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Abstract. The sphere SN−1
R has a half-liberated analogue SN−1

R,∗ , and a free analogue

SN−1
R,+ . This is a presentation of the construction and main properties of these noncom-

mutative spheres, SN−1
R ⊂ SN−1

R,∗ ⊂ SN−1
R,+ , and of their quantum isometry groups.
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Introduction

A recent discovery, from [7], [8], states that under the “strongest possible axioms”,
there are only three orthogonal quantum groups, ON ⊂ O∗N ⊂ O+

N . These quantum
groups correspond to three “main” noncommutative spheres, SN−1

R ⊂ SN−1
R,∗ ⊂ SN−1

R,+ ,
introduced and studied in [5], and in a number of subsequent papers.

We discuss here these constructions and results, by using a “sphere-first” approach,
which is perhaps more natural. All the needed preliminaries are included.

This is based on lecture notes from a minicourse given at the Summer school “Topolog-
ical quantum groups”, Bedlewo 2015. It is a pleasure to thank Uwe Franz, Adam Skalski
and Piotr So ltan for the invitation, and for the nice organization of the meeting.
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1. Noncommutative spheres

We adhere here to the general principle that “the noncommutative spaces are the ab-
stract duals of the operator algebras”. Our starting point will be:

Definition 1.1. A C∗-algebra is a complex algebra with unit, with an involution ∗ and a
norm ||.||, such that the Cauchy sequences converge, and such that ||aa∗|| = ||a||2.

The basic example is the matrix algebra MN(C), with involution (M∗)ij = M ji, and
with the norm ||M || = sup||x||=1 ||Mx||. More generally, we have as example B(H), the
algebra of bounded operators T : H → H on a Hilbert space H, with involution given by
< T ∗x, y >=< x, Ty >, and with norm ||T || = sup||x||=1 ||Tx||. The GNS theorem states
that any C∗-algebra appears as closed ∗-subalgebra of some B(H).

Another key example is C(X), the algebra of continuous functions on a compact space

X, with involution f ∗(x) = f(x), and with norm ||f || = supx∈X |f(x)|. The Gelfand
theorem states that any commutative C∗-algebra is of this form. To be more precise,
given a commutative C∗-algebra A, the underlying compact space X = Spec(A) is the
set of characters χ : A→ C, with topology making the evaluation maps continuous.

In view of Gelfand’s theorem, we can formulate:

Definition 1.2. The category of noncommutative compact spaces is the category of the
C∗-algebras, with the arrows reversed. Given a noncommutative compact space X, coming
from a C∗-algebra A, we write A = C(X), and X = Spec(A).

Observe that the category of usual compact spaces embeds into the category of non-
commutative compact spaces. More precisely, a compact space X corresponds to the
noncommutative space associated to the algebra A = C(X). In addition, in this situa-
tion, X can be recovered as a Gelfand spectrum, X = Spec(A).

Consider now the standard sphere, SN−1
R = {x ∈ RN |

∑
i x

2
i = 1}. In order to discuss

its noncommutative analogues, we must first understand the associated algebra C(SN−1
R ).

The result here, coming from the Gelfand theorem, is as follows:

Proposition 1.3. We have the presentation result

C(SN−1
R ) = C∗comm

(
x1, . . . , xN

∣∣∣xi = x∗i ,
∑
i

x2
i = 1

)
where by C∗comm we mean universal commutative C∗-algebra.

Proof. We have a morphism from right to left, which by the Stone-Weierstrass theorem is
surjective. In the other sense now, the universal algebra on the right being commutative,
by the Gelfand theorem it must be of the form C(X), for a certain compact space X. The
coordinate functions xi provide us with an embedding X ⊂ RN , and then the quadratic
condition

∑
i x

2
i = 1 shows that we have X ⊂ SN−1

R . Thus, we have as well a morphism
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from left to right. Since the two morphisms that we constructed map standard coordinates
to standard coordinates, they are inverse to each other, and we are done. �

The idea now is to replace the commutation relations ab = ba between the standard
coordinates on SN−1

R by some weaker relations. A first choice is that of using no relations
at all. A second choice, coming from the easy quantum group philosophy [7], is that of
using the “half-commutation” relations abc = cba. So, let us formulate:

Definition 1.4. Associated to any N ∈ N is the following universal C∗-algebra:

C(SN−1
R,+ ) = C∗

(
x1, . . . , xN

∣∣∣xi = x∗i ,
∑
i

x2
i = 1

)
The quotient of this algebra by the relations xixjxk = xkxjxi is denoted C(SN−1

R,∗ ).

Observe that the above two algebras are indeed well-defined, because the quadratic
relations

∑
i x

2
i = 1 show that we have ||xi|| ≤ 1, for any C∗-norm. Thus the biggest

C∗-norm is bounded, and the enveloping C∗-algebras are well-defined.
Given a noncommutative compact space X = Spec(A), its classical version Xclass, which

is a usual compact space, is by definition the Gelfand spectrum Xclass = Spec(A/I), where
I ⊂ A is the commutator ideal. With this convention, we have:

Proposition 1.5. We have inclusions of noncommutative compact spaces

SN−1
R ⊂ SN−1

R,∗ ⊂ SN−1
R,+

and SN−1
R is the classical version of both the spaces on the right.

Proof. Since the commutation relations ab = ba imply the half-commutation relations
abc = cba, we have quotient maps C(SN−1

R,+ ) → C(SN−1
R,∗ ) → C(SN−1

R ), which correspond
to inclusions as above. As for the last assertion, this follows from Proposition 1.3. �

As already mentioned, the definition of SN−1
R,∗ is quite tricky. Our claim is that, under

strong axioms, this sphere is the unique intermediate one SN−1
R ⊂ S ⊂ SN−1

R,+ . This will be
discussed later on, in section 2 below. For the moment, let us just record an elementary
result, which can serve as a temporary motivation for the study of our 3 spheres:

Proposition 1.6. The closed subspace S(k) ⊂ SN−1
R,+ obtained by imposing the relations

a1 . . . ak = ak . . . a1 to the standard coordinates of SN−1
R,+ is as follows:

(1) At k = 1 we have S(k) = SN−1
R,+ .

(2) At k = 2, 4, 6, . . . we have S(k) = SN−1
R .

(3) At k = 3, 5, 7, . . . we have S(k) = SN−1
R,∗ .

Proof. Since the relations ab = ba imply the relations a1 . . . ak = ak . . . a1 for k ≥ 2, we
have S(2) ⊂ S(k) for k ≥ 2. It is also elementary to check that the relations abc = cba
imply the relations a1 . . . ak = ak . . . a1 for k ≥ 3 odd, so S(3) ⊂ S(k) for k ≥ 3 odd.
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Our claim now is that we have S(k+2) ⊂ S(k), for any k ≥ 2. In order to prove this,
we must show that the relations a1 . . . ak+2 = ak+2 . . . a1 between x1, . . . , xN imply the
relations a1 . . . ak = ak . . . a1 between x1, . . . , xN . But this holds indeed, because:

xi1 . . . xik+2
= xik+2

. . . xi1 =⇒ xi1 . . . xikx
2
j = x2

jxik . . . xi1

=⇒
∑
j

xi1 . . . xikx
2
j =

∑
j

x2
jxik . . . xi1

=⇒ xi1 . . . xik = xik . . . xi1

Summing up, we have proved that we have inclusions S(2) ⊂ . . . ⊂ S(6) ⊂ S(4) ⊂ S(2)

and S(3) ⊂ . . . ⊂ S(7) ⊂ S(5) ⊂ S(3), and this gives the result. �

Given a closed subspace S ⊂ SN−1
R,+ , the associated “noncommutative cube” K ⊂ S is

obtained by setting C(K) = C(S)/ < x2
i = 1

N
>. As a basic example, for the usual sphere

S = SN−1
R we obtain the usual cube, K = {x ∈ RN |xi = ± 1√

N
}. Also, given a discrete

group Γ, we denote by Γ̂ the noncommutative space dual to A = C∗(Γ). We have:

Proposition 1.7. The noncommutative cubes associated to the 3 spheres are

SN−1
R ⊂ SN−1

R,∗ ⊂ SN−1
R,+

∪ ∪ ∪

ẐN2 ⊂ Ẑ◦N2 ⊂ Ẑ∗N2
where Z◦N2 =< g1, . . . , gN |g2

i = 1, gigjgk = gkgjgi >. All these inclusions are proper.

Proof. Let us first compute the noncommutative cube KN−1
R,+ associated to SN−1

R,+ . Since

the relations x2
i = 1

N
imply the quadratic condition

∑
i x

2
i = 1, we have:

C(KN−1
R,+ ) = C∗

(
x1, . . . , xN

∣∣∣xi = x∗i , x
2
i =

1

N

)
On the other hand, consider the group Z∗N2 =< g1, . . . , gN |g2

i = 1 >. Since gi = g−1
i ,

we have gi = g∗i in the corresponding group algebra, which is therefore given by:

C∗(Z∗N2 ) = C∗
(
g1, . . . , gN

∣∣∣gi = g∗i , g
2
i = 1

)
Thus we have an isomorphism C(KN−1

R,+ ) ' C∗(Z∗N2 ), given by xi = gi/
√
N , and at the

level of the correspoding noncommutative spaces we obtain KN−1
R,+ ' Ẑ∗N2 . This establishes

the inclusion on the right, and the other two vertical inclusions are now clear, too.

Finally, since ẐN2 ⊂ SN−1
R is proper, so are the other two vertical inclusions. Also,

since the quotient maps Z∗N2 → Z◦N2 → ZN2 are both proper, so are both the horizontal
inclusions on the bottom, and hence the horizontal inclusions on top as well. �
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The above occurrence of Z◦N2 is quite of interest. As a first observation, if h1, . . . , hN
are the standard generators of ZN , then we have a matrix model, as follows:

C∗(Z◦N2 )→M2(C∗(ZN)) : gi →
(

0 hi
h−1
i 0

)
Indeed, the matrices Gi on the right satisfy the relations Gi = G∗i , G

2
i = 1 and

GiGjGk = GkGjGi, which define the group algebra on the left.
The point now is that SN−1

R,∗ itself has a similar model, as follows:

Proposition 1.8. We have a morphism of C∗-algebras

C(SN−1
R,∗ )→M2(C(SN−1

C )) : xi →
(

0 zi
z̄i 0

)
where SN−1

C = {z ∈ CN |
∑

i |zi|2 = 1} is the unit complex sphere.

Proof. We have to prove that the matrices Xi on the right satisfy the defining relations
for SN−1

R,∗ . These matrices are indeed self-adjoint, and their squares sum up to 1:∑
i

X2
i =

∑
i

(
0 zi
z̄i 0

)2

=
∑
i

(
|zi|2 0

0 |zi|2
)

=

(
1 0
0 1

)
Regarding now the half-commutation relations, observe that we have:

XiXjXk =

(
0 zi
z̄i 0

)(
0 zj
z̄j 0

)(
0 zk
z̄k 0

)
=

(
0 ziz̄jzk

z̄izj z̄k 0

)
Since this quantity is symmetric in i, k, this gives the result. �

It is standard to prove that the above model of C∗(Z◦N2 ) is faithful. The same happens
for C(SN−1

R,∗ ), and we will prove this, after developing a number of useful tools.

We recall that PN−1
R is the space of lines in RN passing through the origin. We have

a quotient map SN−1
R → PN−1

R , which produces an embedding C(PN−1
R ) ⊂ C(SN−1

R ), and
the image of this embedding is the algebra generated by the variables pij = xixj.

In general now, based on this observation, we can formulate:

Definition 1.9. The projective version of S ⊂ SN−1
R,+ is the quotient space S → PS

determined by the fact that C(PS) ⊂ C(S) is the subalgebra generated by pij = xixj.

It follows from the above discussion that we have PSN−1
R = PN−1

R , and our goal now is
to compute the projective version of the remaining 2 spheres. As a first observation, the
projective version of SN−1

R,∗ is a classical space, because its coordinates commute:

abcd = cbad = cdab

We will prove that this space is the complex projective one, PSN−1
R,∗ = PN−1

C .

For this purpose, we will need a functional analytic description of PN−1
R , PN−1

C . The
result here, which is similar to the one in Proposition 1.3 above, is as follows:
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Proposition 1.10. We have presentation results as follows,

C(PN−1
C ) = C∗comm

(
(pij)i,j=1,...,N

∣∣∣p = p∗ = p2, T r(p) = 1
)

C(PN−1
R ) = C∗comm

(
(pij)i,j=1,...,N

∣∣∣p = p̄ = p∗ = p2, T r(p) = 1
)

where by C∗comm we mean as usual universal commutative C∗-algebra.

Proof. We use the fact that PN−1
C , PN−1

R are respectively the spaces of rank one projections
in MN(C),MN(R). With this picture in mind, the first formula is clear from the Gelfand
theorem. Also, since PN−1

R ⊂ PN−1
C appears by restricting attention to the matrices which

are real, the relation to be added is p = p̄, and this gives the second formula. �

The above result suggests the following definition:

Definition 1.11. Associated to any N ∈ N is the following universal algebra,

C(PN−1
+ ) = C∗

(
(pij)i,j=1,...,N

∣∣∣p = p∗ = p2, T r(p) = 1
)

whose abstract spectrum is called “free projective space”.

Observe that we have embeddings of noncommutative spaces PN−1
R ⊂ PN−1

C ⊂ PN−1
+ ,

and that the complex projective space PN−1
C is the classical version of PN−1

+ .
We have the following result, first established in [5]:

Theorem 1.12. The projective versions of the 3 spheres are given by

SN−1
R ⊂ SN−1

R,∗ ⊂ SN−1
R,+

↓ ↓ ↓

PN−1
R ⊂ PN−1

C ⊂ PN−1
+

where PN−1
+ is a certain noncommutative compact space, contained in PN−1

+ .

Proof. The assertion at left is true by definition. For the assertion at right, we have to
prove that the variables pij = xixj over the free sphere SN−1

R,+ satisfy the defining relations

for C(PN−1
+ ) from Definition 1.11, and the verification here goes as follows:

(p∗)ij = p∗ji = (xjxi)
∗ = xixj = pij

(p2)ij =
∑
k

pikpkj =
∑
k

xix
2
kxj = xixj = pij

Tr(p) =
∑
k

pkk =
∑
k

x2
k = 1

Regarding now the middle assertion, stating that we have PSN−1
R,∗ = PN−1

C :
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“⊂” follows from the relations abc = cba, which imply abcd = cbad = cbda. Indeed,
this shows that PSN−1

R,∗ is classical, and so PSN−1
R,∗ ⊂ (PN−1

+ )class = PN−1
C .

“⊃” follows by using the model in Proposition 1.8. Indeed, the representation there
maps pij → Pij = diag(ziz̄j, z̄izj), and so maps < pij >→< Pij >= C(PN−1

C ). �

Let us prove now that the matrix model in Proposition 1.8 is faithful. As a warm-up
here, we first prove the result in the group case. The statement, from [8], is:

Proposition 1.13. We have an embedding of C∗-algebras

C∗(Z◦N2 ) ⊂M2(C∗(ZN)) : gi →
(

0 hi
h−1
i 0

)
where h1, . . . , hN are the standard generators of ZN .

Proof. Consider the crossed product ZN o Z2, with the group Z2 =< τ > acting on ZN
via τ · x = x−1. Our claim is that we have a group embedding, as follows:

Z◦N2 ⊂ ZN o Z2 : gi → (hi, τ)

Indeed, the elements Gi = (hi, τ) are reflections, and satisfy abc = cba. Regarding now
the injectivity, the point here is that each word w in the kernel must be such that each gi
appears an equal number of times at odd and even positions in w. Thus, w = 1.

We therefore have an embedding C∗(Z◦N2 ) ⊂ C∗(ZN oZ2), and by composing with the
standard embedding C∗(ZN o Z2) ⊂M2(C∗(ZN)), the result follows. �

In the sphere case now, we have the following result, from [11]:

Theorem 1.14. We have an embedding of C∗-algebras

C(SN−1
R,∗ ) ⊂M2(C(SN−1

C )) : xi →
(

0 zi
z̄i 0

)
where SN−1

C = {z ∈ CN |
∑

i |zi|2 = 1} is the unit complex sphere.

Proof. As in the group case, this follows by using crossed products. To be more precise,
our first claim is that we have an embedding of C∗-algebras, as follows:

C(SN−1
R,∗ ) ⊂ C(SN−1

C ) o Z2 : xi → zi ⊗ τ
Indeed, the elements Xi = zi ⊗ τ are self-adjoint, satisfy abc = cba, and their squares

sum up to 1. Regarding now the injectivity, this follows from Theorem 1.12, which shows
that the morphism is injective on the subalgebra C(PN−1

C ). See [11].

Now observe that we have as well an embedding as follows, where f → f̃ is the auto-
morphism of C(SN−1

C ) induced by the conjugation of the coordinates, zi → z̄i:

C(SN−1
C ) o Z2 ⊂M2(C(SN−1

C )) : f ⊗ 1→
(
f 0

0 f̃

)
, f ⊗ τ →

(
0 f

f̃ 0

)
By composing with the embedding found above, the result follows. �
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2. Axiomatization, classification

In this section we axiomatize our three spheres, SN−1
R ⊂ SN−1

R,∗ ⊂ SN−1
R,+ . We already

know from Proposition 1.6 that these are exactly the closed subspaces S ⊂ SN−1
R,+ which can

be obtained by imposing relations of type a1 . . . ak = ak . . . a1 to the standard coordinates
of SN−1

R,+ . We will improve here this result, by using “arbitrary permutations”.
To be more precise, let us start with the following notion:

Definition 2.1. A monomial sphere is a subset S ⊂ SN−1
R,+ obtained via relations of type

xi1 . . . xik = xiσ(1) . . . xiσ(k) , ∀(i1, . . . , ik) ∈ {1, . . . , N}
k

with σ ∈ Sk being certain permutations, of variable size k ∈ N.

Observe that the basic 3 spheres are all monomial, with the permutations producing
SN−1
R , SN−1

R,∗ being the standard crossing and the half-liberated crossing:

◦ ◦

◦ ◦

◦ ◦ ◦

◦ ◦ ◦
Here, and in what follows, we agree to represent the permutations σ ∈ Sk by diagrams

between two rows of k points, acting by definition downwards.
Observe also that Proposition 1.6 reformulates as follows:

Proposition 2.2. The monomial spheres coming from mirroring permutations,

◦

◦

◦ ◦

◦ ◦

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
. . . . . .

are precisely the 3 main spheres, SN−1
R ⊂ SN−1

R,∗ ⊂ SN−1
R,+ .

Proof. This follows indeed from Proposition 1.6, because the relations a1 . . . ak = ak . . . a1

used there are precisely those coming from mirroring permutations. �

We will prove in what follows that the basic 3 spheres are the only monomial ones. For
this purpose, it is convenient to introduce the inductive limit S∞ =

⋃
k≥0 Sk, with the

inclusions Sk ⊂ Sk+1 being given by σ ∈ Sk =⇒ σ(k + 1) = k + 1. In terms of elements
of S∞, the definition of the monomial spheres reformulates as follows:

Proposition 2.3. The monomial spheres are the subsets S ⊂ SN−1
R,+ obtained via relations

xi1 . . . xik = xiσ(1) . . . xiσ(k) , ∀(i1, . . . , ik) ∈ {1, . . . , N}
k

associated to certain elements σ ∈ S∞, where k ∈ N is such that σ ∈ Sk.
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Proof. We must prove that the relations xi1 . . . xik = xiσ(1) . . . xiσ(k) are left unchanged

when replacing k → k + 1. But this follows from
∑

i x
2
i = 1, because:

xi1 . . . xikxik+1
= xiσ(1) . . . xiσ(k)xik+1

=⇒ xi1 . . . xikx
2
ik+1

= xiσ(1) . . . xiσ(k)x
2
ik+1

=⇒
∑
ik+1

xi1 . . . xikx
2
ik+1

=
∑
ik+1

xiσ(1) . . . xiσ(k)x
2
ik+1

=⇒ xi1 . . . xik = xiσ(1) . . . xiσ(k)

Thus we can indeed “simplify at right”, and this gives the result. �

In order to prove the uniqueness result, we use group theory methods. We call a
subgroup G ⊂ S∞ filtered when it is stable under concatenation, in the sense that when
writing G = (Gk) with Gk ⊂ Sk, we have σ ∈ Gk, π ∈ Gl =⇒ σπ ∈ Gk+l. With this
convention, each monomial sphere comes from a filtered group of permutations:

Proposition 2.4. The monomial spheres are the subsets SG ⊂ SN−1
R,+ given by

C(SG) = C(SN−1
R,+ )

/〈
xi1 . . . xik = xiσ(1) . . . xiσ(k) ,∀(i1, . . . , ik) ∈ {1, . . . , N}

k,∀σ ∈ Gk

〉
where G = (Gk) is a filtered subgroup of S∞ = (Sk).

Proof. We know from Proposition 2.3 that the construction in the statement produces a
monomial sphere. Conversely, given a monomial sphere S ⊂ SN−1

R,+ , let us set:

Gk =
{
σ ∈ Sk

∣∣∣xi1 . . . xik = xiσ(1) . . . xiσ(k) ,∀(i1, . . . , ik) ∈ {1, . . . , N}
k
}

With G = (Gk) we have S = SG, so it remains to prove that G is a filtered group.
Since the relations xi1 . . . xik = xiσ(1) . . . xiσ(k) can be composed and reversed, each Gk

follows to be stable under composition and inversion, and is therefore a group.
Also, since the relations xi1 . . . xik = xiσ(1) . . . xiσ(k) can be concatenated as well, our

group G = (Gk) is stable under concatenation, and we are done. �

As an illustration, the groups {1} ⊂ S∞ produce the spheres SN−1
R,+ ⊃ SN−1

R . In order
to discuss now the half-liberated case, we will need:

Proposition 2.5. Let S∗∞ ⊂ S∞ be the set of permutations having the property that when
labelling cyclically the legs • ◦ • ◦ . . ., each string joins a black leg to a white leg.

(1) S∗∞ is a filtered subgroup of S∞, generated by the half-liberated crossing.
(2) We have S∗2k ' Sk × Sk, and S∗2k+1 ' Sk × Sk+1, for any k ∈ N.

Proof. The fact that S∗∞ is indeed a subgroup of S∞, which is filtered, is clear. Observe
now that the half-liberated crossing has the “black-to-white” joining property:

◦ • ◦

• ◦ •
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Thus this crossing belongs to S∗3 , and it is routine to check, by double inclusion, that
the filtered subgroup of S∞ generated by it is the whole S∗∞. Regarding now the last
assertion, observe first that S∗3 , S

∗
4 consist of the following permutations:

◦ • ◦

• ◦ •

◦ • ◦

• ◦ •

◦ • ◦ •

• ◦ • ◦

◦ • ◦ •

• ◦ • ◦

◦ • ◦ •

• ◦ • ◦

◦ • ◦ •

• ◦ • ◦
Thus we have S∗3 = S1 × S2 and S∗4 = S2 × S2, with the first component coming

from dotted permutations, and with the second component coming from the solid line
permutations. The same argument works in general, and gives the last assertion. �

Now back to the main 3 spheres, the result is as follows:

Proposition 2.6. The monomial spheres SN−1
R ⊂ SN−1

R,∗ ⊂ SN−1
R,+ come respectively from

the filtered groups S∞ ⊃ S∗∞ ⊃ {1}.

Proof. This is clear by definition in the classical and in the free cases. In the half-liberated
case, the result follows from Proposition 2.5 (1) above. �

Now back to the general case, consider a monomial sphere SG ⊂ SN−1
R,+ , with the filtered

group G ⊂ S∞ taken to be maximal, as in the proof of Proposition 2.4.
We have the following key observation:

Proposition 2.7. The filtered group G ⊂ S∞ associated to a monomial sphere S ⊂ SN−1
R,+

is stable under the following operations, on the corresponding diagrams:

(1) Removing outer strings.
(2) Removing neighboring strings.

Proof. Both these results follow by using the quadratic condition:
(1) Regarding the outer strings, by summing over a, we have indeed:

Xa = Y a =⇒ Xa2 = Y a2 =⇒ X = Y

aX = aY =⇒ a2X = a2Y =⇒ X = Y

(2) Regarding the neighboring strings, once again by summing over a, we have:

XabY = ZabT =⇒ Xa2Y = Za2T =⇒ XY = ZT

XabY = ZbaT =⇒ Xa2Y = Za2T =⇒ XY = ZT

Thus G = (Gk) has both the properties in the statement. �
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We are now in position of stating and proving the axiomatization result regarding our
3 noncommutative spheres, which was recently obtained in [6]:

Theorem 2.8. The spheres SN−1
R ⊂ SN−1

R,∗ ⊂ SN−1
R,+ are the only monomial ones.

Proof. We will prove that the only filtered groups G ⊂ S∞ satisfying the conditions in
Proposition 2.7 are {1} ⊂ S∗∞ ⊂ S∞, correspoding to our 3 spheres. In order to do so,
consider such a filtered group G ⊂ S∞, assumed to be non-trivial, G 6= {1}.

Step 1. Our first claim is that G contains a 3-cycle. For this purpose, we use a stan-
dard trick, stating that if π, σ ∈ S∞ have support overlapping on exactly one point,
say supp(π) ∩ supp(σ) = {i}, then the commutator σ−1π−1σπ is a 3-cycle, namely
(i, σ−1(i), π−1(i)). Indeed the computation of the commutator goes as follows:

π

σ

π−1

σ−1

=

◦ ◦ ◦ • ◦ ◦ ◦

◦ ◦ ◦ • ◦ ◦ ◦

◦ ◦ ◦ • ◦ ◦ ◦

◦ ◦ ◦ • ◦ ◦ ◦

◦ ◦ ◦ • ◦ ◦ ◦

Now let us pick a non-trivial element τ ∈ G. By removing outer strings at right and at
left we obtain permutations τ ′ ∈ Gk, τ

′′ ∈ Gs having a non-trivial action on their right/left
leg, and by taking π = τ ′ ⊗ ids−1, σ = idk−1 ⊗ τ ′′, the trick applies.

Step 2. Our second claim is G must contain one of the following permutations:

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

Indeed, consider the 3-cycle that we just constructed. By removing all outer strings,
and then all pairs of adjacent vertical strings, we are left with these permutations.

Step 3. Our claim now is that we must have S∗∞ ⊂ G. Indeed, let us pick one of the
permutations that we just constructed, and apply to it our various diagrammatic rules.
From the first permutation we can obtain the basic crossing, as follows:

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

→

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

→

◦ ◦

◦ ◦
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Also, by removing a suitable /\ shaped configuration, which is represented by dotted
lines in the diagrams below, we can obtain the basic crossing from the second and third
permutation, and the half-liberated crossing from the fourth permutation:

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦
Thus, in all cases we have a basic or half-liberated crossing, and so S∗∞ ⊂ G.
Step 4. Our last claim, which will finish the proof, is that there is no proper intermediate

subgroup S∗∞ ⊂ G ⊂ S∞. In order to prove this, observe that S∗∞ ⊂ S∞ is the subgroup
of parity-preserving permutations, in the sense that “i even =⇒ σ(i) even”.

Now let us pick an element σ ∈ Sk − S∗k , with k ∈ N. We must prove that the group
G =< S∗∞, σ > equals the whole S∞. In order to do so, we use the fact that σ is not
parity preserving. Thus, we can find i even such that σ(i) is odd.

In addition, up to passing to σ|, we can assume that σ(k) = k, and then, up to passing
one more time to σ|, we can further assume that k is even.

Since both i, k are even we have (i, k) ∈ S∗k , and so σ(i, k)σ−1 = (σ(i), k) belongs to
G. But, since σ(i) is odd, by deleting an appropriate number of vertical strings, (σ(i), k)
reduces to the basic crossing (1, 2). Thus G = S∞, and we are done. �

Summarizing, we have now a quite satisfactory axiomatization of our three spheres.
We can axiomatize as well our noncommutative projective spaces, as follows:

Definition 2.9. A monomial projective space is a closed subset P ⊂ PN−1
+ of the free

projective space obtained via relations of type

pi1i2 . . . pik−1ik = piσ(1)iσ(2) . . . piσ(k−1)iσ(k) , ∀(i1, . . . , ik) ∈ {1, . . . , N}
k

with σ ranging over a certain subset of
⋃
k∈2N Sk, stable under σ → |σ|.

Observe the similarity with Definition 2.1. The only subtlety in the projective case is
the stability under σ → |σ|, which in practice means that if the above relation associated
to σ holds, then the following relation, associated to |σ|, must hold as well:

pi0i1 . . . pikik+1
= pi0iσ(1)piσ(2)iσ(3) . . . piσ(k−2)iσ(k−1)

piσ(k)ik+1

As an illustration, the basic projective spaces are all monomial:

Proposition 2.10. The spaces PN−1
R ⊂ PN−1

C ⊂ PN−1
+ are all monomial, with

◦ ◦

◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
producing respectively PN−1

R , PN−1
C .
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Proof. We must divide the algebra C(PN−1
+ ) by the relations associated to the diagrams

in the statement, as well as those associated to their shifted versions, given by:

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

(1) The basic crossing, and its shifted version, produce the relations pab = pba and
pabpcd = pacpbd. Now by using these relations several times, we obtain:

pabpcd = pacpbd = pcapdb = pcdpab

Thus, the space produced by the basic crossing is classical, P ⊂ PN−1
C , and by using

one more time the relations pab = pba we conclude that we have P = PN−1
R .

(2) The fattened crossing, and its shifted version, produce the relations pabpcd = pcdpab
and pabpcdpef = padpebpcf . The first relations tell us that the projective space must be
classical, P ⊂ PN−1

C . Now observe that with pij = ziz̄j, the second relations read:

zaz̄bzcz̄dzez̄f = zaz̄dzez̄bzcz̄f

Since these relations are automatic, we have P = PN−1
C , and we are done. �

We can now formulate our projective classification result, as follows:

Theorem 2.11. The basic 3 projective spaces, namely

PN−1
R ⊂ PN−1

C ⊂ PN−1
+

are the only monomial ones, in the above sense.

Proof. We follow the proof from the affine case. Let Rσ be the collection of relations
associated to a permutation σ ∈ Sk with k ∈ 2N, as in Definition 2.9.

We fix a monomial projective space P ⊂ PN−1
+ , and we associate to it a family of

subsets Gk ⊂ Sk, as follows:

Gk =

{
{σ ∈ Sk|Rσ hold over P} (k even)

{σ ∈ Sk|R|σ hold over P} (k odd)

As in the affine case, we obtain in this way a filtered group G = (Gk), which is stable
under removing outer strings, and under removing neighboring strings.

Thus the computations in the proof of Theorem 2.8 apply, and show that we have only
3 possible situations, corresponding to the 3 spaces in Proposition 2.10. �

We will see later on, in section 4 below, that the quantum isometry groups of the 3
spheres and 3 projective spaces can be axiomatized as well, in a similar manner.
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3. Quantum isometry groups

We discuss now the quantum isometry groups of the 3 noncommutative spheres, and of
the 3 projective spaces as well. We use the compact quantum group formalism developed
by Woronowicz in [23], [24], under the Kac algebra assumption:

Definition 3.1. A finitely generated Hopf C∗-algebra is a C∗-algebra A, given with a
unitary matrix u ∈MN(A) whose coefficients generate A, such that the formulae

∆(uij) =
∑
k

uik ⊗ ukj , ε(uij) = δij , S(uij) = u∗ji

define morphisms of C∗-algebras ∆ : A→ A⊗ A, ε : A→ C, S : A→ Aopp.

The morphisms ∆, ε, S are called comultiplication, counit and antipode. Observe that,
once the pair (A, u) is given, these morphisms can exist or not. If they exist, they are
unique, and we say that we have a finitely generated Hopf C∗-algebra.

We have the following result, making the link with standard Hopf algebra theory:

Proposition 3.2. Let (A, u) be a finitely generated Hopf C∗-algebra.

(1) ∆, ε satisfy the usual axioms for a comultiplication and a counit, namely:

(∆⊗ id)∆ = (id⊗∆)∆

(ε⊗ id)∆ = (id⊗ ε)∆ = id

(2) S satisfies the antipode axiom, on the ∗-subalgebra generated by entries of u:

m(S ⊗ id)∆ = m(id⊗ S)∆ = ε(.)1

(3) In addition, the square of the antipode is the identity, S2 = id.

Proof. By linearity, involutivity, mutiplicativity and continuity, it is enough to do all the
verifications on the coefficients of u. The two comultiplication axioms follow from:

(∆⊗ id)∆(uij) = (id⊗∆)∆(uij) =
∑
kl

uik ⊗ ukl ⊗ ulj

(ε⊗ id)∆(uij) = (id⊗ ε)∆(uij) = uij

The two antipode axioms follows from the unitarity of u, as follows:

m(S ⊗ id)∆(uij) =
∑
k

u∗kiukj = (u∗u)ij = δij

m(id⊗ S)∆(uij) =
∑
k

uiku
∗
jk = (uu∗)ij = δij

Finally, the extra antipode axiom S2 = id is clear from definitions. �

We say that A is cocommutative when Σ∆ = ∆, where Σ(a⊗ b) = b⊗ a is the flip. We
have the following result, which justifies the terminology and axioms:
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Proposition 3.3. The following are finitely generated Hopf C∗-algebras:

(1) C(G), with G ⊂ UN compact Lie group. Here the structural maps are:

∆(ϕ) = (g, h)→ ϕ(gh)

ε(ϕ) = ϕ(1)

S(ϕ) = g → ϕ(g−1)

(2) C∗(Γ), with FN → Γ finitely generated group. Here the structural maps are:

∆(g) = g ⊗ g
ε(g) = 1

S(g) = g−1

Moreover, we obtain in this way all the commutative/cocommutative algebras.

Proof. In both cases, we have to exhibit a certain matrix u. For the first assertion, we
can use the matrix u = (uij) formed by matrix coordinates of G, given by:

g =

u11(g) u1N(g)
. . .

uN1(g) uNN(g)


For the second assertion, we can use the diagonal matrix formed by generators:

u =

g1 0
. . .

0 gN


Finally, the last assertion follows from the Gelfand theorem, in the commutative case,

and in the cocommutative case, this follows from the results of Woronowicz in [23]. �

Observe that the reduced group algebra C∗red(Γ) is a finitely generated Hopf C∗-algebra
as well, with the same defining matrix u, and with ∆, ε, S given by the same formulae.
In order to overcome this issue, we call A full when it is the enveloping C∗-algebra of the
∗-algebra generated by the coefficients of u. With this notion in hand, we have:

Definition 3.4. Given a finitely generated full Hopf C∗-algebra A, we write

A = C(G) = C∗(Γ)

and call G compact matrix quantum group, and Γ finitely generated quantum group.

It follows from Proposition 3.3 that when A is both commutative and cocommutative,
G is a compact abelian group, Γ is a discrete abelian group, and these two groups are in
Pontrjagin duality. With suitable terminology and notations, this Pontrjagin type duality

extends to the general case, and we write G = Γ̂,Γ = Ĝ. See [17], [23].
Let us discuss now the liberation question for the group ON . First, we have:
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Proposition 3.5. We have the presentation result

C(ON) = C∗comm

(
(uij)i,j=1,...,N

∣∣∣u = ū, ut = u−1
)

where C∗comm stands as usual for universal commutative C∗-algebra.

Proof. This follows from the Gelfand theorem, because the conditions u = ū, ut = u−1

show that the spectrum of the algebra on the right is contained in ON . Thus we have a
morphism from left to right, inverse to the trivial morphism from right to left. �

We can now proceed with liberation, in the same way as we did for the spheres:

Proposition 3.6. The following universal C∗-algebras

C(O+
N) = C∗

(
(uij)i,j=1,...,N

∣∣∣u = ū, ut = u−1
)

C(O∗N) = C(O+
N)
/〈

abc = cba,∀a, b, c ∈ {uij}
〉

are finitely generated Hopf C∗-algebras, and we have ON ⊂ O∗N ⊂ O+
N .

Proof. In order to prove the first assertion, consider the following three matrices, having
coefficients in the target algebras of the maps ∆, ε, S to be constructed:

u∆
ij =

∑
k

uik ⊗ ukj , uεij = δij , uSij = u∗ji

These matrices are all three orthogonal, so the structural maps ϕ = ∆, ε, S for the
algebra C(O+

N) can be defined by universality, by setting ϕ(uij) = uϕij.
Regarding now the quotient C(O∗N), here we know that the entries of u half-commute,

and it follows that the entries of u∆, uε, uS half-commute as well. Thus, once again, we
can define the structural maps ϕ = ∆, ε, S simply by setting ϕ(uij) = uϕij. �

Summarizing, we have constructed quantum group analogues ON ⊂ O∗N ⊂ O+
N of the

noncommutative spheres SN−1
R ⊂ SN−1

R,∗ ⊂ SN−1
R,+ . Our task now will be to find quantum

group analogues of the various results in sections 1-2. We will do this gradually.

We recall from [8] that the diagonal subgroup of (G, u) is the group dual Γ̂ ⊂ G obtained
by setting C∗(Γ) = C(G)/ < uij = 0,∀i 6= j >, with the remark that this algebra is indeed
cocommutative. We have the following result, related to Proposition 1.7:

Proposition 3.7. The diagonal subgroups of the 3 orthogonal quantum groups are:

ON ⊂ O∗N ⊂ O+
N

∪ ∪ ∪

ẐN2 ⊂ Ẑ◦N2 ⊂ Ẑ∗N2
That is, we obtain in this way the noncommutative cubes of SN−1

R ⊂ SN−1
R,∗ ⊂ SN−1

R,+ .
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Proof. In order to do the computation for O+
N , we must take the universal algebra C(O+

N)
from Proposition 3.6, and divide by the relations uij = 0, for i 6= j. We obtain:

C∗(Γ) = C∗
(

(uii)i=1,...,N

∣∣∣uii = u∗ii = u−1
ii

)
Thus we have Γ = Z∗N2 , and then by taking the quotient by the relations abc = cba and

ab = ba we obtain respectively the groups Z◦N2 ,ZN2 , as claimed. �

Regarding now the projective versions, we use here the following notion:

Definition 3.8. Given a closed subgroup G ⊂ O+
N , its projective version G → PG is

given by the fact that C(PG) ⊂ C(G) is the subalgebra generated by wij,ab = uiaujb.

Here the fact that PG is indeed a compact quantum group comes from the fact that
the matrix w = (wia,jb) is a corepresentation. As a basic example, in the classical case,
G ⊂ ON , we obtain in this way the usual projective version, PG = G/(G ∩ ZN2 ).

We have the following result, coming from [8], [12]:

Theorem 3.9. We have an embedding of C∗-algebras

C(O∗N) ⊂M2(C(UN)) : uij →
(

0 vij
v̄ij 0

)
where vij are the standard coordinates on UN . Also, we have PO∗N = PUN .

Proof. The fact that we have a morphism as above is clear from definitions, and the
equality PO∗N = PUN can be deduced from this, as in the sphere case. See [8].

Now with this equality in hand, the crossed product techniques explained in section 1
apply to our situation, and show that the morphism is faithful. See [12]. �

Our goal now will be to prove that ON ⊂ O∗N ⊂ O+
N and their projective versions are

the quantum isometry groups of the 3 spheres and 3 projective spaces.
We use the following action formalism, inspired from [16], [21]:

Definition 3.10. Consider a closed subgroup G ⊂ O+
N , and a closed subset X ⊂ SN−1

R,+ .

(1) We write G y X when the formula Φ(xi) =
∑

a uia ⊗ xa defines a morphism of
C∗-algebras Φ : C(X)→ C(G)⊗ C(X).

(2) We write PG y PX when the formula Φ(xixj) =
∑

ab uiaujb ⊗ xaxb defines a
morphism of C∗-algebras Φ : C(PX)→ C(PG)⊗ C(PX).

As a first remark, in the case where the above morphisms Φ exist, they are automatically
coaction maps, in the sense that they satisfy the following conditions:

(id⊗ Φ)Φ = (∆⊗ id)Φ , (ε⊗ id)Φ = id

We call a closed subset X ⊂ SN−1
R,+ algebraic when the quotient map C(SN−1

R,+ )→ C(X)
comes from a collection of polynomial relations between the standard coordinates.

We have the following result, from [2]:
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Proposition 3.11. Assuming that X ⊂ SN−1
R,+ is algebraic, there exist:

(1) A biggest quantum group G ⊂ O+
N acting affinely on X.

(2) A biggest quantum group G ⊂ O+
N acting projectively on PX.

Proof. Assume indeed that there are noncommutative polynomials Pα such that:

C(X) = C(SN−1
R,+ )/ < Pα(x1, . . . , xN) = 0 >

If we want a construct an action Gy X, the elements Φ(xi) =
∑

a uia⊗xa must satisfy
the relations satisfied by x1, . . . , xN . Thus, the universal quantum group G ⊂ O+

N as in
(1) appears as follows, where Xi =

∑
a uia ⊗ xa ∈ C(O+

N)⊗ C(X):

C(G) = C(O+
N)/ < Pα(X1, . . . , XN) = 0 >

The proof of (2) is similar, by using the variables Xij =
∑

ab uiaujb ⊗ xaxb. �

We have the following result, with respect to the above notions:

Theorem 3.12. The quantum isometry groups of the spheres and projective spaces are

ON ⊂ O∗N ⊂ O+
N

↓ ↓ ↓

PON ⊂ PUN ⊂ PO+
N

with respect to the affine and projective action notions introduced above.

Proof. The fact that the 3 quantum groups on top act affinely on the corresponding 3
spheres is known since [5], and is elementary. By restriction, the 3 quantum groups on
the bottom have actions on the corresponding 3 projective spaces.

We must prove now that all these actions are universal. At right there is nothing to
prove, so we are left with studying the actions on SN−1

R , SN−1
R,∗ and on PN−1

R , PN−1
C .

SN−1
R . Here the fact that the action ON y SN−1

R is universal is known from [10], and

follows as well from the fact that the action PON y PN−1
R is universal, proved below.

SN−1
R,∗ . The situation is similar here, with the universality of O∗N y SN−1

R,∗ being known

since [5], and following as well from the universality of PUN y PN−1
C , proved below.

PN−1
R . In terms of the projective coordinates wij,ab = uiaujb and pij = xixj, the coaction

map is given by Φ(pij) =
∑

abwij,ab ⊗ pab, and we have:

Φ(pij) =
∑
a<b

(wij,ab + wij,ba)⊗ pab +
∑
a

wij,aa ⊗ paa

Φ(pji) =
∑
a<b

(wji,ab + wji,ba)⊗ pab +
∑
a

wji,aa ⊗ paa
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By comparing these two formulae, and then by using the linear independence of the
variables pab = xaxb for a ≤ b, we conclude that we must have:

wij,ab + wij,ba = wji,ab + wji,ba

Let us apply now the antipode to this formula. For this purpose, observe first that
we have S(wij,ab) = S(uiaujb) = S(ujb)S(uia) = ubjuai = wba,ji. Thus by applying the
antipode we obtain wba,ji + wab,ji = wba,ij + wab,ij, and by relabelling, we obtain:

wji,ba + wij,ba = wji,ab + wij,ab

Now by comparing with the original relation, we obtain wij,ab = wji,ba. But, with
wij,ab = uiaujb, this formula reads uiaujb = ujbuia. Thus our quantum group G ⊂ O+

N

must be classical, G ⊂ ON , and so we have PG ⊂ PON , as claimed.
PN−1
C . Consider a coaction map, written as Φ(pij) =

∑
ab uiaujb ⊗ pab, with pab = zaz̄b.

The idea here will be that of using the formula pabpcd = padpcb. We have:

Φ(pijpkl) =
∑
abcd

uiaujbukculd ⊗ pabpcd

Φ(pilpkj) =
∑
abcd

uiauldukcujb ⊗ padpcb

The terms at left being equal, and the last terms at right being equal too, we deduce
that, with [a, b, c] = abc− cba, we must have the following formula:∑

abcd

uia[ujb, ukc, uld]⊗ pabpcd = 0

Now since the quantities pabpcd = zaz̄bzcz̄d at right depend only on the numbers
|{a, c}|, |{b, d}| ∈ {1, 2}, and this dependence produces the only possible linear relations
between the variables pabpcd, we are led to 2× 2 = 4 equations, as follows:

(1) uia[ujb, uka, ulb] = 0, ∀a, b.
(2) uia[ujb, uka, uld] + uia[ujd, uka, ulb] = 0, ∀a, ∀b 6= d.
(3) uia[ujb, ukc, ulb] + uic[ujb, uka, ulb] = 0, ∀a 6= c, ∀b.
(4) uia[ujb, ukc, uld] + uia[ujd, ukc, ulb] + uic[ujb, uka, uld] + uic[ujd, uka, ulb] = 0, ∀a 6= c,
∀b 6= d.

We will need in fact only the first two formulae. Since (1) corresponds to (2) at b = d,
we conclude that (1,2) are equivalent to (2), with no restriction on the indices. By
multiplying now this formula to the left by uia, and then summing over i, we obtain:

[ujb, uka, uld] + [ujd, uka, ulb] = 0

By applying the antipode we get [udl, uak, ubj] + [ubl, uak, udj] = 0, and by relabelling:

[uld, uka, ujb] + [ujd, uka, ulb] = 0

Now by comparing with the original relation, we obtain [ujb, uka, uld] = [ujd, uka, ulb] =
0. Thus our quantum group is half-classical, G ⊂ O∗N , and we are done. �
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4. Representation theory

In this section we discuss the quantum group analogues of the axiomatization results
obtained in section 2. We use representation theory methods, from [23], [24].

Let G be a compact matrix quantum group, with defining matrix u = (uij). We let
C∞(G) ⊂ C(G) be the dense ∗-subalgebra generated by the coefficients of u. Observe
that in the classical case this is indeed the algebra of smooth functions on G.

Our basic object of study will be the corepresentations of C(G):

Definition 4.1. A finite dimensional smooth unitary corepresentation of C(G) is a uni-
tary matrix U ∈MK(C∞(G)), satisfying ∆(Uij) =

∑
k Uik ⊗ Ukj and ε(Uij) = δij.

When G is classical, the corepresentations of C(G) correspond to the representations

of G. Also, when G = Γ̂ is a group dual, the group elements g ∈ Γ are 1-dimensional
corepresentations of C∗(Γ), and, as explained in [23], each corepresentation of C∗(Γ)
decomposes as a direct sum of such 1-dimensional corepresentations.

In general now, the defining matrix u = (uij) is a corepresentation, called the funda-
mental one. By tensoring this corepresentation with itself, we obtain a whole family of
corepresentations of C(G), indexed by the positive integers k ∈ N:

u⊗k = (ui1j1 . . . uikjk)i1...ik,j1...jk

Observe that by tensoring u with its complex conjugate we can obtain a bigger family
of corepresentations, indexed by the words k ∈ N∗N. However, since our quantum groups
have a self-conjugate fundamental representation, we won’t need this extension.

We will be interested in computing Schur-Weyl categories, defined as follows:

Definition 4.2. Given G ⊂ O+
N , the collection C = (Ckl) of the linear spaces

Ckl = Hom(u⊗k, u⊗l)

where u is the fundamental corepresentaton, is called the Schur-Weyl category of G.

The Tannakian duality results found by Woronowicz in [24] show that this category
completely determines (G, u). To be more precise, given a collection of linear spaces
Ckl ⊂ L((CN)⊗k, (CN)⊗l) which form a tensor C∗-category with duals, the associated
compact matrix quantum group (G, u) can be constructed as follows:

C(G) = C∗
(

(uij)i,j=1,...,N

∣∣∣T ∈ Hom(u⊗k, u⊗l), ∀k, l ∈ N,∀T ∈ Ckl
)

Let us go back now to our quantum groups, ON ⊂ O∗N ⊂ O+
N . It is known since Brauer

[13] that the Schur-Weyl category for ON is spanned by certain linear maps “coming from
pairings”, and this fundamental result will be our guiding fact.

Let us denote by P2(k, l) the set of pairings between an upper row of k points, and a
lower row of l points. Observe that P2(k, l) = ∅ for k + l odd. We have:
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Definition 4.3. Associated to π ∈ P2(k, l) is the linear map Tπ : (CN)⊗k → (CN)⊗l,

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

where δπ ∈ {0, 1} is the Kronecker type symbol associated to π.

To be more precise, in order to construct δπ(ij) ∈ {0, 1}, let us put the indices of
i = (i1, . . . , ik) on the upper k points of π, and the indices of j = (j1, . . . , jl) on the lower
l points of π. If there is at least one string of π joining distinct indices, we set δπ(ij) = 0.

Otherwise, when all strings of π join pairs of equal indices, we set δπ(ij) = 1.
Here are a few basic examples of such maps, of interest in what follows:

T||...| = id , T∩(1) =
∑
i

ei ⊗ ei , T∪(ei ⊗ ej) = δij

T/\(ei ⊗ ej) = ej ⊗ ei , T/\| (ei ⊗ ej ⊗ ek) = ek ⊗ ej ⊗ ei

Let us first prove that the usual categorical operations on the linear maps Tπ, namely
the composition, tensor product and conjugation, are compatible with the usual cate-
gorical operations on the pairings, namely the composition (π, σ) → [σπ], the horizontal
concatenation (π, σ)→ [πσ], and the upside-down turning π → π∗. We have:

Proposition 4.4. The assignement π → Tπ is categorical, in the sense that

Tπ ⊗ Tσ = T[πσ] , TπTσ = N c(π,σ)T[σπ ] , T ∗π = Tπ∗

where c(π, σ) is the number of closed loops obtained when composing.

Proof. The concatenation axiom follows from the following computation:

(Tπ ⊗ Tσ)(ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

=
∑
j1...jq

∑
l1...ls

δπ

(
i1 . . . ip
j1 . . . jq

)
δσ

(
k1 . . . kr
l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

=
∑
j1...jq

∑
l1...ls

δ[πσ]

(
i1 . . . ip k1 . . . kr
j1 . . . jq l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

= T[πσ](ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)
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The composition axiom follows from the following computation:

TπTσ(ei1 ⊗ . . .⊗ eip)

=
∑
j1...jq

δσ

(
i1 . . . ip
j1 . . . jq

) ∑
k1...kr

δπ

(
j1 . . . jq
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

=
∑
k1...kr

N c(π,σ)δ[σπ ]

(
i1 . . . ip
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

= N c(π,σ)T[σπ ](ei1 ⊗ . . .⊗ eip)
Finally, the involution axiom follows from the following computation:

T ∗π (ej1 ⊗ . . .⊗ ejq)

=
∑
i1...ip

< T ∗π (ej1 ⊗ . . .⊗ ejq), ei1 ⊗ . . .⊗ eip > ei1 ⊗ . . .⊗ eip

=
∑
i1...ip

δπ

(
i1 . . . ip
j1 . . . jq

)
ei1 ⊗ . . .⊗ eip

= Tπ∗(ej1 ⊗ . . .⊗ ejq)
Summarizing, we have proved that our correspondence is indeed categorical. �

We will need as well the following result:

Proposition 4.5. For a closed subgroup G ⊂ O+
N , the following hold:

(1) T/\ ∈ End(u⊗2) precisely when G ⊂ ON .
(2) T/\| ∈ End(u⊗3) precisely when G ⊂ O∗N .

Proof. We use the formulae of T/\, T/\| given after Definition 4.3 above.
(1) By using T/\(ei ⊗ ej) = ej ⊗ ei, we have the following formulae:

(T/\ ⊗ 1)u⊗2(ei ⊗ ej ⊗ 1) =
∑
kl

el ⊗ ek ⊗ ukiulj

u⊗2(T̄/\ ⊗ 1)(ei ⊗ ej ⊗ 1) =
∑
kl

el ⊗ ek ⊗ uliuki

We therefore obtain the commutation relations ab = ba, and we are done.
(2) By using T/\| (ei ⊗ ej ⊗ ek) = ek ⊗ ej ⊗ ei, we have the following formulae:

(T/\| ⊗ 1)u⊗2(ei ⊗ ej ⊗ ek ⊗ 1) =
∑
abc

ec ⊗ eb ⊗ ea ⊗ uaiubjuck

u⊗2(T̄/\| ⊗ 1)(ei ⊗ ej ⊗ ek ⊗ 1) =
∑
abc

ec ⊗ eb ⊗ ea ⊗ uckubjuai

We therefore obtain the half-commutation relations abc = cba, and we are done. �
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We can now formulate the Brauer theorem, as well as its noncommutative generaliza-
tions, regarding O∗N , O

+
N . Let us call a pairing “balanced” if, when labelling cyclically its

legs • ◦ • ◦ . . ., each string connects a black leg to a while leg. We have:

Theorem 4.6. The spaces Ckl for the quantum groups ON ⊂ O∗N ⊂ O+
N are respectively

span(P2(k, l)) ⊃ span(P ∗2 (k, l)) ⊃ span(NC2(k, l))

where P2 ⊃ P ∗2 ⊃ NC2 are the pairings, balanced pairings, and noncrossing pairings.

Proof. This follows indeed from Proposition 4.4, Proposition 4.5, and from the Tannakian
duality results established by Woronowicz in [24]. Indeed, by Proposition 4.4 each of the
3 collections of spaces in the statement is a tensor C∗-category, which must therefore
correspond to a certain quantum group G ⊂ O+

N . But Proposition 4.5 shows that these
quantum groups are exactly those in the statement, and we are done. �

As a first application, we will prove that, under suitable axioms, O∗N is the only interme-
diate object ON ⊂ G ⊂ O+

N , and PUN is the only intermediate object PON ⊂ G ⊂ PO+
N .

In order to formulate our statement, we recall the following notion, from [7]:

Definition 4.7. An intermediate quantum group ON ⊂ G ⊂ O+
N is called easy when

span(NC2(k, l)) ⊂ Hom(u⊗k, u⊗l) ⊂ span(P2(k, l))

comes via Hom(u⊗k, u⊗l) = span(D(k, l)), for certain sets of pairings D(k, l).

Observe that ON , O
∗
N , O

+
N are all easy, due to Theorem 4.6 above.

In general now, in the context of the above definition, observe that by “saturating”
the sets D(k, l), we can always assume that the collection D = (D(k, l)) is a category of
pairings, in the sense that it is stable under the vertical and horizontal concatenation,
and the upside-down turning, and contains the semicircle. See [7].

With the above notion in hand, we have the following result, from [8]:

Theorem 4.8. The only intermediate easy quantum groups

ON ⊂ G ⊂ O+
N

are the basic orthogonal quantum groups, ON ⊂ O∗N ⊂ O+
N .

Proof. We agree that the points of a pairing π ∈ P2(k, l) are counted counterclockwise
starting from bottom left, and modulo k + l. For i = 1, 2, . . . , k + l we denote by πi the
partition obtained by connecting with a semicircle the i-th and (i + 1)-th points. The
partitions πi will be called “cappings” of π, and will be generically denoted π′.

Step I. Let π ∈ P2 −NC2, having s ≥ 4 strings. Our claim is that:

(1) If π ∈ P2 − P ∗2 , there exists a capping π′ ∈ P2 − P ∗2 .
(2) If π ∈ P ∗2 −NC2, there exists a capping π′ ∈ P ∗2 −NC2.
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Indeed, we can use a rotation in order to assume that π has no upper points. In other
words, our data is a partition π ∈ P2(0, 2s)−NC2(0, 2s), with s ≥ 4.

(1) The assumption π /∈ P ∗2 tells us that π has certain strings having an odd number of
crossings. We fix such an “odd” string, and we try to cap π, as for this string to remain
odd in the resulting partition π′. An examination of all the possible pictures shows that
this is possible, provided that our partition has s ≥ 3 strings, and we are done.

(2) The assumption π /∈ NC2 tells us that π has certain crossing strings. We fix such
a pair of crossing strings, and we try to cap π, as for these strings to remain crossing in
π′. Once again, an examination of all the possible pictures shows that this is possible,
provided that our partition has s ≥ 4 strings, and we are done.

Step II. Consider a partition π ∈ P2(k, l)−NC2(k, l). Our claim is that:

(1) If π ∈ P2(k, l)− P ∗2 (k, l) then < π >= P2.
(2) If π ∈ P ∗2 (k, l)−NC2(k, l) then < π >= P ∗2 .

This can be proved by recurrence on the number of strings, s = (k + l)/2. Indeed, by
using the results in Step I, at any s ≥ 4 we have a descent procedure s→ s− 1, and this
leads to the situation s ∈ {1, 2, 3}, where the statement is clear.

Step III. Assume now that we are given an easy quantum group ON ⊂ G ⊂ O+
N , coming

from certain sets of pairings D(k, l) ⊂ P2(k, l). We have three cases:
(1) If D 6⊂ P ∗2 , we obtain G = ON .
(2) If D ⊂ P2, D 6⊂ NC2, we obtain G = O∗N .
(3) If D ⊂ NC2, we obtain G = O+

N . �

In the projective case now, we have the following notion, from [6]:

Definition 4.9. A projective category of pairings is a collection of subsets

NC2(2k, 2l) ⊂ E(k, l) ⊂ P2(2k, 2l)

stable under the usual categorical operations, and satisfying σ ∈ E =⇒ |σ| ∈ E.

As basic examples here, we have the categories NC2 ⊂ P ∗2 ⊂ P2, where P ∗2 is the
category of balanced pairings. This follows indeed from definitions.

Now with the above notion in hand, we can formulate:

Definition 4.10. A quantum group PON ⊂ H ⊂ PO+
N is called projectively easy when

span(NC2(2k, 2l)) ⊂ Hom(v⊗k, v⊗l) ⊂ span(P2(2k, 2l))

comes via Hom(v⊗k, v⊗l) = span(E(k, l)), for a certain projective category E = (E(k, l)).

Observe that, given any easy quantum group ON ⊂ G ⊂ O+
N , its projective version

PON ⊂ PG ⊂ PO+
N is projectively easy in our sense. In particular the quantum groups

PON ⊂ PUN ⊂ PO+
N are all projectively easy, coming from NC2 ⊂ P ∗2 ⊂ P2.

We have in fact the following general result:
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Proposition 4.11. We have a bijective correspondence between the affine and projective
categories of partitions, given by G→ PG at the quantum group level.

Proof. The construction of correspondence D → E is clear, simply by setting:

E(k, l) = D(2k, 2l)

Conversely, given E = (E(k, l)) as in Definition 4.10, we can set:

D(k, l) =

{
E(k, l) (k, l even)

{σ : |σ ∈ E(k + 1, l + 1)} (k, l odd)

Our claim is that D = (D(k, l)) is a category of partitions. Indeed:
(1) The composition action is clear. Indeed, when looking at the numbers of legs

involved, in the even case this is clear, and in the odd case, this follows from:

|σ, |τ ∈ E =⇒ |στ ∈ E =⇒ σ
τ ∈ D

(2) For the tensor product axiom, we have 4 cases to be investigated. The even/even
case is clear, and the odd/even, even/odd, odd/odd cases follow respectively from:

|σ, τ ∈ E =⇒ |στ ∈ E =⇒ στ ∈ D

σ, |τ ∈ E =⇒ |σ|, |τ ∈ E =⇒ |σ||τ ∈ E =⇒ |στ ∈ E =⇒ στ ∈ D

|σ, |τ ∈ E =⇒ ||σ|, |τ ∈ E =⇒ ||σ||τ ∈ E =⇒ στ ∈ E =⇒ στ ∈ D

(3) Finally, the conjugation axiom is clear from definitions.
Now with these definitions in hand, both compositions D → E → D and E → D → E

follow to be the identities, and the quantum group assertion is clear as well. �

Now back to the uniqueness issues, we have here:

Theorem 4.12. The only intermediate projectively easy quantum groups

PON ⊂ G ⊂ PO+
N

are the basic projective quantum groups, PON ⊂ PUN ⊂ PO+
N .

Proof. This follows from the uniqueness result in the affine case, Theorem 4.8 above, and
from the duality established in Proposition 4.11. �

We refer to [19] for further results regarding the easy quantum groups.
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5. The Weingarten formula

In this section we develop the integration theory over the quantum groups O×N , and
then over the associated spheres SN−1

R,× , by using ideas from [3], [5], [14], [22].
Assume first that G is an arbitrary compact quantum group. We have:

Definition 5.1. The unique positive unital linear form
∫

: C(G)→ C satisfying(
id⊗

∫ )
∆(ϕ) =

(∫
⊗id

)
∆(ϕ) =

∫
ϕ

for any ϕ ∈ C(G) is called Haar functional of G.

The existence of the Haar functional can be established by starting with an arbitrary
positive unital linear form f : C(G) → C, and then by performing convolution powers,
with the convolution product being given by f ∗ g = (f ⊗ g)∆:∫

= lim
k→∞

1

k

k∑
r=1

f ∗r

Let us also mention that, due to our restricted axioms, assuming S2 = id, the Haar
functional is a trace. We refer to Woronowicz’ paper [23] for the proof of these facts.

At the level of basic examples, the situation is as follows:

Proposition 5.2. The Haar functional is as follows:

(1) In the classical case,
∫

is the integration with respect to the Haar measure.

(2) In the group dual case, G = Γ̂, the integration is given by
∫
g = δg1, ∀g ∈ Γ.

Proof. These assertions are both elementary, as follows:
(1) When G is classical we must have

∫
ϕ =

∫
G
ϕ(g)dµ(g), for a certain probability

measure µ. The conditions in Definition 5.1 express the fact that µ must be left and right
invariant, µ(gX) = µ(Xg) = µ(X). Thus µ must be the Haar measure of G.

(2) When G = Γ̂ is a group dual, the group elements g ∈ Γ span the dense subalgebra
C[Γ] ⊂ C∗(Γ), and the invariance conditions in Definition 5.1 applied to them simply read
g
∫
g = g

∫
g =

∫
g. Thus the Haar functional is given by

∫
g = δg1 in this case. �

In practice,
∫

can be computed by using representation theory, by using:

Proposition 5.3. For any corepresentation U ∈MK(C(G)), the operator

P =

(
id⊗

∫ )
U ∈MK(C)

is the orthogonal projection onto the space Fix(U) = {x ∈ CK |U(x) = x⊗ 1}.
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Proof. The invariance conditions in Definition 5.1 applied to ϕ = Uij read:∑
k

UikPkj =
∑
k

PikUkj = Pij

Thus we have UP = PU = P , and this gives the result. See Woronowicz [23]. �

Now back to our orthogonal quantum groups, the Schur-Weyl duality results obtained
in section 4 above, along with a linear algebra trick, give the following result:

Theorem 5.4. We have the Weingarten formula∫
O×N

ui1j1 . . . uikjk =
∑

π,σ∈P×2 (k)

δπ(i)δσ(j)WkN(π, σ)

where WkN = G−1
kN , with GkN(π, σ) = N |π∨σ|, and where δ are Kronecker type symbols.

Proof. In view of the above, let us arrange all the integrals to be computed, at a fixed
value of k ∈ N, in a single big matrix, of size Nk ×Nk, as follows:

Pi1...ik,j1...jk =

∫
O×N

ui1j1 . . . uikjk

By using Proposition 5.3, and then Theorem 4.6, this matrix P is the orthogonal
projection onto the following linear space:

Fix(u⊗k) = Hom(1, u⊗k) = span
(
ξπ

∣∣∣π ∈ P×2 (k)
)

By a standard linear algebra computation, it follows that we have P = WE, where
E(x) =

∑
π∈P×2 (k) < x, ξπ > ξπ, and where W is the inverse on span(Tπ|π ∈ P×2 (k)) of the

restriction of E. But this restriction is the linear map given by GkN , so W is the linear
map given by WkN , and this gives the formula in the statement. �

We recall now that the uniform measure on SN−1
R is the unique probability measure

which is invariant by rotations. In the case of the half-liberated sphere SN−1
R,∗ and of the

free sphere SN−1
R,+ , establishing such a uniqueness result is a quite non-trivial task, and we

will have to use the Weingarten formula. Let us begin with:

Definition 5.5. We endow C(SN−1
R,× ) with its canonical trace, coming as the composition

tr : C(SN−1
R,× )→ C(O×N)→ C

of the morphism given by xi → u1i, and of the Haar integral of O×N .

Observe that the morphism C(SN−1
R,× ) → C(O×N) is indeed well-defined, because the

variables Xi = u1i satisfy the defining relations for the coordinates of SN−1
R,× .

In the classical case, we obtain in this way the integration with respect to the uniform
measure on SN−1

R . This is well-known, and follows as well from the results below.
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In general now, let us first find an abstract characterization of this canonical trace, via
invariance, similar to the one from the classical case. We will need:

Proposition 5.6. The canonical trace tr : C(SN−1
R,× )→ C has the ergodicity property

(I ⊗ id)Φ = tr(.)1

where I is the Haar functional of O×N , and Φ is the coaction map.

Proof. It is enough to check the equality in the statement on an arbitrary product of
coordinates, xi1 . . . xik . The left term is as follows:

(I ⊗ id)Φ(xi1 . . . xik) =
∑
j1...jk

I(ui1j1 . . . uikjk)xj1 . . . xjk

=
∑
j1...jk

∑
π,σ∈P×2 (k)

δπ(i)δσ(j)WkN(π, σ)xj1 . . . xjk

=
∑

π,σ∈P×2 (k)

δπ(i)WkN(π, σ)
∑
j1...jk

δσ(j)xj1 . . . xjk

Let us look now at the last sum on the right. The situation is as follows:
(1) In the free case we have to sum quantities of type xj1 . . . xjk , over all choices of

multi-indices j = (j1, . . . , jk) which fit into our given noncrossing pairing σ, and just by
using the condition

∑
i x

2
i = 1, we conclude that the sum is 1.

(2) The same happens in the classical case. Indeed, our pairing σ can now be crossing,
but we can use the commutation relations xixj = xjxi, and the sum is again 1.

(3) Finally, the same happens as well in the half-liberated case, because the fact that
our pairing σ has now an even number of crossings allows us to use the half-commutation
relations xixjxk = xkxjxi, in order to conclude that the sum to be computed is 1.

Thus the sum on the right is 1, in all cases, and we get:

(I ⊗ id)Φ(xi1 . . . xik) =
∑

π,σ∈P×2 (k)

δπ(i)WkN(π, σ)

On the other hand, another application of the Weingarten formula gives:

tr(xi1 . . . xik) = I(u1i1 . . . u1ik)

=
∑

π,σ∈P×2 (k)

δπ(1)δσ(i)WkN(π, σ)

=
∑

π,σ∈P×2 (k)

δσ(i)WkN(π, σ)

Since the Weingarten function is symmetric in π, σ, this gives the result. �

With the above ergodicity result in hand, we can now formulate an abstract character-
ization of the trace constructed in Definition 5.5, as follows:
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Theorem 5.7. There is a unique positive unital trace tr : C(SN−1
R,× )→ C satisfying

(id⊗ tr)Φ(x) = tr(x)1

where Φ is the coaction map, and this is the canonical trace.

Proof. First of all, it follows from the invariance condition in Definition 5.1, applied to
G = O×N , that the canonical trace has the invariance property in the statement.

In order to prove now the uniqueness, let τ be as in the statement. We have:

τ(I ⊗ id)Φ(x) = (I ⊗ τ)Φ(x) = I(id⊗ τ)Φ(x) = I(τ(x)1) = τ(x)

On the other hand, according to Proposition 5.6, we have as well:

τ(I ⊗ id)Φ(x) = τ(tr(x)1) = tr(x)

Thus we obtain τ = tr, and this finishes the proof. �

We discuss in what follows the various properties of tr. As a first observation, in
practice we can always do our computations over O×N , because we have:

Proposition 5.8. The following algebras, with generators and traces, are isomorphic,
when replaced with their GNS completions with respect to their canonical traces:

(1) The algebra C(SN−1
R,× ), with generators x1, . . . , xN .

(2) The row algebra R×N ⊂ C(O×N) generated by u11, . . . , u1N .

Proof. Consider the quotient map π : C(SN−1
R,× ) → R×N , which was used for constructing

tr. The invariance property of the integration functional I : C(O×N) → C shows that
tr′ = Iπ satisfies the invariance condition in Theorem 5.7, so we have tr = tr′. Together
with the positivity of tr and with the basic properties of the GNS construction, this shows
that π induces an isomorphism at the level of GNS algebras, as claimed. �

We make now the following convention, for the reminder of this section:

Definition 5.9. We agree from now on to replace each algebra C(SN−1
R,× ) with its GNS

completion with respect to the canonical trace.

As a first observation, the classical sphere SN−1
R is left unchanged by this modification,

because the trace comes from the usual uniform measure on it. The same happens for
the half-liberated sphere SN−1

R,∗ , due to the injectivity of the morphism in Theorem 1.14

above. The free sphere SN−1
R,+ , however, is probably “cut” by this construction, for instance

because this happens at the quantum group level, where O+
N is not coamenable.

With the above convention in hand, we can now discuss the geometry of our spheres.
Our main result here will be the fact that, with a suitable formalism, the universal affine
actions constructed in section 3 above are “isometric”. Let us begin with:
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Definition 5.10. Given a compact Riemannian manifold X, we denote by Ω1(X) the
space of smooth 1-forms on X, with scalar product given by

< ω, η >=

∫
X

< ω(x), η(x) > dx

and we construct the Hodge Laplacian ∆ : L2(X) → L2(X) by setting ∆ = d∗d, where
d : C∞(X)→ Ω1(X) is the usual differential map, and d∗ is its adjoint.

According to a standard result in differential geometry, the isometry group G(X) is then
the group of diffeomorphisms ϕ : X → X whose induced action on C∞(X) commutes
with ∆. Following now Goswami [16], we can formulate:

Definition 5.11. Associated to a compact Riemannian manifold X are:

(1) Diff+(X): the category of compact quantum groups acting on X.
(2) G+(X) ∈ Diff+(X): the universal object with a coaction commuting with ∆.

Here the coactions Φ : C(X)→ C(G)⊗C(X) must satisfy by definition the axioms in
section 3 above, as well as the following smoothness assumption:

Φ(C∞(X)) ⊂ C(G)⊗ C∞(X)

As for the commutation condition with ∆ in (2) above, this regards the canonical
extension of the action to the space L2(X). For details here, see [16].

Let us discuss now the case of the noncommutative Riemannian manifolds. We use
here some very light axioms, inspired from Connes’ ones from [15]:

Definition 5.12. A compact spectral triple X = (A,H,D) consists of the following:

(1) A is a unital C∗-algebra.
(2) H is a Hilbert space, on which A acts.
(3) D is an unbounded self-adjoint operator on H, with compact resolvents, such that

[D,φ] has a bounded extension, for any φ in a dense ∗-subalgebra A ⊂ A.

The guiding examples come from the compact Riemannian manifolds X. Indeed, asso-
ciated to X are several triples (A,H,D), with A ⊂ A being C∞(X) ⊂ C(X):

(1) H is the space of square-integrable spinors, and D is the Dirac operator.
(2) H is the space of forms on X, and D is the Hodge-Dirac operator d+ d∗.
(3) H = L2(X, dv), dv being the Riemannian volume, and D = d∗d.

Here the first example is the most interesting one, because under a number of supple-
mentary axioms, a reconstruction theorem for X holds, in terms of (A,H,D). See [15].
In view of Definition 5.11 (2), however, the last example will be in fact the one that we
will be interested in. Once again following Goswami [16], we have:

Definition 5.13. Associated to a compact spectral triple X = (A,H,D) are:

(1) Diff+(X): the category of compact quantum groups acting on (A,H).
(2) G+(X) ∈ Diff+(X): the universal object with a coaction commuting with D.
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In other words, G+(X) must have a unitary representation U on H which commutes
with D, satisfies U1A = 1⊗ 1A, and is such that adU maps A′′ into itself.

Now back to our spheres, we will construct now a spectral triple, satisfying the condi-
tions in Definition 5.12. The idea is to use the inclusion SN−1

R ⊂ SN−1
R,× , and to construct

the Laplacian filtration as the pullback of the Laplacian filtration for SN−1
R .

More precisely, we have the following construction:

Proposition 5.14. Associated to SN−1
R,× is the triple (A,H,D), where A = C(SN−1

R,× ), and

where D acting on H = L2(A, tr) is defined as follows:

(1) Set Hk = span(xi1 . . . xir |r ≤ k).
(2) Define Ek = Hk ∩H⊥k−1, so that we have H = ⊕∞k=0Ek.
(3) Finally, set Dx = λkx, for any x ∈ Ek, where λk are distinct numbers.

Proof. We have to show that [D,Ti] is bounded, where Ti is the left multiplication by xi.
Since xi ∈ A is self-adjoint, so is the corresponding operator Ti. Now since Ti(Hk) ⊂ Hk+1,
by self-adjointness we get Ti(H

⊥
k ) ⊂ H⊥k−1. Thus we have:

Ti(Ek) ⊂ Ek−1 ⊕ Ek ⊕ Ek+1

This gives a decomposition of type Ti = T−1
i + T 0

i + T 1
i . It is routine to check that we

have [D,Tαi ] = αTαi for any α ∈ {−1, 0, 1}, and this gives the result. �

As an illustration, in the classical case the situation is as follows:

Proposition 5.15. For the sphere SN−1
R we have D = f(

√
d∗d), where:

f(s) = 1− N

2
+

1

2

√
4s2 + (N − 2)2

In particular, the eigenspaces of D and
√
d∗d coincide.

Proof. This follows from the well-known fact that
√
d∗d diagonalizes as in Proposition

5.14, the corresponding eigenvalues being k(k +N − 2), with k ∈ N. �

In general, it is quite unclear what the eigenvalues should be. This question, raised
some time ago in [5], is still open. However, with our formalism, we can now prove:

Theorem 5.16. We have G+(SN−1
R,× ) = O×N .

Proof. Consider the coaction map Φ : C(SN−1
R,× ) → C(O×N) ⊗ C(SN−1

R,× ). This extends to
a unitary representation on the GNS space H, that we denote by U . We have Φ(Hk) ⊂
C(O×N) ⊗ Hk, which reads U(Hk) ⊂ Hk. By unitarity we get as well U(H⊥k ) ⊂ H⊥k , so
each Ek is U -invariant, and U,D must commute. We conclude that Φ is isometric with
respect to D. Finally, the universality of O×N follows from Theorem 3.12. �
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6. Hyperspherical laws

In this section we investigate the problem of computing the integral over the spheres
SN−1
R ⊂ SN−1

R,∗ ⊂ SN−1
R,+ of polynomial quantities of type xi1 . . . xik .

As a first observation, we have the following elementary result:

Proposition 6.1. We have the formula∫
SN−1
R,×

xi1 . . . xik dx = 0

unless each xi appears an even number of times.

Proof. This follows from the fact that for any i we have an automorphism of C(SN−1
R,× )

given by xi → −xi. Indeed, this automorphism must preserve the trace, so if xi appears
an odd number of times, the integral in the statement satisfies I = −I, so I = 0. �

In order to compute the remaining integrals, which are non-trivial, we can use the
Weingarten formula, adapted to the sphere case. The statement here is:

Proposition 6.2. We have the Weingarten type formula∫
SN−1
R,×

xi1 . . . xik dx =
∑

σ∈P×2 (k)

δσ(i)
∑

π∈P×2 (k)

WkN(π, σ)

where WkN = G−1
kN , with GkN(π, σ) = N |π∨σ|, and where δ are Kronecker type symbols.

Proof. This follows indeed from the Weingarten formula for the quantum groups, via the
identification xi = u1i coming from Proposition 5.8 above. �

As an illustration, we can recover in this way the vanishing result in Proposition 6.1.
Indeed, if some xi appears an odd number of times, we have δσ(i) = 0 for any σ.

As an application now, we will compute the N → ∞ behavior of the hyperspherical
laws. For this purpose, we will need some standard facts from free probability theory [9],
[18], [20]. Assume that (A, tr) is a C∗-algebra with a trace. We have:

Definition 6.3. The law of a = a∗ ∈ A is the real probability measure given by:

tr(ak) =

∫
R
xkdµ(x)

Equivalently, µ comes from the restriction tr : C(X) ⊂ A→ C, where X = Spec(a).

We recall that the real Gaussian distribution, appearing in classical probability theory
via the central limit theorem (CLT) has as density 1√

2π
e−x

2/2dx.

In Voiculescu’s free probability theory, the CLT procedure makes sense as well, and
converges to the semicircle law on [−2, 2], having density 1

2π

√
4− x2dx.

Finally, let us recall that the moduli of the complex Gaussian variables are called
Rayleigh variables. We refer to [9], [18], [20] for all this material.
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Now back to the noncommutative spheres, our result here is as follows:

Theorem 6.4. With N →∞, the variables
√
Nxi ∈ C(SN−1

R,× ) are as follows:

(1) SN−1
R : real Gaussian.

(2) SN−1
R,∗ : symmetrized Rayleigh.

(3) SN−1
R,+ : semicircular.

Proof. We use the Weingarten formula, from Proposition 6.2 above. Since with N → ∞
the Gram matrix GkN(π, σ) = N |π∨σ| is asymptotically constant, GkN(π, σ) ' δπ,σN

k/2,
its inverse is asymptotically constant as well, WkN(π, σ) ' δπ,σN

−k/2, and so:∫
SN−1
R,×

xi1 . . . xik dx ' N−k/2
∑

σ∈P×2 (k)

δσ(i)

With this formula in hand, we can compute the asymptotic moments of each coordinate
xi. Indeed, by setting i1 = . . . = ik = i, all Kronecker symbols are 1, and we get:∫

SN−1
R,×

xki dx ' N−k/2#(P×2 (k))

Thus the even asymptotic moments of
√
Nxi are the numbers #(P×2 (2l)), which are

equal respectively to (2l)!!, l!, 1
l+1

(
2l
l

)
, and this gives the result. �

Regarding now the “N fixed” problematics, we first have the following result:

Proposition 6.5. The spherical integral of xi1 . . . xik vanishes, unless each a ∈ {1, . . . , N}
appears an even number of times in the sequence i1, . . . , ik. We have∫

SN−1
R

xi1 . . . xik dx =
(N − 1)!!l1!! . . . lN !!

(N +
∑
li − 1)!!

where m!! = (m− 1)(m− 1)(m− 5) . . ., and la is this number of occurrences.

Proof. First, the result holds indeed at N = 2, due to the following well-known formula,
where ε(p) = 1 when p ∈ N is even, and ε(p) = 0 when p is odd:∫ π/2

0

cosp t sinq t dt =
(π

2

)ε(p)ε(q) p!!q!!

(p+ q + 1)!!

In general now, in view of Proposition 6.1, we can restrict attention to the case la ∈ 2N.
The integral in the statement can be written in spherical coordinates, as follows:

I =
2N

V

∫ π/2

0

. . .

∫ π/2

0

xl11 . . . x
lN
N J dt1 . . . dtN−1

Here V is the volume of the sphere, J is the Jacobian, and the 2N factor comes from
the restriction to the 1/2N part of the sphere where all the coordinates are positive.
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The normalization constant in front of the integral is:

2N

V
=

2N

NπN/2
· Γ
(
N

2
+ 1

)
=

(
2

π

)[N/2]

(N − 1)!!

As for the unnormalized integral, this is given by:

I ′ =

∫ π/2

0

. . .

∫ π/2

0

(cos t1)l1(sin t1 cos t2)l2

. . . . . . . . .

(sin t1 sin t2 . . . sin tN−2 cos tN−1)lN−1

(sin t1 sin t2 . . . sin tN−2 sin tN−1)lN

sinN−2 t1 sinN−3 t2 . . . sin
2 tN−3 sin tN−2

dt1 . . . dtN−1

By rearranging the terms, we obtain:

I ′ =

∫ π/2

0

cosl1 t1 sinl2+...+lN+N−2 t1 dt1∫ π/2

0

cosl2 t2 sinl3+...+lN+N−3 t2 dt2

. . . . . . . . .∫ π/2

0

coslN−2 tN−2 sinlN−1+lN+1 tN−2 dtN−2∫ π/2

0

coslN−1 tN−1 sinlN tN−1 dtN−1

Now by using the above-mentioned formula at N = 2, this gives:

I ′ =
l1!!(l2 + . . .+ lN +N − 2)!!

(l1 + . . .+ lN +N − 1)!!

(π
2

)ε(N−2)

l2!!(l3 + . . .+ lN +N − 3)!!

(l2 + . . .+ lN +N − 2)!!

(π
2

)ε(N−3)

. . . . . . . . .
lN−2!!(lN−1 + lN + 1)!!

(lN−2 + lN−1 + lN + 2)!!

(π
2

)ε(1)

lN−1!!lN !!

(lN−1 + lN + 1)!!

(π
2

)ε(0)

Now observe that the various double factorials multiply up to quantity in the statement,
modulo a (N − 1)!! factor, and that the π

2
factors multiply up to (π

2
)[N/2]. Thus by

multiplying with the normalization constant, we obtain the result. �

In the case of the half-liberated sphere, we have the following result:
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Proposition 6.6. The half-liberated integral of xi1 . . . xik vanishes, unless each index a
appears the same number of times at odd and even positions in i1, . . . , ik. We have∫

SN−1
R,∗

xi1 . . . xik dx = 4
∑
li

(2N − 1)!l1! . . . ln!

(2N +
∑
li − 1)!

where la denotes this number of common occurrences.

Proof. In view of Proposition 6.1 above, we can assume that k is even, k = 2l. The
corresponding integral can be viewed as an integral over SN−1

C , as follows:

I =

∫
SN−1
C

zi1 z̄i2 . . . zi2l−1
z̄i2l dz

Now by using the same argument as in the proof of Proposition 6.1, but this time with
transformations of type p → λp with |λ| = 1, we see that I vanishes, unless each za
appears as many times as z̄a does, and this gives the first assertion.

Assume now that we are in the non-vanishing case. Then the la copies of za and the la
copies of z̄a produce by multiplication a factor |za|2la , so we have:

I =

∫
SN−1
C

|z1|2l1 . . . |zN |2lN dz

Now by using the standard identification SN−1
C ' S2N−1

R , we obtain:

I =

∫
S2N−1
R

(x2
1 + y2

1)l1 . . . (x2
N + y2

N)lN d(x, y)

=
∑
r1...rN

(
l1
r1

)
. . .

(
lN
rN

)∫
S2N−1
R

x2l1−2r1
1 y2r1

1 . . . x2lN−2rN
N y2rN

N d(x, y)

By using the formula in Proposition 6.5, we obtain:

I =
∑
r1...rN

(
l1
r1

)
. . .

(
lN
rN

)
(2N − 1)!!(2r1)!! . . . (2rN)!!(2l1 − 2r1)!! . . . (2lN − 2rN)!!

(2N + 2
∑
li − 1)!!

=
∑
r1...rN

(
l1
r1

)
. . .

(
lN
rN

)
(2N − 1)!(2r1)! . . . (2rN)!(2l1 − 2r1)! . . . (2lN − 2rN)!

(2N +
∑
li − 1)!r1! . . . rN !(l1 − r1)! . . . (lN − rN)!

We can rewrite the sum on the right in the following way:

I =
∑
r1...rN

l1! . . . lN !(2N − 1)!(2r1)! . . . (2rN)!(2l1 − 2r1)! . . . (2lN − 2rN)!

(2N +
∑
li − 1)!(r1! . . . rN !(l1 − r1)! . . . (lN − rN)!)2

=
∑
r1

(
2r1

r1

)(
2l1 − 2r1

l1 − r1

)
. . .
∑
rN

(
2rN
rN

)(
2lN − 2rN
lN − rN

)
(2N − 1)!l1! . . . lN !

(2N +
∑
li − 1)!

The sums on the right being 4l1 , . . . , 4lN , this gives the formula in the statement. �



36 TEODOR BANICA

Finally, in the case of the free sphere, we have the following result, from [4]:

Theorem 6.7. The moments of the free hyperspherical law are given by∫
SN−1
R,+

x2l
1 dx =

1

(N + 1)l
· q + 1

q − 1
· 1

l + 1

l+1∑
r=−l−1

(−1)r
(

2l + 2
l + r + 1

)
r

1 + qr

where q ∈ [−1, 0) is such that q + q−1 = −N .

Proof. The idea is that x1 ∈ C(SN−1
R,+ ) has the same law as u11 ∈ C(O+

N), which has the
same law as a certain variable w ∈ C(SU q

2 ), which can be in turn modelled by an explicit
operator on l2(N), whose law can be computed by using advanced calculus.

Let us first explain the relation between O+
N and SU q

2 . To any matrix F ∈ GLN(R)
satisfying F 2 = 1 we associate the following universal algebra:

C(O+
F ) = C∗

(
(uij)i,j=1,...,N

∣∣∣u = FūF = unitary
)

Observe that O+
IN

= O+
N . In general, the above algebra satisfies Woronowicz’s general-

ized axioms in [23], which do not include the strong antipode axiom S2 = id.
At N = 2, up to a trivial equivalence relation on the matrices F , and on the quantum

groups O+
F , we can assume that F is as follows, with q ∈ [−1, 0):

F =

(
0

√
−q

1/
√
−q 0

)
Our claim is that for this matrix we have O+

F = SU q
2 . Indeed, the relations u = FūF

tell us that u must be of the following special form:

u =

(
α −qγ∗
γ α∗

)
Thus C(O+

F ) is the universal algebra generated by two elements α, γ, with the relations
making the above matrix u unitary. But these unitarity conditions are:

αγ = qγα, αγ∗ = qγ∗α, γγ∗ = γ∗γ, α∗α + γ∗γ = 1, αα∗ + q2γγ∗ = 1

We recognize here the relations in [23] defining the algebra C(SU q
2 ), and it follows that

we have an isomorphism of Hopf C∗-algebras C(O+
F ) ' C(SU q

2 ).
Now back to the general case, let us try to understand the integration over O+

F . Given
π ∈ NC2(2k) and i = (i1, . . . , i2k), we set δFπ (i) =

∏
s∈π Fisl isr , with the product over all

the strings s = {sl y sr} of π. Our claim is that the following family of vectors, with
π ∈ NC2(2k), spans the space of fixed vectors of u⊗2k, for the quantum group O+

F :

ξπ =
∑
i

δFπ (i)ei1 ⊗ . . .⊗ ei2k

Indeed, having ξ∩ fixed by u⊗2 is equivalent to assuming that u = FūF is unitary.
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By using now the above vectors, we obtain the following Weingarten formula:∫
O+
F

ui1j1 . . . ui2kj2k =
∑
πσ

δFπ (i)δFσ (j)WkN(π, σ)

With these preliminaries in hand, let us start the computation. Let N ∈ N, and consider
the number q ∈ [−1, 0) satisfying q + q−1 = −N . Our claim is that we have:∫

O+
N

ϕ(
√
N + 2uij) =

∫
SUq2

ϕ(α + α∗ + γ − qγ∗)

Indeed, the moments of the variable on the left are given by:∫
O+
N

u2k
ij =

∑
πσ

WkN(π, σ)

On the other hand, the moments of the variable on the right, which in terms of the
fundamental corepresentation v = (vij) is given by w =

∑
ij vij, are given by:∫

SUq2

w2k =
∑
ij

∑
πσ

δFπ (i)δFσ (j)WkN(π, σ)

We deduce that w/
√
N + 2 has the same moments as uij, which proves our claim.

In order to do now the computation over SU q
2 , we can use a matrix model due to

Woronowicz [23], where the standard generators α, γ are mapped as follows:

πu(α)ek =
√

1− q2kek−1

πu(γ)ek = uqkek

Here u ∈ T is a parameter, and (ek) is the standard basis of l2(N). The point with this
representation is that it allows the computation of the Haar functional. Indeed, if D is
the diagonal operator given by D(ek) = q2kek, then the formula is as follows:∫

SUq2

x = (1− q2)

∫
T
tr(Dπu(x))

du

2πiu

With the above model in hand, the law of the variable that we are interested in is as
follows, where M(ek) = ek+1 + qk(u− qu−1)ek + (1− q2k)ek−1:∫

SUq2

ϕ(α + α∗ + γ − qγ∗) = (1− q2)

∫
T
tr(Dϕ(M))

du

2πiu

The point now is that the integral on the right can be computed, by using advanced
calculus methods, and this gives the result. We refer here to [4]. �

The computation of the joint free hypersperical laws remains an open problem. Open
as well is the question of finding a more conceptual proof for the above formula.
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7. Twisting results

We have seen in the previous sections that, under very strong axioms, there are only
three noncommutative spheres, SN−1

R ⊂ SN−1
R,∗ ⊂ SN−1

R,+ . Moreover, these spheres can be

sucessfully studied by using their quantum isometry groups, ON ⊂ O∗N ⊂ O+
N .

We discuss now some extensions of these facts. The idea is that SN−1
R ⊂ SN−1

R,∗ ⊂ SN−1
R,+

should be thought of as corresponding to a Drinfeld-Jimbo parameter q = 1, and the
question is about what happens when using the next simplest parameter, q = −1.

Let us begin with the definition of the twisted spheres, from [1]:

Definition 7.1. The twisted spheres S̄N−1
R ⊂ S̄N−1

R,∗ ⊂ SN−1
R,+ are constructed by imposing

the following conditions on the standard coordinates x1, . . . , xN :

(1) S̄N−1
R : xixj = −xjxi, for any i 6= j.

(2) S̄N−1
R,∗ : xixjxk = −xkxjxi for i, j, k distinct, xixjxk = xkxjxi otherwise.

Here the fact that we have indeed an inclusion S̄N−1
R ⊂ S̄N−1

R,∗ comes from the compu-
tations abc = −bac = bca = −cba for a, b, c ∈ {xi} distinct, and aab = −aba = baa for
a, b ∈ {xi} distinct, where x1, . . . , xN are the standard coordinates on S̄N−1

R .
Let us also mention that SN−1

R,+ cannot be twisted, or rather, that it is equal to its own
twist. We will come back later to this issue, with some results in this direction.

Let us discuss now the twisting of ON , O
∗
N . The definition here is as follows:

Definition 7.2. The twisted quantum groups ŌN ⊂ Ō∗N ⊂ O+
N are constructed by imposing

the following conditions on the standard coordinates uij,

ŌN : ab =

{
−ba for a 6= b on the same row or column of u

ba otherwise

Ō∗N : abc =

{
−cba for r ≤ 2, s = 3 or r = 3, s ≤ 2

cba for r ≤ 2, s ≤ 2 or r = s = 3

where r, s ∈ {1, 2, 3} are the number of rows/columns of u spanned by a, b, c ∈ {uij}.

It is routine to check that both ŌN , Ō
∗
N are indeed quantum groups, and that we have

an inclusion ŌN ⊂ Ō∗N . These facts, as well as Definition 7.2 itself, are however best
understood from a Schur-Weyl viewpoint. We will develop the Schur-Weyl theory now,
and we will come back later to the spheres, with a quantum isometry group result.

Let us first fine-tune our partition formalism, as follows:

Definition 7.3. We let P (k, l) be the set of partitions between an upper row of k points
and a lower row of l points, and consider the following subsets of P (k, l):

(1) P2(k, l) ⊂ Peven(k, l): the pairings, and the partitions with blocks having even size.
(2) NC2(k, l) ⊂ NCeven(k, l) ⊂ NC(k, l): the subsets of noncrossing partitions.
(3) Perm(k, k) ⊂ P2(k, k): the pairings having only up-to-down strings.
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Given π ∈ P (k, l), we can always switch pairs of neighbors, belonging to different
blocks, either in the upper row, or in the lower row, as to make π noncrossing. We will
need the following standard result, regarding the behavior of this operation:

Proposition 7.4. There is a signature map ε : Peven → {−1, 1}, given by ε(π) = (−1)c,
where c is the number of switches needed to make π noncrossing. In addition:

(1) For π ∈ Perm(k, k) ' Sk, this is the usual signature.
(2) For π ∈ P2 we have (−1)c, where c is the number of crossings.
(3) For π ∈ P obtained from σ ∈ NCeven by merging blocks, the signature is 1.

Proof. We must first prove that the number c in the statement is well-defined modulo 2.
In order to do so, observe that any partition π ∈ P (k, l) can be put in “standard form”,
by ordering its blocks according to the appearence of the first leg in each block, counting
clockwise from top left, and then by performing the switches as for block 1 to be at left,
then for block 2 to be at left, and so on. Here the required switches are also uniquely
determined, by the order coming from counting clockwise from top left.

Here is an example of such an algorithmic switching operation, for a pairing:

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

→

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

→

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

→

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
The point now is that, under the assumption π ∈ NCeven(k, l), each of the moves

required for putting a leg at left, and hence for putting a whole block at left, requires
an even number of switches. Thus, putting π is standard form requires an even number
of switches. Now given π, π′ ∈ P2 having the same block structure, the standard form
coincides, so the number of switches c required for the passage π → π′ is indeed even.

Regarding now the remaining assertions, these can be proved as follows:
(1) For π ∈ Perm(k, k) the standard form is π′ = id, and the passage π → id comes by

composing with a number of transpositions, which gives the signature.
(2) For a general π ∈ P2, the standard form is of type π′ = | . . . |∪...∪∩...∩, and the passage

π → π′ requires c mod 2 switches, where c is the number of crossings.
(3) For a partition π ∈ Peven coming from σ ∈ NCeven by merging a certain number n

of blocks, the fact that the signature is 1 follows by recurrence on n. �

We can make act partitions in Peven on tensors in a twisted way, as follows:

Definition 7.5. Associated to any partition π ∈ Peven(k, l) is the linear map

T̄π(ei1 ⊗ . . .⊗ eik) =
∑
σ≤π

ε(σ)
∑

j:ker(ij)=σ

ej1 ⊗ . . .⊗ ejl

where ε : Peven → {−1, 1} is the signature map.
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Here, and in what follows, the kernel of a multi-index is the partition obtained by
joining pairs of multi-indices. Observe the similarity with Definition 4.3.

Let us first prove that the above construction is categorical:

Proposition 7.6. The assignement π → T̄π is categorical, in the sense that

T̄π ⊗ T̄σ = T̄[πσ] , T̄πT̄σ = N c(π,σ)T̄[σπ ] , T̄ ∗π = T̄π∗

where c(π, σ) is the number of closed loops obtained when composing.

Proof. We follow the proof of Proposition 4.4. We just have to understand the behavior
of the twisted version of the Kronecker symbol construction π → δπ, under the various
categorical operations on the partitions π, and the verification goes as follows:

1. Concatenation. It is enough to check the following formula:

ε

(
ker

(
i1 . . . ip
j1 . . . jq

))
ε

(
ker

(
k1 . . . kr
l1 . . . ls

))
= ε

(
ker

(
i1 . . . ip k1 . . . kr
j1 . . . jq l1 . . . ls

))
Let us denote by π, σ the partitions on the left, so that the partition on the right is

of the form ρ ≤ [πσ]. By switching to the noncrossing form, π → π′ and σ → σ′, the
partition on the right transforms into ρ→ ρ′ ≤ [π′σ′]. Now since [π′σ′] is noncrossing, we
can use Proposition 7.4 (3), and we obtain the result.

2. Composition. Here we must establish the following formula:

ε

(
ker

(
i1 . . . ip
j1 . . . jq

))
ε

(
ker

(
j1 . . . jq
k1 . . . kr

))
= ε

(
ker

(
i1 . . . ip
k1 . . . kr

))
Let π, σ be the partitions on the left, so that the partition on the right is of the form

ρ ≤ [πσ]. Our claim is that we can jointly switch π, σ to the noncrossing form. Indeed, we
can first switch as for ker(j1 . . . jq) to become noncrossing, and then switch the upper legs
of π, and the lower legs of σ, as for both these partitions to become noncrossing.

Now observe that when switching in this way to the noncrossing form, π → π′ and
σ → σ′, the partition on the right transforms into ρ → ρ′ ≤ [π

′

σ′ ]. Now since [π
′

σ′ ] is
noncrossing, we can apply Proposition 7.4 (3), and we obtain the result.

3. Involution. Here we must prove the following formula:

ε

(
ker

(
i1 . . . ip
j1 . . . jq

))
= ε

(
ker

(
j1 . . . jq
i1 . . . ip

))
But this formula is trivial, and this finishes the proof. �

We can now formulate an abstract twisting result, as follows:

Theorem 7.7. The Schur-Weyl categories for ŌN , Ō
∗
N , O

+
N are given by

Hom(u⊗k, u⊗l) = span(T̄π|π ∈ D(k, l))

for any k, l ∈ N, where D ⊂ P2 is the category of pairings for ON , O
∗
N , O

+
N .
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Proof. The correspondence π → T̄π being categorical, the linear spaces in the statement
form a tensor C∗-category, which produces via [24] a compact quantum group Ḡ ⊂ O+

N .
We must prove that this quantum group is precisely Ḡ = ŌN , Ō

∗
N , O

+
N .

First of all, the result is clear for O+
N , because Proposition 7.4 (1) shows that for any

π ∈ NCeven, and in particular for any π ∈ NC2, we have Tπ = T̄π.
In order to deal now with ON , O

∗
N , observe first that we have:

T̄/\(ei ⊗ ej) =

{
−ej ⊗ ei for i 6= j

ej ⊗ ei otherwise

T̄/\| (ei ⊗ ej ⊗ ek) =

{
−ek ⊗ ej ⊗ ei for i, j, k distinct

ek ⊗ ej ⊗ ei otherwise

Indeed, the basic crossings /\ = ker(abba), /\| = ker(abccba) are both odd, because they have
respectively 1 and 3 crossings, and their various subpartitions are as follows, all even:

ker

(
a a
a a

)
, ker

(
a a b
b a a

)
, ker

(
a b a
a b a

)
, ker

(
b a a
a a b

)
, ker

(
a a a
a a a

)
Now since the relations T̄/\ ∈ End(u⊗2), T̄/\| ∈ End(u⊗3) correspond precisely to the

relations in Definition 7.2, defining ŌN , Ō
∗
N , this gives the result. �

As an application, we can now integrate over the twisted quantum groups:

Theorem 7.8. We have the Weingarten formula∫
Ō×N

ui1j1 . . . uikjk =
∑

π,σ∈P×2 (k)

δ̄π(i1, . . . , ik)δ̄σ(j1, . . . , jk)WkN(π, σ)

where δ̄π(i) ∈ {−1, 0, 1} is equal to ε(ker(i)) if ker(i) ≤ π, and is 0 otherwise.

Proof. We know from Theorem 7.7 that Fix(u⊗k) is spanned by the following vectors:

ξ̄π =
∑
j1...jk

δ̄π(j1, . . . , jk)ej1 ⊗ . . .⊗ ejk

The result follows then as in the untwisted case, with the remark that we have:

< ξ̄π, ξ̄σ > =

〈 ∑
j:ker j≤π

ε(ker j)ej1 ⊗ . . .⊗ ejl ,
∑

j:ker j≤σ

ε(ker j)ej1 ⊗ . . .⊗ ejl

〉
=

∑
j:ker j≤(π∨σ)

ε(ker j)2 =
∑

j:ker j≤(π∨σ)

1 = N |π∨σ|

Thus the Weingarten matrix is indeed the same as in the classical case. �

With these results in hand, let us go back now to the twisted spheres. In order to
compute the quantum isometry groups, we will need the following technical result:
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Proposition 7.9. The following elements are linearly independent:

(1) {xaxb|a ≤ b}, over S̄N−1
R .

(2) {xaxbxc|a ≤ c} over S̄N−1
R,∗ .

Proof. We use the morphism C(S̄N−1
R,× ) → C(Ō×N), given by xi → u1i. Thus, it is enough

to prove the corresponding statements over Ō×N , with xi = u1i.
(1) The scalar products between the variables in the statement are:

< xaxb, xixj >=

∫
ŌN

u1au1bu1ju1i =
∑

π,σ∈P2(4)

δ̄σ(a, b, j, i)W4N(π, σ)

Since P2(4) = {∩∩,e,∩∩}, the Weingarten matrix on the right is given by:

W4N =

N2 N N
N N2 N
N N N2

−1

=
1

N(N − 1)(N + 2)

N + 1 −1 −1
−1 N + 1 −1
−1 −1 N + 1


We conclude that we have the following formula:

< xaxb, xixj >=
1

N(N + 2)

∑
σ∈P2(4)

δ̄σ(a, b, j, i)

The matrix on the right, taken with indices a ≤ b and i ≤ j, is then invertible. Thus
the variables xaxb are linearly independent, as claimed.

(2) Here the scalar products that we are interested in are:

< xaxbxc, xixjxk >=

∫
Ō∗N

u1au1bu1cu1ku1ju1i =
∑

π,σ∈P ∗2 (6)

δ̄σ(a, b, c, k, j, i)W6N(π, σ)

The set P ∗2 (6) ' P ∗2 (3, 3) is by definition formed by the following pairings:

◦ • ◦

• ◦ •

◦ • ◦

• ◦ •

◦ • ◦

• ◦ •

◦ • ◦

• ◦ •

◦ • ◦

• ◦ •

◦ • ◦

• ◦ •
Now observe that the scalar products of each of these pairings with all the 6 pairings

are always, up to a permutation of the terms, N3, N2, N2, N2, N,N . Thus the Gram
matrix is stochastic, G6Nξ = ξ, where ξ = (1, . . . , 1)t is the all-one vector. Thus we have
W6Nξ = W6NG6Nξ = ξ, and so the Weingarten matrix is stochastic too. We conclude
that, up to a universal constant depending only on N , we have:

< xaxbxc, xixjxk >∼
∑

σ∈P ∗2 (6)

δ̄σ(a, b, c, k, j, i)

Now by computing the rank of this matrix, taken with indices a ≤ c and i ≤ k, we
obtain that the variables xaxbxc are linearly independent, as claimed. �
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We can formulate our quantum isometry group result, as follows:

Theorem 7.10. The quantum isometry groups of the spheres S̄N−1
R ⊂ S̄N−1

R,∗ ⊂ SN−1
R,+ are

the twisted orthogonal quantum groups, ŌN ⊂ Ō∗N ⊂ O+
N .

Proof. This is known and trivial for SN−1
R,+ , and for S̄N−1

R it can be deduced as in the proof
of Theorem 3.12, by adding signs where needed, and using Proposition 7.9 (1).

Regarding now S̄N−1
R,∗ , with G ⊂ O+

N and Xi =
∑

a uia ⊗ xa, we have the following

formula, obtained by using the defining relations for S̄N−1
R,∗ :

XiXjXk =
∑

a<c,b 6=a,c

(uiaujbukc − uicujbuka)⊗ xaxbxc

+
∑
a6=c

(uiaujaukc + uicujauka)⊗ x2
axc

+
∑
ab

uiaujbuka ⊗ xaxbxa

By interchanging i↔ k, we have as well a similar formula for XkXjXi. Now by using
Proposition 7.9 (2), we conclude that the coaction relations XiXjXk = ±XkXjXi are
equivalent to the following system of equations, where [uia, ujb, ukc] = uiaujbukc±ukcujbuia,
with the ± signs being those making [uia, ujb, ukc] = 0 for the coordinates of Ō∗N :

(1) [uia, ujb, ukc] = [uka, ujb, uic], for a, b, c distinct.
(2) [uia, uja, ukc] = [uka, uja, uic].
(3) [uia, ujb, uka] = 0.
It is routine to check that these equations are in fact equivalent to [uia, ujb, ukc] = 0,

regardless of the indices i, j, k and a, b, c, and this gives the result. �

As an application, we can now integrate over the twisted spheres:

Theorem 7.11. Consider the canonical trace tr : C(S̄N−1
R,× ) → C, obtained as tr = Iπ,

where π(xi) = u1i, and where I is the Haar integration over Ō×N .

(1) tr satisfies (I ⊗ id)Φ = tr(.)1, where Φ is the coaction map.
(2) tr is the unique positive unital trace satisfying (id⊗ tr)Φ(x) = tr(x)1.

(3)
√
Nxi is asymptotically real Gaussian/symmetrized Rayleigh/semicircular.

Proof. Here (1) and (2) follow as in the untwisted case, by adding signs where needed.
Regarding now (3), the twisted Weingarten computation is as follows:∫

S̄N−1
R,×

xki =
∑
π,σ

δ̄π(1 . . . 1)δ̄σ(1 . . . 1)WkN(π, σ)

∼ N−k/2
∑
π

δ̄π(1 . . . 1)2 = N−k/2#(P×2 (k))

Thus we obtain the same laws as in the untwisted case, as stated. �
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8. Polygonal spheres

We have so far 3 + 2 = 5 noncommutative spheres, and one interesting question is that
of finding a suitable axiomatic framework for them. A natural idea here is that of further
enlarging our set of spheres, by taking intersections between them, with the intersection
operation being obtained by merging the corresponding sets of algebraic relations.

With the convention, from now on, that the arrows denote inclusions, we have:

Proposition 8.1. The 5 main spheres, and the intersections between them, are

SN−1
R

// SN−1
R,∗

// SN−1
R,+

SN−1,1
R

//

OO

SN−1,1
R,∗

//

OO

S̄N−1
R,∗

OO

SN−1,0
R

//

OO

S̄N−1,1
R

//

OO

S̄N−1
R

OO

where ṠN−1,d−1
R,× ⊂ ṠN−1

R,× is obtained by assuming xi0 . . . xid = 0, for i0, . . . , id distinct.

Proof. We must prove that the 4-diagram obtained by intersecting the 5 main spheres
coincides with the 4-diagram appearing at bottom left in the statement:

SN−1
R ∩ S̄N−1

R,∗
// SN−1

R,∗ ∩ S̄
N−1
R,∗

SN−1
R ∩ S̄N−1

R
//

OO

SN−1
R,∗ ∩ S̄

N−1
R

OO

=

SN−1,1
R

// SN−1,1
R,∗

SN−1,0
R

//

OO

S̄N−1,1
R

OO

But this is clear, because combining the commutation and anticommutation relations
leads to the vanishing relations defining spheres of type ṠN−1,d−1

R,× . More precisely:

(1) SN−1
R ∩ S̄N−1

R consists of the points x ∈ SN−1
R satisfying xixj = −xjxi for i 6= j.

Since xixj = xjxi, this relation reads xixj = 0 for i 6= j, which means x ∈ SN−1,0
R .

(2) SN−1
R ∩ S̄N−1

R,∗ consists of the points x ∈ SN−1
R satisfying xixjxk = −xkxjxi for i, j, k

distinct. Once again by commutativity, this relation is equivalent to x ∈ SN−1,1
R .

(3) SN−1
R,∗ ∩ S̄

N−1
R is obtained from S̄N−1

R by imposing to the standard coordinates the

half-commutation relations abc = cba. On the other hand, we know from S̄N−1
R ⊂ S̄N−1

R,∗
that the standard coordinates on S̄N−1

R satisfy abc = −cba for a, b, c distinct, and abc = cba
otherwise. Thus, the relations brought by intersecting with SN−1

R,∗ reduce to the relations

abc = 0 for a, b, c distinct, and so we are led to the sphere S̄N−1,1
R .
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(4) SN−1
R,∗ ∩ S̄

N−1
R,∗ is obtained from S̄N−1

R,∗ by imposing the relations abc = −cba for a, b, c
distinct, and abc = cba otherwise. Since we know that abc = cba for any a, b, c, the extra
relations reduce to abc = 0 for a, b, c distinct, and so we are led to SN−1,1

R,∗ . �

In order to find now a suitable axiomatic framework for the 9 spheres, we use the
following definition, coming from the various formulae in sections 2 and 7:

Definition 8.2. Given variables x1, . . . , xN , any permutation σ ∈ Sk produces two col-
lections of relations between these variables, as follows:

(1) Untwisted relations: xi1 . . . xik = xiσ(1) . . . xiσ(k), for any i1, . . . , ik.

(2) Twisted relations: xi1 . . . xik = ε
(

ker( i1 ... ik
iσ(1)...iσ(k)

)
)
xiσ(1) . . . xiσ(k), for any i1, . . . , ik.

The untwisted relations are denoted Rσ, and the twisted ones are denoted R̄σ.

Observe that the relations Rσ are trivially satisfied for the standard coordinates on
SN−1
R , for any σ ∈ Sk. A twisted analogue of this fact holds, in the sense that the standard

coordinates on S̄N−1
R satisfy the relations R̄σ, for any σ ∈ Sk. Indeed, by anticommutation

we must have a formula of type xi1 . . . xik = ±xiσ(1) . . . xiσ(k) , and the sign ± obtained in

this way is precisely the one given above, ± = ε
(

ker( i1 ... ik
iσ(1)...iσ(k)

)
)

.

We have now all the needed ingredients for axiomatizing the various spheres:

Definition 8.3. We have 3 types of noncommutative spheres S ⊂ SN−1
R,+ , as follows:

(1) Untwisted: SN−1
R,E , with E ⊂ S∞, obtained via the relations {Rσ|σ ∈ E}.

(2) Twisted: S̄N−1
R,F , with F ⊂ S∞, obtained via the relations {R̄σ|σ ∈ F}.

(3) Polygonal: SN−1
R,E,F = SN−1

R,E ∩ S̄
N−1
R,F , with E,F ⊂ S∞.

Observe that “untwisted” means precisely “monomial”, in the sense of section 2 above.
As examples, SN−1

R , SN−1
R,∗ , S

N−1
R,+ are untwisted, S̄N−1

R , S̄N−1
R,∗ , S

N−1
R,+ are twisted, and the 9

spheres in Proposition 8.1 above are all polygonal. Observe also that the set of polygonal
spheres is closed under intersections, due to the following formula:

SN−1
R,E,F ∩ S

N−1
R,E′,F ′ = SN−1

R,E∪E′,F∪F ′

Let us try now to understand the structure of the various types of spheres:

Proposition 8.4. The various spheres can be parametrized by groups, as follows:

(1) Untwisted case: SN−1
R,G , with G ⊂ S∞ filtered group.

(2) Twisted case: S̄N−1
R,H , with H ⊂ S∞ filtered group.

(3) Polygonal case: SN−1
R,G,H , with G,H ⊂ S∞ filtered groups.

Proof. Here (1) is from section 2 above, (2) follows similarly, by taking H ⊂ S∞ to be
the set of permutations σ ∈ S∞ having the property that the relations R̄σ hold for the
standard coordinates, and (3) follows from (1,2), by taking intersections. �
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Let us write now the 9 main polygonal spheres as in Proposition 8.4 (3). We say that
a polygonal sphere parametrization S = SN−1

R,G,H is “standard” when both filtered groups
G,H ⊂ S∞ are chosen to be maximal. In this case, Proposition 8.4 (3) and its proof tell
us that G,H encode all the monomial relations which hold in S.

We have the following result, extending some previous findings from section 2:

Theorem 8.5. The standard parametrization of the 9 main spheres is

S∞ S∗∞ {1} G/H

SN−1
R

// SN−1
R,∗

// SN−1
R,+ {1}

SN−1,1
R

//

OO

SN−1,1
R,∗

//

OO

S̄N−1
R,∗

OO

S∗∞

SN−1,0
R

//

OO

S̄N−1,1
R

//

OO

S̄N−1
R

OO

S∞

so these spheres come from the 3× 3 = 9 pairs of groups among {1} ⊂ S∗∞ ⊂ S∞.

Proof. The fact that we have parametrizations as above is known to hold for the 5 un-
twisted and twisted spheres, and for the remaining 4 spheres, this follows by intersecting.
In order to prove now that the parametrizations are standard, we must compute the
following two filtered groups, and show that we get the groups in the statement:

G = {σ ∈ S∞|the relations Rσ hold over S}

H = {σ ∈ S∞|the relations R̄σ hold over S}

As a first observation, by using the various inclusions between spheres, we just have to
compute G for the spheres on the bottom, and H for the spheres on the left:

X = SN−1,0
R , S̄N−1,1

R , S̄N−1
R =⇒ G = S∞, S

∗
∞, {1}

X = SN−1,0
R , SN−1,1

R , SN−1
R =⇒ H = S∞, S

∗
∞, {1}

The results for SN−1,0
R being clear, we are left with computing the remaining 4 groups,

for the spheres SN−1
R , S̄N−1

R , SN−1,1
R , S̄N−1,1

R . The proof here goes as follows:
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(1) SN−1
R . According to the definition of H = (Hk), we have:

Hk =
{
σ ∈ Sk

∣∣∣xi1 . . . xik = ε
(

ker( i1 ... ik
iσ(1)...iσ(k)

)
)
xiσ(1) . . . xiσ(k) ,∀i1, . . . , ik

}
=

{
σ ∈ Sk

∣∣∣ε(ker( i1 ... ik
iσ(1)...iσ(k)

)
)

= 1,∀i1, . . . , ik
}

=
{
σ ∈ Sk

∣∣∣ε(τ) = 1,∀τ ≤ σ
}

Now since for any σ ∈ Sk, σ 6= 1k, we can always find a partition τ ≤ σ satisfying
ε(τ) = −1, we deduce that we have Hk = {1k}, and so H = {1}, as desired.

(2) S̄N−1
R . The proof of G = {1} here is similar to the proof of H = {1} in (1) above,

by using the same combinatorial ingredient at the end.
(3) SN−1,1

R . By definition of H = (Hk), a permutation σ ∈ Sk belongs to Hk when the
following condition is satisfied, for any choice of the indices i1, . . . , ik:

xi1 . . . xik = ε
(

ker( i1 ... ik
iσ(1)...iσ(k)

)
)
xiσ(1) . . . xiσ(k)

When | ker i| = 1 this formula reads xkr = xkr , which is true. When | ker i| ≥ 3 this
formula is automatically satisfied as well, because by using the relations ab = ba, and
abc = 0 for a, b, c distinct, which both hold over SN−1,1

R , this formula reduces to 0 = 0.
Thus, we are left with studying the case | ker i| = 2. Here the quantities on the left
xi1 . . . xik will not vanish, so the sign on the right must be 1, and we therefore have:

Hk =
{
σ ∈ Sk

∣∣∣ε(τ) = 1,∀τ ≤ σ, |τ | = 2
}

Now by coloring the legs of σ clockwise ◦ • ◦ • . . ., the above condition is satisfied when
each string of σ joins a white leg to a black leg. Thus Hk = S∗k , as desired.

(4) S̄N−1,1
R . The proof of G = S∗∞ here is similar to the proof of H = S∗∞ in (3) above,

by using the same combinatorial ingredient at the end. �

We can now formulate a classification result, as follows:

Theorem 8.6. The following hold:

(1) SN−1
R ⊂ SN−1

R,∗ ⊂ SN−1
R,+ are the only untwisted monomial spheres.

(2) S̄N−1
R ⊂ S̄N−1

R,∗ ⊂ SN−1
R,+ are the only twisted monomial spheres.

(3) The 9 spheres in Theorem 8.5 are the only polygonal ones.

Proof. By using standard parametrizations, the above 3 statements are equivalent. Now
since (1) was proved in section 2 above, all the results hold true. �

Let us discuss now the computation of the quantum isometry groups of the 9 spheres.
The result here, extending previous findings from sections 3 and 7, is as follows:
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Theorem 8.7. The quantum isometry groups of the 9 polygonal spheres are

ON
// O∗N

// O+
N

HN
//

OO

H
[∞]
N

//

OO

Ō∗N

OO

H+
N

//

OO

HN
//

OO

ŌN

OO

where H+
N , H

[∞]
N and ŌN , O

∗
N , Ō

∗
N , O

∗
N are noncommutative versions of HN , ON .

Proof. We already know from sections 3 and 7 that the ON groups are the correct ones.
Regarding the missing 4 computations, those on the bottom left, our precise claim is that
we obtain in this way the hyperoctahedral group HN , its free version H+

N , and the “main”

intermediate liberation HN ⊂ H
[∞]
N ⊂ H+

N , as shown in the diagram above.
Generally speaking, we refer to [2] for the proof. In what follows we will only present the

main ideas. For the definition and for various technical facts regarding HN ⊂ H
[∞]
N ⊂ H+

N ,
that we will heavily use in what follows, we refer to [19].

SN−1,0
R . Our sphere here is SN−1,0

R = Z⊕N2 , formed by the endpoints of the N copies of

[−1, 1] on the coordinate axes of RN . Thus the quantum isometry group is H+
N .

SN−1,1
R . Since the elements {xixj|i ≤ j} are linearly independent, the trick in [10]

applies, and gives G+(X) ⊂ ON . Now since any affine isometric action U y SN−1,1
R must

permute the
(
N
2

)
copies of T which form our sphere, this gives the result.

S̄N−1,1
R . By using the maps πij : C(S̄N−1,1

R ) → C(S̄1
R) given by xk = 0 for k 6= i, j, we

see that the variables {xixj|i ≤ j} are once again linearly independent. With this fact in
hand, a suitable adaptation of the trick in [10] applies, and gives G+(X) ⊂ ŌN .

Consider now a quantum subgroup G ⊂ ŌN . In order to have a coaction map Φ :
C(S̄N−1,1

R ) → C(G) ⊗ C(S̄N−1,1
R ), given as usual by Φ(xi) =

∑
a uia ⊗ xa, the elements

Xi =
∑

a uia ⊗ xa must satisfy XiXjXk = 0, for any i, j, k distinct. We have:

XiXjXk =
∑
ab

(uiaujaukb + ujaukauib + ukauiaujb)⊗ x2
axb

Thus, in order for our quantum group G ⊂ ŌN to act on S̄N−1,1
R , its coordinates must

satisfy the following relations, for any i, j, k distinct:

uiaujaukb + ujaukauib + ukauiaujb = 0
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By multiplying to the right by ukb and then by summing over b, we deduce from this
that we have uiauja = 0, for any i, j. Now since the quotient of C(ŌN) by these latter

relations is C(HN), we conclude that we have G+(S̄N−1,1
R ) = HN , as claimed.

S̄N−1,1
R,∗ . Let us first prove that H

[∞]
N acts indeed on our sphere. With Xi =

∑
a uia⊗ xa

as usual, and by using the relations for SN−1,1
R,∗ , we have:

XiXjXk =
∑
abc

uiaujbukc ⊗ xaxbxc =
∑

a,b,c not distinct

uiaujbukc ⊗ xaxbxc

=
∑
a6=b

(uiaujaukb + uibujauka)⊗ x2
axb

+
∑
a6=b

uiaujbuka ⊗ xaxbxa +
∑
a

uiaujauka ⊗ x3
a

Now by using various formulae for H
[∞]
N , from [19], we obtain, for i, j, k distinct:

XiXjXk =
∑
a6=b

(0 · ukb + uib · 0)⊗ x2
axb +

∑
a6=b

0⊗ xaxbxa +
∑
a

(0 · uka)⊗ x3
a = 0

It remains to prove that we have XiXjXk = XkXjXi, for i, j, k not distinct. By
replacing i↔ k in the above formula of XiXjXk, we obtain:

XkXjXi =
∑
a6=b

(ukaujauib + ukbujauia)⊗ x2
axb

+
∑
a6=b

ukaujbuia ⊗ xaxbxa +
∑
a

ukaujauia ⊗ x3
a

Let us compare this formula with the above formula of XiXjXk. The last sum being 0
in both cases, we must prove that for any i, j, k not distinct and any a 6= b we have:

uiaujaukb + uibujauka = ukaujauib + ukbujauia

uiaujbuka = ukaujbuia

By symmetry the three cases i = j, i = k, j = k reduce to two cases, i = j and i = k.
The case i = k being clear, we are left with the case i = j, where we must prove:

uiauiaukb + uibuiauka = ukauiauib + ukbuiauia

uiauibuka = ukauibuia

By using a 6= b, the first equality reads u2
iaukb+0·uka = uka ·0+ukbu

2
ia, and since we have

u2
iaukb = ukbu

2
ia, we are done. As for the second equality, this reads 0 · uka = uka · 0, which

is true as well, and this ends the proof. Finally, regarding the proof of the universality of
the action that we constructed, which is quite technical, we refer here to [2]. �
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