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Abstract. This is an introduction to the Lie groups and algebras, with general meth-
ods, examples and applications, and with emphasis on the compact case. We first discuss
the basics of group theory, notably with various results about the real and complex ro-
tation groups, and the symplectic groups. Then we go into a study of the representation
theory of Lie groups, notably with sharp results in the compact case, following Peter-
Weyl, Schur, Tannaka, Brauer and others. We discuss then the theory of Lie algebras,
and its applications, notably to the classification of Lie groups, and to various questions
from mechanics. Finally, we discuss a number of analytic questions, of probabilistic
nature, with the help of representation theory, and of Lie algebra methods too.



Preface

Transformation groups of the space surrounding us are as old as this world, as we
know it, or perhaps even older, with some of the physicists’ modern theories stating that,
precisely, in the Far West of the first few seconds following the Big Bang, all that crazy
particles were not that free to do what they want, being bound to some basic symmetry
rules, involving such transformation groups. Good time that was, back then.

In more recent times, with respect to more traditional physics, transformation groups
are surely present too, a bit everywhere. Various questions in mechanics, especially in
fluid dynamics, involving what we mathematicians call diffeomorphisms, and in Einstein’s
relativity theory too, require some good knowledge of continuous group theory, for proper
understanding. As for more recent disciplines like quantum mechanics, which actually
bring us back to the Big Bang situation evoked above, no question about this either,
transformation groups rule, over the particles there, and what they can really do.

Mathematically speaking now, and here comes our point, the theory of the continu-
ous transformation groups is something quite recent, and this for a number of reasons.
Such groups, called Lie groups in the honor of Sophus Lie, who was first to study them
systematically, require indeed some substantial abstract algebra, and some substantial
differential geometry too, for their understanding, and with these two ingredients being
both something quite recent, so is the theory of Lie groups. In a word, quite recent theory
that we have here, basically going back to no more than 100 years ago, and with the main
applications being, and it is probably safe to conjecture this, still to come.

This book is an introduction to the Lie groups and algebras, with general methods,
examples and applications explained, starting from zero or almost, and with emphasis on
the compact Lie group case. The book is organized in four parts, as follows:

(1) We first discuss the basics of group theory, notably with various results about the
real and complex rotation groups, and the symplectic groups.

(2) Then we go into the representation theory of Lie groups, notably with sharp results
in the compact case, following Peter-Weyl, Schur, Tannaka, Brauer and others.
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4 PREFACE

(3) We discuss then the theory of Lie algebras, and its applications, notably to the
classification of Lie groups, and to various questions from mechanics.

(4) Finally, we discuss a number of analytic questions, of probabilistic nature, with
the help of representation theory, and of Lie algebra methods too.

In the hope that you will find this book useful. As already said in the above, the theory
of Lie groups is something quite recent, with the main applications probably still to come,
and in view of this, it is probably safe to say that no one really knows how to properly
present this material, for someone willing to learn, and then look for future applications.
So, one Lie group book among others, with the presentation scheme reflecting the views
of the authors, which in my personal case amount in focusing on the compact case, and
also favoring representation theory and Brauer type algebras over Lie algebras. No idea if
this is right or wrong, and now that you’re learning, please make sure to have some other
Lie group books on your desk too. The truth about Lie groups should be somewhere,
there in the pile, including the present book, and up to you to discover it.

Many thanks to my quantum group colleagues and collaborators, most of the things
about Lie groups that I know, I learned them from them. Thanks as well to my cats,
whether they use smooth or non-smooth transformations in their daily work remains a
bit of a mystery for me, but so many things to be learned from them, for sure.

Cergy, April 2025

Teo Banica
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Part I

Lie groups



We’ve got a mind of our own
So go to hell if what you’re thinking is not right

Love would never leave us alone
Ay, in the darkness there must come out the light



CHAPTER 1

Group theory

1a. Groups, examples

Let us begin our study with some abstract aspects. A group is something very simple,
namely a set, with a composition operation, which must satisfy what we should expect
from a “multiplication”. The precise definition of the groups is as follows:

Definition 1.1. A group is a set G endowed with a multiplication operation

(g, h) → gh

which must satisfy the following conditions:

(1) Associativity: we have, (gh)k = g(hk), for any g, h, k ∈ G.
(2) Unit: there is an element 1 ∈ G such that g1 = 1g = g, for any g ∈ G.
(3) Inverses: for any g ∈ G there is g−1 ∈ G such that gg−1 = g−1g = 1.

The multiplication law is not necessarily commutative. In the case where it is, in the
sense that gh = hg, for any g, h ∈ G, we call G abelian, en hommage to Abel, and we
usually denote its multiplication, unit and inverse operation as follows:

(g, h) → g + h , 0 ∈ G , g → −g

However, this is not a general rule, and rather the converse is true, in the sense that
if a group is denoted as above, this means that the group must be abelian.

At the level of examples, we have for instance the symmetric group SN . There are
many other examples, with typically the basic systems of numbers that we know being
abelian groups, and the basic sets of matrices being non-abelian groups. Once again, this
is of course not a general rule. Here are some basic examples and counterexamples:

Proposition 1.2. We have the following groups, and non-groups:

(1) (Z,+) is a group.
(2) (Q,+), (R,+), (C,+) are groups as well.
(3) (N,+) is not a group.
(4) (Q∗, · ) is a group.
(5) (R∗, · ), (C∗, · ) are groups as well.
(6) (N∗, · ), (Z∗, · ) are not groups.
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12 1. GROUP THEORY

Proof. All this is clear from the definition of the groups, as follows:

(1) The group axioms are indeed satisfied for Z, with the sum g + h being the usual
sum, 0 being the usual 0, and −g being the usual −g.

(2) Once again, the axioms are satisfied for Q,R,C, with the remark that for Q we
are using here the fact that the sum of two rational numbers is rational, coming from:

a

b
+
c

d
=
ad+ bc

bd

(3) In N we do not have inverses, so we do not have a group:

−1 /∈ N

(4) The group axioms are indeed satisfied for Q∗, with the product gh being the usual
product, 1 being the usual 1, and g−1 being the usual g−1. Observe that we must remove
indeed the element 0 ∈ Q, because in a group, any element must be invertible.

(5) Once again, the axioms are satisfied for R∗,C∗, with the remark that for C we are
using here the fact that the nonzero complex numbers can be inverted, coming from:

zz̄ = |z|2

(6) Here in N∗,Z∗ we do not have inverses, so we do not have groups, as claimed. □

There are many interesting groups coming from linear algebra, as follows:

Theorem 1.3. We have the following groups:

(1) (RN ,+) and (CN ,+).
(2) (MN(R),+) and (MN(C),+).
(3) (GLN(R), · ) and (GLN(C), · ), the invertible matrices.
(4) (SLN(R), · ) and (SLN(C), · ), with S standing for “special”, meaning det = 1.
(5) (ON , · ) and (UN , · ), the orthogonal and unitary matrices.
(6) (SON , · ) and (SUN , · ), with S standing as above for det = 1.

Proof. All this is clear from definitions, and from our linear algebra knowledge:

(1) The axioms are indeed clearly satisfied for RN ,CN , with the sum being the usual
sum of vectors, −v being the usual −v, and the null vector 0 being the unit.

(2) Once again, the axioms are clearly satisfied for MN(R),MN(C), with the sum
being the usual sum of matrices, −M being the usual −M , and the null matrix 0 being
the unit. Observe that what we have here is in fact a particular case of (1), because any
N ×N matrix can be regarded as a N2 × 1 vector, and so at the group level we have:

(MN(R),+) ≃ (RN2

,+) , (MN(C),+) ≃ (CN2

,+)
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(3) Regarding now GLN(R), GLN(C), these are groups because the product of invert-
ible matrices is invertible, according to the following formula:

(AB)−1 = B−1A−1

Observe that at N = 1 we obtain the groups (R∗, ·), (C∗, ·). At N ≥ 2 the groups
GLN(R), GLN(C) are not abelian, because we do not have AB = BA in general.

(4) The sets SLN(R), SLN(C) formed by the real and complex matrices of determinant
1 are subgroups of the groups in (3), because of the following formula, which shows that
the matrices satisfying detA = 1 are stable under multiplication:

det(AB) = det(A) det(B)

(5) Regarding now ON , UN , here the group property is clear too from definitions, and
is best seen by using the associated linear maps, because the composition of two isometries
is an isometry. Equivalently, assuming U∗ = U−1 and V ∗ = V −1, we have:

(UV )∗ = V ∗U∗ = V −1U−1 = (UV )−1

(6) The sets of matrices SON , SUN in the statement are obtained by intersecting the
groups in (4) and (5), and so they are groups indeed:

SON = ON ∩ SLN(R)

SUN = UN ∩ SLN(C)
Thus, all the sets in the statement are indeed groups, as claimed. □

Summarizing, the notion of group is something extremely wide. Now back to Definition
1.1, because of this, at that level of generality, there is nothing much that can be said.
Let us record, however, as our first theorem regarding the arbitrary groups:

Theorem 1.4. Given a group (G, ·), we have the formula

(g−1)−1 = g

valid for any element g ∈ G.

Proof. This is clear from the definition of the inverses. Assume indeed that:

gg−1 = g−1g = 1

But this shows that g is the inverse of g−1, as claimed. □

As a comment here, the above result, while being something trivial, has led to a lot
of controversy among mathematicians and physicists, in recent times. The point indeed
is that, for the needs of quantum mechanics, the notion of group must be replaced with
something more general, called “quantum group”, and there are two schools here:
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(1) Certain people, including that unfriendly mathematics or physics professor whose
classes no one understands, believe that God is someone nasty, who created quantum
mechanics by using some complicated quantum groups, satisfying (g−1)−1 ̸= g.

(2) On the opposite, some other mathematicians and physicists, who are typically more
relaxed, and better dressed too, and loving life in general, prefer either to use beautiful
quantum groups, satisfying (g−1)−1 = g, or not to use quantum groups at all.

Easy choice you would say, but the problem is that, due to some bizarre reasons, the
quantum group theory with (g−1)−1 = g is quite recent, and relatively obscure. For a
brief account of what can be done here, mathematically, have a look at my book [9].

1b. Dihedral groups

In order to have now some theory going, we obviously have to impose some conditions
on the groups that we consider. With this idea in mind, let us work out some examples,
in the finite group case. The simplest possible finite group is the cyclic group ZN . There
are many ways of picturing ZN , both additive and multiplicative, as follows:

Definition 1.5. The cyclic group ZN is defined as follows:

(1) As the additive group of remainders modulo N .
(2) As the multiplicative group of the N-th roots of unity.

The two definitions are equivalent, because if we set w = e2πi/N , then any remainder
modulo N defines a N -th root of unity, according to the following formula:

k → wk

We obtain in this way all the N -roots of unity, and so our correspondence is bijec-
tive. Moreover, our correspondence transforms the sum of remainders modulo N into the
multiplication of the N -th roots of unity, due to the following formula:

wkwl = wk+l

Thus, the groups defined in (1,2) above are isomorphic, via k → wk, and we agree to
denote by ZN the corresponding group. Observe that this group ZN is abelian.

Another interesting example of a finite group, which is more advanced, and which is
non-abelian this time, is the dihedral group DN , which appears as follows:
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Definition 1.6. The dihedral group DN is the symmetry group of

• •

• •

• •

• •

that is, of the regular polygon having N vertices.

In order to understand how this works, here are the basic examples of regular N -gons,
at small values of the parameter N ∈ N, along with their symmetry groups:

N = 2. Here the N -gon is just a segment, and its symmetries are obviously the identity
id, plus the symmetry τ with respect to the middle of the segment:

• •

Thus we have D2 = {id, τ}, which in group theory terms means D2 = Z2.

N = 3. Here the N -gon is an equilateral triangle, and we have 6 symmetries, the
rotations of angles 0◦, 120◦, 240◦, and the symmetries with respect to the altitudes:

•

• •

Alternatively, we can say that the symmetries are all the 3! = 6 possible permutations
of the vertices, and so that in group theory terms, we have D3 = S3.

N = 4. Here the N -gon is a square, and as symmetries we have 4 rotations, of angles
0◦, 90◦, 180◦, 270◦, as well as 4 symmetries, with respect to the 4 symmetry axes, which



16 1. GROUP THEORY

are the 2 diagonals, and the 2 segments joining the midpoints of opposite sides:

• •

• •
Thus, we obtain as symmetry group some sort of product between Z4 and Z2. Observe

however that this product is not the usual one, our group being not abelian.

N = 5. Here the N -gon is a regular pentagon, and as symmetries we have 5 rotations,
of angles 0◦, 72◦, 144◦, 216◦, 288◦, as well as 5 symmetries, with respect to the 5 symmetry
axes, which join the vertices to the midpoints of the opposite sides:

•

• •

• •
N = 6. Here the N -gon is a regular hexagon, and we have 6 rotations, of angles

0◦, 60◦, 120◦, 180◦, 240◦, 300◦, and 6 symmetries, with respect to the 6 symmetry axes,
which are the 3 diagonals, and the 3 segments joining the midpoints of opposite sides:

•

• •

• •

•
N = 7. Here the N -gon is a regular heptagon, and as symmetries we have 7 rotations,

of angles 0◦, α◦, . . . , 6α◦, with α = 360/7, as well as 7 symmetries, with respect to the 7
symmetry axes, which join the vertices to the midpoints of the opposite sides.

We can see from the above that the various dihedral groups DN have many common
features, and that there are some differences as well.
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In general, we have the following result, regarding them:

Proposition 1.7. The dihedral group DN has 2N elements, as follows:

(1) We have N rotations R1, . . . , RN , with Rk being the rotation of angle 2kπ/N .
When labelling the vertices of the N-gon 1, . . . , N , the rotation formula is:

Rk : i→ k + i

(2) We have N symmetries S1, . . . , SN , with Sk being the symmetry with respect to
the Ox axis rotated by kπ/N . The symmetry formula is:

Sk : i→ k − i

Proof. This is clear, indeed. To be more precise, DN consists of:

(1) The N rotations, of angles 2kπ/N with k = 1, . . . , N . But these are exactly the
rotations R1, . . . , RN from the statement.

(2) The N symmetries with respect to the N possible symmetry axes, which are the
N medians of the N -gon when N is odd, and are the N/2 diagonals plus the N/2 lines
connecting the midpoints of opposite edges, when N is even. But these are exactly the
symmetries S1, . . . , SN from the statement. □

With the above description of DN in hand, we can forget if we want about geometry
and the regular N -gon, and talk about DN abstractly, as follows:

Theorem 1.8. The dihedral group DN is the group having 2N elements, R1, . . . , RN

and S1, . . . , SN , called rotations and symmetries, which multiply as follows,

RkRl = Rk+l

RkSl = Sk+l

SkRl = Sk−l

SkSl = Rk−l

with all the indices being taken modulo N .

Proof. With notations from Proposition 1.7, the various compositions between ro-
tations and symmetries can be computed as follows:

RkRl : i→ l + i→ k + l + i

RkSl : i→ l − i→ k + l − i

SkRl : i→ l + i→ k − l − i

SkSl : i→ l − i→ k − l + i

But these are exactly the formulae for Rk+l, Sk+l, Sk−l, Rk−l, as stated. Now since a
group is uniquely determined by its multiplication rules, this gives the result. □
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Observe that DN has the same cardinality as EN = ZN × Z2. We obviously don’t
have DN ≃ EN , because DN is not abelian, while EN is. So, our next goal will be that of
proving that DN appears by “twisting” EN . In order to do this, let us start with:

Proposition 1.9. The group EN = ZN × Z2 is the group having 2N elements,
r1, . . . , rN and s1, . . . , sN , which multiply according to the following rules,

rkrl = rk+l

rksl = sk+l

skrl = sk+l

sksl = rk+l

with all the indices being taken modulo N .

Proof. With the notation Z2 = {1, τ}, the elements of the product group EN =
ZN × Z2 can be labelled r1, . . . , rN and s1, . . . , sN , as follows:

rk = (k, 1) , sk = (k, τ)

These elements multiply then according to the formulae in the statement. Now since
a group is uniquely determined by its multiplication rules, this gives the result. □

Let us compare now Theorem 1.8 and Proposition 1.9. In order to formally obtain
DN from EN , we must twist some of the multiplication rules of EN , namely:

skrl = sk+l → sk−l

sksl = rk+l → rk−l

Informally, this amounts in following the rule “τ switches the sign of what comes
afterwards”, and we are led in this way to the following definition:

Definition 1.10. Given two groups A,G, with an action A↷ G, the crossed product

P = G⋊ A

is the set G× A, with multiplication as follows:

(g, a)(h, b) = (gha, ab)

It is routine to check that P is indeed a group. Observe that when the action is trivial,
ha = h for any a ∈ A and h ∈ H, we obtain the usual product G× A.

Now with this technology in hand, by getting back to the dihedral group DN , we can
improve Theorem 1.8, into a final result on the subject, as follows:

Theorem 1.11. We have a crossed product decomposition as follows,

DN = ZN ⋊ Z2

with Z2 = {1, τ} acting on ZN via switching signs, kτ = −k.
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Proof. We have an action Z2 ↷ ZN given by the formula in the statement, namely
kτ = −k, so we can consider the corresponding crossed product group:

PN = ZN ⋊ Z2

In order to understand the structure of PN , we follow Proposition 1.9. The elements
of PN can indeed be labelled ρ1, . . . , ρN and σ1, . . . , σN , as follows:

ρk = (k, 1) , σk = (k, τ)

Now when computing the products of such elements, we basically obtain the formulae
in Proposition 9.9, perturbed as in Definition 1.10. To be more precise, we have:

ρkρl = ρk+l

ρkσl = σk+l

σkρl = σk+l

σkσl = ρk+l

But these are exactly the multiplication formulae for DN , from Theorem 1.8. Thus,
we have an isomorphism DN ≃ PN given by Rk → ρk and Sk → σk, as desired. □

As a third basic example of a finite group, we have the symmetric group SN . This is
a group that we know well from linear algebra, when talking about the determinant:

Theorem 1.12. The permutations of {1, . . . , N} form a group, denoted SN , and called
symmetric group. This group has N ! elements. The signature map

ε : SN → Z2

can be regarded as being a group morphism, with values in Z2 = {±1}.

Proof. These are things that we know from linear algebra. Indeed, the group prop-
erty is clear, and the count is clear as well. As for the last assertion, recall the following
formula for the signatures of the permutations, that we know too from linear algebra:

ε(στ) = ε(σ)ε(τ)

But this tells us precisely that ε is a group morphism, as stated. □

We will be back to SN on many occasions, in what follows. At an even more advanced
level now, we have the hyperoctahedral group HN , which appears as follows:

Definition 1.13. The hyperoctahedral group HN is the group of symmetries of the
unit cube in RN .
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The hyperoctahedral group is a quite interesting group, whose definition, as a sym-
metry group, reminds that of the dihedral group DN . So, let us start our study in the
same way as we did for DN , with a discussion at small values of N ∈ N:

N = 1. Here the 1-cube is the segment, whose symmetries are the identity id and the
flip τ . Thus, we obtain the group with 2 elements, which is a very familiar object:

H1 = D2 = S2 = Z2

N = 2. Here the 2-cube is the square, and so the corresponding symmetry group is
the dihedral group D4, which is a group that we know well:

H2 = D4 = Z4 ⋊ Z2

N = 3. Here the 3-cube is the usual cube, and the situation is considerably more
complicated, because this usual cube has no less than 48 symmetries. Identifying and
counting these symmetries is actually an excellent exercise.

All this looks quite complicated, but fortunately we can count HN , at N = 3, and at
higher N as well, by using some tricks, the result being as follows:

Theorem 1.14. We have the cardinality formula

|HN | = 2NN !

coming from the fact that HN is the symmetry group of the coordinate axes of RN .

Proof. This follows from some geometric thinking, as follows:

(1) Consider the standard cube in RN , centered at 0, and having as vertices the points
having coordinates ±1. With this picture in hand, it is clear that the symmetries of the
cube coincide with the symmetries of the N coordinate axes of RN .

(2) In order to count now these latter symmetries, a bit as we did for the dihedral
group, observe first that we have N ! permutations of these N coordinate axes.

(3) But each of these permutations of the coordinate axes σ ∈ SN can be further
“decorated” by a sign vector e ∈ {±1}N , consisting of the possible ±1 flips which can be
applied to each coordinate axis, at the arrival. Thus, we have:

|HN | = |SN | · |ZN
2 | = N ! · 2N

Thus, we are led to the conclusions in the statement. □

As in the dihedral group case, it is possible to go beyond this, with a crossed product
decomposition, of quite special type, called wreath product decomposition.

To be more precise, we have the following result, clarifying the above:



1C. CAYLEY EMBEDDINGS 21

Theorem 1.15. We have a wreath product decomposition as follows,

HN = Z2 ≀ SN

which means by definition that we have a crossed product decomposition

HN = ZN
2 ⋊ SN

with the permutations σ ∈ SN acting on the elements e ∈ ZN
2 as follows:

σ(e1, . . . , ek) = (eσ(1), . . . , eσ(k))

Proof. As explained in the proof of Theorem 1.14, the elements of HN can be iden-
tified with the pairs g = (e, σ) consisting of a permutation σ ∈ SN , and a sign vector
e ∈ ZN

2 , so that at the level of the cardinalities, we have:

|HN | = |ZN
2 × SN |

To be more precise, given an element g ∈ HN , the element σ ∈ SN is the corresponding
permutation of the N coordinate axes, regarded as unoriented lines in RN , and e ∈ ZN

2

is the vector collecting the possible flips of these coordinate axes, at the arrival. Now
observe that the product formula for two such pairs g = (e, σ) is as follows, with the
permutations σ ∈ SN acting on the elements f ∈ ZN

2 as in the statement:

(e, σ)(f, τ) = (efσ, στ)

Thus, we are precisely in the framework of Definition 1.10, and we conclude that we
have a crossed product decomposition, as follows:

HN = ZN
2 ⋊ SN

Thus, we are led to the conclusion in the statement, with the formula HN = Z2 ≀ SN

being just a shorthand for the decomposition HN = ZN
2 ⋊ SN that we found. □

Summarizing, we have so far many interesting examples of finite groups, and as a
sequence of main examples, we have the following groups:

ZN ⊂ DN ⊂ SN ⊂ HN

We will be back to these fundamental finite groups later on, on several occasions, with
further results on them, both of algebraic and of analytic type.

1c. Cayley embeddings

At the level of the general theory now, we have the following fundamental result
regarding the finite groups, due to Cayley:

Theorem 1.16. Given a finite group G, we have an embedding as follows,

G ⊂ SN , g → (h→ gh)

with N = |G|. Thus, any finite group is a permutation group.



22 1. GROUP THEORY

Proof. Given a group element g ∈ G, we can associate to it the following map:

σg : G→ G , h→ gh

Since gh = gh′ implies h = h′, this map is bijective, and so is a permutation of G,
viewed as a set. Thus, with N = |G|, we can view this map as a usual permutation,
σG ∈ SN . Summarizing, we have constructed so far a map as follows:

G→ SN , g → σg

Our first claim is that this is a group morphism. Indeed, this follows from:

σgσh(k) = σg(hk) = ghk = σgh(k)

It remains to prove that this group morphism is injective. But this follows from:

g ̸= h =⇒ σg(1) ̸= σh(1)

=⇒ σg ̸= σh

Thus, we are led to the conclusion in the statement. □

Observe that in the above statement the embedding G ⊂ SN that we constructed
depends on a particular writing G = {g1, . . . , gN}, which is needed in order to identify
the permutations of G with the elements of the symmetric group SN . This is not very
good, in practice, and as an illustration, for the basic examples of groups that we know,
the Cayley theorem provides us with embeddings as follows:

ZN ⊂ SN , DN ⊂ S2N , SN ⊂ SN ! , HN ⊂ S2NN !

And here the first embedding is the good one, the second one is not the best possible
one, but can be useful, and the third and fourth embeddings are useless. Thus, as a
conclusion, the Cayley theorem remains something quite theoretical. We will be back to
this later on, with a systematic study of the “representation” problem.

Getting back now to our main series of finite groups, ZN ⊂ DN ⊂ SN ⊂ HN , these are
of course permutation groups, according to the above. However, and perhaps even more
interestingly, these are as well subgroups of the orthogonal group ON :

ZN ⊂ DN ⊂ SN ⊂ HN ⊂ ON

Indeed, we have HN ⊂ ON , because any transformation of the unit cube in RN must
extend into an isometry of the whole RN , in the obvious way. Now in view of this, it
makes sense to look at the finite subgroups G ⊂ ON . With two remarks, namely:

(1) Although we do not have examples yet, following our general “complex is better
than real” philosophy, it is better to look at the general subgroups G ⊂ UN .

(2) Also, it is better to upgrade our study to the case where G is compact, and this
in order to cover some interesting continuous groups, such as ON , UN , SON , SUN .
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Long story short, we are led in this way to the study of the closed subgroups G ⊂ UN .
Let us start our discussion here with the following simple fact:

Proposition 1.17. The closed subgroups G ⊂ UN are precisely the closed sets of
matrices G ⊂ UN satisfying the following conditions:

(1) U, V ∈ G =⇒ UV ∈ G.
(2) 1 ∈ G.
(3) U ∈ G =⇒ U−1 ∈ G.

Proof. This is clear from definitions, the only point with this statement being the
fact that a subset G ⊂ UN can be a group or not, as indicated above. □

It is possible to get beyond this, first with a result stating that any closed subgroup
G ⊂ UN is a smooth manifold, and then with a result stating that, conversely, any smooth
compact group appears as a closed subgroup G ⊂ UN of some unitary group. However,
all this is quite advanced, and we will not need it, in what follows.

As a second result now regarding the closed subgroups G ⊂ UN , let us prove that any
finite group G appears in this way. This is something more or less clear from what we
have, but let us make this precise. We first have the following key result:

Theorem 1.18. We have a group embedding as follows, obtained by regarding SN as
the permutation group of the N coordinate axes of RN ,

SN ⊂ ON

which makes σ ∈ SN correspond to the matrix having 1 on row i and column σ(i), for any
i, and having 0 entries elsewhere.

Proof. The first assertion is clear, because the permutations of the N coordinate
axes of RN are isometries. Regarding now the explicit formula, we have by definition:

σ(ej) = eσ(j)

Thus, the permutation matrix corresponding to σ is given by:

σij =

{
1 if σ(j) = i

0 otherwise

Thus, we are led to the formula in the statement. □

We can combine the above result with the Cayley theorem, and we obtain the following
result, which is something very nice, having theoretical importance:

Theorem 1.19. Given a finite group G, we have an embedding as follows,

G ⊂ ON , g → (eh → egh)

with N = |G|. Thus, any finite group is an orthogonal matrix group.
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Proof. The Cayley theorem gives an embedding as follows:

G ⊂ SN , g → (h→ gh)

On the other hand, Theorem 1.18 provides us with an embedding as follows:

SN ⊂ ON , σ → (ei → eσ(i))

Thus, we are led to the conclusion in the statement. □

The same remarks as for the Cayley theorem apply. First, the embedding G ⊂ ON

that we constructed depends on a particular writing G = {g1, . . . , gN}. And also, for the
basic examples of groups that we know, the embeddings that we obtain are as follows:

ZN ⊂ ON , DN ⊂ O2N , SN ⊂ ON ! , HN ⊂ O2NN !

As before, here the first embedding is the good one, the second one is not the best
possible one, but can be useful, and the third and fourth embeddings are useless.

Summarizing, in order to advance, it is better to forget about the Cayley theorem,
and build on Theorem 1.18 instead. In relation with the basic groups, we have:

Theorem 1.20. We have the following finite groups of matrices:

(1) ZN ⊂ ON , the cyclic permutation matrices.
(2) DN ⊂ ON , the dihedral permutation matrices.
(3) SN ⊂ ON , the permutation matrices.
(4) HN ⊂ ON , the signed permutation matrices.

Proof. This is something self-explanatory, the idea being that Theorem 1.18 provides
us with embeddings as follows, given by the permutation matrices:

ZN ⊂ DN ⊂ SN ⊂ ON

In addition, looking back at the definition ofHN , this group inserts into the embedding
on the right, SN ⊂ HN ⊂ ON . Thus, we are led to the conclusion that all our 4 groups
appear as groups of suitable “permutation type matrices”. To be more precise:

(1) The cyclic permutation matrices are by definition the matrices as follows, with 0
entries elsewhere, and form a group, which is isomorphic to the cyclic group ZN :

U =



1
1

. . .
1

1
. . .

1
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(2) The dihedral matrices are the above cyclic permutation matrices, plus some suit-
able symmetry permutation matrices, and form a group which is isomorphic to DN .

(3) The permutation matrices, which by Theorem 1.18 form a group which is isomor-
phic to SN , are the 0− 1 matrices having exactly one 1 on each row and column.

(4) Finally, regarding the signed permutation matrices, these are by definition the
(−1)− 0− 1 matrices having exactly one nonzero entry on each row and column, and by
Theorem 1.14 these matrices form a group, which is isomorphic to HN . □

The above groups are all groups of orthogonal matrices. When looking into general
unitary matrices, we led to the following interesting class of groups:

Definition 1.21. The complex reflection group Hs
N ⊂ UN , depending on parameters

N ∈ N , s ∈ N ∪ {∞}
is the group of permutation-type matrices with s-th roots of unity as entries,

Hs
N =MN(Zs ∪ {0}) ∩ UN

with the convention Z∞ = T, at s = ∞.

Observe that at s = 1, 2 we obtain the following groups:

H1
N = SN , H2

N = HN

Another important particular case is s = ∞, where we obtain a group which is actually
not finite, but is still compact, denoted as follows:

KN ⊂ UN

In general, in analogy with what we know about SN , HN , we first have:

Proposition 1.22. The number of elements of Hs
N with s ∈ N is:

|Hs
N | = sNN !

At s = ∞, the group KN = H∞
N that we obtain is infinite.

Proof. This is indeed clear from our definition of Hs
N , as a matrix group as above,

because there are N ! choices for a permutation-type matrix, and then sN choices for the
corresponding s-roots of unity, which must decorate the N nonzero entries. □

Once again in analogy with what we know at s = 1, 2, we have as well:

Theorem 1.23. We have a wreath product decomposition Hs
N = Zs ≀SN , which means

by definition that we have a crossed product decomposition

Hs
N = ZN

s ⋊ SN

with the permutations σ ∈ SN acting on the elements e ∈ ZN
s as follows:

σ(e1, . . . , ek) = (eσ(1), . . . , eσ(k))
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Proof. As explained in the proof of Proposition 1.22, the elements of Hs
N can be

identified with the pairs g = (e, σ) consisting of a permutation σ ∈ SN , and a decorating
vector e ∈ ZN

s , so that at the level of the cardinalities, we have:

|HN | = |ZN
s × SN |

Now observe that the product formula for two such pairs g = (e, σ) is as follows, with
the permutations σ ∈ SN acting on the elements f ∈ ZN

s as in the statement:

(e, σ)(f, τ) = (efσ, στ)

Thus, we are in the framework of Definition 1.10, and we obtain Hs
N = ZN

s ⋊SN . But
this can be written, by definition, as Hs

N = Zs ≀ SN , and we are done. □

Summarizing, and by focusing now on the cases s = 1, 2,∞, which are the most
important, we have extended our series of basic unitary groups, as follows:

ZN ⊂ DN ⊂ SN ⊂ HN ⊂ KN

In addition to this, we have the groups Hs
N with s ∈ {3, 4, . . . , }. However, these will

not fit well into the above series of inclusions, because we only have:

s|t =⇒ Hs
N ⊂ H t

N

Thus, we can only extend our series of inclusions as follows:

ZN ⊂ DN ⊂ SN ⊂ HN ⊂ H4
N ⊂ H8

N ⊂ . . . . . . ⊂ KN

We will be back later to Hs
N , with more theory, and some generalizations as well.

1d. Abelian groups

We have seen so far that the basic examples of groups, even taken finite, lead us into
linear algebra, and more specifically, into the study of groups of unitary matrices:

G ⊂ UN

This is indeed a good idea, and we will systematically do this in this book, starting
from the next chapter. Before getting into this, however, let us go back to the definition
of the abstract groups, from the beginning of this chapter, and make a last attempt of
developing some useful general theory there, without relation to linear algebra.

Basic common sense suggests looking into the case of the finite abelian groups, which
can only be far less complicated than the arbitrary finite groups.

However, and coming somewhat as a surprise, this leads us again into linear algebra,
due to the following fact:
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Theorem 1.24. Let us call representation of a finite group G any morphism

u : G→ UN

to a unitary group. Then the 1-dimensional representations are the morphisms

χ : G→ T

called characters of G, and these characters form a finite abelian group Ĝ.

Proof. Regarding the first assertion, this is just some philosophy, making the link
with matrices and linear algebra, and coming from U1 = T. So, let us prove now the

second assertion, stating that the set of characters Ĝ = {χ : G → T} is a finite abelian
group. There are several things to be proved here, the idea being as follows:

(1) Our first claim is that Ĝ is a group, with the pointwise multiplication, namely:

(χρ)(g) = χ(g)ρ(g)

Indeed, if χ, ρ are characters, so is χρ, and so the multiplication is well-defined on Ĝ.
Regarding the unit, this is the trivial character, constructed as follows:

1 : G→ T , g → 1

Finally, we have inverses, with the inverse of χ : G→ T being its conjugate:

χ̄ : G→ T , g → χ(g)

(2) Our next claim is that Ĝ is finite. Indeed, given a group element g ∈ G, we can
talk about its order, which is smallest integer k ∈ N such that gk = 1. Now assuming
that we have a character χ : G→ T, we have the following formula:

χ(g)k = 1

Thus χ(g) must be one of the k-th roots of unity, and in particular there are finitely
many choices for χ(g). Thus, there are finitely many choices for χ, as desired.

(3) Finally, the fact that Ĝ is abelian follows from definitions, because the pointwise
multiplication of functions, and in particular of characters, is commutative. □

The above construction is quite interesting, especially in the case where the starting
finite group G is abelian itself, and as an illustration here, we have:

Theorem 1.25. The character group operation G → Ĝ for the finite abelian groups,
called Pontrjagin duality, has the following properties:

(1) The dual of a cyclic group is the group itself, ẐN = ZN .

(2) The dual of a product is the product of duals, Ĝ×H = Ĝ× Ĥ.

(3) Any product of cyclic groups G = ZN1 × . . .× ZNk
is self-dual, G = Ĝ.
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Proof. We have several things to be proved, the idea being as follows:

(1) A character χ : ZN → T is uniquely determined by its value z = χ(g) on the
standard generator g ∈ ZN . But this value must satisfy:

zN = 1

Thus we must have z ∈ ZN , with the cyclic group ZN being regarded this time as
being the group of N -th roots of unity. Now conversely, any N -th root of unity z ∈ ZN

defines a character χ : ZN → T, by setting, for any r ∈ N:

χ(gr) = zr

Thus we have an identification ẐN = ZN , as claimed.

(2) A character of a product of groups χ : G×H → T must satisfy:

χ(g, h) = χ [(g, 1)(1, h)] = χ(g, 1)χ(1, h)

Thus χ must appear as the product of its restrictions χ|G, χ|H , which must be both
characters, and this gives the identification in the statement.

(3) This follows from (1) and (2). Alternatively, any character χ : G→ T is uniquely
determined by its values χ(g1), . . . , χ(gk) on the standard generators of ZN1 , . . . ,ZNk

,

which must belong to ZN1 , . . . ,ZNk
⊂ T, and this gives Ĝ = G, as claimed. □

We can get some further insight into duality by using the some standard spectral
theory methods, and we have the following result:

Theorem 1.26. Given a finite abelian group G, we have an isomorphism of commu-
tative C∗-algebras as follows, obtained by linearizing/delinearizing the characters:

C[G] ≃ C(Ĝ)

Also, the Pontrjagin duality is indeed a duality, in the sense that we have G =
̂̂
G.

Proof. We have several assertions here, the idea being as follows:

(1) Given a finite abelian group G, consider indeed the group algebra C[G], having as
elements the formal combinations of elements of G, and with involution given by:

g∗ = g−1

This ∗-algebra is then a C∗-algebra, with norm coming by acting C[G] on itself, and
so by the Gelfand theorem we obtain an isomorphism as follows:

C[G] = C(X)

To be more precise, X is the space of the ∗-algebra characters as follows:

χ : C[G] → C
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The point now is that by delinearizing, such a ∗-algebra character must come from a
usual group character of G, obtained by restricting to G, as follows:

χ : G→ T

Thus we have X = Ĝ, and we are led to the isomorphism in the statement, namely:

C[G] ≃ C(Ĝ)

(2) In order to prove now the second assertion, consider the following group morphism,
which is available for any finite group G, not necessarily abelian:

G→ ̂̂
G , g → (χ→ χ(g))

Our claim is that in the case where G is abelian, this is an isomorphism. As a first
observation, we only need to prove that this morphism is injective or surjective, because
the cardinalities match, according to the following formula, coming from (1):

|G| = dimC[G] = dimC(Ĝ) = |Ĝ|

(3) We will prove that the above morphism is injective. For this purpose, let us
compute its kernel. We know that g ∈ G is in the kernel when the following happens:

χ(g) = 1 , ∀χ ∈ Ĝ

But this means precisely that g ∈ C[G] is mapped, via the isomorphism C[G] ≃ C(Ĝ)

constructed in (1), to the constant function 1 ∈ C(Ĝ), and now by getting back to C[G]
via our isomorphism, this shows that we have indeed g = 1, which ends the proof. □

All the above is very nice, but remains something rather abstract, based on all sorts
of clever algebraic manipulations, and no computations at all. So, now that we are done
with this, time to get into some serious computations. For this purpose, we will need
some basic abstract results, which are good to know. Let us start with:

Theorem 1.27. Given a finite group G and a subgroup H ⊂ G, the sets

G/H = {gH
∣∣∣g ∈ G} , H\G = {Hg

∣∣∣g ∈ G}

both consist of partitions of G into subsets of size H, and we have the formula

|G| = |H| · |G/H| = |H| · |H\G|

which shows that the order of the subgroup divides the order of the group:

|H|
∣∣ |G|

When H ⊂ G is normal, gH = Hg for any g ∈ G, the space G/H = H\G is a group.



30 1. GROUP THEORY

Proof. There are several assertions here, but these are all trivial, when deduced in
the precise order indicated in the statement. To be more precise, the partition claim for
G/H can be deduced as follows, and the proof for H\G is similar:

gH ∩ kH ̸= ∅ ⇐⇒ g−1k ∈ H ⇐⇒ gH = kH

With this in hand, the cardinality formulae are all clear, and it remains to prove the
last assertion. But here, the point is that when H ⊂ G is normal, we have:

gH = kH, sH = tH =⇒ gsH = gtH = gHt = kHt = ktH

Thus G/H = H\G is a indeed group, with multiplication (gH)(sH) = gsH. □

As a main consequence of the above result, which is equally famous, we have:

Theorem 1.28. Given a finite group G, any g ∈ G generates a cyclic subgroup

< g >= {1, g, g2, . . . , gk−1}

with k = ord(g) being the smallest number k ∈ N satisfying gk = 1. Also, we have

ord(g)
∣∣ |G|

that is, the order of any group element divides the order of the group.

Proof. As before with Theorem 1.27, we have opted here for a long collection of
statements, which are all trivial, when deduced in the above precise order. To be more
precise, consider the semigroup < g >⊂ G formed by the sequence of powers of g:

< g >= {1, g, g2, g3, . . .} ⊂ G

Since G was assumed to be finite, the sequence of powers must cycle, gn = gm for
some n < m, and so we have gk = 1, with k = m− n. Thus, we have in fact:

< g >= {1, g, g2, . . . , gk−1}

Moreover, we can choose k ∈ N to be minimal with this property, and with this choice,
we have a set without repetitions. Thus < g >⊂ G is indeed a group, and more specifically
a cyclic group, of order k = ord(g). Finally, ord(g) | |G| follows from Theorem 1.27. □

With these ingredients in hand, we can go back to the finite abelian groups. We have
the following result, which is something remarkable, refining all the above:

Theorem 1.29. The finite abelian groups are the following groups,

G = ZN1 × . . .× ZNk

and these groups are all self-dual, G = Ĝ.
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Proof. This is something quite tricky, the idea being as follows:

(1) In order to prove our result, assume that G is finite and abelian. For any prime
number p ∈ N, let us define Gp ⊂ G to be the subset of elements having as order a power
of p. Equivalently, this subset Gp ⊂ G can be defined as follows:

Gp =
{
g ∈ G

∣∣∣∃k ∈ N, gpk = 1
}

(2) It is then routine to check, based on definitions, that each Gp is a subgroup. Our
claim now is that we have a direct product decomposition as follows:

G =
∏
p

Gp

(3) Indeed, by using the fact that our group G is abelian, we have a morphism as
follows, with the order of the factors when computing

∏
p gp being irrelevant:∏

p

Gp → G , (gp) →
∏
p

gp

Moreover, it is routine to check that this morphism is both injective and surjective,
via some simple manipulations, so we have our group decomposition, as in (2).

(4) Thus, we are left with proving that each component Gp decomposes as a product
of cyclic groups, having as orders powers of p, as follows:

Gp = Zpr1 × . . .× Zprs

But this is something that can be checked by recurrence on |Gp|, via some routine
computations, and so we are led to the conclusion in the statement.

(5) Finally, the fact that the finite abelian groups are self-dual, G = Ĝ, follows from
the structure result that we just proved, and from Theorem 1.25 (3). □

So long for finite abelian groups. All the above was of course a bit quick, and for further
details on all this, and especially on Theorem 1.29, which is something non-trivial, and
for some generalizations as well, to the case of suitable non-finite abelian groups, we refer
to the algebra book of Lang [64], where all this material is carefully explained.

We will be back to the finite groups, which are quite fascinating objects, on a regular
basis, in what follows. In fact, one of the main questions that we will investigate in this
book will be the classification of the finite subgroups H ⊂ G of a continuous group G.
But more on this later, once we will know more about such continuous groups G.
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1e. Exercises

Exercises:

Exercise 1.30.

Exercise 1.31.

Exercise 1.32.

Exercise 1.33.

Exercise 1.34.

Exercise 1.35.

Exercise 1.36.

Exercise 1.37.

Bonus exercise.



CHAPTER 2

Rotation groups

2a. Rotation groups

In the continuous group case, that we will be mainly interested in, in this book, we
first have, as basic examples, the unitary group UN itself, then its real version, which is
the orthogonal group ON , and various technical versions of these basic groups ON , UN .

So, let us start with some basic reminders, regarding ON , UN :

Theorem 2.1. We have the following results:

(1) The rotations of RN form the orthogonal group ON , which is given by:

ON =
{
U ∈MN(R)

∣∣∣U t = U−1
}

(2) The rotations of CN form the unitary group UN , which is given by:

UN =
{
U ∈MN(C)

∣∣∣U∗ = U−1
}

In addition, we can restrict the attention to the rotations of the corresponding spheres.

Proof. This is something that we already know, the idea being as follows:

(1) We know from linear algebra that a linear map T : RN → RN , written as T (x) =
Ux with U ∈ MN(R), is a rotation, in the sense that it preserves the distances and the
angles, precisely when the associated matrix U is orthogonal, in the following sense:

U t = U−1

Thus, we obtain the result. As for the last assertion, this is clear as well, because an
isometry of RN is the same as an isometry of the unit sphere SN−1

R ⊂ RN .

(2) We also know that a linear map T : CN → CN , written as T (x) = Ux with
U ∈ MN(C), is a rotation, in the sense that it preserves the distances and the scalar
products, precisely when the associated matrix U is unitary, in the following sense:

U∗ = U−1

Thus, we obtain the result. As for the last assertion, this is clear as well, because an
isometry of CN is the same as an isometry of the unit sphere SN−1

C ⊂ CN . □

In order to introduce some further continuous groups G ⊂ UN , we will need:

33
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Proposition 2.2. We have the following results:

(1) For an orthogonal matrix U ∈ ON we have detU ∈ {±1}.
(2) For a unitary matrix U ∈ UN we have detU ∈ T.
Proof. This is clear from the equations defining ON , UN , as follows:

(1) We have indeed the following implications:

U ∈ ON =⇒ U t = U−1

=⇒ detU t = detU−1

=⇒ detU = (detU)−1

=⇒ detU ∈ {±1}
(2) We have indeed the following implications:

U ∈ UN =⇒ U∗ = U−1

=⇒ detU∗ = detU−1

=⇒ detU = (detU)−1

=⇒ detU ∈ T
Here we have used the fact that z̄ = z−1 means zz̄ = 1, and so z ∈ T. □

We can now introduce the subgroups SON ⊂ ON and SUN ⊂ UN , as being the
subgroups consisting of the rotations which preserve the orientation, as follows:

Theorem 2.3. The following are groups of matrices,

SON =
{
U ∈ ON

∣∣∣ detU = 1
}

SUN =
{
U ∈ UN

∣∣∣ detU = 1
}

consisting of the rotations which preserve the orientation.

Proof. The fact that we have indeed groups follows from the properties of the de-
terminant, of from the property of preserving the orientation, which is clear as well. □

Summarizing, we have constructed so far 4 continuous groups of matrices, consisting
of various rotations, with inclusions between them, as follows:

SUN
// UN

SON

OO

// ON

OO

As an illustration, let us work out what happens at N = 1, 2. At N = 1 the situation
is quite trivial, and we obtain very simple groups, as follows:
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Proposition 2.4. The basic continuous groups at N = 1, namely

SU1
// U1

SO1

OO

// O1

OO

are the following groups of complex numbers,

{1} // T

{1}

OO

// {±1}

OO

or, equivalently, are the following cyclic groups,

Z1
// Z∞

Z1

OO

// Z2

OO

with the convention that Zs is the group of s-th roots of unity.

Proof. This is clear from definitions, because for a 1×1 matrix the unitarity condition
reads Ū = U−1, and so U ∈ T, and this gives all the results. □

At N = 2 now, let us first discuss the real case. The result here is as follows:

Theorem 2.5. We have the following results:

(1) SO2 is the group of usual rotations in the plane, which are given by:

Rt =

(
cos t − sin t
sin t cos t

)
(2) O2 consists in addition of the usual symmetries in the plane, given by:

St =

(
cos t sin t
sin t − cos t

)
(3) Abstractly speaking, we have isomorphisms as follows:

SO2 ≃ T , O2 = T ⋊ Z2

(4) When discretizing all this, by replacing the 2-dimensional unit sphere T by the
regular N-gon, the latter isomorphism discretizes as DN = ZN ⋊ Z2.
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Proof. This follows from some elementary computations, as follows:

(1) The first assertion is clear, because only the rotations of the plane in the usual
sense preserve the orientation. As for the formula of Rt, this is something that we already
know, from chapter 1, obtained by computing Rt

(
1
0

)
and Rt

(
0
1

)
.

(2) The first assertion is clear, because rotations left aside, we are left with the sym-
metries of the plane, in the usual sense. As for formula of St, this is something that we
basically know too, obtained by computing St

(
1
0

)
and St

(
0
1

)
.

(3) The first assertion is clear, because the angles t ∈ R, taken as usual modulo 2π,
form the group T. As for the second assertion, the proof here is similar to the proof of
the crossed product decomposition DN = ZN ⋊ Z2 for the dihedral groups.

(4) This is something more speculative, the idea here being that the isomorphism
O2 = T ⋊ Z2 appears from DN = ZN ⋊ Z2 by taking the N → ∞ limit. □

In general, the structure of ON and SON , and the relation between them, is far more
complicated than what happens at N = 1, 2. We will be back to this later.

2b. Pauli matrices

Moving forward, let us keep working out what happens at N = 2, but this time with
a study in the complex case. We first have here the following key result:

Theorem 2.6. We have the following formula,

SU2 =

{(
a b
−b̄ ā

) ∣∣∣ |a|2 + |b|2 = 1

}
which makes SU2 isomorphic to the unit sphere S1

C ⊂ C2.

Proof. Consider indeed an arbitrary 2× 2 matrix, written as follows:

U =

(
a b
c d

)
Assuming that we have detU = 1, the inverse must be given by:

U−1 =

(
d −b
−c a

)
On the other hand, assuming U ∈ U2, the inverse must be the adjoint:

U−1 =

(
ā c̄
b̄ d̄

)
We are therefore led to the following equations, for the matrix entries:

d = ā , c = −b̄
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Thus our matrix must be of the following special form:

U =

(
a b
−b̄ ā

)
Moreover, since the determinant is 1, we must have, as stated:

|a|2 + |b|2 = 1

Thus, we are done with one inclusion. As for the converse, this is clear, the matrices
in the statement being unitaries, and of determinant 1, and so being elements of SU2.
Finally, regarding the last assertion, recall that the unit sphere S1

C ⊂ C2 is given by:

S1
C =

{
(a, b)

∣∣∣ |a|2 + |b|2 = 1
}

Thus, we have an isomorphism of compact spaces, as follows:

SU2 ≃ S1
C ,

(
a b
−b̄ ā

)
→ (a, b)

We have therefore proved our theorem. □

Regarding now the unitary group U2, the result here is similar, as follows:

Theorem 2.7. We have the following formula,

U2 =

{
d

(
a b
−b̄ ā

) ∣∣∣ |a|2 + |b|2 = 1, |d| = 1

}
which makes U2 be a quotient compact space, as follows,

S1
C × T → U2

but with this parametrization being no longer bijective.

Proof. In one sense, this is clear from Theorem 2.6, because we have:

|d| = 1 =⇒ dSU2 ⊂ U2

In the other sense, let us pick an arbitrary matrix U ∈ U2. We have then:

| det(U)|2 = det(U)det(U)

= det(U) det(U∗)

= det(UU∗)

= det(1)

= 1

Consider now the following complex number, defined up to a sign choice:

d =
√
detU
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We know from Proposition 2.2 that we have |d| = 1. Thus the rescaled matrix V = U/d
is unitary, V ∈ U2. As for the determinant of this matrix, this is given by:

det(V ) = det(U/d)

= det(U)/d2

= det(U)/ det(U)

= 1

Thus we have V ∈ SU2, and so we can write, with |a|2 + |b|2 = 1:

V =

(
a b
−b̄ ā

)
Thus the matrix U = dV appears as in the statement. Finally, observe that the result

that we have just proved provides us with a quotient map as follows:

S1
C × T → U2 , ((a, b), d) → d

(
a b
−b̄ ā

)
However, the parametrization is no longer bijective, because when we globally switch

signs, the element ((−a,−b),−d) produces the same element of U2. □

Let us record now a few more results regarding SU2, U2, which are key groups in
mathematics and physics. First, we have the following reformulation of Theorem 2.6:

Theorem 2.8. We have the formula

SU2 =

{(
x+ iy z + it
−z + it x− iy

) ∣∣∣ x2 + y2 + z2 + t2 = 1

}
which makes SU2 isomorphic to the unit real sphere S3

R ⊂ R3.

Proof. We recall from Theorem 2.6 that we have:

SU2 =

{(
a b
−b̄ ā

) ∣∣∣ |a|2 + |b|2 = 1

}
Now let us write our parameters a, b ∈ C, which belong to the complex unit sphere

S1
C ⊂ C2, in terms of their real and imaginary parts, as follows:

a = x+ iy , b = z + it

In terms of x, y, z, t ∈ R, our formula for a generic matrix U ∈ SU2 becomes the one
in the statement. As for the condition to be satisfied by the parameters x, y, z, t ∈ R, this
comes the condition |a|2 + |b|2 = 1 to be satisfied by a, b ∈ C, which reads:

x2 + y2 + z2 + t2 = 1
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Thus, we are led to the conclusion in the statement. Regarding now the last assertion,
recall that the unit sphere S3

R ⊂ R4 is given by:

S3
R =

{
(x, y, z, t)

∣∣∣ x2 + y2 + z2 + t2 = 1
}

Thus, we have an isomorphism of compact spaces, as follows:

SU2 ≃ S3
R ,

(
x+ iy z + it
−z + it x− iy

)
→ (x, y, z, t)

We have therefore proved our theorem. □

As a philosophical comment here, the above parametrization of SU2 is something very
nice, because the parameters (x, y, z, t) range now over the sphere of space-time. Thus,
we are probably doing some kind of physics here. More on this later.

Regarding now the group U2, we have here a similar result, as follows:

Theorem 2.9. We have the following formula,

U2 =

{
(p+ iq)

(
x+ iy z + it
−z + it x− iy

) ∣∣∣ x2 + y2 + z2 + t2 = 1, p2 + q2 = 1

}
which makes U2 be a quotient compact space, as follows,

S3
R × S1

R → U2

but with this parametrization being no longer bijective.

Proof. We recall from Theorem 2.7 that we have:

U2 =

{
d

(
a b
−b̄ ā

) ∣∣∣ |a|2 + |b|2 = 1, |d| = 1

}
Now let us write our parameters a, b ∈ C, which belong to the complex unit sphere

S1
C ⊂ C2, and d ∈ T, in terms of their real and imaginary parts, as follows:

a = x+ iy , b = z + it , d = p+ iq

In terms of these new parameters x, y, z, t, p, q ∈ R, our formula for a generic matrix
U ∈ SU2, that we established before, reads:

U = (p+ iq)

(
x+ iy z + it
−z + it x− iy

)
As for the condition to be satisfied by the parameters x, y, z, t, p, q ∈ R, this comes

the conditions |a|2 + |b|2 = 1 and |d| = 1 to be satisfied by a, b, d ∈ C, which read:

x2 + y2 + z2 + t2 = 1 , p2 + q2 = 1
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Thus, we are led to the conclusion in the statement. Regarding now the last assertion,
recall that the unit spheres S3

R ⊂ R4 and S1
R ⊂ R2 are given by:

S3
R =

{
(x, y, z, t)

∣∣∣ x2 + y2 + z2 + t2 = 1
}

S1
R =

{
(p, q)

∣∣∣ p2 + q2 = 1
}

Thus, we have quotient map of compact spaces, as follows:

S3
R × S1

R → U2

((x, y, z, t), (p, q)) → (p+ iq)

(
x+ iy z + it
−z + it x− iy

)
However, the parametrization is no longer bijective, because when we globally switch

signs, the element ((−x,−y,−z,−t), (−p,−q)) produces the same element of U2. □

Here is now another reformulation of our main result so far, regarding SU2, obtained
by further building on the parametrization from Theorem 2.8:

Theorem 2.10. We have the following formula,

SU2 =
{
xc1 + yc2 + zc3 + tc4

∣∣∣ x2 + y2 + z2 + t2 = 1
}

where c1, c2, c3, c4 are the Pauli matrices, given by:

c1 =

(
1 0
0 1

)
, c2 =

(
i 0
0 −i

)
c3 =

(
0 1
−1 0

)
, c4 =

(
0 i
i 0

)
Proof. We recall from Theorem 2.8 that the group SU2 can be parametrized by the

real sphere S3
R ⊂ R4, in the following way:

SU2 =

{(
x+ iy z + it
−z + it x− iy

) ∣∣∣ x2 + y2 + z2 + t2 = 1

}
Thus, the elements U ∈ SU2 are precisely the matrices as follows, depending on

parameters x, y, z, t ∈ R satisfying x2 + y2 + z2 + t2 = 1:

U = x

(
1 0
0 1

)
+ y

(
i 0
0 −i

)
+ z

(
0 1
−1 0

)
+ t

(
0 i
i 0

)
But this gives the formula for SU2 in the statement. □

The above result is often the most convenient one, when dealing with SU2. This is
because the Pauli matrices have a number of remarkable properties, which are very useful
when doing computations. These properties can be summarized as follows:
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Theorem 2.11. The Pauli matrices multiply according to the formulae

c22 = c23 = c24 = −1

c2c3 = −c3c2 = c4

c3c4 = −c4c3 = c2

c4c2 = −c2c4 = c3

they conjugate according to the following rules,

c∗1 = c1 , c
∗
2 = −c2 , c∗3 = −c3 , c∗4 = −c4

and they form an orthonormal basis of M2(C), with respect to the scalar product

< a, b >= tr(ab∗)

with tr :M2(C) → C being the normalized trace of 2× 2 matrices, tr = Tr/2.

Proof. The first two assertions, regarding the multiplication and conjugation rules
for the Pauli matrices, follow from some elementary computations. As for the last as-
sertion, this follows by using these rules. Indeed, the fact that the Pauli matrices are
pairwise orthogonal follows from computations of the following type, for i ̸= j:

< ci, cj >= tr(cic
∗
j) = tr(±cicj) = tr(±ck) = 0

As for the fact that the Pauli matrices have norm 1, this follows from:

< ci, ci >= tr(cic
∗
i ) = tr(±c2i ) = tr(c1) = 1

Thus, we are led to the conclusion in the statement. □

We should mention here that the Pauli matrices are cult objects in physics, due to the
fact that they describe the spin of the electron. Remember indeed the basic discussion
from foundational quantum mechanics, involving the wave functions ψ : R3 → C of these
electrons, and of the Hilbert space H = L2(R3) needed for understanding their quantum
mechanics. Well, that was only half of the story, with the other half coming from the
fact that, a bit like our Earth spins around its axis, the electrons spin too. And it took
scientists a lot of skill in order to understand the physics and mathematics of the spin,
the conclusion being that the wave function space H = L2(R3) has to be enlarged with a
copy of K = C2, as to take into account the spin, and with this spin being described by
the Pauli matrices, in some appropriate, quantum mechanical sense.

As usual, we refer to Feynman [33], Griffiths [41] or Weinberg [94] for more on all
this. And with the remark that the Pauli matrices are actually subject to several possible
normalizations, depending on formalism, but let us not get into all this here.
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2c. Euler-Rodrigues

Back to mathematics, let us discuss now the basic unitary groups in 3 or more di-
mensions. The situation here becomes fairly complicated, but it is possible however to
explicitly compute the rotation groups SO3 and O3, and explaining this result, due to
Euler-Rodrigues, which is something non-trivial and very useful, will be our next goal.

The proof of the Euler-Rodrigues formula is something quite tricky. Let us start with
the following construction, whose usefulness will become clear in a moment:

Proposition 2.12. The adjoint action SU2 ↷M2(C), given by

TU(M) = UMU∗

leaves invariant the following real vector subspace of M2(C),

E = spanR(c1, c2, c3, c4)

and we obtain in this way a group morphism SU2 → GL4(R).

Proof. We have two assertions to be proved, as follows:

(1) We must first prove that, with E ⊂ M2(C) being the real vector space in the
statement, we have the following implication:

U ∈ SU2,M ∈ E =⇒ UMU∗ ∈ E

But this is clear from the multiplication rules for the Pauli matrices, from Theorem
2.11. Indeed, let us write our matrices U,M as follows:

U = xc1 + yc2 + zc3 + tc4

M = ac1 + bc2 + cc3 + dc4

We know that the coefficients x, y, z, t and a, b, c, d are real, due to U ∈ SU2 and
M ∈ E. The point now is that when computing UMU∗, by using the various rules from
Theorem 2.11, we obtain a matrix of the same type, namely a combination of c1, c2, c3, c4,
with real coefficients. Thus, we have UMU∗ ∈ E, as desired.

(2) In order to conclude, let us identify E ≃ R4, by using the basis c1, c2, c3, c4. The
result found in (1) shows that we have a correspondence as follows:

SU2 →M4(R) , U → (TU)|E

Now observe that for any U ∈ SU2 and any M ∈M2(C) we have:

TU∗TU(M) = U∗UMU∗U =M

Thus TU∗ = T−1
U , and so the correspondence that we found can be written as:

SU2 → GL4(R) , U → (TU)|E
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But this a group morphism, due to the following computation:

TUTV (M) = UVMV ∗U∗ = TUV (M)

Thus, we are led to the conclusion in the statement. □

The point now, which makes the link with SO3, and which will ultimately elucidate
the structure of SO3, is that Proposition 2.12 can be improved as follows:

Theorem 2.13. The adjoint action SU2 ↷M2(C), given by

TU(M) = UMU∗

leaves invariant the following real vector subspace of M2(C),

F = spanR(c2, c3, c4)

and we obtain in this way a group morphism SU2 → SO3.

Proof. We can do this in several steps, as follows:

(1) Our first claim is that the group morphism SU2 → GL4(R) constructed in Propo-
sition 10.12 is in fact a morphism SU2 → O4. In order to prove this, recall the following
formula, valid for any U ∈ SU2, from the proof of Proposition 2.12:

TU∗ = T−1
U

We want to prove that the matrices TU ∈ GL4(R) are orthogonal, and in view of the
above formula, it is enough to prove that we have:

T ∗
U = (TU)

t

So, let us prove this. For any two matrices M,N ∈ E, we have:

< TU∗(M), N > = < U∗MU,N >

= tr(U∗MUN)

= tr(MUNU∗)

On the other hand, we have as well the following formula:

< (TU)
t(M), N > = < M,TU(N) >

= < M,UNU∗ >

= tr(MUNU∗)

Thus we have indeed T ∗
U = (TU)

t, which proves our SU2 → O4 claim.

(2) In order now to finish, recall that we have by definition c1 = 1, as a matrix. Thus,
the action of SU2 on the vector c1 ∈ E is given by:

TU(c1) = Uc1U
∗ = UU∗ = 1 = c1
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We conclude that c1 ∈ E is invariant under SU2, and by orthogonality the following
subspace of E must be invariant as well under the action of SU2:

e⊥1 = spanR(c2, c3, c4)

Now if we call this subspace F , and we identify F ≃ R3 by using the basis c2, c3, c4,
we obtain by restriction to F a morphism of groups as follows:

SU2 → O3

But since this morphism is continuous and SU2 is connected, its image must be con-
nected too. Now since the target group decomposes as O3 = SO3 ⊔ (−SO3), and 1 ∈ SU2

gets mapped to 1 ∈ SO3, the whole image must lie inside SO3, and we are done. □

The above result is quite interesting, because we will see in a moment that the mor-
phism SU2 → SO3 there is surjective. Thus, we will have a way of parametrizing the
elements V ∈ SO3 by elements U ∈ SO2, and so ultimately by parameters as follows:

(x, y, z, t) ∈ S3
R

In order to work out all this, let us start with the following result, coming as a
continuation of Proposition 2.12, independently of Theorem 2.13:

Proposition 2.14. With respect to the standard basis c1, c2, c3, c4 of the vector space
R4 = span(c1, c2, c3, c4), the morphism T : SU2 → GL4(R) is given by:

TU =


1 0 0 0
0 x2 + y2 − z2 − t2 2(yz − xt) 2(xz + yt)
0 2(xt+ yz) x2 + z2 − y2 − t2 2(zt− xy)
0 2(yt− xz) 2(xy + zt) x2 + t2 − y2 − z2


Thus, when looking at T as a group morphism SU2 → O4, what we have in fact is a group
morphism SU2 → O3, and even SU2 → SO3.

Proof. With notations from Proposition 2.12 and its proof, let us first look at the
action L : SU2 ↷ R4 by left multiplication, which is by definition given by:

LU(M) = UM

In order to compute the matrix of this action, let us write, as usual:

U = xc1 + yc2 + zc3 + tc4

M = ac1 + bc2 + cc3 + dc4
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By using the multiplication formulae in Theorem 2.11, we obtain:

UM = (xc1 + yc2 + zc3 + tc4)(ac1 + bc2 + cc3 + dc4)

= (xa− yb− zc− td)c1

+ (xb+ ya+ zd− tc)c2

+ (xc− yd+ za+ tb)c3

+ (xd+ yc− zb+ ta)c4

We conclude that the matrix of the left action considered above is:

LU =


x −y −z −t
y x −t z
z t x −y
t −z y x


Similarly, let us look now at the action R : SU2 ↷ R4 by right multiplication, which

is by definition given by the following formula:

RU(M) =MU∗

In order to compute the matrix of this action, let us write, as before:

U = xc1 + yc2 + zc3 + tc4

M = ac1 + bc2 + cc3 + dc4

By using the multiplication formulae in Theorem 2.11, we obtain:

MU∗ = (ac1 + bc2 + cc3 + dc4)(xc1 − yc2 − zc3 − tc4)

= (ax+ by + cz + dt)c1

+ (−ay + bx− ct+ dz)c2

+ (−az + bt+ cx− dy)c3

+ (−at− bz + cy + dx)c4

We conclude that the matrix of the right action considered above is:

RU =


x y z t
−y x −t z
−z t x −y
−t −z y x
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Now by composing, the matrix of the adjoint matrix in the statement is:

TU = RULU

=


x y z t
−y x −t z
−z t x −y
−t −z y x



x −y −z −t
y x −t z
z t x −y
t −z y x



=


1 0 0 0
0 x2 + y2 − z2 − t2 2(yz − xt) 2(xz + yt)
0 2(xt+ yz) x2 + z2 − y2 − t2 2(zt− xy)
0 2(yt− xz) 2(xy + zt) x2 + t2 − y2 − z2


Thus, we have indeed the formula in the statement. As for the remaining assertions,

these are all clear either from this formula, or from Theorem 2.13. □

We can now formulate the Euler-Rodrigues result, as follows:

Theorem 2.15. We have a double cover map, obtained via the adjoint representation,

SU2 → SO3

and this map produces the Euler-Rodrigues formula

U =

x2 + y2 − z2 − t2 2(yz − xt) 2(xz + yt)
2(xt+ yz) x2 + z2 − y2 − t2 2(zt− xy)
2(yt− xz) 2(xy + zt) x2 + t2 − y2 − z2


for the generic elements of SO3.

Proof. We know from the above that we have a group morphism SU2 → SO3, given
by the formula in the statement, and the problem now is that of proving that this is a
double cover map, in the sense that it is surjective, and with kernel {±1}.

(1) Regarding the kernel, this is elementary to compute, as follows:

ker(SU2 → SO3) =
{
U ∈ SU2

∣∣∣TU(M) =M,∀M ∈ E
}

=
{
U ∈ SU2

∣∣∣UM =MU, ∀M ∈ E
}

=
{
U ∈ SU2

∣∣∣Uci = ciU,∀i
}

= {±1}

(2) Thus, we are done with this, and as a side remark here, this result shows that our
morphism SU2 → SO3 is ultimately a morphism as follows:

PU2 ⊂ SO3 , PU2 = SU2/{±1}
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Here P stands for “projective”, and it is possible to say more about the construction
G → PG, which can be performed for any subgroup G ⊂ UN . But we will not get here
into this, our next goal being anyway that of proving that we have PU2 = SO3.

(3) We must prove now that the morphism SU2 → SO3 is surjective. This is something
non-trivial, and there are several advanced proofs for this, as follows:

– A first proof is by using Lie theory. To be more precise, the tangent spaces at 1 of
both SU2 and SO3 can be explicitely computed, by doing some linear algebra, and the
morphism SU2 → SO3 follows to be surjective around 1, and then globally.

– Another proof is via representation theory. Indeed, the representations of SU2 and
SO3 are subject to very similar formulae, called Clebsch-Gordan rules, and this shows
that SU2 → SO3 is surjective. We will discuss this later in this book.

– Yet another advanced proof, which is actually quite bordeline for what can be called
“proof”, is by using the ADE/McKay classification of the subgroups G ⊂ SO3, which
shows that there is no room strictly inside SO3 for something as big as PU2.

(4) In short, with some good knowledge of group theory, we are done. However, this
is not our case, and we will present in what follows a more pedestrian proof, which was
actually the original proof, based on the fact that any rotation U ∈ SO3 has an axis.

(5) As a first computation, let us prove that any rotation U ∈ Im(SU2 → SO3) has
an axis. We must look for fixed points of such rotations, and by linearity it is enough to
look for fixed points belonging to the sphere S2

R ⊂ R3. Now recall that in our picture for
the quotient map SU2 → SO3, the space R3 appears as F = spanR(c2, c3, c4), naturally
embedded into the space R4 appearing as E = spanR(c1, c2, c3, c4). Thus, we must look
for fixed points belonging to the sphere S3

R ⊂ R4 whose first coordinate vanishes. But, in
our R4 = E picture, this sphere S3

R is the group SU2. Thus, we must look for fixed points
V ∈ SU2 whose first coordinate with respect to c1, c2, c3, c4 vanishes, which amounts in
saying that the diagonal entries of V must be purely imaginary numbers.

(6) Long story short, via our various identifications, we are led into solving the equation
UV = V U with U, V ∈ SU2, and with V having a purely imaginary diagonal. So, with
standard notations for SU2, we must solve the following equation, with p ∈ iR:(

a b
−b̄ ā

)(
p q
−q̄ p̄

)
=

(
p q
−q̄ p̄

)(
a b
−b̄ ā

)
(7) But this is something which is routine. Indeed, by identifying coefficients we obtain

the following equations, each appearing twice:

bq̄ = b̄q , b(p− p̄) = (a− ā)q
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In the case b = 0 the only equation which is left is q = 0, and reminding that we must
have p ∈ iR, we do have solutions, namely two of them, as follows:

V = ±
(
i 0
0 i

)
(8) In the remaining case b ̸= 0, the first equation reads bq̄ ∈ R, so we must have q = λb

with λ ∈ R. Now with this substitution made, the second equation reads p− p̄ = λ(a− ā),
and since we must have p ∈ iR, this gives 2p = λ(a− ā). Thus, our equations are:

q = λb , p = λ · a− ā

2

Getting back now to our problem about finding fixed points, assuming |a|2 + |b|2 = 1
we must find λ ∈ R such that the above numbers p, q satisfy |p|2 + |q|2 = 1. But:

|p|2 + |q|2 = |λb|2 +
∣∣∣∣λ · a− ā

2

∣∣∣∣2
= λ2(|b|2 + Im(a)2)

= λ2(1−Re(a)2)

Thus, we have again two solutions to our fixed point problem, given by:

λ = ± 1√
1−Re(a)2

(9) Summarizing, we have proved that any rotation U ∈ Im(SU2 → SO3) has an
axis, and with the direction of this axis, corresponding to a pair of opposite points on the
sphere S2

R ⊂ R3, being given by the above formulae, via S2
R ⊂ S3

R = SU2.

(10) In order to finish, we must argue that any rotation U ∈ SO3 has an axis. But
this follows for instance from some topology, by using the induced map S2

R → S2
R. Now

since U ∈ SO3 is uniquely determined by its rotation axis, which can be regarded as a
point of S2

R/{±1}, plus its rotation angle t ∈ [0, 2π), by using S2
R ⊂ S3

R = SU2 as in (9)
we are led to the conclusion that U is uniquely determined by an element of SU2/{±1},
and so appears indeed via the Euler-Rodrigues formula, as desired. □

So long for the Euler-Rodrigues formula. As already mentioned, all the above is just
the tip of the iceberg, and there are many more things that can be said, which are all
interesting, and worth learning. In what concerns us, we will be back to this later, when
doing representation theory, with some further comments on all this.

Regarding now O3, the extension from SO3 is very simple, as follows:
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Theorem 2.16. We have the Euler-Rodrigues formula

U = ±

x2 + y2 − z2 − t2 2(yz − xt) 2(xz + yt)
2(xt+ yz) x2 + z2 − y2 − t2 2(zt− xy)
2(yt− xz) 2(xy + zt) x2 + t2 − y2 − z2


for the generic elements of O3.

Proof. This follows from Theorem 2.15, because the determinant of an orthogonal
matrix U ∈ O3 must satisfy detU = ±1, and in the case detU = −1, we have:

det(−U) = (−1)3 detU = − detU = 1

Thus, assuming detU = −1, we can therefore rescale U into an element −U ∈ SO3,
and this leads to the conclusion in the statement. □

2d. Higher dimensions

With the above small N examples worked out, let us discuss now the general theory,
at arbitrary values of N ∈ N. In the real case, we have the following result:

Proposition 2.17. We have a decomposition as follows, with SO−1
N consisting by

definition of the orthogonal matrices having determinant −1:

ON = SON ∪ SO−1
N

Moreover, when N is odd the set SO−1
N is simply given by SO−1

N = −SON .

Proof. The first assertion is clear from definitions, because the determinant of an
orthogonal matrix must be ±1. The second assertion is clear too, and we have seen this
already at N = 3, in the proof of Theorem 2.16. Finally, when N is even the situation is
more complicated, and requires complex numbers. We will be back to this. □

In the complex case now, the result is simpler, as follows:

Proposition 2.18. We have a decomposition as follows, with SUd
N consisting by def-

inition of the unitary matrices having determinant d ∈ T:

ON =
⋃
d∈T

SUd
N

Moreover, the components are SUd
N = f · SUN , where f ∈ T is such that fN = d.

Proof. This is clear from definitions, and from the fact that the determinant of a
unitary matrix belongs to T, by extracting a suitable square root of the determinant. □

It is possible to use the decomposition in Proposition 2.18 in order to say more about
what happens in the real case, in the context of Proposition 2.17, but we will not get
into this. We will basically stop here with our study of ON , UN , and of their versions
SON , SUN . As a last result on the subject, however, let us record:
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Theorem 2.19. We have subgroups of ON , UN constructed via the condition

(detU)d = 1

with d ∈ N ∪ {∞}, which generalize both ON , UN and SON , SUN .

Proof. This is indeed from definitions, and from the multiplicativity property of the
determinant. We will be back to these groups, which are quite specialized, later on. □

2e. Exercises

Exercises:

Exercise 2.20.

Exercise 2.21.

Exercise 2.22.

Exercise 2.23.

Exercise 2.24.

Exercise 2.25.

Exercise 2.26.

Exercise 2.27.

Bonus exercise.



CHAPTER 3

Reflection groups

3a. Hyperoctahedral groups

Back to the finite groups, at a more advanced level now, we first have the hyperocta-
hedral group HN . This group is something quite tricky, which appears as follows:

Definition 3.1. The hyperoctahedral group HN is the group of symmetries of the unit
cube in RN .

The hyperoctahedral group is a quite interesting group, whose definition, as a sym-
metry group, reminds that of the dihedral group DN . So, let us start our study in the
same way as we did for DN , with a discussion at small values of N ∈ N:

N = 1. Here the 1-cube is the segment, whose symmetries are the identity id and the
flip τ . Thus, we obtain the group with 2 elements, which is a very familiar object:

H1 = D2 = S2 = Z2

N = 2. Here the 2-cube is the square, and so the corresponding symmetry group is
the dihedral group D4, which is a group that we know well:

H2 = D4 = Z4 ⋊ Z2

N = 3. Here the 3-cube is the usual cube, and the situation is considerably more
complicated, because this usual cube has no less than 48 symmetries. Identifying and
counting these symmetries is actually an excellent exercise.

All this looks quite complicated, but fortunately we can count HN , at N = 3, and at
higher N as well, by using some tricks, the result being as follows:

Theorem 3.2. We have the cardinality formula

|HN | = 2NN !

coming from the fact that HN is the symmetry group of the coordinate axes of RN .

Proof. This follows from some geometric thinking, as follows:

(1) Consider the standard cube in RN , centered at 0, and having as vertices the points
having coordinates ±1. With this picture in hand, it is clear that the symmetries of the
cube coincide with the symmetries of the N coordinate axes of RN .

51
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(2) In order to count now these latter symmetries, a bit as we did for the dihedral
group, observe first that we have N ! permutations of these N coordinate axes.

(3) But each of these permutations of the coordinate axes σ ∈ SN can be further
“decorated” by a sign vector e ∈ {±1}N , consisting of the possible ±1 flips which can be
applied to each coordinate axis, at the arrival. Thus, we have:

|HN | = |SN | · |ZN
2 | = N ! · 2N

Thus, we are led to the conclusions in the statement. □

As in the dihedral group case, it is possible to go beyond this, with a crossed product
decomposition, of quite special type, called wreath product decomposition:

Theorem 3.3. We have a wreath product decomposition as follows,

HN = Z2 ≀ SN

which means by definition that we have a crossed product decomposition

HN = ZN
2 ⋊ SN

with the permutations σ ∈ SN acting on the elements e ∈ ZN
2 as follows:

σ(e1, . . . , ek) = (eσ(1), . . . , eσ(k))

Proof. As explained in the proof of Theorem 3.2, the elements ofHN can be identified
with the pairs g = (e, σ) consisting of a permutation σ ∈ SN , and a sign vector e ∈ ZN

2 ,
so that at the level of the cardinalities, we have the following formula:

|HN | = |ZN
2 × SN |

To be more precise, given an element g ∈ HN , the element σ ∈ SN is the corresponding
permutation of the N coordinate axes, regarded as unoriented lines in RN , and e ∈ ZN

2

is the vector collecting the possible flips of these coordinate axes, at the arrival. Now
observe that the product formula for two such pairs g = (e, σ) is as follows, with the
permutations σ ∈ SN acting on the elements f ∈ ZN

2 as in the statement:

(e, σ)(f, τ) = (efσ, στ)

Thus, we are precisely in the framework of the crossed products, and we conclude that
we have a crossed product decomposition, as follows:

HN = ZN
2 ⋊ SN

Thus, we are led to the conclusion in the statement, with the formula HN = Z2 ≀ SN

being just a shorthand for the decomposition HN = ZN
2 ⋊ SN that we found. □

Summarizing, we have so far many interesting examples of finite groups, and as a
sequence of main examples, we have the following groups:

ZN ⊂ DN ⊂ SN ⊂ HN
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We will be back to these fundamental finite groups later on, on several occasions, with
further results on them, both of algebraic and of analytic type.

3b. Complex reflections

The groups that we studied so far are all groups of orthogonal matrices. When looking
into general unitary matrices, we led to the following interesting class of groups:

Definition 3.4. The complex reflection group Hs
N ⊂ UN , depending on parameters

N ∈ N , s ∈ N ∪ {∞}

is the group of permutation-type matrices with s-th roots of unity as entries,

Hs
N =MN(Zs ∪ {0}) ∩ UN

with the convention Z∞ = T, at s = ∞.

Observe that at s = 1, 2 we obtain the following groups:

H1
N = SN , H2

N = HN

Another important particular case is s = ∞, where we obtain a group which is actually
not finite, but is still compact, denoted as follows:

KN ⊂ UN

In general, in analogy with what we know about SN , HN , we first have:

Proposition 3.5. The number of elements of Hs
N with s ∈ N is:

|Hs
N | = sNN !

At s = ∞, the group KN = H∞
N that we obtain is infinite.

Proof. This is indeed clear from our definition of Hs
N , as a matrix group as above,

because there are N ! choices for a permutation-type matrix, and then sN choices for the
corresponding s-roots of unity, which must decorate the N nonzero entries. □

Once again in analogy with what we know at s = 1, 2, we have as well:

Theorem 3.6. We have a wreath product decomposition

Hs
N = ZN

s ⋊ SN = Zs ≀ SN

with the permutations σ ∈ SN acting on the elements e ∈ ZN
s as follows:

σ(e1, . . . , ek) = (eσ(1), . . . , eσ(k))
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Proof. As explained in the proof of Proposition 3.5, the elements of Hs
N can be

identified with the pairs g = (e, σ) consisting of a permutation σ ∈ SN , and a decorating
vector e ∈ ZN

s , so that at the level of the cardinalities, we have:

|HN | = |ZN
s × SN |

Now observe that the product formula for two such pairs g = (e, σ) is as follows, with
the permutations σ ∈ SN acting on the elements f ∈ ZN

s as in the statement:

(e, σ)(f, τ) = (efσ, στ)

Thus, we are in the framework of the crossed products, and we obtain Hs
N = ZN

s ⋊SN .
But this can be written, by definition, as Hs

N = Zs ≀ SN , and we are done. □

Summarizing, and by focusing now on the cases s = 1, 2,∞, which are the most
important, we have extended our series of basic unitary groups, as follows:

ZN ⊂ DN ⊂ SN ⊂ HN ⊂ KN

In addition to this, we have the groups Hs
N with s ∈ {3, 4, . . . , }. However, these will

not fit well into the above series of inclusions, because we only have s|t =⇒ Hs
N ⊂ H t

N .
Thus, we can only extend our series of inclusions as follows:

ZN ⊂ DN ⊂ SN ⊂ HN ⊂ H4
N ⊂ H8

N ⊂ . . . . . . ⊂ KN

We will be back later to Hs
N , with more theory, and some generalizations as well.

3c. Reflection groups

Back to the rotation groups, in the real case, we have the following result:

Theorem 3.7. We have subgroups of ON , UN constructed via the condition

(detU)d = 1

with d ∈ N ∪ {∞}, which generalize both ON , UN and SON , SUN .

Proof. This is indeed from definitions, and from the multiplicativity property of the
determinant. We will be back to these groups, which are quite specialized, later on. □

With this discussed, let us go back now to the complex reflection groups from the
previous section, and make a link with the material there. We first have:

Theorem 3.8. The full complex reflection group KN ⊂ UN , given by

KN =MN(T ∪ {0}) ∩ UN

has a wreath product decomposition as follows,

KN = T ≀ SN

with SN acting on TN in the standard way, by permuting the factors.



3D. FURTHER EXAMPLES 55

Proof. This is something that we know from before, appearing as the s = ∞ partic-
ular case of the results established there for the complex reflection groups Hs

N . □

By using the above full complex reflection group KN , we can talk in fact about the
reflection subgroup of any compact group G ⊂ UN , as follows:

Definition 3.9. Given G ⊂ UN , we define its reflection subgroup to be

K = G ∩KN

with the intersection taken inside UN .

This notion is something quite interesting, leading us into the question of understand-
ing what the subgroups of KN are. We have here the following construction:

Theorem 3.10. We have subgroups of the basic complex reflection groups,

Hsd
N ⊂ Hs

N

constructed via the following condition, with d ∈ N ∪ {∞},

(detU)d = 1

which generalize all the complex reflection groups that we have so far.

Proof. Here the first assertion is clear from definitions, and from the multiplicativity
of the determinant. As for the second assertion, this is rather a remark, coming from the
fact that the alternating group AN , which is the only finite group so far not fitting into
the series {Hs

N}, is indeed of this type, obtained from H1
N = SN by using d = 1. □

3d. Further examples

The point now is that, by a well-known and deep result in group theory, the com-
plex reflection groups consist of the series {Hsd

N } constructed above, and of a number of
exceptional groups, which can be fully classified. To be more precise, we have:

Theorem 3.11. The irreducible complex reflection groups are

Hsd
N =

{
U ∈ Hs

N

∣∣∣(detU)d = 1
}

along with 34 exceptional examples.

Proof. This is something quite advanced, and we refer here to the paper of Shephard
and Todd [87], and to the subsequent literature on the subject. □
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3e. Exercises

Exercises:

Exercise 3.12.

Exercise 3.13.

Exercise 3.14.

Exercise 3.15.

Exercise 3.16.

Exercise 3.17.

Exercise 3.18.

Exercise 3.19.

Bonus exercise.



CHAPTER 4

Symplectic groups

4a. Bistochastic groups

At a more specialized level now, we first have the groups BN , CN , consisting of the
orthogonal and unitary bistochastic matrices. Let us start with:

Definition 4.1. A square matrix M ∈ MN(C) is called bistochastic if each row and
each column sum up to the same number:

M11 . . . M1N → λ
...

...
MN1 . . . MNN → λ
↓ ↓
λ λ

If this happens only for the rows, or only for the columns, the matrix is called row-
stochastic, respectively column-stochastic.

As a basic example of a bistochastic matrix, we have of course the flat matrix IN . In
fact, the various above notions of stochasticity are closely related to IN , or rather to the
all-one vector ξ that the matrix IN/N projects on, in the following way:

Proposition 4.2. Let M ∈MN(C) be a square matrix.

(1) M is row stochastic, with sums λ, when Mξ = λξ.
(2) M is column stochastic, with sums λ, when M tξ = λξ.
(3) M is bistochastic, with sums λ, when Mξ =M tξ = λξ.

Proof. All these assertions are clear from definitions, because when multiplying a
matrix by ξ, we obtain the vector formed by the row sums. □

As an observation here, we can reformulate if we want the above statement in a purely
matrix-theoretic form, by using the flat matrix IN , as follows:

Proposition 4.3. Let M ∈MN(C) be a square matrix.

(1) M is row stochastic, with sums λ, when MIN = λIN .
(2) M is column stochastic, with sums λ, when INM = λIN .
(3) M is bistochastic, with sums λ, when MIN = INM = λIN .
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Proof. This follows from Proposition 4.2, and from the fact that both the rows and
the columns of the flat matrix IN are copies of the all-one vector ξ. □

In what follows we will be mainly interested in the unitary bistochastic matrices, which
are quite interesting objects. These do not exactly cover the flat matrix IN , but cover
instead the following related matrix, which appears in many linear algebra questions:

KN =
1

N

2−N 2
. . .

2 2−N


As a first result, regarding such matrices, we have the following statement:

Theorem 4.4. For a unitary matrix U ∈ UN , the following conditions are equivalent:

(1) H is bistochastic, with sums λ.
(2) H is row stochastic, with sums λ, and |λ| = 1.
(3) H is column stochastic, with sums λ, and |λ| = 1.

Proof. By using a symmetry argument we just need to prove (1) ⇐⇒ (2), and
both the implications are elementary, as follows:

(1) =⇒ (2) If we denote by U1, . . . , UN ∈ CN the rows of U , we have indeed:

1 =
∑
i

< U1, Ui >

=
∑
j

U1j

∑
i

Ūij

=
∑
j

U1j · λ̄

= |λ|2

(2) =⇒ (1) Consider the all-one vector ξ = (1)i ∈ CN . The fact that U is row-
stochastic with sums λ reads:∑

j

Uij = λ,∀i ⇐⇒
∑
j

Uijξj = λξi, ∀i

⇐⇒ Uξ = λξ

Also, the fact that U is column-stochastic with sums λ reads:∑
i

Uij = λ,∀j ⇐⇒
∑
j

Uijξi = λξj, ∀j

⇐⇒ U tξ = λξ
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We must prove that the first condition implies the second one, provided that the row
sum λ satisfies |λ| = 1. But this follows from the following computation:

Uξ = λξ =⇒ U∗Uξ = λU∗ξ

=⇒ ξ = λU∗ξ

=⇒ ξ = λ̄U tξ

=⇒ U tξ = λξ

Thus, we have proved both the implications, and we are done. □

The unitary bistochastic matrices are stable under a number of operations, and in
particular under taking products, and we have the following result:

Theorem 4.5. The real and complex bistochastic groups, which are the sets

BN ⊂ ON , CN ⊂ UN

consisting of matrices which are bistochastic, are isomorphic to ON−1, UN−1.

Proof. Let us pick a unitary matrix F ∈ UN satisfying the following condition, where
e0, . . . , eN−1 is the standard basis of CN , and where ξ is the all-one vector:

Fe0 =
1√
N
ξ

Observe that such matrices F ∈ UN exist indeed, the basic example being the normal-
ized Fourier matrix FN/

√
N . We have then, by using the above property of F :

uξ = ξ ⇐⇒ uFe0 = Fe0

⇐⇒ F ∗uFe0 = e0

⇐⇒ F ∗uF = diag(1, w)

Thus we have isomorphisms as in the statement, given by wij → (F ∗uF )ij. □

At a more advanced level now, let us begin with some geometric preliminaries. The
complex projective space appears by definition as follows:

PN−1
C = (CN − {0})

/
< x = λy >

Inside this projective space, we have the Clifford torus, constructed as follows:

TN−1 =
{
(z1, . . . , zN) ∈ PN−1

C

∣∣∣|z1| = . . . = |zN |
}

With these conventions, we have the following result, from [53]:

Proposition 4.6. For a unitary matrix U ∈ UN , the following are equivalent:

(1) There exist L,R ∈ UN diagonal such that U ′ = LUR is bistochastic.
(2) The standard torus TN ⊂ CN satisfies TN ∩ UTN ̸= ∅.
(3) The Clifford torus TN−1 ⊂ PN−1

C satisfies TN−1 ∩ UTN−1 ̸= ∅.
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Proof. These equivalences are all elementary, as follows:

(1) =⇒ (2) Assuming that U ′ = LUR is bistochastic, which in terms of the all-1
vector ξ means U ′ξ = ξ, if we set f = Rξ ∈ TN we have:

Uf = L̄U ′R̄f = L̄U ′ξ = L̄ξ ∈ TN

Thus we have Uf ∈ TN ∩ UTN , which gives the conclusion.

(2) =⇒ (1) Given g ∈ TN ∩ UTN , we can define R,L as follows:

R =

g1 . . .
gN

 , L̄ =

(Ug)1
. . .

(Ug)N


With these values for L,R, we have then the following formulae:

Rξ = g , L̄ξ = Ug

Thus the matrix U ′ = LUR is bistochastic, because:

U ′ξ = LURξ = LUg = ξ

(2) =⇒ (3) This is clear, because TN−1 ⊂ PN−1
C appears as the projective image of

TN ⊂ CN , and so TN−1 ∩ UTN−1 appears as the projective image of TN ∩ UTN .

(3) =⇒ (2) We have indeed the following equivalence:

TN−1 ∩ UTN−1 ̸= ∅ ⇐⇒ ∃λ ̸= 0, λTN ∩ UTN ̸= ∅
But U ∈ UN implies |λ| = 1, and this gives the result. □

The point now is that the condition (3) above is something familiar in symplectic
geometry, and known to hold for any U ∈ UN . Thus, following [53], we have:

Theorem 4.7. Any unitary matrix U ∈ UN can be put in bistochastic form,

U ′ = LUR

with L,R ∈ UN being both diagonal, via a certain non-explicit method.

Proof. As already mentioned, the condition TN−1 ∩ UTN−1 ̸= ∅ in Proposition 4.6
(3) is something quite natural in symplectic geometry. To be more precise:

(1) The Clifford torus TN−1 ⊂ PN−1
C is a Lagrangian submanifold, and the map

TN−1 → UTN−1 is a Hamiltonian isotopy. For more on this, see Arnold [2].

(2) The point now is that a non-trivial result of Biran-Entov-Polterovich and Cho
states that TN−1 cannot be displaced from itself via a Hamiltonian isotopy.

(3) Thus, we are led to the conclusion that TN−1 ∩ UTN−1 ̸= ∅ holds indeed, for any
U ∈ UN . We therefore obtain the result, via Proposition 4.6. See [53]. □
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4b. Symplectic groups

Moving ahead now, as yet another basic example of a continuous group, which is of
key importance, we have the symplectic group SpN . Let us begin with:

Definition 4.8. The “super-space” C̄N is the usual space CN , with its standard basis
{e1, . . . , eN}, with a chosen sign ε = ±1, and a chosen involution on the indices:

i→ ī

The “super-identity” matrix is Jij = δij̄ for i ≤ j and Jij = εδij̄ for i ≥ j.

Up to a permutation of the indices, we have a decomposition N = 2p + q, such that
the involution is, in standard permutation notation:

(12) . . . (2p− 1, 2p)(2p+ 1) . . . (q)

Thus, up to a base change, the super-identity is as follows, where N = 2p + q and
ε = ±1, with the 1q block at right disappearing if ε = −1:

J =



0 1
ε1 0(0)

. . .
0 1
ε1 0(p)

1(1)
. . .

1(q)


In the case ε = 1, the super-identity is the following matrix:

J+(p, q) =



0 1
1 0(1)

. . .
0 1
1 0(p)

1(1)
. . .

1(q)
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In the case ε = −1 now, the diagonal terms vanish, and the super-identity is:

J−(p, 0) =


0 1
−1 0(1)

. . .
0 1
−1 0(p)


With the above notions in hand, we have the following result:

Theorem 4.9. The super-orthogonal group, which is by definition

ŌN =
{
U ∈ UN

∣∣∣U = JŪJ−1
}

with J being the super-identity matrix, is as follows:

(1) At ε = 1 we have ŌN = ON .
(2) At ε = −1 we have ŌN = SpN .

Proof. These results are both elementary, as follows:

(1) At ε = −1 this follows from definitions.

(2) At ε = 1 now, consider the root of unity ρ = eπi/4, and let:

Γ =
1√
2

(
ρ ρ7

ρ3 ρ5

)
Then this matrix Γ is unitary, and we have the following formula:

Γ

(
0 1
1 0

)
Γt = 1

Thus the following matrix is unitary as well, and satisfies CJCt = 1:

C =


Γ(1)

. . .

Γ(p)

1q


Thus in terms of V = CUC∗ the relations U = JŪJ−1 = unitary simply read:

V = V̄ = unitary

Thus we obtain an isomorphism ŌN = ON as in the statement. □

Regarding now SpN , we have the following result:
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Theorem 4.10. The symplectic group SpN ⊂ UN , which is by definition

SpN =
{
U ∈ UN

∣∣∣U = JŪJ−1
}

consists of the SU2 patterned matrices,

U =

 a b . . .
−b̄ ā
...

. . .


which are unitary, U ∈ UN . In particular, we have Sp2 = SU2.

Proof. This follows indeed from definitions, because the condition U = JŪJ−1 cor-
responds precisely to the fact that U must be a SU2-patterned matrix. □

We will be back later to the symplectic groups, towards the end of the present book,
with more results about them. In the meantime, have a look at the mechanics book of
Arnold [2], which explains what the symplectic groups and geometry are good for.

4c. Reflections, again

As a last topic of discussion, now that we have a decent understanding of the main
continuous groups of unitary matrices G ⊂ UN , let us go back to the finite groups from
the previous chapter, and make a link with the material there. We first have:

Theorem 4.11. The full complex reflection group KN ⊂ UN , given by

KN =MN(T ∪ {0}) ∩ UN

has a wreath product decomposition as follows,

KN = T ≀ SN

with SN acting on TN in the standard way, by permuting the factors.

Proof. This is something that we know from chapter 3, appearing as the s = ∞
particular case of the results established there for the complex reflection groups Hs

N . □

By using the above full complex reflection group KN , we can talk in fact about the
reflection subgroup of any compact group G ⊂ UN , as follows:

Definition 4.12. Given G ⊂ UN , we define its reflection subgroup to be

K = G ∩KN

with the intersection taken inside UN .

This notion is something quite interesting, leading us into the question of understand-
ing what the subgroups of KN are. We have here the following construction:
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Theorem 4.13. We have subgroups of the basic complex reflection groups,

Hsd
N ⊂ Hs

N

constructed via the following condition, with d ∈ N ∪ {∞},

(detU)d = 1

which generalize all the complex reflection groups that we have so far.

Proof. Here the first assertion is clear from definitions, and from the multiplicativity
of the determinant. As for the second assertion, this is rather a remark, coming from the
fact that the alternating group AN , which is the only finite group so far not fitting into
the series {Hs

N}, is indeed of this type, obtained from H1
N = SN by using d = 1. □

The point now is that, by a well-known and deep result in group theory, the com-
plex reflection groups consist of the series {Hsd

N } constructed above, and of a number of
exceptional groups, which can be fully classified. To be more precise, we have:

Theorem 4.14. The irreducible complex reflection groups are

Hsd
N =

{
U ∈ Hs

N

∣∣∣(detU)d = 1
}

along with 34 exceptional examples.

Proof. This is something quite advanced, and we refer here to the paper of Shephard
and Todd [87], and to the subsequent literature on the subject. □

4d. Generation questions

Getting back now to our goal, namely mixing continuous and finite subgroups G ⊂ UN ,
consider the following diagram, formed by the main rotation and reflection groups:

KN
// UN

HN
//

OO

ON

OO

We know from the above that this is an intersection and generation diagram. Now
assume that we have an intermediate compact group, as follows:

HN ⊂ GN ⊂ UN

The point is that we can think of this group as living inside the above square, and so
project it on the edges, as to obtain information about it. Indeed, let us start with:
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Definition 4.15. Associated to any closed subgroup GN ⊂ UN are its discrete, real,
unitary and smooth versions, given by the formulae

Gd
N = GN ∩KN , Gr

N = GN ∩ON

Gu
N =< GN , KN > , Gs

N =< GN , ON >

with < ,> being the topological generation operation.

Assuming now that we have an intermediate compact group HN ⊂ GN ⊂ UN , as
above, we are led in this way to the following notion:

Definition 4.16. A compact group HN ⊂ GN ⊂ UN is called oriented if

KN
// Gu

N
// UN

Gd
N

OO

// GN
//

OO

Gs
N

OO

HN
//

OO

Gr
N

OO

// ON

OO

is an intersection and generation diagram.

This notion is quite interesting, because most of our basic examples of closed subgroups
GN ⊂ UN , finite or continuous, are oriented. Moreover, the world of oriented groups is
quite rigid, due to either of the following conditions, which must be satisfied:

GN =< Gd
N , G

r
N > , GN = Gu

N ∩Gs
N

Summarizing, we are naturally led in this way to the following question, which is
certainly interesting, and is related to all that has been said above, about groups:

Question 4.17. What are the oriented groups HN ⊂ GN ⊂ UN? What about the
oriented groups coming in families, G = (GN), with N ∈ N?

And we will stop here our discussion, sometimes a good question is better as hunting
trophy than a final theorem, or at least that’s what my cats say.

We will be back to this questions, which are quite interesting, later in this book, under
a number of supplementary assumptions on the groups that we consider, which will allow
us to derive a number of classification results. More on this later.
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4e. Exercises

Exercises:

Exercise 4.18.

Exercise 4.19.

Exercise 4.20.

Exercise 4.21.

Exercise 4.22.

Exercise 4.23.

Exercise 4.24.

Exercise 4.25.

Bonus exercise.



Part II

Representations



Another night, another dream
But always you

It’s like a vision of love
That seems to be true



CHAPTER 5

Representations

5a. Basic theory

We have seen so far that some algebraic theory for the finite subgroups G ⊂ UN ,
ranging from elementary to quite advanced, can be developed. We have seen as well a
few results and computations for the continuous compact subgroups G ⊂ UN . In what
follows we develop some systematic theory for the arbitrary closed subgroups G ⊂ UN ,
covering both the finite and the infinite case.

The main notion that we will be interested in is that of a representation:

Definition 5.1. A representation of a compact group G is a continuous group mor-
phism, which can be faithful or not, into a unitary group:

u : G→ UN

The character of such a representation is the function χ : G→ C given by

g → Tr(ug)

where Tr is the usual trace of the N ×N matrices, Tr(M) =
∑

iMii.

As a basic example here, for any compact group we always have available the trivial
1-dimensional representation, which is by definition as follows:

u : G→ U1 , g → (1)

At the level of non-trivial examples now, most of the compact groups that we met so
far, finite or continuous, naturally appear as closed subgroups G ⊂ UN . In this case, the
embedding G ⊂ UN is of course a representation, called fundamental representation:

u : G ⊂ UN , g → g

In this situation, there are many other representations of G, which are equally inter-
esting. For instance, we can define the representation conjugate to u, as being:

ū : G ⊂ UN , g → ḡ

In order to clarify all this, and see which representations are available, let us first
discuss the various operations on the representations. The result here is as follows:

69
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Proposition 5.2. The representations of a given compact group G are subject to the
following operations:

(1) Making sums. Given representations u, v, having dimensions N,M , their sum is
the N +M-dimensional representation u+ v = diag(u, v).

(2) Making products. Given representations u, v, having dimensions N,M , their ten-
sor product is the NM-dimensional representation (u⊗ v)ia,jb = uijvab.

(3) Taking conjugates. Given a representation u, having dimension N , its complex
conjugate is the N-dimensional representation (ū)ij = ūij.

(4) Spinning by unitaries. Given a representation u, having dimension N , and a
unitary V ∈ UN , we can spin u by this unitary, u→ V uV ∗.

Proof. All this is elementary, and can be checked as follows:

(1) This follows from the trivial fact that if g ∈ UN and h ∈ UM are two unitaries,
then their diagonal sum is a unitary too, as follows:(

g 0
0 h

)
∈ UN+M

(2) This follows from the fact that if g ∈ UN and h ∈ UM are two unitaries, then
g ⊗ h ∈ UNM is a unitary too. Given unitaries g, h, let us set indeed:

(g ⊗ h)ia,jb = gijhab

This matrix is then a unitary too, as shown by the following computation:

[(g ⊗ h)(g ⊗ h)∗]ia,jb =
∑
kc

(g ⊗ h)ia,kc((g ⊗ h)∗)kc,jb

=
∑
kc

(g ⊗ h)ia,kc(g ⊗ h)jb,kc

=
∑
kc

gikhacḡjkh̄bc

=
∑
k

gikḡjk
∑
c

hach̄bc

= δijδab

(3) This simply follows from the fact that if g ∈ UN is unitary, then so is its complex
conjugate, ḡ ∈ UN , and this due to the following formula, obtained by conjugating:

g∗ = g−1 =⇒ gt = ḡ−1

(4) This is clear as well, because if g ∈ UN is unitary, and V ∈ UN is another unitary,
then we can spin g by this unitary, and we obtain a unitary as follows:

V gV ∗ ∈ UN

Thus, our operations are well-defined, and this leads to the above conclusions. □
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In relation now with characters, we have the following result:

Proposition 5.3. We have the following formulae, regarding characters

χu+v = χu + χv , χu⊗v = χuχv , χū = χ̄u , χV uV ∗ = χu

in relation with the basic operations for the representations.

Proof. All these assertions are elementary, by using the following well-known trace
formulae, valid for any two square matrices g, h, and any unitary V :

Tr(diag(g, h)) = Tr(g) + Tr(h) , T r(g ⊗ h) = Tr(g)Tr(h)

Tr(ḡ) = Tr(g) , T r(V gV ∗) = Tr(g)

To be more precise, the first formula is clear from definitions. Regarding now the
second formula, the computation here is immediate too, as follows:

Tr(g ⊗ h) =
∑
ia

(g ⊗ h)ia,ia

=
∑
ia

giihaa

= Tr(g)Tr(h)

Regarding now the third formula, this is clear from definitions, by conjugating. Finally,
regarding the fourth formula, this can be established as follows:

Tr(V gV ∗) = Tr(gV ∗V ) = Tr(g)

Thus, we are led to the conclusions in the statement. □

Assume now that we are given a closed subgroup G ⊂ UN . By using the above
operations, we can construct a whole family of representations of G, as follows:

Definition 5.4. Given a closed subgroup G ⊂ UN , its Peter-Weyl representations are
the tensor products between the fundamental representation and its conjugate:

u : G ⊂ UN , ū : G ⊂ UN

We denote these tensor products u⊗k, with k = ◦ • • ◦ . . . being a colored integer, with the
colored tensor powers being defined according to the rules

u⊗◦ = u , u⊗• = ū , u⊗kl = u⊗k ⊗ u⊗l

and with the convention that u⊗∅ is the trivial representation 1 : G→ U1.

Here are a few examples of such Peter-Weyl representations, namely those coming
from the colored integers of length 2, to be often used in what follows:

u⊗◦◦ = u⊗ u , u⊗◦• = u⊗ ū

u⊗•◦ = ū⊗ u , u⊗•• = ū⊗ ū

In relation now with characters, we have the following result:
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Proposition 5.5. The characters of Peter-Weyl representations are given by

χu⊗k = (χu)
k

with the colored powers of a variable χ being by definition given by

χ◦ = χ , χ• = χ̄ , χkl = χkχl

and with the convention that χ∅ equals by definition 1.

Proof. This follows indeed from the additivity, multiplicativity and conjugation for-
mulae established in Proposition 5.3, via the conventions in Definition 5.4. □

Given a closed subgroup G ⊂ UN , we would like to understand its Peter-Weyl repre-
sentations, and compute the expectations of the characters of these representations. In
order to do so, let us formulate the following key definition:

Definition 5.6. Given a compact group G, and two of its representations,

u : G→ UN , v : G→ UM

we define the linear space of intertwiners between these representations as being

Hom(u, v) =
{
T ∈MM×N(C)

∣∣∣Tug = vgT,∀g ∈ G
}

and we use the following conventions:

(1) We use the notations Fix(u) = Hom(1, u), and End(u) = Hom(u, u).
(2) We write u ∼ v when Hom(u, v) contains an invertible element.
(3) We say that u is irreducible, and write u ∈ Irr(G), when End(u) = C1.

The terminology here is standard, with Hom and End standing for “homomorphisms”
and “endomorphisms”, and with Fix standing for “fixed points”. In practice, it is useful
to think of the representations of G as being the objects of some kind of abstract combi-
natorial structure associated to G, and of the intertwiners between these representations
as being the “arrows” between these objects. We have in fact the following result:

Theorem 5.7. The following happen:

(1) The intertwiners are stable under composition:

T ∈ Hom(u, v) , S ∈ Hom(v, w) =⇒ ST ∈ Hom(u,w)

(2) The intertwiners are stable under taking tensor products:

S ∈ Hom(u, v) , T ∈ Hom(w, t) =⇒ S ⊗ T ∈ Hom(u⊗ w, v ⊗ t)

(3) The intertwiners are stable under taking adjoints:

T ∈ Hom(u, v) =⇒ T ∗ ∈ Hom(v, u)

(4) Thus, the Hom spaces form a tensor ∗-category.
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Proof. All this is clear from definitions, the verifications being as follows:

(1) This follows indeed from the following computation, valid for any g ∈ G:

STug = SvgT = wgST

(2) Again, this is clear, because we have the following computation:

(S ⊗ T )(ug ⊗ wg) = Sug ⊗ Twg

= vgS ⊗ tgT

= (vg ⊗ tg)(S ⊗ T )

(3) This follows from the following computation, valid for any g ∈ G:

Tug = vgT =⇒ u∗gT
∗ = T ∗v∗g

=⇒ T ∗vg = ugT
∗

(4) This is just a conclusion of (1,2,3), with a tensor ∗-category being by definition
an abstract beast satisfying these conditions (1,2,3). We will be back to tensor categories
later on, in chapter 6 below, with more details on all this. □

The above result is quite interesting, because it shows that the combinatorics of a
compact group G is described by a certain collection of linear spaces, which can be in
principle investigated by using tools from linear algebra. Thus, what we have here is a
“linearization” idea. We will heavily use this idea, in what follows.

5b. Peter-Weyl theory

In what follows we develop a systematic theory of the representations of the compact
groups G, with emphasis on the Peter-Weyl representations, in the closed subgroup case
G ⊂ UN , that we are mostly interested in. We first have the following result:

Theorem 5.8. Given a representation of a compact group u : G → UN , the corre-
sponding linear space of self-intertwiners

End(u) ⊂MN(C)
is a ∗-algebra, with respect to the usual involution of the matrices.

Proof. By definition, the space End(u) is a linear subspace of MN(C). We know
from Theorem 5.7 (1) that this subspace End(u) is a subalgebra of MN(C), and then we
know as well from Theorem 5.7 (3) that this subalgebra is stable under the involution ∗.
Thus, what we have here is a ∗-subalgebra of MN(C), as claimed. □

The above result is quite interesting, because it gets us into linear algebra. Indeed,
associated to any group representation u : G→ UN is now a quite familiar object, namely
the algebra End(u) ⊂ MN(C). In order to exploit this fact, we will need a well-known
result, complementing the basic operator algebra theory that we know, namely:
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Theorem 5.9. Let A ⊂MN(C) be a ∗-algebra.
(1) The unit decomposes as follows, with pi ∈ A being central minimal projections:

1 = p1 + . . .+ pk

(2) Each of the following linear spaces is a non-unital ∗-subalgebra of A:

Ai = piApi

(3) We have a non-unital ∗-algebra sum decomposition, as follows:

A = A1 ⊕ . . .⊕ Ak

(4) We have unital ∗-algebra isomorphisms as follows, with ni = rank(pi):

Ai ≃Mni
(C)

(5) Thus, we have a ∗-algebra isomorphism as follows:

A ≃Mn1(C)⊕ . . .⊕Mnk
(C)

Moreover, the final conclusion holds in fact for any finite dimensional C∗-algebra.

Proof. This is something very standard. Consider indeed an arbitrary ∗-algebra
of the N × N matrices, A ⊂ MN(C). Let us first look at the center of this algebra,
Z(A) = A ∩ A′. This center, viewed as an algebra, is then of the following form:

Z(A) ≃ Ck

Consider now the standard basis e1, . . . , ek ∈ Ck, and let p1, . . . , pk ∈ Z(A) be the
images of these vectors via the above identification. In other words, these elements
p1, . . . , pk ∈ A are central minimal projections, summing up to 1:

p1 + . . .+ pk = 1

The idea is then that this partition of the unity will eventually lead to the block
decomposition of A, as in the statement. We prove this in 4 steps, as follows:

Step 1. We first construct the matrix blocks, our claim here being that each of the
following linear subspaces of A are non-unital ∗-subalgebras of A:

Ai = piApi

But this is clear, with the fact that each Ai is closed under the various non-unital
∗-subalgebra operations coming from the projection equations p2i = p∗i = pi.

Step 2. We prove now that the above algebras Ai ⊂ A are in a direct sum position,
in the sense that we have a non-unital ∗-algebra sum decomposition, as follows:

A = A1 ⊕ . . .⊕ Ak
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As with any direct sum question, we have two things to be proved here. First, by
using the formula p1+ . . .+pk = 1 and the projection equations p2i = p∗i = pi, we conclude
that we have the needed generation property, namely:

A1 + . . .+ Ak = A

As for the fact that the sum is indeed direct, this follows as well from the formula
p1 + . . .+ pk = 1, and from the projection equations p2i = p∗i = pi.

Step 3. Our claim now, which will finish the proof, is that each of the ∗-subalgebras
Ai = piApi constructed above is in fact a full matrix algebra. To be more precise, with
ni = rank(pi), our claim is that we have isomorphisms, as follows:

Ai ≃Mni
(C)

In order to prove this claim, recall that the projections pi ∈ A were chosen central
and minimal. Thus, the center of each of the algebras Ai reduces to the scalars:

Z(Ai) = C

But this shows, either via a direct computation, or via the bicommutant theorem, that
the each of the algebras Ai is a full matrix algebra, as claimed.

Step 4. We can now obtain the result, by putting together what we have. Indeed, by
using the results from Step 2 and Step 3, we obtain an isomorphism as follows:

A ≃Mn1(C)⊕ . . .⊕Mnk
(C)

In addition to this, a careful look at the isomorphisms established in Step 3 shows
that at the global level, of the algebra A itself, the above isomorphism simply comes by
twisting the following standard multimatrix embedding, discussed in the beginning of the
proof, (1) above, by a certain unitary matrix U ∈ UN :

Mn1(C)⊕ . . .⊕Mnk
(C) ⊂MN(C)

Now by putting everything together, we obtain the result. Finally, in what regards
the last assertion, that we will not really need in what follows, this can be deduced from
what we have, by using the GNS representation theorem. Indeed, assuming that A is a
finite dimensional C∗-algebra, that theorem gives an embedding as follows:

A ⊂ L(A) ≃MN(C) , N = dimA

Thus, our algebra is a ∗-subalgebra of MN(C), and we get the result. □

Many other things can be said here, and we will be back to this in chapter 6.

Good news, we can now formulate our first Peter-Weyl theorem, as follows:
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Theorem 5.10 (PW1). Let u : G → UN be a group representation, consider the
algebra A = End(u), and write its unit as above, as follows:

1 = p1 + . . .+ pk

The representation u decomposes then as a direct sum, as follows,

u = u1 + . . .+ uk

with each ui being an irreducible representation, obtained by restricting u to Im(pi).

Proof. This basically follows from Theorem 5.8 and Theorem 5.9, as follows:

(1) As a first observation, by replacing G with its image u(G) ⊂ UN , we can assume
if we want that our representation u is faithful, G ⊂u UN . However, this replacement will
not be really needed, and we will keep using u : G→ UN , as above.

(2) In order to prove the result, we will need some preliminaries. We first associate to
our representation u : G→ UN the corresponding action map on CN . If a linear subspace
V ⊂ CN is invariant, the restriction of the action map to V is an action map too, which
must come from a subrepresentation v ⊂ u. This is clear indeed from definitions, and
with the remark that the unitaries, being isometries, restrict indeed into unitaries.

(3) Consider now a projection p ∈ End(u). From pu = up we obtain that the linear
space V = Im(p) is invariant under u, and so this space must come from a subrepresen-
tation v ⊂ u. It is routine to check that the operation p → v maps subprojections to
subrepresentations, and minimal projections to irreducible representations.

(4) To be more precise here, the condition p ∈ End(u) reformulates as follows:

pug = ugp , ∀g ∈ G

As for the condition that V = Im(p) is invariant, this reformulates as follows:

pugp = ugp , ∀g ∈ G

Thus, we are in need of a technical linear algebra result, stating that for a projection
P ∈MN(C) and a unitary U ∈ UN , the following happens:

PUP = UP =⇒ PU = UP

(5) But this can be established with some C∗-algebra know-how, as follows:

tr[(PU − UP )(PU − UP )∗] = tr[(PU − UP )(U∗P − PU∗)]

= tr[P − PUPU∗ − UPU∗P + UPU∗]

= tr[P − UPU∗ − UPU∗ + UPU∗]

= tr[P − UPU∗]

= 0

Indeed, by positivity this gives PU − UP = 0, as desired.
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(6) With these preliminaries in hand, let us decompose the algebra End(u) as in
Theorem 5.9, by using the decomposition 1 = p1 + . . . + pk into minimal projections. If
we denote by ui ⊂ u the subrepresentation coming from the vector space Vi = Im(pi),
then we obtain in this way a decomposition u = u1 + . . .+ uk, as in the statement. □

In order to formulate our second Peter-Weyl theorem, we need to talk about coeffi-
cients, and smoothness. Things here are quite tricky, and we can proceed as follows:

Definition 5.11. Given a closed subgroup G ⊂ UN , and a unitary representation
v : G→ UM , the space of coefficients of this representation is:

Cv =
{
f ◦ v

∣∣∣f ∈MM(C)∗
}

In other words, by delinearizing, Cν ⊂ C(G) is the following linear space:

Cv = span
[
g → (vg)ij

]
We say that v is smooth if its matrix coefficients g → (vg)ij appear as polynomials in the
standard matrix coordinates g → gij, and their conjugates g → gij.

As a basic example of coefficient we have, besides the matrix coefficients g → (vg)ij,
the character, which appears as the diagonal sum of these coefficients:

χv(g) =
∑
i

(vg)ii

Regarding the notion of smoothness, things are quite tricky here, the idea being that
any closed subgroup G ⊂ UN can be shown to be a Lie group, and that, with this result in
hand, a representation v : G→ UM is smooth precisely when the condition on coefficients
from the above definition is satisfied. All this is quite technical, and we will not get into
it. We will simply use Definition 5.11 as such, and further comment on this later on. Here
is now our second Peter-Weyl theorem, complementing Theorem 5.10:

Theorem 5.12 (PW2). Given a closed subgroup G ⊂u UN , any of its irreducible
smooth representations

v : G→ UM

appears inside a tensor product of the fundamental representation u and its adjoint ū.

Proof. In order to prove the result, we will use the following three elementary facts,
regarding the spaces of coefficients introduced above:

(1) The construction v → Cv is functorial, in the sense that it maps subrepresentations
into linear subspaces. This is indeed something which is routine to check.

(2) Our smoothness assumption on v : G → UM , as formulated in Definition 5.11,
means that we have an inclusion of linear spaces as follows:

Cv ⊂< gij >



78 5. REPRESENTATIONS

(3) By definition of the Peter-Weyl representations, as arbitrary tensor products be-
tween the fundamental representation u and its conjugate ū, we have:

< gij >=
∑
k

Cu⊗k

(4) Now by putting together the observations (2,3) we conclude that we must have an
inclusion as follows, for certain exponents k1, . . . , kp:

Cv ⊂ Cu⊗k1⊕...⊕π⊗kp

By using now the functoriality result from (1), we deduce from this that we have an
inclusion of representations, as follows:

v ⊂ u⊗k1 ⊕ . . .⊕ u⊗kp

Together with Theorem 5.10, this leads to the conclusion in the statement. □

As a conclusion to what we have so far, the problem to be solved is that of splitting
the Peter-Weyl representations into sums of irreducible representations.

5c. Haar integration

In order to further advance, and complete the Peter-Weyl theory, we need to talk
about integration over G. In the finite group case the situation is trivial, as follows:

Proposition 5.13. Any finite group G has a unique probability measure which is
invariant under left and right translations,

µ(E) = µ(gE) = µ(Eg)

and this is the normalized counting measure on G, given by µ(E) = |E|/|G|.

Proof. The uniformity condition in the statement gives, with E = {h}:
µ{h} = µ{gh} = µ{hg}

Thus µ must be the usual counting measure, normalized as to have mass 1. □

In the continuous group case now, the simplest examples, to be studied first, are the
compact abelian groups. Here things are standard again, as follows:

Theorem 5.14. Given a compact abelian group G, with dual group denoted Γ = Ĝ,
we have an isomorphism of commutative algebras

C(G) ≃ C∗(Γ)

and via this isomorphism, the functional defined by linearity and the following formula,∫
G

g = δg1

for any g ∈ Γ, is the integration with respect to the unique uniform measure on G.
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Proof. This is something that we basically know, from chapters 8 and 9, coming as
a consequence of the general results regarding the abelian groups and the commutative
C∗-algebras developed there. To be more precise, and skipping some details here, the
conclusions in the statement can be deduced as follows:

(1) We can either apply the Gelfand theorem, from operator algebras, to the group
algebra C∗(Γ), which is commutative, and this gives all the results.

(2) Or, we can use decomposition results for the compact abelian groups from chapter
9, and by reducing things to summands, once again we obtain the results. □

Summarizing, we have results in the finite case, and in the compact abelian case.
With the remark that the proof in the compact abelian case was quite brief, but this
result, coming as an illustration for more general things to follow, is not crucial for us.
Let us discuss now the construction of the uniform probability measure in general. This
is something quite technical, the idea being that the uniform measure µ over G can be
constructed by starting with an arbitrary probability measure ν, and setting:

µ = lim
n→∞

1

n

n∑
k=1

ν∗k

Thus, our next task will be that of proving this result. It is convenient, for this
purpose, to work with the integration functionals with respect to the various measures on
G, instead of the measures themselves. Let us begin with the following key result:

Proposition 5.15. Given a unital positive linear form φ : C(G) → C, the limit∫
φ

f = lim
n→∞

1

n

n∑
k=1

φ∗k(f)

exists, and for a coefficient of a representation f = (τ ⊗ id)v we have∫
φ

f = τ(P )

where P is the orthogonal projection onto the 1-eigenspace of (id⊗ φ)v.

Proof. By linearity it is enough to prove the first assertion for functions of the
following type, where v is a Peter-Weyl representation, and τ is a linear form:

f = (τ ⊗ id)v

Thus we are led into the second assertion, and more precisely we can have the whole
result proved if we can establish the following formula, with f = (τ ⊗ id)v:

lim
n→∞

1

n

n∑
k=1

φ∗k(f) = τ(P )
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In order to prove this latter formula, observe that we have:

φ∗k(f) = (τ ⊗ φ∗k)v = τ((id⊗ φ∗k)v)

Let us set M = (id⊗ φ)v. In terms of this matrix, we have:

((id⊗ φ∗k)v)i0ik+1
=
∑
i1...ik

Mi0i1 . . .Mikik+1
= (Mk)i0ik+1

Thus we have the following formula, for any k ∈ N:
(id⊗ φ∗k)v =Mk

It follows that our Cesàro limit is given by the following formula:

lim
n→∞

1

n

n∑
k=1

φ∗k(f) = lim
n→∞

1

n

n∑
k=1

τ(Mk)

= τ

(
lim
n→∞

1

n

n∑
k=1

Mk

)
Now since v is unitary we have ||v|| = 1, and so ||M || ≤ 1. Thus the last Cesàro limit

converges, and equals the orthogonal projection onto the 1-eigenspace of M :

lim
n→∞

1

n

n∑
k=1

Mk = P

Thus our initial Cesàro limit converges as well, to τ(P ), as desired. □

The point now is that when the linear form φ ∈ C(G)∗ from the above result is chosen
to be faithful, we obtain the following finer result:

Proposition 5.16. Given a faithful unital linear form φ ∈ C(G)∗, the limit∫
φ

f = lim
n→∞

1

n

n∑
k=1

φ∗k(f)

exists, and is independent of φ, given on coefficients of representations by(
id⊗

∫
φ

)
v = P

where P is the orthogonal projection onto the space Fix(v) =
{
ξ ∈ Cn

∣∣vξ = ξ
}
.

Proof. In view of Proposition 5.15, it remains to prove that when φ is faithful, the
1-eigenspace of the matrix M = (id⊗ φ)v equals the space Fix(v).

“⊃” This is clear, and for any φ, because we have the following implication:

vξ = ξ =⇒ Mξ = ξ
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“⊂” Here we must prove that, when φ is faithful, we have:

Mξ = ξ =⇒ vξ = ξ

For this purpose, assume that we have Mξ = ξ, and consider the following function:

f =
∑
i

(∑
j

vijξj − ξi

)(∑
k

vikξk − ξi

)∗

We must prove that we have f = 0. Since v is unitary, we have:

f =
∑
ijk

vijv
∗
ikξj ξ̄k −

1

N
vijξj ξ̄i −

1

N
v∗ikξiξ̄k +

1

N2
ξiξ̄i

=
∑
j

|ξj|2 −
∑
ij

vijξj ξ̄i −
∑
ik

v∗ikξiξ̄k +
∑
i

|ξi|2

= ||ξ||2− < vξ, ξ > −< vξ, ξ >+ ||ξ||2

= 2(||ξ||2 −Re(< vξ, ξ >))

By using now our assumption Mξ = ξ, we obtain from this:

φ(f) = 2φ(||ξ||2 −Re(< vξ, ξ >))

= 2(||ξ||2 −Re(< Mξ, ξ >))

= 2(||ξ||2 − ||ξ||2)
= 0

Now since φ is faithful, this gives f = 0, and so vξ = ξ, as claimed. □

We can now formulate a main result, as follows:

Theorem 5.17. Any compact group G has a unique Haar integration, which can be
constructed by starting with any faithful positive unital state φ ∈ C(G)∗, and setting:∫

G

= lim
n→∞

1

n

n∑
k=1

φ∗k

Moreover, for any representation v we have the formula(
id⊗

∫
G

)
v = P

where P is the orthogonal projection onto Fix(v) =
{
ξ ∈ Cn

∣∣vξ = ξ
}
.

Proof. We can prove this from what we have, in several steps, as follows:
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(1) Let us first go back to the general context of Proposition 5.15. Since convolving
one more time with φ will not change the Cesàro limit appearing there, the functional∫
φ
∈ C(G)∗ constructed there has the following invariance property:∫

φ

∗φ = φ ∗
∫
φ

=

∫
φ

In the case where φ is assumed to be faithful, as in Proposition 5.16, our claim is that
we have the following formula, valid this time for any ψ ∈ C(G)∗:∫

φ

∗ψ = ψ ∗
∫
φ

= ψ(1)

∫
φ

Moreover, it is enough to prove this formula on a coefficient of a representation:

f = (τ ⊗ id)v

(2) In order to do so, consider the following two matrices:

P =

(
id⊗

∫
φ

)
v , Q = (id⊗ ψ)v

We have then the following two computations, involving these matrices:(∫
φ

∗ψ
)
f =

(
τ ⊗

∫
φ

⊗ψ

)
(v12v13) = τ(PQ)(

ψ ∗
∫
φ

)
f =

(
τ ⊗ ψ ⊗

∫
φ

)
(v12v13) = τ(QP )

Also, regarding the term on the right in our formula in (1), this is given by:

ψ(1)

∫
φ

f = ψ(1)τ(P )

We conclude from all this that our claim is equivalent to the following equality:

PQ = QP = ψ(1)P

(3) But this latter equality holds indeed, coming from the fact, that we know from
Proposition 5.16, that P = (id⊗

∫
φ
)v equals the orthogonal projection onto Fix(v). Thus,

we have proved our claim in (1), namely that the following formula holds:∫
φ

∗ψ = ψ ∗
∫
φ

= ψ(1)

∫
φ

(4) In order to finish now, it is convenient to introduce the following abstract operation,
on the continuous functions f, f ′ : C(G) → C on our group:

∆(f ⊗ f ′)(g ⊗ h) = f(g)f ′(h)
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With this convention, the formula that we established above can be written as:

ψ

(∫
φ

⊗ id

)
∆ = ψ

(
id⊗

∫
φ

)
∆ = ψ

∫
φ

(.)1

This formula being true for any ψ ∈ C(G)∗, we can simply delete ψ. We conclude
that the following invariance formula holds indeed, with

∫
G
=
∫
φ
:(∫

G

⊗ id

)
∆ =

(
id⊗

∫
G

)
∆ =

∫
G

(.)1

But this is exactly the left and right invariance formula we were looking for.

(5) Finally, in order to prove the uniqueness assertion, assuming that we have two
invariant integrals

∫
G
,
∫ ′
G
, we have, according to the above invariance formula:(∫

G

⊗
∫ ′

G

)
∆ =

(∫ ′

G

⊗
∫
G

)
∆ =

∫
G

(.)1 =

∫ ′

G

(.)1

Thus we have
∫
G
=
∫ ′
G
, and this finishes the proof. □

Summarizing, we can now integrate over G. As a first application, we have:

Theorem 5.18. Given a compact group G, we have the following formula, valid for
any unitary group representation v : G→ UM :∫

G

χv = dim(Fix(v))

In particular, in the unitary matrix group case, G ⊂u UN , the moments of the main
character χ = χu are given by the following formula:∫

G

χk = dim(Fix(u⊗k))

Thus, knowing the law of χ is the same as knowing the dimensions on the right.

Proof. We have three assertions here, the idea being as follows:

(1) Given a unitary representation v : G → UM as in the statement, its character χv

is a coefficient, so we can use the integration formula for coefficients in Theorem 5.17. If
we denote by P the projection onto Fix(v), that formula gives, as desired:∫

G

χv = Tr(P )

= dim(Im(P ))

= dim(Fix(v))
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(2) This follows from (1), applied to the Peter-Weyl representations, as follows:∫
G

χk =

∫
G

χk
u

=

∫
G

χu⊗k

= dim(Fix(u⊗k))

(3) This follows from (2), and from the standard fact, which follows from definitions,
that a probability measure is uniquely determined by its moments. □

As a key remark now, the integration formula in Theorem 5.17 allows the computation
for the truncated characters too, because these truncated characters are coefficients as
well. To be more precise, all the probabilistic questions about G, regarding characters,
or truncated characters, or more complicated variables, require a good knowledge of the
integration over G, and more precisely, of the various polynomial integrals over G:

Definition 5.19. Given a closed subgroup G ⊂ UN , the quantities

Ik =

∫
G

ge1i1j1 . . . g
ek
ikjk

dg

depending on a colored integer k = e1 . . . ek, are called polynomial integrals over G.

As a first observation, the knowledge of these integrals is the same as the knowledge of
the integration functional over G. Indeed, since the coordinate functions g → gij separate
the points of G, we can apply the Stone-Weierstrass theorem, and we obtain:

C(G) =< gij >

Thus, by linearity, the computation of any functional f : C(G) → C, and in partic-
ular of the integration functional, reduces to the computation of this functional on the
polynomials of the coordinate functions g → gij and their conjugates g → ḡij.

By using now Peter-Weyl theory, everything reduces to algebra, as follows:

Theorem 5.20. The Haar integration over a closed subgroup G ⊂u UN is given on
the dense subalgebra of smooth functions by the Weingarten formula∫

G

ge1i1j1 . . . g
ek
ikjk

dg =
∑

π,σ∈Dk

δπ(i)δσ(j)Wk(π, σ)

valid for any colored integer k = e1 . . . ek and any multi-indices i, j, where Dk is a linear
basis of Fix(u⊗k), the associated generalized Kronecker symbols are given by

δπ(i) =< π, ei1 ⊗ . . .⊗ eik >

and Wk = G−1
k is the inverse of the Gram matrix, Gk(π, σ) =< π, σ >.
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Proof. We know from Peter-Weyl theory that the integrals in the statement form
altogether the orthogonal projection P k onto the following space:

Fix(u⊗k) = span(Dk)

Consider now the following linear map, with Dk = {ξk} being as in the statement:

E(x) =
∑
π∈Dk

< x, ξπ > ξπ

By a standard linear algebra computation, it follows that we have P = WE, where
W is the inverse of the restriction of E to the following space:

K = span
(
Tπ

∣∣∣π ∈ Dk

)
But this restriction is precisely the linear map given by the matrix Gk, and soW itself

is the linear map given by the matrix Wk, and this gives the result. □

We will be back to this in Part IV below, with some concrete applications.

5d. More Peter-Weyl

In order to further develop now the Peter-Weyl theory, which is something very useful,
we will need the following result, which is of independent interest:

Proposition 5.21. We have a Frobenius type isomorphism

Hom(v, w) ≃ Fix(v ⊗ w̄)

valid for any two representations v, w.

Proof. According to the definitions, we have the following equivalences:

T ∈ Hom(v, w) ⇐⇒ Tv = wT

⇐⇒
∑
j

Tajvji =
∑
b

wabTbi, ∀a, i

On the other hand, we have as well the following equivalences:

T ∈ Fix(v ⊗ w̄) ⇐⇒ (v ⊗ w̄)T = ξ

⇐⇒
∑
jb

vijw
∗
abTbj = Tai∀a, i

With these formulae in hand, both inclusions follow from the unitarity of v, w. □

We can now formulate our third Peter-Weyl theorem, as follows:
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Theorem 5.22 (PW3). The norm dense ∗-subalgebra
C(G) ⊂ C(G)

generated by the coefficients of the fundamental representation decomposes as

C(G) =
⊕

v∈Irr(G)

Mdim(v)(C)

with the summands being pairwise orthogonal with respect to the scalar product

< a, b >=

∫
G

ab∗

where
∫
G
is the Haar integration over G.

Proof. By combining the previous two Peter-Weyl results, we deduce that we have
a linear space decomposition as follows:

C(G) =
∑

v∈Irr(G)

Cv =
∑

v∈Irr(G)

Mdim(v)(C)

Thus, in order to conclude, it is enough to prove that for any two irreducible corepre-
sentations v, w ∈ Irr(A), the corresponding spaces of coefficients are orthogonal:

v ̸∼ w =⇒ Cv ⊥ Cw

But this follows from Theorem 5.17, via Proposition 5.21. Let us set indeed:

Pia,jb =

∫
G

vijw
∗
ab

Then P is the orthogonal projection onto the following vector space:

Fix(v ⊗ w̄) ≃ Hom(v, w) = {0}
Thus we have P = 0, and this gives the result. □

Finally, we have the following result, completing the Peter-Weyl theory:

Theorem 5.23 (PW4). The characters of irreducible representations belong to

C(G)central =
{
f ∈ C(G)

∣∣∣f(gh) = f(hg),∀g, h ∈ G
}

called algebra of smooth central functions on G, and form an orthonormal basis of it.

Proof. We have several things to be proved, the idea being as follows:

(1) Observe first that C(G)central is indeed an algebra, which contains all the characters.
Conversely, consider a function f ∈ C(G), written as follows:

f =
∑

v∈Irr(G)

fv
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The condition f ∈ C(G)central states then that for any v ∈ Irr(G), we must have:

fv ∈ C(G)central
But this means precisely that the coefficient fv must be a scalar multiple of χv, and

so the characters form a basis of C(G)central, as stated.

(2) The fact that we have an orthogonal basis follows from Theorem 5.22.

(3) As for the fact that the characters have norm 1, this follows from:∫
G

χvχ
∗
v =

∑
ij

∫
G

viiv
∗
jj

=
∑
i

1

N

= 1

Here we have used the fact, coming from Theorem 5.22, that the integrals
∫
G
vijv

∗
kl

form the orthogonal projection onto the following vector space:

Fix(v ⊗ v̄) ≃ End(v) = C1

Thus, the proof of our theorem is now complete. □

As a key observation here, complementing Theorem 5.23, observe that a function
f : G → C is central, in the sense that it satisfies f(gh) = f(hg), precisely when it
satisfies the following condition, saying that it must be constant on conjugacy classes:

f(ghg−1) = f(h), ∀g, h ∈ G

Thus, in the finite group case for instance, the algebra of central functions is something
which is very easy to compute, and this gives useful information about Rep(G). We will
not get into this here, but some of our exercises will be about this.

So long for Peter-Weyl theory. As a basic illustration for all this, which clarifies some
previous considerations from chapter 1, we have the following result:

Theorem 5.24. For a compact abelian group G the irreducible representations are all

1-dimensional, and form the dual discrete abelian group Ĝ.

Proof. This is clear from the Peter-Weyl theory, because when G is abelian any
function f : G → C is central, and so the algebra of central functions is C(G) itself, and
so the irreducible representations u ∈ Irr(G) coincide with their characters χu ∈ Ĝ. □

There are also many things that can be said in the finite group case, in relation with
central functions, and conjugacy classes. For more here, we recommend Serre [85].
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5e. Exercises

Exercises:

Exercise 5.25.

Exercise 5.26.

Exercise 5.27.

Exercise 5.28.

Exercise 5.29.

Exercise 5.30.

Exercise 5.31.

Exercise 5.32.

Bonus exercise.



CHAPTER 6

Tannakian duality

6a. Generalities

We have seen that, no matter what we want to do with G ⊂ UN , we must compute
the spaces Fix(u⊗k). In the case G ⊂ ON , it is convenient to introduce:

Definition 6.1. Associated to any closed subgroup G ⊂ ON are the vector spaces

Ckl =
{
T ∈ L(H⊗k, H⊗l)

∣∣∣Tg⊗k = g⊗lT,∀g ∈ G
}

where H = CN . We call Tannakian category of G the collection of spaces C = (Ckl).

Observe that, due to g ∈ G ⊂ ON ⊂ L(H), we have g⊗k ∈ L(H⊗k) for any k, so the
equality Tg⊗k = g⊗lT makes indeed sense, as an equality of maps as follows:

Tg⊗k, g⊗lT ∈ L(H⊗k, H⊗l)

It is also clear by definition that each Ckl is a complex vector space. Moreover, it is
also clear by definition that C = (Ckl) is indeed a category, in the sense that:

T ∈ Ckl , S ∈ Clm =⇒ ST ∈ Ckm

Quite remarkably, the closed subgroup G ⊂ ON can be reconstructed from its Tan-
nakian category C = (Ckl), and in a very simple way. More precisely, we have:

Claim 6.2. Given a closed subgroup G ⊂ ON , we have

G =
{
g ∈ ON

∣∣∣Tg⊗k = g⊗lT,∀k, l, ∀T ∈ Ckl

}
where C = (Ckl) is the associated Tannakian category.

So, this is what we will be talking about in this chapter. Let us begin with some
simple observations. We first have the following elementary result:

Proposition 6.3. Given a closed subgroup G ⊂ ON , set as before

Ckl =
{
T ∈ L(H⊗k, H⊗l)

∣∣∣Tg⊗k = g⊗lT,∀g ∈ G
}

where H = CN , and then set as in Claim 6.2:

G̃ =
{
g ∈ ON

∣∣∣Tg⊗k = g⊗lT,∀k, l, ∀T ∈ Ckl

}
Then G̃ is closed subgroup of ON , and we have inclusions G ⊂ G̃ ⊂ ON .

89
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Proof. Let us first prove that G̃ is a group. Assuming g, h ∈ G̃, we have gh ∈ G̃,
due to the following computation, valid for any k, l and any T ∈ Ckl:

T (gh)⊗k = Tg⊗kh⊗k

= g⊗lTh⊗k

= g⊗lh⊗lT

= (gh)⊗lT

Also, we have 1 ∈ G̃, trivially. Finally, assuming g ∈ G̃, we have:

T (g−1)⊗k = (g−1)⊗l[g⊗lT ](g−1)⊗k

= (g−1)⊗l[Tg⊗k](g−1)⊗k

= (g−1)⊗lT

Thus we have g−1 ∈ G̃, and so G̃ is a group, as claimed. Finally, the fact that we have

an inclusion G ⊂ G̃, and that G̃ ⊂ ON is closed, are both clear from definitions. □

Let us work out some examples too. The orthogonal diagonal matrices form a subgroup
ZN

2 ⊂ ON , and for the subgroups G ⊂ ZN
2 our theory is quite exciting, as follows:

Theorem 6.4. For the abelian groups of diagonal matrices, G ⊂ ZN
2 , we have

Ckl =
{
T ∈ L(H⊗k, H⊗l)

∣∣∣∃g ∈ G, gi1 . . . gik ̸= gj1 . . . gjl =⇒ Tj1...jl,i1...ik = 0
}

with the notation g = diag(g1, . . . , gN), and Claim 6.2 holds when |G| = 1, 2, 2N−1, 2N .

Proof. We have several things to be proved, the idea being as follows:

(1) Case G = {1}. Here we obviously have, for any two integers k, l, the following
formula, which confirms the general formula in the statement:

Ckl = L(H⊗k, H⊗l)

Regarding now Claim 6.2, consider the intermediate subgroup G ⊂ G̃ ⊂ ON , con-
structed in Proposition 6.3, that we must prove to be equal to G itself. Since any element

g ∈ G̃ must commute with the algebra C11 =MN(C), we must have:

g = ±1

But from the relation T = gT , which must hold for any T ∈ C01 = H, we conclude

that we must have g = 1, so we obtain G̃ = {1}, as desired.

(2) Case G = Z2, with this meaning G = {1,−1}. This is something just a bit more
complicated. Let us look at the relations defining Ckl, namely:

Tg⊗k = g⊗lT
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These relations are automatic for g = 1. As for the other group element, namely
g = −1, here the relations hold either when k + l is even, or when T = 0. Thus, we have
the following formula, which confirms again the general formula in the statement:

Ckl =

{
L(H⊗k, H⊗l) (k + l ∈ 2N)
{0} (k + l /∈ 2N)

As for Claim 6.2 for our group, this follows from the computation done in (1) above,

the point being that g ∈ G̃ commutes with C11 =MN(C) precisely when g = ±1.

(3) General case G ⊂ ZN
2 . Let us look at the relations defining Ckl. We have:

T ∈ Ckl ⇐⇒ Tg⊗k = g⊗lT,∀g ∈ G

⇐⇒ (Tg⊗k)ji = (g⊗lT )ji, ∀i, j,∀g ∈ G

⇐⇒ Tj1...,jl,i1...ikgi1 . . . gik = gj1 . . . gjlTj1...,jk,i1...il ,∀i, j, ∀g ∈ G

⇐⇒ (gj1 . . . gik − gj1 . . . gjl)Tj1...,jl,i1...ik ,∀i, j,∀g ∈ G

Thus, we are led to the formula in the statement, namely:

Ckl =
{
T ∈ L(H⊗k, H⊗l)

∣∣∣∃g ∈ G, gi1 . . . gik ̸= gj1 . . . gjl =⇒ Tj1...jl,i1...ik = 0
}

(4) Case G = ZN
2 . Here the formula from (3) can be turned into something better,

because due to the fact that the entries g1, . . . , gN ∈ {−1, 1} of a group element g ∈ G can
take all possible values, we have the following equivalence, with the symbol { }2 standing
for set with repetitions, with the pairs of elements of type {x, x} removed:

gi1 . . . gik = gj1 . . . gjl ,∀g ∈ G ⇐⇒ {i1, . . . , ik}2 = {j1, . . . , jl}2
Thus, in this case we obtain the following formula, with { }2 being as above:

Ckl =
{
T ∈ L(H⊗k, H⊗l)

∣∣∣{i1, . . . , ik}2 ̸= {j1, . . . , jl}2 =⇒ Tj1...jl,i1...ik = 0
}

Regarding now Claim 6.2, the idea is that, a bit as for G = Z2, we can get away with
the commutation with C11. Indeed, according to the above formulae, we have:

C11 =
{
T ∈MN(C)

∣∣∣i ̸= j =⇒ Tij = 0
}

Thus we have C11 = ∆, with ∆ ⊂ MN(C) being the algebra of diagonal matrices.

Now if we construct G ⊂ G̃ ⊂ ON as before, we have, as desired:

g ∈ G̃ =⇒ g ∈ C ′
11 = ∆′ = ∆

=⇒ g ∈ ∆ ∩ON = G

(5) Before getting into more examples, let us go back to the case where G ⊂ ZN
2 is

arbitrary, and have a look at Claim 6.2 in this case. We know that we have {1} ⊂ G ⊂ ZN
2 ,
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and by functoriality, at the level of the associated C11 spaces, we have:

∆ ⊂ C11 ⊂MN(C)

Now construct the intermediate group G ⊂ G̃ ⊂ ON as before. For g ∈ G̃ we have:

g ∈ C ′
11 ∩ON ⊂ ∆′ ∩ON = ∆ ∩ON = ZN

2

Thus, we have G ⊂ G̃ ⊂ ZN
2 . This looks encouraging, because our Claim 6.2 becomes

now something regarding the abelian groups, that can be normally solved with group
theory. However, as we will soon discover, the combinatorics can be quite complicated.

(6) General case |G| = 2. This is the same as saying that G ≃ Z2, or equivalently,
that G = {1, g} with g ∈ Z2, g ̸= 1. By permuting the basis of RN we can assume that
our non-trivial group element g ∈ G is as follows, for a certain integer M < N :

g =

(
1M 0
0 −1N−M

)
By using the general formula found in (3), we obtain the following formula:

C11 =
{
T ∈MN(C)

∣∣∣Tij = 0 when i ≤M, j > M or i > M, j ≤M
}

But this means that, in this case, the algebra C11 is block-diagonal, as follows:

C11 =

{(
A 0
0 B

) ∣∣∣A ∈MM(C), B ∈MN−M(C)
}

Now since any element h ∈ G̃ must commute with this algebra, we must have:

G̃ ⊂
{(

1 0
0 1

)
,

(
1 0
0 −1

)
,

(
−1 0
0 1

)
,

(
−1 0
0 −1

)}
Summarizing, well done, but we are still not there. In order to finish we must use, as

in (1), the relations T = hT with T ∈ C01. In order to do so, by using again the general
formula from (3), this time with k = 0, l = 1, we obtain the following formula:

C01 =
{
T ∈ CN

∣∣∣j > M =⇒ Tj = 0
}

But this formula tells us that the space C01 appears as follows:

C01 =

{(
ξ

0

)∣∣∣ ξ ∈ CM

}
Now since any element h ∈ G̃ must satisfy T = hT , for any T ∈ C01, this rules out

half of the 4 solutions found above, and we end up with G̃ = {1, g}, as desired.
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(7) A next step would be to investigate the case |G| = 4. Here we haveG = {1, g, h, gh}
with g, h ∈ Z2 − {1} distinct, and by permuting the basis, we can assume that:

g =


1

1
−1

−1

 , h =


1

−1
1

−1

 , gh =


1

−1
−1

1


However, the computations as in the proof of (6) become quite complicated, and

in addition we won’t get away in this case with C11, C01 only, so all this becomes too
technically involved, and we will stop here, in the lack of a better idea.

(8) Case |G| = 2N−1. This is the last situation, announced in the statement, still
having a reasonably simple direct proof, and we will discuss this now. At the level of
examples, given a non-empty subset I ⊂ {1, . . . , N}, we have an example, as follows:

GI =

{
g ∈ ZN

2

∣∣∣∏
i∈I

gi = 1

}
Indeed, this set GI ⊂ ZN

2 is clearly a group, and since it is obtained by using one
binary relation, namely

∏
i gi = ±1 being assumed to be 1, the number of elements is:

|GI | =
|ZN

2 |
2

=
2N

2
= 2N−1

Our claim now is that all the index 2 subgroups G ⊂ ZN
2 appear in this way. Indeed,

by taking duals these subgroups correspond to the order 2 subgroups H ⊂ ZN
2 , and since

we must have H = {1, g} with g ̸= 1, we have 2N − 1 choices for such subgroups. But
this equals the number of choices for a non-empty subset I ⊂ {1, . . . , N}, as desired.

(9) Case |G| = 2N−1, continuation. We know from the above that we have G = GI , for
a certain non-empty subset I ⊂ {1, . . . , N}, and we must prove Claim 6.2 for this group.
In order to do so, let us go back to the formula of Ckl found in (4) for the group ZN

2 . In
the case of the subgroup GI ⊂ ZN

2 , which appears via the relation
∏

i gi = 1, that formula
adapts as follows, with the symbol { }2I standing for set with repetitions, with the pairs
of elements of type {x, x} removed, and with the subsets equal to I being removed too:

Ckl =
{
T ∈ L(H⊗k, H⊗l)

∣∣∣{i1, . . . , ik}2I ̸= {j1, . . . , jl}2I =⇒ Tj1...jl,i1...ik = 0
}

In order to prove now Claim 6.2 for our group, we already know from (5) that we have

G̃ ⊂ ZN
2 . It is also clear that, given h ∈ G̃, when using T = hT with T ∈ C01, or more

generally T = h⊗lT with T ∈ C0l at small values of l ∈ N, we won’t obtain anything new.
However, at l = |I| we do obtain a constraint, and since this constaint must cut the target

group ZN
2 by at least half, we end up with G = G̃, as desired. □
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The proof of Theorem 6.4 contains many interesting computations, that are useful in
everyday life, and among the many things that can be highlighted, we have:

Fact 6.5. The diagonal part of C = (Ckl), formed by the algebras

Ckk =
{
T ∈ L(H⊗k)

∣∣∣Tg⊗k = g⊗kT,∀g ∈ G
}

does not determine G. For instance G = {1},Z2 are not distinguished by it.

Obviously, this is something quite annoying, because there are countless temptations
to use ∆C = (Ckk) instead of C, for instance because the spaces Ckk are algebras, and
also, at a more advanced level, because ∆C is a planar algebra in the sense of Jones [59].
But, we are not allowed to do this, at least in general. More on this later.

What we have so far is quite interesting, and suggests further working on our problem.
Unfortunately, at the other end, where G ⊂ ON is big, things become fairly complicated,
and the only result that we can state and prove with bare hands is:

Proposition 6.6. Our Claim 6.2 holds for G = ON itself, trivially.

Proof. For the orthogonal group G = ON itself we have indeed G̃ = G, due to

the inclusions G ⊂ G̃ ⊂ ON . Observe however that some mystery remains for this group
G = ON , because the spaces Ckl do not look easy to compute. We will be back to this. □

As a conclusion now, we are definitely into interesting mathematics, and Claim 6.2 is
definitely worth some attention, and a proof. So, time for a theorem about it:

Theorem 6.7. Given a closed subgroup G ⊂ ON , we have

G =
{
g ∈ ON

∣∣∣Tg⊗k = g⊗lT,∀k, l, ∀T ∈ Ckl

}
where C = (Ckl) is the associated Tannakian category.

Proof. We already know that this is something non-trivial. However, this can be
proved by using either Peter-Weyl theory, or Tannakian duality, as follows:

(1) Consider, as before in Proposition 6.3 and afterwards, the following set:

G̃ =
{
g ∈ ON

∣∣∣Tg⊗k = g⊗lT,∀k, l, ∀T ∈ Ckl

}
We know that G̃ ⊂ ON is a closed subgroup, and that G ⊂ G̃. Thus, we have an

intermediate subgroup as follows, that we want to prove to be equal to G itself:

G ⊂ G̃ ⊂ ON

(2) In order to prove this, consider the Tannakian category of G̃, namely:

C̃kl =
{
T ∈ L(H⊗k, H⊗l)

∣∣∣Tg⊗k = g⊗lT,∀g ∈ G̃
}
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By functoriality, from G ⊂ G̃ we obtain C̃ ⊂ C. On the other hand, according to the

definition of G̃, we have C ⊂ C̃. Thus, we have the following equality:

C = C̃

(3) Assume now by contradiction that G ⊂ G̃ is not an equality. Then, at the level of
algebras of functions, the following quotient map is not an isomorphism either:

C(G̃) → C(G)

On the other hand, we know from Peter-Weyl that we have decompositions as follows,
with the sums being over all the irreducible unitary representations:

C(G̃) =
⊕

π∈Irr(G̃)
Mdimπ(C) , C(G) =

⊕
ν∈Irr(G)

Mdim ν(C)

Now observe that each unitary representation π : G̃→ UK restricts into a certain rep-

resentation π′ : G → UK . Since the quotient map C(G̃) → C(G) is not an isomorphism,
we conclude that there is at least one representation π satisfying:

π ∈ Irr(G̃) , π′ /∈ Irr(G)

(4) We are now in position to conclude. By using Peter-Weyl theory again, the above

representation π ∈ Irr(G̃) appears in a certain tensor power of the fundamental repre-

sentation u : G̃ ⊂ UN . Thus, we have inclusions of representations, as follows:

π ∈ u⊗k , π′ ∈ u′⊗k

Now since we know that π is irreducible, and that π′ is not, by using one more time
Peter-Weyl theory, we conclude that we have a strict inequality, as follows:

dim(C̃kk) = dim(End(u⊗k)) < dim(End(u′⊗k)) = dim(Ckk)

But this contradicts the equality C = C̃ found in (2), which finishes the proof.

(5) Alternatively, we can use Tannakian duality. This duality states that any com-
pact group G appears as the group of endomorphisms of the canonical inclusion functor
Rep(G) ⊂ H, where Rep(G) is the category of final dimensional continuous unitary rep-
resentations of G, and H is the category of finite dimensional Hilbert spaces.

(6) Now in the case of a closed subgroup G ⊂u ON , we know from Peter-Weyl theory
that any r ∈ Rep(G) appears as a subrepresentation r ∈ u⊗k. In categorical terms, this
means that, with suitable definitions, Rep(G) appears as a “completion” of the category
C = (Ckl). Thus C uniquely determines G, and we obtain the result. □

All the above was of course quite brief, but we will be back to this topic, and to
Tannakian duality in general, on numerous occasions, in what follows.
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6b. Tensor categories

Getting started now with some more systematic theory, let us first formulate:

Definition 6.8. The Tannakian category associated to a closed subgroup G ⊂u UN is
the collection C = (C(k, l)) of vector spaces

C(k, l) = Hom(u⊗k, u⊗l)

where the representations u⊗k with k = ◦ • • ◦ . . . colored integer, defined by

u⊗∅ = 1 , u⊗◦ = u , u⊗• = ū

and multiplicativity, u⊗kl = u⊗k ⊗ u⊗l, are the Peter-Weyl representations.

Here are a few examples of such representations, namely those coming from the colored
integers of length 2, to be often used in what follows:

u⊗◦◦ = u⊗ u , u⊗◦• = u⊗ ū

u⊗•◦ = ū⊗ u , u⊗•• = ū⊗ ū

As a first observation, the knowledge of the Tannakian category is more or less the
same thing as the knowledge of the fixed point spaces, which appear as:

Fix(u⊗k) = C(0, k)

Indeed, these latter spaces fully determine all the spaces C(k, l), because of the Frobe-
nius isomorphisms, which for the Peter-Weyl representations read:

C(k, l) = Hom(u⊗k, u⊗l)

≃ Hom(1, ū⊗k ⊗ u⊗l)

= Hom(1, u⊗k̄l)

= Fix(u⊗k̄l)

We would like to first make a summary of what we have so far, regarding these spaces
C(k, l), coming from the general theory developed in chapter 5. We will need:

Definition 6.9. Let H be a finite dimensional Hilbert space. A tensor category over
H is a collection C = (C(k, l)) of linear spaces

C(k, l) ⊂ L(H⊗k, H⊗l)

satisfying the following conditions:

(1) S, T ∈ C implies S ⊗ T ∈ C.
(2) If S, T ∈ C are composable, then ST ∈ C.
(3) T ∈ C implies T ∗ ∈ C.
(4) Each C(k, k) contains the identity operator.
(5) C(∅, k) with k = ◦•, •◦ contain the operator R : 1 →

∑
i ei ⊗ ei.

(6) C(kl, lk) with k, l = ◦, • contain the flip operator Σ : a⊗ b→ b⊗ a.



6B. TENSOR CATEGORIES 97

Here the tensor powers H⊗k, which are Hilbert spaces depending on a colored integer
k = ◦ • • ◦ . . . , are defined by the following formulae, and multiplicativity:

H⊗∅ = C , H⊗◦ = H , H⊗• = H̄ ≃ H

With these conventions, we have the following result, summarizing our knowledge on
the subject, coming from the results from the previous chapter:

Theorem 6.10. For a closed subgroup G ⊂u UN , the associated Tannakian category

C(k, l) = Hom(u⊗k, u⊗l)

is a tensor category over the Hilbert space H = CN .

Proof. We know that the fundamental representation u acts on the Hilbert space
H = CN , and that its conjugate ū acts on the Hilbert space H̄ = CN . Now by multi-
plicativity we conclude that any Peter-Weyl representation u⊗k acts on the Hilbert space
H⊗k, so that we have embeddings as in Definition 6.9, as follows:

C(k, l) ⊂ L(H⊗k, H⊗l)

Regarding now the fact that the axioms (1-6) in Definition 6.9 are indeed satisfied,
this is something that we basically already know, as follows:

(1,2,3) These results follow from definitions, and were explained in chapter 5.

(4) This is something trivial, coming from definitions.

(5) This follows from the fact that each element g ∈ G is a unitary, which can be
reformulated as follows, with R : 1 →

∑
i ei ⊗ ei being the map in Definition 6.9:

R ∈ Hom(1, g ⊗ ḡ) , R ∈ Hom(1, ḡ ⊗ g)

Indeed, given an arbitrary matrix g ∈MN(C), we have the following computation:

(g ⊗ ḡ)(R(1)⊗ 1) =

(∑
ijkl

eij ⊗ ekl ⊗ gij ḡkl

)(∑
a

ea ⊗ ea ⊗ 1

)
=

∑
ika

ei ⊗ ek ⊗ giaḡ
∗
ka

=
∑
ik

ei ⊗ ek ⊗ (gg∗)ik

We conclude from this that we have the following equivalence:

R ∈ Hom(1, g ⊗ ḡ) ⇐⇒ gg∗ = 1

By replacing g with its conjugate matrix ḡ, we have as well:

R ∈ Hom(1, ḡ ⊗ g) ⇐⇒ ḡgt = 1
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Thus, the two intertwining conditions in Definition 6.9 (5) are both equivalent to the
fact that g is unitary, and so these conditions are indeed satisfied, as desired.

(6) This is again something elementary, coming from the fact that the various matrix
coefficients g → gij and their complex conjugates g → ḡij commute with each other. To
be more precise, with Σ : a⊗ b→ b⊗ a being the flip operator, we have:

(g ⊗ h)(Σ⊗ id)(ea ⊗ eb ⊗ 1) =

(∑
ijkl

eij ⊗ ekl ⊗ gijhkl

)
(eb ⊗ ea ⊗ 1)

=
∑
ik

ei ⊗ ek ⊗ gibhka

On the other hand, we have as well the following computation:

(Σ⊗ id)(h⊗ g)(ea ⊗ eb ⊗ 1) = (Σ⊗ id)

(∑
ijkl

eij ⊗ ekl ⊗ hijgkl

)
(ea ⊗ eb ⊗ 1)

= (Σ⊗ id)

(∑
ik

ei ⊗ ek ⊗ hiagkb

)
=

∑
ik

ek ⊗ ei ⊗ hiagkb

=
∑
ik

ei ⊗ ek ⊗ hkagib

Now since functions commute, gibhka = hkagib, this gives the result. □

With the above in hand, our purpose now will be that of showing that any closed
subgroup G ⊂ UN is uniquely determined by its Tannakian category C = (C(k, l)):

G↔ C

This result, known as Tannakian duality, is something quite deep, and very useful.
Indeed, the idea is that what we would have here is a “linearization” of G, allowing us to
do combinatorics, and ultimately reach to very concrete and powerful results, regarding
G itself. And as a consequence, solve our probability questions left.

Getting started now, we want to construct a correspondence G↔ C, and we already
know from Theorem 6.10 how the correspondence G→ C appears, namely via:

C(k, l) = Hom(u⊗k, u⊗l)

Regarding now the construction in the other sense, C → G, this is something very
simple as well, coming from the following elementary result:
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Theorem 6.11. Given a tensor category C = (C(k, l)) over the space H ≃ CN ,

G =
{
g ∈ UN

∣∣∣Tg⊗k = g⊗lT , ∀k, l, ∀T ∈ C(k, l)
}

is a closed subgroup G ⊂ UN .

Proof. Consider indeed the closed subset G ⊂ UN constructed in the statement. We
want to prove that G is indeed a group, and the verifications here go as follows:

(1) Given two matrices g, h ∈ G, their product satisfies gh ∈ G, due to the following
computation, valid for any k, l and any T ∈ C(k, l):

T (gh)⊗k = Tg⊗kh⊗k

= g⊗lTh⊗k

= g⊗lh⊗lT

= (gh)⊗lT

(2) Also, we have 1 ∈ G, trivially. Finally, for g ∈ G and T ∈ C(k, l), we have:

T (g−1)⊗k = (g−1)⊗l[g⊗lT ](g−1)⊗k

= (g−1)⊗l[Tg⊗k](g−1)⊗k

= (g−1)⊗lT

Thus we have g−1 ∈ G, and so G is a group, as claimed. □

Summarizing, we have so far precise axioms for the tensor categories C = (C(k, l)),
given in Definition 6.9, as well as correspondences as follows:

G→ C , C → G

We will show in what follows that these correspondences are inverse to each other. In
order to get started, we first have the following technical result:

Theorem 6.12. If we denote the correspondences in Theorem 6.9 and 6.10, between
closed subgroups G ⊂ UN and tensor categories C = (C(k, l)) over H = CN , as

G→ CG , C → GC

then we have embeddings as follows, for any G and C respectively,

G ⊂ GCG
, C ⊂ CGC

and proving that these correspondences are inverse to each other amounts in proving

CGC
⊂ C

for any tensor category C = (C(k, l)) over the space H = CN .

Proof. This is something trivial, with the embeddings G ⊂ GCG
and C ⊂ CGC

being
both clear from definitions, and with the last assertion coming from this. □
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In order to establish Tannakian duality, we will need some abstract constructions.
Following Malacarne [72], let us start with the following elementary fact:

Proposition 6.13. Given a tensor category C = C((k, l)) over a Hilbert space H,

EC =
⊕
k,l

C(k, l) ⊂
⊕
k,l

B(H⊗k, H⊗l) ⊂ B

(⊕
k

H⊗k

)
is a closed ∗-subalgebra. Also, inside this algebra,

E
(s)
C =

⊕
|k|,|l|≤s

C(k, l) ⊂
⊕

|k|,|l|≤s

B(H⊗k, H⊗l) = B

⊕
|k|≤s

H⊗k


is a finite dimensional ∗-subalgebra.

Proof. This is clear indeed from the categorical axioms from Definition 6.9. □

Now back to our reconstruction question, we want to prove C = CGC
, which is the

same as proving EC = ECGC
. We will use a standard commutant trick, as follows:

Theorem 6.14. For any ∗-algebra A ⊂MN(C) we have the equality

A = A′′

where prime denotes the commutant, X ′ =
{
T ∈MN(C)

∣∣Tx = xT,∀x ∈ X
}
.

Proof. This is a particular case of von Neumann’s bicommutant theorem, which
follows from the explicit description of A worked out in chapter 5, namely:

A =Mn1(C)⊕ . . .⊕Mnk
(C)

Indeed, the center of each matrix algebra being reduced to the scalars, the commutant
of this algebra is as follows, with each copy of C corresponding to a matrix block:

A′ = C⊕ . . .⊕ C
Now when taking once again the commutant, the computation is trivial, and we obtain

in this way A itself, and this leads to the conclusion in the statement. □

By using now the bicommutant theorem, we have:

Proposition 6.15. Given a Tannakian category C, the following are equivalent:

(1) C = CGC
.

(2) EC = ECGC
.

(3) E
(s)
C = E

(s)
CGC

, for any s ∈ N.
(4) E

(s)′

C = E
(s)′

CGC
, for any s ∈ N.

In addition, the inclusions ⊂, ⊂, ⊂, ⊃ are automatically satisfied.
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Proof. This follows from the above results, as follows:

(1) ⇐⇒ (2) This is clear from definitions.

(2) ⇐⇒ (3) This is clear from definitions as well.

(3) ⇐⇒ (4) This comes from the bicommutant theorem. As for the last assertion,
we have indeed C ⊂ CGC

from Theorem 6.12, and this shows that we have as well:

EC ⊂ ECGC

We therefore obtain by truncating E
(s)
C ⊂ E

(s)
CGC

, and by taking the commutants, this

gives E
(s)
C ⊃ E

(s)
CGC

. Thus, we are led to the conclusion in the statement. □

Summarizing, we would like to prove that we have E
(s)′

C ⊂ E
(s)′

CGC
. Let us first study

the commutant on the right. As a first observation, we have:

Proposition 6.16. We have the following equality,

E
(s)
CG

= End

⊕
|k|≤s

u⊗k


between subalgebras of B

(⊕
|k|≤sH

⊗k
)
.

Proof. We know that the category CG is by definition given by:

CG(k, l) = Hom(u⊗k, u⊗l)

Thus, the corresponding algebra E
(s)
CG

appears as follows:

E
(s)
CG

=
⊕

|k|,|l|≤s

Hom(u⊗k, u⊗l) ⊂
⊕

|k|,|l|≤s

B(H⊗k, H⊗l) = B

⊕
|k|≤s

H⊗k


On the other hand, the algebra of intertwiners of

⊕
|k|≤s u

⊗k is given by:

End

⊕
|k|≤s

u⊗k

 =
⊕

|k|,|l|≤s

Hom(u⊗k, u⊗l) ⊂
⊕

|k|,|l|≤s

B(H⊗k, H⊗l) = B

⊕
|k|≤s

H⊗k


Thus we have indeed the same algebra, and we are done. □

We have to compute the commutant of the above algebra. For this purpose, we can
use the following general result, valid for any representation of a compact group:
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Proposition 6.17. Given a unitary group representation v : G → Un we have an
algebra representation as follows,

πv : C(G)
∗ →Mn(C) , φ→ (φ(vij))ij

whose image is given by Im(πv) = End(v)′.

Proof. The first assertion is clear, with the multiplicativity claim for πv coming from
the following computation, where ∆ : C(G) → C(G)⊗ C(G) is the comultiplication:

(πv(φ ∗ ψ))ij = (φ⊗ ψ)∆(vij)

=
∑
k

φ(vik)ψ(vkj)

=
∑
k

(πv(φ))ik(πv(ψ))kj

= (πv(φ)πv(ψ))ij

Let us establish now the equality in the statement, namely:

Im(πv) = End(v)′

Let us first prove the inclusion ⊂. Given φ ∈ C(G)∗ and T ∈ End(v), we have:

[πv(φ), T ] = 0 ⇐⇒
∑
k

φ(vik)Tkj =
∑
k

Tikφ(vkj),∀i, j

⇐⇒ φ

(∑
k

vikTkj

)
= φ

(∑
k

Tikvkj

)
,∀i, j

⇐⇒ φ((vT )ij) = φ((Tv)ij),∀i, j
But this latter formula is true, because T ∈ End(v) means that we have:

vT = Tv

As for the converse inclusion ⊃, the proof is quite similar. Indeed, by using the
bicommutant theorem, this is the same as proving that we have:

Im(πv)
′ ⊂ End(v)

But, by using the above equivalences, we have the following computation:

T ∈ Im(πv)
′ ⇐⇒ [πv(φ), T ] = 0,∀φ

⇐⇒ φ((vT )ij) = φ((Tv)ij),∀φ, i, j
⇐⇒ vT = Tv

Thus, we have obtained the desired inclusion, and we are done. □

By combining the above results, we obtain the following technical statement:
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Theorem 6.18. We have the following equality,

E
(s)′

CG
= Im(πv)

where the representation v is the following direct sum,

v =
⊕
|k|≤s

u⊗k

and where the algebra representation πv : C(G)
∗ →Mn(C) is given by φ→ (φ(vij))ij.

Proof. This follows indeed by combining the above results, and more precisely by
combining Proposition 6.16 and Proposition 6.17. □

6c. The correspondence

We recall that we want to prove that we have E
(s)′

C ⊂ E
(s)′

CGC
, for any s ∈ N. And for

this purpose, we must first refine Theorem 6.18, in the case G = GC .

Generally speaking, in order to prove anything about GC , we are in need of an explicit
model for this group. In order to construct such a model, let < uij > be the free ∗-algebra
over dim(H)2 variables, with comultiplication and counit as follows:

∆(uij) =
∑
k

uik ⊗ ukj , ε(uij) = δij

Following [72], we can model this ∗-bialgebra, in the following way:

Proposition 6.19. Consider the following pair of dual vector spaces,

F =
⊕
k

B
(
H⊗k

)
, F ∗ =

⊕
k

B
(
H⊗k

)∗
and let fij, f

∗
ij ∈ F ∗ be the standard generators of B(H)∗, B(H̄)∗.

(1) F ∗ is a ∗-algebra, with multiplication ⊗ and involution as follows:

fij ↔ f ∗
ij

(2) F ∗ is a ∗-bialgebra, with ∗-bialgebra operations as follows:

∆(fij) =
∑
k

fik ⊗ fkj , ε(fij) = δij

(3) We have a ∗-bialgebra isomorphism < uij >≃ F ∗, given by uij → fij.

Proof. Since F ∗ is spanned by the various tensor products between the variables
fij, f

∗
ij, we have a vector space isomorphism as follows:

< uij >≃ F ∗ , uij → fij , u∗ij → f ∗
ij

The corresponding ∗-bialgebra structure induced on the vector space F ∗ is then the
one in the statement, and this gives the result. □
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Now back to our group GC , we have the following modeling result for it:

Proposition 6.20. The smooth part of the algebra AC = C(GC) is given by

AC ≃ F ∗/J

where J ⊂ F ∗ is the ideal coming from the following relations, for any i, j,∑
p1,...,pk

Ti1...il,p1...pkfp1j1 ⊗ . . .⊗ fpkjk =
∑

q1,...,ql

Tq1...ql,j1...jkfi1q1 ⊗ . . .⊗ filql

one for each pair of colored integers k, l, and each T ∈ C(k, l).

Proof. As a first observation, AC appears as enveloping C∗-algebra of the following
universal ∗-algebra, where u = (uij) is regarded as a formal corepresentation:

AC =
〈
(uij)i,j=1,...,N

∣∣∣T ∈ Hom(u⊗k, u⊗l),∀k, l, ∀T ∈ C(k, l)
〉

With this observation in hand, the conclusion is that we have a formula as follows,
where I is the ideal coming from the relations T ∈ Hom(u⊗k, u⊗l), with T ∈ C(k, l):

AC =< uij > /I

Now if we denote by J ⊂ F ∗ the image of the ideal I via the ∗-algebra isomorphism
< uij >≃ F ∗ from Proposition 6.22, we obtain an identification as follows:

AC ≃ F ∗/J

With standard multi-index notations, and by assuming now that k, l ∈ N are usual
integers, for simplifying the presentation, the general case being similar, a relation of type
T ∈ Hom(u⊗k, u⊗l) inside < uij > is equivalent to the following conditions:∑

p1,...,pk

Ti1...il,p1...pkup1j1 . . . upkjk =
∑

q1,...,ql

Tq1...ql,j1...jkui1q1 . . . uilql

Now by recalling that the isomorphism of ∗-algebras < uij >→ F ∗ is given by
uij → fij, and that the multiplication operation of F ∗ corresponds to the tensor product
operation ⊗, we conclude that J ⊂ F ∗ is the ideal from the statement. □

With the above result in hand, let us go back to Theorem 6.18. We have:

Proposition 6.21. The linear space A∗
C is given by the formula

A∗
C =

{
a ∈ F

∣∣∣Tak = alT,∀T ∈ C(k, l)
}

and the representation

πv : A∗
C → B

⊕
|k|≤s

H⊗k


appears diagonally, by truncating, πv : a→ (ak)kk.
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Proof. We know from Proposition 6.20 that we have an identification of ∗-bialgebras
AC ≃ F ∗/J . But this gives a quotient map, as follows:

F ∗ → AC

At the dual level, this gives A∗
C ⊂ F . To be more precise, we have:

A∗
C =

{
a ∈ F

∣∣∣f(a) = 0,∀f ∈ J
}

Now since J =< fT >, where fT are the relations in Proposition 6.20, we obtain:

A∗
C =

{
a ∈ F

∣∣∣fT (a) = 0,∀T ∈ C
}

Given T ∈ C(k, l), for an arbitrary element a = (ak), we have:

fT (a) = 0

⇐⇒
∑

p1,...,pk

Ti1...il,p1...pk(ak)p1...pk,j1...jk =
∑

q1,...,ql

Tq1...ql,j1...jk(al)i1...il,q1...ql ,∀i, j

⇐⇒ (Tak)i1...il,j1...jk = (alT )i1...il,j1...jk ,∀i, j
⇐⇒ Tak = alT

Thus, A∗
C is given by the formula in the statement. It remains to compute πv:

πv : A∗
C → B

⊕
|k|≤s

H⊗k


With a = (ak), we have the following computation:

πv(a)i1...ik,j1...jk = a(vi1...ik,j1...jk)

= (fi1j1 ⊗ . . .⊗ fikjk)(a)

= (ak)i1...ik,j1...jk

Thus, our representation πv appears diagonally, by truncating, as claimed. □

In order to further advance, consider the following vector spaces:

Fs =
⊕
|k|≤s

B
(
H⊗k

)
, F ∗

s =
⊕
|k|≤s

B
(
H⊗k

)∗
We denote by a→ as the truncation operation F → Fs. We have:

Proposition 6.22. The following hold:

(1) E
(s)′

C ⊂ Fs.
(2) E ′

C ⊂ F .
(3) A∗

C = E ′
C.

(4) Im(πv) = (E ′
C)s.
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Proof. These results basically follow from what we have, as follows:

(1) We have an inclusion as follows, as a diagonal subalgebra:

Fs ⊂ B

⊕
|k|≤s

H⊗k


The commutant of this algebra is then given by:

F ′
s =

{
b ∈ Fs

∣∣∣b = (bk), bk ∈ C,∀k
}

On the other hand, we know from the identity axiom for the category C that we have

F ′
s ⊂ E

(s)
C . Thus, our result follows from the bicommutant theorem, as follows:

F ′
s ⊂ E

(s)
C =⇒ Fs ⊃ E

(s)′

C

(2) This follows from (1), by taking inductive limits.

(3) With the present notations, the formula of A∗
C from Proposition 6.21 reads A∗

C =
F ∩ E ′

C . Now since by (2) we have E ′
C ⊂ F , we obtain from this A∗

C = E ′
C .

(4) This follows from (3), and from the formula of πν in Proposition 6.21. □

Following [72], we can now state and prove our main result, as follows:

Theorem 6.23. The Tannakian duality constructions

C → GC , G→ CG

are inverse to each other.

Proof. According to our various results above, we have to prove that, for any Tan-
nakian category C, and any s ∈ N, we have an inclusion as follows:

E
(s)′

C ⊂ (E ′
C)s

By taking duals, this is the same as proving that we have:{
f ∈ F ∗

s

∣∣∣f|(E′
C)s = 0

}
⊂
{
f ∈ F ∗

s

∣∣∣f|E(s)′
C

= 0
}

In order to do so, we use the following formula, from Proposition 6.22:

A∗
C = E ′

C

We know from the above that we have an identification as follows:

AC = F ∗/J

We conclude that the ideal J is given by the following formula:

J =
{
f ∈ F ∗

∣∣∣f|E′
C
= 0
}
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Our claim is that we have the following formula, for any s ∈ N:

J ∩ F ∗
s =

{
f ∈ F ∗

s

∣∣∣f|E(s)′
C

= 0
}

Indeed, let us denote by Xs the spaces on the right. The axioms for C show that these
spaces are increasing, that their union X = ∪sXs is an ideal, and that:

Xs = X ∩ F ∗
s

We must prove that we have J = X, and this can be done as follows:

“⊂” This follows from the following fact, for any T ∈ C(k, l) with |k|, |l| ≤ s:

(fT )|{T}′ = 0 =⇒ (fT )|E(s)′
C

= 0

=⇒ fT ∈ Xs

“⊃” This follows from our description of J , because from E
(s)
C ⊂ EC we obtain:

f|E(s)′
C

= 0 =⇒ f|E′
C
= 0

Summarizing, we have proved our claim. On the other hand, we have:

J ∩ F ∗
s =

{
f ∈ F ∗

∣∣∣f|E′
C
= 0
}
∩ F ∗

s

=
{
f ∈ F ∗

s

∣∣∣f|E′
C
= 0
}

=
{
f ∈ F ∗

s

∣∣∣f|(E′
C)s = 0

}
Thus, our claim is exactly the inclusion that we wanted to prove, and we are done. □

6d. Brauer theorems

Time for some applications. Let us start with the following definition:

Definition 6.24. Given a pairing π ∈ P2(k, l) and an integer N ∈ N, we can construct
a linear map between tensor powers of CN ,

Tπ : (CN)⊗k → (CN)⊗l

by the following formula, with e1, . . . , eN being the standard basis of CN ,

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

and with the coefficients on the right being Kronecker type symbols,

δπ

(
i1 . . . ik
j1 . . . jl

)
∈ {0, 1}

whose values depend on whether the indices fit or not.
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To be more precise here, we put the multi-indices i = (i1, . . . , ik) and j = (j1, . . . , jl)
on the legs of our pairing π, in the obvious way. In the case where all strings of π join
pairs of equal indices of i, j, we set δπ(

i
j) = 1. Otherwise, we set δπ(

i
j) = 0.

The point with the above definition comes from the fact that most of the “familiar”
maps, in the Tannakian context, are of the above form. Here are some examples:

Proposition 6.25. The correspondence π → Tπ has the following properties:

(1) T∩ = (1 →
∑

i ei ⊗ ei).
(2) T∪ = (ei ⊗ ej → δij).
(3) T||...|| = id.
(4) T/\ = (ea ⊗ eb → eb ⊗ ea).

Proof. We can assume that all legs of π are colored ◦, and then:

(1) We have ∩ ∈ P2(∅, ◦◦), and T∩ : C → CN ⊗ CN can be computed as follows:

T∩(1) =
∑
ij

δ∩(i j)ei ⊗ ej

=
∑
ij

δijei ⊗ ej

=
∑
i

ei ⊗ ei

(2) Here we have ∪ ∈ P2(◦◦, ∅), and the map T∩ : CN ⊗ CN → C is given by:

T∩(ei ⊗ ej) = δ∩(i j) = δij

(3) Consider indeed the “identity” pairing || . . . || ∈ P2(k, k), with k = ◦ ◦ . . . ◦ ◦. The
corresponding linear map is then the identity, because we have:

T||...||(ei1 ⊗ . . .⊗ eik) =
∑
j1...jk

δ||...||

(
i1 . . . ik
j1 . . . jk

)
ej1 ⊗ . . .⊗ ejk

=
∑
j1...jk

δi1j1 . . . δikjkej1 ⊗ . . .⊗ ejk

= ei1 ⊗ . . .⊗ eik

(4) For the basic crossing /\ ∈ P2(◦◦, ◦◦), the corresponding linear map is as follows:

T/\ : CN ⊗ CN → CN ⊗ CN
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This linear map can be computed as follows:

T/\(ei ⊗ ej) =
∑
kl

δ/\

(
i j
k l

)
ek ⊗ el

=
∑
kl

δilδjkek ⊗ el

= ej ⊗ ei

Thus we obtain the flip operator Σ(a⊗ b) = b⊗ a, as claimed. □

The relation with the Tannakian categories comes from the following key result:

Proposition 6.26. The assignement π → Tπ is categorical, in the sense that

Tπ ⊗ Tσ = T[πσ] , TπTσ = N c(π,σ)T[σπ ] , T ∗
π = Tπ∗

where c(π, σ) is the number of circles appearing in the middle, when concatenating.

Proof. The concatenation axiom follows from the following computation:

(Tπ ⊗ Tσ)(ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

=
∑
j1...jq

∑
l1...ls

δπ

(
i1 . . . ip
j1 . . . jq

)
δσ

(
k1 . . . kr
l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

=
∑
j1...jq

∑
l1...ls

δ[πσ]

(
i1 . . . ip k1 . . . kr
j1 . . . jq l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

= T[πσ](ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

The composition axiom follows from the following computation:

TπTσ(ei1 ⊗ . . .⊗ eip)

=
∑
j1...jq

δσ

(
i1 . . . ip
j1 . . . jq

) ∑
k1...kr

δπ

(
j1 . . . jq
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

=
∑
k1...kr

N c(π,σ)δ[σπ ]

(
i1 . . . ip
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

= N c(π,σ)T[σπ ](ei1 ⊗ . . .⊗ eip)
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Finally, the involution axiom follows from the following computation:

T ∗
π (ej1 ⊗ . . .⊗ ejq)

=
∑
i1...ip

< T ∗
π (ej1 ⊗ . . .⊗ ejq), ei1 ⊗ . . .⊗ eip > ei1 ⊗ . . .⊗ eip

=
∑
i1...ip

δπ

(
i1 . . . ip
j1 . . . jq

)
ei1 ⊗ . . .⊗ eip

= Tπ∗(ej1 ⊗ . . .⊗ ejq)

Summarizing, our correspondence is indeed categorical. □

The above result suggests the following general definition:

Definition 6.27. Let P2(k, l) be the set of pairings between an upper colored integer
k, and a lower colored integer l. A collection of subsets

D =
⊔
k,l

D(k, l)

with D(k, l) ⊂ P2(k, l) is called a category of pairings when it has the following properties:

(1) Stability under the horizontal concatenation, (π, σ) → [πσ].
(2) Stability under vertical concatenation (π, σ) → [σπ], with matching middle symbols.
(3) Stability under the upside-down turning ∗, with switching of colors, ◦ ↔ •.
(4) Each set P (k, k) contains the identity partition || . . . ||.
(5) The sets P (∅, ◦•) and P (∅, •◦) both contain the semicircle ∩.
(6) The sets P (k, k̄) with |k| = 2 contain the crossing partition /\.

Observe the similarity with the axioms for Tannakian categories, given earlier in this
chapter. In relation with the compact groups, we have the following result:

Theorem 6.28. Each category of pairings, in the above sense,

D = (D(k, l))

produces a family of compact groups G = (GN), one for each N ∈ N, via the formula

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

and the Tannakian duality correspondence.

Proof. Given an integer N ∈ N, consider the correspondence π → Tπ constructed in
Definition 6.24, and then the collection of linear spaces in the statement, namely:

Ckl = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

According to Proposition 6.26, and to our axioms for the categories of partitions, from
Definition 6.27, this collection of spaces C = (Ckl) satisfies the axioms for the Tannakian
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categories, from the beginning of this chapter. Thus the Tannakian duality result there
applies, and provides us with a closed subgroup GN ⊂ UN such that:

Ckl = Hom(u⊗k, u⊗l)

Thus, we are led to the conclusion in the statement. □

We can establish now a useful result, namely the Brauer theorem for UN :

Theorem 6.29. For the unitary group UN we have

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ P2(k, l)
)

where P2 denotes as usual the category of all matching pairings.

Proof. Consider the spaces on the right in the statement, namely:

Ckl = span
(
Tπ

∣∣∣π ∈ P2(k, l)
)

According to Proposition 6.26 these spaces form a tensor category. Thus, by Tannakian
duality, these spaces must come from a certain closed subgroup G ⊂ UN . To be more
precise, if we denote by v the fundamental representation of G, then:

Ckl = Hom(v⊗k, v⊗l)

We must prove that we have G = UN . For this purpose, let us recall that the unitary
group UN is defined via the following relations:

u∗ = u−1 , ut = ū−1

But these relations tell us precisely that the following two operators must be in the
associated Tannakian category C:

Tπ : π = ∩
◦• ,

∩
•◦

Thus the associated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< ∩
◦• ,

∩
•◦ >= P2

Thus, we are led to the conclusion in the statement. □

Regarding the orthogonal group ON , we have here a similar result, as follows:

Theorem 6.30. For the orthogonal group ON we have

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ P2(k, l)
)

where P2 denotes as usual the category of all pairings.
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Proof. Consider the spaces on the right in the statement, namely:

Ckl = span
(
Tπ

∣∣∣π ∈ P2(k, l)
)

According to Proposition 6.26 these spaces form a tensor category. Thus, by Tannakian
duality, these spaces must come from a certain closed subgroup G ⊂ UN . To be more
precise, if we denote by v the fundamental representation of G, then:

Ckl = Hom(v⊗k, v⊗l)

We must prove that we have G = ON . For this purpose, let us recall that the orthog-
onal group ON ⊂ UN is defined by imposing the following relations:

uij = ūij

But these relations tell us precisely that the following two operators must be in the
associated Tannakian category C:

Tπ : π = |◦• , |•◦
Thus the associated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< P2, |◦•, |•◦ >= P2

Thus, we are led to the conclusion in the statement. □

6e. Exercises

Exercises:

Exercise 6.31.

Exercise 6.32.

Exercise 6.33.

Exercise 6.34.

Exercise 6.35.

Exercise 6.36.

Exercise 6.37.

Exercise 6.38.

Bonus exercise.



CHAPTER 7

Diagrams, easiness

7a. Easy groups

We have seen in the previous chapter that the Tannakian duals of the groups ON , UN

are very simple objects. To be more precise, the Brauer theorem for these two groups
states that we have equalities as follows, with D = P2,P2 respectively:

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

Our goal here will be that of axiomatizing and studying the closed subgroups G ⊂ UN

which are of this type, but with D being allowed to be, more generally, a category of
partitions. We will call such groups “easy”, and our results will be as follows:

(1) At the level of the continuous examples, we will see that besides ON , UN , we
have the bistochastic groups BN , CN . This is something which is interesting, and also
instructive, making it clear why we have to upgrade, from pairings to partitions.

(2) At the level of discrete examples, we have none so far, but we will see that the
symmetric group SN , the hyperoctahedral group HN , and more generally the complex
reflection groups Hs

N with s ∈ N ∪ {∞}, are all easy, in the above generalized sense.

(3) Still at the level of the basic examples, some key Lie groups such as SU2, SO3, or
the symplectic group SpN , are not easy, but the point is that these are however covered
by a suitable “super-easiness” version of the easiness, as defined above.

(4) At the level of the general theory, we will develop some algebraic theory in this
chapter, for the most in relation with various product operations, the idea being that in
the easy case, everything eventually reduces to computations with partitions.

(5) Also at the level of the general theory, we will develop as well some analytic
theory, later in Part IV, based on the same idea, namely that in the easy case, everything
eventually reduces to some elementary computations with partitions.

All this sounds quite exciting, good theory that we will be developing here, hope you
agree with me. In order to get started now, let us formulate the following key definition,
extending to the case of arbitrary partitions what we already know about pairings:

113
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Definition 7.1. Given a partition π ∈ P (k, l) and an integer N ∈ N, we define

Tπ : (CN)⊗k → (CN)⊗l

by the following formula, with e1, . . . , eN being the standard basis of CN ,

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

and with the coefficients on the right being Kronecker type symbols.

To be more precise here, in order to compute the Kronecker type symbols δπ(
i
j) ∈

{0, 1}, we proceed exactly as in the pairing case, namely by putting the multi-indices
i = (i1, . . . , ik) and j = (j1, . . . , jl) on the legs of π, in the obvious way. In case all the
blocks of π contain equal indices of i, j, we set δπ(

i
j) = 1. Otherwise, we set δπ(

i
j) = 0.

With the above notion in hand, we can now formulate the following key definition,
motivated by the Brauer theorems for ON , UN , as indicated before:

Definition 7.2. A closed subgroup G ⊂ UN is called easy when

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

for any two colored integers k, l = ◦ • ◦ • . . . , for certain sets of partitions

D(k, l) ⊂ P (k, l)

where π → Tπ is the standard implementation of the partitions, as linear maps.

In other words, we call a group G easy when its Tannakian category appears in the
simplest possible way: from the linear maps associated to partitions. The terminology is
quite natural, because Tannakian duality is basically our only serious tool.

As basic examples, the orthogonal and unitary groups ON , UN are both easy, coming
respectively from the following collections of sets of partitions:

P2 =
⊔
k,l

P2(k, l) , P2 =
⊔
k,l

P2(k, l)

In the general case now, as an important theoretical remark, in the context of Defini-
tion 7.2, consider the following collection of sets of partitions:

D =
⊔
k,l

D(k, l)

This collection of sets D obviously determines G, but the converse is not true. Indeed,
at N = 1 for instance, both the choices D = P2,P2 produce the same easy group, namely
G = {1}. We will be back to this issue on several occasions, with results about it.
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In order to advance, our first goal will be that of establishing a duality between easy
groups and certain special classes of collections of sets as above, namely:

D =
⊔
k,l

D(k, l)

Let us begin with a general definition, as follows:

Definition 7.3. Let P (k, l) be the set of partitions between an upper colored integer
k, and a lower colored integer l. A collection of subsets

D =
⊔
k,l

D(k, l)

with D(k, l) ⊂ P (k, l) is called a category of partitions when it has the following properties:

(1) Stability under the horizontal concatenation, (π, σ) → [πσ].
(2) Stability under vertical concatenation (π, σ) → [σπ], with matching middle symbols.
(3) Stability under the upside-down turning ∗, with switching of colors, ◦ ↔ •.
(4) Each set P (k, k) contains the identity partition || . . . ||.
(5) The sets P (∅, ◦•) and P (∅, •◦) both contain the semicircle ∩.
(6) The sets P (k, k̄) with |k| = 2 contain the crossing partition /\.

As before, this is something that we already met in chapter 6, but for the pairings
only. Observe the similarity with the axioms for Tannakian categories, also from chapter
6. We will see in a moment that this similarity can be turned into something very precise,
the idea being that such a category produces a family of easy quantum groups (GN)N∈N,
one for each N ∈ N, via the formula in Definition 7.1, and Tannakian duality.

As basic examples, that we have already met in chapter 6, in connection with the
representation theory ofON , UN , we have the categories P2,P2 of pairings, and of matching
pairings. Further basic examples include the categories P, Peven of all partitions, and of
all partitions whose blocks have even size. We will see in a moment that these latter
categories are related to the symmetric and hyperoctahedral groups SN , HN .

The relation with the Tannakian categories comes from the following result:

Proposition 7.4. The assignement π → Tπ is categorical, in the sense that

Tπ ⊗ Tσ = T[πσ] , TπTσ = N c(π,σ)T[σπ ] , T ∗
π = Tπ∗

where c(π, σ) are certain integers, coming from the erased components in the middle.
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Proof. This is something that we already know for pairings, and the proof in general
is similar. The concatenation axiom follows from the following computation:

(Tπ ⊗ Tσ)(ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

=
∑
j1...jq

∑
l1...ls

δπ

(
i1 . . . ip
j1 . . . jq

)
δσ

(
k1 . . . kr
l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

=
∑
j1...jq

∑
l1...ls

δ[πσ]

(
i1 . . . ip k1 . . . kr
j1 . . . jq l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

= T[πσ](ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

The composition axiom follows from the following computation:

TπTσ(ei1 ⊗ . . .⊗ eip)

=
∑
j1...jq

δσ

(
i1 . . . ip
j1 . . . jq

) ∑
k1...kr

δπ

(
j1 . . . jq
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

=
∑
k1...kr

N c(π,σ)δ[σπ ]

(
i1 . . . ip
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

= N c(π,σ)T[σπ ](ei1 ⊗ . . .⊗ eip)

Finally, the involution axiom follows from the following computation:

T ∗
π (ej1 ⊗ . . .⊗ ejq)

=
∑
i1...ip

< T ∗
π (ej1 ⊗ . . .⊗ ejq), ei1 ⊗ . . .⊗ eip > ei1 ⊗ . . .⊗ eip

=
∑
i1...ip

δπ

(
i1 . . . ip
j1 . . . jq

)
ei1 ⊗ . . .⊗ eip

= Tπ∗(ej1 ⊗ . . .⊗ ejq)

Summarizing, our correspondence is indeed categorical. □

Time now to put everyting together. All the above was pure combinatorics, and in
relation with the compact groups, we have the following result:

Theorem 7.5. Each category of partitions D = (D(k, l)) produces a family of compact
groups G = (GN), one for each N ∈ N, via the formula

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

and the Tannakian duality correspondence.
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Proof. Given an integer N ∈ N, consider the correspondence π → Tπ constructed in
Definition 7.1, and then the collection of linear spaces in the statement, namely:

Ckl = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

According to the formulae in Proposition 7.4, and to our axioms for the categories
of partitions, from Definition 7.3, this collection of spaces C = (Ckl) satisfies the axioms
for the Tannakian categories, from chapter 6. Thus the Tannakian duality result there
applies, and provides us with a closed subgroup GN ⊂ UN such that:

Ckl = Hom(u⊗k, u⊗l)

Thus, we are led to the conclusion in the statement. □

In relation with the easiness property, we can now formulate a key result, which can
serve as an alternative definition for the easy groups, as follows:

Theorem 7.6. A closed subgroup G ⊂ UN is easy precisely when

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

for any colored integers k, l, for a certain category of partitions D ⊂ P .

Proof. This basically follows from Theorem 7.5, as follows:

(1) In one sense, we know from Theorem 7.5 that any category of partitions D ⊂ P
produces a family of closed groups G ⊂ UN , one for each N ∈ N, according to Tannakian
duality and to the Hom space formula there, namely:

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

But these groups G ⊂ UN are indeed easy, in the sense of Definition 7.2.

(2) In the other sense now, assume that G ⊂ UN is easy, in the sense of Definition 7.2,
coming via the above Hom space formula, from a collection of sets as follows:

D =
⊔
k,l

D(k, l)

Consider now the category of partitions D̃ =< D > generated by this family. This is
by definition the smallest category of partitions containing D, whose existence follows by
starting with D, and performing the various categorical operations, namely horizontal and
vertical concatenation, and upside-down turning. It follows then, via another application
of Tannakian duality, that we have the following formula, for any k, l:

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D̃(k, l)
)

Thus, our group G ⊂ UN can be viewed as well as coming from D̃, and so appearing
as particular case of the construction in Theorem 7.5, and this gives the result. □
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As already mentioned above, Theorem 7.6 can be regarded as an alternative definition
for easiness, with the assumption that D ⊂ P must be a category of partitions being
added. In what follows we will rather use this new definition, which is more precise.

Generally speaking, the same comments as before apply. First, G is easy when its
Tannakian category appears in the simplest possible way: from a category of partitions.
The terminology is quite natural, because Tannakian duality is our only serious tool.

Also, the category of partitions D is not unique, for instance because at N = 1 all the
categories of partitions produce the same easy group, namely G = {1}. We will be back
to this issue on several occasions, with various results about it.

We will see in what follows that many interesting examples of compact quantum
groups are easy. Moreover, most of the known series of “basic” compact quantum groups,
G = (GN) with N ∈ N, can be in principle made fit into some suitable extensions of the
easy quantum group formalism. We will discuss this too, in what follows.

The notion of easiness goes back to the results of Brauer in [13] regarding the orthog-
onal group ON , and the unitary group UN , which reformulate as follows:

Theorem 7.7. We have the following results:

(1) The unitary group UN is easy, coming from the category P2.
(2) The orthogonal group ON is easy as well, coming from the category P2.

Proof. This is something that we already know, from chapter 6, based on Tannakian
duality, the idea of the proof being as follows:

(1) The group UN being defined via the relations u∗ = u−1, ut = ū−1, the associated
Tannakian category is C = span(Tπ|π ∈ D), with:

D =< ∩
◦• ,

∩
•◦ >= P2

(2) The group ON ⊂ UN being defined by imposing the relations uij = ūij, the
associated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< P2, |◦•, |•◦ >= P2

Thus, we are led to the conclusion in the statement. □

There are many other examples of easy groups, and we will gradually explore this. To
start with, we have the following interesting result, still in the continuous case:

Theorem 7.8. We have the following results:

(1) The unitary bistochastic group CN is easy, coming from the category P12 of match-
ing singletons and pairings.

(2) The orthogonal bistochastic group BN is easy, coming from the category P12 of
singletons and pairings.
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Proof. The proof here is similar to the proof of Theorem 7.7. To be more precise,
we can use the results there, and the proof goes as follows:

(1) The group CN ⊂ UN is defined by imposing the following relations, with ξ being
the all-one vector, which correspond to the bistochasticity condition:

uξ = ξ , ūξ = ξ

But these relations tell us precisely that the following two operators, with the partitions
on the right being singletons, must be in the associated Tannakian category C:

Tπ : π = |◦ , |•
Thus the associated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< P2, |◦, |• >= P12

Thus, we are led to the conclusion in the statement.

(2) In order to deal now with the real bistochastic group BN , we can either use a
similar argument, or simply use the following intersection formula:

BN = CN ∩ON

Indeed, at the categorical level, this intersection formula tells us that the associated
Tannakian category is given by C = span(Tπ|π ∈ D), with:

D =< P12, P2 >= P12

Thus, we are led to the conclusion in the statement. □

As a comment here, we have used in the above the fact, which is something quite
trivial, that the category of partitions associated to an intersection of easy quantum
groups is generated by the corresponding categories of partitions. We will be back to this,
and to some other product operations as well, with similar results, later on.

We can put now the results that we have together, as follows:

Theorem 7.9. The basic unitary and bistochastic groups,

CN
// UN

BN

OO

// ON

OO

are all easy, coming from the various categories of singletons and pairings.
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Proof. We know from the above that the groups in the statement are indeed easy,
the corresponding diagram of categories of partitions being as follows:

P12

��

P2
oo

��
P12 P2

oo

Thus, we are led to the conclusion in the statement. □

Summarizing, what we have so far is a general notion of “easiness”, coming from the
Brauer theorems for ON , UN , and their straightforward extensions to BN , CN .

7b. Reflection groups

In view of the above, the notion of easiness is a quite interesting one, deserving a full,
systematic investigation. As a first natural question that we would like to solve, we would
like to compute the easy group associated to the category of all partitions P itself. And
here, no surprise, we are led to the most basic, but non-trivial, classical group that we
know, namely the symmetric group SN . To be more precise, we have the following Brauer
type theorem for SN , which answers our question formulated above:

Theorem 7.10. The symmetric group SN , regarded as group of unitary matrices,

SN ⊂ ON ⊂ UN

via the permutation matrices, is easy, coming from the category of all partitions P .

Proof. Consider indeed the group SN , regarded as a group of unitary matrices, with
each permutation σ ∈ SN corresponding to the associated permutation matrix:

σ(ei) = eσ(i)

Consider as well the easy group G ⊂ ON coming from the category of all partitions
P . Since P is generated by the one-block “fork” partition Y ∈ P (2, 1), we have:

C(G) = C(ON)
/〈

TY ∈ Hom(u⊗2, u)
〉

The linear map associated to Y is given by the following formula:

TY (ei ⊗ ej) = δijei

In order to do the computations, we use the following formulae:

u = (uij)ij , u⊗2 = (uijukl)ik,jl , TY = (δijk)i,jk
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We therefore obtain the following formula:

(TY u
⊗2)i,jk =

∑
lm

(TY )i,lm(u
⊗2)lm,jk = uijuik

On the other hand, we have as well the following formula:

(uTY )i,jk =
∑
l

uil(TY )l,jk = δjkuij

Thus, the relation defining G ⊂ ON reformulates as follows:

TY ∈ Hom(u⊗2, u) ⇐⇒ uijuik = δjkuij,∀i, j, k

In other words, the elements uij must be projections, which must be pairwise orthog-
onal on the rows of u = (uij). We conclude that G ⊂ ON is the subgroup of matrices
g ∈ ON having the property gij ∈ {0, 1}. Thus we have G = SN , as desired. □

As a continuation of this, let us discuss now the hyperoctahedral group HN . The
result here is quite similar to the one for the symmetric groups, as follows:

Theorem 7.11. The hyperoctahedral group HN , regarded as a group of matrices,

SN ⊂ HN ⊂ ON

is easy, coming from the category of partitions with even blocks Peven.

Proof. This follows as usual from Tannakian duality. To be more precise, consider
the following one-block partition, which, as the name indicates, looks like a H letter:

H ∈ P (2, 2)

The linear map associated to this partition is then given by:

TH(ei ⊗ ej) = δijei ⊗ ei

By using this formula, we have the following computation:

(TH ⊗ id)u⊗2(ea ⊗ eb) = (TH ⊗ id)

(∑
ijkl

eij ⊗ ekl ⊗ uijukl

)
(ea ⊗ eb)

= (TH ⊗ id)

(∑
ik

ei ⊗ ek ⊗ uiaukb

)
=

∑
i

ei ⊗ ei ⊗ uiauib
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On the other hand, we have as well the following computation:

u⊗2(TH ⊗ id)(ea ⊗ eb) = δab

(∑
ijkl

eij ⊗ ekl ⊗ uijukl

)
(ea ⊗ ea)

= δab
∑
ij

ei ⊗ ek ⊗ uiauka

We conclude from this that we have the following equivalence:

TH ∈ End(u⊗2) ⇐⇒ δikuiauib = δabuiauka,∀i, k, a, b
But the relations on the right tell us that the entries of u = (uij) must satisfy αβ = 0

on each row and column of u, and so that the corresponding closed subgroup G ⊂ ON

consists of the matrices g ∈ ON which are permutation-like, with ±1 nonzero entries.
Thus, the corresponding group is G = HN , and as a conclusion to this, we have:

C(HN) = C(ON)
/〈

TH ∈ End(u⊗2)
〉

According now to our conventions for easiness, this means that the hyperoctahedral
group HN is easy, coming from the following category of partitions:

D =< H >

But the category on the right can be computed by drawing pictures, and we have:

< H >= Peven

Thus, we are led to the conclusion in the statement. □

More generally now, we have in fact the following grand result, regarding the series of
complex reflection groups Hs

N , which covers both the groups SN , HN :

Theorem 7.12. The complex reflection group Hs
N = Zs ≀SN is easy, the corresponding

category P s consisting of the partitions satisfying the condition

#◦ = # • (s)
as a weighted sum, in each block. In particular, we have the following results:

(1) SN is easy, coming from the category P .
(2) HN = Z2 ≀ SN is easy, coming from the category Peven.
(3) KN = T ≀ SN is easy, coming from the category Peven.

Proof. This is something that we already know at s = 1, 2, from Theorems 7.10 and
7.11. In general, the proof is similar, based on Tannakian duality. To be more precise, in
what regards the main assertion, the idea here is that the one-block partition π ∈ P (s),
which generates the category of partitions P s in the statement, implements the relations
producing the subgroup Hs

N ⊂ SN . As for the last assertions, these are all elementary:
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(1) At s = 1 we know that we have H1
N = SN . Regarding now the corresponding

category, here the condition #◦ = # • (1) is automatic, and so P 1 = P .

(2) At s = 2 we know that we have H2
N = HN . Regarding now the corresponding

category, here the condition #◦ = # • (2) reformulates as follows:

# ◦+#• = 0(2)

Thus each block must have even size, and we obtain, as claimed, P 2 = Peven.

(3) At s = ∞ we know that we have H∞
N = KN . Regarding now the corresponding

category, here the condition #◦ = # • (∞) reads:

#◦ = #•

But this is the condition defining Peven, and so P∞ = Peven, as claimed. □

Summarizing, we have many examples. In fact, our list of easy groups has currently
become quite big, and here is a selection of the main results that we have so far:

Theorem 7.13. We have a diagram of compact groups as follows,

KN
// UN

HN

OO

// ON

OO

where HN = Z2 ≀ SN and KN = T ≀ SN , and all these groups are easy.

Proof. This follows from the above results. To be more precise, we know that the
above groups are all easy, the corresponding categories of partitions being as follows:

Peven

��

P2
oo

��
Peven P2

oo

Thus, we are led to the conclusion in the statement. □

Summarizing, most of the groups that we investigated in this book are covered by
the easy group formalism. One exception is the symplectic group SpN , but this group is
covered as well, by a suitable extension of the easy group formalism. See [16].
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7c. Basic operations

Let us discuss now some basic composition operations, in general, and for the easy
groups. We will be mainly interested in the following operations:

Definition 7.14. The closed subgroups of UN are subject to intersection and genera-
tion operations, constructed as follows:

(1) Intersection: H ∩K is the usual intersection of H,K.
(2) Generation: < H,K > is the closed subgroup generated by H,K.

Alternatively, we can define these operations at the function algebra level, by perform-
ing certain operations on the associated ideals, as follows:

Proposition 7.15. Assuming that we have presentation results as follows,

C(H) = C(UN)/I , C(K) = C(UN)/J

the groups H ∩K and < H,K > are given by the following formulae,

C(H ∩K) = C(UN)/ < I, J >

C(< H,K >) = C(UN)/(I ∩ J)
at the level of the associated algebras of functions.

Proof. This is indeed clear from the definition of the operations ∩ and < , >, as
formulated above, and from the Stone-Weierstrass theorem. □

In what follows we will need Tannakian formulations of the above two operations. The
result here, that we have already used a couple of times in the above, is as follows:

Theorem 7.16. The intersection and generation operations ∩ and < ,> can be con-
structed via the Tannakian correspondence G→ CG, as follows:

(1) Intersection: defined via CG∩H =< CG, CH >.
(2) Generation: defined via C<G,H> = CG ∩ CH .

Proof. This follows from Proposition 7.15, and from Tannakian duality. Indeed, it
follows from Tannakian duality that given a closed subgroup G ⊂ UN , with fundamental
representation v, the algebra of functions C(G) has the following presentation:

C(G) = C(UN)
/〈

T ∈ Hom(u⊗k, u⊗l)
∣∣∣∀k,∀l,∀T ∈ Hom(v⊗k, v⊗l)

〉
In other words, given a closed subgroup G ⊂ UN , we have a presentation of the

following type, with IG being the ideal coming from the Tannakian category of G:

C(G) = C(UN)/IG

But this leads to the conclusion in the statement. □

In relation now with our easiness questions, we first have the following result:
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Proposition 7.17. Assuming that H,K are easy, then so is H ∩K, and we have

DH∩K =< DH , DK >

at the level of the corresponding categories of partitions.

Proof. We have indeed the following computation:

CH∩K = < CH , CK >

= < span(DH), span(DK) >

= span(< DH , DK >)

Thus, by Tannakian duality we obtain the result. □

Regarding now the generation operation, the situation here is more complicated, due
to a number of technical reasons, and we only have the following statement:

Proposition 7.18. Assuming that H,K are easy, we have an inclusion

< H,K >⊂ {H,K}
coming from an inclusion of Tannakian categories as follows,

CH ∩ CK ⊃ span(DH ∩DK)

where {H,K} is the easy group having as category of partitions DH ∩DK.

Proof. This follows from the definition and properties of the generation operation,
explained above, and from the following computation:

C<H,K> = CH ∩ CK

= span(DH) ∩ span(DK)

⊃ span(DH ∩DK)

Indeed, by Tannakian duality we obtain from this all the assertions. □

It is not clear if the inclusions in Proposition 7.18 are isomorphisms or not, and this
even under a supplementary N >> 0 assumption. Technically speaking, the problem
comes from the fact that the operation π → Tπ does not produce linearly independent
maps, and so all that we are doing is sensitive to the value of N ∈ N. The subject here is
quite technical, to be further developed in Part III below, with probabilistic motivations
in mind, without however solving the present algebraic questions.

Summarizing, we have some problems here, and we must proceed as follows:

Theorem 7.19. The intersection and easy generation operations ∩ and { , } can be
constructed via the Tannakian correspondence G→ DG, as follows:

(1) Intersection: defined via DG∩H =< DG, DH >.
(2) Easy generation: defined via D{G,H} = DG ∩DH .
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Proof. Here the situation is as follows:

(1) This is a true and honest result, coming from Proposition 7.17.

(2) This is more of an empty statement, coming from Proposition 7.18. □

As already mentioned, there is some interesting mathematics still to be worked out,
in relation with all this, and we will be back to this later, with further details. With the
above notions in hand, however, even if not fully satisfactory, we can formulate a nice
result, which improves our main result so far, namely Theorem 7.13, as follows:

Theorem 7.20. The basic unitary and reflection groups, namely

KN
// UN

HN

OO

// ON

OO

are all easy, and they form an intersection and easy generation diagram, in the sense that
the above square diagram satisfies UN = {KN , ON}, and HN = KN ∩ON .

Proof. We know from Theorem 7.13 that the groups in the statement are easy, the
corresponding categories of partitions being as follows:

Peven

��

P2
oo

��
Peven P2

oo

Now observe that this latter diagram is an intersection and generation diagram. By
using Theorem 7.19, this reformulates into the fact that the diagram of quantum groups
is an intersection and easy generation diagram, as claimed. □

It is possible to further improve the above result, by proving that the diagram there
is actually a plain generation diagram. However, this is something more technical, and
for a discussion here, you can check for instance my quantum group book [9].

Moving forward, as a continuation of the above, it is possible to develop some more
general theory, along the above lines. Given a closed subgroup G ⊂ UN , we can talk

about its “easy envelope”, which is the smallest easy group G̃ containing G. This easy
envelope appears by definition as an intermediate closed subgroup, as follows:

G ⊂ G̃ ⊂ UN
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With this notion in hand, Proposition 7.18 can be refined into a result stating that
given two easy groups H,K, we have inclusions as follows:

< H,K >⊂ ˜< H,K > ⊂ {H,K}
In order to discuss all this, let us start with the following definition:

Definition 7.21. A closed subgroup G ⊂ UN is called homogeneous when

SN ⊂ G ⊂ UN

with SN ⊂ UN being the standard embedding, via permutation matrices.

We will be interested in such groups, which cover for instance all the easy groups, and
many more. At the Tannakian level, we have the following result:

Theorem 7.22. The homogeneous groups SN ⊂ G ⊂ UN are in one-to-one correspon-
dence with the intermediate tensor categories

span
(
Tπ

∣∣∣π ∈ P2

)
⊂ C ⊂ span

(
Tπ

∣∣∣π ∈ P
)

where P is the category of all partitions, P2 is the category of the matching pairings, and
π → Tπ is the standard implementation of partitions, as linear maps.

Proof. This follows from Tannakian duality, and from the Brauer type results for
SN , UN . To be more precise, we know from Tannakian duality that each closed subgroup
G ⊂ UN can be reconstructed from its Tannakian category C = (C(k, l)), as follows:

C(G) = C(UN)
/〈

T ∈ Hom(u⊗k, u⊗l)
∣∣∣∀k, l, ∀T ∈ C(k, l)

〉
Thus we have a one-to-one correspondence G ↔ C, given by Tannakian duality,

and since the endpoints G = SN , UN are both easy, corresponding to the categories
C = span(Tπ|π ∈ D) with D = P,P2, this gives the result. □

Our purpose now will be that of using the Tannakian result in Theorem 7.22, in
order to introduce and study a combinatorial notion of “easiness level”, for the arbitrary
intermediate groups SN ⊂ G ⊂ UN . Let us begin with the following simple fact:

Proposition 7.23. Given a homogeneous group SN ⊂ G ⊂ UN , with associated
Tannakian category C = (C(k, l)), the sets

D1(k, l) =
{
π ∈ P (k, l)

∣∣∣Tπ ∈ C(k, l)
}

form a category of partitions, in the sense of Definition 7.3.

Proof. We use the basic categorical properties of the correspondence π → Tπ between
partitions and linear maps, that we established in the above, namely:

T[πσ] = Tπ ⊗ Tσ , T[σπ ] ∼ TπTσ , Tπ∗ = T ∗
π
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Together with the fact that C is a tensor category, we deduce from these formulae
that we have the following implication:

π, σ ∈ D1 =⇒ Tπ, Tσ ∈ C

=⇒ Tπ ⊗ Tσ ∈ C

=⇒ T[πσ] ∈ C

=⇒ [πσ] ∈ D1

On the other hand, we have as well the following implication:

π, σ ∈ D1 =⇒ Tπ, Tσ ∈ C

=⇒ TπTσ ∈ C

=⇒ T[σπ ] ∈ C

=⇒ [σπ] ∈ D1

Finally, we have as well the following implication:

π ∈ D1 =⇒ Tπ ∈ C

=⇒ T ∗
π ∈ C

=⇒ Tπ∗ ∈ C

=⇒ π∗ ∈ D1

Thus D1 is indeed a category of partitions, as claimed. □

We can further refine the above observation, in the following way:

Proposition 7.24. Given a compact group SN ⊂ G ⊂ UN , construct D1 ⊂ P as
above, and let SN ⊂ G1 ⊂ UN be the easy group associated to D1. Then:

(1) We have G ⊂ G1, as subgroups of UN .
(2) G1 is the smallest easy group containing G.
(3) G is easy precisely when G ⊂ G1 is an isomorphism.

Proof. All this is elementary, the proofs being as follows:

(1) We know that the Tannakian category of G1 is given by:

C1
kl = span

(
Tπ

∣∣∣π ∈ D1(k, l)
)

Thus we have C1 ⊂ C, and so G ⊂ G1, as subgroups of UN .

(2) Assuming that we have G ⊂ G′, with G′ easy, coming from a Tannakian category
C ′ = span(D′), we must have C ′ ⊂ C, and so D′ ⊂ D1. Thus, G1 ⊂ G′, as desired.

(3) This is a trivial consequence of (2). □

Summarizing, we have now a notion of “easy envelope”, as follows:
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Definition 7.25. The easy envelope of a homogeneous group SN ⊂ G ⊂ UN is the
easy group SN ⊂ G1 ⊂ UN associated to the category of partitions

D1(k, l) =
{
π ∈ P (k, l)

∣∣∣Tπ ∈ C(k, l)
}

where C = (C(k, l)) is the Tannakian category of G.

At the level of examples, most of the known homogeneous groups SN ⊂ G ⊂ UN are
in fact easy. However, there are non-easy interesting examples as well, such as the generic
reflection groups Hsd

N from chapter 3, and we will certainly have an exercise at the end of
this chapter, regarding the computation of the corresponding easy envelopes.

As a technical observation now, we can in fact generalize the above construction to
any closed subgroup G ⊂ UN , and we have the following result:

Proposition 7.26. Given a closed subgroup G ⊂ UN , construct D
1 ⊂ P as above,

and let SN ⊂ G1 ⊂ UN be the easy group associated to D1. We have then

G1 = (< G,SN >)1

where < G,SN >⊂ UN is the smallest closed subgroup containing G,SN .

Proof. According to our Tannakian results, the subgroup < G,SN >⊂ UN in the
statement exists indeed, and can be obtained by intersecting categories, as follows:

C<G,SN> = CG ∩ CSN

We conclude from this that for any π ∈ P (k, l) we have:

Tπ ∈ C<G,SN>(k, l) ⇐⇒ Tπ ∈ CG(k, l)

It follows that the D1 categories for the groups < G,SN > and G coincide, and so the
easy envelopes (< G,SN >)1 and G1 coincide as well, as stated. □

In order now to fine-tune all this, by using an arbitrary parameter p ∈ N, which can
be thought of as being an “easiness level”, we can proceed as follows:

Definition 7.27. Given a compact group SN ⊂ G ⊂ UN , and an integer p ∈ N, we
construct the family of linear spaces

Ep(k, l) =
{
α1Tπ1 + . . .+ αpTπp ∈ C(k, l)

∣∣∣αi ∈ C, πi ∈ P (k, l)
}

and we denote by Cp the smallest tensor category containing Ep = (Ep(k, l)), and by
SN ⊂ Gp ⊂ UN the compact group corresponding to this category Cp.

As a first observation, at p = 1 we have C1 = E1 = span(D1), where D1 is the
category of partitions constructed in Proposition 7.24. Thus the group G1 constructed
above coincides with the “easy envelope” of G, from Definition 7.25.
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In the general case, p ∈ N, the family Ep = (Ep(k, l)) constructed above is not neces-
sarily a tensor category, but we can of course consider the tensor category Cp generated
by it, as indicated. Finally, in the above definition we have used of course the Tannakian
duality results, in order to perform the operation Cp → Gp.

In practice, the construction in Definition 7.27 is often something quite complicated,
and it is convenient to use the following observation:

Proposition 7.28. The category Cp constructed above is generated by the spaces

Ep(l) =
{
α1Tπ1 + . . .+ αpTπp ∈ C(l)

∣∣∣αi ∈ C, πi ∈ P (l)
}

where C(l) = C(0, l), P (l) = P (0, l), with l ranging over the colored integers.

Proof. We use the well-known fact, that we know from chapter 5, that given a closed
subgroup G ⊂ UN , we have a Frobenius type isomorphism, as follows:

Hom(u⊗k, u⊗l) ≃ Fix(u⊗k̄l)

If we apply this to the group Gp, we obtain an isomorphism as follows:

C(k, l) ≃ C(k̄l)

On the other hand, we have as well an isomorphism P (k, l) ≃ P (k̄l), obtained by
performing a counterclockwise rotation to the partitions π ∈ P (k, l). According to the
above definition of the spaces Ep(k, l), this induces an isomorphism as follows:

Ep(k, l) ≃ Ep(k̄l)

We deduce from this that for any partitions π1, . . . , πp ∈ C(k, l), having rotated ver-
sions ρ1, . . . , ρp ∈ C(k̄l), and for any scalars α1, . . . , αp ∈ C, we have:

α1Tπ1 + . . .+ αpTπp ∈ C(k, l) ⇐⇒ α1Tρ1 + . . .+ αpTρp ∈ C(k̄l)

But this gives the conclusion in the statement, and we are done. □

The main properties of the construction G→ Gp can be summarized as follows:

Theorem 7.29. Given a compact group SN ⊂ G ⊂ UN , the compact groups Gp

constructed above form a decreasing family, whose intersection is G:

G =
⋂
p∈N

Gp

Moreover, G is easy when this decreasing limit is stationary, G = G1.
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Proof. By definition of Ep(k, l), and by using Proposition 7.28, these linear spaces
form an increasing filtration of C(k, l). The same remains true when completing into
tensor categories, and so we have an increasing filtration, as follows:

C =
⋃
p∈N

Cp

At the compact group level now, we obtain the decreasing intersection in the statement.
Finally, the last assertion is clear from Proposition 7.28. □

As a main consequence of the above results, we can now formulate:

Definition 7.30. We say that a homogeneous compact group

SN ⊂ G ⊂ UN

is easy at order p when G = Gp, with p being chosen minimal with this property.

Observe that the order 1 notion corresponds to the usual easiness. In general, all this
is quite abstract, but there are several explicit examples, that can be worked out. For
more on all this, you can check my quantum group book [9].

7d. Classification results

Let us go back now to plain easiness, and discuss some classification results, following
the old papers, and then the more recent paper of Tarrago-Weber [89]. In order to cut
from the complexity, we must impose an extra axiom, and we will use here:

Theorem 7.31. For an easy group G = (GN), coming from a category of partitions
D ⊂ P , the following conditions are equivalent:

(1) GN−1 = GN ∩ UN−1, via the embedding UN−1 ⊂ UN given by u→ diag(u, 1).
(2) GN−1 = GN ∩ UN−1, via the N possible diagonal embeddings UN−1 ⊂ UN .
(3) D is stable under the operation which consists in removing blocks.

If these conditions are satisfied, we say that G = (GN) is uniform.

Proof. We use the general easiness theory explained above, as follows:

(1) ⇐⇒ (2) This is something standard, coming from the inclusion SN ⊂ GN , which
makes everything SN -invariant. The result follows as well from the proof of (1) ⇐⇒ (3)
below, which can be converted into a proof of (2) ⇐⇒ (3), in the obvious way.

(1) ⇐⇒ (3) Given a subgroup K ⊂ UN−1, with fundamental representation u,
consider the N ×N matrix v = diag(u, 1). Our claim is that for any π ∈ P (k) we have:

ξπ ∈ Fix(v⊗k) ⇐⇒ ξπ′ ∈ Fix(v⊗k′), ∀π′ ∈ P (k′), π′ ⊂ π



132 7. DIAGRAMS, EASINESS

In order to prove this, we must study the condition on the left. We have:

ξπ ∈ Fix(v⊗k) ⇐⇒ (v⊗kξπ)i1...ik = (ξπ)i1...ik ,∀i
⇐⇒

∑
j

(v⊗k)i1...ik,j1...jk(ξπ)j1...jk = (ξπ)i1...ik ,∀i

⇐⇒
∑
j

δπ(j1, . . . , jk)vi1j1 . . . vikjk = δπ(i1, . . . , ik),∀i

Now let us recall that our representation has the special form v = diag(u, 1). We
conclude from this that for any index a ∈ {1, . . . , k}, we must have:

ia = N =⇒ ja = N

With this observation in hand, if we denote by i′, j′ the multi-indices obtained from
i, j obtained by erasing all the above ia = ja = N values, and by k′ ≤ k the common
length of these new multi-indices, our condition becomes:∑

j′

δπ(j1, . . . , jk)(v
⊗k′)i′j′ = δπ(i1, . . . , ik),∀i

Here the index j is by definition obtained from j′ by filling with N values. In order
to finish now, we have two cases, depending on i, as follows:

Case 1. Assume that the index set {a|ia = N} corresponds to a certain subpartition
π′ ⊂ π. In this case, the N values will not matter, and our formula becomes:∑

j′

δπ(j
′
1, . . . , j

′
k′)(v

⊗k′)i′j′ = δπ(i
′
1, . . . , i

′
k′)

Case 2. Assume now the opposite, namely that the set {a|ia = N} does not correspond
to a subpartition π′ ⊂ π. In this case the indices mix, and our formula reads:

0 = 0

Thus, we are led to ξπ′ ∈ Fix(v⊗k′), for any subpartition π′ ⊂ π, as claimed.

Now with this claim in hand, the result follows from Tannakian duality. □

We can now formulate a first classification result, as follows:

Theorem 7.32. The uniform orthogonal easy groups are as follows,

BN
// ON

SN

OO

// HN

OO

and this diagram is an intersection and easy generation diagram.
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Proof. We know that the quantum groups in the statement are indeed easy and
uniform, the corresponding categories of partitions being as follows:

P12

��

P2

��

oo

P Peven
oo

Since this latter diagram is an intersection and generation diagram, we conclude that
we have an intersection and easy generation diagram of quantum groups, as stated. Re-
garding now the classification, consider an arbitrary easy group, as follows:

SN ⊂ GN ⊂ ON

This group must then come from a category of partitions, as follows:

P2 ⊂ D ⊂ P

Now if we assume G = (GN) to be uniform, this category of partitions D is uniquely
determined by the subset L ⊂ N consisting of the sizes of the blocks of the partitions in
D. Our claim now is that the admissible sets are as follows:

(1) L = {2}, producing ON .

(2) L = {1, 2}, producing BN .

(3) L = {2, 4, 6, . . .}, producing HN .

(4) L = {1, 2, 3, . . .}, producing SN .

Indeed, in one sense, this follows from our easiness results for ON , BN , HN , SN . In the
other sense now, assume that L ⊂ N is such that the set PL consisting of partitions whose
sizes of the blocks belong to L is a category of partitions. We know from the axioms
of the categories of partitions that the semicircle ∩ must be in the category, so we have
2 ∈ L. Our claim is that the following conditions must be satisfied as well:

k, l ∈ L, k > l =⇒ k − l ∈ L

k ∈ L, k ≥ 2 =⇒ 2k − 2 ∈ L

Indeed, we will prove that both conditions follow from the axioms of the categories of
partitions. Let us denote by bk ∈ P (0, k) the one-block partition, as follows:

bk =

{
⊓⊓ . . . ⊓
1 2 . . . k

}
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For k > l, we can write bk−l in the following way:

bk−l =


⊓⊓ . . . . . . . . . . . . ⊓
1 2 . . . l l + 1 . . . k
⊔⊔ . . . ⊔ | . . . |

1 . . . k − l


In other words, we have the following formula:

bk−l = (b∗l ⊗ |⊗k−l)bk

Since all the terms of this composition are in PL, we have bk−l ∈ PL, and this proves
our first formula. As for the second formula, this can be proved in a similar way, by
capping two adjacent k-blocks with a 2-block, in the middle.

With the above two formulae in hand, we can conclude in the following way:

Case 1. Assume 1 ∈ L. By using the first formula with l = 1 we get:

k ∈ L =⇒ k − 1 ∈ L

This condition shows that we must have L = {1, 2, . . . ,m}, for a certain number
m ∈ {1, 2, . . . ,∞}. On the other hand, by using the second formula we get:

m ∈ L =⇒ 2m− 2 ∈ L

=⇒ 2m− 2 ≤ m

=⇒ m ∈ {1, 2,∞}

The case m = 1 being excluded by the condition 2 ∈ L, we reach to one of the two
sets producing the groups SN , BN .

Case 2. Assume 1 /∈ L. By using the first formula with l = 2 we get:

k ∈ L =⇒ k − 2 ∈ L

This condition shows that we must have L = {2, 4, . . . , 2p}, for a certain number
p ∈ {1, 2, . . . ,∞}. On the other hand, by using the second formula we get:

2p ∈ L =⇒ 4p− 2 ∈ L

=⇒ 4p− 2 ≤ 2p

=⇒ p ∈ {1,∞}

Thus L must be one of the two sets producing ON , HN , and we are done. □

All the above is very nice, but the continuation of the story is more complicated. When
lifting the uniformity assumption, the final classification results become more technical,
due to the presence of various copies of Z2, that can be added, while keeping the easiness
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property still true. To be more precise, in the real case it is known that we have exactly
6 solutions, which are as follows, with the convention G′

N = GN × Z2:

BN
// B′

N
// ON

SN

OO

// S ′
N

OO

// HN

OO

In the unitary case now, the classification is quite similar, but more complicated, as
explained in the paper of Tarrago-Weber [89]. In particular we have:

Theorem 7.33. The uniform easy groups which are purely unitary, in the sense that
they appear as complexifications of real easy groups, are as follows,

CN
// UN

SN

OO

// KN

OO

and this diagram is an intersection and easy generation diagram.

Proof. We know from the above that the groups in the statement are indeed easy
and uniform, the corresponding categories of partitions being as follows:

P12

��

P2

��

oo

P Peven
oo

Since this latter diagram is an intersection and generation diagram, we conclude that
we have an intersection and easy generation diagram of groups, as stated. As for the
uniqueness result, the proof here is similar to the proof from the real case, from Theorem
7.32, by examining the possible sizes of the blocks of the partitions in the category, and
doing some direct combinatorics. For details here, we refer to Tarrago-Weber [89]. □

Finally, let us mention that the easy quantum group formalism can be extended into
a “super-easy” group formalism, covering as well the symplectic group SpN . This is
something a bit technical, and we refer here to the paper of Collins-Śniady [16].
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7e. Exercises

Exercises:

Exercise 7.34.

Exercise 7.35.

Exercise 7.36.

Exercise 7.37.

Exercise 7.38.

Exercise 7.39.

Exercise 7.40.

Exercise 7.41.

Bonus exercise.



CHAPTER 8

Gram determinants

8a. Gram determinants

Let us discuss now a key algebraic problem, that we already met before, on various
occasions, namely the linear independence of the vectors ξπ. We first have:

Definition 8.1. Let P (k) be the set of partitions of {1, . . . , k}, and π, σ ∈ P (k).

(1) We write π ≤ σ if each block of π is contained in a block of σ.
(2) We let π ∨ σ ∈ P (k) be the partition obtained by superposing π, σ.

Also, we denote by |.| the number of blocks of the partitions π ∈ P (k).

As an illustration here, at k = 2 we have P (2) = {||,⊓}, and we have:

|| ≤ ⊓

Also, at k = 3 we have P (3) = {|||,⊓|,⊓| , |⊓,⊓⊓}, and the order relation is as follows:

||| ≤ ⊓| , ⊓| , |⊓ ≤ ⊓⊓

In relation with our linear independence questions, the idea will be that of using:

Proposition 8.2. The Gram matrix of the vectors ξπ is given by the formula

< ξπ, ξσ >= N |π∨σ|

where ∨ is the superposition operation, and |.| is the number of blocks.

Proof. According to the formula of the vectors ξπ, we have:

< ξπ, ξσ > =
∑
i1...ik

δπ(i1, . . . , ik)δσ(i1, . . . , ik)

=
∑
i1...ik

δπ∨σ(i1, . . . , ik)

= N |π∨σ|

Thus, we have obtained the formula in the statement. □

In order to study the Gram matrixGk(π, σ) = N |π∨σ|, and more specifically to compute
its determinant, we will use several standard facts about partitions. We have:

137
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Definition 8.3. The Möbius function of any lattice, and so of P , is given by

µ(π, σ) =


1 if π = σ

−
∑

π≤τ<σ µ(π, τ) if π < σ

0 if π ̸≤ σ

with the construction being performed by recurrence.

As an illustration here, for P (2) = {||,⊓}, we have by definition:

µ(||, ||) = µ(⊓,⊓) = 1

Also, || < ⊓, with no intermediate partition in between, so we obtain:

µ(||,⊓) = −µ(||, ||) = −1

Finally, we have ⊓ ̸≤ ||, and so we have as well the following formula:

µ(⊓, ||) = 0

Back to the general case now, the main interest in the Möbius function comes from
the Möbius inversion formula, which states that the following happens:

f(σ) =
∑
π≤σ

g(π) =⇒ g(σ) =
∑
π≤σ

µ(π, σ)f(π)

In linear algebra terms, the statement and proof of this formula are as follows:

Theorem 8.4. The inverse of the adjacency matrix of P (k), given by

Ak(π, σ) =

{
1 if π ≤ σ

0 if π ̸≤ σ

is the Möbius matrix of P , given by Mk(π, σ) = µ(π, σ).

Proof. This is well-known, coming for instance from the fact that Ak is upper trian-
gular. Indeed, when inverting, we are led into the recurrence from Definition 8.3. □

8b. Symmetric groups

Now back to our Gram matrix considerations, we have the following key result:

Proposition 8.5. The Gram matrix of the vectors ξπ with π ∈ P (k),

Gπσ = N |π∨σ|

decomposes as a product of upper/lower triangular matrices, Gk = AkLk, where

Lk(π, σ) =

{
N(N − 1) . . . (N − |π|+ 1) if σ ≤ π

0 otherwise

and where Ak is the adjacency matrix of P (k).
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Proof. We have the following computation, based on Proposition 8.2:

Gk(π, σ) = N |π∨σ|

= #
{
i1, . . . , ik ∈ {1, . . . , N}

∣∣∣ ker i ≥ π ∨ σ
}

=
∑

τ≥π∨σ

#
{
i1, . . . , ik ∈ {1, . . . , N}

∣∣∣ ker i = τ
}

=
∑

τ≥π∨σ

N(N − 1) . . . (N − |τ |+ 1)

According now to the definition of Ak, Lk, this formula reads:

Gk(π, σ) =
∑
τ≥π

Lk(τ, σ)

=
∑
τ

Ak(π, τ)Lk(τ, σ)

= (AkLk)(π, σ)

Thus, we are led to the formula in the statement. □

As an illustration for the above result, at k = 2 we have P (2) = {||,⊓}, and the above
decomposition G2 = A2L2 appears as follows:(

N2 N
N N

)
=

(
1 1
0 1

)(
N2 −N 0
N N

)
We are led in this way to the following formula, due to Lindstöm [69]:

Theorem 8.6. The determinant of the Gram matrix Gk is given by

det(Gk) =
∏

π∈P (k)

N !

(N − |π|)!

with the convention that in the case N < k we obtain 0.

Proof. If we order P (k) as usual, with respect to the number of blocks, and then
lexicographically, Ak is upper triangular, and Lk is lower triangular. Thus, we have:

det(Gk) = det(Ak) det(Lk)

= det(Lk)

=
∏
π

Lk(π, π)

=
∏
π

N(N − 1) . . . (N − |π|+ 1)

Thus, we are led to the formula in the statement. □
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8c. Reflection groups

We discuss now the systematic computation of the Gram determinants. Let us begin
with some simple observations, coming from definitions:

Proposition 8.7. Let Dk(N) = det(GkN), viewed as element of Z[N ].

(1) Dk is monic, of degree sk =
∑

π∈D(k) |π|.
(2) We have nbk |Dk, where bk = |D(k)|.

Proof. Here (1) follows from |π∨σ| ≤ |π|, with equality if and only if σ ≤ π. Indeed,
from the inequality we get deg(Dk) ≤ sk. Now the coefficient of N sk is the signed number
of permutations f : D(k) → D(k) satisfying f(π) ≤ π for any π, and since there is only
one such permutation, namely the identity, we obtain that this coefficient is 1. As for (2),
this is clear from the definition of Dk, and from |π ∨ σ| ≥ 1. □

We can reformulate Proposition 8.7, in the following way:

Proposition 8.8. With Dk(N) = det(GkN) and Tk(t) = Tr(Gkt), we have:

(1) Dk(N) = N sk(1 +O(N−1)) as N → ∞, where sk = T ′
k(1).

(2) Dk(N) = O(nbk) as N → 0, where bk = Tk(1).

Proof. This is a reformulation of Proposition 8.7, using a variable t around 1. Note
that in (2) we regard the variable N as a formal parameter, going to 0. □

The trace can be understood in terms of the associated Stirling numbers, as follows:

Proposition 8.9. We have the formula

Tk(t) =
k∑

r=1

Skrt
r

where Skr = #{π ∈ D(k) : |π| = r} are the Stirling numbers.

Proof. This is indeed clear from definitions. □

Another interpretation of the trace, analytic this time, is as follows:

Proposition 8.10. For any t ∈ (0, 1] we have the formula

Tk(t) = lim
n→∞

∫
G×

n

χk
t

where χt =
∑[tn]

i=1 uii are the truncated characters of the group.

Proof. As explained before, this follows from the Weingarten formula. □

Getting now to concrete computations, for the reflection groups, we have here:
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Theorem 8.11. For SN , HN we have

det(GkN) =
∏

π∈D(k)

N !

(N − |π|)!

where |.| is the number of blocks.

Proof. We use the fact that the partitions have the property of forming semilattices
under ∨. The proof uses the upper triangularization procedure in [69] together with the
explicit knowledge of the Möbius function on D(k) as in [55]. Consider the following
matrix, obtained by making determinant-preserving operations:

G′
kN(π, σ) =

∑
π≤τ

µ(π, τ)N |τ∨σ|

It follows from the Möbius inversion formula that we have:

G′
kN(π, σ) =

{
N(N − 1) . . . (N − |σ|+ 1) if π ≤ σ

0 otherwise

Thus the matrix is upper triangular, and by computing the product on the diagonal
we obtain the formula in the statement. □

A first remarkable feature of the above result is that the Gram determinant for the
groups SN , HN can be computed from the trace. Indeed, the Gram matrix trace gives the
Stirling numbers, which in turn give the Gram matrix determinant.

However, the connecting formula is quite complicated, so let us just record here:

Theorem 8.12. With Dk(N) = det(GkN) and Tk(t) = Tr(Gkt) we have

Dk(N) = N sk
(
1− zk

2
N−1 +O(N−2)

)
where sk = T ′

k(1) and zk = T ′′
k (1).

Proof. In terms of Stirling numbers, the formula in Theorem 8.11 reads:

Dk(N) =
k∏

r=1

(
N !

(N − r)!

)Skr

We use now the following basic estimate:

N !

(N − r)!
= N r

r−1∏
s=1

(
1− s

N

)
= N r

(
1− r(r − 1)

2
N−1 +O(N−2)

)
Together with Tk(t) =

∑k
r=1 Skrt

r, this gives the result. □

Observe that the above discussion raises the general question on whether the Gram
matrix determinant can be computed or not from the Gram matrix trace.
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8d. Further results

The above computations can be thought of as corresponding to the groups SN , HN ,
but we can do such things for any easy group. As a first illustration, let us discuss the
case of the orthogonal group ON . Here the combinatorics is that of the Young diagrams.
We denote by |.| the number of boxes, and we use quantity fλ, which gives the number
of standard Young tableaux of shape λ. We have then the following result:

Theorem 8.13. The determinant of the Gram matrix of ON is given by

det(GkN) =
∏

|λ|=k/2

fN(λ)
f2λ

where the quantities on the right are fN(λ) =
∏

(i,j)∈λ(N + 2j − i− 1).

Proof. For the group ON the Gram matrix is diagonalizable, as follows:

GkN =
∑

|λ|=k/2

fN(λ)P2λ

Here 1 =
∑
P2λ is the standard partition of unity associated to the Young diagrams

having k/2 boxes, and the coefficients fN(λ) are those in the statement. Now since we
have Tr(P2λ) = f 2λ, this gives the formula in the statement. □

In order to deal now with O+
N , S

+
N , we will need the following well-known fact:

Proposition 8.14. We have a bijection NC(k) ≃ NC2(2k), as follows:

(1) The application NC(k) → NC2(2k) is the “fattening” one, obtained by doubling
all the legs, and doubling all the strings as well.

(2) Its inverse NC2(2k) → NC(k) is the “shrinking” application, obtained by col-
lapsing pairs of consecutive neighbors.

Proof. The fact that the above two operations are indeed inverse to each other is
clear, by drawing pictures, and computing the corresponding compositions. □

At the level of the associated Gram matrices, the result is as follows:

Proposition 8.15. The Gram matrices of NC2(2k) ≃ NC(k) are related by

G2k,n(π, σ) = nk(∆−1
knGk,n2∆−1

kn )(π
′, σ′)

where π → π′ is the shrinking operation, and ∆kn is the diagonal of Gkn.

Proof. In the context of the bijection from Proposition 8.14, we have:

|π ∨ σ| = k + 2|π′ ∨ σ′| − |π′| − |σ′|
We therefore have the following formula, valid for any n ∈ N:

n|π∨σ| = nk+2|π′∨σ′|−|π′|−|σ′|

Thus, we are led to the formula in the statement. □
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Now back to O+
N , S

+
N , let us begin with some examples. We first have:

Proposition 8.16. The first Gram matrices and determinants for O+
N are

det

(
N2 N
N N2

)
= N2(N2 − 1)

det


N3 N2 N2 N2 N
N2 N3 N N N2

N2 N N3 N N2

N2 N N N3 N2

N N2 N2 N2 N3

 = N5(N2 − 1)4(N2 − 2)

with the matrices being written by using the lexicographic order on NC2(2k).

Proof. The formula at k = 2, where NC2(4) = {⊓⊓,
⋂
∩ }, is clear from definitions.

At k = 3 however, things are tricky. The partitions here are as follows:

NC(3) = {|||,⊓|,⊓| , |⊓,⊓⊓}

The Gram matrix and its determinant are, according to Theorem 8.6:

det


N3 N2 N2 N2 N
N2 N2 N N N
N2 N N2 N N
N2 N N N2 N
N N N N N

 = N5(N − 1)4(N − 2)

By using now Proposition 10.15, this gives the formula in the statement. □

In general, such tricks won’t work, because NC(k) is strictly smaller than P (k) at
k ≥ 4. However, following Di Francesco [19], we have the following result:

Theorem 8.17. The determinant of the Gram matrix for O+
N is given by

det(GkN) =

[k/2]∏
r=1

Pr(N)dk/2,r

where Pr are the Chebycheff polynomials, given by

P0 = 1 , P1 = X , Pr+1 = XPr − Pr−1

and dkr = fkr − fk,r+1, with fkr being the following numbers, depending on k, r ∈ Z,

fkr =

(
2k

k − r

)
−
(

2k

k − r − 1

)
with the convention fkr = 0 for k /∈ Z.
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Proof. This is something quite technical, obtained by using a decomposition as fol-
lows of the Gram matrix GkN , with the matrix TkN being lower triangular:

GkN = TkNT
t
kN

Thus, a bit as in the proof of the Lindstöm formula, we obtain the result, but the
problem lies however in the construction of TkN , which is non-trivial. See [19]. □

Moving ahead now, regarding S+
N , also following Di Francesco [19], we have:

Theorem 8.18. The determinant of the Gram matrix for S+
N is given by

det(GkN) = (
√
N)ak

k∏
r=1

Pr(
√
N)dkr

where Pr are the Chebycheff polynomials, given by

P0 = 1 , P1 = X , Pr+1 = XPr − Pr−1

and dkr = fkr − fk,r+1, with fkr being the following numbers, depending on k, r ∈ Z,

fkr =

(
2k

k − r

)
−
(

2k

k − r − 1

)
with the convention fkr = 0 for k /∈ Z, and where ak =

∑
π∈P(k)(2|π| − k).

Proof. This follows indeed from Theorem 8.17, by using Proposition 8.15. □

8e. Exercises

Exercises:

Exercise 8.19.

Exercise 8.20.

Exercise 8.21.

Exercise 8.22.

Exercise 8.23.

Exercise 8.24.

Exercise 8.25.

Exercise 8.26.

Bonus exercise.
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If trouble comes your way
Just ask for me

My friends all know me
As the General Lee



CHAPTER 9

Lie algebras

9a. Lie algebras

A Lie group is by definition a group which is a smooth manifold. So, let us start our
discussion with this, smooth manifolds. Here is their definition:

Definition 9.1. A smooth manifold is a space X which is locally isomorphic to RN .
To be more precise, this space X must be covered by charts, bijectively mapping open pieces
of it to open pieces of RN , with the changes of charts being C∞ functions.

It is possible to talk as well about Ck manifolds, with k < ∞, but this is rather
technical material, that we will not need, in relation with our considerations here.

As basic examples of smooth manifolds, we have RN itself, or any open subsetX ⊂ RN ,
with only 1 chart being needed here. Other basic examples include the circle, or curves
like ellipses and so on, for obvious reasons. To be more precise, the unit circle can be
covered by 2 charts as above, by using polar coordinates, in the obvious way, and then by
applying dilations, translations and other such transformations, namely bijections which
are smooth, we obtain a whole menagery of circle-looking manifolds.

Here is a more precise statement in this sense, covering the conics:

Theorem 9.2. The following are smooth manifolds, in the plane:

(1) The circles.
(2) The ellipses.
(3) The non-degenerate conics.
(4) Smooth deformations of these.

Proof. All this is quite intuitive, the idea being as follows:

(1) Consider the unit circle, x2 + y2 = 1. We can write then x = cos t, y = sin t, with
t ∈ [0, 2π), and we seem to have here the solution to our problem, just using 1 chart.
But this is of course wrong, because [0, 2π) is not open, and we have a problem at 0. In
practice we need to use 2 such charts, say with the first one being with t ∈ (0, 3π/2),
and the second one being with t ∈ (π, 5π/2). As for the fact that the change of charts
is indeed smooth, this comes by writing down the formulae, or just thinking a bit, and
arguing that this change of chart being actually a translation, it is automatically linear.

147
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(2) This follows from (1), by pulling the circle in both the Ox and Oy directions, and
the formulae here, based on the standard formulae for ellipses, are left to you reader.

(3) We already have the ellipses, and the case of the parabolas and hyperbolas is
elementary as well, and in fact simpler than the case of the ellipses. Indeed, a parablola
is clearly homeomorphic to R, and a hyperbola, to two copies of R.

(4) This is something which is clear too, depending of course on what exactly we mean
by “smooth deformation”, and by using a bit of multivariable calculus if needed. □

In higher dimensions, as basic examples, we have the spheres, as shown by:

Theorem 9.3. The sphere is a smooth manifold.

Proof. There are several proofs for this, all instructive, as follows:

(1) A first idea is to use spherical coordinates, which are as follows:

x1 = r cos t1
x2 = r sin t1 cos t2
...

xN−1 = r sin t1 sin t2 . . . sin tN−2 cos tN−1

xN = r sin t1 sin t2 . . . sin tN−2 sin tN−1

Indeed, these produce explicit charts for the sphere.

(2) A second idea, which makes use of less charts, is to use the stereographic projection,
which should be given by inverse maps as follows:

Φ : RN → SN
R − {∞} , Ψ : SN

R − {∞} → RN

Indeed, we are looking for the formulae of the isomorphism RN ≃ SN
R −{∞}, obtained

by identifying RN = RN × {0} ⊂ RN+1 with the unit sphere SN
R ⊂ RN+1, with the

convention that the point which is added is ∞ = (1, 0, . . . , 0), via the stereographic
projection. That is, we need the precise formulae of two inverse maps, as follows:

Φ : RN → SN
R − {∞} , Ψ : SN

R − {∞} → RN

In one sense, according to our conventions above, we must have a formula as follows
for our map Φ, with the parameter t ∈ (0, 1) being such that ||Φ(v)|| = 1:

Φ(v) = t(0, v) + (1− t)(1, 0)

The equation for the parameter t ∈ (0, 1) can be solved as follows:

(1− t)2 + t2||v||2 = 1 ⇐⇒ t2(1 + ||v||2) = 2t

⇐⇒ t =
2

1 + ||v||2
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We conclude that the formula of the map Φ is as follows:

Φ(v) = (1, 0) +
2

1 + ||v||2
(−1, v)

In the other sense now we must have, for a certain α ∈ R:

(0,Ψ(c, x)) = α(c, x) + (1− α)(1, 0)

But from αc+ 1− α = 0 we get the following formula for the parameter α:

α =
1

1− c

We conclude that the formula of the map Ψ is as follows:

Ψ(c, x) =
x

1− c

Here, as before, we use the convention in the statement, namely RN+1 = R×RN , with
the coordinate of R denoted x0, and with the coordinates of RN denoted x1, . . . , xN .

(3) We have as well cylindrical coordinates, as well as many other types of more
specialized coordinates, which can be useful in physics, and also geography, economics
and so on. We will leave some thinking here as an instructive exercise. □

Other key examples of manifolds include the projective spaces, as shown by:

Theorem 9.4. The projective space PN−1
R is a smooth manifold, with charts

(x1, . . . , xN) →
(
x1
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xN
xi

)
where xi ̸= 0. This manifold is compact, and of dimension N − 1.

Proof. We know that PN−1
R appears by definition as the space of lines in RN passing

through the origin, so we have the following formula, with ∼ being the proportionality of
vectors, given as usual by x ∼ y when x = λy, for some scalar λ ̸= 0:

PN−1
R = RN − {0}/ ∼

Alternatively, we can restrict if we want the attention to the vectors on the unit sphere
SN−1
R ⊂ RN , and this because any line in RN passing through the origin will certainly

cross this sphere. Moreover, it is clear that our line will cross the sphere in exactly two
points ±x, and we conclude that we have the following formula, with ∼ being now the
proportionality of vectors on the sphere, given by x ∼ y when x = ±y:

PN−1
R = SN−1

R / ∼
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With this discussion made, let us get now to what is to be proved. Obviously, once
we fix an index i ∈ {1, . . . , N}, the condition xi ̸= 0 on the vectors x ∈ RN − {0} defines
an open subset Ui ⊂ PN−1

R , and the open subsets that we get in this way cover PN−1
R :

PN−1
R = U1 ∪ . . . ∪ UN

Moreover, the map in the statement is injective Ui → RN−1, and it is clear too that
the changes of charts are C∞. Thus, we have our smooth manifold, as claimed. □

Now back to the general setting, that of Definition 9.1, the question is, what to do
with our smooth manifolds X. And in answer, we have the following construction:

Theorem 9.5. Given a smooth manifold X, and a point x ∈ X, we can talk about
the tangent space TxX, in the obvious way. This space varies smoothly with x.

Proof. This is something which is quite self-explanatory, and we will leave the clar-
ification of all this as an instructive exercise. If needed, you can consult as well any
introductory differential geometry book, but beware of the many abstractions there. □

Getting now to what we wanted to do, in the present chapter of this book, namely Lie
groups and Lie algebras, here is their definition, based on the above:

Definition 9.6. A Lie group is a group G which is a smooth manifold, with the
corresponding multiplication and inverse maps

m : G×G→ G , i : G→ G

being assumed to be smooth. The tangent space at the origin 1 ∈ G is denoted

g = T1G

and is called Lie algebra of G.

So, this is our definition, and as a first observation, the examples of Lie groups abound,
with the circle T and with the higher dimensional tori TN being the standard examples.
For these, the Lie algebra is obviously equal to R and RN , respectively. There are of
course many other examples, all very interesting, and more on this in a moment.

Before getting into examples, let us discuss a basic question, that you surely have in
mind, namely why calling the tangent space g = T1G an algebra. In answer, since G is a
group, with a certain multiplication map m : G × G → G, we can normally expect this
map m to produce some sort of “algebra structure” on the tangent space g = T1G.

This was for the idea, but in practice, things are more complicated than this, because
even for the simplest examples of Lie groups, what we get in this way is not an associative
algebra, but rather a new type of beast, called Lie algebra.

So, coming as a continuation and complement to Definition 9.6, we have:
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Definition 9.7. A Lie algebra is a vector space g with an operation (x, y) → [x, y],
called Lie bracket, subject to the following conditions:

(1) [x+ y, z] = [x, z] + [y, z], [x, y + z] = [x, y] + [x, z].
(2) [λx, y] = [x, λy] = λ[x, y].
(3) [x, x] = 0.
(4) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

As a basic example, consider a usual, associative algebra A. We can define then the
Lie bracket on it as being the usual commutator, namely:

[x, y] = xy − yx

The above axioms (1,2,3) are then clearly satisfied, and in what regards axiom (4),
called Jacobi identity, this is satisfied too, the verification being as follows:

[[x, y], z] + [[y, z], x] + [[z, x], y]

= [xy − yx, z] + [yz − zy, x] + [zx− xz, y]

= xyz − yxz − zxy + zyx+ yzx− zyx− xyz + xzy + zxy − xzy − yzx+ yxz

= 0

We will see in a moment that up to a certain abstract operation g → Ug, called
enveloping Lie algebra construction, and which is something quite elementary, any Lie
algebra appears in this way, with its Lie bracket being formally given by:

[x, y] = xy − yx

Before that, however, you might wonder where that Gothic letter g in Definition 9.7
comes from. That comes from the following fundamental result, making the connection
with the theory of Lie groups from Definition 9.6, denoted as usual by G:

Theorem 9.8. Given a Lie group G, that is, a group which is a smooth manifold,
with the group operations being smooth, the tangent space at the identity

g = T1(G)

is a Lie algebra, with its Lie bracket being basically a usual commutator.

Proof. This is something non-trivial, the idea being as follows:

(1) Let us first have a look at the orthogonal and unitary groups ON , NN . These
are both Lie groups, and the corresponding Lie algebras oN , uN can be computed by
differentiating the equations defining ON , UN , with the conclusion being as follows:

oN =
{
A ∈MN(R)

∣∣∣At = −A
}

uN =
{
B ∈MN(C)

∣∣∣B∗ = −B
}
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This was for the correspondences ON → oN and UN → uN . In the other sense, the
correspondences oN → ON and uN → UN appear by exponentiation, the result here
stating that, around 1, the orthogonal matrices can be written as U = eA, with A ∈ oN ,
and the unitary matrices can be written as U = eB, with B ∈ uN .

(2) Getting now to the Lie bracket, the first observation is that both oN , uN are stable
under the usual commutator of the N×N matrices. Indeed, assuming that A,B ∈MN(R)
satisfy At = −A, Bt = −B, their commutator satisfies [A,B] ∈MN(R), and:

[A,B]t = (AB −BA)t

= BtAt − AtBt

= BA− AB

= −[A,B]

Similarly, assuming that A,B ∈MN(C) satisfy A∗ = −A, B∗ = −B, their commutator
[A,B] ∈MN(C) satisfies the condition [A,B]∗ = −[A,B].

(3) We conclude from this discussion that both the tangent spaces oN , uN are Lie
algebras, with the Lie bracket being the usual commutator of the N × N matrices. It
remains now to understand how the Lie bracket [A,B] = AB−BA is related to the group
commutator [U, V ] = UV U−1V −1 via the exponentiation map U = eA, and this can be
indeed done, by making use of the differential geometry of ON , UN , and the situation is
quite similar when dealing with an arbitrary Lie group G.

(4) All this is very standard, but quite non-trivial, and we will be back to it, with
details, later in this book, when systematically discussing Lie theory. □

With this understood, let us go back to the arbitrary Lie algebras, as axiomatized in
Definition 9.7. There is an obvious analogy there with the axioms for the usual, associative
algebras, and based on this analogy, we can build some abstract algebra theory for the
Lie algebras. Let us record some basic results, along these lines:

Proposition 9.9. Let g be a Lie algebra. If we define its ideals as being the vector
spaces i ⊂ g satisfying the condition

x ∈ i, y ∈ g =⇒ [x, y] ∈ i

then the quotients g/i are Lie algebras. Also, given a morphism of Lie algebras f : g → h,
its kernel ker(f) ⊂ g is an ideal, and we have g/ ker(f) = Im(f).

Proof. All this is very standard, exactly as in the case of the associative algebras,
and we will leave the various verifications here as an instructive exercise. □

Getting now to the point, remember our claim from the discussion after Definition
9.7, stating that up to a certain abstract operation g → Ug, called enveloping Lie alge-
bra construction, any Lie algebra appears in fact from the “trivial” associative algebra
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construction, that is, with its Lie bracket being formally a usual commutator:

[x, y] = xy − yx

Time now to clarify this. The result here, making as well to the link with the various
Lie group considerations from Theorem 9.8 and its proof, is as follows:

Theorem 9.10. Given a Lie algebra g, define its enveloping Lie algebra Ug as being
the quotient of the tensor algebra of g, namely

T (g) =
∞⊕
k=0

g⊗k

by the following associative algebra ideal, with x, y ranging over the elements of g:

I =< x⊗ y − y ⊗ x− [x, y] >

Then Ug is an associative algebra, so it is a Lie algebra too, with bracket

[x, y] = xy − yx

and the standard embedding g ⊂ Ug is a Lie algebra embedding.

Proof. This is something which is quite self-explanatory, and in what regards the
examples, illustrations, and other things that can be said, for instance in relation with
the Lie groups, we will leave some further reading here as an instructive exercise. □

Importantly, the above enveloping Lie algebra construction makes the link with our
Hopf algebra considerations, from the present book, via the following result:

Theorem 9.11. Given a Lie algebra g, its enveloping Lie algebra Ug is a cocommu-
tative Hopf algebra, with comultiplication, counit and antipode given by

∆ : Ug → U(g⊕ g) = Ug⊗ Ug , x→ x+ x

ε : Ug → F , x→ 1

S : Ug → Ugopp = (Ug)opp , x→ −x

via various standard identifications, for the various associative algebras involved.

Proof. Again, this is something quite self-explanatory, and in what regards the ex-
amples, illustrations, and other things that can be said, for instance in relation with the
Lie groups, we will leave some further reading here as an instructive exercise. □

Many other things can be said, as a continuation of this.



154 9. LIE ALGEBRAS

9b.

9c.

9d.

9e. Exercises

Exercises:

Exercise 9.12.

Exercise 9.13.

Exercise 9.14.

Exercise 9.15.

Exercise 9.16.

Exercise 9.17.

Exercise 9.18.

Exercise 9.19.

Bonus exercise.



CHAPTER 10

10a.

10b.

10c.

10d.

10e. Exercises

Exercises:

Exercise 10.1.

Exercise 10.2.

Exercise 10.3.

Exercise 10.4.

Exercise 10.5.

Exercise 10.6.

Exercise 10.7.

Exercise 10.8.

Bonus exercise.

155





CHAPTER 11

11a.

11b.

11c.

11d.

11e. Exercises

Exercises:

Exercise 11.1.

Exercise 11.2.

Exercise 11.3.

Exercise 11.4.

Exercise 11.5.

Exercise 11.6.

Exercise 11.7.

Exercise 11.8.

Bonus exercise.

157





CHAPTER 12

12a.

12b.

12c.

12d.

12e. Exercises

Exercises:

Exercise 12.1.

Exercise 12.2.

Exercise 12.3.

Exercise 12.4.

Exercise 12.5.

Exercise 12.6.

Exercise 12.7.

Exercise 12.8.

Bonus exercise.

159





Part IV

Analytic aspects



Your smile is like a breath of spring
Your voice is soft like summer rain
And I cannot compete with you

Jolene



CHAPTER 13

Haar integration

13a. Spherical integrals

In a purely mathematical context, the simplest way of recovering the normal laws is
by looking at the coordinates over the real spheres SN−1

R , in the N → ∞ limit. To start
with, at N = 2 the sphere is the unit circle T, and with z = eit the coordinates are
cos t, sin t. Let us first integrate powers of these coordinates. We have here:

Proposition 13.1. We have the following formulae,∫ π/2

0

cosk t dt =

∫ π/2

0

sink t dt =
(π
2

)ε(k) k!!

(k + 1)!!

where ε(k) = 1 if k is even, and ε(k) = 0 if k is odd.

Proof. Let us call Ik the integral on the left in the statement. In order to compute
it, we use partial integration. We have the following formula:

(cosk t sin t)′ = k cosk−1 t(− sin t) sin t+ cosk t cos t

= (k + 1) cosk+1 t− k cosk−1 t

By integrating between 0 and π/2, we obtain the following formula:

(k + 1)Ik+1 = kIk−1

Thus we can compute Ik by recurrence, and we obtain in this way:

Ik =
k − 1

k
Ik−2

=
k − 1

k
· k − 3

k − 2
Ik−4

=
k − 1

k
· k − 3

k − 2
· k − 5

k − 4
Ik−6

...

=
k!!

(k + 1)!!
I1−ε(k)

The initial data being I0 = π/2 and I1 = 1, we obtain the result. As for the second
formula, this follows from the first one, with the change of variables t = π/2− s. □

163
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More generally now, we have the following result:

Theorem 13.2. We have the following formula,∫ π/2

0

cosr t sins t dt =
(π
2

)ε(r)ε(s) r!!s!!

(r + s+ 1)!!

where ε(r) = 1 if r is even, and ε(r) = 0 if r is odd.

Proof. Let us call Irs the integral in the statement. In order to do the partial
integration, observe that we have the following formula:

(cosr t sins t)′ = r cosr−1 t(− sin t) sins t+ cosr t · s sins−1 t cos t

= −r cosr−1 t sins+1 t+ s cosr+1 t sins−1 t

By integrating between 0 and π/2, we obtain, for r, s > 0:

rIr−1,s+1 = sIr+1,s−1

Thus, we can compute Irs by recurrence. When s is even we have:

Irs =
s− 1

r + 1
Ir+2,s−2

=
s− 1

r + 1
· s− 3

r + 3
Ir+4,s−4

=
s− 1

r + 1
· s− 3

r + 3
· s− 5

r + 5
Ir+6,s−6

...

=
r!!s!!

(r + s)!!
Ir+s

But the last term comes from Proposition 13.1, and we obtain the result:

Irs =
r!!s!!

(r + s)!!
Ir+s

=
r!!s!!

(r + s)!!

(π
2

)ε(r+s) (r + s)!!

(r + s+ 1)!!

=
(π
2

)ε(r)ε(s) r!!s!!

(r + s+ 1)!!

Observe that this gives the result for r even as well, by symmetry. In the remaining
case now, where both the exponents r, s are odd, we can use once again the formula
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rIr−1,s+1 = sIr+1,s−1 found above, and the recurrence goes as follows:

Irs =
s− 1

r + 1
Ir+2,s−2

=
s− 1

r + 1
· s− 3

r + 3
Ir+4,s−4

=
s− 1

r + 1
· s− 3

r + 3
· s− 5

r + 5
Ir+6,s−6

...

=
r!!s!!

(r + s− 1)!!
Ir+s−1,1

In order to compute the last term, observe that we have:

Ir1 =

∫ π/2

0

cosr t sin t dt

= − 1

r + 1

∫ π/2

0

(cosr+1 t)′ dt

=
1

r + 1

Thus, we obtain the formula in the statement, the exponent of π/2 appearing there
being ε(r)ε(s) = 0 · 0 = 0 in the present case, and this finishes the proof. □

In order to deal now with the higher spheres, we will use spherical coordinates:

Theorem 13.3. We have spherical coordinates in N dimensions,

x1 = r cos t1
x2 = r sin t1 cos t2
...

xN−1 = r sin t1 sin t2 . . . sin tN−2 cos tN−1

xN = r sin t1 sin t2 . . . sin tN−2 sin tN−1

the corresponding Jacobian being given by the following formula:

J(r, t) = rN−1 sinN−2 t1 sin
N−3 t2 . . . sin

2 tN−3 sin tN−2



166 13. HAAR INTEGRATION

Proof. The fact that we have indeed spherical coordinates is clear. Regarding now
the Jacobian, by developing over the last column, we have:

JN = r sin t1 . . . sin tN−2 sin tN−1 × sin tN−1JN−1

+ r sin t1 . . . sin tN−2 cos tN−1 × cos tN−1JN−1

= r sin t1 . . . sin tN−2(sin
2 tN−1 + cos2 tN−1)JN−1

= r sin t1 . . . sin tN−2JN−1

Thus, we obtain the formula in the statement, by recurrence. □

As a first application, we can compute the volume of the sphere:

Theorem 13.4. The volume of the unit sphere in RN is given by

V

2N
=
(π
2

)[N/2] 1

(N + 1)!!

with our usual convention m!! = (m− 1)(m− 3)(m− 5) . . . for double factorials.

Proof. If we denote by Q the positive part of the sphere, obtained by cutting the
sphere in 2N parts, we have, by using Theorems 13.2 and 13.3 and Fubini:

V

2N
=

∫ 1

0

∫ π/2

0

. . .

∫ π/2

0

rN−1 sinN−2 t1 . . . sin tN−2 drdt1 . . . dtN−1

=

∫ 1

0

rN−1 dr

∫ π/2

0

sinN−2 t1 dt1 . . .

∫ π/2

0

sin tN−2dtN−2

∫ π/2

0

1dtN−1

=
1

N
×
(π
2

)[N/2]

× (N − 2)!!

(N − 1)!!
· (N − 3)!!

(N − 2)!!
. . .

2!!

3!!
· 1!!
2!!

· 1

=
(π
2

)[N/2] 1

(N + 1)!!

Here we have used the following formula for computing the exponent of π/2, where
ε(r) = 1 if r is even and ε(r) = 0 if r is odd, as in Theorem 13.2:

ε(0) + ε(1) + ε(2) + . . .+ ε(N − 2) = 1 + 0 + 1 + 0 + . . .+ ε(N − 2)

=

[
N − 2

2

]
+ 1

=

[
N

2

]
Thus, we are led to the conclusion in the statement. □

Let us discuss now the computation of the arbitrary polynomial integrals, over the
spheres of arbitrary dimension. The result here is as follows:



13A. SPHERICAL INTEGRALS 167

Theorem 13.5. The spherical integral of xi1 . . . xir vanishes, unless each index a ∈
{1, . . . , N} appears an even number of times in the sequence i1, . . . , ir. We have

∫
SN−1
R

xi1 . . . xir dx =
(N − 1)!!k1!! . . . kN !!

(N + Σki − 1)!!

with ka being this number of occurrences.

Proof. In what concerns the first assertion, regarding vanishing when some multi-
plicity ka is odd, this follows via the change of variables xa → −xa. Regarding now the
formula in the statement, assume that we are in the case ka ∈ 2N, for any a ∈ {1, . . . , N}.
The integral in the statement can be written in spherical coordinates, as follows:

I =
2N

V

∫ π/2

0

. . .

∫ π/2

0

xk11 . . . xkNN J dt1 . . . dtN−1

In this formula V is the volume of the sphere, J is the Jacobian, and the 2N factor
comes from the restriction to the 1/2N part of the sphere where all the coordinates are
positive. According to the formula in Theorem 13.4, the normalization constant is:

2N

V
=

(
2

π

)[N/2]

(N + 1)!!

As for the unnormalized integral, this is given by:

I ′ =

∫ π/2

0

. . .

∫ π/2

0

(cos t1)
k1(sin t1 cos t2)

k2

...

(sin t1 sin t2 . . . sin tN−2 cos tN−1)
kN−1

(sin t1 sin t2 . . . sin tN−2 sin tN−1)
kN

sinN−2 t1 sin
N−3 t2 . . . sin

2 tN−3 sin tN−2

dt1 . . . dtN−1
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By rearranging the terms, we obtain:

I ′ =

∫ π/2

0

cosk1 t1 sin
k2+...+kN+N−2 t1 dt1∫ π/2

0

cosk2 t2 sin
k3+...+kN+N−3 t2 dt2

...∫ π/2

0

coskN−2 tN−2 sin
kN−1+kN+1 tN−2 dtN−2∫ π/2

0

coskN−1 tN−1 sin
kN tN−1 dtN−1

Now by using the formula in Theorem 13.2, this gives:

I ′ =
k1!!(k2 + . . .+ kN +N − 2)!!

(k1 + . . .+ kN +N − 1)!!

(π
2

)ε(N−2)

k2!!(k3 + . . .+ kN +N − 3)!!

(k2 + . . .+ kN +N − 2)!!

(π
2

)ε(N−3)

...
kN−2!!(kN−1 + kN + 1)!!

(kN−2 + kN−1 + kN + 2)!!

(π
2

)ε(1)
kN−1!!kN !!

(kN−1 + kN + 1)!!

(π
2

)ε(0)
Now observe that the various double factorials multiply up to quantity in the state-

ment, modulo a (N − 1)!! factor, and that the π/2 factors multiply up to:

F =
(π
2

)[N/2]

Thus by multiplying by the normalization constant, we obtain the result. □

We can now recover the normal laws, geometrically, as follows:

Theorem 13.6. The moments of the hyperspherical variables are∫
SN−1
R

xpi dx =
(N − 1)!!p!!

(N + p− 1)!!

and the rescaled variables yi =
√
Nxi become normal and independent with N → ∞.
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Proof. The moment formula in the statement follows from Theorem 13.5. As a
consequence, with N → ∞ we have the following estimate:∫

SN−1
R

xpi dx ≃ N−p/2 × p!! = N−p/2Mp(g1)

Thus, the rescaled variables
√
Nxi become normal with N → ∞, as claimed. As for

the proof of the asymptotic independence, this is standard too, once again by using the
formula in Theorem 13.5. Indeed, the joint moments of x1, . . . , xN are given by:∫

SN−1
R

xk11 . . . xkNN dx =
(N − 1)!!k1!! . . . kN !!

(N + Σki − 1)!!
≃ N−Σki × k1!! . . . kN !!

By rescaling, the joint moments of the variables yi =
√
Nxi are given by:∫

SN−1
R

yk11 . . . ykNN dx ≃ k1!! . . . kN !!

Thus, we have multiplicativity, and so independence with N → ∞, as claimed. □

As a last result about the normal laws, we can recover these as well in connection with
rotation groups. Indeed, we have the following reformulation of Theorem 13.6:

Theorem 13.7. We have the integration formula∫
ON

Up
ij dU =

(N − 1)!!p!!

(N + p− 1)!!

and the rescaled variables Vij =
√
NUij become normal and independent with N → ∞.

Proof. We use the basic fact that the rotations U ∈ ON act on the points of the real
sphere z ∈ SN−1

R , with the stabilizer of z = (1, 0, . . . , 0) being the subgroup ON−1 ⊂ ON .
In algebraic terms, this gives an identification as follows:

SN−1
R = ON/ON−1

In functional analytic terms, this result provides us with an embedding as follows, for
any i, which makes correspond the respective integration functionals:

C(SN−1
R ) ⊂ C(ON) , xi → U1i

With this identification made, the result follows from Theorem 13.6. □

13b. Complex variables

We have seen so far a number of interesting results regarding the normal laws, and
their geometric interpretation. As a next topic for this chapter, let us discuss now the
complex analogues of all this. To start with, we have the following definition:
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Definition 13.8. The complex Gaussian law of parameter t > 0 is

Gt = law

(
1√
2
(a+ ib)

)
where a, b are independent, each following the law gt.

As in the real case, these measures form convolution semigroups:

Theorem 13.9. The complex Gaussian laws have the property

Gs ∗Gt = Gs+t

for any s, t > 0, and so they form a convolution semigroup.

Proof. This follows indeed from the real result, namely gs ∗ gt = gs+t, established
before, simply by taking real and imaginary parts. □

We have as well the following complex analogue of the CLT:

Theorem 13.10 (CCLT). Given complex variables f1, f2, f3, . . . ∈ L∞(X) which are
i.i.d., centered, and with common variance t > 0, we have

1√
n

n∑
i=1

fi ∼ Gt

with n→ ∞, in moments.

Proof. This follows indeed from the real CLT, established before, simply by taking
the real and imaginary parts of all variables involved. □

Regarding now the moments, the situation is more complicated than in the real case,
because in order to have good results, we have to deal with both the complex variables,
and their conjugates. Let us formulate the following definition:

Definition 13.11. The moments a complex variable f ∈ L∞(X) are the numbers

Mk = E(fk)

depending on colored integers k = ◦ • • ◦ . . . , with the conventions

f ∅ = 1 , f ◦ = f , f • = f̄

and multiplicativity, in order to define the colored powers fk.

Observe that, since f, f̄ commute, we can permute terms, and restrict the attention
to exponents of type k = . . . ◦ ◦ ◦ • • • • . . . , if we want to. However, our result about
the complex Gaussian laws, and other complex laws, later on, will actually look better
without doing is, and so we will use Definition 13.11 as stated. We first have:



13B. COMPLEX VARIABLES 171

Theorem 13.12. The moments of the complex normal law are given by

Mk(Gt) =

{
tpp! (k uniform, of length 2p)

0 (k not uniform)

where k = ◦ • • ◦ . . . is called uniform when it contains the same number of ◦ and •.

Proof. We must compute the moments, with respect to colored integer exponents
k = ◦ • • ◦ . . . , of the variable from Definition 13.8, namely:

f =
1√
2
(a+ ib)

We can assume that we are in the case t = 1, and the proof here goes as follows:

(1) As a first observation, in the case where our exponent k = ◦••◦ . . . is not uniform,
a standard rotation argument shows that the corresponding moment of f vanishes. To
be more precise, the variable f ′ = wf is complex Gaussian too, for any complex number
w ∈ T, and from Mk(f) =Mk(f

′) we obtain Mk(f) = 0, in this case.

(2) In the uniform case now, where the exponent k = ◦ • • ◦ . . . consists of p copies of
◦ and p copies of • , the corresponding moment can be computed as follows:

Mk =

∫
(ff̄)p

=
1

2p

∫
(a2 + b2)p

=
1

2p

∑
r

(
p

r

)∫
a2r
∫
b2p−2r

=
1

2p

∑
r

(
p

r

)
(2r)!!(2p− 2r)!!

=
1

2p

∑
r

p!

r!(p− r)!
· (2r)!
2rr!

· (2p− 2r)!

2p−r(p− r)!

=
p!

4p

∑
r

(
2r

r

)(
2p− 2r

p− r

)
(3) In order to finish now the computation, let us recall that we have the following

formula, coming from the generalized binomial formula, or from the Taylor formula:

1√
1 + t

=
∞∑
q=0

(
2q

q

)(
−t
4

)q
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By taking the square of this series, we obtain the following formula:

1

1 + t
=

∑
qr

(
2q

q

)(
2r

r

)(
−t
4

)q+r

=
∑
p

(
−t
4

)p∑
r

(
2r

r

)(
2p− 2r

p− r

)
Now by looking at the coefficient of tp on both sides, we conclude that the sum on the

right equals 4p. Thus, we can finish the moment computation in (2), as follows:

Mk =
p!

4p
× 4p = p!

We are therefore led to the conclusion in the statement. □

Given a colored integer k = ◦ • • ◦ . . . , we say that a pairing π ∈ P2(k) is matching
when it pairs ◦ − • symbols. With this convention, we have the following result:

Theorem 13.13. The moments of the complex normal law are the numbers

Mk(Gt) =
∑

π∈P2(k)

t|π|

where P2(k) are the matching pairings of {1, . . . , k}, and |.| is the number of blocks.

Proof. This is a reformulation of Theorem 13.12. Indeed, we can assume that we
are in the case t = 1, and here we know from Theorem 13.12 that the moments are:

Mk =

{
(|k|/2)! (k uniform)

0 (k not uniform)

On the other hand, the numbers |P2(k)| are given by exactly the same formula. Indeed,
in order to have a matching pairing of k, our exponent k = ◦ • • ◦ . . . must be uniform,
consisting of p copies of ◦ and p copies of •, with p = |k|/2. But then the matching
pairings of k correspond to the permutations of the • symbols, as to be matched with
◦ symbols, and so we have p! such pairings. Thus, we have the same formula as for the
moments of f , and we are led to the conclusion in the statement. □

In practice, we also need to know how to compute joint moments of independent
normal variables. We have here the following result, to be heavily used later on:

Theorem 13.14 (Wick formula). Given independent variables fi, each following the
complex normal law Gt, with t > 0 being a fixed parameter, we have the formula

E
(
fk1
i1
. . . fks

is

)
= ts/2#

{
π ∈ P2(k)

∣∣∣π ≤ ker i
}

where k = k1 . . . ks and i = i1 . . . is, for the joint moments of these variables, where
π ≤ ker i means that the indices of i must fit into the blocks of π, in the obvious way.
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Proof. This is something well-known, which can be proved as follows:

(1) Let us first discuss the case where we have a single variable f , which amounts in
taking fi = f for any i in the formula in the statement. What we have to compute here
are the moments of f , with respect to colored integer exponents k = ◦ • • ◦ . . . , and the
formula in the statement tells us that these moments must be:

E(fk) = t|k|/2|P2(k)|
But this is the formula in Theorem 13.13, so we are done with this case.

(2) In general now, when expanding the product fk1
i1
. . . fks

is
and rearranging the terms,

we are left with doing a number of computations as in (1), and then making the product
of the expectations that we found. But this amounts in counting the partitions in the
statement, with the condition π ≤ ker i there standing for the fact that we are doing the
various type (1) computations independently, and then making the product. □

Getting back now to geometric aspects, we first have the following result:

Theorem 13.15. We have the following integration formula over the complex sphere
SN−1
C ⊂ CN , with respect to the normalized uniform measure,∫

SN−1
C

|z1|2k1 . . . |zN |2kN dz =
(N − 1)!k1! . . . kn!

(N +
∑
ki − 1)!

valid for any exponents ki ∈ N. As for the other polynomial integrals in z1, . . . , zN and
their conjugates z̄1, . . . , z̄N , these all vanish.

Proof. Consider an arbitrary polynomial integral over SN−1
C , written as follows:

I =

∫
SN−1
C

zi1 z̄i2 . . . zi2k−1
z̄i2k dz

By using transformations of type p → λp with |λ| = 1, we see that this integral I
vanishes, unless each za appears as many times as z̄a does, and this gives the last assertion.
So, assume now that we are in the non-vanishing case. Then the ka copies of za and the
ka copies of z̄a produce by multiplication a factor |za|2ka , so we have:

I =

∫
SN−1
C

|z1|2k1 . . . |zN |2kN dz

Now by using the standard identification SN−1
C ≃ S2N−1

R , we obtain:

I =

∫
S2N−1
R

(x21 + y21)
k1 . . . (x2N + y2N)

kN d(x, y)

=
∑

r1...rN

(
k1
r1

)
. . .

(
kN
rN

)∫
S2N−1
R

x2k1−2r1
1 y2r11 . . . x2kN−2rN

N y2rNN d(x, y)
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By using the formula in Theorem 13.5, we obtain:

I =
∑

r1...rN

(
k1
r1

)
. . .

(
kN
rN

)
(2N − 1)!!(2r1)!! . . . (2rN)!!(2k1 − 2r1)!! . . . (2kN − 2rN)!!

(2N + 2
∑
ki − 1)!!

=
∑

r1...rN

(
k1
r1

)
. . .

(
kN
rN

)
2N−1(N − 1)!

∏
(2ri)!/(2

riri!)
∏
(2ki − 2ri)!/(2

ki−ri(ki − ri)!)

2N+
∑

ki−1(N +
∑
ki − 1)!

=
∑

r1...rN

(
k1
r1

)
. . .

(
kN
rN

)
(N − 1)!(2r1)! . . . (2rN)!(2k1 − 2r1)! . . . (2kN − 2rN)!

4
∑

ki(N +
∑
ki − 1)!r1! . . . rN !(k1 − r1)! . . . (kN − rN)!

Now observe that can rewrite this quantity in the following way:

I =
∑

r1...rN

k1! . . . kN !(N − 1)!(2r1)! . . . (2rN)!(2k1 − 2r1)! . . . (2kN − 2rN)!

4
∑

ki(N +
∑
ki − 1)!(r1! . . . rN !(k1 − r1)! . . . (kN − rN)!)2

=
∑
r1

(
2r1
r1

)(
2k1 − 2r1
k1 − r1

)
. . .
∑
rN

(
2rN
rN

)(
2kN − 2rN
kN − rN

)
(N − 1)!k1! . . . kN !

4
∑

ki(N +
∑
ki − 1)!

= 4k1 × . . .× 4kN × (N − 1)!k1! . . . kN !

4
∑

ki(N +
∑
ki − 1)!

=
(N − 1)!k1! . . . kN !

(N +
∑
ki − 1)!

Thus, we obtain the formula in the statement. □

Regarding now the hyperspherical variables, we have here the following result:

Theorem 13.16. The rescalings
√
Nzi of the unit complex sphere coordinates

zi : S
N−1
C → C

as well as the rescalings
√
NUij of the unitary group coordinates

Uij : UN → C

become complex Gaussian and independent with N → ∞.

Proof. We have several assertions to be proved, the idea being as follows:

(1) According to the formula in Theorem 13.15, the polynomials integrals in zi, z̄i
vanish, unless the number of zi, z̄i is the same. In this latter case these terms can be
grouped together, by using ziz̄i = |zi|2, and the relevant integration formula is:∫

SN−1
C

|zi|2k dz =
(N − 1)!k!

(N + k − 1)!
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Now with N → ∞, we obtain from this the following estimate:∫
SN−1
C

|zi|2kdx ≃ N−k × k!

Thus, the rescaled variables
√
Nzi become normal with N → ∞, as claimed.

(2) As for the proof of the asymptotic independence, this is standard too, again by
using Theorem 13.15. Indeed, the joint moments of z1, . . . , zN are given by:∫

SN−1
R

|z1|2k1 . . . |zN |2kN dx =
(N − 1)!k1! . . . kn!

(N +
∑
ki − 1)!

≃ N−Σki × k1! . . . kN !

By rescaling, the joint moments of the variables yi =
√
Nzi are given by:∫

SN−1
R

|y1|2k1 . . . |yN |2kN dx ≃ k1! . . . kN !

Thus, we have multiplicativity, and so independence with N → ∞, as claimed.

(3) Regarding the last assertion, we can use the basic fact that the rotations U ∈ UN

act on the points of the sphere z ∈ SN−1
C , with the stabilizer of z = (1, 0, . . . , 0) being the

subgroup UN−1 ⊂ UN . In algebraic terms, this gives an identification as follows:

SN−1
C = UN/UN−1

In functional analytic terms, this result provides us with an embedding as follows, for
any i, which makes correspond the respective integration functionals:

C(SN−1
C ) ⊂ C(UN) , xi → U1i

With this identification made, the result follows from (1,2). □

13c. Poisson laws

Derangements. Poisson laws. Compound Poisson. Bessel laws.

13d. Asymptotic characters

As a last objective, for the remainder of this chapter, we would like to compute the
asymptotic laws of main characters χ = χv for the main examples of easy groups. And
here, given a closed subgroup G ⊂v UN , we know from Peter-Weyl that the moments of
the main character count the fixed points of the representations v⊗k.

On the other hand, assuming that our group G ⊂v UN is easy, coming from a category
of partitions D = (D(k, l)), the space formed by these fixed points is spanned by the
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following vectors, indexed by partitions π belonging to the set D(k) = D(0, k):

ξπ =
∑
i1...ik

δπ
(
i1 . . . ik

)
ei1 ⊗ . . .⊗ eik

Thus, we are left with investigating linear independence questions for the vectors ξπ,
and once these questions solved, to compute the moments of χ. In order to investigate
now linear independence questions for the vectors ξπ, we will use the Gram matrix of
these vectors. Let us begin with some standard definitions, as follows:

Definition 13.17. Let P (k) be the set of partitions of {1, . . . , k}, and let π, ν ∈ P (k).

(1) We write π ≤ ν if each block of π is contained in a block of ν.
(2) We let π ∨ ν ∈ P (k) be the partition obtained by superposing π, ν.

As an illustration here, at k = 2 we have P (2) = {||,⊓}, and the order is:

|| ≤ ⊓
At k = 3 we have P (3) = {|||,⊓|,⊓| , |⊓,⊓⊓}, and the order relation is as follows:

||| ≤ ⊓|,⊓| , |⊓ ≤ ⊓⊓
Observe also that we have π, ν ≤ π ∨ ν. In fact, π ∨ ν is the smallest partition with

this property, called supremum of π, ν. Now back to the easy groups, we have:

Proposition 13.18. The Gram matrix GkN(π, ν) =< ξπ, ξν > is given by

GkN(π, ν) = N |π∨ν|

where |.| is the number of blocks.

Proof. According to our formula of the vectors ξπ, we have:

< ξπ, ξν > =
∑
i1...ik

δπ(i1, . . . , ik)δν(i1, . . . , ik)

=
∑
i1...ik

δπ∨ν(i1, . . . , ik)

= N |π∨ν|

Thus, we have obtained the formula in the statement. □

Now recall from chapter 8 that we have the following result:

Theorem 13.19. The determinant of the Gram matrix GkN is given by

det(GkN) =
∏

π∈P (k)

N !

(N − |π|)!

and in particular, for N ≥ k, the vectors {ξπ|π ∈ P (k)} are linearly independent.

Proof. This is indeed something very standard, that we know from chapter 8. □
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Now back to the laws of characters, we can formulate:

Theorem 13.20. For an easy group G = (GN), coming from a category of partitions
D = (D(k, l)), the asymptotic moments of the main character are given by

lim
N→∞

∫
GN

χk = #D(k)

where D(k) = D(∅, k), with the limiting sequence on the left consisting of certain integers,
and being stationary at least starting from the k-th term.

Proof. This follows indeed from the Peter-Weyl theory, by using the linear indepen-
dence result for the vectors ξπ coming from Theorem 13.19. □

With these preliminaries in hand, we can now state and prove:

Theorem 13.21. In the N → ∞ limit, the laws of the main character for the main
easy groups, real and complex, and discrete and continuous, are as follows,

KN
// UN

HN

OO

// ON

OO

:

B1
// G1

b1

OO

// g1

OO

with these laws, namely the real and complex Gaussian and Bessel laws, being the main
limiting laws in real and complex, and discrete and continuous probability.

Proof. This follows from the above results. To be more precise, we know that the
above groups are all easy, the corresponding categories of partitions being as follows:

Peven

��

P2
oo

��
Peven P2

oo

Thus, we can use Theorem 13.20, are we are led into counting partitions, and then
recovering the measures via their moments, which can be done as follows:

(1) For ON the associated category of partitions is P2, so the asymptotic moments of
the main character are as follows, with the convention k!! = 0 when k is odd:

Mk = #P2(k) = k!!

Thus, we obtain the real Gaussian law, as desired.
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(2) For UN , this follows from some combinatorics. To be more precise, the asymptotic
moments of the main character, with respect to the colored integers, are as follows:

Mk = #P2(k)

Thus, we obtain this time the complex Gaussian law, as desired.

(3) For the discrete counterparts HN , KN of the rotation groups ON , UN the situation
is similar, and we obtain the real and complex Bessel laws. □

13e. Exercises

Exercises:

Exercise 13.22.

Exercise 13.23.

Exercise 13.24.

Exercise 13.25.

Exercise 13.26.

Exercise 13.27.

Exercise 13.28.

Exercise 13.29.

Bonus exercise.



CHAPTER 14

Weingarten calculus

14a. Weingarten formula

We have seen in the previous chapter that some conceptual probability theory, based
on the notion of easiness, and generalizing several ad-hoc computations from Parts I-II,
can be developed for the main examples of rotation and reflection groups, namely:

KN
// UN

HN

OO

// ON

OO

Our purpose here will be that of further building on this. Based on the notion of
easiness, we will develop an advanced integration theory for the easy groups. This theory,
known as “Weingarten calculus”, following [95], will allow us in particular to extend our
t = 1 character results to the general case, involving a parameter t ∈ (0, 1]. Let us start
with a general formula that we know from chapter 5, namely:

Theorem 14.1. The Haar integration over a closed subgroup G ⊂v UN is given on
the dense subalgebra of smooth functions by the Weingarten type formula∫

G

ge1i1j1 . . . g
ek
ikjk

dg =
∑

π,ν∈D(k)

δπ(i)δσ(j)Wk(π, ν)

valid for any colored integer k = e1 . . . ek and any multi-indices i, j, where D(k) is a linear
basis of Fix(v⊗k), the associated generalized Kronecker symbols are given by

δπ(i) =< π, ei1 ⊗ . . .⊗ eik >

and Wk = G−1
k is the inverse of the Gram matrix, Gk(π, ν) =< π, ν >.

Proof. This is something that we know from chapter 5, the idea being that the inte-
grals in the statement, with the multi-indices i, j varying, form altogether the orthogonal
projection onto the space Fix(v⊗k) = span(D(k)). But this projection can be computed
by doing some linear algebra, and this gives the formula in the statement. □

In the easy case, we have the following more concrete result:

179



180 14. WEINGARTEN CALCULUS

Theorem 14.2. For an easy group G ⊂ UN , coming from a category of partitions
D = (D(k, l)), we have the Weingarten formula∫

G

ge1i1j1 . . . g
ek
ikjk

dg =
∑

π,ν∈D(k)

δπ(i)δν(j)WkN(π, ν)

for any k = e1 . . . ek and any i, j, where D(k) = D(∅, k), δ are usual Kronecker type
symbols, checking whether the indices match, and WkN = G−1

kN , with

GkN(π, ν) = N |π∨ν|

where |.| is the number of blocks.

Proof. We use the abstract Weingarten formula, from Theorem 14.1. Indeed, the
Kronecker type symbols there are then the usual ones, as shown by:

δξπ(i) = < ξπ, ei1 ⊗ . . .⊗ eik >

=

〈∑
j

δπ(j1, . . . , jk)ej1 ⊗ . . .⊗ ejk , ei1 ⊗ . . .⊗ eik

〉
= δπ(i1, . . . , ik)

The Gram matrix being as well the correct one, we obtain the result. □

As a toy example for the Weingarten formula, let us first work out the case of the
symmetric group SN . Here there is no really need for the Weingarten formula, because
we have the following elementary result, which completely solves the problem:

Proposition 14.3. The integrals over SN ⊂ ON are given by∫
SN

gi1j1 . . . gikjk dg =

{
(N−| ker i|)!

N !
if ker i = ker j

0 otherwise

where |.| denotes as usual the number of blocks.

Proof. This is something that we know from chapter 13, but let us recall the proof.
Since the embedding SN ⊂ ON is given by gij = δσ(j)i, we have:∫

SN

gi1j1 . . . gikjk dg =
1

N !
#
{
g ∈ SN

∣∣∣g(j1) = i1, . . . , g(jk) = ik

}
In the case ker i ̸= ker j there is no g ∈ SN as above, and the integral vanishes. As

for the case left, namely ker i = ker j, here if we denote by b ∈ {1, . . . , k} the number of
blocks of this partition ker i = ker j, we have N − b points to be sent bijectively to N − b

points, and so (N − b)! solutions, and the integral is (N−b)!
N !

, as claimed. □

Getting back now to Weingarten matrices, the point is that Proposition 14.3 allows
their precise computation, and evaluation, the result being as follows:
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Theorem 14.4. For SN the Weingarten function is given by

WkN(π, ν) =
∑

τ≤π∧ν

µ(τ, π)µ(τ, ν)
(N − |τ |)!

N !

and satisfies the folowing estimate,

WkN(π, ν) = N−|π∧ν|(µ(π ∧ ν, π)µ(π ∧ ν, ν) +O(N−1))

with µ being the Möbius function of P (k).

Proof. The first assertion follows from the Weingarten formula, namely:∫
SN

gi1j1 . . . gikjk dg =
∑

π,ν∈P (k)

δπ(i)δν(j)WkN(π, ν)

Indeed, in this formula the integrals on the left are known, from the explicit integration
formula over SN that we established in Proposition 14.3, namely:∫

SN

gi1j1 . . . gikjk dg =

{
(N−| ker i|)!

N !
if ker i = ker j

0 otherwise

But this allows the computation of the right term, via the Möbius inversion formula,
from chapter 13. As for the second assertion, this follows from the first one. □

The above result is of course something very special, coming from the fact that the
integration over SN is something very simple. For other groups, such as the orthogonal
group ON or the unitary group UN , we will see that things are far more complicated.

14b. Basic estimates

Let us discuss now the computation of the polynomial integrals over the orthogonal
group ON . These are best introduced in a rectangular way, as follows:

Definition 14.5. Associated to any matrix a ∈Mp×q(N) is the integral

I(a) =

∫
ON

p∏
i=1

q∏
j=1

v
aij
ij dv

with respect to the Haar measure of ON , where N ≥ p, q.

We can of course complete our matrix with 0 values, as to always deal with square
matrices, a ∈MN(N). However, the parameters p, q are very useful, because they measure
the complexity of the problem, as shown by our various results below. Let us set as usual
m!! = (m − 1)(m − 3)(m − 5) . . ., with the product ending at 1 or 2, depending on the
parity of m. With this convention, we have the following result:
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Proposition 14.6. At p = 1 we have the formula

I
(
a1 . . . aq

)
= ε · (N − 1)!!a1!! . . . aq!!

(N + Σai − 1)!!

where ε = 1 if all ai are even, and ε = 0 otherwise.

Proof. This follows from the fact, already used in chapter 13, that the first slice of
ON is isomorphic to the real sphere SN−1

R . Indeed, this gives the following formula:

I
(
a1 . . . aq

)
=

∫
SN−1
R

xa11 . . . xaqq dx

But this latter integral can be computed by using polar coordinates, as explained in
chapter 13, and we obtain the formula in the statement. □

Another simple computation, as well of trigonometric nature, is the one at N = 2.
We have here the following result, which completely solves the problem in this case:

Proposition 14.7. At N = 2 we have the formula

I

(
a b
c d

)
= ε · (a+ d)!!(b+ c)!!

(a+ b+ c+ d+ 1)!!

where ε = 1 if a, b, c, d are even, ε = −1 is a, b, c, d are odd, and ε = 0 if not.

Proof. When computing the integral over O2, we can restrict the integration to
SO2 = T, then further restrict the attention to the first quadrant. We obtain:

I

(
a b
c d

)
= ε · 2

π

∫ π/2

0

(cos t)a+d(sin t)b+c dt

But this gives the formula in the statement, via the formulae in chapter 13. □

The above computations tend to suggest that I(a) decomposes as a product of facto-
rials. This is far from being true, but in the 2× 2 case it is known that I(a) decomposes
as a quite reasonable sum of products of factorials. We will be back to this. In general
now, we can compute the integrals I(a) by using the Weingarten formula:

Theorem 14.8. We have the Weingarten formula∫
ON

vi1j1 . . . vi2kj2k dv =
∑

π,ν∈Dk

δπ(i)δν(j)WkN(π, ν)

where the objects on the right are as follows:

(1) Dk is the set of pairings of {1, . . . , 2k}.
(2) The delta symbols are 1 or 0, depending on whether indices fit or not.
(3) The Weingarten matrix is WkN = G−1

kN , where GkN(π, ν) = N |π∨ν|.

Proof. This is indeed the usual Weingarten formula, for G = ON . □
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As an example, the integrals of quantities of type vi1j1vi2j2vi3j3ui4j4 appear as sums of
coefficients of the Weingarten matrix W2N , which is given by:

W2N =

N2 N N
N N2 N
N N N2

−1

=
1

N(N − 1)(N + 2)

N + 1 −1 −1
−1 N + 1 −1
−1 −1 N + 1


More precisely, the various consequences at k = 2 can be summarized as follows:

Proposition 14.9. We have the following results:

(1) I(40
0
0) = 3/(N(N + 2)).

(2) I(20
2
0) = 1/(N(N + 2)).

(3) I(20
0
2) = (N + 1)/(N(N − 1)(N + 2)).

Proof. These results all follow from the Weingarten formula, by using the above
numeric values for the entries of W2N , the computations being as follows:

I

(
4 0
0 0

)
=

∫
v11v11v11v11 =

∑
πσ

W2N(π, σ) =
3(N + 1)− 6

N(N − 1)(N + 2)
=

3

N(N + 2)

I

(
2 2
0 0

)
=

∫
v11v11v12v12 =

∑
π

W2N(π,∩∩) =
(N + 1)− 2

N(N − 1)(N + 2)
=

1

N(N + 2)

I

(
2 0
0 2

)
=

∫
v11v11v22v22 = W2N(∩∩,∩∩) =

N + 1

N(N − 1)(N + 2)

Observe that the first two formulae follow in fact as well from Proposition 14.6. □

In terms of the integrals I(a), the Weingarten formula reformulates as follows:

Theorem 14.10. We have the Weingarten formula

I(a) =
∑
π,ν

δπ(al)δν(ar)WkN(π, ν)

where k = Σaij/2, and where the multi-indices al/ar are defined as follows:

(1) Start with a ∈Mp×q(N), and replace each ij-entry by aij copies of i/j.
(2) Read this matrix in the usual way, as to get the multi-indices al/ar.

Proof. This is simply a reformulation of the usual Weingarten formula. Indeed,
according to our definitions, the integral in the statement is given by:

I(a) =

∫
ON

v11 . . . v11︸ ︷︷ ︸
a11

v12 . . . v12︸ ︷︷ ︸
a12

. . . . . . vpq . . . vpq︸ ︷︷ ︸
apq

du
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Thus what we have here is an integral as in Theorem 14.8, the multi-indices being:

al = (1 . . . 1︸ ︷︷ ︸
a11

1 . . . 1︸ ︷︷ ︸
a12

. . . . . . p . . . p︸ ︷︷ ︸
apq

)

ar = (1 . . . 1︸ ︷︷ ︸
a11

2 . . . 2︸ ︷︷ ︸
a12

. . . . . . q . . . q︸ ︷︷ ︸
apq

)

With this observation, the result follows now from the Weingarten formula. □

We can now extend the various vanishing results appearing before, as follows:

Proposition 14.11. We have I(a) = 0, unless the matrix a is “admissible”, in the
sense that all p+ q sums on its rows and columns are even numbers.

Proof. Observe first that the left multi-index associated to a consists of k1 = Σa1j
copies of 1, k2 = Σa2j copies of 2, and so on, up to kp = Σapj copies of p. In the case
where one of these numbers is odd we have δπ(a) = 0 for any π, and so I(a) = 0. A
similar argument with the right multi-index associated to a shows that the sums on the
columns of a must be even as well, and we are done. □

A natural question now is whether the converse of Proposition 14.11 holds, and if
so, the question of computing the sign of I(a) appears as well. These are both subtle
questions, and we begin our investigations with a N → ∞ study. We have here:

Theorem 14.12. The Weingarten matrix is asymptotically diagonal, in the sense that:

WkN(π, ν) = N−k(δπν +O(N−1))

Moreover, the O(N−1) remainder is asymptotically smaller that (2k/e)kN−1.

Proof. It is convenient, for the purposes of this proof, to drop the indices k,N . We
know that the Gram matrix is given by G(π, ν) = N |π∨ν|, so we have:

G(π, ν) =

{
Nk for π = ν

N,N2, . . . , Nk−1 for π ̸= ν

Thus the Gram matrix is of the following form, with ||H||∞ ≤ N−1:

G = Nk(I +H)

Now recall that for any complex K × K matrix A, we have the following lineup of
standard inequalities, which all follow from definitions:

||A||∞ ≤ ||A|| ≤ ||A||2 ≤ K||A||∞
In the case of our matrix H, the size is this matrix is K = (2k)!!, so we have:

||H|| ≤ KN−1
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We can perform the inversion operation, by using the following formula:

(I +H)−1 = I −H +H2 −H3 + . . .

We obtain in this way the following estimate:

||I − (I +H)−1|| ≤ ||H||
1− ||H||

Thus, we have the following estimate:

||I −NkW ||∞ = ||I − (1 +H)−1||∞
≤ ||I − (1 +H)−1||

≤ ||H||
1− ||H||

≤ KN−1

1−KN−1

=
K

N −K

Together with the Stirling estimate K ≈ (2k/e)k, this gives the result. □

Regarding now the integrals themselves, we have here the following result:

Theorem 14.13. We have the estimate

I(a) = N−k

(
p∏

i=1

q∏
j=1

aij!! +O(N−1)

)

when all aij are even, and I(a) = O(N−k−1) otherwise.

Proof. By using the above results, we have the following estimate:

I(a) =
∑
π,ν

δπ(al)δν(ar)WkN(π, ν)

= N−k
∑
π,ν

δπ(al)δν(ar)(δπν +O(N−1))

= N−k
(
#{π|δπ(al) = δπ(ar) = 1}+O(N−1)

)
In order to count now the partitions appearing in the last set, let us go back to the

multi-indices al, ar, as described in Theorem 14.10. It is convenient to view both these
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multi-indices in a rectangular way, in the following way:

al =


1 . . . 1︸ ︷︷ ︸

a11

. . . 1 . . . 1︸ ︷︷ ︸
a1q

. . . . . . . . .
p . . . p︸ ︷︷ ︸

ap1

. . . p . . . p︸ ︷︷ ︸
apq

 , ar =


1 . . . 1︸ ︷︷ ︸

a11

. . . q . . . q︸ ︷︷ ︸
a1q

. . . . . . . . .
1 . . . 1︸ ︷︷ ︸

ap1

. . . p . . . p︸ ︷︷ ︸
apq


In other words, the multi-indices al/ar are simply obtained from the matrix a by

“dropping” from each entry aij a sequence of aij numbers, all equal to i/j. With this
picture, the pairings π which contribute are simply those connecting sequences of indices
“dropped” from the same aij, and this gives the following results, as desired:

(1) If one of the entries aij is odd, there is no pairing that can contribute to the leading
term under consideration, so we have I(a) = O(N−k−1), and we are done.

(2) If all the entries aij are even, the pairings that contribute to the leading term are
those connecting points inside the pq “dropped” sets, i.e. are made out of a pairing of
a11 points, a pairing of a12 points, and so on, up to a pairing of apq points. Now since an
x-point set has x!! pairings, this gives the formula in the statement. □

In order to further advance, let d(π, ν) = k−|π∨ ν|. It is well-known, and elementary
to check, that this is a distance function on Dk. With this convention, we have:

Theorem 14.14. The Weingarten function WkN has a series expansion of the form

WkN(π, ν) = N−k−d(π,ν)

∞∑
g=0

Kg(π, ν)N
−g

where the objects on the right are defined as follows:

(1) A path from π to ν is a sequence p = [π = τ0 ̸= τ1 ̸= . . . ̸= τr = ν].
(2) The signature of such a path is + when r is even, and − when r is odd.
(3) The geodesicity defect of such a path is g(p) = Σr

i=1d(τi−1, τi)− d(π, ν).
(4) Kg counts the signed paths from π to ν, with geodesicity defect g.

Proof. Let us go back to the proof of our main estimate so far. We can write:

Gkn = N−k(I +H)

In terms of the Brauer space distance, the formula of the matrix H is simply:

H(π, ν) =

{
0 for π = σ

N−d(π,ν) for π ̸= ν
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Consider now the set Pr(π, ν) of r-paths between π and ν. According to the usual
rule of matrix multiplication, the powers of H are given by:

Hr(π, ν) =
∑

p∈Pr(π,ν)

H(τ0, τ1) . . . H(τr−1, τr)

=
∑

p∈Pr(π,ν)

N−d(π,ν)−g(p)

We can use now (1 +H)−1 = 1−H +H2 −H3 + . . . , and we obtain:

WkN(π, ν) = N−k

∞∑
r=0

(−1)rHr(π, ν)

= N−k−d(π,ν)

∞∑
r=0

∑
p∈Pr(π,ν)

(−1)rN−g(p)

Now by rearranging the various terms of the double sum according to the value of
their geodesicity defect g = g(p), this gives the formula in the statement. □

In order to discuss now the I(a) reformulation of the above result, it is convenient to
use the total length of a path, defined as follows:

d(p) =
r∑

i=1

d(τi−1, τi)

Observe that we have d(p) = d(π, σ) + g(p). With these conventions, we have:

Theorem 14.15. The integral I(a) has a series expansion in N−1 of the form

I(a) = N−k

∞∑
d=0

Hd(a)N
−d

where the coefficient on the right can be interpreted as follows:

(1) Starting from a ∈Mp×q(N), construct the multi-indices al, ar as usual.
(2) Call a path “a-admissible” if its endpoints satisfy δπ(al) = 1 and δσ(ar) = 1.
(3) Then Hd(a) counts all a-admissible signed paths in Dk, of total length d.

Proof. By combining the above results, we obtain, with our various notations:

I(a) =
∑
π,ν

δπ(al)δν(ar)WkN(π, ν)

= N−k
∑
π,ν

δπ(al)δν(ar)
∞∑
g=0

Kg(π, ν)N
−d(π,ν)−g
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Now let Hd(π, ν) be the number of signed paths between π and ν, of total length d.
In terms of the new variable d = d(π, ν) + g, the above expression becomes:

I(a) = N−k
∑
π,ν

δπ(al)δν(ar)
∞∑
d=0

Hd(π, ν)N
−d

= N−k

∞∑
d=0

(∑
π,ν

δπ(al)δν(ar)Hd(π, ν)

)
N−d

We recognize in the middle the quantity Hd(a), and this gives the result. □

Let us derive now some concrete consequences from the abstract results established
above. First, we have the following result, due to Collins and Śniady [16]:

Theorem 14.16. We have the estimate

WkN(π, ν) = N−k−d(π,ν)(µ(π, ν) +O(N−1))

where µ is the Möbius function.

Proof. We know from the above that we have the following estimate:

WkN(π, ν) = N−k−d(π,ν)(K0(π, ν) +O(N−1))

Now since one of the possible definitions of the Möbius function µ is that this counts
the signed geodesic paths, we have K0 = µ, and we are done. □

Let us go back now to our integrals I(a). We have here the following result:

Theorem 14.17. We have the estimate

I(a) = N−k−e(a)(µ(a) +O(N−1))

where the objects on the right are as follows:

(1) e(a) = min{d(π, ν)|π, ν ∈ Dk, δπ(al) = δν(ar) = 1}.
(2) µ(a) counts all a-admissible signed paths in Dk, of total length e(a).

Proof. We know that we have an estimate of the following type:

I(a) = N−k−e(He(a) +O(N−1))

Here, according to the various notations above, e ∈ N is the smallest total length of
an a-admissible path, and He(a) counts all signed a-admissible paths of total length e.
Now since the smallest total length of such a path is attained when the path is just a
segment, we have e = e(a) and He(a) = µ(a), and we are done. □

At a more advanced level, we have the following formula, due to Collins-Matsumoto
and Zinn-Justin, which uses the theory of zonal spherical functions:
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Theorem 14.18. We have the formula

WkN(π, ν) =

∑
λ⊢k, l(λ)≤k χ

2λ(1k)w
λ(π−1ν)

(2k)!!
∏

(i,j)∈λ(N + 2j − i− 1)

where the various objects on the right are as follows:

(1) The sum is over all partitions of {1, . . . , 2k} of length l(λ) ≤ k.
(2) wλ is the corresponding zonal spherical function of (S2k, Hk).
(3) χ2λ is the character of S2k associated to 2λ = (2λ1, 2λ2, . . .).
(4) The product is over all squares of the Young diagram of λ.

Proof. This is something advanced, that we will not attempt to explain here, but
that we included however for completeness. For details on all this, we refer to the above-
mentioned papers of Collins-Matsumoto and Zinn-Justin. □

In relation with the integrals I(a), let us just record the following consequence:

Proposition 14.19. The possible poles of I(a) can be at the numbers

−(k − 1),−(k − 2), . . . , 2k − 1, 2k

where k ∈ N associated to the admissible matrix a ∈Mp×q(N) is given by k = Σaij/2.

Proof. We know from Theorem 14.10 that the possible poles of I(a) can only come
from those of the Weingarten function. On the other hand, Theorem 4.18 tells us that
these latter poles are located at the numbers of the form −2j + i+ 1, with (i, j) ranging
over all possible squares of all possible Young diagrams, and this gives the result. □

We will be back to integration over ON , with a number of more specialized results,
which are complementary to the above ones, at the end of the present chapter.

14c. Truncated characters

Let us go back now to the general easy groups G ⊂ UN , with the idea in mind of
computing the laws of truncated characters. First, we have the following formula:

Proposition 14.20. The moments of truncated characters are given by the formula∫
G

(g11 + . . .+ gss)
kdg = Tr(WkNGks)

where GkN and WkN = G−1
kN are the associated Gram and Weingarten matrices.
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Proof. We have indeed the following computation:∫
G

(g11 + . . .+ gss)
kdg =

s∑
i1=1

. . .

s∑
ik=1

∫
G

gi1i1 . . . gikik dg

=
∑

π,ν∈D(k)

WkN(π, ν)
s∑

i1=1

. . .

s∑
ik=1

δπ(i)δν(i)

=
∑

π,ν∈D(k)

WkN(π, ν)Gks(ν, π)

= Tr(WkNGks)

Thus, we have reached to the formula in the statement. □

In order to process now the above formula, and reach to concrete results, we must
impose on our group a uniformity condition. Let us start with:

Proposition 14.21. For an easy group G = (GN), coming from a category of parti-
tions D ⊂ P , the following conditions are equivalent:

(1) GN−1 = GN ∩ UN−1, via the embedding UN−1 ⊂ UN given by u→ diag(u, 1).
(2) GN−1 = GN ∩ UN−1, via the N possible diagonal embeddings UN−1 ⊂ UN .
(3) D is stable under the operation which consists in removing blocks.

If these conditions are satisfied, we say that G = (GN) is uniform.

Proof. We use the general easiness theory from chapter 7, as follows:

(1) ⇐⇒ (2) This is standard, coming from the inclusion SN ⊂ GN , which makes
everything SN -invariant. The result follows as well from the proof of (1) ⇐⇒ (3) below,
which can be converted into a proof of (2) ⇐⇒ (3), in the obvious way.

(1) ⇐⇒ (3) Given a subgroup K ⊂ UN−1, with fundamental representation v,
consider the matrix u = diag(v, 1). Our claim is that for any π ∈ P (k) we have:

ξπ ∈ Fix(u⊗k) ⇐⇒ ξπ′ ∈ Fix(u⊗k′), ∀π′ ∈ P (k′), π′ ⊂ π

In order to prove this claim, we must study the condition on the left. We have:

ξπ ∈ Fix(v⊗k) ⇐⇒ (u⊗kξπ)i1...ik = (ξπ)i1...ik , ∀i
⇐⇒

∑
j

(u⊗k)i1...ik,j1...jk(ξπ)j1...jk = (ξπ)i1...ik ,∀i

⇐⇒
∑
j

δπ(j1, . . . , jk)ui1j1 . . . uikjk = δπ(i1, . . . , ik),∀i

Now let us recall that our representation has the special form u = diag(v, 1). We
conclude from this that for any index a ∈ {1, . . . , k}, we have:

ia = N =⇒ ja = N
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With this observation in hand, if we denote by i′, j′ the multi-indices obtained from
i, j obtained by erasing all the above ia = ja = N values, and by k′ ≤ k the common
length of these new multi-indices, our condition becomes:∑

j′

δπ(j1, . . . , jk)(u
⊗k′)i′j′ = δπ(i1, . . . , ik), ∀i

Here the index j is by definition obtained from the index j′ by filling with N values.
In order to finish now, we have two cases, depending on i, as follows:

Case 1. Assume that the index set {a|ia = N} corresponds to a certain subpartition
π′ ⊂ π. In this case, the N values will not matter, and our formula becomes:∑

j′

δπ(j
′
1, . . . , j

′
k′)(u

⊗k′)i′j′ = δπ(i
′
1, . . . , i

′
k′)

Case 2. Assume now the opposite, namely that the set {a|ia = N} does not correspond
to a subpartition π′ ⊂ π. In this case the indices mix, and our formula reads 0 = 0.

Thus we have ξπ′ ∈ Fix(u⊗k′), for any subpartition π′ ⊂ π, as desired. □

Now back to the laws of truncated characters, we have the following result:

Theorem 14.22. For a uniform easy group G = (GN), we have the formula

lim
N→∞

∫
GN

χk
t =

∑
π∈D(k)

t|π|

with D ⊂ P being the associated category of partitions.

Proof. We use Proposition 14.20. With s = [tN ], the formula there becomes:∫
GN

χk
t = Tr(WkNGk[tN ])

The point now is that in the uniform case the Gram matrix, and so the Weingarten
matrix too, is asymptotically diagonal. Thus, we obtain the following estimate:∫

GN

χk
t ≃

∑
π∈D(k)

WkN(π, π)Gk[tN ](π, π)

=
∑

π∈D(k)

N−|π|[tN ]|π|

≃
∑

π∈D(k)

N−|π|(tN)|π|

=
∑

π∈D(k)

t|π|

Thus, we are led to the formula in the statement. □
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We can now enlarge our collection of truncated character results, and we have:

Theorem 14.23. With N → ∞, the laws of truncated characters are as follows:

(1) For ON we obtain the Gaussian law gt.
(2) For UN we obtain the complex Gaussian law Gt.
(3) For SN we obtain the Poisson law pt.
(4) For HN we obtain the Bessel law bt.
(5) For Hs

N we obtain the generalized Bessel law bst .
(6) For KN we obtain the complex Bessel law Bt.

Proof. We use the general formula for the asymptotic moments of the truncated
characters found in Theorem 14.22, namely:

lim
N→∞

∫
GN

χk
t =

∑
π∈D(k)

t|π|

By doing now some standard moment combinatorics, which was actually already done
in the above, in all cases under consideration, at t = 1, and was done too in the general
situation t > 0, in most of the cases under consideration, this gives the results. □

As a main consequence of the above result, we have:

Theorem 14.24. In the N → ∞ limit, the laws of truncated characters for the main
easy groups, real and complex, and discrete and continuous, are as follows,

KN
// UN

HN

OO

// ON

OO

:

Bt
// Gt

bt

OO

// gt

OO

with these laws, namely the real and complex Gaussian and Bessel laws, being the main
limiting laws in real and complex, and discrete and continuous probability.

Proof. This is something that we already know from chapter 13 for usual characters,
t = 1, and which follows from Theorem 14.23 in the general case, t ∈ (0, 1]. □

There are many other things that can be said about the Weingarten matrices, as well
as many other applications of the Weingarten formula. We will be back to this.

14d. Rotation groups

Let us go back now to the group ON , with a number of more advanced results. The
interpretation of the Weingarten matrix that we will need is in terms of the 0-1-2 matrices
having sum 2 on each column, that we call “elementary”, as follows:
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Proposition 14.25. The Weingarten matrix entries are given by

WkN(π, ν) = I(a)

where a ∈Mk(N) is the elementary matrix obtained as follows:

(1) Label π1, . . . , πk the strings of π.
(2) Label ν1, . . . , νk the strings of ν.
(3) Set aij = #{r ∈ {1, . . . , 2k}|r ∈ πi, r ∈ νj}.

Proof. Consider the multi-indices i, j ∈ {1, . . . , k}2k given by ir ∈ πr and jr ∈ νr,
for any r ∈ {1, . . . , k}. We have δπ′(i) = δππ′ and δν′(j) = δνν′ for any pairings π′, ν ′, so if
we apply the Weingarten formula to the quantity vi1j1 . . . vi2kj2k , we obtain:∫

ON

vi1j1 . . . vi2kj2k dv =
∑
π′ν′

δπ′(i)δν′(j)WkN(π
′, ν ′)

=
∑
π′ν′

δππ′δνν′WkN(π
′, ν ′)

= WkN(π, ν)

The integral on the left can be written in the form I(a), for a certain matrix a. Our
choice of i, j shows that a is the elementary matrix in the statement, and we are done. □

As an illustration for the above result, consider the partitions π = ∩∩∩ and ν = ⋒∩.
We have i = (112233) and j = (122133), and we obtain:

W3N(π, ν) =

∫
ON

v11v12v22v21v33v33 dv

=

∫
ON

v11v12v22v21v
2
33 dv

= I

1 1 0
1 1 0
0 0 2


In general now, we would like to have a better understanding of the integrals I(a). It

is convenient to make the following normalization:

Definition 14.26. For a, b vectors with even entries we make the normalization

I

(
a
b

)
= IN−1

(
a
)
IN−1

(
b
)
J

(
a
b

)
where IN−1 is the integration, in the sense of Definition 14.5, over the group ON−1.

The new quantity J is just a normalization of the usual integral I. More precisely, by
using the formula in Proposition 14.6 we have the following alternative definition:
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Proposition 14.27. We have the following formula:

J

(
a
b

)
=

(Σai +N − 2)!!(Σbi +N − 2)!!

(N − 2)!!(N − 2)!!
∏
ai!!
∏
bi!!

I

(
a
b

)
Proof. This follows indeed from the one-row formula in Proposition 14.6. □

As a first, basic example, for any one-row vector a we have J(a0) = IN(a)/IN−1(a), and
according to Proposition 14.6, this gives the following formula:

J

(
a
0

)
=

(N − 1)!!

(N − 2)!!
· (Σai +N − 2)!!

(Σai +N − 1)!!

The advantage of using J instead of I comes from a number of invariance properties
at the general level, to be established later. For the moment, let us find some rules for
computing J . For k, x ∈ N we let kx = k . . . k (x times). We have:

Theorem 14.28. We have the “elementary expansion” formula

J

(
2a
2b

)
=
∑
r1...rq

q∏
i=1

4riai!bi!

(2ri)!(ai − ri)!(bi − ri)!
J

(
12R 2A−R 0B−R

12R 0A−R 2B−R

)
where the sum is over ri = 0, 1, . . . ,min(ai, bi), and A = Σai, B = Σbi, R = Σri.

Proof. Let us apply the Weingarten formula to the integral in the statement:

I

(
2a
2b

)
=

∫
ON

v2a111 . . . v
2aq
1q v

2b1
21 . . . v

2bq
2q dv

=
∑
πν

δπ(1
2A22B)δν(1

2a1 . . . q2aq12b1 . . . q2bq)WkN(π, ν)

=
∑
ν

δν(1
2a1 . . . q2aq12b1 . . . q2bq)

∑
π

δπ(1
2A22B)WkN(π, ν)

Now let us look at ν. In order for δν not to vanish, ν must connect between themselves
the 2a1+2b1 copies of 1, the 2a2+2b2 copies of 2, and so on, up to the 2aq +2bq copies of
q. So, for any i ∈ {1, . . . , q}, let us denote by 2ri ∈ {0, 2, . . . ,min(2ai, 2bi)} the number
of “type a” copies of i coupled with “type b” copies of i. Our claim is that when these
parameters r1, . . . , rq are fixed, the sum on the right does not depend on σ, and provides
us with a decomposition of the following type:

I

(
2a
2b

)
=
∑
r1...rq

Nr(a, b)Ir(a, b)

Indeed, let us label ν1, . . . , νk the strings of ν, and consider the multi-index j ∈
{1, . . . , k}2k given by jr ∈ νr, for any r ∈ {1, . . . , k}. We have δν′(j) = δνν′ for any
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pairing ν ′, so by applying once again the Weingarten formula we obtain:∫
ON

v1j1 . . . v1j2Av2j2A+1
. . . v2j2A+2B

dv =
∑
πν′

δπ(1
2A22B)δν′(j)WkN(π, ν

′)

=
∑
πν′

δπ(1
2A22B)δνν′WkN(π, ν

′)

=
∑
π

δπ(1
2A22B)WkN(π, ν)

Now let us look at the integral on the left. This can be written in the form I(m), for
a certain matrix m, the procedure being simply to group together, by using exponents,
the identical terms in the product of uij. Now by getting back to the definition of the
multi-index j, we conclude that this procedure leads to the following formula:∫

ON

v1j1 . . . v1j2Av2j2A+1
. . . v2j2A+2B

dv = I

(
12R 2A−R 0B−R

12R 0A−R 2B−R

)
Thus Ir(a, b) is the integral in the statement. That is, we have proved the following

formula, where Nr(a, b) is the number of pairings ν as those considered above:

I

(
2a
2b

)
=
∑
r1...rq

Nr(a, b)I

(
12R 2A−R 0B−R

12R 0A−R 2B−R

)
Let us compute now Nr(a, b). The pairings ν as above are obtained as follows: (1) pick

2ri elements among 2ai elements, (2) pick 2ri elements among 2bi elements, (3) couple
the “type a” 2ri elements to the “type b” 2ri elements, (4) couple the remaining 2ai− 2ri
elements, (5) couple the remaining 2bi − 2ri elements. Thus we have:

Nr(a, b) =

q∏
i=1

(
2ai
2ri

)(
2bi
2ri

)
(2ri)!(2ai − 2ri)!!(2bi − 2ri)!!

=

q∏
i=1

(2ai)!(2bi)!(2ri)!(2ai − 2ri)!!(2bi − 2ri)!!

(2ri)!(2ai − 2ri)!(2ri)!(2bi − 2ri)!

=

q∏
i=1

(2ai)!(2bi)!

(2ri)!(2ai − 2ri + 1)!!(2bi − 2ri + 1)!!

Summing up, we have proved the following formula:

I

(
2a
2b

)
=
∑
r1...rq

q∏
i=1

(2ai)!(2bi)!

(2ri)!(2ai − 2ri + 1)!!(2bi − 2ri + 1)!!
I

(
12R 2A−R 0B−R

12R 0A−R 2B−R

)
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By applying now Proposition 14.27 twice, we obtain:

J

(
2a
2b

)
=

(2A+N − 2)!!(2B +N − 2)!!

(N − 2)!!(N − 2)!!
∏
(2ai)!!

∏
(2bi)!!

I

(
2a
2b

)
J

(
12R 2A−R 0B−R

12R 0A−R 2B−R

)
=

(2A+N − 2)!!(2B +N − 2)!!

(N − 2)!!(N − 2)!!
I

(
12R 2A−R 0B−R

12R 0A−R 2B−R

)
Thus when passing to J quantities, the only thing that happens is that the numeric

coefficient gets divided by
∏
(2ai)!!

∏
(2bi)!!. So, this coefficient becomes:

N ′
r(a, b) =

q∏
i=1

1

(2ai)!!(2bi)!!

q∏
i=1

(2ai)!(2bi)!

(2ri)!(2ai − 2ri + 1)!!(2bi − 2ri + 1)!!

=

q∏
i=1

(2ai + 1)!!(2bi + 1)!!

(2ri)!(2ai − 2ri + 1)!!(2bi − 2ri + 1)!!

=

q∏
i=1

4riai!bi!

(2ri)!(ai − ri)!(bi − ri)!

Thus we have obtained the formula in the statement, and we are done. □

As a first consequence, we have the following result:

Theorem 14.29. We have the “compression formula”

J

(
a c
b 0

)
= J

(
a Σci
b 0

)
valid for any vectors with even entries a, b ∈ Np and c ∈ Nq.

Proof. It is convenient to replace a, b, c with their doubles 2a, 2b, 2c. Consider now
the elementary expansion formula for the matrix in the statement:

J

(
2a 2c
2b 0

)
=
∑
r1...rq

q∏
i=1

4riai!bi!

(2ri)!(ai − ri)!(bi − ri)!
J

(
12R 2A+C−R 0B−R

12R 0A+C−R 2B−R

)
Since the numeric coefficient does not depend on c, and the function on the right

depends only on C = Σci, this gives the formula in the statement. □

We explore now a problematics which is somehow opposite to the “compression prin-
ciple”: what happens when “extending” the original matrix (ab ) with a (c0) component?
Let us begin with a basic result, as follows:

Proposition 14.30. We have the “basic extension” formula

J

(
a 2
b 0

)
=

1

N − q

(
(Σai +N − 1)J

(
a
b

)
−

q∑
s=1

(as + 1)J

(
a(s)

b

))
for any a, b ∈ (2N)q, where a(s) = (a1, . . . , as−1, as + 2, as+1, . . . , aq).
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Proof. By using the trivial identity Σv21i = 1, we obtain the following formula:

I

(
a
b

)
=

q∑
s=1

I

(
a(s)

b

)
+ (N − q)I

(
a 2
b 0

)
On the other hand, according to Proposition 4.27, we have:

J

(
a
b

)
=

(Σai +N − 2)!!(Σbi +N − 2)!!

(N − 2)!!(N − 2)!!
∏
ai!!
∏
bi!!

I

(
a
b

)

J

(
a(s)

b

)
=

(Σai +N)!!(Σbi +N − 2)!!

(N − 2)!!(N − 2)!!
∏
ai!!
∏
bi!!(as + 1)

I

(
a(s)

b

)
J

(
a 2
b 0

)
=

(Σai +N)!!(Σbi +N − 2)!!

(N − 2)!!(N − 2)!!
∏
ai!!
∏
bi!!

I

(
a 2
b 0

)
Thus our above formula translates as follows:

(Σai +N − 1)J

(
a
b

)
=

q∑
s=1

(as + 1)J

(
a(s)

b

)
+ (N − q)J

(
a 2
b 0

)
But this gives the formula in the statement. □

We have as well a recursive version of the above result, as follows:

Proposition 14.31. We have the “recursive extension” formula

J

(
a c+ 2
b 0

)
=

1

N + c− q

(
(Σai + c+N − 1)J

(
a c
b 0

)
−

q∑
s=1

(as + 1)J

(
a(s) c
b 0

))
valid for any two vectors a, b ∈ (2N)q, and any c ∈ 2N.

Proof. We use the compression formula. This gives:

J

(
a c+ 2
b 0

)
= J

(
a c 2
b 0 0

)
Now if we denote the quantity on the left by K, and we apply to the quantity on the

right the basic extension formula, we obtain:

K =
1

n− q − 1

(
(Σai + c+N − 1)J

(
a c
b 0

)
−

q∑
s=1

(as + 1)J

(
a(s) c
b 0

)
− (c+ 1)K

)
But this gives the formula of K in the statement. □

As a first consequence of our results, we can establish now a number of concrete
formulae. The first such formula computes all the joint moments of v11, v12, v21:
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Theorem 14.32. We have the “triangular formula”

J

(
a c
b 0

)
=

(N − 1)!!

(N − 2)!!
· (a+ c+N − 2)!!(b+ c+N − 2)!!

(c+N − 2)!!(a+ b+ c+N − 1)!!

valid for any a, b, c ∈ 2N.

Proof. We prove this by recurrence over c ∈ 2N. At c = 0 this follows from the
1-row formula, so assume that this is true at c. By using Proposition 14.31, we get:

J

(
a c+ 2
b 0

)
=

1

N + c− 1

(
(a+ c+N − 1)J

(
a c
b 0

)
− (a+ 1)J

(
a+ 2 c
b 0

))
Let us call L−R the above expression. According to the recurrence, we have:

L =
(N − 1)!!

(N − 2)!!
· (a+ c+N)!!(b+ c+N − 2)!!

(c+N)!!(a+ b+ c+N − 1)!!

R = (a+ 1)
(N − 1)!!

(N − 2)!!
· (a+ c+N)!!(b+ c+N − 2)!!

(c+N)!!(a+ b+ c+N + 1)!!

Thus we obtain the following formula:

J

(
a c+ 2
b 0

)
=

(N − 1)!!

(N − 2)!!
· (a+ c+N)!!(b+ c+N − 2)!!

(c+N)!!(a+ b+ c+N + 1)!!
((a+ b+ c+N)− (a+ 1))

=
(N − 1)!!

(N − 2)!!
· (a+ c+N)!!(b+ c+N − 2)!!

(c+N)!!(a+ b+ c+N + 1)!!
(b+ c+N − 1)

=
(N − 1)!!

(N − 2)!!
· (a+ c+N)!!(b+ c+N)!!

(c+N)!!(a+ b+ c+N + 1)!!

Thus the formula to be proved is true at c+ 2, and we are done. □

As a first observation, by combining the above formula with the compression formula
we obtain the following result, fully generalizing Proposition 14.6:

Proposition 14.33. We have the formula

J

(
a c1 . . . cq
b 0 . . . 0

)
=

(N − 1)!!

(N − 2)!!
· (a+ Σci +N − 2)!!(b+ Σci +N − 2)!!

(Σci +N − 2)!!(a+ b+ Σci +N − 1)!!

valid for any even numbers a, b and c1, . . . , cq.

Proof. This follows indeed from Theorem 14.32 and from the compression principle.
Observe that with b = 0 we recover indeed the formula in Proposition 14.6. □

As a second observation, at a = 0 the triangular formula computes all the joint
moments of v12, v21, and we obtain an interesting formula here, as follows:
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Proposition 14.34. The joint moments of 2 orthogonal group coordinates x, y ∈
{uij}, chosen in generic position, not on the same row or column, are given by∫

ON

xαyβ dv =
(N − 2)!α!!β!!(α + β +N − 2)!!

(α +N − 2)!!(β +N − 2)!!(α + β +N − 1)!!

for α, β even, and vanish if one of α, β is odd.

Proof. By symmetry we may assume that our coordinates are x = v12 and y = v21,
and the result follows from Theorem 14.32, with a = 0, c = α, b = β. □

Moving ahead, we would like to understand what happens to J(ab ) when flipping a
column of (ab ). Let us begin with the case of the elementary matrices:

Proposition 14.35. We have the formula

J

(
2a 0b

0a 2b

)
=

(N − 1)!!

(N − 2)!!
· (2a+ 2b+N − 2)!!

(2a+ 2b+N − 1)!!

valid for any a, b ∈ N.

Proof. Indeed, by using the compression principle, we obtain:

J

(
2a 0b

0a 2b

)
= J

(
2a 0
0 2b

)
= J

(
0 2a
2b 0

)
On the other hand, by applying the triangular formula, we obtain:

J

(
0 2a
2b 0

)
=

(N − 1)!!

(N − 2)!!
· (2a+N − 2)!!(2a+ 2b+N − 2)!!

(2a+N − 2)!!(2a+ 2b+N − 1)!!

By simplifying the fraction, we obtain the formula in the statement. □

We have the following generalization of the above result:

Proposition 14.36. We have the “elementary flipping” formula

J

(
12s 2a 0b

12s 0a 2b

)
= J

(
12s 2c 0d

12s 0c 2d

)
valid for any s ∈ N and any a, b, c, d ∈ N satisfying a+ b = c+ d.

Proof. We prove this by recurrence over s. At s = 0 this follows from Proposition
14.35, because the right term there depends only on a + b. So, assume that the result is
true at s ∈ N. We use the following equality, coming from the triangular formula:

J

(
2a 2c
2b 0

)
= J

(
2a 0
2b 2c

)
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Assume a ≥ b and consider the elementary expansion of the above two quantities,
where Kr(a, b) denotes the coefficient appearing in the elementary expansion formula:

J

(
2a 2c
2b 0

)
=

b∑
r=0

Kr(a, b)J

(
12r 2a+c−r 0b−r

12r 0a+c−r 2b−r

)

J

(
2a 0
2b 2c

)
=

b∑
r=0

Kr(a, b)J

(
12r 2a−r 0b+c−r

12r 0a−r 2b+c−r

)
We know that the sums on the right are equal, for any a, b, c with a ≥ b. With the

choice b = s, this equality becomes:
s∑

r=0

Kr(a, s)J

(
12r 2a+c−r 0s−r

12r 0a+c−r 2s−r

)
=

s∑
r=0

Kr(a, s)J

(
12r 2a−r 0s+c−r

12r 0a−r 2s+c−r

)
Now by the induction assumption, the first r terms of the above two sums coincide.

So, the above equality tells us that the last terms (r = s) of the two sums are equal:

J

(
12s 2a+c−s

12s 0a+c−s

)
= J

(
12s 2a−s 0c

12s 0a−s 2c

)
Since this equality holds for any a ≥ s and any c, this shows that the elementary

flipping formula holds at s, and we are done. □

We can now formulate a main result, as follows:

Theorem 14.37. We have the “flipping formula”

J

(
a c
b d

)
= J

(
a d
b c

)
valid for any vectors a, b ∈ Np and c, d ∈ Nq.

Proof. Consider the elementary expansion of the two quantities in the statement,
where Kr(a, b) are the coefficients appearing in the elementary expansion formula:

J

(
2a 2c
2b 2d

)
=
∑
risj

∏
ij

Kri(ai, bi)Ksj(cj, dj)J

(
12R+2S 2A+C−R−S 0B+D−R−S

12R+2S 0A+C−R−S 2B+D−R−S

)

J

(
2a 2d
2b 2c

)
=
∑
risj

∏
ij

Kri(ai, bi)Ksj(dj, cj)J

(
12R+2S 2A+D−R−S 0B+C−R−S

12R+2S 0A+D−R−S 2B+C−R−S

)
Our claim is that two formulae are in fact identical. Indeed, the first remark is that

the various indices vary in the same sets. Also, since the function Kr(a, b) is symmetric
in a, b, the numeric coefficients are the same. As for the J terms on the left, these are
equal as well, due to elementary flipping formula, so we are done. □
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As an application of the above, we will work out now a concrete formula for the
arbitrary two-row integrals. We already know that these integrals are subject to an
“elementary expansion” formula, so what is left to do is to compute the values of the
elementary integrals. These values are given by the following technical result:

Proposition 14.38. For any a, b, r we have:

J

(
12r 2a 0b

12r 0a 2b

)
= (−1)r

(N − 1)!!

(N − 2)!!
· (2r)!!(2a+ 2b+ 2r +N − 2)!!

(2a+ 2b+ 4r +N − 1)!!

Proof. As a first observation, at r = 0 the result follows from Proposition 14.36. In
general now, consider the elementary expansion formula, with a, b ∈ N, a ≥ b:

J

(
2a
2b

)
=

b∑
r=0

4ra!b!

(2r)!(a− r)!(b− r)!
J

(
12r 2a−r 0b−r

12r 0a−r 2b−r

)
By using the “flipping principle”, this formula becomes:

J

(
2a
2b

)
=

b∑
r=0

4ra!b!

(2r)!(a− r)!(b− r)!
J

(
12r 2a+b−2r

12r 0a+b−2r

)
The point is that the quantity on the left is known, and this allows the computation

of the integrals on the right. More precisely, let us introduce the following function:

ψr(a) = J

(
12r 2a

12r 0a

)
Then the above equality translates into the following equation:

J

(
2a
2b

)
=

b∑
r=0

4ra!b!

(2r)!(a− r)!(b− r)!
ψr(a+ b− 2r)

According to Propositions 14.6 and 14.37, the values on the left are given by:

J

(
2a
2b

)
=

(N − 1)!!(2a+N − 2)!!(2b+N − 2)!!

(N − 2)!!(N − 2)!!(2a+ 2b+N − 1)!!

Now by taking b = 0, 1, 2, . . ., the above equations will succesively produce the values
of ψr(a) for r = 0, 1, 2, . . ., so we have here an algorithm for computing these values. On
the other hand, a direct computation based on standard summation formulae shows that
our system is solved by the values of ψr(a) given in the statement, namely:

ψr(a) = (−1)r
(N − 1)!!

(N − 2)!!
· (2r)!!(2a+ 2r +N − 2)!!

(2a+ 4r +N − 1)!!

Now by using one more time the flipping principle, the knowledge of the quantities
ψr(a) fully recovers the general formula in the statement, and we are done. □

We are now in position of stating and proving a main result, as follows:
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Theorem 14.39. The 2-row integrals over ON are given by the formula

J

(
2a
2b

)
=

(N − 1)!!

(N − 2)!!

∑
r1,...,rq

(−1)R
q∏

i=1

4riai!bi!

(2ri)!(ai − ri)!(bi − ri)!
· (2R)!!(2S − 2R +N − 2)!!

(2S +N − 1)!!

where the sum is over ri = 0, 1, . . . ,min(ai, bi), and S = Σai + Σbi, R = Σri.

Proof. This follows from the elementary expansion formula, by plugging in the ex-
plicit values for the elementary integrals, that we found in Proposition 14.38. □

For more complicated integrals, involving 3 rows or coordinates or more, the situation
is quite complex, and we refer here to the literature on the subject.

14e. Exercises

Exercises:

Exercise 14.40.

Exercise 14.41.

Exercise 14.42.

Exercise 14.43.

Exercise 14.44.

Exercise 14.45.

Exercise 14.46.

Exercise 14.47.

Bonus exercise.
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15a.

15b.

15c.

15d.

15e. Exercises

Exercises:

Exercise 15.1.

Exercise 15.2.

Exercise 15.3.

Exercise 15.4.

Exercise 15.5.

Exercise 15.6.

Exercise 15.7.

Exercise 15.8.

Bonus exercise.
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CHAPTER 16

16a.

16b.

16c.

16d.

16e. Exercises

Congratulations for having read this book, and no exercises for this final chapter.
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