deep, the idea being as follows:

(1) We have indeed a construction A → C as above, whose output is a tensor C∗-
subcategory with duals of the tensor C∗-category of Hilbert spaces.

(2) We have as well a construction C → A as above, simply by dividing the free
∗-algebra on N2 variables by the relations in the statement.

Regarding now the bijection claim, after some elementary algebra we are left with
proving CAC

⊂ C. But this latter inclusion can be proved indeed, by doing some algebra,
and using von Neumann’s bicommutant theorem, in finite dimensions. See [100]. □

2b. Free rotations

Good news, with the above general theory in hand, we can go back now to our free
geometry program, as developed in chapter 1, and substantially build on that. Indeed,
the point is that we can talk now about free rotations. Following Wang [89], we have:
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Theorem 2.11. The following constructions produce compact quantum groups,

C(O+
N) = C∗

(
(uij)i,j=1,...,N

∣∣∣u = ū, ut = u−1
)

C(U+
N ) = C∗

(
(uij)i,j=1,...,N

∣∣∣u∗ = u−1, ut = ū−1
)

which appear respectively as liberations of the groups ON and UN .

Proof. This first assertion follows from the elementary fact that if a matrix u = (uij)
is orthogonal or biunitary, then so must be the following matrices:

u∆ij =
∑
k

uik ⊗ ukj , uεij = δij , uSij = u∗ji

Indeed, the biunitarity of u∆ can be checked by a direct computation. Regarding now
the matrix uε = 1N , this is clearly biunitary. Also, regarding the matrix uS, there is
nothing to prove here either, because its unitarity its clear too. And finally, observe that
if u has self-adjoint entries, then so do the above matrices u∆, uε, uS.

Thus our claim is proved, and we can define morphisms ∆, ε, S as in Definition 2.1, by
using the universal properties of C(O+

N), C(U
+
N ). As for the second assertion, this follows

exactly as for the free spheres, by adapting the sphere proof from chapter 1. □

The basic properties of O+
N , U

+
N can be summarized as follows:

Theorem 2.12. The quantum groups O+
N , U

+
N have the following properties:

(1) The closed subgroups G ⊂ U+
N are exactly the N × N compact quantum groups.

As for the closed subgroups G ⊂ O+
N , these are those satisfying u = ū.

(2) We have liberation embeddings ON ⊂ O+
N and UN ⊂ U+

N , obtained by dividing the
algebras C(O+

N), C(U
+
N ) by their respective commutator ideals.

(3) We have as well embeddings L̂N ⊂ O+
N and F̂N ⊂ U+

N , where LN is the free
product of N copies of Z2, and where FN is the free group on N generators.

Proof. All these assertions are elementary, as follows:

(1) This is clear from definitions, with the remark that, in the context of Definition
2.1, the formula S(uij) = u∗ji shows that the matrix ū must be unitary too.

(2) This follows from the Gelfand theorem. To be more precise, this shows that we
have presentation results for C(ON), C(UN), similar to those in Theorem 2.11, but with
the commutativity between the standard coordinates and their adjoints added:

C(ON) = C∗
comm

(
(uij)i,j=1,...,N

∣∣∣u = ū, ut = u−1
)

C(UN) = C∗
comm

(
(uij)i,j=1,...,N

∣∣∣u∗ = u−1, ut = ū−1
)

Thus, we are led to the conclusion in the statement.
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(3) This follows indeed from (1) and from Proposition 2.2, with the remark that with
u = diag(g1, . . . , gN), the condition u = ū is equivalent to g2i = 1, for any i. □

The last assertion in Theorem 2.12 suggests the following construction:

Proposition 2.13. Given a closed subgroup G ⊂ U+
N , consider its “diagonal torus”,

which is the closed subgroup T ⊂ G constructed as follows:

C(T ) = C(G)
/〈

uij = 0
∣∣∣∀i ̸= j

〉
This torus is then a group dual, T = Λ̂, where Λ =< g1, . . . , gN > is the discrete group
generated by the elements gi = uii, which are unitaries inside C(T ).

Proof. Since u is unitary, its diagonal entries gi = uii are unitaries inside C(T ).
Moreover, from ∆(uij) =

∑
k uik ⊗ ukj we obtain, when passing inside the quotient:

∆(gi) = gi ⊗ gi

It follows that we have C(T ) = C∗(Λ), modulo identifying as usual the C∗-completions

of the various group algebras, and so that we have T = Λ̂, as claimed. □

With this notion in hand, Theorem 2.12 (3) reformulates as follows:

Theorem 2.14. The diagonal tori of the basic unitary groups are the basic tori:

O+
N

// U+
N

ON
//

OO

UN

OO

→

T+
N

// T+
N

TN //

OO

TN

OO

In particular, the basic unitary groups are all distinct.

Proof. This is something clear and well-known in the classical case, and in the free
case, this is a reformulation of Theorem 2.12 (3), which tells us that the diagonal tori of

O+
N , U

+
N , in the sense of Proposition 2.13, are the group duals L̂N , F̂N . □

There is an obvious relation here with the considerations from chapter 1, that we will
analyse later on. As a second result now regarding our free quantum groups, relating
them this time to the free spheres constructed in chapter 1, we have:
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Theorem 2.15. We have embeddings of algebraic manifolds as follows, obtained in
double indices by rescaling the coordinates, xij = uij/

√
N :

O+
N

// U+
N

ON
//

OO

UN

OO

→

SN2−1
R,+

// SN2−1
C,+

SN2−1
R

//

OO

SN2−1
C

OO

Moreover, the quantum groups appear from the quantum spheres via

G = S ∩ U+
N

with the intersection being computed inside the free sphere SN2−1
C,+ .

Proof. As explained in Theorem 2.12, the biunitarity of the matrix u = (uij) gives
an embedding of algebraic manifolds, as follows:

U+
N ⊂ SN2−1

C,+

Now since the relations defining ON , O
+
N , UN ⊂ U+

N are the same as those defining

SN2−1
R , SN2−1

R,+ , SN2−1
C ⊂ SN2−1

C,+ , this gives the result. □

Summarizing, we have now up and working some free rotation groups, which are
closely related to the free spheres and tori constructed in chapter 1.

2c. Quantum isometries

In order to further discuss now the relation with the spheres, which can only come via
some sort of “isometric actions”, let us start with the following standard fact:

Proposition 2.16. Given a closed subset X ⊂ SN−1
C , the formula

G(X) =
{
U ∈ UN

∣∣∣U(X) = X
}

defines a compact group of unitary matrices, or isometries, called affine isometry group
of X. For the spheres SN−1

R , SN−1
C we obtain in this way the groups ON , UN .

Proof. The fact that G(X) as defined above is indeed a group is clear, its compact-
ness is clear as well, and finally the last assertion is clear as well. In fact, all this works
for any closed subset X ⊂ CN , but we are not interested here in such general spaces. □

Observe that in the case of the real and complex spheres, the affine isometry group
G(X) leaves invariant the Riemannian metric, because this metric is equivalent to the
one inherited from CN , which is preserved by our isometries U ∈ UN .
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Thus, we could have constructed as well G(X) as being the group of metric isometries
of X, with of course some extra care in relation with the complex structure, as for the
complex sphere X = SN−1

C to produce G(X) = UN instead of G(X) = O2N . But, such
things won’t really work for the free spheres, and so are to be avoided.

The point now is that we have the following quantum analogue of Proposition 2.16,
which is a perfect analogue, save for the fact that X is now assumed to be algebraic, for
some technical reasons, which allows us to talk about quantum isometry groups:

Theorem 2.17. Given an algebraic manifold X ⊂ SN−1
C,+ , the category of the closed

subgroups G ⊂ U+
N acting affinely on X, in the sense that the formula

Φ(xi) =
∑
j

xj ⊗ uji

defines a morphism of C∗-algebras Φ : C(X) → C(X) ⊗ C(G), has a universal object,
denoted G+(X), and called affine quantum isometry group of X.

Proof. Assume indeed that our manifold X ⊂ SN−1
C,+ comes as follows:

C(X) = C(SN−1
C,+ )

/〈
fα(x1, . . . , xN) = 0

〉
In order to prove the result, consider the following variables:

Xi =
∑
j

xj ⊗ uji ∈ C(X)⊗ C(U+
N )

Our claim is that the quantum group in the statement G = G+(X) appears as:

C(G) = C(U+
N )
/〈

fα(X1, . . . , XN) = 0
〉

In order to prove this, pick one of the defining polynomials, and write it as follows:

fα(x1, . . . , xN) =
∑
r

∑
ir1...i

r
sr

λr · xir1 . . . xirsr

With Xi =
∑

j xj ⊗ uji as above, we have the following formula:

fα(X1, . . . , XN) =
∑
r

∑
ir1...i

r
sr

λr
∑

jr1 ...j
r
sr

xjr1 . . . xjrsr ⊗ ujr1 ir1 . . . ujrsr irsr

Since the variables on the right span a certain finite dimensional space, the relations
fα(X1, . . . , XN) = 0 correspond to certain relations between the variables uij. Thus, we
have indeed a closed subspace G ⊂ U+

N , with a universal map, as follows:

Φ : C(X) → C(X)⊗ C(G)
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In order to show now that G is a quantum group, consider the following elements:

u∆ij =
∑
k

uik ⊗ ukj , uεij = δij , uSij = u∗ji

Consider as well the following elements, with γ ∈ {∆, ε, S}:

Xγ
i =

∑
j

xj ⊗ uγji

From the relations fα(X1, . . . , XN) = 0 we deduce that we have:

fα(X
γ
1 , . . . , X

γ
N) = (id⊗ γ)fα(X1, . . . , XN) = 0

Thus we can map uij → uγij for any γ ∈ {∆, ε, S}, and we are done. □

We can now formulate a result about spheres and rotations, as follows:

Theorem 2.18. The quantum isometry groups of the basic spheres are

SN−1
R,+

// SN−1
C,+

SN−1
R

//

OO

SN−1
C

OO

→

O+
N

// U+
N

ON
//

OO

UN

OO

modulo identifying, as usual, the various C∗-algebraic completions.

Proof. We have 4 results to be proved, the idea being as follows:

SN−1
C,+ . Let us first construct an action U+

N ↷ SN−1
C,+ . We must prove here that the

variables Xi =
∑

j xj ⊗ uji satisfy the defining relations for SN−1
C,+ , namely:∑

i

xix
∗
i =

∑
i

x∗ixi = 1

By using the biunitarity of u, we have the following computation:∑
i

XiX
∗
i =

∑
ijk

xjx
∗
k ⊗ ujiu

∗
ki =

∑
j

xjx
∗
j ⊗ 1 = 1⊗ 1

Once again by using the biunitarity of u, we have as well:∑
i

X∗
iXi =

∑
ijk

x∗jxk ⊗ u∗jiuki =
∑
j

x∗jxj ⊗ 1 = 1⊗ 1

Thus we have an action U+
N ↷ SN−1

C,+ , which gives G+(SN−1
C,+ ) = U+

N , as desired.
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SN−1
R,+ . Let us first construct an action O+

N ↷ SN−1
R,+ . We already know that the

variables Xi =
∑

j xj⊗uji satisfy the defining relations for SN−1
C,+ , so we just have to check

that these variables are self-adjoint. But this is clear from u = ū, as follows:

X∗
i =

∑
j

x∗j ⊗ u∗ji =
∑
j

xj ⊗ uji = Xi

Conversely, assume that we have an action G ↷ SN−1
R,+ , with G ⊂ U+

N . The variables
Xi =

∑
j xj ⊗ uji must be then self-adjoint, and the above computation shows that we

must have u = ū. Thus our quantum group must satisfy G ⊂ O+
N , as desired.

SN−1
C . The fact that we have an action UN ↷ SN−1

C is clear. Conversely, assume that

we have an action G ↷ SN−1
C , with G ⊂ U+

N . We must prove that this implies G ⊂ UN ,
and we will use a standard trick of Bhowmick-Goswami [13]. We have:

Φ(xi) =
∑
j

xj ⊗ uji

By multiplying this formula with itself we obtain:

Φ(xixk) =
∑
jl

xjxl ⊗ ujiulk

Φ(xkxi) =
∑
jl

xlxj ⊗ ulkuji

Since the variables xi commute, these formulae can be written as:

Φ(xixk) =
∑
j<l

xjxl ⊗ (ujiulk + uliujk) +
∑
j

x2j ⊗ ujiujk

Φ(xixk) =
∑
j<l

xjxl ⊗ (ulkuji + ujkuli) +
∑
j

x2j ⊗ ujkuji

Since the tensors at left are linearly independent, we must have:

ujiulk + uliujk = ulkuji + ujkuli

By applying the antipode to this formula, then applying the involution, and then
relabelling the indices, we succesively obtain:

u∗klu
∗
ij + u∗kju

∗
il = u∗iju

∗
kl + u∗ilu

∗
kj

uijukl + uilukj = ukluij + ukjuil

ujiulk + ujkuli = ulkuji + uliujk

Now by comparing with the original formula, we obtain from this:

uliujk = ujkuli
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In order to finish, it remains to prove that the coordinates uij commute as well with
their adjoints. For this purpose, we use a similar method. We have:

Φ(xix
∗
k) =

∑
jl

xjx
∗
l ⊗ ujiu

∗
lk

Φ(x∗kxi) =
∑
jl

x∗l xj ⊗ u∗lkuji

Since the variables on the left are equal, we deduce from this that we have:∑
jl

xjx
∗
l ⊗ ujiu

∗
lk =

∑
jl

xjx
∗
l ⊗ u∗lkuji

Thus we have ujiu
∗
lk = u∗lkuji, and so G ⊂ UN , as claimed.

SN−1
R . The fact that we have an action ON ↷ SN−1

R is clear. In what regards the

converse, this follows by combining the results that we already have, as follows:

G↷ SN−1
R =⇒ G↷ SN−1

R,+ , SN−1
C

=⇒ G ⊂ O+
N , UN

=⇒ G ⊂ O+
N ∩ UN = ON

Thus, we conclude that we have G+(SN−1
R ) = ON , as desired. □

2d. Haar integration

Let us discuss now the correspondence U → S. In the classical case the situation is
very simple, because the sphere S = SN−1 appears by rotating the point x = (1, 0, . . . , 0)
by the isometries in U = UN . Moreover, the stabilizer of this action is the subgroup
UN−1 ⊂ UN acting on the last N − 1 coordinates, and so the sphere S = SN−1 appears
from the corresponding rotation group U = UN as an homogeneous space, as follows:

SN−1 = UN/UN−1

In functional analytic terms, all this becomes even simpler, the correspondence U → S
being obtained, at the level of algebras of functions, as follows:

C(SN−1) ⊂ C(UN) , xi → u1i

In general now, the straightforward homogeneous space interpretation of S as above
fails. However, we can have some theory going by using the functional analytic viewpoint,
with an embedding xi → u1i as above. Let us start with the following result:
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Theorem 2.19. For the basic spheres, we have a diagram as follows,

C(S)
Φ //

α

��

C(S)⊗ C(U)

α⊗id

��
C(U)

∆ // C(U)⊗ C(U)

where on top Φ(xi) =
∑

j xj ⊗ uji, and on the left α(xi) = u1i.

Proof. The diagram in the statement commutes indeed on the standard coordinates,
the corresponding arrows being as follows, on these coordinates:

xi //

��

∑
j xj ⊗ uji

��
u1i //

∑
j u1j ⊗ uji

Thus by linearity and multiplicativity, the whole the diagram commutes. □

The point now is that, by further building on the above result, we obtain the desired
correspondence U → S, and some useful integration results as well.

At the level of the fine structure of the free spheres SN−1
R,+ , SN−1

C,+ now, we have some
obvious formal eigenspaces for the Laplace operator, and a Weingarten integration formula
as well, both coming from the representation theory of O+

N , U
+
N . Moreover, it is possible

to get beyond this, with a full construction of a Laplace operator.

Regarding other possible invariants, orientability does not work, the Dirac operator
does not exist, smoothness does not work either, and in what regards K-theory, with our
free objects we are a bit too far away from the traditional “reasonable” range of K-theory,
usually requiring amenability, or at least some form of K-amenability.

However, after some thinking, maybe including some physical thoughts too, in con-
nection with what is smoothness and is that wished or not, in the present situation, all
this is normal. So, no worries, and as we will soon discover, we will get away with the
tools that we have, namely Laplace operator and the Weingarten formula, which are not
that bad, technically speaking, for all the problems that we will choose to solve.
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2e. Exercises

Exercises:

Exercise 2.20.

Exercise 2.21.

Exercise 2.22.

Exercise 2.23.

Exercise 2.24.

Exercise 2.25.

Exercise 2.26.

Exercise 2.27.

Bonus exercise.



CHAPTER 3

Fine structure

3a. Diagrams, easiness

We have so far a beginning of free geometry, in the real case with a triple of basic
objects (SN−1

R,+ , O+
N , T

+
N ), and in the complex case with objects (SN−1

C,+ , U+
N ,T

+
N). This is

not bad, and our purpose in what follows will be that of expanding these two collections
of objects, from 3 items each, to 10, 100, 1000, or as many as we can, and the more the
merrier, in the name of pure mathematics, where new objects are always welcome.

This being said, what to start with? Leaving aside the tori, which are just duals of
discrete groups, and as old as modern mathematics, we face a choice between spheres
S, and rotation groups U . As a first observation, these two types of objects are closely
related, because in the classical case, given a sphere S, we can recover U as being its
isometry group, and conversely, given a group U , we can recover S just by rotating a
point. And, as seen in chapter 2, the situation is quite similar in the free case.

This being said, spheres S are not the same thing as rotation groups U , and we will
have to make a choice. Normally spheres S look a bit more important, but on the other
hand physics, or even mathematics, tell us that no matter what we want to do, of advanced
type, about either S or U , we will always end up in struggling with U .

So, we will go for U , and our goal in this chapter will be that of better understanding
O+

N , U
+
N , and also look for more free quantum groups, as many as we can find. And

regarding spheres S and other such manifolds, we will leave this for later. Sounds good,
doesn’t it? Before getting into this, however, let us check with physics and cat:

Cat 3.1. Gauge invariance gives you everything. But don’t forget to do some manifolds
too, all our kittens learn that, and it’s good learning.

Thanks cat, this is a pleasure to hear, and in tune with my mathematical intuition.
Getting started now, we would like to have a better understanding of the liberation
operations that we have, ON → O+

N and UN → U+
N , and also have more examples of

liberation operations of the same type, GN → G+
N . And then, once we will have enough

theory and examples, look for classification results for the free quantum groups {G+
N}.

41
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Let us start with the construction of more examples, which is certainly a very exciting
business, and leave the abstractions for later. Following Wang [89], we first have:

Proposition 3.2. Consider the symmetric group SN , viewed as permutation group of
the N coordinate axes of RN . The coordinate functions on SN ⊂ ON are given by

uij = χ
(
σ ∈ G

∣∣∣σ(j) = i
)

and the matrix u = (uij) that these functions form is magic, in the sense that its entries
are projections (p2 = p∗ = p), summing up to 1 on each row and each column.

Proof. The action of SN on the standard basis e1, . . . , eN ∈ RN being given by
σ : ej → eσ(j), this gives the formula of uij in the statement. As for the fact that the
matrix u = (uij) that these functions form is magic, this is clear. □

With a bit more effort, we obtain the following nice characterization of SN :

Proposition 3.3. The algebra of functions on SN has the following presentation,

C(SN) = C∗
comm

(
(uij)i,j=1,...,N

∣∣∣u = magic
)

and the multiplication, unit and inversion map of SN appear from the maps

∆(uij) =
∑
k

uik ⊗ ukj , ε(uij) = δij , S(uij) = uji

defined at the algebraic level, of functions on SN , by transposing.

Proof. The universal algebra A in the statement being commutative, by the Gelfand
theorem it must be of the form A = C(X), with X being a certain compact space. Now
since we have coordinates uij : X → R, we have an embedding X ⊂ MN(R). Also, since
we know that these coordinates form a magic matrix, the elements g ∈ X must be 0-1
matrices, having exactly one 1 entry on each row and each column, and so X = SN . Thus
we have proved the first assertion, and the second assertion is clear as well. □

Still following Wang [89], we can now liberate SN , as follows:

Theorem 3.4. The following universal C∗-algebra, with magic meaning as usual
formed by projections (p2 = p∗ = p), summing up to 1 on each row and each column,

C(S+
N) = C∗

(
(uij)i,j=1,...,N

∣∣∣u = magic
)

is a Woronowicz algebra, with comultiplication, counit and antipode given by:

∆(uij) =
∑
k

uik ⊗ ukj , ε(uij) = δij , S(uij) = uji

Thus the space S+
N is a compact quantum group, called quantum permutation group.
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Proof. As a first observation, the universal C∗-algebra in the statement is indeed
well-defined, because the conditions p2 = p∗ = p satisfied by the coordinates give:

||uij|| ≤ 1

In order to prove now that we have a Woronowicz algebra, we must construct maps
∆, ε, S given by the formulae in the statement. Consider the following matrices:

u∆ij =
∑
k

uik ⊗ ukj , uεij = δij , uSij = uji

Our claim is that, since u is magic, so are these three matrices. Indeed, regarding u∆,
its entries are idempotents, as shown by the following computation:

(u∆ij)
2 =

∑
kl

uikuil ⊗ ukjulj =
∑
kl

δkluik ⊗ δklukj = u∆ij

These elements are self-adjoint as well, as shown by the following computation:

(u∆ij)
∗ =

∑
k

u∗ik ⊗ u∗kj =
∑
k

uik ⊗ ukj = u∆ij

The row and column sums for the matrix u∆ can be computed as follows:∑
j

u∆ij =
∑
jk

uik ⊗ ukj =
∑
k

uik ⊗ 1 = 1

∑
i

u∆ij =
∑
ik

uik ⊗ ukj =
∑
k

1⊗ ukj = 1

Thus, u∆ is magic. Regarding now uε, uS, these matrices are magic too, and this for
obvious reasons. Thus, all our three matrices u∆, uε, uS are magic, so we can define ∆, ε, S
by the formulae in the statement, by using the universality property of C(S+

N). □

Our first task now is to make sure that Theorem 3.4 produces indeed a new quantum
group, which does not collapse to SN . Still following Wang [89], we have:

Theorem 3.5. We have an embedding SN ⊂ S+
N , given at the algebra level by:

uij → χ
(
σ ∈ SN

∣∣∣σ(j) = i
)

This is an isomorphism at N ≤ 3, but not at N ≥ 4, where S+
N is not classical, nor finite.

Proof. The fact that we have indeed an embedding as above follows from Proposition
3.3. Observe that in fact more is true, because our results above give:

C(SN) = C(S+
N)
/〈

ab = ba
〉

Thus, the inclusion SN ⊂ S+
N is a “liberation”, in the sense that SN is the classical

version of S+
N . We will often use this basic fact, in what follows. Regarding now the

second assertion, we can prove this in four steps, as follows:
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Case N = 2. The fact that S+
2 is indeed classical, and hence collapses to S2, is trivial,

because the 2× 2 magic matrices are as follows, with p being a projection:

U =

(
p 1− p

1− p p

)
Indeed, this shows that the entries of U commute. Thus C(S+

2 ) is commutative, and
so equals its biggest commutative quotient, which is C(S2). Thus, S

+
2 = S2.

Case N = 3. By using the same argument as in the N = 2 case, and the symmetries
of the problem, it is enough to check that u11, u22 commute. But this follows from:

u11u22 = u11u22(u11 + u12 + u13)

= u11u22u11 + u11u22u13

= u11u22u11 + u11(1− u21 − u23)u13

= u11u22u11

Indeed, by applying the involution to this formula, we obtain that we have as well
u22u11 = u11u22u11. Thus, we obtain u11u22 = u22u11, as desired.

Case N = 4. Consider the following matrix, with p, q being projections:

U =


p 1− p 0 0

1− p p 0 0
0 0 q 1− q
0 0 1− q q


This matrix is magic, and we can choose p, q ∈ B(H) as for the algebra < p, q > to be

noncommutative and infinite dimensional. We conclude that C(S+
4 ) is noncommutative

and infinite dimensional as well, and so S+
4 is non-classical and infinite, as claimed.

Case N ≥ 5. Here we can use the standard embedding S+
4 ⊂ S+

N , obtained at the level
of the corresponding magic matrices in the following way:

u→
(
u 0
0 1N−4

)
Indeed, with this in hand, the fact that S+

4 is a non-classical, infinite compact quantum
group implies that S+

N with N ≥ 5 has these two properties as well. □

With the above results in hand, we can introduce as well quantum reflections:

Theorem 3.6. The following constructions produce compact quantum groups,

C(H+
N) = C∗

(
(uij)i,j=1,...,N

∣∣∣uij = u∗ij, (u
2
ij) = magic

)
C(K+

N) = C∗
(
(uij)i,j=1,...,N

∣∣∣[uij, u∗ij] = 0, (uiju
∗
ij) = magic

)
which appear as liberations of the reflection groups HN = Z2 ≀ SN and KN = T ≀ SN .
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Proof. This can be proved in the usual way, with the first assertion coming from the
fact that if u satisfies the relations in the statement, then so do the matrices u∆, uε, uS,
and with the second assertion being trivial. Let us also mention that, in analogy with
HN = Z2 ≀ SN and KN = T ≀ SN , we have decomposition results as follows:

H+
N = Z2 ≀∗ S+

N , K+
N = T ≀∗ S+

N

To be more precise, here ≀∗ is a free wreath product, and these formulae can be
established a bit as in the classical case. For more on all this, we refer to [10]. □

All the above is very nice, and as a conclusion to all this, let us record the following
result, which collects and refines the various liberation statements formulated above:

Theorem 3.7. The quantum unitary and reflection groups are as follows,

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

==

and in this diagram, any face P ⊂ Q,R ⊂ S has the property P = Q ∩R.

Proof. The fact that we have inclusions as in the statement follows from the defini-
tion of the various quantum groups involved. As for the various intersection claims, these
follow as well from definitions. For some further details on all this, we refer to [10]. □

As a comment here, observe that the symmetric group SN and its free analogue S+
N ,

while certainly being very interesting objects, had not made the cut for appearing in
the above almighty cube, called “standard cube” in quantum algebra. However, this is
something quite natural, because SN and S+

N are objects on their own, neither real or
complex, and for practical purposes, like ours with our cube, these quantum groups must
be replaced with HN , H

+
N in the real case, and with KN , K

+
N in the free case.

Actually I’m not quite sure about this, time to ask the cat. Who says:

Cat 3.8. Do not worry, the high speed world is projective anyway, and it is better to
use reflections instead of permutations.

Thanks cat, not that I really understand what you say, but it fits with my purposes
and cube, which looks really cool. But I will keep this in mind, and discuss later the
relation between affine and projective geometry, in the free setting, that is promised.



46 3. FINE STRUCTURE

With this done, let us get now into the second question that we were having, namely
the conceptual understanding of the various liberation operations GN → G+

N . In order
to discuss this, we will need Tannakian duality, and Brauer type theorems. Let us start
with Tannakian duality. This is a rather abstract statement, as follows:

Theorem 3.9. The following operations are inverse to each other:

(1) The construction G → C, which associates to a closed subgroup G ⊂u U
+
N the

tensor category formed by the intertwiner spaces Ckl = Hom(u⊗k, u⊗l).
(2) The construction C → G, associating to a tensor category C the closed subgroup

G ⊂u U
+
N coming from the relations T ∈ Hom(u⊗k, u⊗l), with T ∈ Ckl.

Proof. We have indeed a construction G → CG, whose output is a subcategory of
the tensor C∗-category of finite dimensional Hilbert spaces, as follows:

(CG)kl = Hom(u⊗k, u⊗l)

We have as well a construction C → GC , obtained by setting:

C(GC) = C(U+
N )
/〈

T ∈ Hom(u⊗k, u⊗l)
∣∣∣∀k, l, ∀T ∈ Ckl

〉
Regarding now the bijection claim, some elementary algebra shows that C = CGC

implies G = GCG
, and that C ⊂ CGC

is automatic. Thus we are left with proving:

CGC
⊂ C

But this latter inclusion can be proved indeed, by doing some algebra, and using von
Neumann’s bicommutant theorem, in finite dimensions. □

The above result is something quite abstract, yet powerful. We will see applications
of it in a moment, in the form of Brauer theorems for SN , ON , UN and S+

N , O
+
N , U

+
N , and

other quantum groups. In order to formulate these Brauer theorems, let us start with:

Definition 3.10. Let P (k, l) be the set of partitions between an upper row of k points,
and a lower row of l points. A collection of sets

D =
⊔
k,l

D(k, l)

with D(k, l) ⊂ P (k, l) is called a category of partitions when it has the following properties:

(1) Stability under the horizontal concatenation, (π, σ) → [πσ].
(2) Stability under the vertical concatenation, (π, σ) → [σπ].
(3) Stability under the upside-down turning, π → π∗.
(4) Each set P (k, k) contains the identity partition || . . . ||.
(5) The sets P (∅, ◦•) and P (∅, •◦) both contain the semicircle ∩.
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As a basic example, we have the category of all partitions P itself. Other basic
examples are the category of pairings P2, and the categories NC,NC2 of noncrossing
partitions, and pairings. We have as well the category P2 of pairings which are “matching”,
in the sense that they connect ◦ − ◦, • − • on the vertical, and ◦ − • on the horizontal,
and its subcategory NC2 ⊂ P2 consisting of the noncrossing matching pairings.

There are many other examples, and we will be back to this, gradually, in what follows.
Regarding now the relation with the Tannakian categories, this comes from:

Proposition 3.11. Each partition π ∈ P (k, l) produces a linear map

Tπ : (CN)⊗k → (CN)⊗l

given by the following formula, with e1, . . . , eN being the standard basis of CN ,

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

and with the Kronecker type symbols δπ ∈ {0, 1} depending on whether the indices fit or
not. The assignement π → Tπ is categorical, in the sense that we have

Tπ ⊗ Tσ = T[πσ] , TπTσ = N c(π,σ)T[σπ ] , T ∗
π = Tπ∗

where c(π, σ) are certain integers, coming from the erased components in the middle.

Proof. The concatenation axiom follows from the following computation:

(Tπ ⊗ Tσ)(ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

=
∑
j1...jq

∑
l1...ls

δπ

(
i1 . . . ip
j1 . . . jq

)
δσ

(
k1 . . . kr
l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

=
∑
j1...jq

∑
l1...ls

δ[πσ]

(
i1 . . . ip k1 . . . kr
j1 . . . jq l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

= T[πσ](ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

As for the composition and involution axioms, their proof is similar. □

In relation now with quantum groups, we have the following result:

Theorem 3.12. Each category of partitions D = (D(k, l)) produces a family of com-
pact quantum groups G = (GN), one for each N ∈ N, via the formula

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

which produces a Tannakian category, and so a closed subgroup GN ⊂u U
+
N .
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Proof. Let call Ckl the spaces on the right. By using the axioms in Definition 3.10,
and the categorical properties of the operation π → Tπ, from Proposition 3.11, we see that
C = (Ckl) is a Tannakian category. Thus Theorem 3.9 applies, and gives the result. □

We can now formulate a key definition, as follows:

Definition 3.13. A compact quantum group GN is called easy when we have

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

for any colored integers k, l, for a certain category of partitions D ⊂ P .

In other words, a compact quantum group is called easy when its Tannakian category
appears in the simplest possible way: from a category of partitions. The terminology is
quite natural, because Tannakian duality is basically our only serious tool. In relation
now with the orthogonal, unitary and symmetric quantum groups, here is the result:

Theorem 3.14. The basic quantum permutation and rotation groups,

S+
N

// O+
N

// U+
N

SN
//

OO

ON
//

OO

UN

OO

are all easy, the corresponding categories of partitions being as follows,

NC

��

NC2
oo

��

NC2
oo

��
P P2
oo P2

oo

with 2 standing for pairings, NC for noncrossing, and calligraphic for matching.

Proof. This is something quite fundamental, the proof being as follows:

(1) The quantum group U+
N is defined via the following relations:

u∗ = u−1 , ut = ū−1

But, by doing some elementary computations, these relations tell us precisely that the
following two operators must be in the associated Tannakian category C:

Tπ : π = ∩
◦• ,

∩
•◦

Thus, the associated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< ∩
◦• ,

∩
•◦ >= NC2
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(2) The subgroup O+
N ⊂ U+

N is defined by imposing the following relations:

uij = ūij

Thus, the following operators must be in the associated Tannakian category C:

Tπ : π = |◦• , |•◦
We conclude that the Tannakian category is C = span(Tπ|π ∈ D), with:

D =< NC2, |◦•, |•◦ >= NC2

(3) The subgroup UN ⊂ U+
N is defined via the following relations:

[uij, ukl] = 0 , [uij, ūkl] = 0

Thus, the following operators must be in the associated Tannakian category C:

Tπ : π = /\◦◦◦◦ , /\
◦•
•◦

Thus the associated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< NC2, /\◦◦◦◦, /\
◦•
•◦ >= P2

(4) In order to deal now with ON , we can simply use the following formula:

ON = O+
N ∩ UN

At the categorical level, this tells us that ON is indeed easy, coming from:

D =< NC2,P2 >= P2

(5) We know that the subgroup S+
N ⊂ O+

N appears as follows:

C(S+
N) = C(O+

N)
/〈

u = magic
〉

In order to interpret the magic condition, consider the fork partition:

Y ∈ P (2, 1)

Given a corepresentation u, we have the following formulae:

(TY u
⊗2)i,jk =

∑
lm

(TY )i,lm(u
⊗2)lm,jk = uijuik

(uTY )i,jk =
∑
l

uil(TY )l,jk = δjkuij

We conclude that we have the following equivalence:

TY ∈ Hom(u⊗2, u) ⇐⇒ uijuik = δjkuij,∀i, j, k
The condition on the right being equivalent to the magic condition, we obtain:

C(S+
N) = C(O+

N)
/〈

TY ∈ Hom(u⊗2, u)
〉
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Thus S+
N is indeed easy, the corresponding category of partitions being:

D =< Y >= NC

(6) Finally, in order to deal with SN , we can use the following formula:

SN = S+
N ∩ON

At the categorical level, this tells us that SN is indeed easy, coming from:

D =< NC,P2 >= P

Thus, we are led to the conclusions in the statement. □

Moving ahead, we can upgrade what we have into a cube result, as follows:

Theorem 3.15. The basic quantum unitary and reflection groups,

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

<<

are all easy, and the corresponding categories of partitions form an intersection diagram.

Proof. The precise claim is that the categories are as follows, with Peven being the
category of partitions having even blocks, and with Peven(k, l) ⊂ Peven(k, l) consisting of
the partitions satisfying #◦ = #• in each block, when flattening the partition:

NCeven

zz

��

NC2

��

oo

��

NCeven

��

NC2

��

oo

Peven

zz

P2

��

oo

Peven P2
oo

But this is something that we already know for the right face, from Theorem 3.14,
and in what regards the left face, the proof here is similar, by using the results for SN , S

+
N

from that same Theorem 3.14. As for the last assertion, this is something trivial. □

The above results are something quite deep, and we will see in what follows countless
applications of them. As a first such application, rather philosophical, we have:
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Theorem 3.16. The constructions GN → G+
N with G = O,U, S,H,K are easy quan-

tum group liberations, in the sense that they come from the construction

D → D ∩NC

at the level of the associated categories of partitions.

Proof. This is clear indeed from Theorem 3.14 and Theorem 3.15, and from the
following trivial equalities, connecting the categories found there:

NC2 = P2 ∩NC , NC2 = P2 ∩NC

NC = P ∩NC

NCeven = Peven ∩NC , NCeven = Peven ∩NC
Thus, we are led to the conclusion in the statement. □

The above result is quite nice, because the various constructions GN → G+
N that we

made so far, although natural, were something quite ad-hoc. Now all this is no longer
ad-hoc, and the next time that we will have to liberate a subgroup GN ⊂ UN , we know
what the recipe is, namely check if GN is easy, and if so, simply define G+

N ⊂ U+
N as being

the easy quantum group coming from the category D = DG ∩NC.

3b. Uniformity, characters

In general, the study of the free quantum groups, in the “easy” sense explained above,
is something quite complex. In order to cut a bit from complexity, we will use:

Proposition 3.17. For an easy quantum group G = (GN), coming from a category
of partitions D ⊂ P , the following conditions are equivalent:

(1) GN−1 = GN ∩ U+
N−1, via the embedding U+

N−1 ⊂ U+
N given by u→ diag(u, 1).

(2) GN−1 = GN ∩ U+
N−1, via the N possible diagonal embeddings U+

N−1 ⊂ U+
N .

(3) D is stable under the operation which consists in removing blocks.

Proof. We use the general easiness theory, as explained above:

(1) ⇐⇒ (2) This is something standard, coming from the inclusion SN ⊂ GN , which
makes everything SN -invariant. The result follows as well from the proof of (1) ⇐⇒ (3)
below, which can be converted into a proof of (2) ⇐⇒ (3), in the obvious way.

(1) ⇐⇒ (3) Given a subgroup K ⊂ U+
N−1, with fundamental corepresentation u,

consider the N ×N matrix v = diag(u, 1). Our claim is that for any π ∈ P (k) we have:

ξπ ∈ Fix(v⊗k) ⇐⇒ ξπ′ ∈ Fix(v⊗k′), ∀π′ ∈ P (k′), π′ ⊂ π
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In order to prove this, we must study the condition on the left. We have:

ξπ ∈ Fix(v⊗k) ⇐⇒ (v⊗kξπ)i1...ik = (ξπ)i1...ik ,∀i
⇐⇒

∑
j

(v⊗k)i1...ik,j1...jk(ξπ)j1...jk = (ξπ)i1...ik ,∀i

⇐⇒
∑
j

δπ(j1, . . . , jk)vi1j1 . . . vikjk = δπ(i1, . . . , ik),∀i

Now let us recall that our corepresentation has the special form v = diag(u, 1). We
conclude from this that for any index a ∈ {1, . . . , k}, we must have:

ia = N =⇒ ja = N

With this observation in hand, if we denote by i′, j′ the multi-indices obtained from
i, j obtained by erasing all the above ia = ja = N values, and by k′ ≤ k the common
length of these new multi-indices, our condition becomes:∑

j′

δπ(j1, . . . , jk)(v
⊗k′)i′j′ = δπ(i1, . . . , ik),∀i

Here the index j is by definition obtained from j′ by filling with N values. In order
to finish now, we have two cases, depending on i, as follows:

Case 1. Assume that the index set {a|ia = N} corresponds to a certain subpartition
π′ ⊂ π. In this case, the N values will not matter, and our formula becomes:∑

j′

δπ(j
′
1, . . . , j

′
k′)(v

⊗k′)i′j′ = δπ(i
′
1, . . . , i

′
k′)

Case 2. Assume now the opposite, namely that the set {a|ia = N} does not correspond
to a subpartition π′ ⊂ π. In this case the indices mix, and our formula reads:

0 = 0

Thus, we are led to ξπ′ ∈ Fix(v⊗k′), for any subpartition π′ ⊂ π, as claimed. Thus
our claim is proved, and with this in hand, the result follows from Tannakian duality. □

Based on the above result, let us formulate the following definition:

Definition 3.18. An easy quantum group G = (GN), coming from a category of
partitions D ⊂ P , is called uniform when we have, for any N ∈ N:

GN−1 = GN ∩ U+
N−1

Equivalently, D must be stable under the operation which consists in removing blocks.

For classification purposes the uniformity axiom is something very natural and useful,
substantially cutting from complexity, and we have the following result:
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Theorem 3.19. The classical and free uniform orthogonal easy quantum groups are

H+
N

// O+
N

S+
N

//

>>

B+
N

>>

HN
//

OO

ON

OO

SN

OO

==

// BN

OO

<<

with BN , B
+
N being the classical and quantum bistochastic groups.

Proof. There are several things to be proved, the idea being as follows:

(1) We first recall that the bistochastic group BN ⊂ ON consists of the orthogonal
matrices whose entries sum up to 1 on each row, or equivalently, sum up to 1 on each
column. Thus, if we denote by ξ ∈ CN the all-one vector, we have:

BN =
{
U ∈ ON

∣∣∣Uξ = ξ
}

Based on this, we can construct a free analogue of BN as follows, and the fact that
we obtain indeed a quantum group follows exactly as for O+

N , U
+
N :

C(B+
N) = C(O+

N)
/〈

uξ = ξ
〉

(2) Since the relation uξ = ξ reads T| ∈ Fix(u), with | ∈ P (0, 1) being the singleton
partition, we conclude that BN , B

+
N are easy, coming from the categories P12, NC12 of

singletons and pairings, and noncrossing singletons and pairings. Thus, all the quantum
groups in the statement are easy, the corresponding categories of partitions being:

NCeven

}}

��

NC2

~~

oo

��

NC

��

NC12

��

oo

Peven

}}

P2

~~

oo

P P12
oo

(3) Regarding now the classification, consider an easy quantum group SN ⊂ GN ⊂ ON .
This must come from a category P2 ⊂ D ⊂ P , and if we assume G = (GN) to be uniform,
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then D is uniquely determined by the subset L ⊂ N consisting of the sizes of the blocks
of the partitions in D. Our claim is that the admissible sets are as follows:

– L = {2}, producing ON .

– L = {1, 2}, producing BN .

– L = {2, 4, 6, . . .}, producing HN .

– L = {1, 2, 3, . . .}, producing SN .

(4) Indeed, in one sense, this follows from our easiness results for ON , BN , HN , SN . In
the other sense now, assume that L ⊂ N is such that the set PL consisting of partitions
whose sizes of the blocks belong to L is a category of partitions. We know from the axioms
of the categories of partitions that the semicircle ∩ must be in the category, so we have
2 ∈ L. We claim that the following conditions must be satisfied as well:

k, l ∈ L, k > l =⇒ k − l ∈ L

k ∈ L, k ≥ 2 =⇒ 2k − 2 ∈ L

(5) Indeed, we will prove that both conditions follow from the axioms of the categories
of partitions. Let us denote by bk ∈ P (0, k) the one-block partition:

bk =

{
⊓⊓ . . . ⊓
1 2 . . . k

}
For k > l, we can write bk−l in the following way:

bk−l =


⊓⊓ . . . . . . . . . . . . ⊓
1 2 . . . l l + 1 . . . k
⊔⊔ . . . ⊔ | . . . |

1 . . . k − l


In other words, we have the following formula:

bk−l = (b∗l ⊗ |⊗k−l)bk

Since all the terms of this composition are in PL, we have bk−l ∈ PL, and this proves
our first claim. As for the second claim, this can be proved in a similar way, by capping
two adjacent k-blocks with a 2-block, in the middle.

(6) With these conditions in hand, we can conclude in the following way:

Case 1. Assume 1 ∈ L. By using the first condition with l = 1 we get:

k ∈ L =⇒ k − 1 ∈ L
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This condition shows that we must have L = {1, 2, . . . ,m}, for a certain number
m ∈ {1, 2, . . . ,∞}. On the other hand, by using the second condition we get:

m ∈ L =⇒ 2m− 2 ∈ L

=⇒ 2m− 2 ≤ m

=⇒ m ∈ {1, 2,∞}
The case m = 1 being excluded by the condition 2 ∈ L, we reach to one of the two

sets producing the groups SN , BN .

Case 2. Assume 1 /∈ L. By using the first condition with l = 2 we get:

k ∈ L =⇒ k − 2 ∈ L

This condition shows that we must have L = {2, 4, . . . , 2p}, for a certain number
p ∈ {1, 2, . . . ,∞}. On the other hand, by using the second condition we get:

2p ∈ L =⇒ 4p− 2 ∈ L

=⇒ 4p− 2 ≤ 2p

=⇒ p ∈ {1,∞}
Thus L must be one of the two sets producing ON , HN , and we are done. In the free

case, S+
N ⊂ GN ⊂ O+

N , the situation is quite similar, the admissible sets being once again
the above ones, producing this time O+

N , B
+
N , H

+
N , S

+
N . □

When removing the uniformity axiom things become more complicated, as follows:

Theorem 3.20. The classical and free orthogonal easy quantum groups are

H+
N

// O+
N

S ′+
N

==

B′+
N

==

S+
N

//

==

B+
N

==

HN
//

OO

ON

OO

S ′
N

<<

B′
N

<<

SN

OO

<<

// BN

OO

<<

with S ′
N = SN × Z2, B

′
N = BN × Z2, and with S ′+

N ,B
′+
N being their liberations, where B′+

N

stands for the two possible such liberations, B′+
N ⊂ B′′+

N .

Proof. The idea here is that of jointly classifying the “classical” categories of parti-
tions P2 ⊂ D ⊂ P , and the “free” ones NC2 ⊂ D ⊂ NC:
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(1) At the classical level this leads, via a study which is quite similar to that from the
proof of Theorem 3.19, to 2 more groups, namely S ′

N , B
′
N .

(2) At the free level we obtain 3 more quantum groups, S ′+
N , B

′+
N , B

′′+
N , with the in-

clusion B′+
N ⊂ B′′+

N , which is something a bit surprising, being best thought of as coming
from an inclusion B′

N ⊂ B′′
N , which happens to be an isomorphism. □

It is possible to obtain similar results in the general unitary case, first with a quite
simple statement, regarding the uniform case, and then with something more complicated,
regarding the non-uniform case. We refer here to the paper of Tarrago-Weber [81].

Importantly, the uniformity assumption has some interesting analytic consequences,
making the link with the Bercovici-Pata bijection [19]. In order to discuss this, we first
need to know how to integrate on the easy quantum groups, and we have here:

Theorem 3.21. Assuming that a closed subgroup G ⊂ U+
N is easy, coming from a

category of partitions D ⊂ P , we have the Weingarten formula∫
G

ue1i1j1 . . . u
ek
ikjk

=
∑

π,σ∈D(k)

δπ(i)δσ(j)WkN(π, σ)

where δ ∈ {0, 1} are the usual Kronecker type symbols, and where the Weingarten matrix
WkN = G−1

kN is the inverse of the Gram matrix GkN(π, σ) = N |π∨σ|.

Proof. We know from the general theory in chapter 1 that the integrals in the state-
ment form altogether the orthogonal projection P k onto the following space:

Fix(u⊗k) = span
(
ξπ

∣∣∣π ∈ D(k)
)

In order to prove the result, consider the following linear map:

E(x) =
∑

π∈D(k)

< x, ξπ > ξπ

By a standard linear algebra computation, it follows that we have P = WE, where W
is the inverse on Fix(u⊗k) of the restriction of E. But this restriction is the linear map
given by GkN , and so W is the linear map given by WkN , and this gives the result. □

In relation now with characters, we have the following moment formula:

Proposition 3.22. The moments of truncated characters are given by the formula∫
G

(u11 + . . .+ uss)
k = Tr(WkNGks)

where GkN and WkN = G−1
kN are the associated Gram and Weingarten matrices.
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Proof. We have indeed the following computation:∫
G

(u11 + . . .+ uss)
k =

s∑
i1=1

. . .

s∑
ik=1

∫
ui1i1 . . . uikik

=
∑

π,σ∈D(k)

WkN(π, σ)
s∑

i1=1

. . .

s∑
ik=1

δπ(i)δσ(i)

=
∑

π,σ∈D(k)

WkN(π, σ)Gks(σ, π)

= Tr(WkNGks)

Thus, we have obtained the formula in the statement. □

With the above general theory in hand, we can now formulate our character results
for the main examples of uniform easy quantum groups, as follows:

Theorem 3.23. For the main quantum rotation and reflection groups,

K+
N

// U+
N

H+
N

//

==

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

<<

the corresponding truncated characters follow with N → ∞ the laws

Bt Γt

βt γt

Bt Gt

bt gt

which are the main limiting laws in classical and free probability.
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Proof. We know from Theorem 3.15 that the above quantum groups are all easy,
coming from the following categories of partitions:

NCeven

zz

��

NC2

��

oo

��

NCeven

��

NC2

��

oo

Peven

zz

P2

��

oo

Peven P2
oo

Now by using Proposition 3.22, we obtain the following formula:

lim
N→∞

∫
GN

χk
t =

∑
π∈D(k)

t|π|

But this gives the laws in the statement, via some standard calculus. □

3c. Temperley-Lieb

All the above is sweet, and there are many other things that can be said, along the
same lines, about the liberation operations GN → G+

N , using easiness and partitions. This
being said, we are rather interested in free quantum groups, so we do not need partitions
with crossings, and this leads us to a quite puzzling question, as follows:

Question 3.24. Among the many objects which are in bijection with the noncrossing
partitions, which are the most adapted to the study of the free quantum groups?

To be more precise here, in order to give you a taste on what this question is about,
you have surely heard for instance about the Catalan numbers:

Ck =
1

k + 1

(
2k

k

)
These Catalan numbers count the partitions in NC(k), but they count as well a zillion

other interesting things, just ask and any expert in combinatorics will probably get you
stuck for 1 hour in the coffee room, in explaining you all this, and our problem is, among
these zillion things, what are the best for the study of free quantum groups.

This does not look obvious, and so time to ask the cat. And cat says:

Cat 3.25. You’re getting old, double the strings as to have Temperley-Lieb diagrams,
as in the heyday of free quantum group theory.
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Thanks cat, and yes indeed, age does not help much with knowledge and memory, in
fact Question 3.24 is something that I already thought about, some 30 years ago, when
developing the basic theory of free quantum groups. Following Temperley-Lieb, who by
the way were first-class physicists, and then Jones, who was a first-class physicist too,
and many others, including myself when younger, not to forget cat of course, we will of
course go for this, doubling strings and using Temperley-Lieb diagrams.

Let us start with the following result, which is well-known:

Proposition 3.26. We have a bijection NC(k) ≃ NC2(2k), as follows:

(1) The application NC(k) → NC2(2k) is the “fattening” one, obtained by doubling
all the legs, and doubling all the strings as well.

(2) Its inverse NC2(2k) → NC(k) is the “shrinking” application, obtained by col-
lapsing pairs of consecutive neighbors.

Proof. The fact that the above two operations are indeed inverse to each other is
clear, by drawing pictures, and computing the corresponding compositions. □

With the above result in hand, we can axiomatize the free quantum groups, in terms
of Temperley-Lieb diagrams NC2, and say many interesting things about them, based on
the work of Jones and others on subfactor theory and planar algebras [67].

We can compute representations and their fusion rules, Cayley graphs, growth expo-
nents, laws of characters and more, by using diagrams, and more specifically Temperley-
Lieb diagrams NC2, which are quite often the most adapted, to our questions.

As a basic example for what can be done here, regarding O+
N , we have:

Theorem 3.27. The irreducible representations of O+
N with N ≥ 2 can be labelled by

positive integers, rk with k ∈ N, the fusion rules for these representations are

rk ⊗ rl = r|k−l| + r|k−l|+2 + . . .+ rk+l

and the dimensions are dim rk = (qk+1 − q−k−1)/(q − q−1), with q + q−1 = N .

Proof. The idea is to skilfully recycle the well-known proof for SU2. Our claim is
that we can construct, by recurrence on k ∈ N, a sequence r0, r1, r2, . . . of irreducible,
self-adjoint and distinct representations of O+

N , satisfying:

r0 = 1 , r1 = u , rk−1 ⊗ r1 = rk−2 + rk

In order to do so, we can use the formula rk−2⊗r1 = rk−3+rk−1 and Frobenius duality,
and we conclude there exists a certain representation rk such that:

rk−1 ⊗ r1 = rk−2 + rk
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As a first observation, rk is self-adjoint, because its character is a certain polynomial
with integer coefficients in χ, which is self-adjoint. In order to prove now that rk is
irreducible, and non-equivalent to r0, . . . , rk−1, let us split as before u

⊗k, as follows:

u⊗k = ckrk + ck−2rk−2 + ck−4rk−4 + . . .

The point now is that we have the following equalities and inequalities:

Ck =
∑
i

c2i ≤ dim(End(u⊗k)) ≤ |NC2(k, k)| = Ck

Indeed, the equality at left is clear as before, then comes a standard inequality, then
an inequality coming from easiness, then a standard equality. Thus, we have equality,
so rk is irreducible, and non-equivalent to rk−2, rk−4, . . . Moreover, rk is not equivalent to
rk−1, rk−3, . . . either, by using the same argument as for SU2, and the end of the proof is
exactly as for SU2. As for dimensions, by recurrence we obtain, with q + q−1 = N :

dim rk = qk + qk−2 + . . .+ q−k+2 + q−k

But this gives the dimension formula in the statement, and we are done. □

It is possible to use similar methods for the other main examples of free quantum
groups, and do many other things, in relation with the Temperley-Lieb algebra.

3d. Meander determinants

We discuss now, following Di Francesco [38] and others, the computation of the Gram
determinants for the free quantum groups, which is a very interesting question, related to
many things. But let us start with SN and other classical groups. We will need:

Definition 3.28. The Möbius function of any lattice, and so of P , is given by

µ(π, σ) =


1 if π = σ

−
∑

π≤τ<σ µ(π, τ) if π < σ

0 if π ̸≤ σ

with the construction being performed by recurrence.

As an illustration here, for P (2) = {||,⊓}, we have by definition:

µ(||, ||) = µ(⊓,⊓) = 1

Also, || < ⊓, with no intermediate partition in between, so we obtain:

µ(||,⊓) = −µ(||, ||) = −1

Finally, we have ⊓ ̸≤ ||, and so we have as well the following formula:

µ(⊓, ||) = 0

We will need the Möbius inversion formula, which can be formulated as follows:



3D. MEANDER DETERMINANTS 61

Theorem 3.29. The inverse of the adjacency matrix of P (k), given by

Ak(π, σ) =

{
1 if π ≤ σ

0 if π ̸≤ σ

is the Möbius matrix of P , given by Mk(π, σ) = µ(π, σ).

Proof. This is well-known, coming from the fact that Ak is upper triangular. Indeed,
when inverting, we are led into the recurrence for µ, from Definition 3.28. □

As an illustration, for P (2) the formula M2 = A−1
2 appears as follows:(

1 −1
0 1

)
=

(
1 1
0 1

)−1

Now back to our Gram matrix considerations, we have the following result:

Proposition 3.30. The Gram matrix of the vectors ξπ with π ∈ P (k),

Gπσ = N |π∨σ|

decomposes as a product of upper/lower triangular matrices, Gk = AkLk, where

Lk(π, σ) =

{
N(N − 1) . . . (N − |π|+ 1) if σ ≤ π

0 otherwise

and where Ak is the adjacency matrix of P (k).

Proof. We have indeed the following computation:

Gk(π, σ) = N |π∨σ|

= #
{
i1, . . . , ik ∈ {1, . . . , N}

∣∣∣ ker i ≥ π ∨ σ
}

=
∑

τ≥π∨σ

#
{
i1, . . . , ik ∈ {1, . . . , N}

∣∣∣ ker i = τ
}

=
∑

τ≥π∨σ

N(N − 1) . . . (N − |τ |+ 1)

According now to the definition of Ak, Lk, this formula reads:

Gk(π, σ) =
∑
τ≥π

Lk(τ, σ)

=
∑
τ

Ak(π, τ)Lk(τ, σ)

= (AkLk)(π, σ)

Thus, we are led to the formula in the statement. □
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As an illustration for the above result, at k = 2 we have P (2) = {||,⊓}, and the above
decomposition G2 = A2L2 appears as follows:(

N2 N
N N

)
=

(
1 1
0 1

)(
N2 −N 0
N N

)
We are led in this way to the following formula, due to Lindstöm:

Theorem 3.31. The determinant of the Gram matrix Gk is given by

det(Gk) =
∏

π∈P (k)

N !

(N − |π|)!

with the convention that in the case N < k we obtain 0.

Proof. If we order P (k) as usual, with respect to the number of blocks, and then
lexicographically, Ak is upper triangular, and Lk is lower triangular. Thus, we have:

det(Gk) = det(Ak) det(Lk)

= det(Lk)

=
∏
π

Lk(π, π)

=
∏
π

N(N − 1) . . . (N − |π|+ 1)

Thus, we are led to the formula in the statement. □

Let us discuss as well the case of the orthogonal group ON . Here the combinatorics is
that of the Young diagrams. We denote by |.| the number of boxes, and we use quantity
fλ, which gives the number of standard Young tableaux of shape λ. We have then:

Theorem 3.32. The determinant of the Gram matrix of ON is given by

det(GkN) =
∏

|λ|=k/2

fN(λ)
f2λ

where the quantities on the right are fN(λ) =
∏

(i,j)∈λ(N + 2j − i− 1).

Proof. For the group ON the Gram matrix is diagonalizable, as follows:

GkN =
∑

|λ|=k/2

fN(λ)P2λ

Here 1 =
∑
P2λ is the standard partition of unity associated to the Young diagrams

having k/2 boxes, and the coefficients fN(λ) are those in the statement. Now since we
have Tr(P2λ) = f 2λ, this gives the formula in the statement. □

In order to deal now with O+
N , S

+
N , we will need the following fact:
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Proposition 3.33. The Gram matrices of NC2(2k) ≃ NC(k) are related by

G2k,n(π, σ) = nk(∆−1
knGk,n2∆−1

kn )(π
′, σ′)

where π → π′ is the shrinking operation, and ∆kn is the diagonal of Gkn.

Proof. In the context of the bijection from Proposition 3.26, we have:

|π ∨ σ| = k + 2|π′ ∨ σ′| − |π′| − |σ′|
We therefore have the following formula, valid for any n ∈ N:

n|π∨σ| = nk+2|π′∨σ′|−|π′|−|σ′|

Thus, we are led to the formula in the statement. □

Now back to O+
N , S

+
N , let us begin with some examples. We first have:

Proposition 3.34. The first Gram matrices and determinants for O+
N are

det

(
N2 N
N N2

)
= N2(N2 − 1)

det


N3 N2 N2 N2 N
N2 N3 N N N2

N2 N N3 N N2

N2 N N N3 N2

N N2 N2 N2 N3

 = N5(N2 − 1)4(N2 − 2)

with the matrices being written by using the lexicographic order on NC2(2k).

Proof. The formula at k = 2, where NC2(4) = {⊓⊓,
⋂
∩ }, is clear from definitions.

At k = 3 however, things are tricky. The partitions here are as follows:

NC(3) = {|||,⊓|,⊓| , |⊓,⊓⊓}
The Gram matrix and its determinant are, according to Theorem 3.31:

det


N3 N2 N2 N2 N
N2 N2 N N N
N2 N N2 N N
N2 N N N2 N
N N N N N

 = N5(N − 1)4(N − 2)

By using Proposition 3.33, the Gram determinant of NC2(6) is given by:

det(G6N) =
1

N2
√
N

×N10(N2 − 1)4(N2 − 2)× 1

N2
√
N

= N5(N2 − 1)4(N2 − 2)

Thus, we have obtained the formula in the statement. □
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In general, such tricks won’t work, because NC(k) is strictly smaller than P (k) at
k ≥ 4. However, following Di Francesco [38], we have the following result:

Theorem 3.35. The determinant of the Gram matrix for O+
N is given by

det(GkN) =

[k/2]∏
r=1

Pr(N)dk/2,r

where Pr are the Chebycheff polynomials, given by

P0 = 1 , P1 = X , Pr+1 = XPr − Pr−1

and dkr = fkr − fk,r+1, with fkr being the following numbers, depending on k, r ∈ Z,

fkr =

(
2k

k − r

)
−
(

2k

k − r − 1

)
with the convention fkr = 0 for k /∈ Z.

Proof. This is something quite technical, obtained by using a decomposition as fol-
lows of the Gram matrix GkN , with the matrix TkN being lower triangular:

GkN = TkNT
t
kN

Thus, a bit as in the proof of the Lindstöm formula, we obtain the result, but the
problem lies however in the construction of TkN , which is non-trivial. See [38]. □

With this in hand, we have as well a similar formula for S+
N , obtained from Theorem

3.35 via Proposition 3.33. For the other free quantum groups, the computations can be
done as well. For more on all this, we refer to [38] and related papers.

3e. Exercises

Exercises:

Exercise 3.36.

Exercise 3.37.

Exercise 3.38.

Exercise 3.39.

Exercise 3.40.

Exercise 3.41.

Exercise 3.42.

Exercise 3.43.

Bonus exercise.



CHAPTER 4

Free manifolds

4a. Quotient spaces

Let us begin with some generalities regarding the quotient spaces, and more general
homogeneous spaces. Regarding the quotients, we have the following construction:

Proposition 4.1. Given a quantum subgroup H ⊂ G, with associated quotient map
ρ : C(G) → C(H), if we define the quotient space X = G/H by setting

C(X) =
{
f ∈ C(G)

∣∣∣(ρ⊗ id)∆f = 1⊗ f
}

then we have a coaction map as follows,

Φ : C(X) → C(X)⊗ C(G)

obtained as the restriction of the comultiplication of C(G). In the classical case, we obtain
in this way the usual quotient space X = G/H.

Proof. Observe that the linear subspace C(X) ⊂ C(G) defined in the statement is
indeed a subalgebra, because it is defined via a relation of type φ(f) = ψ(f), with both
φ, ψ being morphisms of algebras. Observe also that in the classical case we obtain the
algebra of continuous functions on the quotient space X = G/H, because:

(ρ⊗ id)∆f = 1⊗ f ⇐⇒ (ρ⊗ id)∆f(h, g) = (1⊗ f)(h, g),∀h ∈ H,∀g ∈ G

⇐⇒ f(hg) = f(g),∀h ∈ H,∀g ∈ G

⇐⇒ f(hg) = f(kg),∀h, k ∈ H,∀g ∈ G

Regarding now the construction of Φ, observe that for f ∈ C(X) we have:

(ρ⊗ id⊗ id)(∆⊗ id)∆f = (ρ⊗ id⊗ id)(id⊗∆)∆f

= (id⊗∆)(ρ⊗ id)∆f

= (id⊗∆)(1⊗ f)

= 1⊗∆f

Thus the condition f ∈ C(X) implies ∆f ∈ C(X)⊗C(G), and this gives the existence
of Φ. Finally, the other assertions are all clear. □

As an illustration, in the group dual case we have:

65
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Proposition 4.2. Assume that G = Γ̂ is a discrete group dual.

(1) The quantum subgroups of G are H = Λ̂, with Γ → Λ being a quotient group.

(2) For such a quantum subgroup Λ̂ ⊂ Γ̂, we have Γ̂/Λ̂ = Θ̂, where:

Θ = ker(Γ → Λ)

Proof. This is well-known, the idea being as follows:

(1) In one sense, this is clear. Conversely, since the algebra C(G) = C∗(Γ) is cocom-
mutative, so are all its quotients, and this gives the result.

(2) Consider a quotient map r : Γ → Λ, and denote by ρ : C∗(Γ) → C∗(Λ) its
extension. Consider a group algebra element, written as follows:

f =
∑
g∈Γ

λg · g ∈ C∗(Γ)

We have then the following computation:

f ∈ C(Γ̂/Λ̂) ⇐⇒ (ρ⊗ id)∆(f) = 1⊗ f

⇐⇒
∑
g∈Γ

λg · r(g)⊗ g =
∑
g∈Γ

λg · 1⊗ g

⇐⇒ λg · r(g) = λg · 1,∀g ∈ Γ

⇐⇒ supp(f) ⊂ ker(r)

But this means that we have Γ̂/Λ̂ = Θ̂, with Θ = ker(Γ → Λ), as claimed. □

Given two compact quantum spaces X, Y , we say that X is a quotient space of Y
when we have an embedding of C∗-algebras α : C(X) ⊂ C(Y ). We have:

Definition 4.3. We call a quotient space G→ X homogeneous when

∆(C(X)) ⊂ C(X)⊗ C(G)

where ∆ : C(G) → C(G)⊗ C(G) is the comultiplication map.

In other words, an homogeneous quotient space G → X is a quantum space coming
from a subalgebra C(X) ⊂ C(G), which is stable under the comultiplication. The relation
with the quotient spaces from Proposition 4.1 is as follows:

Theorem 4.4. The following results hold:

(1) The quotient spaces X = G/H are homogeneous.
(2) In the classical case, any homogeneous space is of type G/H.
(3) In general, there are homogeneous spaces which are not of type G/H.
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Proof. Once again these results are well-known, the proof being as follows:

(1) This is clear from Proposition 4.1.

(2) Consider a quotient map p : G → X. The invariance condition in the statement
tells us that we must have an action G↷ X, given by:

g(p(g′)) = p(gg′)

Thus, we have the following implication:

p(g′) = p(g′′) =⇒ p(gg′) = p(gg′′), ∀g ∈ G

Now observe that the following subset H ⊂ G is a subgroup:

H =
{
g ∈ G

∣∣∣p(g) = p(1)
}

Indeed, g, h ∈ H implies that we have:

p(gh) = p(g) = p(1)

Thus we have gh ∈ H, and the other axioms are satisfied as well. Our claim now is
that we have an identification X = G/H, obtained as follows:

p(g) → Hg

Indeed, the map p(g) → Hg is well-defined and bijective, because p(g) = p(g′) is
equivalent to p(g−1g′) = p(1), and so to Hg = Hg′, as desired.

(3) Given a discrete group Γ and an arbitrary subgroup Θ ⊂ Γ, the quotient space

Γ̂ → Θ̂ is homogeneous. Now by using Proposition 4.2, we can see that if Θ ⊂ Γ is not

normal, the quotient space Γ̂ → Θ̂ is not of the form G/H. □

With the above formalism in hand, let us try now to understand the general properties
of the homogeneous spaces G→ X, in the sense of Theorem 4.4. We have:

Proposition 4.5. Assume that a quotient space G→ X is homogeneous.

(1) We have a coaction map as follows, obtained as restriction of ∆:

Φ : C(X) → C(X)⊗ C(G)

(2) We have the following implication:

Φ(f) = f ⊗ 1 =⇒ f ∈ C1
(3) We have as well the following formula:(

id⊗
∫
G

)
Φf =

∫
G

f

(4) The restriction of
∫
G
is the unique unital form satisfying:

(τ ⊗ id)Φ = τ(.)1
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Proof. These results are all elementary, the proof being as follows:

(1) This is clear from definitions, because ∆ itself is a coaction.

(2) Assume that f ∈ C(G) satisfies ∆(f) = f ⊗ 1. By applying the counit we obtain:

(ε⊗ id)∆f = (ε⊗ id)(f ⊗ 1)

We conclude from this that we have f = ε(f)1, as desired.

(3) The formula in the statement, (id ⊗
∫
G
)Φf =

∫
G
f , follows indeed from the left

invariance property of the Haar functional of C(G), namely:(
id⊗

∫
G

)
∆f =

∫
G

f

(4) We use here the right invariance of the Haar functional of C(G), namely:(∫
G

⊗id
)
∆f =

∫
G

f

Indeed, we obtain from this that tr = (
∫
G
)|C(X) is G-invariant, in the sense that:

(tr ⊗ id)Φf = tr(f)1

Conversely, assuming that τ : C(X) → C satisfies (τ ⊗ id)Φf = τ(f)1, we have:(
τ ⊗

∫
G

)
Φ(f) =

∫
G

(τ ⊗ id)Φ(f)

=

∫
G

(τ(f)1)

= τ(f)

On the other hand, we can compute the same quantity as follows:(
τ ⊗

∫
G

)
Φ(f) = τ

(
id⊗

∫
G

)
Φ(f)

= τ(tr(f)1)

= tr(f)

Thus we have τ(f) = tr(f) for any f ∈ C(X), and this finishes the proof. □

Summarizing, we have a notion of noncommutative homogeneous space, which per-
fectly covers the classical case. In general, however, the group dual case shows that our
formalism is more general than that of the quotient spaces G/H.

We discuss now an extra issue, of analytic nature. The point indeed is that for one
of the most basic examples of actions, namely O+

N ↷ SN−1
R,+ , the associated morphism

α : C(X) → C(G) is not injective. The same is true for other basic actions, in the free
setting. In order to include such examples, we must relax our axioms:
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Definition 4.6. An extended homogeneous space over a compact quantum group G
consists of a morphism of C∗-algebras, and a coaction map, as follows,

α : C(X) → C(G)

Φ : C(X) → C(X)⊗ C(G)

such that the following diagram commutes

C(X)
Φ //

α

��

C(X)⊗ C(G)

α⊗id

��
C(G)

∆ // C(G)⊗ C(G)

and such that the following diagram commutes as well,

C(X)
Φ //

α

��

C(X)⊗ C(G)

id⊗
∫

��
C(G)

∫
(.)1

// C(X)

where
∫

is the Haar integration over G. We write then G→ X.

As a first observation, when the morphism α is injective we obtain an homogeneous
space in the previous sense. The examples with α not injective, which motivate the above
formalism, include the standard action O+

N ↷ SN−1
R,+ , and the standard action U+

N ↷ SN−1
C,+ .

Here are a few general remarks on the above axioms:

Proposition 4.7. Assume that we have morphisms of C∗-algebras

α : C(X) → C(G)

Φ : C(X) → C(X)⊗ C(G)

satisfying the coassociativity condition (α⊗ id)Φ = ∆α.

(1) If α is injective on a dense ∗-subalgebra A ⊂ C(X), and Φ(A) ⊂ A⊗C(G), then
Φ is automatically a coaction map, and is unique.

(2) The ergodicity type condition (id ⊗
∫
)Φ =

∫
α(.)1 is equivalent to the existence

of a linear form λ : C(X) → C such that (id⊗
∫
)Φ = λ(.)1.

Proof. This is something elementary, the idea being as follows:

(1) Assuming that we have a dense ∗-subalgebra A ⊂ C(X) as in the statement,
satisying Φ(A) ⊂ A⊗ C(G), the restriction Φ|A is given by:

Φ|A = (α|A ⊗ id)−1∆α|A
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This restriction and is therefore coassociative, and unique. By continuity, the mor-
phism Φ itself follows to be coassociative and unique, as desired.

(2) Assuming (id⊗
∫
)Φ = λ(.)1, we have:(

α⊗
∫ )

Φ = λ(.)1

On the other hand, we have as well the following formula:(
α⊗

∫ )
Φ =

(
id⊗

∫ )
∆α =

∫
α(.)1

Thus we obtain λ =
∫
α, as claimed. □

Given an extended homogeneous space G → X in our sense, with associated map
α : C(X) → C(G), we can consider the image of this latter map:

α : C(X) → C(Y ) ⊂ C(G)

Equivalently, at the level of the associated noncommutative spaces, we can factorize
the corresponding quotient map G→ Y ⊂ X. With these conventions, we have:

Proposition 4.8. Consider an extended homogeneous space G→ X.

(1) Φ(f) = f ⊗ 1 =⇒ f ∈ C1.
(2) tr =

∫
α is the unique unital G-invariant form on C(X).

(3) The image space obtained by factorizing, G→ Y , is homogeneous.

Proof. We have several assertions to be proved, the idea being as follows:

(1) This follows indeed from (id⊗
∫
)Φ(f) =

∫
α(f)1, which gives f =

∫
α(f)1.

(2) The fact that tr =
∫
α is indeed G-invariant can be checked as follows:

(tr ⊗ id)Φf = (∫ α⊗ id)Φf

= (∫ ⊗id)∆αf
= ∫ α(f)1
= tr(f)1

As for the uniqueness assertion, this follows as before.
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(3) The condition (α⊗ id)Φ = ∆α, together with the fact that i is injective, allows us
to factorize ∆ into a morphism Ψ, as follows:

C(X)
Φ //

α

��

C(X)⊗ C(G)

α⊗id

��
C(Y )

Ψ //

i

��

C(Y )⊗ C(G)

i⊗id

��
C(G)

∆ // C(G)⊗ C(G)

Thus the image space G→ Y is indeed homogeneous, and we are done. □

Finally, we have the following result:

Theorem 4.9. Let G→ X be an extended homogeneous space, and construct quotients
X → X ′, G → G′ by performing the GNS construction with respect to

∫
α,
∫
. Then α

factorizes into an inclusion α′ : C(X ′) → C(G′), and we have an homogeneous space.

Proof. We factorize G → Y ⊂ X as above. By performing the GNS construction
with respect to

∫
iα,
∫
i,
∫
, we obtain a diagram as follows:

C(X)
p //

α

��

C(X ′)

α′

��

tr′

''
C(Y )

q //

i

��

C(Y ′)

i′

��

C

C(G)
r // C(G′)

∫ ′

77

Indeed, with tr =
∫
α, the GNS quotient maps p, q, r are defined respectively by:

ker p =
{
f ∈ C(X)

∣∣∣tr(f ∗f) = 0
}

ker q =
{
f ∈ C(Y )

∣∣∣ ∫(f ∗f) = 0
}

ker r =
{
f ∈ C(G)

∣∣∣ ∫(f ∗f) = 0
}
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Next, we can define factorizations i′, α′ as above. Observe that i′ is injective, and that
α′ is surjective. Our claim now is that α′ is injective as well. Indeed:

α′p(f) = 0 =⇒ qα(f) = 0

=⇒
∫
α(f ∗f) = 0

=⇒ tr(f ∗f) = 0

=⇒ p(f) = 0

We conclude that we have X ′ = Y ′, and this gives the result. □

4b. Partial isometries

Our task now will be that of finding a suitable collection of “free homogeneous spaces”,
generalizing at the same time the free spheres S, and the free unitary groups U . This
can be done at several levels of generality, and central here is the construction of the free
spaces of partial isometries, which can be done in fact for any easy quantum group. In
order to explain this, let us start with the classical case. We have here:

Definition 4.10. Associated to any integers L ≤M,N are the spaces

OL
MN =

{
T : E → F isometry

∣∣∣E ⊂ RN , F ⊂ RM , dimRE = L
}

UL
MN =

{
T : E → F isometry

∣∣∣E ⊂ CN , F ⊂ CM , dimCE = L
}

where the notion of isometry is with respect to the usual real/complex scalar products.

As a first observation, at L =M = N we obtain the groups ON , UN :

ON
NN = ON , UN

NN = UN

Another interesting specialization is L = M = 1. Here the elements of O1
1N are the

isometries T : E → R, with E ⊂ RN one-dimensional. But such an isometry is uniquely
determined by T−1(1) ∈ RN , which must belong to SN−1

R . Thus, we have O1
1N = SN−1

R .
Similarly, in the complex case we have U1

1N = SN−1
C , and so our results here are:

O1
1N = SN−1

R , U1
1N = SN−1

C

Yet another interesting specialization is L = N = 1. Here the elements of O1
1N are the

isometries T : R → F , with F ⊂ RM one-dimensional. But such an isometry is uniquely
determined by T (1) ∈ RM , which must belong to SM−1

R . Thus, we have O1
M1 = SM−1

R .
Similarly, in the complex case we have U1

M1 = SM−1
C , and so our results here are:

O1
M1 = SM−1

R , U1
M1 = SM−1

C

In general, the most convenient is to view the elements of OL
MN , U

L
MN as rectangular

matrices, and to use matrix calculus for their study. We have indeed:
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Proposition 4.11. We have identifications of compact spaces

OL
MN ≃

{
U ∈MM×N(R)

∣∣∣UU t = projection of trace L
}

UL
MN ≃

{
U ∈MM×N(C)

∣∣∣UU∗ = projection of trace L
}

with each partial isometry being identified with the corresponding rectangular matrix.

Proof. We can indeed identify the partial isometries T : E → F with their corre-
sponding extensions U : RN → RM , U : CN → CM , obtained by setting UE⊥ = 0. Then,
we can identify these latter maps U with the corresponding rectangular matrices. □

As an illustration, at L =M = N we recover in this way the usual matrix description
of ON , UN . Also, at L = M = 1 we obtain the usual description of SN−1

R , SN−1
C , as row

spaces over the corresponding groups ON , UN . Finally, at L = N = 1 we obtain the usual
description of SN−1

R , SN−1
C , as column spaces over the corresponding groups ON , UN .

Now back to the general case, observe that the isometries T : E → F , or rather their
extensions U : KN → KM , with K = R,C, obtained by setting UE⊥ = 0, can be composed
with the isometries of KM ,KN , according to the following scheme:

KN B∗
// KN U // KM A // KM

B(E) //

OO

E
T //

OO

F //

OO

A(F )

OO

With the identifications in Proposition 4.11 made, the precise statement here is:

Proposition 4.12. We have action maps as follows, which are both transitive,

OM ×ON ↷ OL
MN , (A,B)U = AUBt

UM × UN ↷ UL
MN , (A,B)U = AUB∗

whose stabilizers are respectively OL ×OM−L ×ON−L and UL × UM−L × UN−L.

Proof. We have indeed action maps as in the statement, which are transitive. Let
us compute now the stabilizer G of the following point:

U =

(
1 0
0 0

)
Since (A,B) ∈ G satisfy AU = UB, their components must be of the following form:

A =

(
x ∗
0 a

)
, B =

(
x 0
∗ b

)
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Now since A,B are unitaries, these matrices follow to be block-diagonal, and so:

G =

{
(A,B)

∣∣∣A =

(
x 0
0 a

)
, B =

(
x 0
0 b

)}
The stabilizer of U is parametrized by triples (x, a, b) belonging to OL×OM−L×ON−L

and UL × UM−L × UN−L, and we are led to the conclusion in the statement. □

Finally, let us work out the quotient space description of OL
MN , U

L
MN . We have here:

Theorem 4.13. We have isomorphisms of homogeneous spaces as follows,

OL
MN = (OM ×ON)/(OL ×OM−L ×ON−L)

UL
MN = (UM × UN)/(UL × UM−L × UN−L)

with the quotient maps being given by (A,B) → AUB∗, where U = (10
0
0).

Proof. This is just a reformulation of Proposition 4.12, by taking into account the
fact that the fixed point used in the proof there was U = (10

0
0). □

Once again, the basic examples here come from the cases L =M = N and L =M = 1.
At L =M = N the quotient spaces at right are respectively:

ON , UN

At L =M = 1 the quotient spaces at right are respectively:

ON/ON−1 , UN/UN−1

In fact, in the general L =M case we obtain the following spaces:

OM
MN = ON/ON−M , UM

MN = UN/UN−M

Similarly, the examples coming from the cases L = M = N and L = N = 1 are
particular cases of the general L = N case, where we obtain the following spaces:

ON
MN = ON/OM−N , UN

MN = UN/UM−N

Summarizing, we have here some basic homogeneous spaces, unifying the spheres with
the rotation groups. The point now is that we can liberate these spaces, as follows:

Definition 4.14. Associated to any integers L ≤M,N are the algebras

C(OL+
MN) = C∗

(
(uij)i=1,...,M,j=1,...,N

∣∣∣u = ū, uut = projection of trace L
)

C(UL+
MN) = C∗

(
(uij)i=1,...,M,j=1,...,N

∣∣∣uu∗, ūut = projections of trace L
)

with the trace being by definition the sum of the diagonal entries.
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Observe that the above universal algebras are indeed well-defined, as it was previously
the case for the free spheres, and this due to the trace conditions, which read:∑

ij

uiju
∗
ij =

∑
ij

u∗ijuij = L

We have inclusions between the various spaces constructed so far, as follows:

OL+
MN

// UL+
MN

OL
MN

//

OO

UL
MN

OO

At the level of basic examples now, at L = M = 1 and at L = N = 1 we obtain the
following diagrams, showing that our formalism covers indeed the free spheres:

SN−1
R,+

// SN−1
C,+

SN−1
R

//

OO

SN−1
C

OO
SM−1
R,+

// SM−1
C,+

SM−1
R

//

OO

SM−1
C

OO

We have as well the following result, in relation with the free rotation groups:

Proposition 4.15. At L =M = N we obtain the diagram

O+
N

// U+
N

ON
//

OO

UN

OO

consisting of the groups ON , UN , and their liberations.

Proof. We recall that the various quantum groups in the statement are constructed
as follows, with the symbol × standing once again for “commutative” and “free”:

C(O×
N) = C∗

×

(
(uij)i,j=1,...,N

∣∣∣u = ū, uut = utu = 1
)

C(U×
N ) = C∗

×

(
(uij)i,j=1,...,N

∣∣∣uu∗ = u∗u = 1, ūut = utū = 1
)
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On the other hand, according to Proposition 4.11 and to Definition 4.14, we have the
following presentation results:

C(ON×
NN) = C∗

×

(
(uij)i,j=1,...,N

∣∣∣u = ū, uut = projection of trace N
)

C(UN×
NN ) = C∗

×

(
(uij)i,j=1,...,N

∣∣∣uu∗, ūut = projections of trace N
)

We use now the standard fact that if p = aa∗ is a projection then q = a∗a is a
projection too. We use as well the following formulae:

Tr(uu∗) = Tr(utū) , T r(ūut) = Tr(u∗u)

We therefore obtain the following formulae:

C(ON×
NN) = C∗

×

(
(uij)i,j=1,...,N

∣∣∣u = ū, uut, utu = projections of trace N
)

C(UN×
NN ) = C∗

×

(
(uij)i,j=1,...,N

∣∣∣uu∗, u∗u, ūut, utū = projections of trace N
)

Now observe that, in tensor product notation, the conditions at right are all of the
form (tr ⊗ id)p = 1. Thus, p must be follows, for the above conditions:

p = uu∗, u∗u, ūut, utū

We therefore obtain that, for any faithful state φ, we have (tr ⊗ φ)(1 − p) = 0. It
follows from this that the following projections must be all equal to the identity:

p = uu∗, u∗u, ūut, utū

But this leads to the conclusion in the statement. □

Regarding now the homogeneous space structure of OL×
MN , U

L×
MN , the situation here is

a bit more complicated in the free case than in the classical case, due to a number of
algebraic and analytic issues. We first have the following result:

Proposition 4.16. The spaces UL×
MN have the following properties:

(1) We have an action U×
M × U×

N ↷ UL×
MN , given by uij →

∑
kl ukl ⊗ aki ⊗ b∗lj.

(2) We have a map U×
M × U×

N → UL×
MN , given by uij →

∑
r≤L ari ⊗ b∗rj.

Similar results hold for the spaces OL×
MN , with all the ∗ exponents removed.

Proof. In the classical case, consider the following action and quotient maps:

UM × UN ↷ UL
MN , UM × UN → UL

MN

The transposes of these two maps are as follows, where J = (10
0
0):

φ → ((U,A,B) → φ(AUB∗))

φ → ((A,B) → φ(AJB∗))

But with φ = uij we obtain precisely the formulae in the statement. The proof in the
orthogonal case is similar. Regarding now the free case, the proof goes as follows:
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(1) Assuming uu∗u = u, let us set:

Uij =
∑
kl

ukl ⊗ aki ⊗ b∗lj

We have then the following computation:

(UU∗U)ij =
∑
pq

∑
klmnst

uklu
∗
mnust ⊗ akia

∗
mqasq ⊗ b∗lpbnpb

∗
tj

=
∑
klmt

uklu
∗
mlumt ⊗ aki ⊗ b∗tj

=
∑
kt

ukt ⊗ aki ⊗ b∗tj

= Uij

Also, assuming that we have
∑

ij uiju
∗
ij = L, we obtain:∑

ij

UijU
∗
ij =

∑
ij

∑
klst

uklu
∗
st ⊗ akia

∗
si ⊗ b∗ljbtj

=
∑
kl

uklu
∗
kl ⊗ 1⊗ 1

= L

(2) Assuming uu∗u = u, let us set:

Vij =
∑
r≤L

ari ⊗ b∗rj

We have then the following computation:

(V V ∗V )ij =
∑
pq

∑
x,y,z≤L

axia
∗
yqazq ⊗ b∗xpbypb

∗
zj

=
∑
x≤L

axi ⊗ b∗xj

= Vij

Also, assuming that we have
∑

ij uiju
∗
ij = L, we obtain:∑

ij

VijV
∗
ij =

∑
ij

∑
r,s≤L

aria
∗
si ⊗ b∗rjbsj

=
∑
l≤L

1

= L

By removing all the ∗ exponents, we obtain as well the orthogonal results. □
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Let us examine now the relation between the above maps. In the classical case, given
a quotient space X = G/H, the associated action and quotient maps are given by:{

a : X ×G→ X : (Hg, h) → Hgh

p : G→ X : g → Hg

Thus we have a(p(g), h) = p(gh). In our context, a similar result holds:

Theorem 4.17. With G = GM ×GN and X = GL
MN , where GN = O×

N , U
×
N , we have

G×G
m //

p×id

��

G

p

��
X ×G

a // X

where a, p are the action map and the map constructed in Proposition 4.16.

Proof. At the level of the associated algebras of functions, we must prove that the
following diagram commutes, where Φ, α are morphisms of algebras induced by a, p:

C(X)
Φ //

α

��

C(X ×G)

α⊗id

��
C(G)

∆ // C(G×G)

When going right, and then down, the composition is as follows:

(α⊗ id)Φ(uij) = (α⊗ id)
∑
kl

ukl ⊗ aki ⊗ b∗lj

=
∑
kl

∑
r≤L

ark ⊗ b∗rl ⊗ aki ⊗ b∗lj

On the other hand, when going down, and then right, the composition is as follows,
where F23 is the flip between the second and the third components:

∆π(uij) = F23(∆⊗∆)
∑
r≤L

ari ⊗ b∗rj

= F23

(∑
r≤L

∑
kl

ark ⊗ aki ⊗ b∗rl ⊗ b∗lj

)
Thus the above diagram commutes indeed, and this gives the result. □
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4c. Partial permutations

Let us discuss now some discrete extensions of the above constructions. We have:

Definition 4.18. Associated to a partial permutation, σ : I ≃ J with I ⊂ {1, . . . , N}
and J ⊂ {1, . . . ,M}, is the real/complex partial isometry

Tσ : span
(
ei

∣∣∣i ∈ I
)
→ span

(
ej

∣∣∣j ∈ J
)

given on the standard basis elements by Tσ(ei) = eσ(i).

Let SL
MN be the set of partial permutations σ : I ≃ J as above, with range I ⊂

{1, . . . , N} and target J ⊂ {1, . . . ,M}, and with L = |I| = |J |. We have:

Proposition 4.19. The space of partial permutations signed by elements of Zs,

HsL
MN =

{
T (ei) = wieσ(i)

∣∣∣σ ∈ SL
MN , wi ∈ Zs

}
is isomorphic to the quotient space

(Hs
M ×Hs

N)/(H
s
L ×Hs

M−L ×Hs
N−L)

via a standard isomorphism.

Proof. This follows by adapting the computations in the proof of Proposition 4.12
and Theorem 4.13. Indeed, we have an action map as follows, which is transitive:

Hs
M ×Hs

N → HsL
MN , (A,B)U = AUB∗

Consider now the following point:

U =

(
1 0
0 0

)
The stabilizer of this point follows to be the following group:

Hs
L ×Hs

M−L ×Hs
N−L

To be more precise, this group is embedded via:

(x, a, b) →
[(
x 0
0 a

)
,

(
x 0
0 b

)]
But this gives the result. □

In the free case now, the idea is similar, by using inspiration from the construction of
the quantum group Hs+

N = Zs ≀∗ S+
N . The result here is as follows:

Proposition 4.20. The compact quantum space HsL+
MN associated to the algebra

C(HsL+
MN ) = C(UL+

MN)
/〈

uiju
∗
ij = u∗ijuij = pij = projections, usij = pij

〉
has an action map, and is the target of a quotient map, as in Theorem 4.17.
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Proof. We must show that if the variables uij satisfy the relations in the statement,
then these relations are satisfied as well for the following variables:

Uij =
∑
kl

ukl ⊗ aki ⊗ b∗lj , Vij =
∑
r≤L

ari ⊗ b∗rj

We use the fact that the standard coordinates aij, bij on the quantum groups Hs+
M , Hs+

N

satisfy the following relations, for any x ̸= y on the same row or column of a, b:

xy = xy∗ = 0

We obtain, by using these relations, the following formula:

UijU
∗
ij =

∑
klmn

uklu
∗
mn ⊗ akia

∗
mi ⊗ b∗ljbmj =

∑
kl

uklu
∗
kl ⊗ akia

∗
ki ⊗ b∗ljblj

On the other hand, we have as well the following formula:

VijV
∗
ij =

∑
r,t≤L

aria
∗
ti ⊗ b∗rjbtj =

∑
r≤L

aria
∗
ri ⊗ b∗rjbrj

In terms of the projections xij = aija
∗
ij, yij = bijb

∗
ij, pij = uiju

∗
ij, we have:

UijU
∗
ij =

∑
kl

pkl ⊗ xki ⊗ ylj , VijV
∗
ij =

∑
r≤L

xri ⊗ yrj

By repeating the computation, we conclude that these elements are projections. Also,
a similar computation shows that U∗

ijUij, V
∗
ijVij are given by the same formulae. Finally,

once again by using the relations of type xy = xy∗ = 0, we have:

U s
ij =

∑
krlr

uk1l1 . . . uksls ⊗ ak1i . . . aksi ⊗ b∗l1j . . . b
∗
lsj =

∑
kl

uskl ⊗ aski ⊗ (b∗lj)
s

On the other hand, we have as well the following formula:

V s
ij =

∑
rl≤L

ar1i . . . arsi ⊗ b∗r1j . . . b
∗
rsj =

∑
r≤L

asri ⊗ (b∗rj)
s

Thus the conditions of type usij = pij are satisfied as well, and we are done. □

Let us discuss now the general case. We have the following result:

Proposition 4.21. The various spaces GL
MN constructed so far appear by imposing

to the standard coordinates of UL+
MN the relations∑

i1...is

∑
j1...js

δπ(i)δσ(j)u
e1
i1j1

. . . uesisjs = L|π∨σ|

with s = (e1, . . . , es) ranging over all the colored integers, and with π, σ ∈ D(0, s).
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Proof. According to the various constructions above, the relations defining the quan-
tum space GL

MN can be written as follows, with σ ranging over a family of generators,
with no upper legs, of the corresponding category of partitions D:∑

j1...js

δσ(j)u
e1
i1j1

. . . uesisjs = δσ(i)

We therefore obtain the relations in the statement, as follows:∑
i1...is

∑
j1...js

δπ(i)δσ(j)u
e1
i1j1

. . . uesisjs =
∑
i1...is

δπ(i)
∑
j1...js

δσ(j)u
e1
i1j1

. . . uesisjs

=
∑
i1...is

δπ(i)δσ(i)

= L|π∨σ|

As for the converse, this follows by using the relations in the statement, by keeping π
fixed, and by making σ vary over all the partitions in the category. □

In the general case now, where G = (GN) is an arbitary uniform easy quantum group,
we can construct spaces GL

MN by using the above relations, and we have:

Theorem 4.22. The spaces GL
MN ⊂ UL+

MN constructed by imposing the relations∑
i1...is

∑
j1...js

δπ(i)δσ(j)u
e1
i1j1

. . . uesisjs = L|π∨σ|

with π, σ ranging over all the partitions in the associated category, having no upper legs,
are subject to an action map/quotient map diagram, as in Theorem 4.17.

Proof. We proceed as in the proof of Proposition 4.20. We must prove that, if the
variables uij satisfy the relations in the statement, then so do the following variables:

Uij =
∑
kl

ukl ⊗ aki ⊗ b∗lj , Vij =
∑
r≤L

ari ⊗ b∗rj

Regarding the variables Uij, the computation here goes as follows:∑
i1...is

∑
j1...js

δπ(i)δσ(j)U
e1
i1j1

. . . U es
isjs

=
∑
i1...is

∑
j1...js

∑
k1...ks

∑
l1...ls

ue1k1l1 . . . u
es
ksls

⊗ δπ(i)δσ(j)a
e1
k1i1

. . . aesksis ⊗ (beslsjs . . . b
e1
l1j1

)∗

=
∑
k1...ks

∑
l1...ls

δπ(k)δσ(l)u
e1
k1l1

. . . uesksls

= L|π∨σ|
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For the variables Vij the proof is similar, as follows:∑
i1...is

∑
j1...js

δπ(i)δσ(j)V
e1
i1j1

. . . V es
isjs

=
∑
i1...is

∑
j1...js

∑
l1,...,ls≤L

δπ(i)δσ(j)a
e1
l1i1

. . . aeslsis ⊗ (beslsjs . . . b
e1
l1j1

)∗

=
∑

l1,...,ls≤L

δπ(l)δσ(l)

= L|π∨σ|

Thus we have constructed an action map, and a quotient map, as in Proposition 4.20,
and the commutation of the diagram in Theorem 4.17 is then trivial. □

4d. Integration results

Let us discuss now the integration over the various noncommutative spaces constructed
so far, and notably over the spaces GL

MN , which are quite general. We first have:

Definition 4.23. The integration functional of GL
MN is the composition∫

GL
MN

: C(GL
MN) → C(GM ×GN) → C

of the representation uij →
∑

r≤L ari ⊗ b∗rj with the Haar functional of GM ×GN .

Observe that in the case L = M = N we obtain the integration over GN . Also, at
L =M = 1, or at L = N = 1, we obtain the integration over the sphere.

In the general case now, we first have the following result:

Proposition 4.24. The integration functional of GL
MN has the invariance property(∫

GL
MN

⊗ id

)
Φ(x) =

∫
GL

MN

x

with respect to the coaction map, namely:

Φ(uij) =
∑
kl

ukl ⊗ aki ⊗ b∗lj

Proof. We restrict the attention to the orthogonal case, the proof in the unitary case
being similar. We must check the following formula:(∫

GL
MN

⊗ id

)
Φ(ui1j1 . . . uisjs) =

∫
GL

MN

ui1j1 . . . uisjs
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Let us compute the left term. This is given by:

X =

(∫
GL

MN

⊗ id

)∑
kxlx

uk1l1 . . . uksls ⊗ ak1i1 . . . aksis ⊗ b∗l1j1 . . . b
∗
lsjs

=
∑
kxlx

∑
rx≤L

ak1i1 . . . aksis ⊗ b∗l1j1 . . . b
∗
lsjs

∫
GM

ar1k1 . . . arsks

∫
GN

b∗r1l1 . . . b
∗
rsls

=
∑
rx≤L

∑
kx

ak1i1 . . . aksis

∫
GM

ar1k1 . . . arsks ⊗
∑
lx

b∗l1j1 . . . b
∗
lsjs

∫
GN

b∗r1l1 . . . b
∗
rsls

By using now the invariance property of the Haar functionals of GM , GN , we obtain:

X =
∑
rx≤L

(∫
GM

⊗ id

)
∆(ar1i1 . . . arsis)⊗

(∫
GN

⊗ id

)
∆(b∗r1j1 . . . b

∗
rsjs)

=
∑
rx≤L

∫
GM

ar1i1 . . . arsis

∫
GN

b∗r1j1 . . . b
∗
rsjs

=

(∫
GM

⊗
∫
GN

)∑
rx≤L

ar1i1 . . . arsis ⊗ b∗r1j1 . . . b
∗
rsjs

But this gives the formula in the statement, and we are done. □

We will prove now that the above functional is in fact the unique positive unital
invariant trace on C(GL

MN). For this purpose, we will need the Weingarten formula:

Theorem 4.25. We have the Weingarten type formula∫
GL

MN

ui1j1 . . . uisjs =
∑
πστν

L|π∨τ |δσ(i)δν(j)WsM(π, σ)WsN(τ, ν)

where the matrices on the right are given by WsM = G−1
sM , with GsM(π, σ) =M |π∨σ|.

Proof. We make use of the usual quantum group Weingarten formula, that we know
from chapters 2-3. By using this formula for GM , GN , we obtain:∫

GL
MN

ui1j1 . . . uisjs =
∑

l1...ls≤L

∫
GM

al1i1 . . . alsis

∫
GN

b∗l1j1 . . . b
∗
lsjs

=
∑

l1...ls≤L

∑
πσ

δπ(l)δσ(i)WsM(π, σ)
∑
τν

δτ (l)δν(j)WsN(τ, ν)

=
∑
πστν

( ∑
l1...ls≤L

δπ(l)δτ (l)

)
δσ(i)δν(j)WsM(π, σ)WsN(τ, ν)

The coefficient being L|π∨τ |, we obtain the formula in the statement. □
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We can now derive an abstract characterization of the integration, as follows:

Theorem 4.26. The integration of GL
MN is the unique positive unital trace

C(GL
MN) → C

which is invariant under the action of the quantum group GM ×GN .

Proof. We use a standard method, from [13], the point being to show that we have
the following ergodicity formula:(

id⊗
∫
GM

⊗
∫
GN

)
Φ(x) =

∫
GL

MN

x

We restrict the attention to the orthogonal case, the proof in the unitary case being
similar. We must verify that the following holds:(

id⊗
∫
GM

⊗
∫
GN

)
Φ(ui1j1 . . . uisjs) =

∫
GL

MN

ui1j1 . . . uisjs

By using the Weingarten formula, the left term can be written as follows:

X =
∑
k1...ks

∑
l1...ls

uk1l1 . . . uksls

∫
GM

ak1i1 . . . aksis

∫
GN

b∗l1j1 . . . b
∗
lsjs

=
∑
k1...ks

∑
l1...ls

uk1l1 . . . uksls
∑
πσ

δπ(k)δσ(i)WsM(π, σ)
∑
τν

δτ (l)δν(j)WsN(τ, ν)

=
∑
πστν

δσ(i)δν(j)WsM(π, σ)WsN(τ, ν)
∑
k1...ks

∑
l1...ls

δπ(k)δτ (l)uk1l1 . . . uksls

By using now the summation formula in Theorem 4.25, we obtain:

X =
∑
πστν

L|π∨τ |δσ(i)δν(j)WsM(π, σ)WsN(τ, ν)

Now by comparing with the Weingarten formula for GL
MN , this proves our claim.

Assume now that τ : C(GL
MN) → C satisfies the invariance condition. We have:

τ

(
id⊗

∫
GM

⊗
∫
GN

)
Φ(x) =

(
τ ⊗

∫
GM

⊗
∫
GN

)
Φ(x)

=

(∫
GM

⊗
∫
GN

)
(τ ⊗ id)Φ(x)

=

(∫
GM

⊗
∫
GN

)
(τ(x)1)

= τ(x)
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On the other hand, according to the formula established above, we have as well:

τ

(
id⊗

∫
GM

⊗
∫
GN

)
Φ(x) = τ(tr(x)1)

= tr(x)

Thus we obtain τ = tr, and this finishes the proof. □

As a main application of the above results, we have:

Proposition 4.27. For a sum of coordinates of the following type,

χE =
∑

(ij)∈E

uij

with the coordinates not overlapping on rows and columns, we have∫
GL

MN

χs
E =

∑
πστν

K |π∨τ |L|σ∨ν|WsM(π, σ)WsN(τ, ν)

where K = |E| is the cardinality of the indexing set.

Proof. With K = |E|, we can write E = {(α(i), β(i))}, for certain embeddings:

α : {1, . . . , K} ⊂ {1, . . . ,M}
β : {1, . . . , K} ⊂ {1, . . . , N}

In terms of these maps α, β, the moment in the statement is given by:

Ms =

∫
GL

MN

(∑
i≤K

uα(i)β(i)

)s

By using the Weingarten formula, we can write this quantity as follows:

Ms

=

∫
GL

MN

∑
i1...is≤K

uα(i1)β(i1) . . . uα(is)β(is)

=
∑

i1...is≤K

∑
πστν

L|σ∨ν|δπ(α(i1), . . . , α(is))δτ (β(i1), . . . , β(is))WsM(π, σ)WsN(τ, ν)

=
∑
πστν

( ∑
i1...is≤K

δπ(i)δτ (i)

)
L|σ∨ν|WsM(π, σ)WsN(τ, ν)

But, as explained before, in the proof of Theorem 4.25, the coefficient on the left in
the last formula is C = K |π∨τ |. We therefore obtain the formula in the statement. □

At a more concrete level now, we have the following conceptual result, making the
link with the Bercovici-Pata bijection [19]:
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Theorem 4.28. In the context of the liberation operations

OL
MN → OL+

MN , UL
MN → UL+

MN , HsL
MN → HsL+

MN

the laws of the sums of non-overlapping coordinates,

χE =
∑

(ij)∈E

uij

are in Bercovici-Pata bijection, in the

|E| = κN,L = λN,M = µN

regime and N → ∞ limit.

Proof. This follows indeed from the formula in Proposition 4.27. □

4e. Exercises

Exercises:

Exercise 4.29.

Exercise 4.30.

Exercise 4.31.

Exercise 4.32.

Exercise 4.33.

Exercise 4.34.

Exercise 4.35.

Exercise 4.36.

Bonus exercise.
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Projective manifolds



Homely girl
You used to be so lonely
You’re a beautiful woman

Oh, homely girl
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Bonus exercise.
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I don’t want to hear sad songs anymore
I only want to hear love songs

I found my heart up
In this place tonight
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Analytic aspects



As soon as you’re born they make you feel small
By giving you no time instead of it all

Till the pain is so big you feel nothing at all
A working class hero is something to be
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Congratulations for having read this book, and no exercises for this final chapter.
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[14] T. Banica and S. Mészáros, Uniqueness results for noncommutative spheres and projective spaces,

Illinois J. Math. 59 (2015), 219–233.

[15] T. Banica, A. Skalski and P.M. So ltan, Noncommutative homogeneous spaces: the matrix case, J.

Geom. Phys. 62 (2012), 1451–1466.

[16] G.K. Batchelor, An introduction to fluid dynamics, Cambridge Univ. Press (1967).

[17] R.J. Baxter, Exactly solved models in statistical mechanics, Academic Press (1982).

[18] E.J. Beggs and S. Majid, Quantum Riemannian geometry, Springer (2020).

[19] H. Bercovici and V. Pata, Stable laws and domains of attraction in free probability theory, Ann. of

Math. 149 (1999), 1023–1060.

[20] J. Bhowmick, F. D’Andrea and L. Dabrowski, Quantum isometries of the finite noncommutative

geometry of the standard model, Comm. Math. Phys. 307 (2011), 101–131.

[21] J. Bhowmick, F. D’Andrea, B. Das and L. Dabrowski, Quantum gauge symmetries in noncommuta-

tive geometry, J. Noncommut. Geom. 8 (2014), 433–471.

[22] J. Bichon, Half-liberated real spheres and their subspaces, Colloq. Math. 144 (2016), 273–287.

117



118 BIBLIOGRAPHY

[23] R. Brauer, On algebras which are connected with the semisimple continuous groups, Ann. of Math.

38 (1937), 857–872.

[24] S.M. Carroll, Spacetime and geometry, Cambridge Univ. Press (2004).

[25] A.H. Chamseddine and A. Connes, The spectral action principle, Comm. Math. Phys. 186 (1997),

731–750.

[26] A.H. Chamseddine and A. Connes, Why the standard model, J. Geom. Phys. 58 (2008), 38–47.
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