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Idea

There is no free RN , or free CN . We have quadruplets (S ,T ,U,K )
consisting of a sphere, torus, unitary group and reflection group:

S //

�� ��

Too

����
U

OO ??

// Koo

__ OO

Such quadruplets can be axiomatized. There are 4 main examples
of geometries in this sense, namely those of RN , CN , RN

+, CN
+.



Axioms

A quadruplet (S ,T ,U,K ), between classical real and free complex,

RN < (S ,T ,U,K ) < CN
+

produces a noncommutative geometry when

S = SU
S ∩ T+

N = T = K ∩ T+
N

G+(S) = < ON ,T > = U
G+(T ) ∩ K+

N = U ∩ K+
N = K

up to the standard equivalence relation for algebraic manifolds.



Plan

We will complete the basic 4-diagram into a 9-diagram:

RN
+

// TRN
+

// CN
+

RN
∗

OO

// TRN
∗

OO

// CN
∗

OO

RN

OO

// TRN

OO

// CN

OO

Then we will discuss classification results, and extensions.



Half-liberation 1/4

Question. Is there a "standard" geometry RN ⊂ RN
∗ ⊂ RN

+?

Theorem. The algebraic manifold S (k) ⊂ SN−1
R,+ obtained via the

relations a1 . . . ak = ak . . . a1 is as follows:
(1) At k = 1 we have S (k) = SN−1

R,+ .

(2) At k = 2, 4, 6, . . . we have S (k) = SN−1
R .

(3) At k = 3, 5, 7, . . . we have S (k) = S (3).

Definition. We define the half-classical sphere via the formula

C (SN−1
R,∗ ) = C (SN−1

R,+ )
/〈

abc = cba
〉

and call the relations abc = cba half-commutation relations.



Half-liberation 2/4

Definition. We define the real half-classical quadruplet

(SN−1
R,∗ ,T

∗
N ,O

∗
N ,H

∗
N)

by imposing abc = cba to the coordinates. We define as well

(SN−1
C,∗ ,T

∗
N ,U

∗
N ,K

∗
N)

by imposing abc = cba to the coordinates, and their adjoints.

=⇒ To do: find tools for studying these objects, check our NCG
axioms for them, establish some further uniqueness results.



Half-liberation 3/4

Theorem. The sphere SN−1
R,∗ has the following properties:

(1) PSN−1
R,∗ is classical, equal to PN−1

C .

(2) SN−1
R,∗ ⊂ SN−1

R,+ appears as the affine lift of PN−1
C .

(3) We have a matrix model C (SN−1
R,∗ ) ⊂ M2(C (SN−1

C )).

(4) Similar results hold for the subspaces X ⊂ SN−1
R,∗ .

Proof. (1) Here ⊂ is clear, because abc = aba implies [ab, cd ] = 0,
and ⊃ follows by using the model in (3), namely:

xi =

(
0 zi
z̄i 0

)
(2) and the faithfulness claim in (3) are related, and follow from
some algebra. As for (4), this is something more technical.



Half-liberation 4/4

Theorem. We have full results regarding SN−1
R,∗ ,T

∗
N ,O

∗
N ,H

∗
N , and

complex analogues as well, regarding SN−1
C,∗ ,T

∗
N ,U

∗
N ,K

∗
N .

Theorem. We have noncommutative geometries, as follows:

RN
+

// CN
+

RN
∗

OO

// CN
∗

OO

RN

OO

// CN

OO

Remark. It is possible to prove that O∗N is the unique intermediate
easy quantum group ON ⊂ G ⊂ O+

N . More on this later.



Hybrid geometries 1/4

An intermediate geometry RN ⊂ X ⊂ CN is given by a quadruplet
(S ,T ,U,K ), whose components are subject to:

SN−1
R ⊂ S ⊂ SN−1

C

TN ⊂ T ⊂ TN

ON ⊂ U ⊂ UN

HN ⊂ K ⊂ KN

There are many solutions here, even under strong axioms, such as
easiness. We will discuss here the "standard" solution.



Hybrid geometries 2/4

Theorem. We have an intermediate sphere as follows,

SN−1
R ⊂ TSN−1

R ⊂ SN−1
C

which appears as the affine lift of PN−1
R , inside SN−1

C .

Theorem. More generally, we have a quadruplet as follows,

(TSN−1
R ,TTN ,TON ,THN)

which appears in a similar way, by lifting.

Theorem. This quadruplet satisfies our NCG axioms.

=⇒ A priori (ZrS
N−1
R ,ZrTN ,ZrON ,ZrHN) are solutions too.



Hybrid geometries 3/4

Theorem. We have as well half-classical and free quadruplets,

(TSN−1
R,∗ ,TT

∗
N ,TO∗N ,TH∗N)

(TSN−1
R,+ ,TT+

N ,TO
+
N ,TH

+
N )

obtained via the relations ab∗ = a∗b.

Theorem. All the above hybrid quantum groups, namely

TON ,TO∗N ,TO
+
N , THN ,TH∗N ,TH

+
N

are easy, appearing from the partition implementing ab∗ = a∗b.

Theorem. The hybrid quadruplets satisfy our NCG axioms.



Hybrid geometries 4/4

Theorem. We have noncommutative geometries as follows:

RN
+

// TRN
+

// CN
+

RN
∗

OO

// TRN
∗

OO

// CN
∗

OO

RN

OO

// TRN

OO

// CN

OO

Proof. This follows by putting together what we have.



Classification 1/4

Definition. A geometry coming from a quadruplet (S ,T ,U,K ) is
called easy when both U,K are easy, and

U = {ON ,K}

with the operation on the right being the easy generation operation.

Remark. It is known that if G ,H are easy then we have

< G ,H >⊂< G ,H >′⊂ {G ,H}

and both these inclusions are conjectured to be isomorphisms.



Classification 2/4

Theorem. An easy geometry is determined by a pair (D,E ) of
categories of partitions, which must be as follows,

NC2 ⊂ D ⊂ P2

NCeven ⊂ E ⊂ Peven

and which are subject to the following conditions,

D = E ∩ P2

E =< D,NCeven >

and to the usual axioms for the associated quadruplet (S ,T ,U,K ),
where U,K are the easy quantum groups associated to D,E .

Proof. The conditions come from U = {ON ,K}, K = U ∩ K+
N .



Classification 3/4

Remark. In the context of an easy geometry, we have:

C (U) = C (U+
N )
/〈

Tπ ∈ Hom(u⊗k , u⊗l)
∣∣∣∀k , l ,∀T ∈ D(k , l)

〉
C (K ) = C (K+

N )
/〈

Tπ ∈ Hom(u⊗k , u⊗l)
∣∣∣∀k , l ,∀T ∈ D(k , l)

〉
We have as well the following formula, for the dual of the torus:

Γ = FN

/〈
gi1 . . . gik = gj1 . . . gjl

∣∣∣∃π ∈ D(k, l), δπ

(
i
j

)
6= 0
〉

As for the sphere, here the situation is a bit more complicated.



Classification 4/4

Theorem. The easy geometries are as follows:
(1) Real case: the 3 geometries that we have are unique.
(2) Classical case: uniqueness again, under an extra axiom.
(3) Other "pure" cases: uniqueness, under an extra axiom.
(4) In general: uniqueness, under an extra “slicing” axiom.

Proof. In terms of the category of pairings NC2 ⊂ D ⊂ P2, the
conditions D = E ∩ P2, E =< D,NCeven > reformulate as:

D =< D,NCeven > ∩P2

But this equation can be solved by using the known classification
results for easy quantum groups, and related techniques.



Monomial spheres 1/2

Reminder. We have seen that the abstract construction

C (S (k)) = C (SN−1
R,+ )

/〈
a1 . . . ak = ak . . . a1

〉
produces in practice only 3 spheres, SN−1

R ⊂ SN−1
R,∗ ⊂ SN−1

R,+ .

Definition. A monomial sphere is a sphere S ⊂ SN−1
C,+ obtained via

xe1i1 . . . x
ek
ik

= x f1iσ(1)
. . . x fkiσ(k)

, ∀(i1, . . . , ik) ∈ {1, . . . ,N}k

with σ ∈ Sk , and with er , fr ∈ {1, ∗} being exponents.



Monomial spheres 2/2

Theorem. In the real case, the only monomial spheres are:

SN−1
R ⊂ SN−1

R,∗ ⊂ SN−1
R,+

Proof. The idea is that the real monomial spheres are the subsets
S ⊂ SN−1

R,+ obtained via relations of the form

xi1 . . . xik = xiσ(1) . . . xiσ(k)
, ∀(i1, . . . , ik) ∈ {1, . . . ,N}k

associated to certain elements σ ∈ Gk , where G = (Gk) is a filtered
subgroup of S∞ = (Sk). But such groups can be classified.

=⇒ The complex analogue of this is not known yet.



Projective spaces 1/2

Theorem. The projective spaces of our 9 geometries collapse to

PN−1
+

// PN−1
+

// PN−1
+

PN−1
C

//

OO

PN−1
C

//

OO

PN−1
C

OO

PN−1
R

//

OO

PN−1
R

//

OO

PN−1
C

OO

where PN−1
+ is the free projective space, PN−1

R,+ = PN−1
C,+ .

=⇒ Interesting trichotomy here, "real, complex, free".



Projective spaces 2/2

Definition. A monomial space is a subset P ⊂ PN−1
+ obtained via

pi1i2 . . . pik−1ik = piσ(1)iσ(2) . . . piσ(k−1)iσ(k)
, ∀i ∈ {1, . . . ,N}k

with σ ranging over a subset of
⋃

k∈2N Sk , stable under σ → |σ|.

Theorem. We have only 3 monomial projective spaces, namely:

PN−1
R ⊂ PN−1

C ⊂ PN−1
+

=⇒ How to axiomatize the quadruplets (P,PT ,PU,PK )?



Twisting

By Schur-Weyl twisting we obtain potential geometries as follows,

RN
+

// TRN
+

// CN
+

R̄N
∗

OO

// TR̄N
∗

OO

// C̄N
∗

OO

R̄N

OO

// TR̄N

OO

// C̄N

OO

but the axioms must be fine-tuned, e.g. due to QISO problems.



Intersections

An interesting problem is that of intersecting the twisted and
untwisted geometries. There are 9× 9 = 81 cases here.

In the real case we only have 3× 3 = 9 cases. The spheres are
non-smooth, "polygonal", and the QISO groups are

ON
// O∗N

// O+
N

HN
//

OO

H
[∞]
N

//

OO

Ō∗N

OO

H+
N

//

OO

HN
//

OO

ŌN

OO

where H∗N ⊂ H
[∞]
N ⊂ H+

N is the standard higher liberation of HN .



Other extensions

Besides twisting, and taking intersections, we have:

(1) Super-easiness.

(2) Partition quantum groups.

(3) Other easiness-related theories.

(4) Other types of noncomutative spheres.



Conclusion

We have 9 main examples of geometries, as follows:

RN
+

// TRN
+

// CN
+

RN
∗

OO

// TRN
∗

OO

// CN
∗

OO

RN

OO

// TRN

OO

// CN

OO

The problem now is that of "developing" these geometries.


