Basic noncommutative geometries

Teo Banica

"Introduction to noncommutative geometry", 4/6

07/20



ldea

There is no free RV, or free CV. We have quadruplets (S, T, U, K)
consisting of a sphere, torus, unitary group and reflection group:

S<~— T

V) K

Such quadruplets can be axiomatized. There are 4 main examples
of geometries in this sense, namely those of RV, CV, Rﬂ\r’, (Cﬂ\r’.



Axioms

A quadruplet (S, T, U, K), between classical real and free complex,
RY < (5, T,U,K) < C¥

produces a noncommutative geometry when

S = Su
SNTy = T = KNTy
G*(S) = <On, T> = u
GHT)NKYy = UNKy = K

up to the standard equivalence relation for algebraic manifolds.



Plan

We will complete the basic 4-diagram into a 9-diagram:

RN TRY cl
RN — > TRV cN
RN TRN cN

Then we will discuss classification results, and extensions.



Half-liberation 1/4

Question. Is there a "standard" geometry RV ¢ RN ¢ ]Rﬂ\r’?

Theorem. The algebraic manifold S(%) SHQ’J_FI obtained via the
relations a1 ...ax = ax...ay is as follows:

(1) At k = 1 we have S() = Sﬁfll.
(2) At k =2,4.,6,... we have S(K) = S@I_l.
(3) At k =3,5,7,... we have S(X) = SB).

Definition. We define the half-classical sphere via the formula
C(S1) = C(S¢5") / (abe = cba)

and call the relations abc = cba half-commutation relations.



Half-liberation 2/4

Definition. We define the real half-classical quadruplet
(Se.* Tws Ons Hiy)

by imposing abc = cba to the coordinates. We define as well
(S¢. 1 Th Un: Ki)

by imposing abc = cha to the coordinates, and their adjoints.

= To do: find tools for studying these objects, check our NCG
axioms for them, establish some further uniqueness results.



Half-liberation 3/4

Theorem. The sphere Sﬁ{:l has the following properties:
(1) PS@’;l is classical, equal to Pg_l.

(2) 5@’7;1 C 5@’711 appears as the affine lift of Pg’l.

(3) We have a matrix model C(S@{;l) C My(C(SE1Y).
(4)

4) Similar results hold for the subspaces X C 5@/;1.

Proof. (1) Here C is clear, because abc = aba implies [ab, cd] = 0,
and D follows by using the model in (3), namely:

o 0 z
X=\z o0

(2) and the faithfulness claim in (3) are related, and follow from
some algebra. As for (4), this is something more technical.



Half-liberation 4/4

Theorem. We have full results regarding Sﬂ’g;l, Tyx, Op, Hyy, and
complex analogues as well, regarding S* .1, T%,, Uz, K.

Theorem. We have noncommutative geometries, as follows:

RN cl
RN CN
RN CN

Remark. It is possible to prove that Oy, is the unique intermediate
easy quantum group Oy C G C O,J\?. More on this later.



Hybrid geometries 1/4

An intermediate geometry RV © X c CV is given by a quadruplet
(S, T,U,K), whose components are subject to:

sptcscsitt
Ty CTCTy
Oy C U C Uy
Hy € K C Ky

There are many solutions here, even under strong axioms, such as
easiness. We will discuss here the "standard" solution.



Hybrid geometries 2/4

Theorem. We have an intermediate sphere as follows,
N—1 N—1 N—1
Sp T C TSy " C S¢

which appears as the affine lift of Pﬂ’{yfl, inside 5(’CV*1.

Theorem. More generally, we have a quadruplet as follows,
(TSR, TTy, TOn, THy)

which appears in a similar way, by lifting.
Theorem. This quadruplet satisfies our NCG axioms.

= A priori (Z, S, 2, Tn, %, On, Z, Hy) are solutions too.



Hybrid geometries 3/4
Theorem. We have as well half-classical and free quadruplets,
(TS, TTR. TOR, THy)

(TSE Y, TTS, TOR, THyY)

obtained via the relations ab* = a*bh.

Theorem. All the above hybrid quantum groups, namely
TOn,TO,TOY . THy, THy, THy;

are easy, appearing from the partition implementing ab* = a*b.

Theorem. The hybrid quadruplets satisfy our NCG axioms.



Hybrid geometries 4 /4

Theorem. We have noncommutative geometries as follows:

RY TRY cl
RN — > TRV cN
RN TRN CcN

Proof. This follows by putting together what we have.



Classification 1/4

Definition. A geometry coming from a quadruplet (S, T, U, K) is
called easy when both U, K are easy, and

U= {ON>K}

with the operation on the right being the easy generation operation.

Remark. It is known that if G, H are easy then we have
< G,H>Cc< G,H>'Cc {G,H}

and both these inclusions are conjectured to be isomorphisms.



Classification 2/4

Theorem. An easy geometry is determined by a pair (D, E) of
categories of partitions, which must be as follows,

NCyC DC P,

Nceven CEC Peven

and which are subject to the following conditions,
D=EnNnP

E =< D,NCeyen >

and to the usual axioms for the associated quadruplet (S, T, U, K),
where U, K are the easy quantum groups associated to D, E.

Proof. The conditions come from U = {On, K}, K = UN K.



Classification 3/4

Remark. In the context of an easy geometry, we have:

C(U) = C(U})/ <T7r e Hom(u®k, u®’)‘Vk, INT e D(k,l)>

C(K) = C(K})/ <T7r € Hom(u®*, u®')‘Vk, ILYT € D(k, /)>

We have as well the following formula, for the dual of the torus:

r:FN/<gf1--g =g+ &3 € D(k. ). <>#0>

As for the sphere, here the situation is a bit more complicated.



Classification 4/4

Theorem. The easy geometries are as follows:

(1) Real case: the 3 geometries that we have are unique.
(2) Classical case: uniqueness again, under an extra axiom.
(3) Other "pure" cases: uniqueness, under an extra axiom.
(4)

4) In general: uniqueness, under an extra “slicing” axiom.

Proof. In terms of the category of pairings NC> C D C P», the
conditions D = EN Py, E =< D, NCeven > reformulate as:

D =< D7NCeven > mP2

But this equation can be solved by using the known classification
results for easy quantum groups, and related techniques.



Monomial spheres 1/2

Reminder. We have seen that the abstract construction
c(sWy = C(sﬂ’g{;l)/<al Ak = a. ..a1>

produces in practice only 3 spheres, Sﬂgfl C S{g’:l - 5@’_7_1.

Definition. A monomial sphere is a sphere S C Sévjrl obtained via

€1 €k __ fl fk . . k
Xih o X=Xt X V(i, ... ix) €{1,...,N}

with o € Si, and with e, f, € {1, x} being exponents.



Monomial spheres 2/2

Theorem. In the real case, the only monomial spheres are:

N—-1 N—-1 N—-1
S CSg,. CSp

Proof. The idea is that the real monomial spheres are the subsets
Sc SHQ’jrl obtained via relations of the form
V(i ... i) € {1,..., N}

Xip « . Xj

K — Xiy

@ Xi(f(k)’

associated to certain elements o € Gy, where G = (Gy) is a filtered
subgroup of Soo = (Sk). But such groups can be classified.

= The complex analogue of this is not known yet.



Projective spaces 1/2

Theorem. The projective spaces of our 9 geometries collapse to

N-1 N-1 N-1
Py ——P T ——F

PN—l PN—l PN—l

N—-1 N—-1 N—-1
PR PR PC

where PV~ is the free projective space, Pﬂgf = P(,C\{;l-

— Interesting trichotomy here, "real, complex, free".



Projective spaces 2/2

Definition. A monomial space is a subset P C PJ’FV_1 obtained via

: k
pi1i2 R pik_lik = pl‘a(l)ia(2) ct pio(kfl)ia(k)a v’ 6 {17 ct N}

with o ranging over a subset of | J; cox Sk, stable under o — |o].

Theorem. We have only 3 monomial projective spaces, namely:

N—1 N-1 N—1
Pr " CPr " CP!

= How to axiomatize the quadruplets (P, PT, PU, PK)?



Twisting

By Schur-Weyl twisting we obtain potential geometries as follows,

RN TRY cy
RY — TRV cy
RV TRV cN

but the axioms must be fine-tuned, e.g. due to QISO problems.



Intersections

An interesting problem is that of intersecting the twisted and
untwisted geometries. There are 9 x 9 = 81 cases here.

In the real case we only have 3 x 3 =9 cases. The spheres are
non-smooth, "polygonal®, and the QISO groups are

On 0, o

Hy; Hy On

where Hy, C H,[\(;o] C H,Jg is the standard higher liberation of Hy.



Other extensions

Besides twisting, and taking intersections, we have:
(1) Super-easiness.

(2) Partition quantum groups.

(3) Other easiness-related theories.

(4) Other types of noncomutative spheres.



Conclusion

We have 9 main examples of geometries, as follows:

RN TRY cy
RN — > TRV cN
RN TRV cN

The problem now is that of "developing" these geometries.



