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Abstract. This is an introduction to the laws of various types of matrices, and their
computation, with all the needed preliminaries included. We first review the basics of
probability theory, notably with the binomial and Poisson laws and their versions, and
with a look into central limits too. Then we discuss the laws of the usual scalar matrices,
which correspond to discrete probability theory, with theory and numerous examples.
We then discuss the case of the random matrices, notably with the asymptotic results of
Wigner and Marchenko-Pastur, and their versions. Finally, we have a look into operator
algebras and free probability, and we discuss a number of more abstract matrices, having
as entries random variables over various quantum spaces.



Preface

This is an introduction to the laws of various types of matrices, and their computation,
with all needed preliminaries included. The book is organized in 4 parts, as follows:

I. We first review the basics of probability theory, notably with the binomial and
Poisson laws and their versions, and with a look into central limits too.

II. Then we discuss the laws of the usual scalar matrices, which correspond to discrete
probability theory, with theory and numerous examples.

III. We then discuss the case of the random matrices, notably with the asymptotic
results of Wigner and Marchenko-Pastur, and their versions.

IV. Finally, we have a look into operator algebras and free probability, and we discuss
matrices having as entries random variables over various quantum spaces.

Many thanks to my cats, for some help with navigating the quantum spaces.

Cergy, January 2026

Teo Banica
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Part I

Discrete laws





CHAPTER 1

Binomial laws

1a. Coins and dice

You surely know a bit about random variables f : X → R, their means, also called
expectations, E(f) ∈ R, and about their variances V (f) = E(f 2) − E(f)2 ≥ 0 too. We
will be talking about such things, and their generalizations, in this book.

Getting started now, there are many possible entry points to probability, with a quite
standard one, focusing on the discrete case, which is the simplest, being as follows:

Definition 1.1. A discrete probability space is a set X, usually finite or countable,
whose elements x ∈ X are called events, together with a function

P : X → [0,∞)

called probability function, which is subject to the condition∑
x∈X

P (x) = 1

telling us that the overall probability for something to happen is 1.

As a first comment, our condition
∑

x∈X P (x) = 1 perfectly makes sense, and this
even if X is uncountable, because the sum of positive numbers is always defined, as a
number in [0,∞], and this no matter how many positive numbers we have.

As a second comment, we have chosen in the above not to assume that X is finite
or countable, and this for instance because we want to be able to regard any probability
function on N as a probability function on R, by setting P (x) = 0 for x /∈ N.

As a third comment, once we have a probability function P : X → [0,∞) as above,
with P (x) ∈ [0, 1] telling us what the probability for an event x ∈ X to happen is, we can
compute what the probability for a set of events Y ⊂ X to happen is, by setting:

P (Y ) =
∑
y∈Y

P (y)

But more on this, mathematical aspects of discrete probability theory, later, when
further building on Definition 1.1. For the moment, what we have above will do.
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12 1. BINOMIAL LAWS

With this discussed, let us explore now the basic examples, coming from the real life.
And here, there are many things to be learned. As a first example, we have:

Example 1.2. Flipping coins.

Here things are simple and clear, because when you flip a coin the corresponding
discrete probability space, together with its probability measure, is as follows:

X =
{
heads, tails

}
, P (heads) = P (tails) =

1

2

In the case where the coin is biased, as to land on heads with probability 2/3, and on
tails with probability 1/3, the corresponding probability space is as follows:

X =
{
heads, tails

}
, P (heads) =

2

3
, P (tails) =

1

3

More generally, given any number p ∈ [0, 1], we have an abstract probability space as
follows, where we have replaced heads and tails by win and lose:

X =
{
win, lose

}
, P (win) = p , P (lose) = 1− p

Finally, things become more interesting when flipping a coin, biased or not, several
times in a row. We will be back to this in a moment, with details.

Example 1.3. Rolling dice.

Again, things here are simple and clear, because when you throw a die the correspond-
ing probability space, together with its probability measure, is as follows:

X =
{
1, . . . , 6

}
, P (i) =

1

6
, ∀i

As before with coins, we can further complicate this by assuming that the die is biased,
say landing on face i with probability pi ∈ [0, 1]. In this case the corresponding probability
space, together with its probability measure, is as follows:

X =
{
1, . . . , 6

}
, P (i) = pi , pi ≥ 0 ,

∑
i

pi = 1

Also as before with coins, things become more interesting when throwing a die several
times in a row, or equivalently, when throwing several identical dice at the same time. In
this latter case, with n identically biased dice, the probability space is as follows:

X =
{
1, . . . , 6

}n
, P (i1 . . . in) = pi1 . . . pin , pi ≥ 0 ,

∑
i

pi = 1
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Observe that the sum 1 condition in Definition 1.1 is indeed satisfied, and with this
proving that our dice modeling is bug-free, due to the following computation:∑

i∈X

P (i) =
∑

i1,...,in

P (i1 . . . in)

=
∑

i1,...,in

pi1 . . . pin

=
∑
i1

pi1 . . .
∑
in

pin

= 1× . . .× 1

= 1

Getting back now to theory, in the general context of Definition 1.1, we can see that
what we have there is very close to the biased die, from Example 1.3. Indeed, in the
general context of Definition 1.1, we can say that what happens is that we have a die with
|X| faces, which is biased such that it lands on face i with probability P (i).

Which is something quite interesting, allowing us to have some intuition on what is
going on, in discrete probability. So, let us record this finding, as follows:

Conclusion 1.4. Discrete probability can be understood as being about throwing a
general die, having an arbitrary number of faces, and which is arbitrarily biased too.

Finally, no discussion about games and probability would be complete without playing
cards too. We have here the following result, of key importance in the real life:

Theorem 1.5. The probabilities at poker are as follows:

(1) One pair: 0.533.
(2) Two pairs: 0.120.
(3) Three of a kind: 0.053.
(4) Full house: 0.006.
(5) Straight: 0.005.
(6) Four of a kind: 0.001.
(7) Flush: 0.000.
(8) Straight flush: 0.000.

Proof. Let us consider indeed our deck of 32 cards:

{7, 8, 9, 10, J,Q,K,A} × {♣,♢,♡,♠}
The total number of possibilities for a poker hand is:(

32

5

)
=

32 · 31 · 30 · 29 · 28
2 · 3 · 4 · 5

= 32 · 31 · 29 · 7
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(1) For having a pair, the number of possibilities is:

N =

(
8

1

)(
4

2

)
×
(
7

3

)(
4

1

)3

= 8 · 6 · 35 · 64

Thus, the probability of having a pair is:

P =
8 · 6 · 35 · 64
32 · 31 · 29 · 7

=
6 · 5 · 16
31 · 29

=
480

899
= 0.533

(2) For having two pairs, the number of possibilities is:

N =

(
8

2

)(
4

2

)2

×
(
24

1

)
= 28 · 36 · 24

Thus, the probability of having two pairs is:

P =
28 · 36 · 24

32 · 31 · 29 · 7
=

36 · 3
31 · 29

=
108

899
= 0.120

(3) For having three of a kind, the number of possibilities is:

N =

(
8

1

)(
4

3

)
×
(
7

2

)(
4

1

)2

= 8 · 4 · 21 · 16

Thus, the probability of having three of a kind is:

P =
8 · 4 · 21 · 16
32 · 31 · 29 · 7

=
3 · 16
31 · 29

=
48

899
= 0.053

(4) For having full house, the number of possibilities is:

N =

(
8

1

)(
4

3

)
×
(
7

1

)(
4

2

)
= 8 · 4 · 7 · 6

Thus, the probability of having full house is:

P =
8 · 4 · 7 · 6

32 · 31 · 29 · 7
=

6

31 · 29
=

6

899
= 0.006

(5) For having a straight, the number of possibilities is:

N = 4

[(
4

1

)4

− 4

]
= 16 · 63

Thus, the probability of having a straight is:

P =
16 · 63

32 · 31 · 29 · 7
=

9

2 · 31 · 29
=

9

1798
= 0.005

(6) For having four of a kind, the number of possibilities is:

N =

(
8

1

)(
4

4

)
×
(
7

1

)(
4

1

)
= 8 · 7 · 4
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Thus, the probability of having four of a kind is:

P =
8 · 7 · 4

32 · 31 · 29 · 7
=

1

31 · 29
=

1

899
= 0.001

(7) For having a flush, the number of possibilities is:

N = 4

[(
8

4

)
− 4

]
= 4 · 66

Thus, the probability of having a flush is:

P =
4 · 66

32 · 31 · 29 · 7
=

33

4 · 31 · 29 · 7
=

9

25172
= 0.000

(8) For having a straight flush, the number of possibilities is:

N = 4 · 4
Thus, the probability of having a straight flush is:

P =
4 · 4

32 · 31 · 29 · 7
=

1

2 · 31 · 29 · 7
=

1

12586
= 0.000

Thus, we have obtained the numbers in the statement. □

So far, so good, but you might argue, what if we model our problem as for our poker
hand to be ordered, do we still get the same answer? In answer, sure yes, but let us check
this. The probability for having four of a kind, computed in this way, is then:

P (four of a kind) =
8 · 5 · 4 · 3 · 2 · 28
32 · 31 · 30 · 29 · 28

=
1

31 · 29
=

1

899

To be more precise, here on the bottom 32 · 31 · 30 · 29 · 28 stands for the total number
of possibilities for an ordered poker hand, 5 out of 32, and on top, exercise for you to
figure out what the above numbers 8, 5, then 4 · 3 · 2, and 28, stand for.

1b. Variables, laws

Moving ahead now, let us go back to the context of Definition 1.1, which is the most
convenient one, technically speaking. As usual in probability, we are mainly interested in
winning. But, winning what? In case we are dealing with a usual die, what we win is
what the die says, and on average, what we win is the following quantity:

E =
1 + 2 + 3 + 4 + 5 + 6

6
= 3.5

In case we are dealing with the biased die in Example 1.3, again what we win is what
the die says, and on average, what we win is the following quantity:

E =
∑
i

i× pi
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With this understood, what about coins? Here, before doing any computation, we
have to assign some numbers to our events, and a standard choice here is as follows:

f :
{
heads, tails

}
→ R , f(heads) = 1 , f(tails) = 0

With this choice made, what we can expect to win is the following quantity:

E(f) = f(heads)× P (heads) + f(tails)× P (tails)

= 1× 1

2
+ 0× 1

2

=
1

2
Of course, in the case where the coin is biased, this computation will lead to a different

outcome. And also, with a different convention for f , we will get a different outcome too.
Moreover, we can combine if we want these two degrees of flexibility.

In short, you get the point. In order to do some math, in the context of Definition
1.1, we need a random variable f : X → R, and the math will consist in computing the
expectation of this variable, E(f) ∈ R. Alternatively, in order to do some business in
the context of Definition 1.1, we need some form of “money”, and our random variable
f : X → R will stand for that money, and then E(f) ∈ R, for the average gain.

Let us axiomatize this situation as follows:

Definition 1.6. A random variable on a probability space X is a function

f : X → R
and the expectation of such a random variable is the quantity

E(f) =
∑
x∈X

f(x)P (x)

which is best thought as being the average gain, when the game is played.

Here the word “game” refers to the probability space interpretation from Conclusion
1.4. Indeed, in that context, with our discrete set of events X being thought of as
corresponding to a generalized die, and by thinking of f as representing some sort of
money, the above quantity E(f) is what we win, on average, when playing the game.

We have already seen some good illustrations for Definition 1.6, so time now to get into
more delicate aspects. Imagine that you want to set up some sort of business, with your
variable f : X → R. You are of course mostly interested in the expectation E(f) ∈ R,
but passed that, the way this expectation comes in matters too. For instance:

(1) When your variable is constant, f = c, you certainly have E(f) = c, and your
business will run smoothly, with not so many surprises on the way.
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(2) On the opposite, for a complicated variable satisfying E(f) = c, your business will
be more bumpy, with wins or loses on the way, depending on your skills.

In short, and extrapolating now from business to mathematics, physics, chemistry and
everything else, we must complement Definition 1.6 with something finer, regarding the
“quality” of the expectation E(f) ∈ R appearing there. And the first thought here, which
is the correct one, goes to the following number, called variance of our variable:

V (f) = E
(
(f − E(f))2

)
= E(f 2)− E(f)2

However, let us not stop here. For a total control of your business, be that of financial,
mathematical, physical or chemical type, you will certainly want to know more about your
variable f : X → R. Which leads us into general moments, constructed as follows:

Definition 1.7. The moments of a variable f : X → R are the numbers

Mk = E(fk)

which satisfy M0 = 1, then M1 = E(f), and then V (f) =M2 −M2
1 .

And, good news, with this we have all the needed tools in our bag for doing some
good business. To put things in a very compacted way, M0 is about foundations, M1 is
about running some business, M2 is about running that business well, and M3 and higher
are advanced level, about ruining all the competing businesses.

As a further piece of basic probability, coming this time as a theorem, we have:

Theorem 1.8. Given a random variable f : X → R, if we define its law as being

µ =
∑
x∈X

P (x)δf(x)

regarded as probability measure on R, then the moments are given by the formula

E(fk) =

∫
R
ykdµ(y)

with the usual convention that each Dirac mass integrates up to 1.

Proof. There are several things going on here, the idea being as follows:

(1) To start with, given a random variable f : X → R, we can certainly talk about
its law µ, as being the formal linear combination of Dirac masses in the statement. Our
claim is that this is a probability measure on R, in the sense of Definition 1.1. Indeed,
the weight of each point y ∈ R is the following quantity, which is positive, as it should:

dµ(y) =
∑

f(x)=y

P (x)
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Moreover, the total mass of this measure is 1, as it should, due to:∑
y∈R

dµ(y) =
∑
y∈R

∑
f(x)=y

P (x)

=
∑
x∈X

P (x)

= 1

Thus, we have indeed a probability measure on R, in the sense of Definition 1.1.

(2) Still talking basics, let us record as well the following alternative formula for the
law, which is clear from definitions, and that we will often use, in what follows:

µ =
∑
y∈R

P (f = y)δy

(3) Now let us compute the moments of f . With the usual convention that each Dirac
mass integrates up to 1, as mentioned in the statement, we have:

E(fk) =
∑
x∈X

P (x)f(x)k

=
∑
y∈R

yk
∑

f(x)=y

P (x)

=

∫
R
ykdµ(y)

Thus, we are led to the conclusions in the statement. □

The above theorem is quite interesting, because we can see here a relation with inte-
gration, as we know it from calculus. In view of this, it is tempting to further go this way,
by formulating the following definition, which is something purely mathematical:

Definition 1.9. Given a set X, which can be finite, countable, or even uncountable,
a discrete probability measure on it is a linear combination as follows,

µ =
∑
x∈X

λxδx

with the coefficients λi ∈ R satisfying λi ≥ 0 and
∑

i λi = 1. For f : X → R we set∫
X

f(x)dµ(x) =
∑
x∈X

λxf(x)

with the convention that each Dirac mass integrates up to 1.
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Observe that, with this, we are now into pure mathematics. However, and we insist on
this, it is basic probability, as developed before, which is behind all this. Now by staying
abstract for a bit more, with Definition 1.9 in hand, we can recover our previous basic
probability notions, from Definition 1.1 and from Theorem 1.8, as follows:

Theorem 1.10. With the above notion of discrete probability measure in hand:

(1) A discrete probability space is simply a space X, with a discrete probability mea-
sure on it ν. In this picture, the probability function is P (x) = dν(x).

(2) Each random variable f : X → R has a law, which is a discrete probability
measure on R. This law is given by µ = f∗ν, push-forward of ν by f .

Proof. This might look a bit scary, but is in fact a collection of trivialities, coming
straight from definitions, the details being as follows:

(1) Nothing much to say here, with our assertion being plainly clear, just by comparing
Definition 1.1 and Definition 1.9. As a interesting comment, however, in the general
context of Definition 1.9, a probability measure µ =

∑
x∈X λxδx as there depends only on

the following function, called density of our probability measure:

φ : X → R , φ(x) = λx

And, with this notion in hand, our equation P (x) = dν(x) simply says that the
probability function P is the density of ν. Which is something which is good to know.

(2) Pretty much the same story here, with our first assertion being clear, just by
comparing Theorem 1.8 and Definition 1.9. As for the second assertion, consider more
generally a probability space (X, ν), and a function f : X → Y . We can then construct
a probability measure µ = f∗ν on Y , called push-forward of ν by f , as follows:

ν =
∑
x∈X

λxδx =⇒ µ =
∑
y∈Y

 ∑
f(x)=y

λx

 δy

Alternatively, at the level of the corresponding measures of the parts Z ⊂ Y , we have
the following abstract formula, which looks more conceptual:

µ(Z) = ν(f−1(Z))

In any case, one way or another we can talk about push-forward measures µ = f∗ν,
and in the case of a random variable f : X → R, we obtain in this way the law of f . □

Very nice all this, and needless to say, welcome to measure theory. In what follows we
will rather go back to probability theory developed in the old way, as in the beginning
of the present chapter, and keep developing that material, because we still have many
interesting things to be learned. But, let us keep Definition 1.9 and Theorem 1.10, which
are quite interesting, somewhere in our head. We will be back to these later.
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1c. Independence

Let us talk now about the key notion in probability, which is independence. This
appears for instance when flipping a coin k times in a row, and we first have here:

Proposition 1.11. When flipping a coin k times, the following happen,

(1) The probability of you winning $k is 1/2k.
(2) The probability of you winning $k − 1 is 0.
(3) The probability of you winning $k − 2 is k/2k.
(4) The probability of you winning $k − 3 is again 0.
(5) The probability of you winning $k − 4 is k(k − 1)/2k+1.

and so on, with the probability increasing, up to the tie situation, and then decreasing.

Proof. This follows indeed from some simple mathematics, as follows:

(1) You winning $k means you winning every time, over k attempts, so your probability
here is P = (1/2)× . . .× (1/2), with k terms in the product, which reads P = 1/2k.

(2) The point here is that you cannot win $k − 1, exactly. Indeed, you must lose at
least once, and so you profit will be ≤ (k − 1)− 1 = k − 2.

(3) Here we have a similar computation as in (1). For winning $k− 2 you need to lose
exactly once, and since there are k possibilities of losing exactly once, P = k/2k.

(4) Here the situation is similar to that in (2). Indeed, for winning exactly $k− 3 you
would certainly need to lose twice, so you profit will be ≤ (k − 2)− 2 = k − 4.

(5) With the same reasoning as in (3), here you need to lose exactly twice, and since
there are k(k − 1)/2 possibilities of losing exactly twice, P = k(k − 1)/2k+1.

(6) Finally, regarding the last assertion, which is a bit informal, we will leave the
clarification here, both statement and proof, to you, as an instructive exercise. □

Obviously, some interesting mathematics is going on here, that needs to be better
understood. We have the following result, generalizing Proposition 1.11:

Theorem 1.12. When flipping a coin k times what you can win are quantities of type
$k − 2s, with s = 0, 1, . . . , k, with the probability for this to happen being:

P (k − 2s) =
1

2k

(
k

s

)
Geometrically, your winning curve starts with probability 1/2k of winning −$k, then in-
creases up to the tie situation, and then decreases, up to probability 1/2k of winning $k.
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Proof. All this is quite clear, by fine-tuning our various observations from Proposi-
tion 1.11 and its proof, the point here being that, in order for you to win k− s times and
lose s times, over your k attempts, the number of possibilities is:

(
k

s

)
=

k!

s!(k − s)!

Thus, by dividing now by 2k, which is the total number of possibilities, for the whole
game, we are led to the probability in the statement, namely:

P (k − 2s) =
1

2k

(
k

s

)

Shall we doublecheck this? Sure yes, doublecheking is the first thing to be done, when
you come across a theorem, in your mathematics. As a first check, the sum of probabilities
that we found should be 1, which is intuitive, right, and 1 that is, as shown by:

k∑
s=0

P (k − 2s) =
1

2k

k∑
s=0

(
k

s

)

=
1

2k

k∑
s=0

(
k

s

)
1s1k−s

=
1

2k
(1 + 1)k

=
1

2k
× 2k

= 1

But shall we really trust this. Imagine for instance that you play your game for $1000
instead of $1 as basic gain, your life is obviously at stake, so all this is worth a second
doublecheck, before being used in practice. So, as second doublecheck, let us verify that,
on average, what you win is exactly $0, which is something very intuitive, the game itself
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obviously not favoring you, nor your partner. But this can be checked as follows:
k∑

s=0

P (k − 2s)× (k − 2s) =
1

2k

k∑
s=0

(
k

s

)
(k − 2s)

=
1

2k

k∑
s=0

(
k

s

)
(k − s)− 1

2k

k∑
s=0

(
k

s

)
s

=
1

2k

k∑
s=0

(
k

s

)
(k − s)− 1

2k

k∑
t=0

(
k

k − t

)
(k − t)

=
1

2k

k∑
s=0

(
k

s

)
(k − s)− 1

2k

k∑
t=0

(
k

t

)
(k − t)

= 0

Summarizing, we have a good theorem here, proved, doublechecked and triplechecked,
as per the highest scientific standards, ready to be used in practice. □

Motivated by the above, let us formulate now the following definition:

Definition 1.13. Given p ∈ [0, 1], the Bernoulli law of parameter p is given by:

P (win) = p , P (lose) = 1− p

More generally, the k-th binomial law of parameter p, with k ∈ N, is given by

P (s) = ps(1− p)k−s

(
k

s

)
with the Bernoulli law appearing at k = 1, with s = 1, 0 here standing for win and lose.

Let us try now to understand the relation between the Bernoulli and binomial laws.
Indeed, we know that the Bernoulli laws produce the binomial laws, simply by iterating
the game, from 1 throw to k ∈ N throws. Obviously, what matters in all this is the
“independence” of our coin throws, so let us record this finding, as follows:

Theorem 1.14. The following happen, in the context of the biased coin game:

(1) The Bernoulli laws µber produce the binomial laws µbin, by iterating the game
k ∈ N times, via the independence of the throws.

(2) We have in fact µbin = µ∗k
ber, with ∗ being the convolution operation for real

probability measures, given by δx ∗ δy = δx+y, and linearity.

Proof. Obviously, this is something a bit informal, but let us prove this as stated, and
we will come back later to it, with precise definitions, general theorems and everything. In
what regards the first assertion, nothing to be said there, this is what life teaches us. As
for the second assertion, the formula µbin = µ∗k

ber there certainly looks like mathematics,
so job for us to figure out what this exactly means. And, this can be done as follows:
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(1) The first idea is to encapsulate the data from Definition 1.13 into the probabil-
ity measures associated to the Bernoulli and binomial laws. For the Bernoulli law, the
corresponding measure is as follows, with the δ symbols standing for Dirac masses:

µber = (1− p)δ0 + pδ1

As for the binomial law, here the measure is as follows, constructed in a similar way,
you get the point I hope, again with the δ symbols standing for Dirac masses:

µbin =
k∑

s=0

ps(1− p)k−s

(
k

s

)
δs

(2) Getting now to independence, the point is that, as we will soon discover abstractly,
the mathematics there is that of the following formula, with ∗ standing for the convolution
operation for the real measures, which is given by δx ∗ δy = δx+y and linearity:

µbin = µber ∗ . . . ∗ µber︸ ︷︷ ︸
k terms

(3) To be more precise, this latter formula does hold indeed, as a straightforward
application of the binomial formula, the formal proof being as follows:

µ∗k
ber =

(
(1− p)δ0 + pδ1

)∗k
=

k∑
s=0

ps(1− p)k−s

(
k

s

)
δ
∗(k−s)
0 ∗ δ∗s1

=
k∑

s=0

ps(1− p)k−s

(
k

s

)
δs

= µbin

(4) Summarizing, save for some uncertainties regarding what independence exactly
means, mathematically speaking, and more on this in a moment, theorem proved. □

Getting to formal mathematical work now, let us start with the following straightfor-
ward definition, inspired by what happens for coins, dice and cards:

Definition 1.15. We say that two variables f, g : X → R are independent when

P (f = x, g = y) = P (f = x)P (g = y)

happens, for any x, y ∈ R.

As already mentioned, this is something very intuitive, inspired by what happens for
coins, dice and cards. As a first result now regarding independence, we have:
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Theorem 1.16. Assuming that f, g : X → R are independent, we have:

E(fg) = E(f)E(g)

More generally, we have the following formula, for the mixed moments,

E(fkgl) = E(fk)E(gl)

and the converse holds, in the sense that this formula implies the independence of f, g.

Proof. We have indeed the following computation, using the independence of f, g:

E(fkgl) =
∑
xy

xkylP (f = x, g = y)

=
∑
xy

xkylP (f = x)P (g = y)

=
∑
x

xkP (f = x)
∑
y

ylP (g = y)

= E(fk)E(gl)

As for the last assertion, this is clear too, because having the above computation work,
for any k, l ∈ N, amounts in saying that the independence formula for f, g holds. □

Regarding now the convolution operation, motivated by what we found before, in
Theorem 1.14, let us start with the following abstract definition:

Definition 1.17. Given a space X with a sum operation +, we can define the con-
volution of any two discrete probability measures on it,

µ =
∑
i

aiδxi
, ν =

∑
j

bjδyj

as being the discrete probability measure given by the following formula:

µ ∗ ν =
∑
ij

aibjδxi+yj

That is, the convolution operation ∗ is defined by δx ∗ δy = δx+y, and linearity.

As a first observation, our operation is well-defined, with µ ∗ ν being indeed a discrete
probability measure, because the weights are positive, aibj ≥ 0, and their sum is:∑

ij

aibj =
∑
i

ai
∑
j

bj = 1× 1 = 1

Also, the above definition agrees with what we did before with coins, and Bernoulli
and binomial laws. We have in fact the following general result:
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Theorem 1.18. Assuming that f, g : X → R are independent, we have

µf+g = µf ∗ µg

where ∗ is the convolution of real probability measures.

Proof. We have indeed the following straightforward verification, based on the in-
dependence formula from Definition 1.15, and on Definition 1.17:

µf+g =
∑
x∈R

P (f + g = x)δx

=
∑
y,z∈R

P (f = y, g = z)δy+z

=
∑
y,z∈R

P (f = y)P (g = z)δy ∗ δz

=

(∑
y∈R

P (f = y)δy

)
∗

(∑
z∈R

P (g = z)δz

)
= µf ∗ µg

Thus, we are led to the conclusion in the statement. □

Before going further, let us attempt as well to find a proof of Theorem 1.18, based on
the moment characterization of independence, from Theorem 1.16. For this purpose, we
will need the following standard fact, which is of certain theoretical interest:

Theorem 1.19. The sequence of moments

Mk =

∫
R
xkdµ(x)

uniquely determines the law.

Proof. Indeed, assume that the law of our variable is as follows:

µ =
∑
i

λiδxi

The sequence of moments is then given by the following formula:

Mk =
∑
i

λix
k
i

But it is then standard calculus to recover the numbers λi, xi ∈ R, and so the measure
µ, out of the sequence of numbers Mk. Indeed, assuming that the numbers xi are 0 <
x1 < . . . < xn for simplifying, in the k → ∞ limit we have the following formula:

Mk ∼ λnx
k
n
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Thus, we got the parameters λn, xn ∈ R of our measure µ, and then by substracting
them and doing an obvious recurrence, we get the other parameters λi, xi ∈ R as well.
We will leave the details here as an instructive exercise, and come back to this problem
later in this book, with more advanced and clever methods for dealing with it. □

Getting back now to our philosophical question above, namely recovering Theorem
1.18 via moment technology, we can now do this, the result being as follows:

Theorem 1.20. Assuming that f, g : X → R are independent, the measures

µf+g , µf ∗ µg

have the same moments, and so, they coincide.

Proof. We have the following computation, using the independence of f, g:

Mk(f + g) = E((f + g)k)

=
∑
r

(
k

r

)
E(f rgk−r)

=
∑
r

(
k

r

)
Mr(f)Mk−r(g)

On the other hand, we have as well the following computation:∫
X

xkd(µf ∗ µg)(x) =

∫
X×X

(x+ y)kdµf (x)dµg(y)

=
∑
r

(
k

r

)∫
X

xrdµf (x)

∫
X

yk−rdµg(y)

=
∑
r

(
k

r

)
Mr(f)Mk−r(g)

Thus, job done, and theorem proved, or rather Theorem 1.18 reproved. □

Getting back now to the basic theory of independence, here is now a second result,
coming as a continuation of Theorem 1.18, which is something more advanced:

Theorem 1.21. Assuming that f, g : X → R are independent, we have

Ff+g = FfFg

where Ff (x) = E(eixf ) is the Fourier transform.
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Proof. We have the following computation, using Theorem 1.18:

Ff+g(x) =

∫
X

eixzdµf+g(z)

=

∫
X

eixzd(µf ∗ µg)(z)

=

∫
X×X

eix(z+t)dµf (z)dµg(t)

=

∫
X

eixzdµf (z)

∫
X

eixtdµg(t)

= Ff (x)Fg(x)

Thus, we are led to the conclusion in the statement. □

As a comment here, you might wonder what that i ∈ C number in the definition of
the Fourier transform is good for. Good question, which will be answered, in due time.

1d. Binomial laws

Let us do now some computations. We recall from the above that the k-th binomial
law of parameter p ∈ (0, 1), with k ∈ N, is given by the following formula:

P (s) = ps(1− p)k−s

(
k

s

)

As a first concrete result about these laws, we have:

Theorem 1.22. The mean of the k-th binomial law of parameter p ∈ (0, 1) is:

E = kp

As for the variance and higher moments, these are given by similar formulae.
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Proof. In what regards the mean, this can be computed as follows:

E =
k∑

s=0

P (s)s

=
k∑

s=0

ps(1− p)k−s

(
k

s

)
s

=
k∑

s=1

ps(1− p)k−s

(
k

s

)
s

=
k∑

s=1

ps(1− p)k−s k!

(s− 1)!(k − s)!

= k
k∑

s=1

ps(1− p)k−s (k − 1)!

(s− 1)!(k − s)!

= k
k−1∑
r=0

pr+1(1− p)k−r−1 (k − 1)!

r!(k − r − 1)!

= kp
k−1∑
r=0

pr(1− p)k−r−1 (k − 1)!

r!(k − r − 1)!

= kp(p+ (1− p))k−1

= kp

As for the higher moments, these can be computed in a similar way. □

1e. Exercises

Exercises:

Exercise 1.23.

Exercise 1.24.

Exercise 1.25.

Exercise 1.26.

Exercise 1.27.

Exercise 1.28.

Exercise 1.29.

Exercise 1.30.

Bonus exercise.



CHAPTER 2

Poisson laws

2a. Poisson laws

At a more advanced level, we have the Poisson Limit Theorem (PLT), that we would
like to explain now. Let us start with the following definition:

Definition 2.1. The Poisson law of parameter 1 is the following measure,

p1 =
1

e

∑
k∈N

δk
k!

and the Poisson law of parameter t > 0 is the following measure,

pt = e−t
∑
k∈N

tk

k!
δk

with the letter “p” standing for Poisson.

As a first observation, the above laws have indeed mass 1, as they should, due to the
following key formula, which is actually the key formula of all mathematics:

et =
∑
k∈N

tk

k!

We will see in the moment why these measures appear a bit everywhere, in discrete
contexts, the reasons for this coming from the Poisson Limit Theorem (PLT). Let us first
develop some general theory. We first have the following result:

Theorem 2.2. We have the following formula, for any s, t > 0,

ps ∗ pt = ps+t

so the Poisson laws form a convolution semigroup.

29
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Proof. By using δk ∗ δl = δk+l and the binomial formula, we obtain:

ps ∗ pt = e−s
∑
k

sk

k!
δk ∗ e−t

∑
l

tl

l!
δl

= e−s−t
∑
n

δn
∑

k+l=n

sktl

k!l!

= e−s−t
∑
n

δn
n!

∑
k+l=n

n!

k!l!
sktl

= e−s−t
∑
n

(s+ t)n

n!
δn

= ps+t

Thus, we are led to the conclusion in the statement. □

Next in line, we have the following result, which is fundamental as well:

Theorem 2.3. The Poisson laws appear as formal exponentials

pt =
∑
k

tk(δ1 − δ0)
∗k

k!

with respect to the convolution of measures ∗.

Proof. By using the binomial formula, the measure on the right is:

µ =
∑
k

tk

k!

∑
r+s=k

(−1)s
k!

r!s!
δr

=
∑
k

tk
∑

r+s=k

(−1)s
δr
r!s!

=
∑
r

trδr
r!

∑
s

(−1)s

s!

=
1

e

∑
r

trδr
r!

= pt

Thus, we are led to the conclusion in the statement. □

2b. Poisson limits

Regarding now the Fourier transform computation, this is as follows:
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Theorem 2.4. The Fourier transform of pt is given by

Fpt(y) = exp
(
(eiy − 1)t

)
for any t > 0.

Proof. We have indeed the following computation:

Fpt(y) = e−t
∑
k

tk

k!
Fδk(y)

= e−t
∑
k

tk

k!
eiky

= e−t
∑
k

(eiyt)k

k!

= exp(−t) exp(eiyt)
= exp

(
(eiy − 1)t

)
Thus, we obtain the formula in the statement. □

Observe that the above formula gives an alternative proof for Theorem 2.2, by using
the fact that the logarithm of the Fourier transform linearizes the convolution. As another
application, we can now establish the Poisson Limit Theorem, as follows:

Theorem 2.5 (PLT). We have the following convergence, in moments,((
1− t

n

)
δ0 +

t

n
δ1

)∗n

→ pt

for any t > 0.

Proof. Let us denote by νn the measure under the convolution sign, namely:

νn =

(
1− t

n

)
δ0 +

t

n
δ1

We have the following computation, for the Fourier transform of the limit:

Fδr(y) = eiry =⇒ Fνn(y) =

(
1− t

n

)
+
t

n
eiy

=⇒ Fν∗nn (y) =

((
1− t

n

)
+
t

n
eiy
)n

=⇒ Fν∗nn (y) =

(
1 +

(eiy − 1)t

n

)n

=⇒ F (y) = exp
(
(eiy − 1)t

)
Thus, we obtain indeed the Fourier transform of pt, as desired. □



32 2. POISSON LAWS

2c. Moments, partitions

At the level of moments now, things are quite subtle for Poisson laws. We first have
the following result, dealing with the simplest case, where the parameter is t = 1:

Theorem 2.6. The moments of p1 are the Bell numbers,

Mk(p1) = |P (k)|

where P (k) is the set of partitions of {1, . . . , k}.

Proof. The moments of p1 are given by the following formula:

Mk =
1

e

∑
r

rk

r!

We therefore have the following recurrence formula for these moments:

Mk+1 =
1

e

∑
r

(r + 1)k+1

(r + 1)!

=
1

e

∑
r

rk

r!

(
1 +

1

r

)k

=
1

e

∑
r

rk

r!

∑
s

(
k

s

)
r−s

=
∑
s

(
k

s

)
· 1
e

∑
r

rk−s

r!

=
∑
s

(
k

s

)
Mk−s

With this done, let us try now to find a recurrence for the Bell numbers:

Bk = |P (k)|

A partition of {1, . . . , k + 1} appears by choosing s neighbors for 1, among the k
numbers available, and then partitioning the k − s elements left. Thus, we have:

Bk+1 =
∑
s

(
k

s

)
Bk−s

Thus, our moments Mk satisfy the same recurrence as the numbers Bk. Regarding
now the initial values, in what concerns the first moment of p1, we have:

M1 =
1

e

∑
r

r

r!
= 1
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Also, by using the above recurrence for the numbers Mk, we obtain from this:

M2 =
∑
s

(
1

s

)
Mk−s = 1 + 1 = 2

On the other hand, B1 = 1 and B2 = 2. Thus we obtain Mk = Bk, as claimed. □

More generally now, we have the following result, dealing with the case t > 0:

Theorem 2.7. The moments of pt with t > 0 are given by

Mk(pt) =
∑

π∈P (k)

t|π|

where |.| is the number of blocks.

Proof. The moments of the Poisson law pt with t > 0 are given by:

Mk = e−t
∑
r

trrk

r!

We have the following recurrence formula for these moments:

Mk+1 = e−t
∑
r

tr+1(r + 1)k+1

(r + 1)!

= e−t
∑
r

tr+1rk

r!

(
1 +

1

r

)k

= e−t
∑
r

tr+1rk

r!

∑
s

(
k

s

)
r−s

=
∑
s

(
k

s

)
· e−t

∑
r

tr+1rk−s

r!

= t
∑
s

(
k

s

)
Mk−s

Regarding now the initial values, the first moment of pt is given by:

M1 = e−t
∑
r

trr

r!
= e−t

∑
r

tr

(r − 1)!
= t

Now by using the above recurrence we obtain from this:

M2 = t
∑
s

(
1

s

)
Mk−s = t(1 + t) = t+ t2
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On the other hand, consider the numbers in the statement, namely:

Sk =
∑

π∈P (k)

t|π|

Since a partition of {1, . . . , k + 1} appears by choosing s neighbors for 1, among the
k numbers available, and then partitioning the k − s elements left, we have:

Sk+1 = t
∑
s

(
k

s

)
Sk−s

As for the initial values of these numbers, these are S1 = t, S2 = t + t2. Thus the
initial values coincide, and so these numbers are the moments of pt, as stated. □

Summarizing, we have so far a quite good understanding of discrete probability theory.
Of course, this is just the beginning of things, and we will be back to this, later.

2d. Cumulants, inversion

We have seen a lot of interesting combinatorics in this chapter, but this is not the end
of the story. Following Rota, let us formulate now the following definition:

Definition 2.8. Associated to any real probability measure µ = µf is the following
modification of the logarithm of the Fourier transform Fµ(ξ) = E(eiξf ),

Kµ(ξ) = logE(eξf )

called cumulant-generating function. The Taylor coefficients kn(µ) of this series, given by

Kµ(ξ) =
∞∑
n=1

kn(µ)
ξn

n!

are called cumulants of the measure µ. We also use the notations kf , Kf for these cumu-
lants and their generating series, where f is a variable following the law µ.

In other words, the cumulants are more or less the coefficients of the logarithm of
the Fourier transform logFµ, up to some normalizations. To be more precise, we have
Kµ(ξ) = logFµ(−iξ), so the formula relating logFµ to the cumulants kn(µ) is:

logFµ(−iξ) =
∞∑
n=1

kn(µ)
ξn

n!

Equivalently, the formula relating logFµ to the cumulants kn(µ) is:

logFµ(ξ) =
∞∑
n=1

kn(µ)
(iξ)n

n!

We will see in a moment the reasons for the above normalizations, namely change of
variables ξ → −iξ, and Taylor coefficients instead of plain coefficients, the idea being that
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for simple laws like gt, pt, we will obtain in this way very simple quantities. Let us also
mention that there is a reason for indexing the cumulants by n = 1, 2, 3, . . . instead of
n = 0, 1, 2, . . . , and more on this later, once we will have some theory and examples.

As a first observation, the sequence of cumulants k1, k2, k3, . . . appears as a modifica-
tion of the sequence of moments M1,M2,M3, . . . , the numerics being as follows:

Proposition 2.9. The sequence of cumulants k1, k2, k3, . . . appears as a modification
of the sequence of moments M1,M2,M3, . . . , and uniquely determines µ. We have

k1 =M1

k2 = −M2
1 +M2

k3 = 2M3
1 − 3M1M2 +M3

k4 = −6M4
1 + 12M2

1M2 − 3M2
2 − 4M1M3 +M4

...

in one sense, and in the other sense we have

M1 = k1

M2 = k21 + k2

M3 = k31 + 3k1k2 + k3

M4 = k41 + 6k21k2 + 3k22 + 4k1k3 + k4
...

with in both cases the correspondence being polynomial, with integer coefficients.

Proof. We know from Definition 2.8 that the cumulants are given by:

logE(eξf ) =
∞∑
s=1

ks(f)
ξs

s!

By exponentiating, we obtain from this the following formula:

E(eξf ) = exp

(
∞∑
s=1

ks(f)
ξs

s!

)
Now by looking at the terms of order 1, 2, 3, 4, this gives the above formulae. □

The interest in cumulants comes from the fact that logFµ, and so the cumulants kn(µ)
too, linearize the convolution. To be more precise, we have the following result:

Theorem 2.10. The cumulants have the following properties:

(1) kn(cf) = cnkn(f).
(2) k1(f + d) = k1(f) + d, and kn(f + d) = kn(f) for n > 1.
(3) kn(f + g) = kn(f) + kn(g), if f, g are independent.
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Proof. Here (1) and (2) are both clear from definitions, because we have:

Kcf+d(ξ) = logE(eξ(cf+d))

= log[eξd · E(eξcf )]
= ξd+Kf (cξ)

As for (3), this follows from the fact that the Fourier transform Ff (ξ) = E(eiξf )
satisfies the following formula, whenever f, g are independent random variables:

Ff+g(ξ) = Ff (ξ)Fg(ξ)

Indeed, by applying the logarithm, we obtain the following formula:

logFf+g(ξ) = logFf (ξ) + logFg(ξ)

With the change of variables ξ → −iξ, we obtain the following formula:

Kf+g(ξ) = Kf (ξ) +Kg(ξ)

Thus, at the level of coefficients, we obtain kn(f + g) = kn(f)+ kn(g), as claimed. □

In order to get familiar with the cumulants, let us work out some examples. In what
regards the basic probability measures, that we know so far, the cumulants are always
given by simple formulae, as shown by the following result:

Theorem 2.11. The sequence of cumulants k1, k2, k3, . . . is as follows:

(1) For µ = δc the cumulants are c, 0, 0, . . .
(2) For µ = gt the cumulants are 0, t, 0, 0, . . .
(3) For µ = pt the cumulants are t, t, t, . . .

Proof. We have 3 computations to be done, the idea being as follows:

(1) For µ = δc we have the following computation:

Kµ(ξ) = logE(ecξ)

= log(ecξ)

= cξ

But the plain coefficients of this series are the numbers c, 0, 0, . . . , and so the Taylor
coefficients of this series are these same numbers c, 0, 0, . . . , as claimed.

(2) For µ = gt we have the following computation:

Kµ(ξ) = logFµ(−iξ)
= log exp

[
−t(−iξ)2/2

]
= tξ2/2

But the plain coefficients of this series are the numbers 0, t/2, 0, 0, . . . , and so the
Taylor coefficients of this series are the numbers 0, t, 0, 0, . . . , as claimed.
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(3) For µ = pt we have the following computation:

Kµ(ξ) = logFµ(−iξ)
= log exp

[
(ei(−iξ) − 1)t

]
= (eξ − 1)t

But the plain coefficients of this series are the numbers t/n!, and so the Taylor coeffi-
cients of this series are the numbers t, t, t, . . . , as claimed. □

Getting back now to general theory, the sequence of cumulants k1, k2, k3, . . . appears
as a modification of the sequence of moments M1,M2,M3, . . . , and understanding the re-
lation between moments and cumulants will be our next task. We recall from Proposition
2.9 that we have the following formulae, for the cumulants in terms of moments:

k1 =M1

k2 = −M2
1 +M2

k3 = 2M3
1 − 3M1M2 +M3

k4 = −6M4
1 + 12M2

1M2 − 3M2
2 − 4M1M3 +M4

...

Also, we have the following formulae, for the moments in terms of cumulants:

M1 = k1

M2 = k21 + k2

M3 = k31 + 3k1k2 + k3

M4 = k41 + 6k21k2 + 3k22 + 4k1k3 + k4

...

In order to understand what exactly is going on, with moments and cumulants, which
reminds a bit the Möbius inversion formula, we need to do some combinatorics, in relation
with the set-theoretic partitions. We first have the following definition:

Definition 2.12. The Möbius function of any lattice, and so of P , is given by

µ(π, ν) =


1 if π = ν

−
∑

π≤τ<ν µ(π, τ) if π < ν

0 if π ̸≤ ν

with the construction being performed by recurrence.
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As an illustration here, for P (2) = {||,⊓}, we have by definition:

µ(||, ||) = µ(⊓,⊓) = 1

Also, || < ⊓, with no intermediate partition in between, so we obtain:

µ(||,⊓) = −µ(||, ||) = −1

Finally, we have ⊓ ̸≤ ||, and so we have as well the following formula:

µ(⊓, ||) = 0

Thus, the Möbius matrix Mπν = µ(π, ν) of the lattice P (2) = {||,⊓} is as follows:

M =

(
1 −1
0 1

)
At k = 3 now, we have the following formula for the Möbius matrix Mπν = µ(π, ν),

once again written with the indices picked increasing in P (3) = {|||,⊓|,⊓| , |⊓,⊓⊓}:

M =


1 −1 −1 −1 2
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1
0 0 0 0 1


The main interest in the Möbius function comes from the Möbius inversion formula,

which in linear algebra terms can be stated and proved as follows:

Theorem 2.13. We have the following implication,

f(π) =
∑
ν≤π

g(ν) =⇒ g(π) =
∑
ν≤π

µ(ν, π)f(ν)

valid for any two functions f, g : P (n) → C.

Proof. Consider the adjacency matrix of P , given by the following formula:

Aπν =

{
1 if π ≤ ν

0 if π ̸≤ ν

Our claim is that the inverse of this matrix is the Möbius matrix of P , given by:

Mπν = µ(π, ν)

Indeed, the above matrix A is upper triangular, and when trying to invert it, we are
led to the recurrence in Definition 2.12, so to the Möbius matrix M . Thus we have:

M = A−1

Thus, in practice, we are led to the inversion formula in the statement. □
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As a first illustration, for P (2) the formula M = A−1 appears as follows:(
1 −1
0 1

)
=

(
1 1
0 1

)−1

At k = 3 now, the formula M = A−1 for P (3) reads:
1 −1 −1 −1 2
0 1 0 0 −1
0 0 1 0 −1
0 0 0 1 −1
0 0 0 0 1

 =


1 1 1 1 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 1


−1

In general, the inversion formula M = A−1 looks quite similar.

With these ingredients in hand, let us go back to probability. We first have:

Definition 2.14. We define quantities Mπ(f), kπ(f), depending on partitions

π ∈ P (k)

by starting with Mn(f), kn(f), and using multiplicativity over the blocks.

To be more precise, the convention here is that for the one-block partition 1n ∈ P (n),
the corresponding moment and cumulant are the usual ones, namely:

M1n(f) =Mn(f) , k1n(f) = kn(f)

Then, for an arbitrary partition π ∈ P (k), we decompose this partition into blocks,
having sizes b1, . . . , bs, and we set, by multiplicativity over blocks:

Mπ(f) =Mb1(f) . . .Mbs(f) , kπ(f) = kb1(f) . . . kbs(f)

With this convention, following Rota and others, we can now formulate a key result,
fully clarifying the relation between moments and cumulants, as follows:

Theorem 2.15. We have the moment-cumulant formulae

Mn(f) =
∑

ν∈P (n)

kν(f) , kn(f) =
∑

ν∈P (n)

µ(ν, 1n)Mν(f)

or, equivalently, we have the moment-cumulant formulae

Mπ(f) =
∑
ν≤π

kν(f) , kπ(f) =
∑
ν≤π

µ(ν, π)Mν(f)

where µ is the Möbius function of P (n).
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Proof. There are several things going on here, the idea being as follows:

(1) According to our conventions above, the first set of formulae is equivalent to the
second set of formulae. Also, due to the Möbius inversion formula, in the second set
of formulae, the two formulae there are in fact equivalent. Thus, the 4 formulae in the
statement are all equivalent. In what follows we will focus on the first 2 formulae.

(2) Let us first work out some examples. At n = 1, 2, 3 the moment formula gives the
following equalities, which are in tune with the findings from Proposition 2.9:

M1 = k| = k1

M2 = k| | + k⊓ = k21 + k2

M3 = k| | | + k⊓| + k⊓| + k|⊓ + k⊓⊓ = k31 + 3k1k2 + k3

At n = 4 now, which is a case which is of particular interest for certain considerations
to follow, the computation is as follows, again in tune with Proposition 2.9:

M4 = k| | | + (k⊓ | | + . . .︸ ︷︷ ︸
6 terms

) + (k⊓⊓ + . . .︸ ︷︷ ︸
3 terms

) + (k⊓⊓ | + . . .︸ ︷︷ ︸
4 terms

) + k⊓⊓⊓

= k41 + 6k21k2 + 3k22 + 4k1k3 + k4

As for the cumulant formula, at n = 1, 2, 3 this gives the following formulae for the
cumulants, again in tune with the findings from Proposition 2.9:

k1 =M| =M1

k2 = (−1)M| | +M⊓ = −M2
1 +M2

k3 = 2M| | | + (−1)M⊓| + (−1)M⊓| + (−1)M|⊓ +M⊓⊓ = 2M3
1 − 3M1M2 +M3

Finally, at n = 4, after computing the Möbius function of P (4), we obtain the following
formula for the fourth cumulant, again in tune with Proposition 2.9:

k4 = (−6)M| | | + 2(M⊓ | | + . . .︸ ︷︷ ︸
6 terms

) + (−1)(M⊓⊓ + . . .︸ ︷︷ ︸
3 terms

) + (−1)(M⊓⊓ | + . . .︸ ︷︷ ︸
4 terms

) +M⊓⊓⊓

= −6M4
1 + 12M2

1M2 − 3M2
2 − 4M1M3 +M4

(3) Time now to get to work, and prove the result. As mentioned above, the formulae
in the statement are all equivalent, and it is enough to prove the first one, namely:

Mn(f) =
∑

ν∈P (n)

kν(f)

In order to do this, we use the very definition of the cumulants, namely:

logE(eξf ) =
∞∑
s=1

ks(f)
ξs

s!
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By exponentiating, we obtain from this the following formula:

E(eξf ) = exp

(
∞∑
s=1

ks(f)
ξs

s!

)
(4) Let us first compute the function on the left. This is easily done, as follows:

E(eξf ) = E

(
∞∑
n=0

(ξf)n

n!

)
=

∞∑
n=0

Mn(f)
ξn

n!

(5) Regarding now the function on the right, this is given by:

exp

(
∞∑
s=1

ks(f)
ξs

s!

)
=

∞∑
p=0

(∑∞
s=1 ks(f)

ξs

s!

)p
p!

=
∞∑
p=0

1

p!

∞∑
s1=1

ks1(f)
ξs1

s1!
. . . . . .

∞∑
sp=1

ksp(f)
ξsp

sp!

=
∞∑
p=0

1

p!

∞∑
s1=1

. . .
∞∑

sp=1

ks1(f) . . . ksp(f)
ξs1+...+sp

s1! . . . sp!

But the point now is that all this leads us into partitions. Indeed, we are summing
over indices s1, . . . , sp ∈ N, which can be thought of as corresponding to a partition of
n = s1 + . . .+ sp. So, let us rewrite our sum, as a sum over partitions. For this purpose,
recall that the number of partitions ν ∈ P (n) having blocks of sizes s1, . . . , sp is:(

n

s1, . . . , sp

)
=

n!

p1! . . . ps!

Also, when resumming over partitions, there will be a p! factor as well, coming from
the permutations of s1, . . . , sp. Thus, our sum can be rewritten as follows:

exp

(
∞∑
s=1

ks(f)
ξs

s!

)
=

∞∑
n=0

∞∑
p=0

1

p!

∑
s1+...+sp=n

ks1(f) . . . ksp(f)
ξn

s1! . . . sp!

=
∞∑
n=0

ξn

n!

∞∑
p=0

1

p!

∑
s1+...+sp=n

(
n

s1, . . . , sp

)
ks1(f) . . . ksp(f)

=
∞∑
n=0

ξn

n!

∑
ν∈P (n)

kν(f)

(6) We are now in position to conclude. According to (3,4,5), we have:
∞∑
n=0

Mn(f)
ξn

n!
=

∞∑
n=0

ξn

n!

∑
ν∈P (n)

kν(f)
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Thus, we have the following formula, valid for any n ∈ N:

Mn(f) =
∑

ν∈P (n)

kν(f)

We are therefore led to the conclusions in the statement. □

2e. Exercises

Exercises:

Exercise 2.16.

Exercise 2.17.

Exercise 2.18.

Exercise 2.19.

Exercise 2.20.

Exercise 2.21.

Exercise 2.22.

Exercise 2.23.

Bonus exercise.



CHAPTER 3

Advanced laws

3a. Pascal distributions

We would like to discuss now some technical generalizations of the main laws that we
saw so far, namely the binomial ones and the Poisson ones. Let us start with:

Theorem 3.1. We have the generalized binomial formula

(1 + x)a =
∞∑
k=0

(
a

k

)
xk

with the generalized binomial coefficients being given by(
a

k

)
=
a(a− 1) . . . (a− k + 1)

k!

valid for any exponent a ∈ Z, and any |x| < 1.

Proof. This is something quite tricky, the idea being as follows:

(1) For exponents a ∈ N, this is something that we know well, and which is valid for
any x ∈ R, coming from the usual binomial formula, namely:

(1 + x)n =
n∑

k=0

(
n

k

)
xk

(2) For the exponent a = −1 this is something that we know well too, coming from
the following formula, valid for any |x| < 1:

1

1 + x
= 1− x+ x2 − x3 + . . .

Indeed, this is exactly our generalized binomial formula at a = −1, because:(
−1

k

)
=

(−1)(−2) . . . (−k)
k!

= (−1)k

43
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(3) Let us discuss now the general case a ∈ −N. With a = −n, and n ∈ N, the
generalized binomial coefficients are given by the following formula:(

−n
k

)
=

(−n)(−n− 1) . . . (−n− k + 1)

k!

= (−1)k
n(n+ 1) . . . (n+ k − 1)

k!

= (−1)k
(n+ k − 1)!

(n− 1)!k!

= (−1)k
(
n+ k − 1

n− 1

)
Thus, our generalized binomial formula at a = −n, and n ∈ N, reads:

1

(1 + t)n
=

∞∑
k=0

(−1)k
(
n+ k − 1

n− 1

)
tk

(4) In order to prove this formula, it is convenient to write it with −t instead of t, in
order to get rid of signs. The formula to be proved becomes:

1

(1− t)n
=

∞∑
k=0

(
n+ k − 1

n− 1

)
tk

We prove this by recurrence on n. At n = 1 this formula definitely holds, as explained
in (2) above. So, assume that the formula holds at n ∈ N. We have then:

1

(1− t)n+1
=

1

1− t
· 1

(1− t)n

=
∞∑
k=0

tk
∞∑
l=0

(
n+ l − 1

n− 1

)
tl

=
∞∑
s=0

ts
s∑

l=0

(
n+ l − 1

n− 1

)
On the other hand, the formula that we want to prove is:

1

(1− t)n+1
=

∞∑
s=0

(
n+ s

n

)
tk

Thus, in order to finish, we must prove the following formula:

s∑
l=0

(
n+ l − 1

n− 1

)
=

(
n+ s

n

)
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(5) In order to prove this latter formula, we proceed by recurrence on s ∈ N. At s = 0
the formula is trivial, 1 = 1. So, assume that the formula holds at s ∈ N. In order to
prove the formula at s+ 1, we are in need of the following formula:(

n+ s

n

)
+

(
n+ s

n− 1

)
=

(
n+ s+ 1

n

)
But this is the Pascal formula, that we know well, and we are done. □

Getting now to probability, we can talk about Pascal laws, and their properties.

3b. Compound Poisson

In relation with Poisson laws, we have work to do too. Indeed, we have the following
notion, extending the Poisson limit theory developed in the previous section:

Definition 3.2. Associated to any compactly supported positive measure ν on C, not
necessarily of mass 1, is the probability measure

pν = lim
n→∞

((
1− t

n

)
δ0 +

1

n
ν

)∗n

where t = mass(ν), called compound Poisson law.

In what follows we will be mainly interested in the case where the measure ν is discrete,
as is for instance the case for ν = tδ1 with t > 0, which produces the Poisson laws. The
following standard result allows one to detect compound Poisson laws:

Proposition 3.3. For ν =
∑s

i=1 tiδzi with ti > 0 and zi ∈ C, we have

Fpν (y) = exp

(
s∑

i=1

ti(e
iyzi − 1)

)
where F denotes the Fourier transform.

Proof. Let ηn be the measure in Definition 3.2, under the convolution sign:

ηn =

(
1− t

n

)
δ0 +

1

n
ν

We have then the following computation:

Fηn(y) =

(
1− t

n

)
+

1

n

s∑
i=1

tie
iyzi =⇒ Fη∗nn (y) =

((
1− t

n

)
+

1

n

s∑
i=1

tie
iyzi

)n

=⇒ Fpν (y) = exp

(
s∑

i=1

ti(e
iyzi − 1)

)
Thus, we have obtained the formula in the statement. □
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We have as well the following result, providing an alternative to Definition 3.2, and
which will be our formulation here of the Compound Poisson Limit Theorem:

Theorem 3.4 (CPLT). For ν =
∑s

i=1 tiδzi with ti > 0 and zi ∈ C, we have

pν = law

(
s∑

i=1

ziαi

)
where the variables αi are Poisson (ti), independent.

Proof. Let α be the sum of Poisson variables in the statement, namely:

α =
s∑

i=1

ziαi

By using some standard Fourier transform formulae, we have:

Fαi
(y) = exp(ti(e

iy − 1)) =⇒ Fziαi
(y) = exp(ti(e

iyzi − 1))

=⇒ Fα(y) = exp

(
s∑

i=1

ti(e
iyzi − 1)

)
Thus we have indeed the same formula as in Proposition 3.3, as desired. □

At the level of main examples of compound Poisson laws, we have:

Definition 3.5. The Bessel law of level s ∈ N ∪ {∞} and parameter t > 0 is

bst = ptεs

with εs being the uniform measure on the s-th roots of unity. The measures

bt = b2t , Bt = b∞t

are called real Bessel law, and complex Bessel law.

In practice now, we can study the above measures bst in our standard way, meaning
density, moments, Fourier, semigroup property, limiting theorems, and other aspects. In
what regards limiting theorems, the measures bst appear by definition via the CPLT, so
done with that. As a consequence of this, however, let us record the following fact:

Proposition 3.6. The Bessel laws are given by

bst = law

(
s∑

k=1

wkak

)
where a1, . . . , as are Poisson (t) independent, and w = e2πi/s.

Proof. This follows indeed from Theorem 3.4. □

As a first basic theoretical result about the Bessel laws, we have:
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Theorem 3.7. The generalized Bessel laws bst have the property

bst ∗ bst′ = bst+t′

so they form a truncated one-parameter semigroup with respect to convolution.

Proof. This follows indeed from the Fourier transform formula from Proposition 3.3,
because for the Bessel laws, the log of this Fourier transform is linear in t. □

Regarding now the moments, the result here is as follows:

Theorem 3.8. The moments of the Bessel law bst are the numbers

Mk = |P s(k)|
where P s(k) is the set of partitions of {1, . . . , k} satisfying

#◦ = # • (s)
as a weighted sum, in each block.

Proof. We already know that the formula in the statement holds indeed at s = 1,
where b1t = pt is the Poisson law of parameter t > 0, and where P 1 = P is the set of all
partitions. At s = 2 we have P 2 = Peven, and the result is elementary as well, from what
we have in the above. In general, this follows by doing some standard combinatorics. □

We would like to develop now some more theory for the Bessel laws. First, it is
convenient to introduce as well modified versions of these laws, as follows:

Definition 3.9. The Bessel and modified Bessel laws are given by

bst = law

(
s∑

k=1

wkak

)
, b̃st = law

(
s∑

k=1

wkak

)s

where a1, . . . , as are independent random variables, each of them following the Poisson
law of parameter t/s, and w = e2πi/s.

As a first remark, at s = 1 we get the Poisson law of parameter t:

b1t = b̃1t = e−t

∞∑
r=0

tr

r!
δr

We will need in our computations the level s exponential function, given by:

exps z =
∞∑
k=0

zsk

(sk)!

We have the following formula, in terms of root of unity w = e2πi/s:

exps z =
1

s

s∑
k=1

exp(wkz)
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Observe also that at s = 1, 2 we have the following formulae:

exp1 = exp , exp2 = cosh

We have the following result, regarding both the plain and modified Bessel laws, which
is a more explicit version of Proposition 3.3, for the Bessel laws:

Theorem 3.10. The Fourier transform of bst is given by

logF s
t (z) = t (exps z − 1)

so in particular the measures bst are additive with respect to t.

Proof. Consider, as in Proposition 3.6, the following variable:

a =
s∑

k=1

wkak

We have the following computation, for the corresponding Fourier transform:

logFa(z) =
s∑

k=1

logFak(w
kz)

=
s∑

k=1

t

s

(
exp(wkz)− 1

)
But this gives the following formula, in terms of the above function exps:

logFa(z) = t

((
1

s

s∑
k=1

exp(wkz)

)
− 1

)
= t (exps(z)− 1)

Now since bst is the law of a, this gives the formula in the statement. □

Let us study now the densities of bst , b̃
s
t . We have here the following result:

Theorem 3.11. We have the formulae

bst = e−t

∞∑
p1=0

. . .

∞∑
ps=0

1

p1! . . . ps!

(
t

s

)p1+...+ps

δ

(
s∑

k=1

wkpk

)

b̃st = e−t

∞∑
p1=0

. . .

∞∑
ps=0

1

p1! . . . ps!

(
t

s

)p1+...+ps

δ

(
s∑

k=1

wkpk

)s

where w = e2πi/s, and the δ symbol is a Dirac mass.
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Proof. It is enough to prove the formula for bst . For this purpose, we compute the
Fourier transform of the measure on the right. This is given by:

F (z) = e−t

∞∑
p1=0

. . .

∞∑
ps=0

1

p1! . . . ps!

(
t

s

)p1+...+ps

Fδ

(
s∑

k=1

wkpk

)
(z)

= e−t

∞∑
p1=0

. . .

∞∑
ps=0

1

p1! . . . ps!

(
t

s

)p1+...+ps

exp

(
s∑

k=1

wkpkz

)

= e−t

∞∑
r=0

(
t

s

)r ∑
Σpi=r

exp
(∑s

k=1w
kpkz

)
p1! . . . ps!

We multiply by et, and we compute the derivative with respect to t:

(etF (z))′ =
∞∑
r=1

r

s

(
t

s

)r−1 ∑
Σpi=r

exp
(∑s

k=1w
kpkz

)
p1! . . . ps!

=
1

s

∞∑
r=1

(
t

s

)r−1 ∑
Σpi=r

(
s∑

l=1

pl

)
exp

(∑s
k=1w

kpkz
)

p1! . . . ps!

=
1

s

∞∑
r=1

(
t

s

)r−1 ∑
Σpi=r

s∑
l=1

exp
(∑s

k=1w
kpkz

)
p1! . . . pl−1!(pl − 1)!pl+1! . . . ps!

By using the variable u = r − 1, we get:

(etF (z))′ =
1

s

∞∑
u=0

(
t

s

)u ∑
Σqi=u

s∑
l=1

exp
(
wlz +

∑s
k=1w

kqkz
)

q1! . . . qs!

=

(
1

s

s∑
l=1

exp(wlz)

)(
∞∑
u=0

(
t

s

)u ∑
Σqi=u

exp
(∑s

k=1w
kqkz

)
q1! . . . qs!

)
= (exps z)(e

tF (z))

On the other hand, consider the following function:

Φ(t) = exp(t exps z)

This function satisfies as well the equation found above, namely:

Φ′(t) = (exps z)Φ(t)

We conclude from this that we have the following equality of functions:

etF (z) = Φ(t)
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But this gives the following formula, for the logarithm of the Fourier transform:

logF = log(e−t exp(t exps z))

= log(exp(t(exps z − 1)))

= t(exps z − 1)

Thus, we are led to the formulae in the statement. □

3c. Hypergeometric laws

We can talk about hypergeometric laws. Again, we will be back to this.

3d. Beta distributions

Finally, we can talk about beta distributions. We will be back to this.

3e. Exercises

Exercises:

Exercise 3.12.

Exercise 3.13.

Exercise 3.14.

Exercise 3.15.

Exercise 3.16.

Exercise 3.17.

Exercise 3.18.

Exercise 3.19.

Bonus exercise.



CHAPTER 4

Central limits

4a. Central limits

We have seen that some interesting theory can be developed for the discrete measures,
notably with a lot of exciting results regarding the Poisson laws, and their versions.

However, we cannot leave basic probability without talking, in one form or another,
about central limits. You have certainly heard about bell-shaped curves, and perhaps
even observed them in physics or chemistry class, because any routine measurement leads
to such curves. Mathematically, here is the question that we would like to solve:

Question 4.1. Given random variables f1, f2, f3, . . ., say taken discrete, which are
i.i.d., centered, and with common variance t > 0, do we have

1√
n

n∑
i=1

fi ∼ gt

in the n→ ∞ limit, for some bell-shaped density gt? And, what is the formula of gt?

Observe that this question perfectly makes sense, with the probability theory that we
know, by assuming that our random variables f1, f2, f3, . . . are discrete, as said above. As
for the 1/

√
n factor, there is certainly need for a normalization factor there, as for things

to have a chance to converge, and the good factor is 1/
√
n, as shown by:

Proposition 4.2. In order for a sum of the following type to have a chance to con-
verge, with f1, f2, f3, . . . being i.i.d., centered, and with common variance t > 0,

S =
n∑

i=1

fi

we must normalize this sum by a 1/
√
n factor, as in Question 4.1.

Proof. The idea here is to look at the moments of S. Since all variables fi are
centered, E(fi) = 0, so is their sum, E(S) = 0, and no contradiction here. However,
when looking at the variance of S, which equals the second moment, due to E(S) = 0,
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things become interesting, due to the following computation:

V (S) = E(S2)

= E

(∑
ij

fifj

)
=

∑
ij

E(fifj)

=
∑
i

E(f 2
i ) +

∑
i ̸=j

E(fi)E(fj)

=
∑
i

E(f 2
i )

= nt

Thus, we are in need a normalization factor α, in order for our sum to have a chance
to converge. But, repeating the computation with S replaced by αS gives:

V (αS) = α2nt

Thus, the good normalization factor is α = 1/
√
n, as claimed. □

So far, so good, we have a nice problem above, and time now to make a plan, in order
to solve it. With the tools that we have, from this book so far, here is such a plan:

Plan 4.3. In order to solve our central limiting question, we have to:

(1) Apply Fourier and let n→ ∞, as to compute the Fourier transform of gt.
(2) Do some combinatorics and calculus, as to compute the moments of gt.
(3) Recover gt out of its moments, again via combinatorics and calculus.

Getting to work now, let us start with (1). Things are quickly done here, by using the
standard linearization results for convolution, which lead to:

Theorem 4.4. Given discrete variables f1, f2, f3, . . ., which are i.i.d., centered, and
with common variance t > 0, we have

1√
n

n∑
i=1

fi ∼ gt

with n→ ∞, with gt being the law having F (x) = e−tx2/2 as Fourier transform.

Proof. There are several things going on here, the idea being as follows:
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(1) Observe first that in terms of moments, the Fourier transform of an arbitrary
random variable f : X → R is given by the following formula:

Ff (x) = E(eixf )

= E

(
∞∑
k=0

(ixf)k

k!

)

=
∞∑
k=0

(ix)kE(fk)

k!

=
∞∑
k=0

ikMk(f)

k!
xk

(2) In particular, in the case of a centered variable, E(f) = 0, as those that we are
interested in, the Fourier transform formula that we get is as follows:

Ff (x) = 1− M2(f)

2
· x2 − i

M3(f)

6
· x3 + . . .

Moreover, by further assuming that the Fourier variable is small, x ≃ 0, the Fourier
transform formula that we get, that we will use in what follows, becomes:

Ff (x) = 1− M2(f)

2
· x2 +O(x2)

(3) In addition to this, we will also need to know what happens to the Fourier transform
when rescaling. But the formula here is very easy to find, as follows:

Fαf (x) = E(eixαf )

= E(eiαxf )

= Ff (αx)

(4) Good news, we can now do our computation. By using the above formulae in (2)
and (3), the Fourier transform of the variable in the statement is given by:

F (x) =

[
Ff

(
x√
n

)]n
=

[
1− M2(f)

2
· x

2

n
+O(n−2)

]n
=

[
1− tx2

2n
+O(n−2)

]n
≃

[
1− tx2

2n

]n
≃ e−tx2/2
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(3) We are therefore led to the conclusion in the statement, modulo the fact that

we do not know yet that a density gt having as Fourier transform F (x) = e−tx2/2 really
exists, plus perhaps some other abstract issues, related to the continuous measures, to be
discussed too. But too late to go back, both cat and sailors are happy, we will go ahead.
So, theorem proved, modulo finding that law gt, which still remains to be done. □

Getting now to step (2) of our Plan 4.3, that is easy to work out too, via some
elementary one-variable calculus, with the result here being as follows:

Theorem 4.5. The “normal” law gt, having as Fourier transform

F (x) = e−tx2/2

must have all odd moments zero, and its even moments must be the numbers

Mk(gt) = tk/2 × k!!

where k!! = (k − 1)(k − 3)(k − 5) . . ., for k ∈ 2N.

Proof. Again, several things going on here, the idea being as follows:

(1) To start with, at the level of formalism and notations, in view of Question 4.1 and
of Theorem 4.4, we have adopted the term “normal” for the mysterious law gt that we
are looking for, the one having F (x) = e−tx2/2 as Fourier transform.

(2) Getting towards the computation of the moments, as a first useful observation,
according to Theorem 4.4 this normal law gt must be centered, as shown by:

fi = centered =⇒
n∑

i=1

fi = centered

=⇒ 1√
n

n∑
i=1

fi = centered

=⇒ gt = centered

Moreover, the same argument works by replacing “centered” with “having an even
function as density”, and this shows, via some standard calculus, that we will leave here
as an exercise, that the odd moments of our normal law must vanish:

M2l+1(gt) = 0

Thus, first assertion proved, and we only have to care about the even moments.

(3) As a comment here, as we will see in a moment, our study below of the moments
computes in fact the odd moments too, as being all equal to 0, this time without making
reference to Theorem 4.4. Thus, definitely no worries with the odd moments.
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(4) Getting to work now, we must reformulate the equation F (x) = e−tx2/2, in terms
of moments. We know from the proof of Theorem 4.4 that we have:

F (x) =
∞∑
k=0

ikMk(gt)

k!
xk

On the other hand, we have the following formula, for the exponential:

e−tx2/2 =
∞∑
r=0

(−1)r
trx2r

2rr!

Thus, our equation F (x) = e−tx2/2 takes the following form:

∞∑
k=0

ikMk(gt)

k!
xk =

∞∑
r=0

(−1)r
trx2r

2rr!

(5) As a first observation, the odd moments must vanish, as said in (2) above. As for
the even moments, these can be computed as follows:

Mk(gt) = k!× tk/2

2k/2(k/2)!

= tk/2 × k!

2k/2(k/2)!

= tk/2 × 2 · 3 · 4 . . . (k − 1) · k
2 · 4 · 6 . . . (k − 2) · k

= tk/2 × 3 · 5 . . . (k − 3)(k − 1)

= tk/2 × k!!

Thus, we are led to the formula in the statement. □

The moment formula that we found is quite interesting, and before going ahead with
step (3) of our Plan 4.3, let us look a bit at this, and see what we can further say.

To be more precise, in analogy with what we know about the Poisson laws, and about
the Bessel laws too, making reference to interesting combinatorics and partitions, when
it comes to moments, we have the following result, regarding the normal laws:

Theorem 4.6. The moments of the normal law gt are given by

Mk(gt) = tk/2|P2(k)|

for any k ∈ N, with P2(k) standing for the pairings of {1, . . . , k}.
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Proof. This is a reformulation of Theorem 4.5, the idea being as follows:

(1) We know from Theorem 4.5 that the moments of the normal law Mk = Mk(gt)
that we are interested in are given by the following formula, with the convention k!! = 0
for k odd, and k!! = (k − 1)(k − 3)(k − 5) . . . for k even, for the double factorials:

Mk(gt) = tk/2 × k!!

Now observe that, according to our above convention for the double factorials, these
are subject to the following recurrence relation, with initial data 1!! = 0, 2!! = 1:

k!! = (k − 1)(k − 2)!!

We conclude that the moments of the normal law Mk = Mk(gt) are subject to the
following recurrence relation, with initial data M1 = 0,M2 = t:

Mk = t(k − 1)Mk−2

(2) On the other hand, let us first count the pairings of the set {1, . . . , k}. In order
to have such a pairing, we must pair 1 with one of the numbers 2, . . . , k, and then use a
pairing of the remaining k − 2 numbers. Thus, we have the following recurrence formula
for the number Pk of such pairings, with the initial data P1 = 0, P2 = 1:

Pk = (k − 1)Pk−2

Now by multiplying by tk/2, the resulting numbers Nk = tk/2Pk will be subject to the
following recurrence relation, with initial data N1 = 0, N2 = t:

Nk = t(k − 1)Nk−2

(3) Thus, the moments Mk =Mk(gt) and the numbers Nk = tk/2Pk are subject to the
same recurrence relation, with the same initial data, so they are equal, as claimed. □

Still in analogy with what we know about the Poisson laws, and about the Bessel laws
too, we can further process what we found in Theorem 4.6, and we are led to:

Theorem 4.7. The moments of the normal law gt are given by

Mk(gt) =
∑

π∈P2(k)

t|π|

where P2(k) is the set of pairings of {1, . . . , k}, and |.| is the number of blocks.

Proof. This is a quick reformulation of Theorem 4.6, with the number of blocks of
a pairing of {1, . . . , k} being trivially k/2, independently of the pairing. □

It is possible to do some more combinatorics here, again in relation with what we
know about the Poisson laws, for instance by looking at cumulants, and we have:
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Theorem 4.8. The cumulants of the normal law gt are the following numbers:

0, t, 0, 0, . . .

In particular, the normal laws satisfy gs ∗ gt = gs+t, for any s, t > 0.

Proof. We have two assertions here, the idea being as follows:

(1) For the normal law gt we have the following computation:

Kµ(ξ) = logFµ(−iξ)
= log exp

[
−t(−iξ)2/2

]
= tξ2/2

But the plain coefficients of this series are the numbers 0, t/2, 0, 0, . . . , and so the
Taylor coefficients of this series are the numbers 0, t, 0, 0, . . . , as claimed.

(2) As for the last assertion, regarding the semigroup property of the normal laws,
this actually follows from Theorem 4.4, the log of the Fourier transform being linear in t,
but is best seen by looking at the cumulants, which are obviously linear in t.

(3) However, as a technical remark here, the linearization results for the convolution
that we have, be them in terms of the Fourier transform, or of the cumulants, were
formally established before only for the discrete measures. So, instead of further thinking
at all this, let us pull out a third, elementary proof for gs ∗ gt = gs+t.

(4) In order to do this, consider, as in Theorem 4.4, on one hand i.i.d. centered vari-
ables f1, f2, f3, . . . having variance s > 0, and on the other hand i.i.d. centered variables
h1, h2, h3, . . . having variance t > 0. According to Theorem 16.4, we have:

1√
n

n∑
i=1

fi ∼ gs ,
1√
n

n∑
i=1

hi ∼ gt

Now let us sum these formulae. Assuming that the variables f1, f2, f3, . . . that we used
were independent from the variables h1, h2, h3, . . ., we obtain in this way:

1√
n

n∑
i=1

(fi + hi) ∼ gs ∗ gt

On the other hand, yet another application of Theorem 4.4, with the remark that by
independence, the variance of fi + hi is indeed s+ t, gives the following formula:

1√
n

n∑
i=1

(fi + hi) ∼ gs+t

Thus, we are led to the semigroup formula gs ∗ gt = gs+t, as desired. □

As a philosophical conclusion now to all this, let us formulate:
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Conclusion 4.9. The normal laws gt have properties which are quite similar to those
of the Poisson laws pt, and combinatorially, the passage

pt → gt

appears by replacing the partitions with the pairings.

Which sounds quite conceptual, and promising, hope you agree with me. In the
meantime, however, we still need to know what the density of gt is.

4b. Normal laws

So, let us get now to step (3) of our Plan 4.3. This does not look obvious at all, but
some partial integration know-how leads us to the following statement:

Theorem 4.10. The normal laws are given by

gt =
1√
2t · I

e−x2/2tdx

with the constant on the bottom being I =
∫
R e

−x2
dx.

Proof. This comes from partial integration, as follows:

(1) Let us first do a naive computation. Consider the following quantities:

Mk =

∫
R
xke−x2

dx

It is quite obvious that by partial integration we will get a recurrence formula for these
numbers, similar to the one that we have for the moments of the normal laws. So, let us
do this. By partial integration we obtain the following formula, for any k ∈ N:

Mk = −1

2

∫
R
xk−1

(
e−x2

)′
dx

=
1

2

∫
R
(k − 1)xk−2e−x2

dx

=
k − 1

2
·Mk−2

(2) Thus, we are on the good way, with the recurrence formula that we got being the
same as that for the moments of g1/2. Now let us fine-tune this, as to reach to the same
recurrence as for the moments of gt. Consider the following quantities:

Nk =

∫
R
xke−x2/2tdx
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By partial integration as before, we obtain the following formula:

Nk =

∫
R
(txk−1)

(
−e−x2/2t

)′
dx

=

∫
R
t(k − 1)xk−2e−x2/2tdx

= t(k − 1)

∫
R
xk−2e−x2/2tdx

= t(k − 1)Nk−2

(3) Thus, almost done, and it remains to discuss normalization. We know from the
above that we must have a formula as follows, with It being a certain constant:

gt =
1

It
· e−x2/2t dx

But the constant It must be the one making gt of mass 1, and so:

It =

∫
R
e−x2/2t dx

=

∫
R
e−2ty2/2t

√
2tdy

=
√
2t

∫
R
e−y2dy

Thus, we are led to the formula in the statement. □

What we did in the above is good work, and it remains to compute the constant I
appearing in Theorem 4.10, given by the following formula, and called Gauss integral:

I =

∫
R
e−x2

dx

With some advanced integration know-how, this can be done, as follows:

Theorem 4.11. We have the following formula,∫
R
e−x2

dx =
√
π

called Gauss integral formula.
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Proof. As already mentioned, this is something which is nearly impossible to prove,
with bare hands. However, this can be proved by using two dimensions, as follows:∫

R

∫
R
e−x2−y2dxdy = 4

∫ ∞

0

∫ ∞

0

e−x2−y2dxdy

= 4

∫ ∞

0

∫ ∞

0

e−t2y2−y2ydtdy

= 4

∫ ∞

0

∫ ∞

0

ye−y2(1+t2)dydt

= 2

∫ ∞

0

∫ ∞

0

(
−e

−y2(1+t2)

1 + t2

)′

dydt

= 2

∫ ∞

0

dt

1 + t2

= 2

∫ ∞

0

(arctan t)′dt

= π

Thus, we are led to the conclusion in the statement. □

Very nice, so as a final conclusion to our study, started long ago, in the beginning of
this chapter, we can now formulate the Central Limit Theorem (CLT), as follows:

Theorem 4.12 (CLT). Given discrete random variables f1, f2, f3, . . ., which are i.i.d.,
centered, and with common variance t > 0, we have

1√
n

n∑
i=1

fi ∼ gt

in the n→ ∞ limit, in moments, with the limiting mesure being

gt =
1√
2πt

e−x2/2tdx

called normal, or Gaussian law of parameter t > 0.

Proof. This follows indeed from our various results above, and more specifically from
Theorem 4.4, Theorem 4.5 for the terminology, Theorem 4.10 and Theorem 4.11. □

Let us study now more in detail the laws that we found. Normally we already have
everything that is needed, but it is instructive at this point to do some computations,
based on the explicit formula of gt found above, and on Theorem 4.11. We first have:

Proposition 4.13. We have the variance formula

V (gt) = t

valid for any t > 0.
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Proof. We already know this, but we can establish this as well directly, starting from
our formula of gt from Theorem 4.12. Indeed, the first moment is 0, because our normal
law gt is centered. As for the second moment, this can be computed as follows:

M2 =
1√
2πt

∫
R
x2e−x2/2tdx

=
1√
2πt

∫
R
(tx)

(
−e−x2/2t

)′
dx

=
1√
2πt

∫
R
te−x2/2tdx

= t

We conclude from this that the variance is V =M2 = t, as claimed. □

More generally, we can recover in this way the computation of all moments:

Theorem 4.14. The even moments of the normal law are the numbers

Mk(gt) = tk/2 × k!!

where k!! = (k − 1)(k − 3)(k − 5) . . . , and the odd moments vanish.

Proof. Again, we already know this, but we can establish this as well directly, start-
ing from our formula above of gt. Indeed, we have the following computation:

Mk =
1√
2πt

∫
R
yke−y2/2tdy

=
1√
2πt

∫
R
(tyk−1)

(
−e−y2/2t

)′
dy

=
1√
2πt

∫
R
t(k − 1)yk−2e−y2/2tdy

= t(k − 1)× 1√
2πt

∫
R
yk−2e−y2/2tdy

= t(k − 1)Mk−2

Thus by recurrence, we are led to the formula in the statement. □

Here is another result, which is the key one for the study of the normal laws:

Theorem 4.15. We have the following formula, valid for any t > 0:

Fgt(x) = e−tx2/2

In particular, the normal laws satisfy gs ∗ gt = gs+t, for any s, t > 0.
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Proof. As before, we already know this, but we can establish now the Fourier trans-
form formula as well directly, by using the explicit formula of gt, as follows:

Fgt(x) =
1√
2πt

∫
R
e−y2/2t+ixydy

=
1√
2πt

∫
R
e−(y/

√
2t−

√
t/2ix)2−tx2/2dy

=
1√
2πt

∫
R
e−z2−tx2/2

√
2tdz

=
1√
π
e−tx2/2

∫
R
e−z2dz

= e−tx2/2

As for the last assertion, this follows from the fact that logFgt is linear in t. □

Observe that, thinking retrospectively, the above computation formally solves the
question raised by Theorem 4.4, and so could have been used there, afterwards. However,
and here comes the point, all this is based on Theorem 4.11, and also, crucially, on our
work from Theorem 4.10, which in turn was based on moments and so on.

4c. Complex variables

Let us discuss now the complex analogues of all the above, with a notion of complex
normal, or Gaussian law. To start with, we have the following definition:

Definition 4.16. A complex random variable is a variable f : X → C. In the discrete
case, the law of such a variable is the complex probability measure

µ =
∑
i

αiδzi , αi ≥ 0 ,
∑
i

αi = 1 , zi ∈ C

given by the following formula, with P being the probability over X,

µ =
∑
z∈C

P (f = z)δz

with the sum being finite or countable, as per our discretness assumption.

In order to understand the precise relation with the real theory, that we know well,
we can decompose any complex variable f : X → C as a sum, as follows:

f = g + ih , g = Re(f), h = Im(f)
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With this done, we have the following computation, for the corresponding law:

µ =
∑
z∈C

P (f = z)δz

=
∑
x,y∈R

P (f = x+ iy)δx+iy

=
∑
x,y∈R

P (g + ih = x+ iy)δx+iy

=
∑
x,y∈R

P (g = x, h = y)δx+iy

In the case where the real and imaginary parts g, h : X → R are independent, we can
say more about this, with the above computation having the following continuation:

µ =
∑
x,y∈R

P (g = x, h = y)δx+iy

=
∑
x,y∈R

P (g = x)P (h = y)δx+iy

=
∑
x,y∈R

P (g = x)P (h = y)δx ∗ δiy

=

(∑
x∈R

P (g = x)δx

)
∗

(∑
y∈R

P (h = y)δiy

)
= µg ∗ iµh

To be more precise, we have used here in the beginning the independence of the
variables h, g : X → R, and at the end we have denoted the measure on the right, which
is obtained from µh by putting this measure on the imaginary axis, by iµh.

All this is quite interesting, going beyond what we know so far about basic probability,
in the real case, so let us record this finding, along with a bit more, as follows:

Theorem 4.17. For a discrete complex random variable f : X → C, decomposed into
real and imaginary parts as f = g + ih, and with g, h assumed independent, we have

µf = µg ∗ iµh

with ∗ being the usual convolution operation, δz ∗ δt = δz+t, and with µ→ iµ denoting the
rotated version, R → iR. If g, h are not independent, this formula does not hold.

Proof. We already know that the first assertion holds, as explained in the above.
As for the second assertion, this follows by carefully examining the above computation.
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Indeed, we have used only at one point the independence of g, h, so for the formula
µf = µg ∗ iµh to hold, the equality used at that point, which is as follows, must hold:∑

x,y∈R

P (g = x, h = y)δx+iy =
∑
x,y∈R

P (g = x)P (h = y)δx+iy

But this is the same as saying that the following must hold, for any x, y:

P (g = x, h = y) = P (g = x)P (h = y)

We conclude that, in order for the decomposition formula µf = µg ∗ iµh to hold, the
real and imaginary parts g, h : X → R must be independent, as stated. □

Going now to the point, probabilistic limiting theorems, let us discuss the complex
analogue of the CLT. We have the following statement, to start with:

Theorem 4.18. Given discrete complex variables f1, f2, f3, . . . whose real and imagi-
nary parts are i.i.d., centered, and with common variance t > 0, we have

1√
n

n∑
i=1

fi ∼ Ct

with n → ∞, in moments, where Ct is the law of a complex variable whose real and
imaginary parts are independent, and each following the law gt.

Proof. This follows indeed from the real CLT, established in Theorem 4.12, simply
by taking the real and imaginary parts of all the variables involved. □

It is tempting at this point to call Theorem 4.18 the complex CLT, or CCLT, but before
doing that, let us study a bit more all this. We would like to have a better understanding
of the limiting law Ct at the end, and for this purpose, let us look at a sum as follows,
with a, b being real independent variables, both following the normal law gt:

c = a+ ib

To start with, this variable is centered, in a complex sense, because we have:

E(c) = E(a+ ib)

= E(a) + iE(b)

= 0 + i · 0
= 0

Regarding now the variance, things are more complicated, because the usual variance
formula from the real case, which is V (c) = E(c2) in the centered case, will not provide
us with a positive number, in the case where our variable is not real. So, in order to
have a variance which is real, and positive too, we must rather use a formula of type
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V (c) = E(|c|2), in the centered case. And, with this convention for the variance, we have
then the following computation, for the variance of the above variable c:

V (c) = E(|c|2)
= E(a2 + b2)

= E(a2) + E(b2)

= V (a2) + V (b2)

= t+ t

= 2t

But this suggests to divide everything by
√
2, as to have in the end a variable having

complex variance t, in our sense, and we are led in this way into:

Definition 4.19. The complex normal, or Gaussian law of parameter t > 0 is

Gt = law

(
1√
2
(a+ ib)

)
where a, b are real and independent, each following the law gt.

In short, the complex normal laws appear as natural complexifications of the real
normal laws. As in the real case, these measures form convolution semigroups:

Proposition 4.20. The complex Gaussian laws have the property

Gs ∗Gt = Gs+t

for any s, t > 0, and so they form a convolution semigroup.

Proof. This follows indeed from the real result, namely gs ∗ gt = gs+t, established in
Theorem 4.8, simply by taking real and imaginary parts. □

We have as well the following complex analogue of the CLT:

Theorem 4.21 (CCLT). Given discrete complex variables f1, f2, f3, . . . whose real and
imaginary parts are i.i.d. and centered, and having variance t > 0, we have

1√
n

n∑
i=1

fi ∼ Gt

with n→ ∞, in moments.

Proof. This follows indeed from our previous CCLT result, from Theorem 4.18, by
dividing everything by

√
2, as explained in the above. □
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4d. Wick formula

Regarding now the moments, the situation here is more complicated than in the real
case, because in order to have good results, we have to deal with both the complex
variables, and their conjugates. Let us formulate the following definition:

Definition 4.22. The moments a complex variable f ∈ L∞(X) are the numbers

Mk = E(fk)

depending on colored integers k = ◦ • • ◦ . . . , with the conventions

f ∅ = 1 , f ◦ = f , f • = f̄

and multiplicativity, in order to define the colored powers fk.

As an illustration for this notion, which is something very intuitive, here are the
formulae of the four possible order 2 moments of a complex variable f :

M◦◦ = E(f 2) , M◦• = E(ff̄)

M•◦ = E(f̄f) , M•• = E(f̄ 2)

Observe that, since f, f̄ commute, we have the following identity, which shows that
there is a bit of redundancy in our above definition, as formulated:

M◦• =M•◦

In fact, again since f, f̄ commute, we can permute terms, in the general context of
Definition 4.22, and restrict the attention to exponents of the following type:

k = . . . ◦ ◦ ◦ • • • • . . .
However, our results about the complex Gaussian laws, and other complex laws, later

on, not to talk about laws of matrices, random matrices and other noncommuting vari-
ables, that will appear later too, will look better without doing this. So, we will use
Definition 4.22 as stated. Getting to work now, we first have the following result:

Theorem 4.23. The moments of the complex normal law are given by

Mk(Gt) =

{
tpp! (k uniform, of length 2p)

0 (k not uniform)

where k = ◦ • • ◦ . . . is called uniform when it contains the same number of ◦ and •.

Proof. We must compute the moments, with respect to colored integer exponents
k = ◦ • • ◦ . . . as above, of the variable from Definition 4.19, namely:

f =
1√
2
(a+ ib)

We can assume that we are in the case t = 1, and the proof here goes as follows:
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(1) As a first observation, in the case where our exponent k = ◦••◦ . . . is not uniform,
a standard rotation argument shows that the corresponding moment of f vanishes. To
be more precise, the variable f ′ = wf is complex Gaussian too, for any complex number
w ∈ T, and from Mk(f) =Mk(f

′) we obtain Mk(f) = 0, in this case.

(2) In the uniform case now, where the exponent k = ◦ • • ◦ . . . consists of p copies of
◦ and p copies of • , the corresponding moment can be computed as follows:

Mk =

∫
(ff̄)p

=
1

2p

∫
(a2 + b2)p

=
1

2p

∑
r

(
p

r

)∫
a2r
∫
b2p−2r

=
1

2p

∑
r

(
p

r

)
(2r)!!(2p− 2r)!!

=
1

2p

∑
r

p!

r!(p− r)!
· (2r)!
2rr!

· (2p− 2r)!

2p−r(p− r)!

=
p!

4p

∑
r

(
2r

r

)(
2p− 2r

p− r

)
(3) In order to finish now the computation, let us recall that we have the following

formula, coming from the generalized binomial formula, or from the Taylor formula:

1√
1 + t

=
∞∑
q=0

(
2q

q

)(
−t
4

)q

By taking the square of this series, we obtain the following formula:

1

1 + t
=
∑
p

(
−t
4

)p∑
r

(
2r

r

)(
2p− 2r

p− r

)
Now by looking at the coefficient of tp on both sides, we conclude that the sum on the

right equals 4p. Thus, we can finish the moment computation in (2), as follows:

Mk =
p!

4p
× 4p = p!

We are therefore led to the conclusion in the statement. □

As before with the real Gaussian laws, or even before with the Poisson and Bessel
laws, a better-looking statement regarding the moments is in terms of partitions.
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Indeed, given a colored integer k = ◦ • • ◦ . . . , let us say that π ∈ P2(k) is matching
when it pairs ◦ − • symbols. With this convention, we have the following result:

Theorem 4.24. The moments of the complex normal law are the numbers

Mk(Gt) =
∑

π∈P2(k)

t|π|

where P2(k) are the matching pairings of {1, . . . , k}, and |.| is the number of blocks.

Proof. This is a reformulation of Theorem 4.23. Indeed, we can assume that we are
in the case t = 1, and here we know from Theorem 4.23 that the moments are:

Mk =

{
(|k|/2)! (k uniform)

0 (k not uniform)

On the other hand, the numbers |P2(k)| are given by exactly the same formula. Indeed,
in order to have a matching pairing of k, our exponent k = ◦ • • ◦ . . . must be uniform,
consisting of p copies of ◦ and p copies of •, with p = |k|/2. But then the matching
pairings of k correspond to the permutations of the • symbols, as to be matched with
◦ symbols, and so we have p! such pairings. Thus, we have the same formula as for the
moments of f , and we are led to the conclusion in the statement. □

In practice, we also need to know how to compute joint moments. We have here:

Theorem 4.25 (Wick formula). Given independent variables fi, each following the
complex normal law Gt, with t > 0 being a fixed parameter, we have the formula

E
(
fk1
i1
. . . fks

is

)
= ts/2#

{
π ∈ P2(k)

∣∣∣π ≤ ker i
}

where k = k1 . . . ks and i = i1 . . . is, for the joint moments of these variables, where
π ≤ ker i means that the indices of i must fit into the blocks of π, in the obvious way.

Proof. This is something well-known, which can be proved as follows:

(1) Let us first discuss the case where we have a single variable f , which amounts in
taking fi = f for any i in the formula in the statement. What we have to compute here
are the moments of f , with respect to colored integer exponents k = ◦ • • ◦ . . . , and the
formula in the statement tells us that these moments must be:

E(fk) = t|k|/2|P2(k)|
But this is the formula in Theorem 4.24, so we are done with this case.

(2) In general now, when expanding the product fk1
i1
. . . fks

is
and rearranging the terms,

we are left with doing a number of computations as in (1), and then making the product
of the expectations that we found. But this amounts in counting the partitions in the
statement, with the condition π ≤ ker i there standing for the fact that we are doing the
various type (1) computations independently, and then making the product. □
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The above statement is one of the possible formulations of the Wick formula, and
there are many more formulations, which are all useful. For instance, we have:

Theorem 4.26 (Wick formula 2). Given independent variables fi, each following the
complex normal law Gt, with t > 0 being a fixed parameter, we have the formula

E
(
fi1 . . . fikf

∗
j1
. . . f ∗

jk

)
= tk#

{
π ∈ Sk

∣∣∣iπ(r) = jr,∀r
}

for the non-vanishing joint moments of these variables.

Proof. This follows from the usual Wick formula, from Theorem 4.25. With some
changes in the indices and notations, the formula there reads:

E
(
fK1
I1
. . . fKs

Is

)
= ts/2#

{
σ ∈ P2(K)

∣∣∣σ ≤ ker I
}

Now observe that we have P2(K) = ∅, unless the colored integer K = K1 . . . Ks

is uniform, in the sense that it contains the same number of ◦ and • symbols. Up to
permutations, the non-trivial case, where the moment is non-vanishing, is the case where
the colored integer K = K1 . . . Ks is of the following special form:

K = ◦ ◦ . . . ◦︸ ︷︷ ︸
k

• • . . . •︸ ︷︷ ︸
k

So, let us focus on this case, which is the non-trivial one. Here we have s = 2k, and
we can write the multi-index I = I1 . . . Is in the following way:

I = i1 . . . ik j1 . . . jk

With these changes made, the above usual Wick formula reads:

E
(
fi1 . . . fikf

∗
j1
. . . f ∗

jk

)
= tk#

{
σ ∈ P2(K)

∣∣∣σ ≤ ker(ij)
}

The point now is that the matching pairings σ ∈ P2(K), with K = ◦ . . . ◦ • . . . • , of
length 2k, as above, correspond to the permutations π ∈ Sk, in the obvious way. With
this identification made, the above modified usual Wick formula becomes:

E
(
fi1 . . . fikf

∗
j1
. . . f ∗

jk

)
= tk#

{
π ∈ Sk

∣∣∣iπ(r) = jr,∀r
}

Thus, we have reached to the formula in the statement, and we are done. □

Finally, here is one more formulation of the Wick formula, useful as well:

Theorem 4.27 (Wick formula 3). Given independent variables fi, each following the
complex normal law Gt, with t > 0 being a fixed parameter, we have the formula

E
(
fi1f

∗
j1
. . . fikf

∗
jk

)
= tk#

{
π ∈ Sk

∣∣∣iπ(r) = jr,∀r
}

for the non-vanishing joint moments of these variables.
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Proof. This follows from our second Wick formula, from Theorem 4.26, simply by
permuting the terms, as to have an alternating sequence of plain and conjugate variables.
Alternatively, we can start with Theorem 4.25, and then perform the same manipulations
as in the proof of Theorem 4.26, but with the exponent being this time as follows:

K = ◦ • ◦ • . . . . . . ◦ •︸ ︷︷ ︸
2k

Thus, we are led to the conclusion in the statement. □

4e. Exercises

Exercises:

Exercise 4.28.

Exercise 4.29.

Exercise 4.30.

Exercise 4.31.

Exercise 4.32.

Exercise 4.33.

Exercise 4.34.

Exercise 4.35.

Bonus exercise.
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Laws of matrices





CHAPTER 5

Linear algebra

5a. Linear maps

According to various findings in physics, starting with those of Heisenberg from the
early 1920s, basic quantum mechanics involves linear operators T : H → H from a
complex Hilbert space H to itself. The space H is typically infinite dimensional, a basic
example being the Schrödinger space H = L2(R3) of the wave functions ψ : R3 → C of
the electron. In fact, in what regards the electron, this space H = L2(R3) is basically
the correct one, with the only adjustment needed, due to Pauli and others, being that of
tensoring with a copy of K = C2, in order to account for the electron spin.

But more on this later. Let us start this Part II more modestly, as follows:

Fact 5.1. We are interested in quantum mechanics, taking place in infinite dimen-
sions, but as a main source of inspiration we will have H = CN , with scalar product

< x, y >=
∑
i

xiȳi

with the linearity at left being the standard mathematical convention. More specifically,
we will be interested in the mathematics of the linear operators T : H → H.

The point now, that you surely know about, is that the above operators T : H → H
correspond to the square matrices A ∈ MN(C). Thus, as a preliminary to what we want
to do in this book, we need a good knowledge of linear algebra over C.

You probably know well linear algebra, but always good to recall this, and this will
be the purpose of the present chapter. Let us start with the very basics:

Theorem 5.2. The linear maps T : CN → CN are in correspondence with the square
matrices A ∈MN(C), with the linear map associated to such a matrix being

Tx = Ax

and with the matrix associated to a linear map being Aij =< Tej, ei >.

Proof. The first assertion is clear, because a linear map T : CN → CN must send a
vector x ∈ CN to a certain vector Tx ∈ CN , all whose components are linear combinations

73
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of the components of x. Thus, we can write, for certain complex numbers Aij ∈ C:

T


x1
...
...
xN

 =


A11x1 + . . .+ A1NxN

...

...
AN1x1 + . . .+ ANNxN


Now the parameters Aij ∈ C can be regarded as being the entries of a square matrix

A ∈MN(C), and with the usual convention for matrix multiplication, we have:

Tx = Ax

Regarding the second assertion, with Tx = Ax as above, if we denote by e1, . . . , eN
the standard basis of CN , then we have the following formula:

Tej =


A1j
...
...

ANj


But this gives the second formula, < Tej, ei >= Aij, as desired. □

Our claim now is that, no matter what we want to do with T or A, of advanced type,
we will run at some point into their adjoints T ∗ and A∗, constructed as follows:

Theorem 5.3. The adjoint operator T ∗ : CN → CN , which is given by

< Tx, y >=< x, T ∗y >

corresponds to the adjoint matrix A∗ ∈MN(C), given by

(A∗)ij = Āji

via the correspondence between linear maps and matrices constructed above.

Proof. Given a linear map T : CN → CN , fix y ∈ CN , and consider the linear form
φ(x) =< Tx, y >. This form must be as follows, for a certain vector T ∗y ∈ CN :

φ(x) =< x, T ∗y >

Thus, we have constructed a map y → T ∗y as in the statement, which is obviously
linear, and that we can call T ∗. Now by taking the vectors x, y ∈ CN to be elements of
the standard basis of CN , our defining formula for T ∗ reads:

< Tei, ej >=< ei, T
∗ej >

By reversing the scalar product on the right, this formula can be written as:

< T ∗ej, ei >= < Tei, ej >

But this means that the matrix of T ∗ is given by (A∗)ij = Āji, as desired. □
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Getting back to our claim, the adjoints ∗ are indeed ubiquitous, as shown by:

Theorem 5.4. The following happen:

(1) T (x) = Ux with U ∈MN(C) is an isometry precisely when U∗ = U−1.
(2) T (x) = Px with P ∈MN(C) is a projection precisely when P 2 = P ∗ = P .

Proof. Let us first recall that the lengths, or norms, of the vectors x ∈ CN can be
recovered from the knowledge of the scalar products, as follows:

||x|| =
√
< x, x >

Conversely, we can recover the scalar products out of norms, by using the following
difficult to remember formula, called complex polarization identity:

4 < x, y >= ||x+ y||2 − ||x− y||2 + i||x+ iy||2 − i||x− iy||2

The proof of this latter formula is indeed elementary, as follows:

||x+ y||2 − ||x− y||2 + i||x+ iy||2 − i||x− iy||2

= ||x||2 + ||y||2 − ||x||2 − ||y||2 + i||x||2 + i||y||2 − i||x||2 − i||y||2

+2Re(< x, y >) + 2Re(< x, y >) + 2iIm(< x, y >) + 2iIm(< x, y >)

= 4 < x, y >

Finally, we will use Theorem 5.3, and more specifically the following formula coming
from there, valid for any matrix A ∈MN(C) and any two vectors x, y ∈ CN :

< Ax, y >=< x,A∗y >

(1) Given a matrix U ∈ MN(C), we have indeed the following equivalences, with the
first one coming from the polarization identity, and the other ones being clear:

||Ux|| = ||x|| ⇐⇒ < Ux,Uy >=< x, y >

⇐⇒ < x,U∗Uy >=< x, y >

⇐⇒ U∗Uy = y

⇐⇒ U∗U = 1

⇐⇒ U∗ = U−1

(2) Given a matrix P ∈MN(C), in order for x→ Px to be an oblique projection, we
must have P 2 = P . Now observe that this projection is orthogonal when:

< Px− x, Py >= 0 ⇐⇒ < P ∗Px− P ∗x, y >= 0

⇐⇒ P ∗Px− P ∗x = 0

⇐⇒ P ∗P − P ∗ = 0

⇐⇒ P ∗P = P ∗

The point now is that by conjugating the last formula, we obtain P ∗P = P . Thus we
must have P = P ∗, and this gives the result. □
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Summarizing, the linear operators come in pairs T, T ∗, and the associated matrices
come as well in pairs A,A∗. This is something quite interesting, philosophically speaking,
and will keep this in mind, and come back to it later, on numerous occasions.

5b. Diagonalization

Let us discuss now the diagonalization question for the linear maps and matrices.
Again, we will be quite brief here, and for more, we refer to any standard linear algebra
book. By the way, there will be some complex analysis involved too, and here we refer to
Rudin [78]. Which book of Rudin will be in fact the one and only true prerequisite for
reading the present book, but more on references and reading later.

The basic diagonalization theory, formulated in terms of matrices, is as follows:

Proposition 5.5. A vector v ∈ CN is called eigenvector of A ∈ MN(C), with corre-
sponding eigenvalue λ, when A multiplies by λ in the direction of v:

Av = λv

In the case where CN has a basis v1, . . . , vN formed by eigenvectors of A, with correspond-
ing eigenvalues λ1, . . . , λN , in this new basis A becomes diagonal, as follows:

A ∼

λ1 . . .
λN


Equivalently, if we denote by D = diag(λ1, . . . , λN) the above diagonal matrix, and by
P = [v1 . . . vN ] the square matrix formed by the eigenvectors of A, we have:

A = PDP−1

In this case we say that the matrix A is diagonalizable.

Proof. This is something which is clear, the idea being as follows:

(1) The first assertion is clear, because the matrix which multiplies each basis element
vi by a number λi is precisely the diagonal matrix D = diag(λ1, . . . , λN).

(2) The second assertion follows from the first one, by changing the basis. We can
prove this by a direct computation as well, because we have Pei = vi, and so:

PDP−1vi = PDei

= Pλiei

= λiPei

= λivi

Thus, the matrices A and PDP−1 coincide, as stated. □
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Let us recall as well that the basic example of a non diagonalizable matrix, over the
complex numbers as above, is the following matrix:

J =

(
0 1
0 0

)
Indeed, we have J

(
x
y

)
=
(
y
0

)
, so the eigenvectors are the vectors of type

(
x
0

)
, all with

eigenvalue 0. Thus, we have not enough eigenvectors for constructing a basis of C2.

In general, in order to study the diagonalization problem, the idea is that the eigen-
vectors can be grouped into linear spaces, called eigenspaces, as follows:

Theorem 5.6. Let A ∈MN(C), and for any eigenvalue λ ∈ C define the corresponding
eigenspace as being the vector space formed by the corresponding eigenvectors:

Eλ =
{
v ∈ CN

∣∣∣Av = λv
}

These eigenspaces Eλ are then in a direct sum position, in the sense that given vectors
v1 ∈ Eλ1 , . . . , vk ∈ Eλk

corresponding to different eigenvalues λ1, . . . , λk, we have:∑
i

civi = 0 =⇒ ci = 0

In particular we have the following estimate, with sum over all the eigenvalues,∑
λ

dim(Eλ) ≤ N

and our matrix is diagonalizable precisely when we have equality.

Proof. We prove the first assertion by recurrence on k ∈ N. Assume by contradiction
that we have a formula as follows, with the scalars c1, . . . , ck being not all zero:

c1v1 + . . .+ ckvk = 0

By dividing by one of these scalars, we can assume that our formula is:

vk = c1v1 + . . .+ ck−1vk−1

Now let us apply A to this vector. On the left we obtain:

Avk = λkvk = λkc1v1 + . . .+ λkck−1vk−1

On the right we obtain something different, as follows:

A(c1v1 + . . .+ ck−1vk−1) = c1Av1 + . . .+ ck−1Avk−1

= c1λ1v1 + . . .+ ck−1λk−1vk−1

We conclude from this that the following equality must hold:

λkc1v1 + . . .+ λkck−1vk−1 = c1λ1v1 + . . .+ ck−1λk−1vk−1
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On the other hand, we know by recurrence that the vectors v1, . . . , vk−1 must be
linearly independent. Thus, the coefficients must be equal, at right and at left:

λkc1 = c1λ1

...

λkck−1 = ck−1λk−1

Now since at least one of the numbers ci must be nonzero, from λkci = ciλi we obtain
λk = λi, which is a contradiction. Thus our proof by recurrence of the first assertion is
complete. As for the second assertion, this follows from the first one. □

In order to reach now to more advanced results, we can use the characteristic polyno-
mial, which appears via the following fundamental result:

Theorem 5.7. Given a matrix A ∈MN(C), consider its characteristic polynomial:

P (x) = det(A− x1N)

The eigenvalues of A are then the roots of P . Also, we have the inequality

dim(Eλ) ≤ mλ

where mλ is the multiplicity of λ, as root of P .

Proof. The first assertion follows from the following computation, using the fact that
a linear map is bijective when the determinant of the associated matrix is nonzero:

∃v, Av = λv ⇐⇒ ∃v, (A− λ1N)v = 0

⇐⇒ det(A− λ1N) = 0

Regarding now the second assertion, given an eigenvalue λ of our matrix A, consider
the dimension dλ = dim(Eλ) of the corresponding eigenspace. By changing the basis of
CN , as for the eigenspace Eλ to be spanned by the first dλ basis elements, our matrix
becomes as follows, with B being a certain smaller matrix:

A ∼
(
λ1dλ 0
0 B

)
We conclude that the characteristic polynomial of A is of the following form:

PA = Pλ1dλ
PB = (λ− x)dλPB

Thus the multiplicity mλ of our eigenvalue λ, as a root of P , satisfies mλ ≥ dλ, and
this leads to the conclusion in the statement. □

Now recall that we are over C, which is something that we have not used yet, in our
last two statements. And the point here is that we have the following key result:
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Theorem 5.8. Any polynomial P ∈ C[X] decomposes as

P = c(X − a1) . . . (X − aN)

with c ∈ C and with a1, . . . , aN ∈ C.

Proof. It is enough to prove that P has one root, and we do this by contradiction.
Assume that P has no roots, and pick a number z ∈ C where |P | attains its minimum:

|P (z)| = min
x∈C

|P (x)| > 0

Since Q(t) = P (z+ t)−P (z) is a polynomial which vanishes at t = 0, this polynomial
must be of the form ctk + higher terms, with c ̸= 0, and with k ≥ 1 being an integer. We
obtain from this that, with t ∈ C small, we have the following estimate:

P (z + t) ≃ P (z) + ctk

Now let us write t = rw, with r > 0 small, and with |w| = 1. Our estimate becomes:

P (z + rw) ≃ P (z) + crkwk

Now recall that we have assumed P (z) ̸= 0. We can therefore choose w ∈ T such that
cwk points in the opposite direction to that of P (z), and we obtain in this way:

|P (z + rw)| ≃ |P (z) + crkwk| = |P (z)|(1− |c|rk)
Now by choosing r > 0 small enough, as for the error in the first estimate to be small,

and overcame by the negative quantity −|c|rk, we obtain from this:

|P (z + rw)| < |P (z)|
But this contradicts our definition of z ∈ C, as a point where |P | attains its minimum.

Thus P has a root, and by recurrence it has N roots, as stated. □

Now by putting everything together, we obtain the following result:

Theorem 5.9. Given a matrix A ∈MN(C), consider its characteristic polynomial

P (X) = det(A−X1N)

then factorize this polynomial, by computing the complex roots, with multiplicities,

P (X) = (−1)N(X − λ1)
n1 . . . (X − λk)

nk

and finally compute the corresponding eigenspaces, for each eigenvalue found:

Ei =
{
v ∈ CN

∣∣∣Av = λiv
}

The dimensions of these eigenspaces satisfy then the following inequalities,

dim(Ei) ≤ ni

and A is diagonalizable precisely when we have equality for any i.
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Proof. This follows by combining Theorem 5.6, Theorem 5.7 and Theorem 5.8. In-
deed, the statement is well formulated, thanks to Theorem 5.8. By summing the inequal-
ities dim(Eλ) ≤ mλ from Theorem 5.7, we obtain an inequality as follows:∑

λ

dim(Eλ) ≤
∑
λ

mλ ≤ N

On the other hand, we know from Theorem 5.6 that our matrix is diagonalizable when
we have global equality. Thus, we are led to the conclusion in the statement. □

This was for the main result of linear algebra. There are countless applications of this,
and generally speaking, advanced linear algebra consists in building on Theorem 5.9.

In practice, diagonalizing a matrix remains something quite complicated. Let us record
a useful algorithmic version of the above result, as follows:

Theorem 5.10. The square matrices A ∈MN(C) can be diagonalized as follows:

(1) Compute the characteristic polynomial.
(2) Factorize the characteristic polynomial.
(3) Compute the eigenvectors, for each eigenvalue found.
(4) If there are no N eigenvectors, A is not diagonalizable.
(5) Otherwise, A is diagonalizable, A = PDP−1.

Proof. This is an informal reformulation of Theorem 5.9, with (4) referring to the
total number of linearly independent eigenvectors found in (3), and with A = PDP−1 in
(5) being the usual diagonalization formula, with P,D being as before. □

As an illustration for all this, which is a must-know computation, we have:

Theorem 5.11. The rotation of angle t ∈ R in the plane diagonalizes as:(
cos t − sin t
sin t cos t

)
=

1

2

(
1 1
i −i

)(
e−it 0
0 eit

)(
1 −i
1 i

)
Over the reals this is impossible, unless t = 0, π, where the rotation is diagonal.

Proof. Observe first that, as indicated, unlike we are in the case t = 0, π, where our
rotation is ±12, our rotation is a “true” rotation, having no eigenvectors in the plane.
Fortunately the complex numbers come to the rescue, via the following computation:(

cos t − sin t
sin t cos t

)(
1

i

)
=

(
cos t− i sin t

i cos t+ sin t

)
= e−it

(
1

i

)
We have as well a second complex eigenvector, coming from:(

cos t − sin t
sin t cos t

)(
1

−i

)
=

(
cos t+ i sin t

−i cos t+ sin t

)
= eit

(
1

−i

)
Thus, we are led to the conclusion in the statement. □
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As another basic illustration, we have the following result:

Theorem 5.12. The all-one, or flat matrix, namely

IN =

1 . . . 1
...

...
1 . . . 1


diagonalizes as follows, over the complex numbers,

IN =
1

N
FNQF

∗
N

with FN = (wij)ij with w = e2πi/N being the Fourier matrix, and Q = diag(N, 0, . . . , 0).

Proof. It is clear that we have IN = NPN , with PN being the projection on the all-1
vector ξ = (1)i ∈ RN . Thus, IN diagonalizes over R, as follows:

IN ∼


N

0
. . .

0


The problem, however, is that when looking for 0-eigenvectors, in order to have an

explicit diagonalization formula, we must solve the following equation:

x1 + . . .+ xN = 0

And this is not an easy task, if we want a nice basis for the space of solutions. For-
tunately, complex numbers come to the rescue, and we are led to the conclusion in the
statement. We will leave the verifications here as an instructive exercise. □

5c. Matrix tricks

At the level of basic examples of diagonalizable matrices, we first have the following
result, which provides us with the “generic” examples:

Theorem 5.13. For a matrix A ∈MN(C) the following conditions are equivalent,

(1) The eigenvalues are different, λi ̸= λj,
(2) The characteristic polynomial P has simple roots,
(3) The characteristic polynomial satisfies (P, P ′) = 1,
(4) The resultant of P, P ′ is nonzero, R(P, P ′) ̸= 0,
(5) The discriminant of P is nonzero, ∆(P ) ̸= 0,

and in this case, the matrix is diagonalizable.
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Proof. The last assertion holds indeed, due to Theorem 5.9. As for the equivalences
in the statement, these are all standard, the idea for their proofs, along with some more
theory, needed for using in practice the present result, being as follows:

(1) ⇐⇒ (2) This follows from Theorem 5.9.

(2) ⇐⇒ (3) This is standard, the double roots of P being roots of P ′.

(3) ⇐⇒ (4) The idea here is that associated to any two polynomials P,Q is their
resultant R(P,Q), which checks whether P,Q have a common root. Let us write:

P = c(X − a1) . . . (X − ak)

Q = d(X − b1) . . . (X − bl)

We can define then the resultant as being the following quantity:

R(P,Q) = cldk
∏
ij

(ai − bj)

The point now, that we will explain as well, is that this is a polynomial in the coeffi-
cients of P,Q, with integer coefficients. Indeed, this can be checked as follows:

– We can expand the formula of R(P,Q), and in what regards a1, . . . , ak, which are
the roots of P , we obtain in this way certain symmetric functions in these variables, which
will be therefore polynomials in the coefficients of P , with integer coefficients.

– We can then look what happens with respect to the remaining variables b1, . . . , bl,
which are the roots of Q. Once again what we have here are certain symmetric functions,
and so polynomials in the coefficients of Q, with integer coefficients.

– Thus, we are led to the above conclusion, that R(P,Q) is a polynomial in the
coefficients of P,Q, with integer coefficients, and with the remark that the cldk factor is
there for these latter coefficients to be indeed integers, instead of rationals.

Alternatively, let us write our two polynomials in usual form, as follows:

P = pkX
k + . . .+ p1X + p0

Q = qlX
l + . . .+ q1X + q0

The corresponding resultant appears then as the determinant of an associated matrix,
having size k + l, and having 0 coefficients at the blank spaces, as follows:

R(P,Q) =

∣∣∣∣∣∣∣∣∣∣∣

pk ql
...

. . .
...

. . .
p0 pk q0 ql

. . .
...

. . .
...

p0 q0

∣∣∣∣∣∣∣∣∣∣∣
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(4) ⇐⇒ (5) Once again this is something standard, the idea here being that the
discriminant ∆(P ) of a polynomial P ∈ C[X] is, modulo scalars, the resultant R(P, P ′).
To be more precise, let us write our polynomial as follows:

P (X) = cXN + dXN−1 + . . .

Its discriminant is then defined as being the following quantity:

∆(P ) =
(−1)(

N
2 )

c
R(P, P ′)

This is a polynomial in the coefficients of P , with integer coefficients, with the division
by c being indeed possible, under Z, and with the sign being there for various reasons,
including the compatibility with some well-known formulae, at small values of N . □

All the above might seem a bit complicated, so as an illustration, let us work out an
example. Consider the case of a polynomial of degree 2, and a polynomial of degree 1:

P = ax2 + bx+ c , Q = dx+ e

In order to compute the resultant, let us factorize our polynomials:

P = a(x− p)(x− q) , Q = d(x− r)

The resultant can be then computed as follows, by using the two-step method:

R(P,Q) = ad2(p− r)(q − r)

= ad2(pq − (p+ q)r + r2)

= cd2 + bd2r + ad2r2

= cd2 − bde+ ae2

Observe that R(P,Q) = 0 corresponds indeed to the fact that P,Q have a common
root. Indeed, the root of Q is r = −e/d, and we have:

P (r) =
ae2

d2
− be

d
+ c =

R(P,Q)

d2

We can recover as well the resultant as a determinant, as follows:

R(P,Q) =

∣∣∣∣∣∣
a d 0
b e d
c 0 e

∣∣∣∣∣∣ = ae2 − bde+ cd2

Finally, in what regards the discriminant, let us see what happens in degree 2. Here
we must compute the resultant of the following two polynomials:

P = aX2 + bX + c , P ′ = 2aX + b
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The resultant is then given by the following formula:

R(P, P ′) = ab2 − b(2a)b+ c(2a)2

= 4a2c− ab2

= −a(b2 − 4ac)

Now by doing the discriminant normalizations, we obtain, as we should:

∆(P ) = b2 − 4ac

As already mentioned, one can prove that the matrices having distinct eigenvalues are
“generic”, and so the above result basically captures the whole situation. We have in fact
the following collection of density results, which are quite advanced:

Theorem 5.14. The following happen, inside MN(C):
(1) The invertible matrices are dense.
(2) The matrices having distinct eigenvalues are dense.
(3) The diagonalizable matrices are dense.

Proof. These are quite advanced results, which can be proved as follows:

(1) This is clear, intuitively speaking, because the invertible matrices are given by the
condition detA ̸= 0. Thus, the set formed by these matrices appears as the complement
of the hypersurface detA = 0, and so must be dense inside MN(C), as claimed.

(2) Here we can use a similar argument, this time by saying that the set formed by
the matrices having distinct eigenvalues appears as the complement of the hypersurface
given by ∆(PA) = 0, and so must be dense inside MN(C), as claimed.

(3) This follows from (2), via the fact that the matrices having distinct eigenvalues are
diagonalizable, that we know from Theorem 5.13. There are of course some other proofs
as well, for instance by putting the matrix in Jordan form. □

As an application of the above results, and of our methods in general, we have:

Theorem 5.15. The following happen:

(1) We have PAB = PBA, for any two matrices A,B ∈MN(C).
(2) AB,BA have the same eigenvalues, with the same multiplicities.
(3) If A has eigenvalues λ1, . . . , λN , then f(A) has eigenvalues f(λ1), . . . , f(λN).

Proof. These results can be deduced by using Theorem 5.14, as follows:

(1) It follows from definitions that the characteristic polynomial of a matrix is invariant
under conjugation, in the sense that we have the following formula:

PC = PACA−1

Now observe that, when assuming that A is invertible, we have:

AB = A(BA)A−1
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Thus, we have the result when A is invertible. By using now Theorem 5.14 (1), we
conclude that this formula holds for any matrix A, by continuity.

(2) This is a reformulation of (1), via the fact that P encodes the eigenvalues, with
multiplicities, which is hard to prove with bare hands.

(3) This is something quite informal, clear for the diagonal matrices D, then for the
diagonalizable matrices PDP−1, and finally for all matrices, by using Theorem 5.14 (3),
provided that f has suitable regularity properties. We will be back to this. □

Let us go back to the main problem raised by the diagonalization procedure, namely
the computation of the roots of characteristic polynomials. We have here:

Theorem 5.16. The complex eigenvalues of a matrix A ∈MN(C), counted with mul-
tiplicities, have the following properties:

(1) Their sum is the trace.
(2) Their product is the determinant.

Proof. Consider indeed the characteristic polynomial P of the matrix:

P (X) = det(A−X1N)

= (−1)NXN + (−1)N−1Tr(A)XN−1 + . . .+ det(A)

We can factorize this polynomial, by using its N complex roots, and we obtain:

P (X) = (−1)N(X − λ1) . . . (X − λN)

= (−1)NXN + (−1)N−1

(∑
i

λi

)
XN−1 + . . .+

∏
i

λi

Thus, we are led to the conclusion in the statement. □

Regarding now the intermediate terms, we have here:

Theorem 5.17. Assume that A ∈ MN(C) has eigenvalues λ1, . . . , λN ∈ C, counted
with multiplicities. The basic symmetric functions of these eigenvalues, namely

ck =
∑

i1<...<ik

λi1 . . . λik

are then given by the fact that the characteristic polynomial of the matrix is:

P (X) = (−1)N
N∑
k=0

(−1)kckX
k

Moreover, all symmetric functions of the eigenvalues, such as the sums of powers

ds = λs1 + . . .+ λsN

appear as polynomials in these characteristic polynomial coefficients ck.
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Proof. These results can be proved by doing some algebra, as follows:

(1) Consider indeed the characteristic polynomial P of the matrix, factorized by using
its N complex roots, taken with multiplicities. By expanding, we obtain:

P (X) = (−1)N(X − λ1) . . . (X − λN)

= (−1)NXN + (−1)N−1

(∑
i

λi

)
XN−1 + . . .+

∏
i

λi

= (−1)NXN + (−1)N−1c1X
N−1 + . . .+ (−1)0cN

= (−1)N
(
XN − c1X

N−1 + . . .+ (−1)NcN
)

With the convention c0 = 1, we are led to the conclusion in the statement.

(2) This is something standard, coming by doing some abstract algebra. Working out
the formulae for the sums of powers ds =

∑
i λ

s
i , at small values of the exponent s ∈ N, is

an excellent exercise, which shows how to proceed in general, by recurrence. □

5d. Spectral theorems

Let us go back now to the diagonalization question. Here is a key result:

Theorem 5.18. Any matrix A ∈MN(C) which is self-adjoint, A = A∗, is diagonaliz-
able, with the diagonalization being of the following type,

A = UDU∗

with U ∈ UN , and with D ∈MN(R) diagonal. The converse holds too.

Proof. As a first remark, the converse trivially holds, because if we take a matrix of
the form A = UDU∗, with U unitary and D diagonal and real, then we have:

A∗ = (UDU∗)∗

= UD∗U∗

= UDU∗

= A

In the other sense now, assume that A is self-adjoint, A = A∗. Our first claim is that
the eigenvalues are real. Indeed, assuming Av = λv, we have:

λ < v, v > = < λv, v >

= < Av, v >

= < v,Av >

= < v, λv >

= λ̄ < v, v >
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Thus we obtain λ ∈ R, as claimed. Our next claim now is that the eigenspaces
corresponding to different eigenvalues are pairwise orthogonal. Assume indeed that:

Av = λv , Aw = µw

We have then the following computation, using λ, µ ∈ R:

λ < v,w > = < λv,w >

= < Av,w >

= < v,Aw >

= < v, µw >

= µ < v,w >

Thus λ ̸= µ implies v ⊥ w, as claimed. In order now to finish the proof, it remains to
prove that the eigenspaces of A span the whole space CN . For this purpose, we will use
a recurrence method. Let us pick an eigenvector of our matrix:

Av = λv

Assuming now that we have a vector w orthogonal to it, v ⊥ w, we have:

< Aw, v > = < w,Av >

= < w, λv >

= λ < w, v >

= 0

Thus, if v is an eigenvector, then the vector space v⊥ is invariant under A. Moreover,
since a matrix A is self-adjoint precisely when < Av, v >∈ R for any vector v ∈ CN , as
one can see by expanding the scalar product, the restriction of A to the subspace v⊥ is
self-adjoint. Thus, we can proceed by recurrence, and we obtain the result. □

As basic examples of self-adjoint matrices, we have the orthogonal projections. The
diagonalization result regarding them is as follows:

Proposition 5.19. The matrices P ∈MN(C) which are projections,

P 2 = P ∗ = P

are precisely those which diagonalize as follows,

P = UDU∗

with U ∈ UN , and with D ∈MN(0, 1) being diagonal.
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Proof. The equation for the projections being P 2 = P ∗ = P , the eigenvalues λ are
real, and we have as well the following condition, coming from P 2 = P :

λ < v, v > = < λv, v >

= < Pv, v >

= < P 2v, v >

= < Pv, Pv >

= < λv, λv >

= λ2 < v, v >

Thus we obtain λ ∈ {0, 1}, as claimed, and as a final conclusion here, the diagonal-
ization of the self-adjoint matrices is as follows, with ei ∈ {0, 1}:

P ∼

e1 . . .
eN


To be more precise, the number of 1 values is the dimension of the image of P , and

the number of 0 values is the dimension of space of vectors sent to 0 by P . □

An important class of self-adjoint matrices, which includes for instance all the projec-
tions, are the positive matrices. The theory here is as follows:

Theorem 5.20. For a matrix A ∈MN(C) the following conditions are equivalent, and
if they are satisfied, we say that A is positive:

(1) A = B2, with B = B∗.
(2) A = CC∗, for some C ∈MN(C).
(3) < Ax, x >≥ 0, for any vector x ∈ CN .
(4) A = A∗, and the eigenvalues are positive, λi ≥ 0.
(5) A = UDU∗, with U ∈ UN and with D ∈MN(R+) diagonal.

Proof. The idea is that the equivalences in the statement basically follow from some
elementary computations, with only Theorem 5.18 needed, at some point:

(1) =⇒ (2) This is clear, because we can take C = B.

(2) =⇒ (3) This follows from the following computation:

< Ax, x > = < CC∗x, x >

= < C∗x,C∗x >

≥ 0

(3) =⇒ (4) By using the fact that < Ax, x > is real, we have:

< Ax, x > = < x,A∗x >

= < A∗x, x >
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Thus we have A = A∗, and the remaining assertion, regarding the eigenvalues, follows
from the following computation, assuming Ax = λx:

< Ax, x > = < λx, x >

= λ < x, x >

≥ 0

(4) =⇒ (5) This follows indeed by using Theorem 5.18.

(5) =⇒ (1) Assuming A = UDU∗, with U ∈ UN , and with D ∈ MN(R+) being

diagonal, we can set B = U
√
DU∗. Then B is self-adjoint, and its square is given by:

B2 = U
√
DU∗ · U

√
DU∗

= UDU∗

= A

Thus, we are led to the conclusion in the statement. □

Let us record as well the following technical version of the above result:

Theorem 5.21. For a matrix A ∈MN(C) the following conditions are equivalent, and
if they are satisfied, we say that A is strictly positive:

(1) A = B2, with B = B∗, invertible.
(2) A = CC∗, for some C ∈MN(C) invertible.
(3) < Ax, x >> 0, for any nonzero vector x ∈ CN .
(4) A = A∗, and the eigenvalues are strictly positive, λi > 0.
(5) A = UDU∗, with U ∈ UN and with D ∈MN(R∗

+) diagonal.

Proof. This follows either from Theorem 5.20, by adding the various extra assump-
tions in the statement, or from the proof of Theorem 5.20, by modifying where needed. □

Let us discuss now the case of the unitary matrices. We have here:

Theorem 5.22. Any matrix U ∈ MN(C) which is unitary, U∗ = U−1, is diagonaliz-
able, with the eigenvalues on T. More precisely we have

U = V DV ∗

with V ∈ UN , and with D ∈MN(T) diagonal. The converse holds too.
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Proof. As a first remark, the converse trivially holds, because given a matrix of type
U = V DV ∗, with V ∈ UN , and with D ∈MN(T) being diagonal, we have:

U∗ = (V DV ∗)∗

= V D∗V ∗

= V D−1V −1

= (V ∗)−1D−1V −1

= (V DV ∗)−1

= U−1

Let us prove now the first assertion, stating that the eigenvalues of a unitary matrix
U ∈ UN belong to T. Indeed, assuming Uv = λv, we have:

< v, v > = < U∗Uv, v >

= < Uv, Uv >

= < λv, λv >

= |λ|2 < v, v >

Thus we obtain λ ∈ T, as claimed. Our next claim now is that the eigenspaces
corresponding to different eigenvalues are pairwise orthogonal. Assume indeed that:

Uv = λv , Uw = µw

We have then the following computation, using U∗ = U−1 and λ, µ ∈ T:

λ < v,w > = < λv,w >

= < Uv,w >

= < v,U∗w >

= < v,U−1w >

= < v, µ−1w >

= µ < v,w >

Thus λ ̸= µ implies v ⊥ w, as claimed. In order now to finish the proof, it remains to
prove that the eigenspaces of U span the whole space CN . For this purpose, we will use
a recurrence method. Let us pick an eigenvector of our matrix:

Uv = λv
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Assuming that we have a vector w orthogonal to it, v ⊥ w, we have:

< Uw, v > = < w,U∗v >

= < w,U−1v >

= < w, λ−1v >

= λ < w, v >

= 0

Thus, if v is an eigenvector, then the vector space v⊥ is invariant under U . Now since
U is an isometry, so is its restriction to this space v⊥. Thus this restriction is a unitary,
and so we can proceed by recurrence, and we obtain the result. □

The self-adjoint matrices and the unitary matrices are particular cases of the general
notion of a “normal matrix”, and we have here:

Theorem 5.23. Any matrix A ∈ MN(C) which is normal, AA∗ = A∗A, is diagonal-
izable, with the diagonalization being of the following type,

A = UDU∗

with U ∈ UN , and with D ∈MN(C) diagonal. The converse holds too.

Proof. As a first remark, the converse trivially holds, because if we take a matrix of
the form A = UDU∗, with U unitary and D diagonal, then we have:

AA∗ = UDU∗ · UD∗U∗

= UDD∗U∗

= UD∗DU∗

= UD∗U∗ · UDU∗

= A∗A

In the other sense now, this is something more technical. Our first claim is that a
matrix A is normal precisely when the following happens, for any vector v:

||Av|| = ||A∗v||

Indeed, the above equality can be written as follows:

< AA∗v, v >=< A∗Av, v >

But this is equivalent to AA∗ = A∗A, by expanding the scalar products. Our next
claim is that A,A∗ have the same eigenvectors, with conjugate eigenvalues:

Av = λv =⇒ A∗v = λ̄v
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Indeed, this follows from the following computation, and from the trivial fact that if
A is normal, then so is any matrix of type A− λ1N :

||(A∗ − λ̄1N)v|| = ||(A− λ1N)
∗v||

= ||(A− λ1N)v||
= 0

Let us prove now, by using this, that the eigenspaces of A are pairwise orthogonal.
Assume that we have two eigenvectors, corresponding to different eigenvalues, λ ̸= µ:

Av = λv , Aw = µw

We have the following computation, which shows that λ ̸= µ implies v ⊥ w:

λ < v,w > = < λv,w >

= < Av,w >

= < v,A∗w >

= < v, µ̄w >

= µ < v,w >

In order to finish, it remains to prove that the eigenspaces of A span the whole CN .
This is something that we have already seen for the self-adjoint matrices, and for unitaries,
and we will use here these results, in order to deal with the general normal case. As a
first observation, given an arbitrary matrix A, the matrix AA∗ is self-adjoint:

(AA∗)∗ = AA∗

Thus, we can diagonalize this matrix AA∗, as follows, with the passage matrix being
a unitary, V ∈ UN , and with the diagonal form being real, E ∈MN(R):

AA∗ = V EV ∗

Now observe that, for matrices of type A = UDU∗, which are those that we supposed
to deal with, we have the following formulae:

V = U , E = DD̄

In particular, the matrices A and AA∗ have the same eigenspaces. So, this will be
our idea, proving that the eigenspaces of AA∗ are eigenspaces of A. In order to do so, let
us pick two eigenvectors v, w of the matrix AA∗, corresponding to different eigenvalues,
λ ̸= µ. The eigenvalue equations are then as follows:

AA∗v = λv , AA∗w = µw
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We have the following computation, using the normality condition AA∗ = A∗A, and
the fact that the eigenvalues of AA∗, and in particular µ, are real:

λ < Av,w > = < λAv,w >

= < Aλv,w >

= < AAA∗v, w >

= < AA∗Av,w >

= < Av,AA∗w >

= < Av, µw >

= µ < Av,w >

We conclude that we have < Av,w >= 0. But this reformulates as follows:

λ ̸= µ =⇒ A(Eλ) ⊥ Eµ

Now since the eigenspaces of AA∗ are pairwise orthogonal, and span the whole CN ,
we deduce from this that these eigenspaces are invariant under A:

A(Eλ) ⊂ Eλ

But with this result in hand, we can finish. Indeed, we can decompose the problem,
and the matrix A itself, following these eigenspaces of AA∗, which in practice amounts
in saying that we can assume that we only have 1 eigenspace. Now by rescaling, this is
the same as assuming that we have AA∗ = 1. But with this, we are now into the unitary
case, that we know how to solve, as explained in Theorem 5.22, and so done. □

As a first application, we have the following result:

Theorem 5.24. Given a matrix A ∈MN(C), we can construct a matrix |A| as follows,
by using the fact that A∗A is diagonalizable, with positive eigenvalues:

|A| =
√
A∗A

This matrix |A| is then positive, and its square is |A|2 = A∗A. In the case N = 1, we
obtain in this way the usual absolute value of the complex numbers.

Proof. Consider indeed the matrix A∗A, which is normal. According to Theorem
5.23, we can diagonalize this matrix as follows, with U ∈ UN , and with D diagonal:

A = UDU∗

From A∗A ≥ 0 we obtain D ≥ 0. But this means that the entries of D are real, and
positive. Thus we can extract the square root

√
D, and then set:

√
A∗A = U

√
DU∗

Thus, we are basically done. Indeed, if we call this latter matrix |A|, then we are led to
the conclusions in the statement. Finally, the last assertion is clear from definitions. □
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We can now formulate a first polar decomposition result, as follows:

Theorem 5.25. Any invertible matrix A ∈MN(C) decomposes as

A = U |A|
with U ∈ UN , and with |A| =

√
A∗A as above.

Proof. This is routine, and follows by comparing the actions of A, |A| on the vectors
v ∈ CN , and deducing from this the existence of a unitary U ∈ UN as above. We will be
back to this, later on, directly in the case of the linear operators on Hilbert spaces. □

Observe that at N = 1 we obtain in this way the usual polar decomposition of the
nonzero complex numbers. More generally now, we have the following result:

Theorem 5.26. Any square matrix A ∈MN(C) decomposes as

A = U |A|
with U being a partial isometry, and with |A| =

√
A∗A as above.

Proof. Again, this follows by comparing the actions of A, |A| on the vectors v ∈ CN ,
and deducing from this the existence of a partial isometry U as above. Alternatively, we
can get this from Theorem 5.25, applied on the complement of the 0-eigenvectors. □

This was for our basic presentation of linear algebra. There are of course many other
things that can be said, but we will come back to some of them in what follows, directly
in the case of the linear operators on the arbitrary Hilbert spaces.

5e. Exercises

This was a very standard linear chapter, and as exercises here, we have:

Exercise 5.27. Compute the matrices of all basic linear maps f : R2 → R2.

Exercise 5.28. Compute the matrix of the rank one projection on ξ ∈ CN .

Exercise 5.29. Diagonalize 50 matrices, and even better, 500 matrices.

Exercise 5.30. Check the details for the diagonalization of the flat matrix.

Exercise 5.31. Learn more about the resultant, and the discriminant.

Exercise 5.32. Learn also about the Cardano formulae, in degree 3, and 4.

Exercise 5.33. What can you say about the diagonalization of orthogonal matrices?

Exercise 5.34. Work out some explicit polar decomposition results.

As bonus exercise, learn some more specialized results too, such as the Jordan form.



CHAPTER 6

Laws of matrices

6a. Diagonal matrices

We would like to discuss now some interesting applications of our various spectral
theorems to probability theory. Let us start with something basic, as follows:

Definition 6.1. Let X be a probability space, that is, a space with a probability mea-
sure, and with the corresponding integration denoted E, and called expectation.

(1) The random variables are the real functions f ∈ L∞(X).
(2) The moments of such a variable are the numbers Mk(f) = E(fk).
(3) The law of such a variable is the measure given by Mk(f) =

∫
R x

kdµf (x).

Here, and in what follows, we use the term “law” for “probability distribution”, which
means exactly the same thing, and is more convenient. Regarding now the fact that the
law µf exists indeed, this is true, but not exactly trivial. By linearity, we would like to
have a probability measure making hold the following formula, for any P ∈ C[X]:

E(P (f)) =

∫
R
P (x)dµf (x)

By using a standard continuity argument, it is enough to have this formula for the
characteristic functions χI of the arbitrary measurable sets of real numbers I ⊂ R:

E(χI(f)) =

∫
R
χI(x)dµf (x)

But this latter formula, which reads P (f ∈ I) = µf (I), can serve as a definition for
µf , and we are done. Alternatively, assuming some familiarity with measure theory, µf is
the push-forward of the probability measure on X, via the function f : X → R.

Let us summarize this discussion in the form of a theorem, as follows:

Theorem 6.2. The law µf of a random variable f exists indeed, and we have

E(φ(f)) =

∫
R
φ(x)dµf (x)

for any integrable function φ : R → C.
95
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Proof. This follows from the above discussion, and with the precise assumption on
φ : R → C, which is its integrability, in the abstract mathematical sense, being in fact
something that we will not really need, in what follows. In fact, for most purposes we will
get away with polynomials φ ∈ C[X], and by linearity this means that we can get away
with monomials φ(x) = xk, which brings us back to Definition 6.1 (3), as stated. □

Getting now to the case of the matrices A ∈ MN(C), here it is quite tricky to figure
out what the law of A should mean, based on intuition only. So, in the lack of a bright
idea, let us just reproduce Definition 6.1, with a few modifications, as follows:

Definition 6.3. Let N ∈ N, and consider the algebra MN(C) of complex N × N
matrices, with its normalized trace tr :MN(C) → C, given by tr(A) = Tr(A)/N .

(1) We call random variables the self-adjoint matrices A ∈MN(C).
(2) The moments of such a variable are the numbers Mk(A) = tr(Ak).
(3) The law of such a variable is the measure given by Mk(A) =

∫
R x

kdµA(x).

Here we have normalized the trace, as to have tr(1) = 1, in analogy with the formula
E(1) = 1 from usual probability. By the way, as a piece of advice here, many confusions
appear from messing up tr and Tr, and it is better ot forget about Tr, and always use tr.
With the drawback that if you’re a physicist, tr might get messed up in quick handwriting
with the reduced Planck constant ℏ = h/2π. However, shall you ever face this problem,
I have an advice here too, namely forgetting about h, and using h instead of ℏ.

Another comment is that we assumed in (1) that our matrix is self-adjoint, A = A∗,
with the adjoint matrix being given, as usual, by the formula (A∗)ij = Āji. Why this,
because for instance at N = 1 we would like our matrix, which in the case N = 1 is
a number, to be real, and so we must assume A = A∗. Of course there is still some
discussion here, for instance because you might argue that why not assuming instead that
the entries of A are real. But let us leave this for later, and in the meantime, just trust
me. Or perhaps, let us trust Heisenberg, who used self-adjoint matrices. More later.

Back to work now, what we have in Definition 6.1 looks quite reasonable, but as
before with the usual random variables f ∈ L∞(X), some discussion is needed, in order
to understand if the law µA exists indeed, and by which mechanism. And, good news
here, in the case of the simplest matrices, the real diagonal ones, we have:

Theorem 6.4. For any diagonal matrix A ∈MN(R) we have the formula

tr(P (A)) =
1

N
(P (λ1) + . . .+ P (λN))

where λ1, . . . , λN ∈ R are the diagonal entries of A. Thus the measure

µA =
1

N
(δλ1 + . . .+ δλN

)

can be regarded as being the law of A, in the sense of Definition 6.3.
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Proof. Assume indeed that we have a real diagonal matrix, as follows, with the
convention that the matrix entries which are missing are by definition 0 entries:

A =

λ1 . . .
λN


The powers of A are then diagonal too, given by the following formula:

Ak =

λk1 . . .

λkN


In fact, given any polynomial P ∈ C[X], we have the following formula:

P (A) =

P (λ1) . . .
P (λN)


Thus, the first formula in the statement holds indeed. In particular, we conclude that

the moments of A are given by the following formula:

Mk(A) = tr(Ak) =
1

N

∑
i

λki

On the other hand, with µA = 1
N
(δλ1 + . . .+ δλN

) as in the statement, we have:∫
R
xkdµA(x) =

1

N

∑
i

∫
R
xkdδλi

(x)

=
1

N

∑
i

λki

Thus that the law of A exists indeed, and is the measure µA, as claimed. □

6b. Self-adjoint matrices

The point now is that, by using the spectral theorem for self-adjoint matrices, we have
the following generalization of Theorem 6.4, dealing with the general case:

Theorem 6.5. For a self-adjoint matrix A ∈MN(C) we have the formula

tr(P (A)) =
1

N
(P (λ1) + . . .+ P (λN))

where λ1, . . . , λN ∈ R are the eigenvalues of A. Thus the measure

µA =
1

N
(δλ1 + . . .+ δλN

)

can be regarded as being the law of A, in the sense of Definition 6.3.
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Proof. We already know, from Theorem 6.4, that the result holds indeed for the
diagonal matrices. In the general case now, that of an arbitrary self-adjoint matrix, we
know from chapter 5 that our matrix is diagonalizable, as follows:

A = UDU∗

Now observe that the moments of A are given by the following formula:

tr(Ak) = tr(UDU∗ · UDU∗ . . . UDU∗)

= tr(UDkU∗)

= tr(Dk)

We conclude from this, by reasoning by linearity, that the matrices A,D have the
same law, µA = µD, and this gives all the assertions in the statement. □

6c. Normal matrices

Let us start with the complex variables f ∈ L∞(X). The main difference with respect
to the real case comes from the fact that we have now a pair of variables instead of one,
namely f : X → C itself, and its conjugate f̄ : X → C. Thus, we are led to:

Definition 6.6. The moments a complex variable f ∈ L∞(X) are the numbers

Mk(f) = E(fk)

depending on colored integers k = ◦ • • ◦ . . . , with the conventions

f ∅ = 1 , f ◦ = f , f • = f̄

and multiplicativity, in order to define the colored powers fk.

Observe that, since f, f̄ commute, we can permute terms, and restrict the attention
to exponents of type k = . . . ◦ ◦ ◦ • • • • . . . , if we want to. However, our various results
below will look better without doing this, so we will use Definition 6.6 as stated.

Regarding now the notion of law, this extends too, the result being as follows:

Theorem 6.7. Each complex variable f ∈ L∞(X) has a law, which is by definition a
complex probability measure µf making the following formula hold,

Mk(f) =

∫
C
zkdµf (z)

for any colored integer k. Moreover, we have in fact the formula

E(φ(f)) =

∫
C
φ(x)dµf (x)

valid for any integrable function φ : C → C.
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Proof. The first assertion follows exactly as in the real case, and with zk being
defined exactly as fk, namely by the following formulae, and multiplicativity:

z∅ = 1 , z◦ = z , z• = z̄

As for the second assertion, this basically follows from this by linearity and continuity,
by using standard measure theory, again as in the real case. □

Moving ahead towards matrices, all this leads to a mixture of easy and complicated
problems. First, Definition 6.6 has the following straightforward analogue:

Definition 6.8. The moments a matrix A ∈MN(C) are the numbers

Mk(A) = tr(Ak)

depending on colored integers k = ◦ • • ◦ . . . , with the usual conventions

A∅ = 1 , A◦ = A , A• = A∗

and multiplicativity, in order to define the colored powers Ak.

As a first observation about this, unless the matrix is normal, AA∗ = A∗A, we cannot
switch to exponents of type k = . . . ◦ ◦ ◦ • • • • . . . , as it was theoretically possible for the
complex variables f ∈ L∞(X). Here is an explicit counterexample for this:

Proposition 6.9. The following matrix, which is not normal,

J =

(
0 1
0 0

)
has the property tr(JJ∗JJ∗) ̸= tr(JJJ∗J∗).

Proof. We have the following formulae, which show that J is not normal:

JJ∗ =

(
0 1
0 0

)(
0 0
1 0

)
=

(
1 0
0 0

)
J∗J =

(
0 0
1 0

)(
0 1
0 0

)
=

(
0 0
0 1

)
Let us compute now the quantities in the statement. We first have:

tr(JJ∗JJ∗) = tr((JJ∗)2) = tr

(
1 0
0 0

)
=

1

2

On the other hand, we have as well the following formula:

tr(JJJ∗J∗) = tr

((
0 1
0 0

)(
1 0
0 0

)(
0 0
1 0

))
= tr

(
0 0
0 0

)
= 0

Thus, we are led to the conclusion in the statement. □
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The above counterexample makes it quite clear that things will be complicated, when
attempting to talk about the law of an arbitrary matrix A ∈ MN(C). But, there is
solution to everything. By being a bit smart, we can formulate things as follows:

Definition 6.10. The law of a complex matrix A ∈MN(C) is the following functional,
on the algebra of polynomials in two noncommuting variables X,X∗:

µA : C < X,X∗ >→ C , P → tr(P (A))

In the case where we have a complex probability measure µA ∈ P(C) such that

tr(P (A)) =

∫
C
P (x) dµA(x)

we identify this complex measure with the law of A.

As mentioned above, this is something smart, that will take us some time to under-
stand. As a first observation, knowing the law is the same as knowing the moments,
because if we write our polynomial as P =

∑
k ckX

k, then we have:

tr(P (A)) = tr

(∑
k

ckA
k

)
=
∑
k

ckMk(A)

Let us try now to compute some matrix laws, and see what we get. We already did
some computations in the real case, and then for the basic 2× 2 Jordan block J too, and
based on all this, we can formulate the following result, with mixed conclusions:

Theorem 6.11. The following happen:

(1) If A = A∗ then µA = 1
N
(λ1 + . . .+ λN), with λi ∈ R being the eigenvalues.

(2) If A is diagonal, µA = 1
N
(λ1 + . . .+ λN), with λi ∈ C being the eigenvalues.

(3) For the basic Jordan block J , the law µJ is not a complex measure.
(4) In fact, assuming AA∗ ̸= A∗A, the law µA is not a complex measure.

Proof. This follows from the above, with only (4) being new. Assuming AA∗ ̸= A∗A,
in order to show that µA is not a measure, we can use a positivity trick, as follows:

AA∗ − A∗A ̸= 0 =⇒ (AA∗ − A∗A)2 > 0

=⇒ AA∗AA∗ − AA∗A∗A− A∗AAA∗ + A∗AA∗A > 0

=⇒ tr(AA∗AA∗ − AA∗A∗A− A∗AAA∗ + A∗AA∗A) > 0

=⇒ tr(AA∗AA∗ + A∗AA∗A) > tr(AA∗A∗A+ A∗AAA∗)

=⇒ tr(AA∗AA∗) > tr(AAA∗A∗)

Thus, we can conclude as in the proof for J , the point being that we cannot obtain
both the above numbers by integrating |z|2 with respect to a measure µA ∈ P(C). □

Fortunately, by using the spectral theorem for normal matrices, we have:
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Theorem 6.12. Given a matrix A ∈ MN(C) which is normal, AA∗ = A∗A, we have
the following formula, valid for any polynomial P ∈ C < X,X∗ >,

tr(P (A)) =
1

N
(P (λ1) + . . .+ P (λN))

where λ1, . . . , λN ∈ C are the eigenvalues of A. Thus the complex measure

µA =
1

N
(δλ1 + . . .+ δλN

)

is the law of A. In the non-normal case, the law µA is not a measure.

Proof. As before in the diagonal case, since our matrix is normal, AA∗ = A∗A,
knowing its law in the abstract sense of generalized probability is the same as knowing
the restriction of this abstract distribution to the usual polynomials in two variables:

µA : C[X,X∗] → C , P → tr(P (A))

In order now to compute this functional, we can write A = UDU∗, as in chapter 5, and
then change the basis via U , which in practice means that we can simply assume U = 1.
Thus if we denote by λ1, . . . , λN the diagonal entries of D, which are the eigenvalues of
A, the law that we are looking for is the following functional:

µA : C[X,X∗] → C , P → 1

N
(P (λ1) + . . .+ P (λN))

But this functional corresponds to integrating P with respect to the following complex
measure, that we agree to still denote by µA, and call distribution of A:

µA =
1

N
(δλ1 + . . .+ δλN

)

Thus, we are led to the conclusion in the statement. □

6d. Some speculations

Good news, with our linear algebra knowledge, we have now enough ingredients for
developing a “baby theory” of quantum spaces. Let us start in the following way:

Speculation 6.13. Since the algebra A = Mn(C) is isomorphic as vector space with

Cn2
= C(1, . . . , n2), we can think of it as being of the following form, with Mn being some

sort of “quantum space”, and with ∼ standing for some sort of “twisting”:

A = C(Mn) , Mn ∼ {1, . . . , n2}

And this quantum space Mn might be useful in dealing with quantum mechanics, where
things are a bit “fuzzy”, with the particles having undefined positions and speeds.
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And take this as this comes, with this depending on your physics knowledge. To be
more precise, you surely know that in quantum mechanics things are a bit “fuzzy”, as
said above, and so anything mathematical of classical type, be that usual curves, surfaces,
manifolds X ⊂ RN , or even finite spaces like {1, . . . , N}, which were originally designed
in order to help with classical mechanics, will normally fail in that setting. Thus, we are
genuinely interested in all sorts of crazy mathematical “quantum spaces”, any idea being
welcome, in the hope that such spaces can help us in quantum mechanics.

In a word, Speculation 6.13, and anything similar, is definitely welcome. But then,
thinking a bit more at all this, the above space Mn is not that crazy as in seems, I mean
come up if you can with a mathematical construction of a “quantum space” which is less
crazy. So, as a conclusion, Speculation 6.13 is not only welcome, but warmly welcome, if
the gods of quantum mechanics are with us, spaces like Mn might be the answer.

Less speculatively now, and assuming that you know some physics, at n = 2, which is
of particular interest, you surely know that talking about the electron spin requires the
Pauli matrices, which look as follows, and form a basis of the algebra M2(C):

c1 =

(
1 0
0 1

)
, c2 =

(
i 0
0 −i

)
, c3 =

(
0 1
−1 0

)
, c4 =

(
0 i
i 0

)
Thus, Speculation 6.13 at n = 2 is in fact something corresponding to a deep finding

in physics, and worth a Nobel Prize, the one won by Pauli for his work.

In any case, beginner level or not, you must agree with me that Speculation 6.13 is
something to be taken seriously. So, let us further speculate on that. We have:

Speculation 6.14. Regarding Mn, we can even have a geometric picture of it,

•11 •12 . . . •1n

•21 •22 . . . •2n
...

...

•n1 •n2 . . . •nn
with each formal point •ij standing for the corresponding elementary matrix

eij : ej → ei

based on the observation that these matrices form a basis of A = C(Mn).

To be more precise here, let us first examine the classical space X = {1, . . . , n2}. We
can represent this space by a series of n2 points, as everyone does, as follows:

•1 •2 . . . •n2
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Now if we look at the algebra of functions C(X) = Cn2
, this is spanned by the Dirac

masses δi, one for each of the points •i. Thus, we can say that “spaces are described by
the functions on them”, and we are led in this way to the above picture of Mn.

All this is quite interesting, we have some beginning of mathematics here, for our
mysterious space Mn. And we can further speculate on this, in the following way:

Speculation 6.15. The twisting operation {1, . . . , n2} →Mn, which reads

•11 . . . •1n

•1 •2 . . . •n2 ⇝
...

...

•n1 . . . •nn

amounts in changing the multiplication rule on the vector space Cn2
, as follows,

eiej = δijei ⇝ eijekl = δjkeil

at the level of the standard basis, in each case.

To be more precise, here we are using the same philosophy as for Speculation 6.14,
namely that “spaces are described by the functions on them”, and in what regards the
multiplication formulae, we first have eiej = δijei, which is the familiar multiplication rule
for the Dirac masses on {1, . . . , n2}, and then we have eijekl = δjkeil, which is the familiar
multiplication rule for the matrix units eij : ej → ei, from Speculation 6.14.

More in detail now, we would like to have a formula as follows, with the operation
A→ Aσ being something that destroys the commutativity of the multiplication:

C(Mn) = C(1, . . . , n2)σ

In more familiar terms, with usual complex matrices on the left, and with a better-
looking product of sets being used on the right, this formula reads:

Mn(C) = C
(
{1, . . . , n} × {1, . . . , n}

)σ
In order to establish this formula, consider the algebra on the right. As a complex

vector space, this algebra has the standard basis {fij} formed by the Dirac masses at the
points (i, j), and the multiplicative structure of this algebra is given by:

fijfkl = δij,kl

Now let us twist this multiplication, according to the formula eijekl = δjkeil. We obtain
in this way the usual combination formulae for the standard matrix units eij : ej → ei of
the algebra Mn(C), and so we have our twisting result, as claimed.
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As a further comment, at n = 2, coming as a continuation of our previous comment
on the Pauli matrices, in case you are familiar with these, you might argue that why using
eij instead of these Pauli matrices. Good point, and we will be back to this, later.

Very nice all this, and as a natural question now, we have:

Question 6.16. How to unify the theory of classical finite spaces {1, . . . , N} with the
theory of quantum finite spaces of type Mn, that we are currently building?

In answer, we can look at multimatrix algebras, and we have:

Speculation 6.17. We can call finite quantum spaces the spaces of type

X =Mn1 ⊔ . . . ⊔Mnk

coming according to the following formula, for the associated algebras of functions:

C(X) =Mn1(C)⊕ . . .⊕Mnk
(C)

The cardinality |X| of such a space is by definition N = n2
1 + . . .+ n2

k.

To be more precise, we are saying this in view of the following formula, valid for any
two finite sets X, Y , and which is something very elementary:

C(X ⊔ Y ) = C(X)⊕ C(Y )

Indeed, staying a bit speculatory, of course, we can take this as a definition for the
disjoint union of finite quantum spaces, and with this in hand, we have the following
computation, fully justifying what was said in the above:

C(Mn1 ⊔ . . . ⊔Mnk
) = C(Mn1)⊕ . . .⊕ C(Mnk

)

= Mn1(C)⊕ . . .⊕Mnk
(C)

In any case, Speculation 6.17 looks very good, and fully answers Question 6.16. And
as further good news here, we even have pictures for these general finite quantum spaces,
generalizing our previous pictures for Mn and for {1, . . . , N}. Indeed, given a direct sum
of matrix algebras, A =Mn1(C)⊕ . . .⊕Mnk

(C), we can represent each matrix block as a
square, and we end up with a picture like this, representing A:

• • •
• • • • •
• • • . . . • •

But looking at this picture, we can say that this represents the space X itself. For
instance the number of points is the correct one, |X| = dimA. Also, in the case A = CN ,
the picture that we get, • • . . . • , is the correct picture of X, as a space of points. More
generally, when ni = 1, the associated point • is a true point of X. And so on.
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As a related speculation now, we can talk as well about products of finite quantum
spaces, defined according to the following formula:

C(X × Y ) = C(X)⊗ C(Y )

To be more precise, this is something well-known, and elementary, for any two finite
sets X, Y , and in view of this, we can take it as a definition for X × Y , in general. And
again, all this is compatible with what we previously knew about Mn and {1, . . . , N}.

Very nice all this. As a last topic of discussion, we must still extend what we have to
the case of the multimatrix algebras, and the result here, including what we knew from
before, of algebraic nature, regarding the multimatrix algebras, is as follows:

Speculation 6.18. We can call finite quantum spaces the spaces of type

X =Mn1 ⊔ . . . ⊔Mnk

coming according to the following formula, for the associated algebras of functions:

C(X) =Mn1(C)⊕ . . .⊕Mnk
(C)

The cardinality |X| of such a space is by definition the following number,

N = n2
1 + . . .+ n2

k

and the possible traces are as follows, with λi > 0 summing up to 1:

tr = λ1tr1 ⊕ . . .⊕ λktrk

Among these traces, we have the canonical trace, appearing as

tr : C(X) ⊂ L(C(X)) → C

via the left regular representation, having weights λi = n2
i /N .

To be more precise, these are things that we already know from before, save for the
last assertion, which is new, and needs some explanations. Consider the left regular
representation of our algebra A = C(X), which is given by the following formula:

π : A ⊂ L(A) , π(a) : b→ ab

We know that the algebra L(A) of linear operators T : A → A is isomorphic to a
matrix algebra, and more specifically to MN(C), with N = |X| being as before:

L(A) ≃MN(C)

Thus, this algebra has a trace tr : L(A) → C, and by composing this trace with the
representation π, we obtain a certain trace tr : A→ C, that we can call “canonical”:

tr : A ⊂ L(A) → C
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In practice now, and in order to avoid too much abstraction, we can compute the
weights of this trace by using a multimatrix basis of A, formed by matrix units eiab, with
i ∈ {1, . . . , k} and with a, b ∈ {1, . . . , ni}, and we obtain, as claimed:

λi =
n2
i

N
It is possible to speculate some more, along the same lines, but enough work done for

the day, let us formulate our conclusions, which are quite good, as follows:

Conclusion 6.19. Spaces like Mn are the simplest possible “quantum spaces”, mathe-
matically speaking, and we definitely have tools, including pictures, for dealing with them.
With a bit of luck, these might help in quantum physics, which needs such spaces.

Of course, all this was a bit subjective, and many things remain to be clarified. But
no worries, we will be back to this soon, with full mathematical details.
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CHAPTER 9

Spectral theory

9a. Linear operators

We would like to first discuss the theory of linear operators T : H → H over a complex
Hilbert space H, usually taken separable. Let us start with a basic result, as follows:

Theorem 9.1. Given a Hilbert space H, consider the linear operators T : H → H,
and for each such operator define its norm by the following formula:

||T || = sup
||x||=1

||Tx||

The operators which are bounded, ||T || < ∞, form then a complex algebra B(H), which
is complete with respect to ||.||. When H comes with a basis {ei}i∈I , we have

B(H) ⊂MI(C)

with the correspondence T →M coming via the usual linear algebra formulae, namely:

T (x) =Mx , Mij =< Tej, ei >

In infinite dimensions, the inclusion B(H) ⊂MI(C) is not an equality.

Proof. This is something straightforward, the idea being as follows:

(1) The fact that we have indeed an algebra, satisfying the product condition in the
statement, follows from the following estimates, which are all elementary:

||S + T || ≤ ||S||+ ||T ||

||λT || = |λ| · ||T ||

||ST || ≤ ||S|| · ||T ||

(2) Regarding now the completness assertion, if {Tn} ⊂ B(H) is Cauchy then {Tnx}
is Cauchy for any x ∈ H, so we can define the limit T = limn→∞ Tn by setting:

Tx = lim
n→∞

Tnx

113
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Let us first check that the application x→ Tx is linear. We have:

T (x+ y) = lim
n→∞

Tn(x+ y)

= lim
n→∞

Tn(x) + Tn(y)

= lim
n→∞

Tn(x) + lim
n→∞

Tn(y)

= T (x) + T (y)

Similarly, we have T (λx) = λT (x), and we conclude that T ∈ L(H).

(3) With this done, it remains to prove now that we have T ∈ B(H), and that Tn → T
in norm. For this purpose, observe that we have:

||Tn − Tm|| ≤ ε , ∀n,m ≥ N =⇒ ||Tnx− Tmx|| ≤ ε , ∀||x|| = 1 , ∀n,m ≥ N

=⇒ ||Tnx− Tx|| ≤ ε , ∀||x|| = 1 , ∀n ≥ N

=⇒ ||TNx− Tx|| ≤ ε , ∀||x|| = 1

=⇒ ||TN − T || ≤ ε

But this gives both T ∈ B(H), and TN → T in norm, and we are done.

(4) Regarding the embedding, the correspondence T →M in the statement is indeed
linear, and its kernel is {0}, so we have indeed an embedding as follows, as claimed:

B(H) ⊂MI(C)

In finite dimensions we have an isomorphism, because any M ∈ MN(C) determines
an operator T : CN → CN , given by < Tej, ei >= Mij. However, in infinite dimensions,
we have matrices not producing operators, as for instance the all-one matrix. □

As a second basic result regarding the operators, we will need:

Theorem 9.2. Each operator T ∈ B(H) has an adjoint T ∗ ∈ B(H), given by:

< Tx, y >=< x, T ∗y >

The operation T → T ∗ is antilinear, antimultiplicative, involutive, and satisfies:

||T || = ||T ∗|| , ||TT ∗|| = ||T ||2

When H comes with a basis {ei}i∈I , the operation T → T ∗ corresponds to

(M∗)ij =M ji

at the level of the associated matrices M ∈MI(C).

Proof. This is standard too, and can be proved in 3 steps, as follows:
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(1) The existence of the adjoint operator T ∗, given by the formula in the statement,
comes from the fact that the function φ(x) =< Tx, y > being a linear map H → C, we
must have a formula as follows, for a certain vector T ∗y ∈ H:

φ(x) =< x, T ∗y >

Moreover, since this vector is unique, T ∗ is unique too, and we have as well:

(S + T )∗ = S∗ + T ∗ , (λT )∗ = λ̄T ∗ , (ST )∗ = T ∗S∗ , (T ∗)∗ = T

Observe also that we have indeed T ∗ ∈ B(H), because:

||T || = sup
||x||=1

sup
||y||=1

< Tx, y >

= sup
||y||=1

sup
||x||=1

< x, T ∗y >

= ||T ∗||

(2) Regarding now ||TT ∗|| = ||T ||2, which is a key formula, observe that we have:

||TT ∗|| ≤ ||T || · ||T ∗|| = ||T ||2

On the other hand, we have as well the following estimate:

||T ||2 = sup
||x||=1

| < Tx, Tx > |

= sup
||x||=1

| < x, T ∗Tx > |

≤ ||T ∗T ||

By replacing T → T ∗ we obtain from this ||T ||2 ≤ ||TT ∗||, as desired.

(3) Finally, when H comes with a basis, the formula < Tx, y >=< x, T ∗y > applied
with x = ei, y = ej translates into the formula (M∗)ij =M ji, as desired. □

Let us discuss now the diagonalization problem for the operators T ∈ B(H), in anal-
ogy with the diagonalization problem for the usual matrices A ∈ MN(C). As a first
observation, we can talk about eigenvalues and eigenvectors, as follows:

Definition 9.3. Given an operator T ∈ B(H), assuming that we have

Tx = λx

we say that x ∈ H is an eigenvector of T , with eigenvalue λ ∈ C.

We know many things about eigenvalues and eigenvectors, in the finite dimensional
case. However, most of these will not extend to the infinite dimensional case, or at least
not extend in a straightforward way, due to a number of reasons:
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(1) Most of basic linear algebra is based on the fact that Tx = λx is equivalent to
(T − λ)x = 0, so that λ is an eigenvalue when T − λ is not invertible. In the
infinite dimensional setting T − λ might be injective and not surjective, or vice
versa, or invertible with (T − λ)−1 not bounded, and so on.

(2) Also, in linear algebra T −λ is not invertible when det(T −λ) = 0, and with this
leading to most of the advanced results about eigenvalues and eigenvectors. In
infinite dimensions, however, it is impossible to construct a determinant function
det : B(H) → C, and this even for the diagonal operators on l2(N).

Summarizing, we are in trouble. Forgetting about (2), which obviously leads nowhere,
let us focus on the difficulties in (1). In order to cut short the discussion there, regarding
the various properties of T−λ, we can just say that T−λ is either invertible with bounded
inverse, the “good case”, or not. We are led in this way to the following definition:

Definition 9.4. The spectrum of an operator T ∈ B(H) is the set

σ(T ) =
{
λ ∈ C

∣∣∣T − λ ̸∈ B(H)−1
}

where B(H)−1 ⊂ B(H) is the set of invertible operators.

As a basic example, in the finite dimensional case, H = CN , the spectrum of a usual
matrix A ∈ MN(C) is the collection of its eigenvalues, taken without multiplicities. We
will see many other examples. In general, the spectrum has the following properties:

Proposition 9.5. The spectrum of T ∈ B(H) contains the eigenvalue set

ε(T ) =
{
λ ∈ C

∣∣∣ ker(T − λ) ̸= {0}
}

and ε(T ) ⊂ σ(T ) is an equality in finite dimensions, but not in infinite dimensions.

Proof. We have several assertions here, the idea being as follows:

(1) First of all, the eigenvalue set is indeed the one in the statement, because Tx = λx
tells us precisely that T − λ must be not injective. The fact that we have ε(T ) ⊂ σ(T ) is
clear as well, because if T − λ is not injective, it is not bijective.

(2) In finite dimensions we have ε(T ) = σ(T ), because T − λ is injective if and only if
it is bijective, with the boundedness of the inverse being automatic.

(3) In infinite dimensions we can assumeH = l2(N), and the shift operator S(ei) = ei+1

is injective but not surjective. Thus 0 ∈ σ(T )− ε(T ). □

Philosophically, the best way of thinking at this is as follows: the numbers λ /∈ σ(T )
are good, because we can invert T − λ, the numbers λ ∈ σ(T )− ε(T ) are bad, because so
they are, and the eigenvalues λ ∈ ε(T ) are evil. Welcome to operator theory.

Let us develop now some general theory. As a first goal, we would like to prove that
the spectra are non-empty. This is something quite tricky, the result being as follows:
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Theorem 9.6. The spectrum of a bounded operator T ∈ B(H) is:

(1) Compact.
(2) Contained in the disc D0(||T ||).
(3) Non-empty.

Proof. This can be proved by using some complex analysis, as follows:

(1) In view of (2) below, it is enough to prove that σ(T ) is closed. But this follows
from the following computation, with |ε| being small:

λ /∈ σ(T ) =⇒ T − λ ∈ B(H)−1

=⇒ T − λ− ε ∈ B(H)−1

=⇒ λ+ ε /∈ σ(T )

(2) This follows indeed from the following computation:

λ > ||T || =⇒
∣∣∣∣∣∣T
λ

∣∣∣∣∣∣ < 1

=⇒ 1− T

λ
∈ B(H)−1

=⇒ λ− T ∈ B(H)−1

=⇒ λ /∈ σ(T )

(3) Assume by contradiction σ(T ) = ∅. Given a linear form f ∈ B(H)∗, consider the
following map, which is well-defined, due to our assumption σ(T ) = ∅:

φ : C → C , λ→ f((T − λ)−1)

By using the fact that T → T−1 is differentiable, which is something elementary, we
conclude that this map is differentiable, and so holomorphic. Also, we have:

λ→ ∞ =⇒ T − λ→ ∞
=⇒ (T − λ)−1 → 0

=⇒ f((T − λ))−1 → 0

Thus by the Liouville theorem we obtain φ = 0. But, in view of the definition of φ,
this gives (T − λ)−1 = 0, which is a contradiction, as desired. □

Here is now a second basic result regarding the spectra, inspired from what happens
in finite dimensions, for the usual complex matrices, and which shows that things do not
necessarily extend without troubles to the infinite dimensional setting:

Theorem 9.7. We have the following formula, valid for any operators S, T :

σ(ST ) ∪ {0} = σ(TS) ∪ {0}
In finite dimensions we have σ(ST ) = σ(TS), but this fails in infinite dimensions.
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Proof. There are several assertions here, the idea being as follows:

(1) This is something that we know in finite dimensions, coming from the fact that
the characteristic polynomials of the associated matrices A,B coincide:

PAB = PBA

Thus we obtain σ(ST ) = σ(TS) in this case, as claimed. Observe that this improves
twice the general formula in the statement, first because we have no issues at 0, and
second because what we obtain is actually an equality of sets with mutiplicities.

(2) In general now, let us first prove the main assertion, stating that σ(ST ), σ(TS)
coincide outside 0. We first prove that we have the following implication:

1 /∈ σ(ST ) =⇒ 1 /∈ σ(TS)

Assume indeed that 1− ST is invertible, with inverse denoted R:

R = (1− ST )−1

We have then the following formulae, relating our variables R, S, T :

RST = STR = R− 1

By using RST = R− 1, we have the following computation:

(1 + TRS)(1− TS) = 1 + TRS − TS − TRSTS

= 1 + TRS − TS − TRS + TS

= 1

A similar computation, using STR = R− 1, shows that we have:

(1− TS)(1 + TRS) = 1

Thus 1 − TS is invertible, with inverse 1 + TRS, which proves our claim. Now by
multiplying by scalars, we deduce from this that for any λ ∈ C− {0} we have:

λ /∈ σ(ST ) =⇒ λ /∈ σ(TS)

But this leads to the conclusion in the statement.

(3) Regarding now the counterexample to the formula σ(ST ) = σ(TS), in general, let
us take S to be the shift on H = L2(N), given by the following formula:

S(ei) = ei+1

As for T , we can take it to be the adjoint of S, and we have:

S∗S = 1 =⇒ 0 /∈ σ(SS∗)

SS∗ = Proj(e⊥0 ) =⇒ 0 ∈ σ(SS∗)

Thus, the spectra do not match on 0, and so we have our counterexample. □
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9b. Spectral radius

Let us develop now some systematic theory for the computation of the spectra, based
on what we know about the eigenvalues of the usual complex matrices. As a first result,
which is well-known for the usual matrices, and extends well, we have:

Theorem 9.8. We have the “polynomial functional calculus” formula

σ(P (T )) = P (σ(T ))

valid for any polynomial P ∈ C[X], and any operator T ∈ B(H).

Proof. We pick a scalar λ ∈ C, and we decompose the polynomial P − λ:

P (X)− λ = c(X − r1) . . . (X − rn)

We have then the following equivalences:

λ /∈ σ(P (T )) ⇐⇒ P (T )− λ ∈ B(H)−1

⇐⇒ c(T − r1) . . . (T − rn) ∈ B(H)−1

⇐⇒ T − r1, . . . , T − rn ∈ B(H)−1

⇐⇒ r1, . . . , rn /∈ σ(T )

⇐⇒ λ /∈ P (σ(T ))

Thus, we are led to the formula in the statement. □

The above result is something very useful, and generalizing it will be our next task.
As a first ingredient here, assuming that A ∈MN(C) is invertible, we have:

σ(A−1) = σ(A)−1

It is possible to extend this formula to the arbitrary operators, and we will do this
in a moment. Before starting, however, we have to find a class of functions generalizing
both the polynomials P ∈ C[X] and the inverse function x → x−1. The answer to this
question is provided by the rational functions, which are as follows:

Definition 9.9. A rational function f ∈ C(X) is a quotient of polynomials:

f =
P

Q

Assuming that P,Q are prime to each other, we can regard f as a usual function,

f : C−X → C
with X being the set of zeros of Q, also called poles of f .

Now that we have our class of functions, the next step consists in applying them to
operators. Here we cannot expect f(T ) to make sense for any f and any T , for instance
because T−1 is defined only when T is invertible. We are led in this way to:
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Definition 9.10. Given an operator T ∈ B(H), and a rational function f = P/Q
having poles outside σ(T ), we can construct the following operator,

f(T ) = P (T )Q(T )−1

that we can denote as a usual fraction, as follows,

f(T ) =
P (T )

Q(T )

due to the fact that P (T ), Q(T ) commute, so that the order is irrelevant.

To be more precise, f(T ) is indeed well-defined, and the fraction notation is justified
too. In more formal terms, we can say that we have a morphism of complex algebras as
follows, with C(X)T standing for the rational functions having poles outside σ(T ):

C(X)T → B(H) , f → f(T )

Summarizing, we have now a good class of functions, generalizing both the polynomials
and the inverse map x→ x−1. We can now extend Theorem 9.8, as follows:

Theorem 9.11. We have the “rational functional calculus” formula

σ(f(T )) = f(σ(T ))

valid for any rational function f ∈ C(X) having poles outside σ(T ).

Proof. We pick a scalar λ ∈ C, we write f = P/Q, and we set:

F = P − λQ

By using now Theorem 9.9, for this polynomial, we obtain:

λ ∈ σ(f(T )) ⇐⇒ F (T ) /∈ B(H)−1

⇐⇒ 0 ∈ σ(F (T ))

⇐⇒ 0 ∈ F (σ(T ))

⇐⇒ ∃µ ∈ σ(T ), F (µ) = 0

⇐⇒ λ ∈ f(σ(T ))

Thus, we are led to the formula in the statement. □

As an application of the above methods, we can investigate certain special classes of
operators, such as the self-adjoint ones, and the unitary ones. Let us start with:

Proposition 9.12. The following happen:

(1) We have σ(T ∗) = σ(T ), for any T ∈ B(H).
(2) If T = T ∗ then X = σ(T ) satisfies X = X.
(3) If U∗ = U−1 then X = σ(U) satisfies X−1 = X.
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Proof. We have several assertions here, the idea being as follows:

(1) The spectrum of the adjoint operator T ∗ can be computed as follows:

σ(T ∗) =
{
λ ∈ C

∣∣∣T ∗ − λ /∈ B(H)−1
}

=
{
λ ∈ C

∣∣∣T − λ̄ /∈ B(H)−1
}

= σ(T )

(2) This is clear indeed from (1).

(3) For a unitary operator, U∗ = U−1, Theorem 9.11 and (1) give:

σ(U)−1 = σ(U−1) = σ(U∗) = σ(U)

Thus, we are led to the conclusion in the statement. □

In analogy with what happens for the usual matrices, we would like to improve now
(2,3) above, with results stating that the spectrum X = σ(T ) satisfies X ⊂ R for self-
adjoints, and X ⊂ T for unitaries. This will be tricky. Let us start with:

Theorem 9.13. The spectrum of a unitary operator

U∗ = U−1

is on the unit circle, σ(U) ⊂ T.

Proof. Assuming U∗ = U−1, we have the following norm computation:

||U || =
√

||UU∗|| =
√
1 = 1

Now if we denote by D the unit disk, we obtain from this:

σ(U) ⊂ D

On the other hand, once again by using U∗ = U−1, we have as well:

||U−1|| = ||U∗|| = ||U || = 1

Thus, as before with D being the unit disk in the complex plane, we have:

σ(U−1) ⊂ D

Now by using Theorem 9.11, we obtain σ(U) ⊂ D ∩D−1 = T, as desired. □

We have as well a similar result for the self-adjoints, as follows:

Theorem 9.14. The spectrum of a self-adjoint operator

T = T ∗

consists of real numbers, σ(T ) ⊂ R.
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Proof. The idea is that we can deduce the result from Theorem 9.13, by using the
following remarkable rational function, depending on a parameter r ∈ R:

f(z) =
z + ir

z − ir

Indeed, for r >> 0 the operator f(T ) is well-defined, and we have:(
T + ir

T − ir

)∗

=
T − ir

T + ir
=

(
T + ir

T − ir

)−1

Thus f(T ) is unitary, and by using Theorem 9.13 we obtain:

σ(T ) ⊂ f−1(f(σ(T )))

= f−1(σ(f(T )))

⊂ f−1(T)
= R

Thus, we are led to the conclusion in the statement. □

One key thing that we know about matrices, which is clear for the diagonalizable
matrices, and then in general follows by density, is the following formula:

σ(eA) = eσ(A)

We would like to have such formulae for the general operators T ∈ B(H), but this is
something quite technical. Consider the rational calculus morphism from Definition 9.10,
which is as follows, with the exponent standing for “having poles outside σ(T )”:

C(X)T → B(H) , f → f(T )

As mentioned before, the rational functions are holomorphic outside their poles, and
this raises the question of extending this morphism, as follows:

Hol(σ(T )) → B(H) , f → f(T )

But for this, we can use the Cauchy formula. Indeed, given a function f ∈ C(X)T ,
the operator f(T ) ∈ B(H) from Definition 9.10 can be recaptured as follows:

f(T ) =
1

2πi

∫
γ

f(z)

z − T
dz

Now given an arbitrary function f ∈ Hol(σ(T )), we can define f(T ) ∈ B(H) by the
exactly same formula, and we obtain in this way the desired correspondence:

Hol(σ(T )) → B(H) , f → f(T )

This was for the plan. In practice now, all this needs a bit of care, with many verifi-
cations needed, and with the technical remark that a winding number must be added to
the above Cauchy formulae, for things to be correct. The result is as follows:
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Theorem 9.15. Given T ∈ B(H), we have a morphism of algebras as follows, where
Hol(σ(T )) is the algebra of functions which are holomorphic around σ(T ),

Hol(σ(T )) → B(H) , f → f(T )

which extends the previous rational functional calculus f → f(T ). We have:

σ(f(T )) = f(σ(T ))

Moreover, if σ(T ) is contained in an open set U and fn, f : U → C are holomorphic
functions such that fn → f uniformly on compact subsets of U then fn(T ) → f(T ).

Proof. This follows indeed by reasoning along the above lines, by making a heavy
use of the Cauchy formula, and for full details here, we refer to any specialized operator
theory book. In what follows, we will not really need this result. □

In order to formulate now our next result, we will need the following notion:

Definition 9.16. Given an operator T ∈ B(H), its spectral radius

ρ(T ) ∈
[
0, ||T ||

]
is the radius of the smallest disk centered at 0 containing σ(T ).

Now with this notion in hand, we have the following key result, improving our key
theoretical result so far about spectra, namely σ(T ) ̸= ∅, from Theorem 9.6:

Theorem 9.17. The spectral radius of an operator T ∈ B(H) is given by

ρ(T ) = lim
n→∞

||T n||1/n

and in this formula, we can replace the limit by an inf.

Proof. We have several things to be proved, the idea being as follows:

(1) Our first claim is that the numbers un = ||T n||1/n satisfy:

(n+m)un+m ≤ nun +mum

Indeed, we have the following estimate, using the Young inequality ab ≤ ap/p+ bq/q,
with exponents p = (n+m)/n and q = (n+m)/m:

un+m = ||T n+m||1/(n+m)

≤ ||T n||1/(n+m)||Tm||1/(n+m)

≤ ||T n||1/n · n

n+m
+ ||Tm||1/m · m

n+m

=
nun +mum
n+m

(2) Our second claim is that the second assertion holds, namely:

lim
n→∞

||T n||1/n = inf
n
||T n||1/n
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For this purpose, we just need the inequality found in (1). Indeed, fix m ≥ 1, let
n ≥ 1, and write n = lm+ r with 0 ≤ r ≤ m− 1. By using twice uab ≤ ub, we get:

un ≤ 1

n
(lmulm + rur)

≤ 1

n
(lmum + ru1)

≤ um +
r

n
u1

It follows that we have lim supn un ≤ um, which proves our claim.

(3) Summarizing, we are left with proving the main formula, which is as follows, and
with the remark that we already know that the sequence on the right converges:

ρ(T ) = lim
n→∞

||T n||1/n

In one sense, we can use the polynomial calculus formula σ(T n) = σ(T )n. Indeed, this
gives the following estimate, valid for any n, as desired:

ρ(T ) = sup
λ∈σ(T )

|λ|

= sup
ρ∈σ(T )n

|ρ|1/n

= sup
ρ∈σ(Tn)

|ρ|1/n

= ρ(T n)1/n

≤ ||T n||1/n

(4) For the reverse inequality, we fix a number ρ > ρ(T ), and we want to prove that
we have ρ ≥ limn→∞ ||T n||1/n. By using the Cauchy formula, we have:

1

2πi

∫
|z|=ρ

zn

z − T
dz =

1

2πi

∫
|z|=ρ

∞∑
k=0

zn−k−1T k dz

=
∞∑
k=0

1

2πi

(∫
|z|=ρ

zn−k−1dz

)
T k

=
∞∑
k=0

δn,k+1T
k

= T n−1

By applying the norm we obtain from this formula:

||T n−1|| ≤ 1

2π

∫
|z|=ρ

∣∣∣∣∣∣∣∣ zn

z − T

∣∣∣∣∣∣∣∣ dz ≤ ρn · sup
|z|=ρ

∣∣∣∣∣∣∣∣ 1

z − T

∣∣∣∣∣∣∣∣
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Since the sup does not depend on n, by taking n-th roots, we obtain in the limit:

ρ ≥ lim
n→∞

||T n||1/n

Now recall that ρ was by definition an arbitrary number satisfying ρ > ρ(T ). Thus,
we have obtained the following estimate, valid for any T ∈ B(H):

ρ(T ) ≥ lim
n→∞

||T n||1/n

Thus, we are led to the conclusion in the statement. □

In the case of the normal elements, we have the following finer result:

Theorem 9.18. The spectral radius of a normal element,

TT ∗ = T ∗T

is equal to its norm.

Proof. We can proceed in two steps, as follows:

Step 1. In the case T = T ∗ we have ||T n|| = ||T ||n for any exponent of the form

n = 2k, by using the formula ||TT ∗|| = ||T ||2, and by taking n-th roots we get:

ρ(T ) ≥ ||T ||

Thus, we are done with the self-adjoint case, with the result ρ(T ) = ||T ||.

Step 2. In the general normal case TT ∗ = T ∗T we have T n(T n)∗ = (TT ∗)n, and by
using this, along with the result from Step 1, applied to TT ∗, we obtain:

ρ(T ) = lim
n→∞

||T n||1/n

=
√

lim
n→∞

||T n(T n)∗||1/n

=
√

lim
n→∞

||(TT ∗)n||1/n

=
√
ρ(TT ∗)

=
√

||T ||2

= ||T ||

Thus, we are led to the conclusion in the statement. □

9c. Normal operators

By using Theorem 9.18 we can say a number of non-trivial things about the normal
operators, commonly known as “spectral theorem for normal operators”. As a first result
here, we can improve the polynomial functional calculus formula, as follows:
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Theorem 9.19. Given T ∈ B(H) normal, we have a morphism of algebras

C[X] → B(H) , P → P (T )

having the properties ||P (T )|| = ||P|σ(T )||, and σ(P (T )) = P (σ(T )).

Proof. This is an improvement of Theorem 9.8 in the normal case, with the extra
assertion being the norm estimate. But the element P (T ) being normal, we can apply to
it the spectral radius formula for normal elements, and we obtain:

||P (T )|| = ρ(P (T ))

= sup
λ∈σ(P (T ))

|λ|

= sup
λ∈P (σ(T ))

|λ|

= ||P|σ(T )||

Thus, we are led to the conclusions in the statement. □

We can improve as well the rational calculus formula, and the holomorphic calculus
formula, in the same way. Importantly now, at a more advanced level, we have:

Theorem 9.20. Given T ∈ B(H) normal, we have a morphism of algebras

C(σ(T )) → B(H) , f → f(T )

which is isometric, ||f(T )|| = ||f ||, and has the property σ(f(T )) = f(σ(T )).

Proof. The idea here is to “complete” the morphism in Theorem 9.19, namely:

C[X] → B(H) , P → P (T )

Indeed, we know from Theorem 9.19 that this morphism is continuous, and is in fact
isometric, when regarding the polynomials P ∈ C[X] as functions on σ(T ):

||P (T )|| = ||P|σ(T )||

Thus, by Stone-Weierstrass, we have a unique isometric extension, as follows:

C(σ(T )) → B(H) , f → f(T )

It remains to prove σ(f(T )) = f(σ(T )), and we can do this by double inclusion:

“⊂” Given a continuous function f ∈ C(σ(T )), we must prove that we have:

λ /∈ f(σ(T )) =⇒ λ /∈ σ(f(T ))

For this purpose, consider the following function, which is well-defined:

1

f − λ
∈ C(σ(T ))
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We can therefore apply this function to T , and we obtain:(
1

f − λ

)
T =

1

f(T )− λ

In particular f(T )− λ is invertible, so λ /∈ σ(f(T )), as desired.

“⊃” Given a continuous function f ∈ C(σ(T )), we must prove that we have:

λ ∈ f(σ(T )) =⇒ λ ∈ σ(f(T ))

But this is the same as proving that we have:

µ ∈ σ(T ) =⇒ f(µ) ∈ σ(f(T ))

For this purpose, we approximate our function by polynomials, Pn → f , and we
examine the following convergence, which follows from Pn → f :

Pn(T )− Pn(µ) → f(T )− f(µ)

We know from polynomial functional calculus that we have:

Pn(µ) ∈ Pn(σ(T )) = σ(Pn(T ))

Thus, the operators Pn(T ) − Pn(µ) are not invertible. On the other hand, we know
that the set formed by the invertible operators is open, so its complement is closed. Thus
the limit f(T )− f(µ) is not invertible either, and so f(µ) ∈ σ(f(T )), as desired. □

As an important comment, Theorem 9.20 is not exactly in final form, because it misses
an important point, namely that our correspondence maps:

z̄ → T ∗

However, this is something non-trivial, and we will be back to this later. Observe
however that Theorem 9.20 is fully powerful for the self-adjoint operators, T = T ∗, where
the spectrum is real, so where z = z̄ on the spectrum. We will be back to this.

As a second result now, along the same lines, we can further extend Theorem 9.20
into a measurable functional calculus theorem, as follows:

Theorem 9.21. Given T ∈ B(H) normal, we have a morphism of algebras as follows,
with L∞ standing for abstract measurable functions, or Borel functions,

L∞(σ(T )) → B(H) , f → f(T )

which is isometric, ||f(T )|| = ||f ||, and has the property σ(f(T )) = f(σ(T )).

Proof. As before, the idea will be that of “completing” what we have. To be more
precise, we can use the Riesz theorem and a polarization trick, as follows:

(1) Given a vector x ∈ H, consider the following functional:

C(σ(T )) → C , g →< g(T )x, x >
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By the Riesz theorem, this functional must be the integration with respect to a certain
measure µ on the space σ(T ). Thus, we have a formula as follows:

< g(T )x, x >=

∫
σ(T )

g(z)dµ(z)

Now given an arbitrary Borel function f ∈ L∞(σ(T )), as in the statement, we can
define a number < f(T )x, x >∈ C, by using exactly the same formula, namely:

< f(T )x, x >=

∫
σ(T )

f(z)dµ(z)

Thus, we have managed to define numbers < f(T )x, x >∈ C, for all vectors x ∈ H,
and in addition we can recover these numbers as follows, with gn ∈ C(σ(T )):

< f(T )x, x >= lim
gn→f

< gn(T )x, x >

(2) In order to define now numbers < f(T )x, y >∈ C, for all vectors x, y ∈ H, we can
use a polarization trick. Indeed, for any operator S ∈ B(H) we have:

< S(x+ y), x+ y > = < Sx, x > + < Sy, y >

+ < Sx, y > + < Sy, x >

By replacing y → iy, we have as well the following formula:

< S(x+ iy), x+ iy > = < Sx, x > + < Sy, y >

−i < Sx, y > +i < Sy, x >

By multiplying this latter formula by i, we obtain the following formula:

i < S(x+ iy), x+ iy > = i < Sx, x > +i < Sy, y >

+ < Sx, y > − < Sy, x >

Now by summing this latter formula with the first one, we obtain:

< S(x+ y), x+ y > +i < S(x+ iy), x+ iy > = (1 + i)[< Sx, x > + < Sy, y >]

+2 < Sx, y >

(3) But with this, we can now finish. Indeed, by combining (1,2), given a Borel
function f ∈ L∞(σ(T )), we can define numbers < f(T )x, y >∈ C for any x, y ∈ H, and it
is routine to check, by using approximation by continuous functions gn → f as in (1), that
we obtain in this way an operator f(T ) ∈ B(H), having all the desired properties. □

As a comment here, the above result and its proof provide us with more than a Borel
functional calculus, because what we got is a certain measure on the spectrum σ(T ), along
with a functional calculus for the L∞ functions with respect to this measure. We will be
back to this later, and for the moment we will only need Theorem 9.21 as formulated,
with L∞(σ(T )) standing, a bit abusively, for the Borel functions on σ(T ).
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9d. Diagonalization

Let us discuss now some useful decomposition results for the bounded linear operators
T ∈ B(H), that we can now establish, by using the above measurable calculus technology.
We know that any z ∈ C can be written as follows, with a, b ∈ R:

z = a+ ib

Also, we know that both the real and imaginary parts a, b ∈ R, and more generally
any real number c ∈ R, can be written as follows, with r, s ≥ 0:

c = r − s

In order to discuss now the operator theoretic generalizations of these results, which
by the way covers the usual matrix case too, let us start with the following basic fact:

Theorem 9.22. Any operator T ∈ B(H) can be written as

T = Re(T ) + iIm(T )

with Re(T ), Im(T ) ∈ B(H) being self-adjoint, and this decomposition is unique.

Proof. This is something elementary, the idea being as follows:

(1) As a first observation, in the case H = C our operators are usual complex numbers,
and the formula in the statement corresponds to the following basic fact:

z = Re(z) + iIm(z)

(2) In general now, we can use the same formulae for the real and imaginary part as
in the complex number case, the decomposition formula being as follows:

T =
T + T ∗

2
+ i · T − T ∗

2i

To be more precise, both the operators on the right are self-adjoint, and the summing
formula holds indeed, and so we have our decomposition result, as desired.

(3) Regarding now the uniqueness, by linearity it is enough to show that R + iS = 0
with R, S both self-adjoint implies R = S = 0. But this follows by applying the adjoint
to R + iS = 0, which gives R− iS = 0, and so R = S = 0, as desired. □

More generally now, as a continuation of this, and as an answer to some of the questions
raised above, in relation with the complex numbers, we have the following result:

Theorem 9.23. Given an operator T ∈ B(H), the following happen:

(1) We can write T = A+ iB, with A,B ∈ B(H) being self-adjoint.
(2) When T = T ∗, we can write T = R− S, with R, S ∈ B(H) being positive.
(3) Thus, we can write any T as a linear combination of 4 positive elements.
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Proof. All this follows from basic spectral theory, as follows:

(1) This is something that we already know, from Theorem 9.22, with the decompo-
sition formula there being something straightforward, as follows:

T =
T + T ∗

2
+ i · T − T ∗

2i

(2) This follows from the measurable functional calculus. Indeed, assuming T = T ∗

we have σ(T ) ⊂ R, so we can use the following decomposition formula on R:

1 = χ[0,∞) + χ(−∞,0)

To be more precise, let us multiply by z, and rewrite this formula as follows:

z = χ[0,∞)z − χ(−∞,0)(−z)

Now by applying these measurable functions to T , we obtain as formula as follows,
with both the operators T+, T− ∈ B(H) being positive, as desired:

T = T+ − T−

(3) This follows indeed by combining the results in (1) and (2) above. □

Going ahead with our decomposition results, another basic thing that we know about
complex numbers is that any z ∈ C appears as a real multiple of a unitary:

z = reit

Finding the correct operator theoretic analogue of this is quite tricky, and this even
for the usual matrices A ∈MN(C). As a basic result here, we have:

Theorem 9.24. Given an operator T ∈ B(H), the following happen:

(1) When T = T ∗ and ||T || ≤ 1, we can write T as an average of 2 unitaries:

T =
U + V

2

(2) In the general T = T ∗ case, we can write T as a rescaled sum of unitaries:

T = λ(U + V )

(3) Thus, in general, we can write T as a rescaled sum of 4 unitaries.

Proof. This follows from the results that we have, as follows:

(1) Assuming T = T ∗ and ||T || ≤ 1 we have 1− T 2 ≥ 0, and the decomposition that
we are looking for is as follows, with both the components being unitaries:

T =
T + i

√
1− T 2

2
+
T − i

√
1− T 2

2
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To be more precise, the square root can be extracted by using the continuous functional
calculus, and the check of the unitarity of the components goes as follows:

(T + i
√
1− T 2)(T − i

√
1− T 2) = T 2 + (1− T 2)

= 1

(2) This simply follows by applying (1) to the operator T/||T ||.
(3) Assuming first that we have ||T || ≤ 1, we know from Theorem 9.23 (1) that we

can write T = A + iB, with A,B being self-adjoint, and satisfying ||A||, ||B|| ≤ 1. Now
by applying (1) to both A and B, we obtain a decomposition of T as follows:

T =
U + V +W +X

2

In general, we can apply this to the operator T/||T ||, and we obtain the result. □

Good news, we can now diagonalize the normal operators. We will do this in 3
steps, first for the self-adjoint operators, then for the families of commuting self-adjoint
operators, and finally for the general normal operators, by using the following trick:

T = Re(T ) + iIm(T )

However, and coming somehow as bad news, all this will be quite technical. Indeed,
the diagonalization in infinite dimensions is more tricky than in finite dimensions, and
instead of writing a formula of type T = UDU∗, with U,D ∈ B(H) being respectively
unitary and diagonal, we will express our operator as T = U∗MU , with U : H → K being
a certain unitary, and M ∈ B(K) being a certain diagonal operator. The point indeed is
that this is how the spectral theorem is used in practice, for concrete applications.

But probably too much talking, let us get to work. We first have:

Theorem 9.25. Any self-adjoint operator T ∈ B(H) can be diagonalized,

T = U∗MfU

with U : H → L2(X) being a unitary operator from H to a certain L2 space associated to
T , with f : X → R being a certain function, once again associated to T , and with

Mf (g) = fg

being the usual multiplication operator by f , on the Hilbert space L2(X).

Proof. The construction of U, f can be done in several steps, as follows:

(1) We first prove the result in the special case where our operator T has a cyclic
vector x ∈ H, with this meaning that the following holds:

span
(
T kx

∣∣∣n ∈ N
)
= H
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For this purpose, let us go back to the proof of Theorem 9.21. We will use the following
formula from there, with µ being the measure on X = σ(T ) associated to x:

< g(T )x, x >=

∫
σ(T )

g(z)dµ(z)

Our claim is that we can define a unitary U : H → L2(X), first on the dense part
spanned by the vectors T kx, by the following formula, and then by continuity:

U [g(T )x] = g

Indeed, the following computation shows that U is well-defined, and isometric:

||g(T )x||2 = < g(T )x, g(T )x >

= < g(T )∗g(T )x, x >

= < |g|2(T )x, x >

=

∫
σ(T )

|g(z)|2dµ(z)

= ||g||22
We can then extend U by continuity into a unitary U : H → L2(X), as claimed. Now

observe that we have the following formula:

UTU∗g = U [Tg(T )x]

= U [(zg)(T )x]

= zg

Thus our result is proved in the present case, with U as above, and with f(z) = z.

(2) We discuss now the general case. Our first claim is that H has a decomposition
as follows, with each Hi being invariant under T , and admitting a cyclic vector xi:

H =
⊕
i

Hi

Indeed, this is something elementary, the construction being by recurrence in finite
dimensions, in the obvious way, and by using the Zorn lemma in general. Now with this
decomposition in hand, we can make a direct sum of the diagonalizations obtained in (1),
for each of the restrictions T|Hi

, and we obtain the formula in the statement. □

The above result is very nice, closing more or less the discussion regarding the self-
adjoint operators. At the theoretical level, however, there are still a number of comments
that can be made, about this, and we will be back to this, at the end of this chapter.

We have the following technical generalization of the above result:
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Theorem 9.26. Any family of commuting self-adjoint operators Ti ∈ B(H) can be
jointly diagonalized,

Ti = U∗MfiU

with U : H → L2(X) being a unitary operator from H to a certain L2 space associated to
{Ti}, with fi : X → R being certain functions, once again associated to Ti, and with

Mfi(g) = fig

being the usual multiplication operator by fi, on the Hilbert space L2(X).

Proof. This is similar to the proof of Theorem 9.25, by suitably modifying the mea-
surable calculus formula, and µ itself, as to have this working for all operators Ti. □

We can now discuss the case of the arbitrary normal operators, as follows:

Theorem 9.27. Any normal operator T ∈ B(H) can be diagonalized,

T = U∗MfU

with U : H → L2(X) being a unitary operator from H to a certain L2 space associated to
T , with f : X → C being a certain function, once again associated to T , and with

Mf (g) = fg

being the usual multiplication operator by f , on the Hilbert space L2(X).

Proof. This is our main diagonalization theorem, the idea being as follows:

(1) Consider the decomposition of T into its real and imaginary parts, namely:

T =
T + T ∗

2
+ i · T − T ∗

2i
We know that the real and imaginary parts are self-adjoint operators. Now since T

was assumed to be normal, TT ∗ = T ∗T , these real and imaginary parts commute:[
T + T ∗

2
,
T − T ∗

2i

]
= 0

Thus Theorem 9.26 applies to these real and imaginary parts, and gives the result. □

This was for our series of diagonalization theorems. There is of course one more result
here, regarding the families of commuting normal operators, as follows:

Theorem 9.28. Any family of commuting normal operators Ti ∈ B(H) can be jointly
diagonalized,

Ti = U∗MfiU

with U : H → L2(X) being a unitary operator from H to a certain L2 space associated to
{Ti}, with fi : X → C being certain functions, once again associated to Ti, and with

Mfi(g) = fig

being the usual multiplication operator by fi, on the Hilbert space L2(X).
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Proof. This is similar to the proof of Theorem 9.26 and Theorem 9.27, by combining
the arguments there. To be more precise, this follows as Theorem 9.26, by using the
decomposition trick from the proof of Theorem 9.27. □

With the above diagonalization results in hand, we can now “fix” the continuous and
measurable functional calculus theorems, with a key complement, as follows:

Theorem 9.29. Given a normal operator T ∈ B(H), the following hold, for both the
functional calculus and the measurable calculus morphisms:

(1) These morphisms are ∗-morphisms.
(2) The function z̄ gets mapped to T ∗.
(3) The functions Re(z), Im(z) get mapped to Re(T ), Im(T ).
(4) The function |z|2 gets mapped to TT ∗ = T ∗T .
(5) If f is real, then f(T ) is self-adjoint.

Proof. These assertions are more or less equivalent, with (1) being the main one,
which obviously implies everything else. But this assertion (1) follows from the diagonal-
ization result for normal operators, from Theorem 9.27. □

9e. Exercises

Exercises:

Exercise 9.30.

Exercise 9.31.

Exercise 9.32.

Exercise 9.33.

Exercise 9.34.

Exercise 9.35.

Exercise 9.36.

Exercise 9.37.

Bonus exercise.



CHAPTER 10

Wigner matrices

10a. Gaussian matrices

We have now all the needed ingredients for launching some explicit random matrix
computations. Our goal will be that of computing the asymptotic moments, and then the
asymptotic laws, with N → ∞, for the main classes of large random matrices.

Let us begin by specifying the precise classes of matrices that we are interested in.
First we have the complex Gaussian matrices, which are constructed as follows:

Definition 10.1. A complex Gaussian matrix is a random matrix of type

Z ∈MN(L
∞(X))

which has i.i.d. centered complex normal entries.

Here we use the notion of complex normal variable, introduced and studied in chapter
4. To be more precise, the complex Gaussian law of parameter t > 0 is by definition the
following law, with a, b being independent, each following the normal law gt:

Gt = law

(
1√
2
(a+ ib)

)
With this notion in hand, the assumption in the above definition is that all the matrix

entries Zij are independent, and follow this law Gt, for a fixed value of t > 0. We will see
that the above matrices have an interesting, and “central” combinatorics, among all kinds
of random matrices, with the study of the other random matrices being usually obtained
as a modification of the study of the Gaussian matrices.

As a somewhat surprising remark, using real normal variables in Definition 10.1, in-
stead of the complex ones appearing there, leads nowhere. The correct real versions of
the Gaussian matrices are the Wigner random matrices, constructed as follows:

Definition 10.2. A Wigner matrix is a random matrix of type

Z ∈MN(L
∞(X))

which has i.i.d. centered complex normal entries, up to the constraint Z = Z∗.

135
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This definition is something a bit compacted, and to be more precise, a Wigner matrix
is by definition a random matrix as follows, with the diagonal entries being real normal
variables, ai ∼ gt, for some t > 0, the upper diagonal entries being complex normal
variables, bij ∼ Gt, the lower diagonal entries being the conjugates of the upper diagonal
entries, as indicated, and with all the variables ai, bij being independent:

Z =


a1 b12 . . . . . . b1N

b̄12 a2
. . .

...
...

. . . . . . . . .
...

...
. . . aN−1 bN−1,N

b̄1N . . . . . . b̄N−1,N aN


As a comment here, for many concrete applications the Wigner matrices are in fact the

central objects in random matrix theory, and in particular, they are often more important
than the Gaussian matrices. In fact, these are the random matrices which were first
considered and investigated, a long time ago, by Wigner himself [100].

However, as we will soon discover, the Gaussian matrices are somehow more funda-
mental than the Wigner matrices, at least from an abstract point of view, and this will
be the point of view that we will follow here, with the Gaussian matrices coming first.

Finally, we will be interested as well in the complex Wishart matrices, which are the
positive versions of the above random matrices, constructed as follows:

Definition 10.3. A complex Wishart matrix is a random matrix of type

Z = Y Y ∗ ∈MN(L
∞(X))

with Y being a complex Gaussian matrix.

As before with the Gaussian and Wigner matrices, there are many possible comments
that can be made here, of technical or historical nature, as follows:

(1) First, using real Gaussian variables instead of complex Gaussian variables in the
above definition leads to a less interesting combinatorics, and we will not do this.

(2) The complex Wishart matrices were introduced and studied by Marchenko and
Pastur not long after Wigner, in [67], and so historically came second.

(3) Finally, in what regards their combinatorics and applications, the Wishart matrices
quite often come first, before both the Gaussian and the Wigner ones.

So long for random matrix definitions and general talk about this, with all this being
at this point quite subjective, but we will soon get to work, and prove results motivating
all the above. Let us summarize this preliminary discussion in the following way:



10A. GAUSSIAN MATRICES 137

Conclusion 10.4. There are three main types of random matrices, as follows:

(1) The Gaussian matrices, which can be thought of as being “complex”.
(2) The Wigner matrices, which can be thought of as being “real”.
(3) The Wishart matrices, which can be thought of as being “positive”.

We will study these three types of matrices in what follows, in the above precise order,
with this order being the one that, technically, best fits us here. Let us also mention that
there are many other interesting classes of random matrices, which are more specialized,
usually appearing as modifications of the above. More on these later.

In order to compute the asymptotic laws of the Gaussian, Wigner and Wishart ma-
trices, we use the moment method. Given a colored integer k = ◦ • • ◦ . . . , we say that
a pairing π ∈ P2(k) is matching when it pairs ◦ − • symbols. With this convention, we
have the following result, which will be our main tool for computing moments:

Theorem 10.5 (Wick formula). Given independent variables Xi, each following the
complex normal law Gt, with t > 0 being a fixed parameter, we have the formula

E
(
Xk1

i1
. . . Xks

is

)
= ts/2#

{
π ∈ P2(k)

∣∣∣π ≤ ker i
}

where k = k1 . . . ks and i = i1 . . . is, for the joint moments of these variables.

Proof. This is something that we know from chapter 4, the idea being as follows:

(1) In the case where we have a single complex normal variable X, which amounts
in taking Xi = X for any i in the formula in the statement, what we have to compute
are the moments of X, with respect to colored integer exponents k = ◦ • • ◦ . . . , and the
formula in the statement tells us that these moments must be:

E(Xk) = t|k|/2|P2(k)|

(2) But this is something that we know from chapter 4, the idea being that at t = 1 this
follows by doing some combinatorics and calculus, in analogy with the combinatorics and
calculus from the real case, where the moment formula is identical, save for the matching
pairings P2 being replaced by the usual pairings P2, and then that the general case t > 0
follows from this, by rescaling. Thus, we are done with this case.

(3) In general now, with several variables as in the statement, when expanding the
product Xk1

i1
. . . Xks

is
and rearranging the terms, we are left with doing a number of com-

putations as in (1), and then making the product of the expectations that we found.

(4) But this amounts in counting the partitions in the statement, with the condition
π ≤ ker i there standing for the fact that we are doing the various type (1) computations
independently, and then making the product. Thus, we obtain the result. □



138 10. WIGNER MATRICES

The above statement is one of the possible formulations of the Wick formula, and
there are in fact many more formulations, which are all useful. Here is an alternative such
formulation, which is quite popular, and that we will often use in what follows:

Theorem 10.6 (Wick formula 2). Given independent variables fi, each following the
complex normal law Gt, with t > 0 being a fixed parameter, we have the formula

E
(
fi1 . . . fikf

∗
j1
. . . f ∗

jk

)
= tk#

{
π ∈ Sk

∣∣∣iπ(r) = jr,∀r
}

for the non-vanishing joint moments of these variables.

Proof. This follows from the usual Wick formula, from Theorem 10.5. With some
changes in the indices and notations, the formula there reads:

E
(
fK1
I1
. . . fKs

Is

)
= ts/2#

{
σ ∈ P2(K)

∣∣∣σ ≤ ker I
}

Now observe that we have P2(K) = ∅, unless the colored integer K = K1 . . . Ks

is uniform, in the sense that it contains the same number of ◦ and • symbols. Up to
permutations, the non-trivial case, where the moment is non-vanishing, is the case where
the colored integer K = K1 . . . Ks is of the following special form:

K = ◦ ◦ . . . ◦︸ ︷︷ ︸
k

• • . . . •︸ ︷︷ ︸
k

So, let us focus on this case, which is the non-trivial one. Here we have s = 2k, and
we can write the multi-index I = I1 . . . Is in the following way:

I = i1 . . . ik j1 . . . jk

With these changes made, the above usual Wick formula reads:

E
(
fi1 . . . fikf

∗
j1
. . . f ∗

jk

)
= tk#

{
σ ∈ P2(K)

∣∣∣σ ≤ ker(ij)
}

The point now is that the matching pairings σ ∈ P2(K), with K = ◦ . . . ◦ • . . . • , of
length 2k, as above, correspond to the permutations π ∈ Sk, in the obvious way. With
this identification made, the above modified usual Wick formula becomes:

E
(
fi1 . . . fikf

∗
j1
. . . f ∗

jk

)
= tk#

{
π ∈ Sk

∣∣∣iπ(r) = jr,∀r
}

Thus, we have reached to the formula in the statement, and we are done. □

Finally, here is one more formulation of the Wick formula, which is useful as well:

Theorem 10.7 (Wick formula 3). Given independent variables fi, each following the
complex normal law Gt, with t > 0 being a fixed parameter, we have the formula

E
(
fi1f

∗
j1
. . . fikf

∗
jk

)
= tk#

{
π ∈ Sk

∣∣∣iπ(r) = jr,∀r
}

for the non-vanishing joint moments of these variables.
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Proof. This follows from our second Wick formula, from Theorem 10.6, simply by
permuting the terms, as to have an alternating sequence of plain and conjugate variables.
Alternatively, we can start with Theorem 10.5, and then perform the same manipulations
as in the proof of Theorem 10.6, but with the exponent being this time as follows:

K = ◦ • ◦ • . . . . . . ◦ •︸ ︷︷ ︸
2k

Thus, we are led to the conclusion in the statement. □

Now by getting back to the Gaussian matrices, we have the following result:

Theorem 10.8. Given a sequence of Gaussian random matrices

ZN ∈MN(L
∞(X))

having independent Gt variables as entries, for some t > 0, we have

Mk

(
ZN√
N

)
≃ t|k|/2|NC2(k)|

for any colored integer k = ◦ • • ◦ . . . , in the N → ∞ limit.

Proof. This is something standard, which can be done as follows:

(1) We fix N ∈ N, and we let Z = ZN . Let us first compute the trace of Zk. With
k = k1 . . . ks, and with the convention (ij)◦ = ij, (ij)• = ji, we have:

Tr(Zk) = Tr(Zk1 . . . Zks)

=
N∑

i1=1

. . .
N∑

is=1

(Zk1)i1i2(Z
k2)i2i3 . . . (Z

ks)isi1

=
N∑

i1=1

. . .
N∑

is=1

(Z(i1i2)k1 )
k1(Z(i2i3)k2 )

k2 . . . (Z(isi1)ks )
ks

(2) Next, we rescale our variable Z by a
√
N factor, as in the statement, and we also

replace the usual trace by its normalized version, tr = Tr/N . Our formula becomes:

tr

((
Z√
N

)k
)

=
1

N s/2+1

N∑
i1=1

. . .

N∑
is=1

(Z(i1i2)k1 )
k1(Z(i2i3)k2 )

k2 . . . (Z(isi1)ks )
ks

Thus, the moment that we are interested in is given by:

Mk

(
Z√
N

)
=

1

N s/2+1

N∑
i1=1

. . .

N∑
is=1

∫
X

(Z(i1i2)k1 )
k1(Z(i2i3)k2 )

k2 . . . (Z(isi1)ks )
ks
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(3) Let us apply now the Wick formula, from Theorem 10.5. We conclude that the
moment that we are interested in is given by:

Mk

(
Z√
N

)
=

ts/2

N s/2+1

N∑
i1=1

. . .

N∑
is=1

#
{
π ∈ P2(k)

∣∣∣π ≤ ker
(
(i1i2)

k1 , (i2i3)
k2 , . . . , (isi1)

ks
)}

= ts/2
∑

π∈P2(k)

1

N s/2+1
#
{
i ∈ {1, . . . , N}s

∣∣∣π ≤ ker
(
(i1i2)

k1 , (i2i3)
k2 , . . . , (isi1)

ks
)}

(4) Our claim now is that in the N → ∞ limit the combinatorics of the above sum
simplifies, with only the noncrossing partitions contributing to the sum, and with each of
them contributing precisely with a 1 factor, so that we will have, as desired:

Mk

(
Z√
N

)
= ts/2

∑
π∈P2(k)

(
δπ∈NC2(k) +O(N−1)

)
≃ ts/2

∑
π∈P2(k)

δπ∈NC2(k)

= ts/2|NC2(k)|
(5) In order to prove this, the first observation is that when k is not uniform, in the

sense that it contains a different number of ◦, • symbols, we have P2(k) = ∅, and so:

Mk

(
Z√
N

)
= ts/2|NC2(k)| = 0

(6) Thus, we are left with the case where k is uniform. Let us examine first the case
where k consists of an alternating sequence of ◦ and • symbols, as follows:

k = ◦ • ◦ • . . . . . . ◦ •︸ ︷︷ ︸
2p

In this case it is convenient to relabel our multi-index i = (i1, . . . , is), with s = 2p, in
the form (j1, l1, j2, l2, . . . , jp, lp). With this done, our moment formula becomes:

Mk

(
Z√
N

)
= tp

∑
π∈P2(k)

1

Np+1
#
{
j, l ∈ {1, . . . , N}p

∣∣∣π ≤ ker (j1l1, j2l1, j2l2, . . . , j1lp)
}

Now observe that, with k being as above, we have an identification P2(k) ≃ Sp,
obtained in the obvious way. With this done too, our moment formula becomes:

Mk

(
Z√
N

)
= tp

∑
π∈Sp

1

Np+1
#
{
j, l ∈ {1, . . . , N}p

∣∣∣jr = jπ(r)+1, lr = lπ(r),∀r
}
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(7) We are now ready to do our asymptotic study, and prove the claim in (4). Let
indeed γ ∈ Sp be the full cycle, which is by definition the following permutation:

γ = (1 2 . . . p)

In terms of γ, the conditions jr = jπ(r)+1 and lr = lπ(r) found above read:

γπ ≤ ker j , π ≤ ker l

Counting the number of free parameters in our moment formula, we obtain:

Mk

(
Z√
N

)
=

tp

Np+1

∑
π∈Sp

N |π|+|γπ|

= tp
∑
π∈Sp

N |π|+|γπ|−p−1

(8) The point now is that the last exponent is well-known to be ≤ 0, with equality
precisely when the permutation π ∈ Sp is geodesic, which in practice means that π must
come from a noncrossing partition. Thus we obtain, in the N → ∞ limit, as desired:

Mk

(
Z√
N

)
≃ tp|NC2(k)|

This finishes the proof in the case of the exponents k which are alternating, and the
case where k is an arbitrary uniform exponent is similar, by permuting everything. □

This was for the computation, but in what regards now the interpretation of what we
found, things are more complicated. The precise question is as follows:

Question 10.9. What is the abstract asymptotic distribution that we found, having
as moments the numbers

Mk = t|k|/2|NC2(k)|
for any colored integer k = ◦ • • ◦ . . .?

As a first observation, the above moment formula is very similar to the one for the
usual complex Gaussian variables Gt, from chapter 4, which was as follows:

Nk = t|k|/2|P2(k)|

It is possible to make many speculations here, for instance in relation with the com-
binatorics from chapters 3-4, but we will do this later, once we will know more. Let us
record however our observation as a partial answer to Question 10.9, as follows:

Answer 10.10. The abstract asymptotic distribution that we found appears as some
sort of “free analogue” of the usual complex normal law Gt, with the underlying matching
pairings being now replaced by underlying matching noncrossing pairings.
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Obviously, some interesting things are going on here. We will see in a moment, after
doing some more combinatorics, this time in connection with the Wigner matrices, that
there are some good reasons for calling this mysterious law “circular”.

Thus, for ending with our present study with a nice conclusion, we can say that the
Gaussian matrices become “asymptotically circular”, with this meaning by definition that
the N → ∞ moments are those computed above. This is of course something quite vague,
and we will be back to it in Part IV, when doing free probability.

10b. Wigner matrices

Moving ahead now, let us investigate the second class of random matrices that we are
interested in, namely the Wigner matrices, which are by definition self-adjoint. Here our
results will be far more complete than those for the Gaussian matrices.

Let us first recall from the above that a Wigner matrix is by definition a random
matrix which has i.i.d. centered complex normal entries, up to the constraint Z = Z∗.
In practice, this means that our matrix is as follows, with the diagonal entries being real
normal variables, ai ∼ gt, for some t > 0, the upper diagonal entries being complex normal
variables, bij ∼ Gt, the lower diagonal entries being the conjugates of the upper diagonal
entries, as indicated, and with all the variables ai, bij being independent:

Z =


a1 b12 . . . . . . b1N

b̄12 a2
. . .

...
...

. . . . . . . . .
...

...
. . . aN−1 bN−1,N

b̄1N . . . . . . b̄N−1,N aN


As a starting point for the study of these matrices, we have the following simple fact,

making the connection with the theory of Gaussian matrices developed above:

Proposition 10.11. Given a Gaussian matrix Z, with independent entries following
the centered complex normal law Gt, with t > 0, if we write

Z =
1√
2
(X + iY )

with X, Y being self-adjoint, then both X, Y are Wigner matrices, of parameter t.

Proof. This is something elementary, which can be done in two steps, as follows:

(1) As a first observation, the result holds at N = 1. Indeed, here our Gaussian matrix
Z is just a random variable, subject to the condition Z ∼ Gt. But recall that the law Gt
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is by definition as follows, with X, Y being independent, each following the law gt:

Gt = law

(
1√
2
(X + iY )

)
Thus in this case, N = 1, the variables X, Y that we obtain in the statement, as

rescaled real and imaginary parts of Z, are subject to the condition X, Y ∼ gt, and so are
Wigner matrices of size N = 1 and parameter t > 0, as in Definition 10.2.

(2) In the general case now, N ∈ N, the proof is similar, by using the basic behavior
of the real and complex normal variables with respect to sums. □

The above result is quite interesting for us, because it shows that, in order to in-
vestigate the Wigner matrices, we are basically not in need of some new computations,
starting from the Wick formula, and doing combinatorics afterwards, but just of some
manipulations on the results that we already have, regarding the Gaussian matrices.

To be more precise, by using this method, we obtain the following result, coming by
combining the observation in Proposition 10.11 with the formula in Theorem 10.8:

Theorem 10.12. Given a sequence of Wigner random matrices

ZN ∈MN(L
∞(X))

having independent Gt variables as entries, with t > 0, up to ZN = Z∗
N , we have

Mk

(
ZN√
N

)
≃ tk/2|NC2(k)|

for any integer k ∈ N, in the N → ∞ limit.

Proof. This can be deduced from a direct computation based on the Wick formula,
similar to that from the proof of Theorem 10.8, but the best is to deduce this result
from Theorem 10.8 itself. Indeed, we know from there that for Gaussian matrices YN ∈
MN(L

∞(X)) we have the following formula, valid for any colored integer K = ◦ • • ◦ . . . ,
in the N → ∞ limit, with NC2 standing for noncrossing matching pairings:

MK

(
YN√
N

)
≃ t|K|/2|NC2(K)|
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By doing some combinatorics, we deduce from this that we have the following formula
for the moments of the matrices Re(YN), with respect to usual exponents, k ∈ N:

Mk

(
Re(YN)√

N

)
= 2−k ·Mk

(
YN√
N

+
Y ∗
N√
N

)
= 2−k

∑
|K|=k

MK

(
YN√
N

)
≃ 2−k

∑
|K|=k

tk/2|NC2(K)|

= 2−k · tk/2 · 2k/2|NC2(k)|
= 2−k/2 · tk/2|NC2(k)|

Now since the matrices ZN =
√
2Re(YN) are of Wigner type, this gives the result. □

Summarizing, all this brings us into counting noncrossing pairings. But here, let us
recall from Part I that we have the following well-known result:

Theorem 10.13. The Catalan numbers Ck = |NC2(2k)| are as follows:

(1) They satisfy Ck+1 =
∑

a+b=k CaCb.

(2) The series f(z) =
∑

k≥0Ckz
k satisfies zf 2 − f + 1 = 0.

(3) This series is given by f(z) = 1−
√
1−4z
2z

.

(4) We have the formula Ck =
1

k+1

(
2k
k

)
.

Proof. This is something that we know well from Part I, with (1) coming from the
definition of Ck, and with (1) =⇒ (2) =⇒ (3) =⇒ (4) being routine, using standard
calculus. Alternatively, and also explained in Part I, the formula in (4) can be established
as well via a bijective proof, by counting Dyck paths in the plane. □

Getting back now to the Wigner matrices, we can convert the main result that we
have about them, Theorem 10.12, into something more concrete, as follows:

Theorem 10.14. Given a sequence of Wigner random matrices

ZN ∈MN(L
∞(X))

having independent Gt variables as entries, with t > 0, up to ZN = Z∗
N , we have

M2k

(
ZN√
N

)
≃ tkCk

in the N → ∞ limit. As for the asymptotic odd moments, these all vanish.
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Proof. This follows from Theorem 10.12 and Theorem 10.13. Indeed, according to
the results there, the asymptotic even moments are given by:

M2k

(
ZN√
N

)
≃ tk|NC2(2k)| = tkCk

As for the asymptotic odd moments, once again from Theorem 10.12, we know that
these all vanish. Thus, we are led to the conclusion in the statement. □

Summarizing, we are done with the moment computations, and with the asymptotic
study, for both the Gaussian and the Wigner matrices. It remains now to interpret the
results that we have, with the computation of the corresponding laws. As explained before,
for the Gaussian matrices this is something quite complicated, with the technology that
we presently have, and this will have to wait a bit, until we do some free probability.

Regarding the Wigner matrices, however, the problems left here are very explicit, and
quite elementary, and we will solve them next, in the remainder of this chapter.

10c. Semicircle laws

In order to recapture the asymptotic measure of the Wigner matrices out of the mo-
ments, which are the Catalan numbers, there are several methods available, namely:

(1) Stieltjes inversion.

(2) Knowledge of SU2.

(3) Cheating.

The first method, which is straightforward, without any trick, is based on the Stieltjes
inversion formula, that we know well. In fact, we have already applied that formula to
the Catalan numbers, with the following conclusion:

Proposition 10.15. The real measure having as even moments the Catalan numbers,
Ck =

1
k+1

(
2k
k

)
, and having all odd moments 0 is the measure

γ1 =
1

2π

√
4− x2dx

called Wigner semicircle law on [−2, 2].

Proof. This is something that we know, but since we will need the proof in what
follows, in view of some generalizations, let us briefly recall it. The starting point is the
formula in Theorem 10.13 for the generating series of the Catalan numbers, namely:

∞∑
k=0

Ckz
k =

1−
√
1− 4z

2z
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By using this formula with z = ξ−2, we obtain the following formula, for the Cauchy
transform of the real measure that we want to compute:

G(ξ) = ξ−1

∞∑
k=0

Ckξ
−2k

= ξ−1 · 1−
√

1− 4ξ−2

2ξ−2

=
ξ

2

(
1−

√
1− 4ξ−2

)
=

ξ

2
− 1

2

√
ξ2 − 4

Now let us apply the Stieltjes inversion formula, namely:

dµ(x) = lim
t↘0

− 1

π
Im (G(x+ it)) · dx

The study of the limit on the right is then straightforward, going as follows:

(1) According to the general philosophy of the Stieltjes formula, the first term in the
formula of G(ξ), namely ξ/2, which is “trivial”, will not contribute to the density.

(2) As for the second term, which is something non-trivial, this will contribute to the

density, the rule here being that the square root
√
ξ2 − 4 will be replaced by the “dual”

square root
√
4− x2 dx, and that we have to multiply everything by −1/π.

(3) As a conclusion, by Stieltjes inversion we obtain the following density:

dµ(x) = − 1

π
· −1

2

√
4− x2 dx =

1

2π

√
4− x2dx

Thus, we have obtained the mesure in the statement, and we are done. □

More generally now, we have the following result:

Proposition 10.16. Given t > 0, the real measure having as even moments the
numbers M2k = tkCk and having all odd moments 0 is the measure

γt =
1

2πt

√
4t− x2dx

called Wigner semicircle law on [−2
√
t, 2

√
t].

Proof. This follows by redoing the above Stieltjes inversion computation, with a
parameter t > 0 added. To be more precise, as before, the starting point is the formula
from Theorem 10.13 for the generating series of the Catalan numbers, namely:

∞∑
k=0

Ckz
k =

1−
√
1− 4z

2z
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By using this formula with z = tξ−2, we obtain the following formula, for the Cauchy
transform of the real measure that we want to compute:

G(ξ) = ξ−1

∞∑
k=0

tkCkξ
−2k

= ξ−1 · 1−
√
1− 4tξ−2

2tξ−2

=
ξ

2t

(
1−

√
1− 4tξ−2

)
=

ξ

2t
− 1

2t

√
ξ2 − 4t

Thus, by Stieltjes inversion we obtain the following density, as claimed:

dµ(x) =
1

2πt

√
4t− x2 dx

But simplest is in fact, perhaps a bit by cheating, simply using the result at t = 1,
from Proposition 10.15, along with a change of variables. Indeed, by using Proposition
10.15, the even moments of the measure in the statement are given by:

M2k =
1

2πt

∫ 2
√
t

−2
√
t

√
4t− x2 x2k dx

=
1

2πt

∫ 1

−1

√
4t− ty2 (

√
ty)2k

√
t dy

=
tk

2π

∫ 1

−1

√
4− y2 y2k dy

= tkCk

As for the odd moments, these all vanish, because the density of γt is an even function.
Thus, one way or another, we are led to the conclusion in the statement. □

Talking cheating, another way of recovering Proposition 10.15, this time without using
the Stieltjes inversion formula, but by knowing instead the answer to the question, namely
the semicircle law, in advance, which is of course cheating, is as follows:

Proposition 10.17. The Catalan numbers are the even moments of

γ1 =
1

2π

√
4− x2dx

called Wigner semicircle law. As for the odd moments of γ1, these all vanish.
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Proof. The even moments of the Wigner law can be computed with the change of
variable x = 2 cos t, and we are led to the following formula:

M2k =
1

π

∫ 2

0

√
4− x2x2k dx

=
1

π

∫ π/2

0

√
4− 4 cos2 t (2 cos t)2k2 sin t dt

=
4k+1

π

∫ π/2

0

cos2k t sin2 t dt

=
4k+1

π
· π
2
· (2k)!!2!!

(2k + 3)!!

= 2 · 4k · (2k)!/2kk!

2k+1(k + 1)!

= Ck

As for the odd moments, these all vanish, because the density of γ1 is an even function.
Thus, we are led to the conclusion in the statement. □

More generally, we have the following result, involving a parameter t > 0:

Proposition 10.18. The numbers tkCk are the even moments of

γt =
1

2πt

√
4t− x2dx

called semicircle law on [−2
√
t, 2

√
t]. As for the odd moments of γt, these all vanish.

Proof. This follows indeed from what we have in Proposition 10.17, via a quick
change of variables, as explained at the end of the proof of Proposition 10.16. □

In any case, one way or another, we have our semicircle measures, and by putting now
everything together, we obtain the Wigner theorem, as follows:

Theorem 10.19. Given a sequence of Wigner random matrices

ZN ∈MN(L
∞(X))

having independent Gt variables as entries, with t > 0, up to ZN = Z∗
N , we have

ZN√
N

∼ 1

2πt

√
4t− x2dx

in the N → ∞ limit, with the limiting measure being the Wigner semicircle law γt.

Proof. This follows indeed by combining Theorem 10.14 either with Proposition
10.16, and doing here an honest job, or with Proposition 10.18. □
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There are many other things that can be said about the Wigner matrices, which appear
as variations of the above, and we refer here to the standard random matrix books [2],
[68], [71], [90]. We will be back to them later on in this book, in Part IV.

10d. Unitary groups

We discuss here an alternative interpretation of the limiting laws γt that we found
above, by using Lie groups, the idea being that the standard semicircle law γ1, and more
generally all the laws γt, naturally appear in connection with the group SU2.

This is something quite natural, and good to know, and will be useful for us later on.
In relation with the above, the knowledge of this fact can be used as an alternative to
both Stieltjes inversion, and cheating, in order to establish the Wigner theorem.

Let us start with the following fundamental group theory result, coming as a comple-
ment to the standard general theory for the compact groups:

Theorem 10.20. We have the following formula,

SU2 =

{(
α β
−β̄ ᾱ

) ∣∣∣ |α|2 + |β|2 = 1

}
which makes SU2 isomorphic to the unit sphere S1

C ⊂ C2.

Proof. Consider an arbitrary 2× 2 matrix, written as follows:

U =

(
α β
γ δ

)
Assuming that we have detU = 1, the inverse of this matrix is then given by:

U−1 =

(
δ −β
−γ α

)
On the other hand, assuming U ∈ U2, the inverse must be the adjoint:

U−1 =

(
ᾱ γ̄
β̄ δ̄

)
We conclude that our matrix must be of the following special form:

U =

(
α β
−β̄ ᾱ

)
Now since the determinant is 1, we must have |α|2+ |β|2 = 1, so we are done with one

direction. As for the converse, this is clear, the matrices in the statement being unitaries,
and of determinant 1, and so being elements of SU2. Finally, we have:

S1
C =

{
(α, β) ∈ C2

∣∣∣ |α|2 + |β|2 = 1
}

Thus, the final assertion in the statement holds as well. □
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Next, we have the following useful reformulation of Theorem 10.20:

Theorem 10.21. We have the formula

SU2 =

{(
p+ iq r + is
−r + is p− iq

) ∣∣∣ p2 + q2 + r2 + s2 = 1

}
which makes SU2 isomorphic to the unit real sphere S3

R ⊂ R3.

Proof. We recall from Theorem 10.20 that we have:

SU2 =

{(
α β
−β̄ ᾱ

) ∣∣∣ |α|2 + |β|2 = 1

}
Now let us write our parameters α, β ∈ C, which belong to the complex unit sphere

S1
C ⊂ C2, in terms of their real and imaginary parts, as follows:

α = p+ iq , β = r + is

In terms of p, q, r, s ∈ R, our formula for a generic matrix U ∈ SU2 reads:

U =

(
p+ iq r + is
−r + is p− iq

)
As for the condition to be satisfied by the parameters p, q, r, s ∈ R, this comes the

condition |α|2 + |β|2 = 1 to be satisfied by α, β ∈ C, which reads:

p2 + q2 + r2 + s2 = 1

Thus, we are led to the conclusion in the statement. Regarding now the last assertion,
recall that the unit sphere S3

R ⊂ R4 is given by:

S3
R =

{
(p, q, r, s)

∣∣∣ p2 + q2 + r2 + s2 = 1
}

Thus, we have an isomorphism of compact spaces SU2 ≃ S3
R, as claimed. □

Here is yet another useful reformulation of our main result so far, regarding SU2,
obtained by further building on the parametrization from Theorem 10.21:

Theorem 10.22. We have the following formula,

SU2 =
{
pβ1 + qβ2 + rβ3 + sβ4

∣∣∣ p2 + q2 + r2 + s2 = 1
}

where β1, β2, β3, β4 are the following matrices,

β1 =

(
1 0
0 1

)
, β2 =

(
i 0
0 −i

)
, β3 =

(
0 1
−1 0

)
, β4 =

(
0 i
i 0

)
called Pauli spin matrices.
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Proof. We recall from Theorem 10.21 that the group SU2 can be parametrized by
the real sphere S3

R ⊂ R4, in the following way:

SU2 =

{(
p+ iq r + is
−r + is p− iq

) ∣∣∣ p2 + q2 + r2 + s2 = 1

}
But this gives the formula in the statement, with the Pauli matrices β1, β2, β3, β4 being

the coefficients of p, q, r, s, in this parametrization. □

The above result is often the most convenient one, when dealing with SU2. This is
because the Pauli matrices have a number of remarkable properties, as follows:

Proposition 10.23. The Pauli matrices multiply according to the following formulae,

β2
2 = β2

3 = β2
4 = −1

β2β3 = −β3β2 = β4

β3β4 = −β4β3 = β2

β4β2 = −β2β4 = β3

they conjugate according to the following rules,

β∗
1 = β1, β

∗
2 = −β2, β∗

3 = −β3, β∗
4 = −β4

and they form an orthonormal basis of M2(C), with respect to the scalar product

< x, y >= tr(xy∗)

with tr :M2(C) → C being the normalized trace of 2× 2 matrices, tr = Tr/2.

Proof. The first two assertions, regarding the multiplication and conjugation rules
for the Pauli matrices, follow from some elementary computations. As for the last as-
sertion, this follows by using these rules. Indeed, the fact that the Pauli matrices are
pairwise orthogonal follows from computations of the following type, for i ̸= j:

< βi, βj >= tr(βiβ
∗
j ) = tr(±βiβj) = tr(±βk) = 0

As for the fact that the Pauli matrices have norm 1, this follows from:

< βi, βi >= tr(βiβ
∗
i ) = tr(±β2

i ) = tr(β1) = 1

Thus, we are led to the conclusion in the statement. □

Now back to probability, we can recover our semicircular measures, as follows:

Theorem 10.24. The main character of SU2 follows the following law,

γ1 =
1

2π

√
4− x2dx

which is the Wigner law of parameter 1.
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Proof. This follows from Theorem 10.21, by identifying SU2 with the sphere S3
R, the

variable χ = 2Re(p) being semicircular. Indeed, let us write, as in Theorem 10.21:

SU2 =

{(
p+ iq r + is
−p+ iq r − is

) ∣∣∣ p2 + q2 + r2 + s2 = 1

}
In this picture, the main character is given by the following formula:

χ

(
p+ iq r + is
−r + is p− iq

)
= 2p

We are therefore left with computing the law of the following variable:

p ∈ C(S3
R)

For this purpose, we can use the moment method. Let us recall from chapter 1 that
the polynomial integrals over the real spheres are given by the following formula:∫

SN−1
R

xk11 . . . xkNN dx =
(N − 1)!!k1!! . . . kN !!

(N + Σki − 1)!!

In our case, where N = 4, we obtain the following moment formula:∫
S3
R

p2k =
3!!(2k)!!

(2k + 3)!!

= 2 · 3 · 5 · 7 . . . (2k − 1)

2 · 4 · 6 . . . (2k + 2)

= 2 · (2k)!

2kk!2k+1(k + 1)!

=
1

4k
· 1

k + 1

(
2k

k

)
=

Ck

4k

Thus the variable 2p ∈ C(S3
R) follows the Wigner semicircle law γ1, as claimed. □

Summarizing, we have managed to recover the Wigner semicircle law γ1 out of purely
geometric considerations, involving the real sphere S3

R and the special complex rotation
group SU2. Moreover, with a change of variable, our results extend to γt with t > 0. And
this is quite interesting, philosophically, and also makes an interesting connection with
the standard Lie group material, which remains to be further investigated.

Finally, as the physicists say, there is no SU2 without SO3, so let us discuss as well
the computation for SO3, that we will certainly need later. Let us start with:
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Proposition 10.25. The adjoint action SU2 ↷ M2(C), given by TU(A) = UAU∗,
leaves invariant the following real vector subspace of M2(C),

R4 = span(β1, β2, β3, β4)

and we obtain in this way a group morphism SU2 → GL4(R).

Proof. We have two assertions to be proved, as follows:

(1) We must first prove that, with E ⊂ M2(C) being the real vector space in the
statement, we have the following implication:

U ∈ SU2, A ∈ E =⇒ UAU∗ ∈ E

But this is clear from the multiplication rules for the Pauli matrices, from Proposition
10.23. Indeed, let us write our matrices U,A as follows:

U = xβ1 + yβ2 + zβ3 + tβ4

A = aβ1 + bβ2 + cβ3 + dβ4
We know that the coefficients x, y, z, t and a, b, c, d are all real, due to U ∈ SU2

and A ∈ E. The point now is that when computing UAU∗, by using the various rules
from Proposition 10.23, we obtain a matrix of the same type, namely a combination of
β1, β2, β3, β4, with real coefficients. Thus, we have UAU∗ ∈ E, as desired.

(2) In order to conclude, let us identify E ≃ R4, by using the basis β1, β2, β3, β4. The
result found in (1) shows that we have a correspondence as follows:

SU2 →M4(R) , U → (TU)|E

Now observe that for any U ∈ SU2 and any A ∈M2(C) we have:

TU∗TU(A) = U∗UAU∗U = A

Thus TU∗ = T−1
U , and so the correspondence that we found can be written as:

SU2 → GL4(R) , U → (TU)|E

But this a group morphism, due to the following computation:

TUTV (A) = UV AV ∗U∗ = TUV (A)

Thus, we are led to the conclusion in the statement. □

The point now is that Proposition 10.25 can be improved as follows:

Proposition 10.26. The adjoint action SU2 ↷M2(C), given by

TU(A) = UAU∗

leaves invariant the following real vector subspace of M2(C),
F = spanR(β2, β3, β4)

and we obtain in this way a group morphism SU2 → SO3.
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Proof. We can do this in several steps, as follows:

(1) Our first claim is that the group morphism SU2 → GL4(R) constructed in Propo-
sition 10.25 is in fact a morphism SU2 → O4. In order to prove this, recall the following
formula, valid for any U ∈ SU2, from the proof of Proposition 10.25:

TU∗ = T−1
U

We want to prove that the matrices TU ∈ GL4(R) are orthogonal, and in view of the
above formula, it is enough to prove that we have:

T ∗
U = (TU)

t

So, let us prove this. For any two matrices A,B ∈ E, we have:

< TU∗(A), B > = < U∗AU,B >

= tr(U∗AUB)

= tr(AUBU∗)

On the other hand, we have as well the following formula:

< (TU)
t(A), B > = < A, TU(B) >

= < A,UBU∗ >

= tr(AUBU∗)

Thus we have indeed T ∗
U = (TU)

t, which proves our SU2 → O4 claim.

(2) In order now to finish, recall that we have by definition β1 = 1, as a matrix. Thus,
the action of SU2 on the vector β1 ∈ E is given by:

TU(β1) = Uβ1U
∗ = UU∗ = 1 = β1

We conclude that β1 ∈ E is invariant under SU2, and by orthogonality the following
subspace of E must be invariant as well under the action of SU2:

β⊥
1 = spanR(β2, β3, β4)

Now if we call this subspace F , and we identify F ≃ R3 by using the basis β2, β3, β4,
we obtain by restriction to F a morphism of groups as follows:

SU2 → O3

But since this morphism is continuous and SU2 is connected, its image must be con-
nected too. Now since the target group decomposes as O3 = SO3 ⊔ (−SO3), and 1 ∈ SU2

gets mapped to 1 ∈ SO3, the whole image must lie inside SO3, and we are done. □

The above result is quite interesting, because we will see in a moment that the mor-
phism SU2 → SO3 constructed there is surjective. Thus, we will have a way of parametriz-
ing the elements V ∈ SO3 by elements U ∈ SU2, and so ultimately by parameters
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(x, y, z, t) ∈ S3
R. In order to work out all this, let us start with the following result,

coming as a continuation of Proposition 10.25, independently of Proposition 10.26:

Proposition 10.27. With respect to the standard basis β1, β2, β3, β4 of the vector space
R4 = span(β1, β2, β3, β4), the morphism T : SU2 → GL4(R) is given by:

TU =


1 0 0 0
0 p2 + q2 − r2 − s2 2(qr − ps) 2(pr + qs)
0 2(ps+ qr) p2 + r2 − q2 − s2 2(rs− pq)
0 2(qs− pr) 2(pq + rs) p2 + s2 − q2 − r2


Thus, when looking at T as a group morphism SU2 → O4, what we have in fact is a group
morphism SU2 → O3, and even SU2 → SO3.

Proof. With notations from Proposition 10.25 and its proof, let us first look at the
action L : SU2 ↷ R4 by left multiplication, LU(A) = UA. We have:

LU =


p −q −r −s
q p −s r
r s p −q
s −r q p


Similarly, in what regards now the action R : SU2 ↷ R4 by right multiplication,

RU(A) = AU∗, the corresponding matrix is given by:

RU =


p q r s
−q p −s r
−r s p −q
−s −r q p


Now by composing, the matrix of the adjoint matrix in the statement is:

TU = RULU

=


p q r s
−q p −s r
−r s p −q
−s −r q p



p −q −r −s
q p −s r
r s p −q
s −r q p



=


1 0 0 0
0 p2 + q2 − r2 − s2 2(qr − ps) 2(pr + qs)
0 2(ps+ qr) p2 + r2 − q2 − s2 2(rs− pq)
0 2(qs− pr) 2(pq + rs) p2 + s2 − q2 − r2


Thus, we have the formula in the statement, and this gives the result. □

We can now formulate a famous result, due to Euler-Rodrigues, as follows:
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Theorem 10.28. We have the Euler-Rodrigues formula

U =

p2 + q2 − r2 − s2 2(qr − ps) 2(pr + qs)
2(ps+ qr) p2 + r2 − q2 − s2 2(rs− pq)
2(qs− pr) 2(pq + rs) p2 + s2 − q2 − r2


with p2 + q2 + r2 + s2 = 1, for the generic elements of SO3.

Proof. We know from the above that we have a group morphism SU2 → SO3, given
by the formula in the statement, and the problem now is that of proving that this is a
double cover map, in the sense that it is surjective, and with kernel {±1}.

(1) Regarding the kernel, this is elementary to compute, as follows:

ker(SU2 → SO3) =
{
U ∈ SU2

∣∣∣TU(A) = A,∀A ∈ E
}

=
{
U ∈ SU2

∣∣∣UA = AU,∀A ∈ E
}

=
{
U ∈ SU2

∣∣∣Uβi = βiU,∀i
}

= {±1}
(2) Thus, we are done with this, and as a side remark here, this result shows that our

morphism SU2 → SO3 is ultimately a morphism as follows:

PU2 ⊂ SO3 , PU2 = SU2/{±1}
Here P stands for “projective”, and it is possible to say more about the construction

G → PG, which can be performed for any subgroup G ⊂ UN . But we will not get here
into this, our next goal being anyway that of proving that we have PU2 = SO3.

(3) We must prove now that the morphism SU2 → SO3 is surjective. This is something
non-trivial, and there are several proofs for this, as follows:

– A first proof is by using Lie theory. To be more precise, the tangent spaces at 1
of both SU2 and SO3 can be explicitly computed, by doing some linear algebra, and the
morphism SU2 → SO3 follows to be surjective around 1, and then globally.

– Another proof is via representation theory. Indeed, the representations of SU2 and
SO3 can be explicitly computed, and follow to be subject to very similar formulae, called
Clebsch-Gordan rules, and this shows that SU2 → SO3 is surjective.

– Yet another advanced proof, which is actually quite bordeline for what can be called
“proof”, is by using the ADE/McKay classification of the subgroups G ⊂ SO3, which
shows that there is no room strictly inside SO3 for something as big as PU2.

(4) Thus, done with this, one way or another. Alternatively, a more pedestrian proof
for the surjectivity of the morphism SU2 → SO3 is based on the fact that any rotation U ∈
SO3 has an axis, and we will leave the computations here as an instructive exercise. □
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Now back to probability, let us formulate the following definition:

Definition 10.29. The standard Marchenko-Pastur law π1 is given by:

f ∼ γ1 =⇒ f 2 ∼ π1

That is, π1 is the law of the square of a variable following the semicircle law γ1.

Here the fact that π1 is indeed well-defined comes from the fact that a measure is
uniquely determined by its moments. More explicitly now, we have:

Proposition 10.30. The density of the Marchenko-Pastur law is

π1 =
1

2π

√
4x−1 − 1 dx

and the moments of this measure are the Catalan numbers.

Proof. There are several proofs here, the simplest being by cheating. Indeed, the
moments of π1 can be computed with the change of variable x = 4 cos2 t, as follows:

Mk =
1

2π

∫ 4

0

√
4x−1 − 1xkdx

=
1

2π

∫ π/2

0

sin t

cos t
· (4 cos2 t)k · 2 cos t sin t dt

=
4k+1

π

∫ π/2

0

cos2k t sin2 t dt

=
4k+1

π
· π
2
· (2k)!!2!!

(2k + 3)!!

= 2 · 4k · (2k)!/2kk!

2k+1(k + 1)!

= Ck

Thus, we are led to the conclusion in the statement. □

We can do now the character computation for SO3, as follows:

Theorem 10.31. The main character of SO3, modified by adding 1 to it, given in
standard Euler-Rodrigues coordinates by

χ = 4p2

follows a squared semicircle law, or Marchenko-Pastur law π1.

Proof. This follows by using the quotient map SU2 → SO3, and the result for SU2.
Indeed, by using the Euler-Rodrigues formula, in the context of Theorem 10.24 and its
proof, the main character of SO3, modified by adding 1 to it, is given by:

χ = (3p2 − q2 − r2 − s2) + 1 = 4p2
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Now recall from the proof of Theorem 10.24 that we have:

2p ∼ γ1

On the other hand, a quick comparison between the moment formulae for the Wigner
and Marchenko-Pastur laws, which are very similar, shows that we have:

f ∼ γ1 =⇒ f 2 ∼ π1

Thus, with f = 2p, we obtain the result in the statement. □

10e. Exercises

Exercises:

Exercise 10.32.

Exercise 10.33.

Exercise 10.34.

Exercise 10.35.

Exercise 10.36.

Exercise 10.37.

Exercise 10.38.

Exercise 10.39.

Bonus exercise.



CHAPTER 11

Wishart matrices

11a. Positive matrices

We discuss in this chapter the complex Wishart matrices, which are the positive
analogues of the Gaussian and Wigner matrices. These matrices were introduced and
studied by Marchenko and Pastur in [67], not long after Wigner’s paper [100], and are
of interest in connection with many questions. They are constructed as follows:

Definition 11.1. A complex Wishart matrix is a random matrix of type

W = Y Y ∗ ∈MN(L
∞(X))

with Y being a complex Gaussian matrix, with entries following the law Gt.

Due to the formula W = Y Y ∗, the Wishart matrices are positive, in the general
positivity sense of chapter 9. Before getting into their study, let us first develop some
more theory for the positive matrices and operators. As a starting point, we have:

Theorem 11.2. For an operator T ∈ B(H), the following are equivalent:

(1) < Tx, x >≥ 0, for any x ∈ H.
(2) T is normal, and σ(T ) ⊂ [0,∞).
(3) T = S2, for some S ∈ B(H) satisfying S = S∗.
(4) T = R∗R, for some R ∈ B(H).

If these conditions are satisfied, we call T positive, and write T ≥ 0.

Proof. We have already seen some implications in chapter 9, but the best is to forget
the few partial results that we know, and prove everything, as follows:

(1) =⇒ (2) Assuming < Tx, x >≥ 0, with S = T − T ∗ we have:

< Sx, x > = < Tx, x > − < T ∗x, x >

= < Tx, x > − < x, Tx >

= < Tx, x > −< Tx, x >

= 0

159
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The next step is to use a polarization trick, as follows:

< Sx, y > = < S(x+ y), x+ y > − < Sx, x > − < Sy, y > − < Sy, x >

= − < Sy, x >

= < y, Sx >

= < Sx, y >

Thus we must have < Sx, y >∈ R, and with y → iy we obtain < Sx, y >∈ iR too,
and so < Sx, y >= 0. Thus S = 0, which gives T = T ∗. Now since T is self-adjoint, it is
normal as claimed. Moreover, by self-adjointness, we have:

σ(T ) ⊂ R
In order to prove now that we have indeed σ(T ) ⊂ [0,∞), as claimed, we must invert

T + λ, for any λ > 0. For this purpose, observe that we have:

< (T + λ)x, x > = < Tx, x > + < λx, x >

≥ < λx, x >

= λ||x||2

But this shows that T + λ is injective. In order to prove now the surjectivity, and the
boundedness of the inverse, observe first that we have:

Im(T + λ)⊥ = ker(T + λ)∗

= ker(T + λ)

= {0}
Thus Im(T + λ) is dense. On the other hand, observe that we have:

||(T + λ)x||2 = < Tx+ λx, Tx+ λx >

= ||Tx||2 + 2λ < Tx, x > +λ2||x||2

≥ λ2||x||2

Thus for any vector in the image y ∈ Im(T + λ) we have:

||y|| ≥ λ
∣∣∣∣(T + λ)−1y

∣∣∣∣
As a conclusion to what we have so far, T + λ is bijective and invertible as a bounded

operator from H onto its image, with the following norm bound:

||(T + λ)−1|| ≤ λ−1

But this shows that Im(T + λ) is complete, hence closed, and since we already knew
that Im(T + λ) is dense, our operator T + λ is surjective, and we are done.

(2) =⇒ (3) Since T is normal, and with spectrum contained in [0,∞), we can use
the continuous functional calculus formula for the normal operators from chapter 9, with
the function f(x) =

√
x, as to construct a square root S =

√
T .
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(3) =⇒ (4) This is trivial, because we can set R = S.

(4) =⇒ (1) This is clear, because we have the following computation:

< R∗Rx, x >=< Rx,Rx >= ||Rx||2

Thus, we have the equivalences in the statement. □

In analogy with what happens in finite dimensions, where among the positive matrices
A ≥ 0 we have the strictly positive ones, A > 0, given by the fact that the eigenvalues
are strictly positive, we have as well a “strict” version of the above result, as follows:

Theorem 11.3. For an operator T ∈ B(H), the following are equivalent:

(1) T is positive and invertible.
(2) T is normal, and σ(T ) ⊂ (0,∞).
(3) T = S2, for some S ∈ B(H) invertible, satisfying S = S∗.
(4) T = R∗R, for some R ∈ B(H) invertible.

If these conditions are satisfied, we call T strictly positive, and write T > 0.

Proof. Our claim is that the above conditions (1-4) are precisely the conditions (1-4)
in Theorem 11.2, with the assumption “T is invertible” added. Indeed:

(1) This is clear by definition.

(2) In the context of Theorem 11.2 (2), namely when T is normal, and σ(T ) ⊂ [0,∞),
the invertibility of T , which means 0 /∈ σ(T ), gives σ(T ) ⊂ (0,∞), as desired.

(3) In the context of Theorem 11.2 (3), namely when T = S2, with S = S∗, by using
the basic properties of the functional calculus for normal operators, the invertibility of T
is equivalent to the invertibility of its square root S =

√
T , as desired.

(4) In the context of Theorem 11.2 (4), namely when T = RR∗, the invertibility of T
is equivalent to the invertibility of R. This can be either checked directly, or deduced via
the equivalence (3) ⇐⇒ (4) from Theorem 11.2, by using the above argument (3). □

As a subtlety now, we have the following complement to the above result:

Proposition 11.4. For a strictly positive operator, T > 0, we have

< Tx, x >> 0 , ∀x ̸= 0

but the converse of this fact is not true, unless we are in finite dimensions.

Proof. We have several things to be proved, the idea being as follows:
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(1) Regarding the main assertion, the inequality can be deduced as follows, by using

the fact that the operator S =
√
T is invertible, and in particular injective:

< Tx, x > = < S2x, x >

= < Sx, S∗x >

= < Sx, Sx >

= ||Sx||2

> 0

(2) In finite dimensions, assuming < Tx, x >> 0 for any x ̸= 0, we know from Theorem
11.2 that we have T ≥ 0. Thus we have σ(T ) ⊂ [0,∞), and assuming by contradiction
0 ∈ σ(T ), we obtain that T has λ = 0 as eigenvalue, and the corresponding eigenvector
x ̸= 0 has the property < Tx, x >= 0, contradiction. Thus T > 0, as claimed.

(3) Finally, regarding the counterexample for the converse, we can use here:

T =


1

1
2

1
3

. . .


Indeed, T is well-defined and bounded, and we have < Tx, x >> 0, for any vector

x ̸= 0. However, T is not invertible, and so the converse does not hold, as stated. □

With the above results in hand, let us discuss now some decomposition results for the
bounded operators T ∈ B(H), in analogy with what we know about the usual complex
numbers z ∈ C. We know that any z ∈ C can be written as follows, with a, b ∈ R:

z = a+ ib

Also, we know that both the real and imaginary parts a, b ∈ R, and more generally
any real number c ∈ R, can be written as follows, with r, s ≥ 0:

c = r − s

Here is the operator theoretic generalization of these results:

Proposition 11.5. Given an operator T ∈ B(H), the following happen:

(1) We can write T = A+ iB, with A,B ∈ B(H) self-adjoint.
(2) When T = T ∗, we can write T = R− S, with R, S ∈ B(H) positive.
(3) Thus, we can write any T as a linear combination of 4 positive elements.

Proof. All this follows from basic spectral theory, as follows:

(1) We can use here the same formula as for complex numbers, namely:

T =
T + T ∗

2
+ i · T − T ∗

2i
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(2) This follows from the measurable functional calculus. Indeed, assuming T = T ∗

we have σ(T ) ⊂ R, so we can use the following decomposition formula on R:

z = χ[0,∞)z − χ(−∞,0)(−z)

Now by applying these measurable functions to T , we obtain as formula as follows,
with both the operators T+, T− ∈ B(H) being positive, as desired:

T = T+ − T−

(3) This follows by combining the results in (1) and (2) above. □

Going ahead with our decomposition results, another basic thing that we know about
complex numbers is that any z ∈ C appears as a real multiple of a unitary:

z = reit

Finding the correct operator theoretic analogue of this is quite tricky, and this even
for the usual matrices A ∈MN(C). As a basic result here, we have:

Proposition 11.6. Given an operator T ∈ B(H), the following happen:

(1) If T = T ∗ and ||T || ≤ 1, we can write T = (U + V )/2, with U, V unitaries.
(2) If T = T ∗, we can write T = λ(U + V ), with U, V unitaries.
(3) In general, we can write T as a rescaled sum of 4 unitaries.

Proof. This follows from the results that we have, as follows:

(1) Assuming T = T ∗ and ||T || ≤ 1 we have 1− T 2 ≥ 0, and the decomposition that
we are looking for is as follows, with both the components being unitaries:

T =
T + i

√
1− T 2

2
+
T − i

√
1− T 2

2

To be more precise, the square root can be extracted as in Theorem 11.2 (3), and the
check of the unitarity of the components goes as follows:

(T + i
√
1− T 2)(T − i

√
1− T 2) = T 2 + (1− T 2) = 1

(2) This simply follows by applying (1) to the operator T/||T ||.

(3) Assuming first ||T || ≤ 1, we know from Proposition 11.5 (1) that we can write
T = A+ iB, with A,B being self-adjoint, and satisfying ||A||, ||B|| ≤ 1. Now by applying
(1) to both A and B, we obtain a decomposition of T as follows:

T =
U + V +X + Y

2

In general, we can apply this to the operator T/||T ||, and we obtain the result. □
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All this gets us into the multiplicative theory of the complex numbers, that we will
attempt to generalize now. As a first construction, that we would like to generalize to the
bounded operator setting, we have the construction of the modulus, as follows:

|z| =
√
zz̄

The point now is that we can indeed generalize this construction, as follows:

Proposition 11.7. Given an operator T ∈ B(H), we can construct a positive operator
|T | ∈ B(H), satisfying |T |2 = T ∗T , as follows, by using the fact that T ∗T is positive:

|T | =
√
T ∗T

In the case H = C, this gives the usual absolute value of the complex numbers:

|z| =
√
zz̄

More generally, in the case where H = CN is finite dimensional, we obtain in this way
the usual moduli of the complex matrices A ∈MN(C).

Proof. We have several things to be proved, the idea being as follows:

(1) The first assertion follows from Theorem 11.2. Indeed, according to (4) there the
operator T ∗T is indeed positive, and then according to (2) there we can extract the square
root of this latter positive operator, by applying to it the function

√
z.

(2) By functional calculus we have then |T |2 = T ∗T , as desired.

(3) In the case H = C, we obtain indeed the absolute value of complex numbers.

(4) In the case where the space H is finite dimensional, H = CN , we obtain indeed
the usual moduli of the complex matrices A ∈MN(C). □

As a comment here, it is possible to talk as well about the operator
√
TT ∗, which is

in general different from
√
T ∗T . Observe that when T is normal, we have:

√
TT ∗ =

√
T ∗T

Regarding now the polar decomposition formula, let us start with a weak version of
this statement, regarding the invertible operators, as follows:

Theorem 11.8. We have the polar decomposition formula

T = U
√
T ∗T

with U being a unitary, for any T ∈ B(H) invertible.

Proof. According to our definition of |T | =
√
T ∗T , we have:

< |T |x, |T |y > = < x, |T |2y >
= < x, T ∗Ty >

= < Tx, Ty >
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Thus we can define a unitary operator U ∈ B(H) as follows:

U(|T |x) = Tx

But this formula shows that we have T = U |T |, as desired. □

Observe that we have uniqueness in the above result, in what regards the choice of
the unitary U ∈ B(H), due to the fact that we can write this unitary as follows:

U = T (
√
T ∗T )−1

More generally now, we have the following result:

Theorem 11.9. We have the polar decomposition formula

T = U
√
T ∗T

with U being a partial isometry, for any T ∈ B(H).

Proof. As before, in the proof of Theorem 11.8, we have the following equality, valid
for any two vectors x, y ∈ H:

< |T |x, |T |y >=< Tx, Ty >

We conclude that the following linear application is well-defined, and isometric:

U : Im|T | → Im(T ) , |T |x→ Tx

By continuity we can extend this map U into an isometry, as follows:

U : Im|T | → Im(T ) , |T |x→ Tx

Moreover, we can further extend U into a partial isometry U : H → H, by setting

Ux = 0, for any x ∈ Im|T |
⊥
, and with this convention, the result follows. □

Summarizing, as a first application of our spectral theory methods, we have now a full
generalization of the polar decomposition result for the usual matrices.

11b. Marchenko-Pastur

Let us discuss now the complex Wishart matrices, which are the positive analogues
of the Gaussian and Wigner matrices. These matrices were introduced and studied by
Marchenko-Pastur in [67], not long after Wigner’s paper [100], and are of interest in
connection with many questions. They are constructed as follows:

Definition 11.10. A complex Wishart matrix is a random matrix of type

W = Y Y ∗ ∈MN(L
∞(X))

with Y being a complex Gaussian matrix, with entries following the law Gt.
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There are in fact several possible definitions for the complex Wishart matrices, with
some being more clever and useful that some other. To start with, we will use the above
definition, which comes naturally out of what we know about the Gaussian and Wigner
matrices. Once such matrices studied, we will talk about their versions, too.

Observe that, due to the defining formula W = Y Y ∗, the complex Wishart matrices
are obviously positive, W ≥ 0, in the sense of the general positivity notion discussed
above. Due to this key positivity property, and to the otherwise “randomness” of W ,
such matrices are useful in many down-to-earth contexts. More on this later.

As usual with the random matrices, we will be interested in computing the asymptotic
laws of our Wishart matrices W , suitably rescaled, in the N → ∞ limit. Quite surpris-
ingly, the computation here leads to the Catalan numbers, but not exactly in the same
way as for the Wigner matrices, the precise result being as follows:

Theorem 11.11. Given a sequence of complex Wishart matrices

WN = YNY
∗
N ∈MN(L

∞(X))

with YN being N ×N complex Gaussian of parameter t > 0, we have

Mk

(
WN

N

)
≃ tkCk

for any exponent k ∈ N, in the N → ∞ limit.

Proof. There are several possible proofs for this result, as follows:

(1) A first method is by using the result that we have from chapter 10, for the Gaussian
matrices YN . Indeed, we know from there that we have the following formula, valid for
any colored integer K = ◦ • • ◦ . . . , in the N → ∞ limit:

MK

(
YN√
N

)
≃ t|K|/2|NC2(K)|

With K = ◦ • ◦ • . . . , alternating word of length 2k, with k ∈ N, this gives:

Mk

(
YNY

∗
N

N

)
≃ tk|NC2(K)|

Thus, in terms of the Wishart matrix WN = YNY
∗
N we have, for any k ∈ N:

Mk

(
WN

N

)
≃ tk|NC2(K)|

The point now is that, by doing some combinatorics, we have:

|NC2(K)| = |NC2(2k)| = Ck

Thus, we are led to the formula in the statement.
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(2) A second method, that we will explain now as well, is by proving the result directly,
starting from definitions. The matrix entries of our matrix W = WN are given by:

Wij =
N∑
r=1

YirȲjr

Thus, the normalized traces of powers of W are given by the following formula:

tr(W k) =
1

N

N∑
i1=1

. . .

N∑
ik=1

Wi1i2Wi2i3 . . .Wiki1

=
1

N

N∑
i1=1

. . .
N∑

ik=1

N∑
r1=1

. . .
N∑

rk=1

Yi1r1Ȳi2r1Yi2r2Ȳi3r2 . . . Yikrk Ȳi1rk

By rescaling now W by a 1/N factor, as in the statement, we obtain:

tr

((
W

N

)k
)

=
1

Nk+1

N∑
i1=1

. . .
N∑

ik=1

N∑
r1=1

. . .
N∑

rk=1

Yi1r1Ȳi2r1Yi2r2Ȳi3r2 . . . Yikrk Ȳi1rk

By using now the Wick rule, we obtain the following formula for the moments, with
K = ◦ • ◦ • . . . , alternating word of length 2k, and with I = (i1r1, i2r1, . . . , ikrk, i1rk):

Mk

(
W

N

)
=

tk

Nk+1

N∑
i1=1

. . .
N∑

ik=1

N∑
r1=1

. . .
N∑

rk=1

#
{
π ∈ P2(K)

∣∣∣π ≤ ker I
}

=
tk

Nk+1

∑
π∈P2(K)

#
{
i, r ∈ {1, . . . , N}k

∣∣∣π ≤ ker I
}

In order to compute this quantity, we use the standard bijection P2(K) ≃ Sk. By
identifying the pairings π ∈ P2(K) with their counterparts π ∈ Sk, we obtain:

Mk

(
W

N

)
=

tk

Nk+1

∑
π∈Sk

#
{
i, r ∈ {1, . . . , N}k

∣∣∣is = iπ(s)+1, rs = rπ(s), ∀s
}

Now let γ ∈ Sk be the full cycle, which is by definition the following permutation:

γ = (1 2 . . . k)

The general factor in the product computed above is then 1 precisely when following
two conditions are simultaneously satisfied:

γπ ≤ ker i , π ≤ ker r

Counting the number of free parameters in our moment formula, we obtain:

Mk

(
W

N

)
= tk

∑
π∈Sk

N |π|+|γπ|−k−1
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The point now is that the last exponent is well-known to be≤ 0, with equality precisely
when the permutation π ∈ Sk is geodesic, which in practice means that π must come from
a noncrossing partition. Thus we obtain, in the N → ∞ limit:

Mk

(
W

N

)
≃ tkCk

Thus, we are led to the conclusion in the statement. □

As a consequence of the above result, we have a new look on the Catalan numbers,
which is more adapted to our present Wishart matrix considerations, as follows:

Proposition 11.12. The Catalan numbers Ck = |NC2(2k)| appear as well as

Ck = |NC(k)|
where NC(k) is the set of all noncrossing partitions of {1, . . . , k}.

Proof. This follows indeed from the proof of Theorem 11.11. □

The direct explanation for the above formula, relating noncrossing partitions and
pairings, comes form the following result, which is very useful, and good to know:

Proposition 11.13. We have a bijection between noncrossing partitions and pairings

NC(k) ≃ NC2(2k)

which is constructed as follows:

(1) The application NC(k) → NC2(2k) is the “fattening” one, obtained by doubling
all the legs, and doubling all the strings as well.

(2) Its inverse NC2(2k) → NC(k) is the “shrinking” application, obtained by col-
lapsing pairs of consecutive neighbors.

Proof. The fact that the two operations in the statement are indeed inverse to each
other is clear, by computing the corresponding two compositions, with the remark that
the construction of the fattening operation requires the partitions to be noncrossing. □

As a comment here, the above result is something quite remarkable, in view of the
total lack of relation between P (k) and P2(2k). Thus, taking for granted that “classical
probability is about partitions, and free probability is about noncrossing partitions”, a
general principle that emerges from our study so far, and that we will fully justify later
on, we have in Proposition 11.13 an endless source of things to be done, in the free case,
having no classical counterpart. We will keep this discovery in our pocket, and have it
pulled out of there, for some magic, on several occasions, in what follows.

Getting back now to Wishart matrices, at t = 1 we are led to the question of finding
the law having the Catalan numbers as moments. We already know the answer to this
question from chapter 10, and more specifically from our considerations there at the end,
regarding SO3, but here is as well an independent, pedestian solution to this question:
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Proposition 11.14. The real measure having the Catalan numbers as moments is

π1 =
1

2π

√
4x−1 − 1 dx

called Marchenko-Pastur law of parameter 1.

Proof. As already mentioned, this is something that we already know, because we
came upon this when talking about SO3. Here are two alternative proofs:

(1) By using the Stieltjes inversion formula. In order to apply this formula, we need
a simple formula for the Cauchy transform. For this purpose, our starting point will be
the well-known formula for the generating series of the Catalan numbers, namely:

∞∑
k=0

Ckz
k =

1−
√
1− 4z

2z

By using this formula with z = ξ−1, we obtain the following formula:

G(ξ) = ξ−1

∞∑
k=0

Ckξ
−k

= ξ−1 · 1−
√

1− 4ξ−1

2ξ−1

=
1

2

(
1−

√
1− 4ξ−1

)
=

1

2
− 1

2

√
1− 4ξ−1

With this formula in hand, let us apply now the Stieltjes inversion formula. The first
term, namely 1/2, which is trivial, will not contribute to the density. As for the second
term, which is something non-trivial, this will contribute to the density, the rule here being
that the square root

√
1− 4ξ−1 will be replaced by the “dual” square root

√
4x−1 − 1 dx,

and that we have to multiply everything by −1/π. Thus, by Stieltjes inversion we obtain
the density in the statement, namely:

dµ(x) = − 1

π
· −1

2

√
4x−1 − 1 dx

=
1

2π

√
4x−1 − 1 dx

(2) Alternatively, if the above was too complicated, we can simply cheat, as we actually
did in chapter 10, when talking about SO3. Indeed, the moments of the law π1 in the
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statement can be computed with the change of variable x = 4 cos2 t, as follows:

Mk =
1

2π

∫ 4

0

√
4x−1 − 1xkdx

=
1

2π

∫ π/2

0

sin t

cos t
· (4 cos2 t)k · 2 cos t sin t dt

=
4k+1

π

∫ π/2

0

cos2k t sin2 t dt

=
4k+1

π
· π
2
· (2k)!!2!!

(2k + 3)!!

= 2 · 4k · (2k)!/2kk!

2k+1(k + 1)!

= Ck

Thus, we are led to the conclusion in the statement. □

Now back to the Wishart matrices, we are led to the following result:

Theorem 11.15. Given a sequence of complex Wishart matrices

WN = YNY
∗
N ∈MN(L

∞(X))

with YN being N ×N complex Gaussian of parameter 1, we have

WN

N
∼ 1

2π

√
4x−1 − 1 dx

with N → ∞, with the limiting measure being the Marchenko-Pastur law π1.

Proof. This follows indeed from the asymptotic moment computation that we have,
for these matrices, from Theorem 11.11, coupled with Proposition 11.14. □

More generally now, we have as well a straightforward parametric version of the above
result, involving a parameter t > 0 as in Definition 11.10, as follows:

Theorem 11.16. Given a sequence of complex Wishart matrices

WN = YNY
∗
N ∈MN(L

∞(X))

with YN being N ×N complex Gaussian of parameter t > 0, we have

WN

tN
∼ 1

2π

√
4x−1 − 1 dx

with N → ∞, with the limiting measure being the Marchenko-Pastur law π1.
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Proof. This follows again from Theorem 11.11 and Proposition 11.14. To be more
precise, recall the main formula from Theorem 11.11, for the matrices as above, namely:

Mk

(
WN

N

)
≃ tkCk

By dividing by tk, this formula can be written as follows:

Mk

(
WN

tN

)
≃ Ck

Now by using Proposition 11.14, we are led to the conclusion in the statement. □

Summarizing, we have deduced the Marchenko-Pastur theorem from the result for
Gaussian matrices, via some moment combinatorics. It is possible as well to be a bit more
direct here, by passing through the Wigner theorem, and then recovering the Marchenko-
Pastur law directly from the Wigner semicircle law, by performing a kind of square oper-
ation. But this is more or less the same thing as we did above.

11c. Parametric version

We discuss now a generalization of the above results, motivated by a whole array
of concrete questions, and bringing into the picture a “true” parameter t > 0, which is
different from the parameter t > 0 used above, which is something quite trivial.

For this purpose, let us go back to the definition of the Wishart matrices. There were
as follows, with Y being a N ×N matrix with i.i.d. entries, each following the law Gt:

W = Y Y ∗

The point now is that, more generally, we can use in this W = Y Y ∗ construction
a N × M matrix Y with i.i.d. entries, each following the law Gt, with M ∈ N being
arbitrary. Thus, we have a new parameter, and by ditching the old parameter t > 0,
which was something not very interesting, we are led to the following definition, which is
the “true” definition of the Wishart matrices, from [67] and the subsequent literature:

Definition 11.17. A complex Wishart matrix is a N ×N matrix of the form

W = Y Y ∗

where Y is a N ×M matrix with i.i.d. entries, each following the law G1.

As before with our previous Wishart matrices, that the new ones generalize, up to
setting t = 1, we have W ≥ 0, by definition. Due to this property, and to the otherwise
“randomness” of W , these matrices are useful in many contexts. More on this later.

In order to see what is going on, combinatorially, let us compute moments. The result
here is substantially more interesting than that for the previous Wishart matrices, with
the new revelant numeric parameter being now the number t =M/N , as follows:
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Theorem 11.18. Given a sequence of complex Wishart matrices

WN = YNY
∗
N ∈MN(L

∞(X))

with YN being N ×M complex Gaussian of parameter 1, we have

Mk

(
WN

N

)
≃

∑
π∈NC(k)

t|π|

for any exponent k ∈ N, in the M = tN → ∞ limit.

Proof. This is something which is very standard, as follows:

(1) Before starting, let us clarify the relation with our previous Wishart matrix results.
In the case M = N we have t = 1, and the formula in the statement reads:

Mk

(
WN

N

)
≃ |NC(k)|

Thus, what we have here is the previous Wishart matrix formula, in full generality, at
the value t = 1 of our old parameter t > 0.

(2) Observe also that by rescaling, we can obtain if we want from this the previous
Wishart matrix formula, in full generality, at any value t > 0 of our old parameter. Thus,
things fine, we are indeed generalizing what we did before.

(3) In order to prove now the formula in the statement, we proceed as usual, by using
the Wick formula. The matrix entries of our Wishart matrix W = WN are given by:

Wij =
M∑
r=1

YirȲjr

Thus, the normalized traces of powers of W are given by the following formula:

tr(W k) =
1

N

N∑
i1=1

. . .
N∑

ik=1

Wi1i2Wi2i3 . . .Wiki1

=
1

N

N∑
i1=1

. . .

N∑
ik=1

M∑
r1=1

. . .

M∑
rk=1

Yi1r1Ȳi2r1Yi2r2Ȳi3r2 . . . Yikrk Ȳi1rk

By rescaling now W by a 1/N factor, as in the statement, we obtain:

tr

((
W

N

)k
)

=
1

Nk+1

N∑
i1=1

. . .

N∑
ik=1

M∑
r1=1

. . .

M∑
rk=1

Yi1r1Ȳi2r1Yi2r2Ȳi3r2 . . . Yikrk Ȳi1rk
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(4) By using now the Wick rule, we obtain the following formula for the moments,
with K = ◦ • ◦ • . . . , alternating word of lenght 2k, and I = (i1r1, i2r1, . . . , ikrk, i1rk):

Mk

(
W

N

)
=

1

Nk+1

N∑
i1=1

. . .

N∑
ik=1

M∑
r1=1

. . .
M∑

rk=1

#
{
π ∈ P2(K)

∣∣∣π ≤ ker I
}

=
1

Nk+1

∑
π∈P2(K)

#
{
i ∈ {1, . . . , N}k, r ∈ {1, . . . ,M}k

∣∣∣π ≤ ker I
}

(5) In order to compute this quantity, we use the standard bijection P2(K) ≃ Sk. By
identifying the pairings π ∈ P2(K) with their counterparts π ∈ Sk, we obtain:

Mk

(
W

N

)
=

1

Nk+1

∑
π∈Sk

#
{
i ∈ {1, . . . , N}k, r ∈ {1, . . . ,M}k

∣∣∣is = iπ(s)+1, rs = rπ(s)

}
Now let γ ∈ Sk be the full cycle, which is by definition the following permutation:

γ = (1 2 . . . k)

The general factor in the product computed above is then 1 precisely when following
two conditions are simultaneously satisfied:

γπ ≤ ker i , π ≤ ker r

Counting the number of free parameters in our expectation formula, we obtain:

Mk

(
W

N

)
=

1

Nk+1

∑
π∈Sk

N |γπ|M |π| =
∑
π∈Sk

N |γπ|−k−1M |π|

(6) Now by using the same arguments as in the case M = N , from the proof of
Theorem 7.11, we conclude that in the M = tN → ∞ limit the permutations π ∈ Sk

which matter are those coming from noncrossing partitions, and so that we have:

Mk

(
W

N

)
≃

∑
π∈NC(k)

N−|π|M |π| =
∑

π∈NC(k)

t|π|

We are therefore led to the conclusion in the statement. □

In order to recapture now the density out of the moments, we can of course use the
Stieltjes inversion formula, but the computations here are a bit opaque. So, inspired from
what happens at t = 1, let us cheat a bit, and formulate a nice definition, as follows:

Definition 11.19. The Marchenko-Pastur law πt of parameter t > 0 is given by:

a ∼ γt =⇒ a2 ∼ πt

That is, πt the law of the square of a variable following the law γt.

This is certainly very nice, and we know from chapter 10 that at t = 1 we obtain
indeed the Marchenko-Pastur law π1, as constructed above. In general, we have:
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Proposition 11.20. The Marchenko-Pastur law of parameter t > 0 is

πt = max(1− t, 0)δ0 +

√
4t− (x− 1− t)2

2πx
dx

the support being [0, 4t2], and the moments of this measure are

Mk =
∑

π∈NC(k)

t|π|

exactly as for the asymptotic moments of the complex Wishart matrices.

Proof. This follows as usual, by doing some computations, either combinatorics, or
calculus. To be more precise, we have three formulae for πt to be connected, namely the
one in Definition 11.19, and the two ones from the present statement, and the connections
between them can be established exactly as we did before, at t = 1. □

Summarizing, we have now a definition for the Marchenko-Pastur law πt, which is
quite elegant, via Definition 11.19, but which still requires some computations, performed
in the proof of Proposition 11.20. We will see later on, in Part IV, an even more elegant
definition for πt, out of its particular case π1 which was well understood, simply obtained
by considering the corresponding 1-parameter free convolution semigroup. We will also
see that πt appears as the “free version” of the Poisson law pt, and that this can be even
taken as a definition for πt, if we really want to. More on this later.

Now back to the complex Wishart matrices that we are interested in, in this chapter,
we can now formulate a final result regarding them, as follows:

Theorem 11.21. Given a sequence of complex Wishart matrices

WN = YNY
∗
N ∈MN(L

∞(X))

with YN being N ×M complex Gaussian of parameter 1, we have

WN

N
∼ max(1− t, 0)δ0 +

√
4t− (x− 1− t)2

2πx
dx

with M = tN → ∞, with the limiting measure being the Marchenko-Pastur law πt.

Proof. This follows indeed from Theorem 11.18 and Proposition 11.20. □

As it was the case with the Gaussian and Wigner matrices, there are many other things
that can be said about the complex Wishart matrices, as variations of the above. We refer
here to the standard random matrix literature [2], [68], [71], [90]. We will be back to this
right below, in the remainder of this chapter, with some wizarding computations from [5],
and then more systematically in Part IV, when doing free probability.
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11d. Shifted semicircles

Our goal now, in the remainder of this chapter, will be that of explaining a surprising
result, due to Aubrun [5], stating that when suitably block-transposing the entries of
a complex Wishart matrix, we obtain as asymptotic distribution a shifted version of
Wigner’s semicircle law. Following [5], [11], let us start with the following definition:

Definition 11.22. The partial transpose of a complex Wishart matrix W of parame-
ters (dn, dm) is the matrix

W̃ = (id⊗ t)W

where id is the identity of Md(C), and t is the transposition of Mn(C).

In more familiar terms of bases and indices, the standard decomposition Cdn = Cd⊗Cn

induces an algebra decomposition Mdn(C) = Md(C) ⊗Mn(C), and with this convention

made, the partial transpose matrix W̃ constructed above has entries as follows:

W̃ia,jb = Wib,ja

Our goal in what follows will be that of computing the law of W̃ , first when d, n,m
are fixed, and then in the d → ∞ regime. For this purpose, we will need a number of
standard facts regarding the noncrossing partitions. Let us start with:

Proposition 11.23. For a permutation σ ∈ Sp, we have the formula

|σ|+#σ = p

where |σ| is the number of cycles of σ, and #σ is the minimal k ∈ N such that σ is a
product of k transpositions. Also, the following formula defines a distance on Sp,

(σ, π) → #(σ−1π)

and the set of permutations σ ∈ Sp which saturate the triangular inequality

#σ +#(σ−1γ) = #γ = p− 1

where γ ∈ Sp is a full cycle, is in bijection with the set NC(p).

Proof. All this is standard combinatorics, that we will leave as an exercise. □

We use the standard bijection NC(p) ≃ NC2(2p), denoted π → π̃, obtained by
fattening the partitions. We have the following formula, where ∨ is the join operation on
NC2(2p), and ρ12 = (12)(34) . . . (2p− 1, 2p) is the fattened identity permutation:

|π| = |π̃ ∨ ρ12|
Similarly, we have the formula |πγ| = |π̃ ∨ ρ14|, where ρ14 is the pairing corresponding

to the fattening of the inverse full cycle γ−1(i) = i − 1, which pairs an element 2i with
2(i− 1)− 1 = 2i− 3, or, equivalently, an element i ∈ {1, . . . , 2p} with i+ (−1)i+13.

We will need the following well-known result:
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Proposition 11.24. The number ||π|| of blocks having even size is given by

1 + ||π|| = |πγ|

for every noncrossing partition π ∈ NC(p).

Proof. We use a recurrence over the number of blocks of π. If π has just one block,
its associated geodesic permutation is γ and we have:

|γ2| =

{
1 (p odd)

2 (p even)

For the partitions π having more than one block, we can assume without loss of
generality that π = 1̂k⊔π′, where 1̂k is a contiguous block of size k. Recall that the number
of blocks of the permutation πγ is given by the following formula, where ρ14 ∈ P2(2p) is
the pair partition which pairs an element i with i+ (−1)i+13:

|πγ| = |π̃ ∨ ρ14|

If k is an even number, k = 2r, consider the following partition, which contains the
block (1 4 5 8 . . . 4r − 3 4r), along with the blocks coming from the elements of the form
4i+ 2, 4i+ 3 from {1, . . . , 4r} and from π′:

σ = ˆ̃12r ⊔ π′ ∨ ρ14

We can count the blocks of the join of two partitions by drawing them one beneath the
other and counting the number of connected components of the curve, without taking into
account the possible crossings. We conclude that we have the following formula, where
ρ′14 is ρ14 restricted to the set {2k + 1, 2k + 2 . . . , 2p}:

|π̃ ∨ ρ14| = 1 + |π̃′ ∨ ρ′14|

If k is odd, k = 2r + 1, there is no extra block appearing, so we have:

|π̃ ∨ ρ14| = |π̃′ ∨ ρ′14|

Thus, we are led to the conclusion in the statement. □

We can now investigate the block-transposed Wishart matrices, and we have:

Theorem 11.25. For any p ≥ 1 we have the formula

lim
d→∞

(E ◦ tr)
(
mW̃

)p
=

∑
π∈NC(p)

m|π|n||π||

where |.| and ||.|| are the number of blocks, and the number of blocks of even size.
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Proof. The matrix elements of the partial transpose matrix are given by:

W̃ia,jb = Wib,ja = (dm)−1

d∑
k=1

m∑
c=1

Gib,kcḠja,kc

This gives the following formula:

tr(W̃ p) = (dn)−1(dm)−p

d∑
i1,...,ip=1

n∑
a1,...,ap=1

p∏
s=1

Wisas+1,is+1as

= (dn)−1(dm)−p

d∑
i1,...,ip=1

n∑
a1,...,ap=1

p∏
s=1

d∑
j1,...,jp=1

m∑
b1,...,bp=1

Gisas+1,jsbsḠis+1as,jsbs

After interchanging the product with the last two sums, the average of the general
term can be computed by the Wick rule, namely:

E

(
p∏

s=1

Gisas+1,jsbsḠis+1as,jsbs

)
=
∑
π∈Sp

p∏
s=1

δis,iπ(s)+1
δas+1,aπ(s)

δjs,jπ(s)
δbs,bπ(s)

Let γ ∈ Sp be the full cycle γ = (1 2 . . . p)−1. The general factor in the above product
is 1 if and only if the following four conditions are simultaneously satisfied:

γ−1π ≤ ker i , πγ ≤ ker a , π ≤ ker j , π ≤ ker b

Counting the number of free parameters in the above equation, we obtain:

(E ◦ tr)(W̃ p) = (dn)−1(dm)−p
∑
π∈Sp

d|π|+|γ−1π|m|π|n|πγ|

=
∑
π∈Sp

d|π|+|γ−1π|−p−1m|π|−pn|πγ|−1

The exponent of d in the last expression on the right is:

N(π) = |π|+ |γ−1π| − p− 1

= p− 1− (#π +#(γ−1π))

= p− 1− (#π +#(π−1γ))

As explained in the beginning of this section, this quantity is known to be ≤ 0, with
equality iff π is geodesic, hence associated to a noncrossing partition. Thus:

(E ◦ tr)(W̃ p) = (1 +O(d−1))m−pn−1
∑

π∈NC(p)

m|π|n|πγ|

Together with |πγ| = ||π||+ 1, this gives the result. □
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We would like now to find an equation for the moment generating function of the

asymptotic law of mW̃ . This moment generating function is defined by:

F (z) = lim
d→∞

(E ◦ tr)
(

1

1− zmW̃

)
We have the following result, regarding this moment generating function:

Theorem 11.26. The moment generating function of mW̃ satisfies the equation

(F − 1)(1− z2F 2) = mzF (1 + nzF )

in the d→ ∞ limit.

Proof. We use the formula in Theorem 11.25. If we denote by N(p, b, e) the number
of partitions in NC(p) having b blocks and e even blocks, we have:

F = 1 +
∞∑
p=1

∑
π∈NC(p)

zpm|π|n||π||

= 1 +
∞∑
p=1

∞∑
b=0

∞∑
e=0

zpmbneN(p, b, e)

Let us try to find a recurrence formula for the numbers N(p, b, e). If we look at the
block containing 1, this block must have r ≥ 0 other legs, and we get:

N(p, b, e) =
∑
r∈2N

∑
p=Σpi+r+1

∑
b=Σbi+1

∑
e=Σei

N(p1, b1, e1) . . . N(pr+1, br+1, er+1)

+
∑

r∈2N+1

∑
p=Σpi+r+1

∑
b=Σbi+1

∑
e=Σei+1

N(p1, b1, e1) . . . N(pr+1, br+1, er+1)

Here p1, . . . , pr+1 are the number of points between the legs of the block containing 1,
so that we have p = (p1+. . .+pr+1)+r+1, and the whole sum is split over two cases, r even
or odd, because the parity of r affects the number of even blocks of our partition. Now
by multiplying everything by a zpmbne factor, and by carefully distributing the various
powers of z,m, b on the right, we obtain the following formula:

zpmbneN(p, b, e) = m
∑
r∈2N

zr+1
∑

p=Σpi+r+1

∑
b=Σbi+1

∑
e=Σei

r+1∏
i=1

zpimbineiN(pi, bi, ei)

+ mn
∑

r∈2N+1

zr+1
∑

p=Σpi+r+1

∑
b=Σbi+1

∑
e=Σei+1

r+1∏
i=1

zpimbineiN(pi, bi, ei)

Let us sum now all these equalities, over all p ≥ 1 and over all b, e ≥ 0. According to
the definition of F , at left we obtain F − 1. As for the two sums appearing on the right,
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that is, at right of the two zr+1 factors, when summing them over all p ≥ 1 and over all
b, e ≥ 0, we obtain in both cases F r+1. So, we have the following formula:

F − 1 = m
∑
r∈2N

(zF )r+1 +mn
∑

r∈2N+1

(zF )r+1

= m
zF

1− z2F 2
+mn

z2F 2

1− z2F 2

= mzF
1 + nzF

1− z2F 2

But this gives the formula in the statement, and we are done. □

Our goal now will be that of further processing the formula in Theorem 11.26, as to
reach to a formula for the density of the corresponding law. This is something quite tricky,
and as a first result here, we can reformulate Theorem 11.26 as follows:

Theorem 11.27. The Cauchy transform of mW̃ satisfies the equation

(ξG− 1)(1−G2) = mG(1 + nG)

in the d→ ∞ limit. Moreover, this equation simply reads

R =
m

2

(
n+ 1

1− z
− n− 1

1 + z

)
with the substitutions G→ z and ξ → R + z−1.

Proof. We have two assertions to be proved, the first one being standard, and the
second one being something quite magic, the idea being as follows:

(1) Consider the equation of F , found in Theorem 11.26, namely:

(F − 1)(1− z2F 2) = mzF (1 + nzF )

With z → ξ−1 and F → ξG, so that zF → G, we obtain, as desired:

(ξG− 1)(1−G2) = mG(1 + nG)

(2) Thus, we have our equation for the Cauchy transform, and with this in hand, we
can try to go ahead, and use somehow the Stieltjes inversion formula, in order to reach
to a formula for the density. This is certainly possible, but our claim is that we can do
better, by performing first some clever manipulations on the Cauchy transform.

(3) To be more precise, let us look at the equation of the Cauchy transform that we
have. With the substitutions ξ → K and G→ z, this equation becomes:

(zK − 1)(1− z2) = mz(1 + nz)

The point now is that with K → R + z−1 this latter equation becomes:

zR(1− z2) = mz(1 + nz)
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But the solution of this latter equation is trivial to compute, given by:

R = m
1 + nz

1− z2
=
m

2

(
n+ 1

1− z
− n− 1

1 + z

)
Thus, we are led to the conclusion in the statement. □

All the above might look a bit mysterious, but we are into difficult mathematics now,
that will take us some time to be understood. In any case, the manipulations made in
Theorem 11.27 are quite interesting, and suggest the following definition:

Definition 11.28. Given a real probability measure µ, define its R-transform by:

Gµ(ξ) =

∫
R

dµ(t)

ξ − t
=⇒ Gµ

(
Rµ(ξ) +

1

ξ

)
= ξ

That is, the R-transform is the inverse of the Cauchy transform, up to a ξ−1 factor.

This definition is actually something very deep, due to Voiculescu [88], and we will
have the whole remainder of this book for exploring its subtleties. For the moment, let
us just take it as such, as something natural emerging from Theorem 11.27.

Getting back now to our questions, we would like to find the probability measure
having as R-transform the function in Theorem 11.27. But here, we can only expect to
find some kind of modification of the Marchenko-Pastur law, so as a first piece of work,
let us just compute the R-transform of the Marchenko-Pastur law. We have here:

Proposition 11.29. The R-transform of the Marchenko-Pastur law πt is

Rπt(ξ) =
t

1− ξ

for any t > 0.

Proof. This can be done in two steps, as follows:

(1) At t = 1, we know that the moments of π1 are the Catalan numbers, Mk = Ck,
and we obtain that the Cauchy transform is given by the following formula:

G(ξ) =
1

2
− 1

2

√
1− 4ξ−1
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Now with R(ξ) = 1
1−ξ

being the function in the statement, at t = 1, we have:

G

(
R(ξ) +

1

ξ

)
= G

(
1

1− ξ
+

1

ξ

)
= G

(
1

ξ − ξ2

)
=

1

2
− 1

2

√
1− 4ξ + 4ξ2

=
1

2
− 1

2
(1− 2ξ)

= ξ

Thus, the function R(ξ) = 1
1−ξ

is indeed the R-transform of π1, in the above sense.

(2) In the general case, t > 0, the proof is similar, by using the moment formula for
πt, that we know from the above. We will be back to this with full details when really
needed, and more specifically in Part IV, when doing free probability. □

All this is very nice, and we can now further build on Theorem 11.27, as follows:

Theorem 11.30. The R-transform of mW̃ is given by

R = Rπs −Rπt

in the d→ ∞ limit, where s = m(n+ 1)/2 and t = m(n− 1)/2.

Proof. We know from Theorem 11.27 that the R-transform of mW̃ is given by:

R =
m

2

(
n+ 1

1− z
− n− 1

1 + z

)
By using now the formula in Proposition 11.29, this gives the result. □

We can now recover the original result of Aubrun [5], as follows:

Theorem 11.31. For a block-transposed Wishart matrix W̃ = (id⊗ t)W we have, in
the n = βm→ ∞ limit, with β > 0 fixed, the formula

W̃

d
∼ γ1β

with γ1β being the shifted version of the semicircle law γβ, with support centered at 1.

Proof. This follows from Theorem 11.30. Indeed, in the n = βm → ∞ limit, with
β > 0 fixed, we are led to the following formula for the Stieltjes transform:

f(x) =

√
4β − (1− x)2

2βπ
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But this is the density of the shifted semicircle law having support as follows:

S = [1− 2
√
β, 1 + 2

√
β]

Thus, we are led to the conclusion in the statement. See [5], [11]. □

Here we have used some standard free probability results at the end, which can be
proved by direct computations, and we will be back to this in Part IV.

11e. Exercises

Exercises:

Exercise 11.32.

Exercise 11.33.

Exercise 11.34.

Exercise 11.35.

Exercise 11.36.

Exercise 11.37.

Exercise 11.38.

Exercise 11.39.

Bonus exercise.



CHAPTER 12

Block modifications

12a. Block modifications

We discuss in this chapter some extensions and unifications of our results from chapter
11. As before with the usual or block-transposed Wishart matrices, there will be some
non-trivial combinatorics here, that we will fully understand only later, in Part IV, when
doing free probability. Thus, the material below will be an introduction to this.

Let us begin with some general block modification considerations, following [5] and
the more recent papers [11], [12]. We have the following construction:

Definition 12.1. Given a complex Wishart dn× dn matrix, appearing as

W = Y Y ∗ ∈Mdn(L
∞(X))

with Y being a complex Gaussian dn× dm matrix, and a linear map

φ :Mn(C) →Mn(C)
we consider the following matrix, obtained by applying φ to the n× n blocks of W ,

W̃ = (id⊗ φ)W ∈Mdn(L
∞(X))

and call it block-modified Wishart matrix.

Here we are using some standard tensor product identifications, the details being as
follows. Let Y be a complex Gaussian dn× dm matrix, as above:

Y ∈Mdn×dm(L
∞(X))

We can then form the corresponding complex Wishart matrix, as follows:

W = Y Y ∗ ∈Mdn(L
∞(X))

The size of this matrix being a composite number, N = dn, we can regard this matrix
as being a n × n matrix, with random d × d matrices as entries. Equivalently, by using
standard tensor product notations, this amounts in regarding W as follows:

W ∈Md(L
∞(X))⊗Mn(C)

With this done, we can come up with our linear map, namely:

φ :Mn(C) →Mn(C)
183
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We can apply φ to the tensors on the right, and we obtain a matrix as follows:

W̃ = (id⊗ φ)W ∈Md(L
∞(X))⊗Mn(C)

Finally, we can forget now about tensors, and as a conclusion to all this, we have
constructed a matrix as follows, that we can call block-modified Wishart matrix:

W̃ ∈Mdn(L
∞(X))

In practice now, what we mostly need for fully understanding Definition 12.1 are
examples. Following Aubrun [5], and the series of papers by Collins and Nechita [23],
[24], [25], we have the following basic examples, for our general construction:

Definition 12.2. We have the following examples of block-modified Wishart matrices

W̃ = (id⊗ φ)W , coming from various linear maps φ :Mn(C) →Mn(C):
(1) Wishart matrices: W̃ = W , obtained via φ = id.

(2) Aubrun matrices: W̃ = (id⊗ t)W , with t being the transposition.

(3) Collins-Nechita one: W̃ = (id⊗ φ)W , with φ = tr(.)1.

(4) Collins-Nechita two: W̃ = (id⊗ φ)W , with φ erasing the off-diagonal part.

These examples, whose construction is something very elementary, appear in a wide
context of interesting situations, for the most in connection with various questions in
quantum physics [5], [23], [24], [25], [67]. They will actually serve as a main motivation
for what we will be doing, in what follows. More on this later.

Getting back now to the general case, that of Definition 12.1 as stated, the linear map
φ : Mn(C) → Mn(C) there is certainly useful for understanding the construction of the

block-modified Wishart matrix W̃ = (id ⊗ φ)W , as illustrated by the above examples.
In practice, however, we would like to have as block-modification “data” something more
concrete, such as a usual matrix. To be more precise, we would like to use:

Proposition 12.3. We have a correspondence between linear maps

φ :Mn(C) →Mn(C)

and square matrices Λ ∈Mn(C)⊗Mn(C), given by the formula

Λab,cd = φ(eac)bd

where eab ∈Mn(C) are the standard generators of the matrix algebra Mn(C), given by the
formula eab : eb → ea, with {e1, . . . , en} being the standard basis of Cn.

Proof. This is standard linear algebra. Given a linear map φ :Mn(C) →Mn(C), we
can associated to it numbers Λab,cd ∈ C by the formula in the statement, namely:

Λab,cd = φ(eac)bd
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Now by using these n4 numbers, we can construct a n2 × n2 matrix, as follows:

Λ =
∑
abcd

Λab,cdeac ⊗ ebd ∈Mn(C)⊗Mn(C)

Thus, we have constructed a correspondence φ→ Λ, and since this correspondence is
injective, and the dimensions match, this correspondence is bijective, as claimed. □

Now by getting back to the block-modified Wishart matrices, we have:

Proposition 12.4. Given a Wishart dn× dn matrix W = Y Y ∗, and a linear map

φ :Mn(C) →Mn(C)

the entries of the corresponding block-modified matrix W̃ = (id⊗ φ)W are given by

W̃ia,jb =
∑
cd

Λca,dbWic,jd

where Λ ∈Mn(C)⊗Mn(C) is the square matrix associated to φ, as above.

Proof. Again, this is trivial linear algebra, coming from the following computation:

W̃ia,jb =
∑
cd

Wic,jdφ(ecd)ab =
∑
cd

Λca,dbWic,jd

Thus, we are led to the conclusion in the statement. □

At the level of the main examples, from Definition 12.2, the very basic linear maps
φ : Mn(C) → Mn(C) used there can only correspond to some basic examples of matrices
Λ ∈Mn(C)⊗Mn(C), via the correspondence in Proposition 12.3. This is indeed the case,
and in order to clarify this, and at a rather conceptual level, let us formulate:

Definition 12.5. Let P (k, l) be the set of partitions between an upper row of k points,
and a lower row of l points. Associated to any π ∈ P (k, l) is the linear map

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

between tensor powers of CN , called “easy”, with the Kronecker type symbol on the right
being given by δπ = 1 when the indices fit, and δπ = 0 otherwise.

Observe the obvious connection with notion of easy group, the point being that a
closed subgroup G ⊂ UN is easy precisely when its Tannakian category CG = (CG(k, l))
with CG(k, l) ⊂ L((CN)k, (CN)l) is spanned by easy maps.

For our purposes, we will need a slight modification of Definition 12.5, as follows:
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Definition 12.6. Associated to any partition π ∈ P (2s, 2s) is the linear map

φπ(ea1...as,c1...cs) =
∑
b1...bs

∑
d1...ds

δπ

(
a1 . . . as c1 . . . cs
b1 . . . bs d1 . . . ds

)
eb1...bs,d1...ds

obtained from Tπ by contracting all the tensors, via the operation

ei1 ⊗ . . .⊗ ei2s → ei1...is,is+1...i2s

with {e1, . . . , eN} standing as usual for the standard basis of CN .

In relation with our Wishart matrix considerations, the point is that the above linear
map φπ can be viewed as a “block-modification” map, as follows:

φπ :MNs(C) →MNs(C)

As an illustration, let us discuss the case s = 1. There are 15 partitions π ∈ P (2, 2),
and among them, the most “basic” are the 4 partitions π ∈ Peven(2, 2). We have:

Theorem 12.7. The partitions π ∈ Peven(2, 2) are as follows,

π1 =

[
◦ •
◦ •

]
, π2 =

[
◦ •
• ◦

]
, π3 =

[
◦ ◦
• •

]
, π4 =

[
◦ ◦
◦ ◦

]
with the associated linear maps φπ :Mn(C) →Mn(C) being as follows,

φ1(A) = A , φ2(A) = At , φ3(A) = Tr(A)1 , φ4(A) = Aδ

and the associated square matrices Λπ ∈Mn(C)⊗Mn(C) being as follows,

Λ1
ab,cd = δabδcd , Λ2

ab,cd = δadδbc , Λ3
ab,cd = δacδbd , Λ4

ab,cd = δabcd

producing the main examples of block-modified Wishart matrices, from Definition 12.2.

Proof. This is something elementary, coming from the formula in Definition 12.6.
Indeed, in the case s = 1, that we are interested in here, this formula becomes:

φπ(eac) =
∑
bd

δπ

(
a c
b d

)
ebd

Now in the case of the 4 partitions in the statement, such maps are given by:

φ1(eac) = eac , φ2(eac) = eca , φ3(eac) = δac
∑
b

ebb , φ4(eac) = δaceaa

Thus, we obtain the formulae in the statement. Regarding now the associated square
matrices, appearing via Λab,cd = φ(eac)bd, these are given by:

Λ1
ab,cd = δabδcd , Λ2

ab,cd = δadδbc , Λ3
ab,cd = δacδbd , Λ4

ab,cd = δabcd

Thus, we are led to the conclusions in the statement. □



12B. ASYMPTOTIC MOMENTS 187

As a conclusion so far to what we did in this chapter, we have a nice definition for
the block-modified Wishart matrices, and then a fine-tuning of this definition, using easy
maps, which in the simplest case, that of the 4 partitions π ∈ Peven(2, 2), produces the
main 4 examples of block-modified Wishart matrices. The idea in what follows will be
that of doing the combinatorics, a bit as in chapter 11, as to extend the results there.

12b. Asymptotic moments

Moving ahead now, we would first like to study the distribution of the arbitrary block-

modified Wishart matrices W̃ = (id⊗ φ)W . We will use as before the moment method.
However, things will be more tricky in the present setting, and we will need:

Definition 12.8. The generalized colored moments of a random matrix

W ∈MN(L
∞(X))

with respect to a colored integer e = e1 . . . ep, and a permutation σ ∈ Sp, are the numbers

Mσ
e (W ) =

1

N |σ| E

 ∑
i1,...,ip

W e1
i1iσ(1)

. . .W
ep
ipiσ(p)


where |σ| is the number of cycles of σ.

This is something quite technical, in the spirit of the free probability and free cumu-
lant work in [72], that we will need in what follows. In order to understand how these
generalized moments work, consider the standard cycle in Sp, namely:

γ = (1 → 2 → . . .→ p→ 1)

If we use this cycle γ ∈ Sp as our permutation σ ∈ Sp in the above definition, the
corresponding generalized moment of a random matrix W is then the usual moment:

Mγ
e (W ) =

1

N
E

 ∑
i1,...,ip

W e1
i1i2

. . .W
ep
ipi1


= (E ◦ tr)(W e1 . . .W ep)

In general, we can decompose the computation of Mσ
e (W ) over the cycles of σ, and

we obtain in this way a certain product of moments of W . See [72].

As a second illustration now, in relation with the usual square matrices, and more
specifically with the square matrices Λ ∈Mn(C)⊗Mn(C) as in Proposition 12.3, we have
the following formula, that we will use many times in what follows:
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Proposition 12.9. Given a usual square matrix, of composed size,

Λ ∈Mn(C)⊗Mn(C)

we have the following generalized moment formula,

(Mσ
e ⊗M τ

e )(Λ) =
1

n|σ|+|τ |

∑
i1,...,ip

∑
j1,...,jp

Λe1
i1j1,iσ(1)jτ(1)

. . . . . .Λ
ep
ipjp,iσ(p)jτ(p)

valid for any two permutations σ, τ ∈ Sp, and any colored integer e = e1 . . . ep.

Proof. This is something obvious, applying the construction in Definition 12.8 with
N = n2, X = {.}, W = Λ, and then making a tensor product of the corresponding
moments Mσ

e , M
τ
e , regarded as linear functionals on Mn(C)⊗Mn(C). □

Consider now the embedding NC(p) ⊂ Sp obtained by “cycling inside each block”.
That is, each block b = {b1, . . . , bk} with b1 < . . . < bk of a given noncrossing partition
σ ∈ NC(p) produces by definition the cycle (b1 . . . bk) of the corresponding permutation
σ ∈ Sp. Observe that the one-block partition γ ∈ NC(p) corresponds in this way to
the standard cycle γ ∈ Sp. Also, the number of blocks |σ| of a partition σ ∈ NC(p)
corresponds to the number of cycles |σ| of the corresponding permutation σ ∈ Sp.

With these conventions, we have the following result, from [11], [12], generalizing our
various Wishart matrix moment computations, that we did so far in this book:

Theorem 12.10. The asymptotic moments of a block-modified Wishart matrix

W̃ = (id⊗ φ)W

with parameters d,m, n ∈ N as before, are given by the formula

lim
d→∞

Me

(
W̃

d

)
=

∑
σ∈NC(p)

(mn)|σ|(Mσ
e ⊗Mγ

e )(Λ)

where Λ ∈Mn(C)⊗Mn(C) is the square matrix associated to φ :Mn(C) →Mn(C).

Proof. We use the formula for the matrix entries of W̃ , directly in terms of the
matrix Λ associated to the map φ, from Proposition 12.4, namely:

W̃ia,jb =
∑
cd

Λca,dbWic,jd

By conjugating this formula, we obtain the following formula for the entries of the

adjoint matrix W̃ ∗, that we will need as well, in what follows:

W̃ ∗
ia,jb =

∑
cd

Λ̄db,caW̄jd,ic =
∑
cd

Λ∗
ca,dbWic,jd
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Thus, we have the following global formula, valid for any exponent e ∈ {1, ∗}:

W̃ e
ia,jb =

∑
cd

Λe
ca,dbWic,jd

In order to compute the moments of W̃ , observe first that we have:

tr(W̃ e1 . . . W̃ ep) =
1

dn

∑
irar

∏
s

W̃ es
isas,is+1as+1

=
1

dn

∑
irarcrdr

∏
s

Λes
csas,dsas+1

Wiscs,is+1ds

=
1

dn

∑
irarcrdrjrbr

∏
s

Λes
csas,dsas+1

Yiscs,jsbsȲis+1ds,jsbs

The average of the general term can be computed by the Wick rule, which gives:

E

(∏
s

Yiscs,jsbsȲis+1ds,jsbs

)
= #

{
σ ∈ Sp

∣∣∣iσ(s) = is+1, cσ(s) = ds, jσ(s) = js, bσ(s) = bs

}
Let us look now at the above sum. The i, j, b indices range over sets having respectively

d, d,m elements, and they have to be constant under the action of σγ−1, σ, σ. Thus when
summing over these i, j, b indices we simply obtain a factor as follows:

f = d|σγ
−1|d|σ|m|σ|

Thus, we obtain the following moment formula:

(E ◦ tr)(W̃ e1 . . . W̃ ep) =
1

dn

∑
σ∈Sp

d|σγ
−1|(dm)|σ|

∑
arcr

∏
s

Λes
csas,cσ(s)as+1

On the other hand, we know from Proposition 12.9 that the generalized moments of
the matrix Λ ∈Mn(C)⊗Mn(C) are given by the following formula:

(Mσ
e ⊗M τ

e )(Λ) =
1

n|σ|+|τ |

∑
i1...ip

∑
j1...jp

Λe1
i1j1,iσ(1)jτ(1)

. . . . . .Λ
ep
ipjp,iσ(p)jτ(p)

By combining the above two formulae, we obtain the following moment formula:

(E ◦ tr)(W̃ e1 . . . W̃ ep) =
∑
σ∈Sp

d|σ|+|σγ−1|−1(mn)|σ|(Mσ
e ⊗Mγ

e )(Λ)

We use now the standard fact, that we know well from before, that for σ ∈ Sp we have
an inequality as follows, with equality precisely when σ ∈ NC(p):

|σ|+ |σγ−1| ≤ p+ 1
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Thus with d→ ∞ the sum restricts over the partitions σ ∈ NC(p), and we get:

lim
d→∞

Me

(
W̃
)
= dp

∑
σ∈NC(p)

(mn)|σ|(Mσ
e ⊗Mγ

e )(Λ)

Thus, we are led to the conclusion in the statement. □

With the above result in hand, we are left with the question of recovering the asymp-

totic law of W̃ = (id⊗ φ)W , out of the asymptotic moments found there. The question
here only involves the matrix Λ ∈ Mn(C) ⊗Mn(C), and to be more precise, given such
a matrix, we would like to find the real or complex probability measure, or abstract
distribution, having as colored moments the following numbers:

Me =
∑

σ∈NCp

(mn)|σ|(Mσ
e ⊗Mγ

e )(Λ)

Although this is basically a linear algebra problem, the underlying linear algebra is
of quite difficult type, and this question cannot really be solved, in general. We will see
however that this question can be solved for our basic examples, coming from Theorem
12.7, and more generally, for a certain joint generalization of all these examples.

12c. Basic computations

Once again by following [11], [12], let us introduce, as a solution to the questions
mentioned above, the following technical notion:

Definition 12.11. We call a square matrix Λ ∈Mn(C)⊗Mn(C) multiplicative when

(Mσ
e ⊗Mγ

e )(Λ) = (Mσ
e ⊗Mσ

e )(Λ)

holds for any p ∈ N, any exponents e1, . . . , ep ∈ {1, ∗}, and any σ ∈ NC(p).

This notion is something quite technical, but we will see many examples in what fol-
lows. For instance, the square matrices Λ coming from the basic linear maps φ appearing
in Definition 12.2 are all multiplicative. More on this later.

Regarding now the output measure, that we want to compute, this can only appear
as some kind of modification of the Marchenko-Pastur law πt. In order to discuss such
modifications, recall from chapter 11 the following key formula:

Rπt(ξ) =
t

1− ξ

To be more precise, this is something that we used in chapter 11, when dealing with
the block-transposed Wishart matrices. But this suggests formulating:
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Definition 12.12. A measure µ having as R-transform a function of type

Rµ(ξ) =
s∑

i=1

cizi
1− ξzi

with ci > 0 and zi ∈ R, will be called modified Marchenko-Pastur law.

All this might seem a bit mysterious, but we are into difficult mathematics here, so
we will use the above notion as stated, and we will understand later what is behind our
computations. By anticipating a bit, however, the situation is as follows:

(1) As a first comment on the above notion, there is an obvious similarity here with
the theory of the compound Poisson laws from chapter 3.

(2) The truth is that πt is the free Poisson law of parameter t, and the modified
Marchenko-Pastur laws introduced above are the general compound free Poisson laws.

(3) Also, the mysterious R-transform used above is the Voiculescu R-transform [88],
which is the analogue of the log of the Fourier transform in free probability.

More on all this later, in Part IV, when systematically doing free probability. Based
on this analogy, however, we can label our modified Marchenko-Pastur laws, in the same
way as we labeled in chapter 3 the compound Poisson laws, as follows:

Definition 12.13. We denote by πρ the modified Marchenko-Pastur law satisfying

Rµ(ξ) =
s∑

i=1

cizi
1− ξzi

with ci > 0 and zi ∈ R, with ρ being the following measure,

ρ =
s∑

i=1

ciδzi

which is a discrete positive measure in the complex plane, not necessarily of mass 1.

Getting back now to the block-modified Wishart matrices, and to the formula in
Theorem 12.10, the above abstract notions, from Definition 12.11 and from Definition
12.12, are exactly what we need for further improving all this. Again by following [11],
[12], we have the following result, substantially building on Theorem 12.10:

Theorem 12.14. Consider a block-modified Wishart matrix

W̃ = (id⊗ φ)W

and assume that the matrix Λ ∈Mn(C)⊗Mn(C) associated to φ is multiplicative. Then

W̃

d
∼ πmnρ

holds, in moments, in the d→ ∞ limit, where ρ = law(Λ).
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Proof. This is something quite tricky, using all the above:

(1) Our starting point is the asymptotic moment formula found in Theorem 12.10, for
an arbitrary block-modified Wishart matrix, namely:

lim
d→∞

Me

(
W̃

d

)
=
∑

σ∈NCp

(mn)|σ|(Mσ
e ⊗Mγ

e )(Λ)

(2) Since our modification matrix Λ ∈Mn(C)⊗Mn(C) was assumed to be multiplica-
tive, in the sense of Definition 12.11, this formula reads:

lim
d→∞

Me

(
W̃

d

)
=
∑

σ∈NCp

(mn)|σ|(Mσ
e ⊗Mσ

e )(Λ)

(3) On the other hand, a bit of calculus and combinatorics show that, in the context
of Definition 12.12, given a square matrix Λ ∈ Mn(C) ⊗ Mn(C), having distribution
ρ = law(Λ), the moments of the modified Marchenko-Pastur law πmnρ are given by the
following formula, for any choice of the extra parameter m ∈ N:

Me(πmnρ) =
∑

σ∈NCp

(mn)|σ|(M e
σ ⊗M e

σ)(Λ)

(4) The point now is that with this latter formula in hand, our previous asymptotic

moment formula for the block-modified Wishart matrix W̃ simply reads:

lim
d→∞

Me

(
W̃

d

)
=Me(πmnρ)

Thus we have indeed W̃/d ∼ πmnρ, in the d→ ∞ limit, as stated. □

All the above was of course a bit technical, but we will come back later to this, with
some further details, once we will have a better understanding of the R-transform, of the
free Poisson limit theorem, and of the other things which are hidden in all the above.
In any case, welcome to free probability. Or perhaps to theoretical physics. The above
theorem was our first free probability one, in this book, and many other to follow.

Let us we work out now some explicit consequences of Theorem 12.14, by using the
modified easy linear maps from Definition 12.6. We recall from there that any modified
easy linear map φπ can be viewed as a “block-modification” map, as follows:

φπ :MNs(C) →MNs(C)
In order to verify that the corresponding matrices Λπ are multiplicative, we will need

to check that all the functions φ(σ, τ) = (M e
σ ⊗M e

τ )(Λπ) have the following property:

φ(σ, γ) = φ(σ, σ)
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For this purpose, we can use the following result, coming from [12]:

Proposition 12.15. The following functions φ : NC(p) × NC(p) → R are multi-
plicative, in the sense that they satisfy the condition φ(σ, γ) = φ(σ, σ):

(1) φ(σ, τ) = |στ−1| − |τ |.
(2) φ(σ, τ) = |στ | − |τ |.
(3) φ(σ, τ) = |σ ∧ τ | − |τ |.

Proof. All this is elementary, and can be proved as follows:

(1) This follows indeed from the following computation:

φ1(σ, γ) = |σγ−1| − 1 = p− |σ| = φ1(σ, σ)

(2) This follows indeed from the following computation:

φ2(σ, γ) = |σγ| − 1 = |σ2| − |σ| = φ2(σ, σ)

(3) This follows indeed from the following computation:

φ3(σ, γ) = |γ| − |γ| = 0 = |σ| − |σ| = φ3(σ, σ)

Thus, we are led to the conclusions in the statement. □

We can get back now to the easy modification maps, and we have:

Proposition 12.16. The partitions π ∈ Peven(2, 2) are as follows,

π1 =

[
◦ •
◦ •

]
, π2 =

[
◦ •
• ◦

]
, π3 =

[
◦ ◦
• •

]
, π4 =

[
◦ ◦
◦ ◦

]
with the associated linear maps φπ :Mn(C) →MN(C) being as follows:

φ1(A) = A , φ2(A) = At , φ3(A) = Tr(A)1 , φ4(A) = Aδ

The corresponding matrices Λπ are all multiplicative, in the sense of Definition 12.11.

Proof. The first part of the statement is something that we already know, from
Theorem 12.7. In order to prove the last assertion, recall from Theorem 12.7 that the
associated square matrices, appearing via Λab,cd = φ(eac)bd, are given by:

Λ1
ab,cd = δabδcd , Λ2

ab,cd = δadδbc , Λ3
ab,cd = δacδbd , Λ4

ab,cd = δabcd

Since these matrices are all self-adjoint, we can assume that all the exponents are 1
in Definition 12.11, and the multiplicativity condition there becomes:

(Mσ ⊗Mγ)(Λ) = (Mσ ⊗Mσ)(Λ)
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In order to check this condition, observe that for the above 4 matrices, we have:

(Mσ ⊗M τ )(Λ1) =
1

n|σ|+|τ |

∑
i1...ip

δiσ(1)iτ(1) . . . δiσ(p)iτ(p) = n|στ−1|−|σ|−|τ |

(Mσ ⊗M τ )(Λ2) =
1

n|σ|+|τ |

∑
i1...ip

δi1iστ(1)
. . . δipiστ(p)

= n|στ |−|σ|−|τ |

(Mσ ⊗M τ )(Λ3) =
1

n|σ|+|τ |

∑
i1...ip

∑
j1...jp

δi1iσ(1)
δj1jτ(1) . . . δipiσ(p)

δjpjτ(p) = 1

(Mσ ⊗M τ )(Λ4) =
1

n|σ|+|τ |

∑
i1...ip

δi1iσ(1)iτ(1) . . . δipiσ(p)iτ(p) = n|σ∧τ |−|σ|−|τ |

By using now the results in Proposition 12.15, this gives the result. □

Summarizing, the partitions π ∈ Peven(2, 2) provide us with some concrete input for
Theorem 12.14. The point now is that, when using this input, we obtain the main known
computations for the block-modified Wishart matrices, from [5], [23], [24], [67]:

Theorem 12.17. The asymptotic distribution results for the block-modified Wishart
matrices coming from the partitions π1, π2, π3, π4 ∈ Peven(2, 2) are as follows:

(1) Marchenko-Pastur: 1
d
W ∼ πt, where t = m/n.

(2) Aubrun type: 1
d
(id⊗ t)W ∼ πν, with ν = m(n−1)

2
δ−1 +

m(n+1)
2

δ1.
(3) Collins-Nechita one: n(id⊗ tr(.)1)W ∼ πt, where t = mn.
(4) Collins-Nechita two: 1

d
(id⊗ (.)δ)W ∼ πm.

Proof. All these results follow from Theorem 12.14, with the maps φ1, φ2, φ3, φ4 in
Proposition 12.16 producing the 4 matrices in the statement, modulo some rescalings,
and with the computation of the corresponding distributions being as follows:

(1) Here Λ =
∑

ac eac ⊗ eac, and so Λ = nP , where P is the rank one projection on∑
a ea ⊗ ea ∈ Cn ⊗ Cn. Thus we have the following formula, which gives the result:

ρ =
n2 − 1

n2
δ0 +

1

n2
δn

(2) Here Λ =
∑

ac eac ⊗ eca is the flip operator, Λ(ec ⊗ ea) = ea ⊗ ec. Thus ρ =
n−1
2n
δ−1 +

n+1
2n
δ1, and so we have the following formula, which gives the result:

mnρ =
m(n− 1)

2
δ−1 +

m(n+ 1)

2
δ1

(3) Here Λ =
∑

ab eaa ⊗ ebb is the identity matrix, Λ = 1. Thus in this case we have

the following formula, which gives πmnρ = πmn, and so nW̃ ∼ πmn, as claimed:

ρ = δ1
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(4) Here Λ =
∑

a eaa ⊗ eaa is the orthogonal projection on span(ea ⊗ ea) ⊂ Cn ⊗ Cn.
Thus we have the following formula, which gives the result:

ρ =
n− 1

n
δ0 +

1

n
δ1

Summarizing, we have proved all the assertions in the statement. □

12d. Further results

We develop now some general theory, for the partitions π ∈ Peven(2s, 2s), with s ∈ N.
Let us begin with a reformulation of Definition 12.6, in terms of square matrices:

Proposition 12.18. Given π ∈ P (2s, 2s), the square matrix Λπ ∈ Mn(C) ⊗Mn(C)
associated to the linear map φπ :Mn(C) →Mn(C), with n = N s, is given by:

(Λπ)a1...as,b1...bs,c1...cs,d1...ds = δπ

(
a1 . . . as c1 . . . cs
b1 . . . bs d1 . . . ds

)
In addition, we have Λ∗

π = Λπ◦, where π → π◦ is the blockwise middle symmetry.

Proof. The formula for Λπ follows from the formula of φπ from Definition 12.6, by
using our standard convention Λab,cd = φ(eac)bd. Regarding now the second assertion,
observe that with π → π◦ being as above, for any multi-indices a, b, c, d we have:

δπ

(
c1 . . . cs a1 . . . as
d1 . . . ds b1 . . . bs

)
= δπ◦

(
a1 . . . as c1 . . . cs
b1 . . . bs d1 . . . ds

)
Since Λπ is real, we conclude we have the following formula:

(Λ∗
π)ab,cd = (Λπ)cd,ab = (Λπ◦)ab,cd

This being true for any a, b, c, d, we obtain Λ∗
π = Λπ◦ , as claimed. □

In order to compute now the generalized ∗-moments of Λπ, we first have:

Proposition 12.19. With π ∈ P (2s, 2s) and Λπ being as above, we have

(M e
σ ⊗M e

τ )(Λπ) =
1

n|σ|+|τ |

∑
i11...i

s
p

∑
j11 ...j

s
p

δπe1

(
i11 . . . is1 i1σ(1) . . . isσ(1)
j11 . . . js1 j1τ(1) . . . jsτ(1)

)
...

δπep

(
i1p . . . isp i1σ(p) . . . isσ(p)
j1p . . . jsp j1τ(p) . . . jsτ(p)

)
with the exponents e1, . . . , ep ∈ {1, ∗} at left corresponding to e1, . . . , ep ∈ {1, ◦} at right.
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Proof. In multi-index notation, the general formula for the generalized ∗-moments
for a tensor product square matrix Λ ∈Mn(C)⊗Mn(C), with n = N s, is:

(M e
σ ⊗M e

τ )(Λ) =
1

n|σ|+|τ |

∑
i11...i

s
p

∑
j11 ...j

s
p

Λe1
i11...i

s
1j

1
1 ...j

s
1 ,i

1
σ(1)

...is
σ(1)

j1
τ(1)

...js
τ(1)

...

Λ
ep
i1p...i

s
pj

1
p ...j

s
p,i

1
σ(p)

...is
σ(p)

j1
τ(p)

...js
τ(p)

By using now the formulae in Proposition 12.3 for the matrix entries of Λπ, and of its
adjoint matrix Λ∗

π = Λπ◦ , this gives the formula in the statement. □

As a conclusion, the quantities (M e
σ ⊗M e

τ )(Λπ) that we are interested in can be theo-
retically computed in terms of π, but the combinatorics is quite non-trivial. As explained
in [12], some simplifications appear in the symmetric case, π = π◦. Indeed, for such
partitions we can use the following decomposition result:

Proposition 12.20. Each symmetric π ∈ Peven(2s, 2s) has a finest symmetric decom-
position π = [π1, . . . , πR], with the components πt being of two types, as follows:

(1) Symmetric blocks of π. Such a block must have r + r matching upper legs and
v + v matching lower legs, with r + v > 0.

(2) Unions β ⊔ β◦ of asymmetric blocks of π. Here β must have r + u unmatching
upper legs and v + w unmatching lower legs, with r + u+ v + w > 0.

Proof. Consider indeed the block decomposition of our partition, π = [β1, . . . , βT ].
Then [β1, . . . , βT ] = [β◦

1 , . . . , β
◦
T ], so each block β ∈ π is either symmetric, β = β◦, or is

asymmetric, and disjoint from β◦, which must be a block of π too. The result follows. □

The idea will be that of decomposing over the components of π. First, we have:

Proposition 12.21. For the pairing η ∈ Peven(2s, 2s) having horizontal strings,

η =

[
a b c . . . a b c . . .
α β γ . . . α β γ . . .

]
we have (Mσ ⊗Mτ )(Λη) = 1, for any p ∈ N, and any σ, τ ∈ NC(p).

Proof. As a first observation, the result holds at s = 1, due to the computations in
the proof of Proposition 12.16. In general, by using Proposition 12.19, we obtain:

(Mσ ⊗Mτ )(Λη) =
1

n|σ|+|τ |

∑
i11...i

s
p

∑
j11 ...j

s
p

δi11i1σ(1)
. . . δis1isσ(1)

· δj11j1τ(1) . . . δjs1jsτ(1)

...

δi1pi1σ(p)
. . . δispisσ(p)

· δj1pj1τ(p) . . . δjspjsτ(p)
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By transposing the two p× s matrices of Kronecker symbols, we obtain:

(Mσ ⊗Mτ )(Λη) =
1

n|σ|+|τ |

∑
i11...i

1
p

∑
j11 ...j

1
p

δi11i1σ(1)
. . . δi1pi1σ(p)

· δj11j1τ(1) . . . δj1pj1τ(p)

...∑
is1...i

s
p

∑
js1 ...j

s
p

δis1isσ(1)
. . . δispisσ(p)

· δjs1jsτ(1) . . . δjspjsτ(p)

We can now perform all the sums, and we obtain in this way:

(Mσ ⊗Mτ )(Λη) =
1

n|σ|+|τ | (N
|σ|N |τ |)s = 1

Thus, the formula in the statement holds indeed. □

We can now perform the decomposition over the components, as follows:

Theorem 12.22. Assuming that π ∈ Peven(2s, 2s) is symmetric, π = π◦, we have

(Mσ ⊗Mτ )(Λπ) =
R∏
t=1

(Mσ ⊗Mτ )(Λπt)

whenever π = [π1, . . . , πR] is a decomposition into symmetric subpartitions, which each πt
being completed with horizontal strings, coming from the standard pairing η.

Proof. We use the general formula in Proposition 12.19. In the symmetric case the
various ex exponents dissapear, and we can write the formula there as follows:

(Mσ ⊗Mτ )(Λπ) =
1

n|σ|+|τ |#

{
i, j
∣∣∣ ker(i1x . . . isx i1σ(x) . . . isσ(x)

j1x . . . jsx j1τ(x) . . . jsτ(x)

)
≤ π,∀x

}
The point now is that in this formula, the number of double arrays [ij] that we are

counting naturally decomposes over the subpartitions πt. Thus, we have a formula of the
following type, with K being a certain normalization constant:

(Mσ ⊗Mτ )(Λπ) = K

R∏
t=1

(Mσ ⊗Mτ )(Λπt)

Regarding now the precise value of K, our claim is that this is given by:

K =
n(|σ|+|τ |)R

n|σ|+|τ | · 1

n(|σ|+|τ |)(R−1)
= 1

Indeed, the fraction on the left comes from the standard 1
n|σ|+|τ | normalizations of all

the (Mσ ⊗Mτ )(Λ) quantities involved. As for the term on the right, this comes from the
contribution of the horizontal strings, which altogether contribute as the strings of the
standard pairing η ∈ Peven(2s, 2s), counted R − 1 times. But, according to Proposition
12.21, the strings of η contribute with a n|σ|+|τ | factor, and this gives the result. □
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Summarizing, in the easy case we are led to the study of the partitions π ∈ Peven(2s, 2s)
which are symmetric, and we have so far a decomposition formula for them.

Let us keep building on the material developed above. Our purpose will be that of
converting Theorem 12.22 into an explicit formula, that we can use later on. For this, we
have to compute the contributions of the components. First, we have:

Proposition 12.23. For a symmetric partition π ∈ Peven(2s, 2s), consisting of one
symmetric block, completed with horizontal strings, we have

(Mσ ⊗Mτ )(Λπ) = N |λ|−r|σ|−v|τ |

where λ ∈ P (p) is a partition constructed as follows,

λ =


σ ∧ τ if r, v ≥ 1

σ if r ≥ 1, v = 0

τ if r = 0, v ≥ 1

and where r/v is half of the number of upper/lower legs of the symmetric block.

Proof. Let us denote by a1, . . . , ar and b1, . . . , bv the upper and lower legs of the
symmetric block, appearing at left, and by A1, . . . , As−r and B1, . . . , Bs−v the remaining
legs, appearing at left as well. With this convention, Proposition 12.19 gives:

(Mσ ⊗Mτ )(Λπ) =
1

n|σ|+|τ |

∑
i11...i

s
p

∑
j11 ...j

s
p

∏
x

δ
i
a1
x ...iarx i

a1
σ(x)

...iar
σ(x)

j
b1
x ...jbvx j

b1
τ(x)

...jbv
τ(x)

δ
i
A1
x i

A1
σ(x)

. . . . . . δ
i
As−r
x i

As−r
σ(x)

δ
j
B1
x j

B1
τ(x)

. . . . . . δ
j
Bs−v
x j

Bs−v
τ(x)

If we denote by k1, . . . , kp the common values of the indices affected by the long
Kronecker symbols, coming from the symmetric block, we have then:

(Mσ ⊗Mτ )(Λπ) =
1

n|σ|+|τ |

∑
k1...kp∑

i11...i
s
p

∏
x

δia1x ...iarx i
a1
σ(x)

...iar
σ(x)

kx
· δ

i
A1
x i

A1
σ(x)

. . . δ
i
As−r
x i

As−r
σ(x)∑

j11 ...j
s
p

∏
x

δ
j
b1
x ...jbvx j

b1
τ(x)

...jbv
τ(x)

kx
· δ

j
B1
x j

B1
τ(x)

. . . δ
j
Bs−v
x j

Bs−v
τ(x)

Let us compute now the contributions of the various i, j indices involved. If we regard
both i, j as being p× s arrays of indices, the situation is as follows:

– On the a1, . . . , ar columns of i, the equations are iaex = iaeσ(x) = kx for any e, x. Thus

when r ̸= 0 we must have ker k ≤ σ, in order to have solutions, and if this condition is
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satisfied, the solution is unique. As for the case r = 0, here there is no special condition
to be satisfied by k, and we have once again a unique solution.

– On the A1, . . . , As−r columns of i, the conditions on the indices are the “trivial”
ones, examined in the proof of Proposition 12.21. According to the computation there,
the total contribution coming from these indices is (N |σ|)s−r = N (s−r)|σ|.

– Regarding now j, the situation is similar, with a unique solution coming from the
b1, . . . , bv columns, provided that the condition ker k ≤ τ is satisfied at v ̸= 0, and with a
total N (s−v)|τ | contribution coming from the B1, . . . , Bs−v columns.

As a conclusion, in order to have solutions i, j, we are led to the condition ker k ≤ λ,
where λ ∈ {σ ∧ τ, σ, τ} is the partition constructed in the statement. Now by putting
everything together, we deduce that we have the following formula:

(Mσ ⊗Mτ )(Λπ) =
1

n|σ|+|τ |

∑
ker k≤λ

N (s−r)|σ|+(s−v)|τ |

= N−s|σ|−s|τ |N |λ|N (s−r)|σ|+(s−v)|τ |

= N |λ|−r|σ|−v|τ |

Thus, we have obtained the formula in the statement, and we are done. □

In the two-block case now, we have a similar result, as follows:

Proposition 12.24. For a symmetric partition π ∈ Peven(2s, 2s), consisting of a
symmetric union β ⊔ β◦ of two asymmetric blocks, completed with horizontal strings, we
have

(Mσ ⊗Mτ )(Λπ) = N |λ|−(r+u)|σ|−(v+w)|τ |

where r + u and v + w represent the number of upper and lower legs of β, and where
λ ∈ P (p) is a partition constructed according to the following table,

ru\vw 11 10 01 00

11 σ2 ∧ στ ∧ στ−1 σ2 ∧ στ−1 σ2 ∧ στ σ2

10 στ ∧ στ−1 στ−1 στ ∅
01 τσ ∧ τ 2 τσ τ−1σ ∅
00 τ 2 ∅ ∅ −

with the 1/0 indexing symbols standing for the positivity/nullness of the corresponding
variables r, u, v, w, and where ∅ denotes a formal partition, having 0 blocks.

Proof. Let us denote by a1, . . . , ar and c1, . . . , cu the upper legs of β, by b1, . . . , bv and
d1, . . . , dw the lower legs of β, and by A1, . . . , As−r−u and B1, . . . , Bs−v−w the remaining
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legs of π, not belonging to β ⊔ β◦. The formula in Proposition 12.19 gives:

(Mσ ⊗Mτ )(Λπ) =
1

n|σ|+|τ |

∑
i11...i

s
p

∑
j11 ...j

s
p

∏
x

δ
i
a1
x ...iarx i

c1
σ(x)

...icu
σ(x)

j
b1
x ...jbvx j

d1
τ(x)

...jdw
τ(x)

δ
i
c1
x ...icux i

a1
σ(x)

...iar
σ(x)

j
d1
x ...jdwx j

b1
τ(x)

...jbv
τ(x)

δ
i
A1
x i

A1
σ(x)

. . . . . . δ
i
As−r
x i

As−r−u
σ(x)

δ
j
B1
x j

B1
τ(x)

. . . . . . δ
j
Bs−v
x j

Bs−v−w
τ(x)

We have now two long Kronecker symbols, coming from β ⊔ β◦, and if we denote by
k1, . . . , kp and l1, . . . , lp the values of the indices affected by them, we obtain:

(Mσ ⊗Mτ )(Λπ) =
1

n|σ|+|τ |

∑
k1...kp

∑
l1...lp∑

i11...i
s
p

∏
x

δia1x ...iarx i
c1
σ(x)

...icu
σ(x)

kx
· δic1x ...icux i

a1
σ(x)

...iar
σ(x)

lx
· δ

i
A1
x i

A1
σ(x)

. . . δ
i
As−r−u
x i

As−r−u
σ(x)∑

j11 ...j
s
p

∏
x

δ
j
b1
x ...jbvx j

d1
τ(x)

...jdw
τ(x)

kx
· δ

j
d1
x ...jdwx j

b1
τ(x)

...jbv
τ(x)

lx
· δ

j
B1
x j

B1
τ(x)

. . . δ
j
Bs−v−w
x j

Bs−v−w
τ(x)

Let us compute now the contributions of the various i, j indices. On the a1, . . . , ar
and c1, . . . , cu columns of i, regarded as an p× s array, the equations are as follows:

iaex = i
cf
σ(x) = kx , i

cf
x = iaeσ(x) = lx

If we denote by ix the common value of the iaex indices, when e varies, and by Ix the
common value of the i

cf
x indices, when f varies, these equations simply become:

ix = Iσ(x) = kx , Ix = iσ(x) = lx

Thus we have 0 or 1 solutions. To be more precise, depending now on the positiv-
ity/nullness of the parameters r, u, we are led to 4 cases, as follows:

Case 11. Here r, u ≥ 1, and we must have kx = lσ(x), kσ(x) = lx.

Case 10. Here r ≥ 1, u = 0, and we must have kσ(x) = lx.

Case 01. Here r = 0, u ≥ 1, and we must have kx = lσ(x).

Case 00. Here r = u = 0, and there is no condition on k, l.

In what regards now the A1, . . . , As−r columns of i, the conditions on the indices
are the “trivial” ones, examined in the proof of Proposition 12.21. According to the
computation there, the total contribution coming from these indices is:

Ci = (N |σ|)s−r = N (s−r)|σ|
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The study for the j indices is similar, and we will only record here the final conclusions.
First, in what regards the b1, . . . , bv and d1, . . . , dw columns of j, the same discussion as
above applies, and we have once again 0 or 1 solutions, as follows:

Case 11’. Here v, w ≥ 1, and we must have kx = lτ(x), kτ(x) = lx.

Case 10’. Here v ≥ 1, w = 0, and we must have kτ(x) = lx.

Case 01’. Here v = 0, w ≥ 1, and we must have kx = lτ(x).

Case 00’. Here v = w = 0, and there is no condition on k, l.

As for the B1, . . . , Bs−v−w columns of j, the conditions on the indices here are “trivial”,
as in Proposition 8.21, and the total contribution coming from these indices is:

Cj = (N |τ |)s−v−w = N (s−v−w)|τ |

Let us put now everything together. First, we must merge the conditions on k, l found
in the cases 00-11 above with those found in the cases 00’-11’. There are 4 × 4 = 16
computations to be performed here, and the “generic” computation, corresponding to the
merger of case 11 with the case 11’, is as follows:

kx = lσ(x), kσ(x) = lx, kx = lτ(x), kτ(x) = lx

⇐⇒ lx = kσ(x), kx = lσ(x), kx = lτ(x), kx = lτ−1(x)

⇐⇒ lx = kσ(x), kx = kσ2(x) = kστ(x) = kστ−1(x)

Thus in this case l is uniquely determined by k, and k itself must satisfy:

ker k ≤ σ2 ∧ στ ∧ στ−1

We conclude that the total contribution of the k, l indices in this case is:

C11,11
kl = N |σ2∧στ∧στ−1|

In the remaining 15 cases the computations are similar, with some of the above 4 con-
ditions, that we started with, dissapearing. The conclusion is that the total contribution
of the k, l indices is as follows, with λ being the partition in the statement:

Ckl = N |λ|

With this result in hand, we can now finish our computation, as follows:

(Mσ ⊗Mτ )(Λπ) =
1

n|σ|+|τ |CklCiCj

= N |λ|−(r+u)|σ|−(v+w)|τ |

Thus, we have obtained the formula in the statement, and we are done. □

As a conclusion now to all this, we have the following result:
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Theorem 12.25. For a symmetric partition π ∈ Peven(2s, 2s), having only one com-
ponent, in the sense of Proposition 12.20, completed with horizontal strings, we have

(Mσ ⊗Mτ )(Λπ) = N |λ|−r|σ|−v|τ |

where λ ∈ P (p) is the partition constructed as in Proposition 12.23 and Proposition 12.24,
and where r/v is half of the total number of upper/lower legs of the component.

Proof. This follows indeed from Proposition 12.23 and Proposition 12.24. □

Generally speaking, the formula that we found in Theorem 12.25 does not lead to the
multiplicativity condition from Definition 12.11, and this due to the fact that the various
partitions λ ∈ Pp constructed in Proposition 12.24 have in general a quite complicated
combinatorics. To be more precise, we first have the following result:

Proposition 12.26. For a symmetric partition π ∈ Peven(2s, 2s) we have

(Mσ ⊗Mτ )(Λπ) = N f1+f2

where f1, f2 are respectively linear combinations of the following quantities:

(1) 1, |σ|, |τ |, |σ ∧ τ |, |στ |, |στ−1|, |τσ|, |τ−1σ|.
(2) |σ2|, |τ 2|, |σ2 ∧ στ |, |σ2 ∧ στ−1|, |τσ ∧ τ 2|, |στ ∧ στ−1|, |σ2 ∧ στ ∧ στ−1|.

Proof. This follows indeed by combining Theorem 12.22 and Theorem 12.25, with
concrete input from Proposition 12.23 and Proposition 12.24. □

In the above result, the partitions in (1) lead to the multiplicativity condition in
Definition 12.11, and so to compound free Poisson laws, via Theorem 12.14. However,
the partitions in (2) have a more complicated combinatorics, which does not fit with
Definition 12.11, nor with the finer multiplicativity notions introduced in [12].

Summarizing, in order to extend the 4 basic computations that we have, we must
fine-tune our formalism. A natural answer here comes from the following result:

Proposition 12.27. For a partition π ∈ P (2s, 2s), the following are equivalent:

(1) φπ is unital modulo scalars, i.e. φπ(1) = c1, with c ∈ C.
(2) [µπ] = µ, where µ ∈ P (0, 2s) is the pairing connecting {i} − {i + s}, and where

[µπ] ∈ P (0, 2s) is the partition obtained by putting µ on top of π.

In addition, these conditions are satisfied for the 4 partitions in Peven(2, 2).

Proof. We use the formula of φπ from Definition 12.6, namely:

φπ(ea1...as,c1...cs) =
∑
b1...bs

∑
d1...ds

δπ

(
a1 . . . as c1 . . . cs
b1 . . . bs d1 . . . ds

)
eb1...bs,d1...ds
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By summing over indices ai = ci, we obtain the following formula:

φπ(1) =
∑
a1...as

∑
b1...bs

∑
d1...ds

δπ

(
a1 . . . as a1 . . . as
b1 . . . bs d1 . . . ds

)
eb1...bs,d1...ds

Let us first find out when φπ(1) is diagonal. In order for this condition to hold, the
off-diagonal terms of φπ(1) must all vanish, and so we must have:

b ̸= d =⇒ δπ

(
a1 . . . as a1 . . . as
b1 . . . bs d1 . . . ds

)
= 0,∀a

Our claim is that for any π ∈ P (2s, 2s) we have the following formula:

sup
a1...as

δπ

(
a1 . . . as a1 . . . as
b1 . . . bs d1 . . . ds

)
= δ[µπ ]

(
b1 . . . bs d1 . . . ds

)
Indeed, each of the terms of the sup on the left are smaller than the quantity on the

right, so ≤ holds. Also, assuming δ[µπ ](bd) = 1, we can take a1, . . . , as to be the indices
appearing on the strings of µ, and we obtain the following formula:

δπ

(
a a
b d

)
= 1

Thus, we have equality. Now with this equality in hand, we conclude that we have:

φπ(1) = φπ(1)
δ

⇐⇒ δ[µπ ]
(
b1 . . . bs d1 . . . ds

)
= 0,∀b ̸= d

⇐⇒ δ[µπ ]
(
b1 . . . bs d1 . . . ds

)
≤ δµ

(
b1 . . . bs d1 . . . ds

)
,∀b, d

⇐⇒
[
µ
π

]
≤ µ

Let us investigate now when (1) holds. We already know that π must satisfy [µπ] ≤ µ,
and the remaining conditions, concerning the diagonal terms, are as follows:∑

a1...as

δπ

(
a1 . . . as a1 . . . as
b1 . . . bs b1 . . . bs

)
= c, ∀b

As a first observation, the quantity on the left is a decreasing function of λ = ker b.
Now in order for this decreasing function to be constant, we must have:∑

a1...as

δπ

(
a1 . . . as a1 . . . as
1 . . . s 1 . . . s

)
=
∑
a1...as

δπ

(
a1 . . . as a1 . . . as
1 . . . 1 1 . . . 1

)
We conclude that the condition [µπ] ≤ µ must be strengthened into [µπ] = µ, as claimed.

Finally, the last assertion is clear, by using either (1) or (2). □

In the symmetric case, π = π◦, we have the following result:
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Proposition 12.28. Given a partition π ∈ P (2s, 2s) which is symmetric, φπ is unital
modulo scalars precisely when its symmetric components are as follows,

(1) Symmetric blocks with v ≤ 1,
(2) Unions of asymmetric blocks with r + u = 0, v + w = 1,
(3) Unions of asymmetric blocks with r + u ≥ 1, v + w ≤ 1,

with the conventions from Proposition 12.20 for the values of r, u, v, w.

Proof. This follows from what we have, the idea being as follows:

– We know from Proposition 12.27 that the condition in the statement is equivalent
to [µπ] = µ, and we can see from this that π satisfies the condition if and only if all the
symmetric components of π satisfy the condition. Thus, we must simply check the validity
of [µπ] = µ for the partitions in Proposition 12.20, and this gives the result.

– To be more precise, for the 1-block components the study is trivial, and we are led
to (1). Regarding the 2-block components, in the case r+u = 0 we must have v+w = 1,
as stated in (2). Finally, assuming r + u ≥ 1, when constructing [µπ] all the legs on the
bottom will become connected, and so we must have v + w ≤ 1, as stated in (3). □

Summarizing, the condition that φπ is unital modulo scalars is a natural generalization
of what happens for the 4 basic partitions in Peven(2, 2), and in the symmetric case, we
have a good understanding of such partitions. However, the associated matrices Λπ still
fail to be multiplicative, and we must come up with a second condition, coming from:

Theorem 12.29. If π ∈ P (2s, 2s) is symmetric, the following are equivalent:

(1) The linear maps φπ, φπ∗ are both unital modulo scalars.
(2) The symmetric components have ≤ 2 upper legs, and ≤ 2 lower legs.
(3) The symmetric components appear as copies of the 4 elements of Peven(2, 2).

Proof. By applying the results in Proposition 12.28 to the partitions π, π∗, and by
merging these results, we conclude that the equivalence (1) ⇐⇒ (2) holds indeed. As
for the equivalence (2) ⇐⇒ (3), this is clear from definitions. □

Let us put now everything together. The idea will be that of using the partitions
found in Theorem 12.29 as an input for Proposition 12.26, and then for the general block-
modification machinery developed in the beginning of this chapter. We will need:

Proposition 12.30. The following functions φ : NC(p) × NC(p) → R are multi-
plicative, in the sense that they satisfy the condition φ(σ, γ) = φ(σ, σ):

(1) φ(σ, τ) = |τσ| − |τ |.
(2) φ(σ, τ) = |τ−1σ| − |τ |.

Proof. This follows from some standard combinatorics, the idea being as follows:
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(1) We can use here the well-known fact, explained in chapter 11, that the numbers
|γσ| − 1 and |σ2| − |σ| are equal, both counting the number of blocks of σ having even
size. Thus we have the following computation, which gives the result:

φ1(σ, γ) = |γσ| − 1 = |σ2| − |σ| = φ1(σ, σ)

(2) Here we can use the well-known formula |σγ−1| − 1 = p − |σ|, and the fact that
σγ−1, γ−1σ have the same cycle structure as the left and right Kreweras complements of
σ, and so have the same number of blocks. Thus we have the following computation:

φ2(σ, γ) = |γ−1σ| − 1 = p− |σ| = φ2(σ, σ)

But this gives the second formula in the statement, and we are done. □

We can now formulate our main multiplicativity result, as follows:

Proposition 12.31. Assuming that π ∈ Peven(2s, 2s) is symmetric, π = π◦, and is
such that φπ, φπ∗ are unital modulo scalars, we have a formula of the following type:

(Mσ ⊗Mτ )(Λπ) = Na+b|σ|+c|τ |+d|σ∧τ |+e|στ |+f |στ−1|+g|τσ|+h|τ−1σ|

Moreover, the square matrix Λπ is multiplicative, in the sense of Definition 12.11.

Proof. The first assertion follows from Proposition 12.26. Indeed, according to the
various results in Theorem 12.29, the list of partitions appearing in Proposition 12.26 (2)
dissapears in the case where both φπ, φπ∗ are unital modulo scalars, and this gives the
result. As for the second assertion, this follows from the formula in the statement, and
from the various results in Proposition 12.15 and Proposition 12.30. □

As a main consequence, Theorem 12.14 applies, and gives:

Theorem 12.32. Given a partition π ∈ Peven(2s, 2s) which is symmetric, π = π◦, and
which is such that φπ, φπ∗ are unital modulo scalars, for the corresponding block-modified

Wishart matrix W̃ = (id⊗ φπ)W we have the asymptotic convergence formula

mW̃ ∼ πmnρ

in ∗-moments, in the d→ ∞ limit, where ρ = law(Λπ).

Proof. This follows by putting together the results that we have. Indeed, due to
Proposition 12.31, Theorem 12.14 applies, and gives the convergence result. □

Summarizing, we have now an explicit block-modification machinery, valid for certain
suitable partitions π ∈ Peven(2s, 2s), which improves the previous theory from [12].

As a conclusion to all this, the block modification of the complex Wishart matrices
leads, somehow out of nothing, to a whole new world, populated by beasts such as the
R-transform, the modified Marchenko-Pastur laws, and many more. Looks like we have
opened the Pandora box. We will see however later, in Part IV, that this whole new
world, called free probability, is in fact not that much different from ours.
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12e. Exercises

Exercises:

Exercise 12.33.

Exercise 12.34.

Exercise 12.35.

Exercise 12.36.

Exercise 12.37.

Exercise 12.38.

Exercise 12.39.

Exercise 12.40.

Bonus exercise.
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13a.

13b.

13c.

13d.

13e. Exercises

Exercises:

Exercise 13.1.

Exercise 13.2.

Exercise 13.3.

Exercise 13.4.

Exercise 13.5.

Exercise 13.6.

Exercise 13.7.

Exercise 13.8.

Bonus exercise.
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Free probability

14a.

14b.

14c.

14d.

14e. Exercises

Exercises:

Exercise 14.1.

Exercise 14.2.

Exercise 14.3.

Exercise 14.4.

Exercise 14.5.

Exercise 14.6.

Exercise 14.7.

Exercise 14.8.

Bonus exercise.
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Geometric aspects

15a.

15b.

15c.

15d.

15e. Exercises

Exercises:

Exercise 15.1.

Exercise 15.2.

Exercise 15.3.

Exercise 15.4.

Exercise 15.5.

Exercise 15.6.

Exercise 15.7.

Exercise 15.8.

Bonus exercise.
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CHAPTER 16

Quantum graphs

16a.

16b.

16c.

16d.

16e. Exercises

Congratulations for having read this book, and no exercises for this final chapter.
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