Normal random variables

Teo Banica

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CERGY-PONTOISE, F-95000
CERGY-PONTOISE, FRANCE. teo.banica@gmail.com



2010 Mathematics Subject Classification. 60C05

Key words and phrases. Random variable, Normal variable

ABSTRACT. This is an introduction to the various types of normal random variables,
with all needed preliminaries included. We first discuss the probability basics, standard
central limits, and the theory of the usual, real normal variables, with mathematics,
examples, illustrations, and all needed formulae. Then we go on a similar discussion
regarding the complex normal variables, and the Rayleigh variables too, again with
formulae and illustrations, and with a look into invariance questions too. We then move
to arbitrary dimensions, with a discussion regarding the Gaussian vectors, featuring
some functional analysis, and some geometry and physics too. Finally, we provide an
introduction to the various quantum versions of the central limits and normal variables,
and notably to those coming from free probability and random matrices.



Preface

What is a normal variable? Good question, depending on the type of measurements
that you make. Indeed, we have here real normal variables, complex normal variables,
general vector normal variables, and even some quantum versions of these.

This is an introduction to the various types of normal random variables, with all
needed preliminaries included. The book is organized in 4 parts, as follows:

I - We first discuss the probability basics, central limits, and the theory of the usual,
real normal variables, with mathematics, examples, illustrations, and formulae.

IT - Then we go on a similar discussion regarding the complex normal variables, and
the Rayleigh variables too, and with a look into invariance questions too.

IIT - We then move to arbitrary dimensions, with a discussion regarding the Gaussian
vectors, featuring some functional analysis, and some geometry and physics too.

IV - Finally, we provide an introduction to the various quantum versions of the normal
variables, and notably to those coming from free probability and random matrices.

Many thanks to my cats, for precious help with some of the asymptotics.

Cergy, January 2026
Teo Banica
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Part 1

Normal variables






CHAPTER 1

Random variables

la. Random variables

Generally speaking, probability theory is best learned by flipping coins, rolling dice,
or playing cards, and with such activities falling under the “discrete probability theory”
banner. In order to discuss this, let us start with an abstract definition, as follows:

DEFINITION 1.1. A discrete probability space is a set X, usually finite or countable,
whose elements x € X are called events, together with a function

P:X —[0,00)
called probability function, which is subject to the condition
> Px)=1
zeX
telling us that the overall probability for something to happen is 1.
As a first comment, our condition ) _. P(x) = 1 perfectly makes sense, and this

even if X is uncountable, because the sum of positive numbers is always defined, as a
number in [0, oo], and this no matter how many positive numbers we have.

As a second comment, we have chosen in the above not to assume that X is finite
or countable, and this for instance because we want to be able to regard any probability
function on N as a probability function on R, by setting P(z) =0 for = ¢ N.

As a third comment, once we have a probability function P : X — [0,00) as above,
with P(x) € [0, 1] telling us what the probability for an event z € X to happen is, we can
compute what the probability for a set of events Y C X to happen is, by setting:

P(Y)=) P(y)

But more on this, mathematical aspects of discrete probability theory, later, when
further building on Definition 1.1. For the moment, what we have above will do.

With this discussed, let us explore now the basic examples, coming from the real life.
And here, there are many things to be learned. As a first example, we have:

11



12 1. RANDOM VARIABLES

ExXAMPLE 1.2. Flipping coins.

Here things are simple and clear, because when you flip a coin the corresponding
discrete probability space, together with its probability measure, is as follows:

1
X = {heads, tails} , P(heads) = P(tails) = 5

In the case where the coin is biased, as to land on heads with probability 2/3, and on
tails with probability 1/3, the corresponding probability space is as follows:

2 1
X = {heads, tails} , P(heads)= 3 P(tails) = 3

More generally, given any number p € [0, 1], we have an abstract probability space as
follows, where we have replaced heads and tails by win and lose:

X = {Win, 1ose} , P(win)=p , P(lose)=1-p

Finally, things become more interesting when flipping a coin, biased or not, several
times in a row. We will be back to this in a moment, with details.

ExaMPLE 1.3. Rolling dice.

Again, things here are simple and clear, because when you throw a die the correspond-
ing probability space, together with its probability measure, is as follows:

1
X={1,...,6} , P() =g Vi
As before with coins, we can further complicate this by assuming that the die is biased,
say landing on face ¢ with probability p; € [0, 1]. In this case the corresponding probability
space, together with its probability measure, is as follows:

Also as before with coins, things become more interesting when throwing a die several
times in a row, or equivalently, when throwing several identical dice at the same time. In
this latter case, with n identically biased dice, the probability space is as follows:

X={1,...,6}" , Plir...i) =pi---Din pizO,Zpi:1
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Observe that the sum 1 condition in Definition 1.1 is indeed satisfied, and with this
proving that our dice modeling is bug-free, due to the following computation:

> P(i) = Y Pliy...iy)

i€EX DL yeeny in

= 1x...x1
=1

Getting back now to theory, in the general context of Definition 1.1, we can see that
what we have there is very close to the biased die, from Example 1.3. Indeed, in the
general context of Definition 1.1, we can say that what happens is that we have a die with
| X | faces, which is biased such that it lands on face i with probability P(7).

Which is something quite interesting, allowing us to have some intuition on what is
going on, in discrete probability. So, let us record this finding, as follows:

CONCLUSION 1.4. Discrete probability can be understood as being about throwing a
general die, having an arbitrary number of faces, and which is arbitrarily biased too.

Moving on, with some further probability computations, at a more advanced level,
which is playing cards, we have the following result, which is very useful in practice:

THEOREM 1.5. The probabilities at poker are as follows:

(1) One pair: 0.533.
(2) Two pairs: 0.120.
(3) Three of a kind: 0.053.
(4) Full house: 0.006.
(5) Straight: 0.005.
(6) Four of a kind: 0.001.
(7) Flush: 0.000.
(8) Straight flush: 0.000.
PROOF. Let us consider indeed our deck of 32 cards, 7,8,9,10, J,Q, K, A. The total
number of possibilities for a poker hand is:

<32) ~32-31-30-29-28

—32.31.929.
5 2-3-4-5 32:3 9.7
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(1) For having a pair, the number of possibilities is:

() () e

Thus, the probability of having a pair is:
8-6-35-64 6-5-16 480
~32.31.20.7  31.20 809 0

(2) For having two pairs, the number of possibilities is:

- () () -mws

Thus, the probability of having two pairs is:

28 . 36 - .

8-36-24 :363:@:0.120
32-31-29-7 31-29 899

(3) For having three of a kind, the number of possibilities is:

= () () v

Thus, the probability of having three of a kind is:
8-4-21-16 3-16 48
~32.31.20.7 3129 809 0

(4) For having full house, the number of possibilities is:

()

Thus, the probability of having full house is:
8-4-7-6 6 6

P =

= = = — =0.006
32-31-29-7 31-29 899
(5) For having a straight, the number of possibilities is:
nt
N:4[(1) —4]:16-63
Thus, the probability of having a straight is:
16 - 63 9 9
P = 0.005

T32.31-29-7 2-31-29 1798
(6) For having four of a kind, the number of possibilities is:

(-0
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Thus, the probability of having four of a kind is:
8-7-4 1 1
32-31-29-7 31-29 899 000

(7) For having a flush, the number of possibilities is:

i) v

Thus, the probability of having a flush is:
B 4 - 66 B 33 9
0 32:-31-29-7  4-31-29-7 25172
(8) For having a straight flush, the number of possibilities is:

P

= 0.000

N=4-4
Thus, the probability of having a straight flush is:
4-4 1 1
~32.31-20-7  2.31-20-7 12586 OV
Thus, we have obtained the numbers in the statement. Il

Summarizing, probability is basically about binomials and factorials, and ultimately
about numbers. We will see later that, in connection with more advanced questions, of
continuous nature, some standard calculus comes into play as well.

Let us discuss now the general theory. The fundamental result in probability is the
Central Limit Theorem (CLT), and our next task will be that of explaining this. With
the idea in mind of doing things a bit abstractly, our starting point will be:

DEFINITION 1.6. Let X be a probability space, that is, a space with a probability mea-
sure, and with the corresponding integration denoted E, and called expectation.

(1) The random variables are the real functions f € L>(X).
(2) The moments of such a variable are the numbers My(f) = E(f*).

(3) The law of such a variable is the measure given by My(f) = [ #%dpus(x).

Here the fact that ;s exists indeed is well-known. By linearity, we would like to have
a real probability measure making hold the following formula, for any P € R[X]:

qunzépmmmm

By using a standard continuity argument, it is enough to have this formula for the
characteristic functions y; of the measurable sets of real numbers I C R:

mmunzémmmmm
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But this latter formula, which reads P(f € I) = ps(I), can serve as a definition for
s, and we are done. Alternatively, assuming some familiarity with measure theory, fi; is
the push-forward of the probability measure on X, via the function f: X — R.

Next in line, we need to talk about independence. We can do this as follows:
DEFINITION 1.7. Two variables f,g € L>(X) are called independent when
E(f*q') = E(f*) B(¢)
happens, for any k,l € N.

Again, this definition hides some non-trivial things. Indeed, by linearity, we would
like to have a formula as follows, valid for any polynomials P, Q@ € R[X]:

E[P(/)Q(9)] = E[P()] EIQ(9)]

By using a continuity argument, it is enough to have this formula for characteristic
functions x7, xs of the measurable sets of real numbers I, J C R:

Elxi(f)xs(9)] = Elx:(f)] Elxs(9)]
Thus, we are led to the usual definition of independence, namely:
P(fel,geJ)=P(fel)P(geJ)

All this might seem a bit abstract, but in practice, the idea is of course that f, g must
be independent, in an intuitive, real-life sense. As a first result now, we have:

PROPOSITION 1.8. Assuming that f,g € L>(X) are independent, we have
Hf+g = Hf* Hg
where *x s the convolution of real probability measures.

PRrROOF. We have the following computation, using the independence of f, g:
M(f+9) = B((f+9)")

- ¥ (5)zurs

T

- X (D)o

T
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On the other hand, by using the Fubini theorem, we have as well:

/R (g ) () = / ) ()i o)

- ¥ (’f) / iy () / Y dpy(y)
_ Z(fj)Mr(f)Mk—r(g>

T

Thus py44 and py * g have the same moments, so they coincide, as desired. U
Here is now a second result on independence, which is something more advanced:
THEOREM 1.9. Assuming that f,g € L>(X) are independent, we have
Fryg = FrFy
where F¢(z) = E(ef) is the Fourier transform.

ProoOF. We have the following computation, using Proposition 1.8 and Fubini:

Freoa) = [ e dusey)
= [ g )2

= [ e sl 1)
RxR

— /ezrzduf<z>/ezztd'ug(t>
R R

= Fy(x)Fy(z)
Thus, we are led to the conclusion in the statement. O
As a comment here, you might wonder what that i € C number in the definition of

the Fourier transform is good for. Good question, which will be answered, in due time.

This was for the foundations of probability theory, quickly explained. For further
reading, a classical book is Feller [28]. A nice, more modern book is Durrett [25].

1b. Poisson limits

Let us look more in detail at discrete probability theory. The mathematics here will
involve the Poisson laws p;, which appear via the Poisson Limit Theorem (PLT), that we
would like to explain now. Let us start with the following definition:
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DEFINITION 1.10. The Poisson law of parameter 1 is the following measure,

1 Ok

= g2 g

keN

and the Poisson law of parameter t > 0 is the following measure,

with the letter “p” standing for Poisson.

As a first observation, the above laws have indeed mass 1, as they should, due to the
following key formula, which is actually the key formula of all mathematics:

We will see in the moment why these measures appear a bit everywhere, in discrete
contexts, the reasons for this coming from the Poisson Limit Theorem (PLT). Let us first
develop some general theory. We first have the following result:

THEOREM 1.11. The mean and variance of p; are given by:
E=t , V=t
In particular for the Poisson law p; we have E =1,V = 1.
Proor. We have two computations to be performed, as follows:

(1) Regarding the mean, this can be computed as follows:

tk
E = e_tZg'kf

k>0
K=
= (k—1)!
tl+1
—t
2N
>0
t tl
= fte Zﬁ
>0
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(2) For the variance, we first compute the second moment, as follows:

tk
M2 = e_tZE'kQ

k>0
thk
. —t
e, (k— 1)
k>1
tl+1(l+1)
—t
-y
|
= [!
t tt
= teit W—i‘t —t ﬁ
>0 >0
= te*tz t ot
= (1—1)
tm
= 2t — +t
mzmm!
= "+t

(3) Thus the variance is given by the following formula:

V — MQ—EQ
= (P +1t) -t
=t

We are therefore led to the conclusions in the statement.

At the theoretical level now, we have the following result:

THEOREM 1.12. We have the following formula, for any s,t > 0,

Ds * Pt = Ps+t

so the Poisson laws form a convolution semigroup.

19



20 1. RANDOM VARIABLES

PROOF. By using d; * ; = dx4; and the binomial formula, we obtain:

pskp; = e’ —5k*e_tzl'5l
k

k;tl

= thS 0

n k+l=n

= e tznu Z k'l‘

k+l=n

_ —s—t (8+t)
R Pt

= Ps+t
Thus, we are led to the conclusion in the statement.

Next in line, we have the following result, which is fundamental as well:
THEOREM 1.13. The Poisson laws appear as formal exponentials

tk(51 - 50)*k
Pt = Z T

k
with respect to the convolution of measures *.

PROOF. By using the binomial formula, the measure on the right is:

¢k . k!

= Pt
Thus, we are led to the conclusion in the statement.
Regarding now the Fourier transform computation, this is as follows:
THEOREM 1.14. The Fourier transform of p; is given by

F,.(y) = exp ((eiy — 1)t)

for any t > 0.
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PRrROOF. We have indeed the following computation:

e
Fpt(y) = e’ EF(Sk(y)
— K

t tr ik
_ - 2 iky
= € Zk!e

k
—t (eiyt)k
k!

= exp(—t) exp(e™t)
= exp ((e¥ —1)t)
Thus, we obtain the formula in the statement. U

Observe that the above formula gives an alternative proof for Theorem 1.12; by using
the fact that the logarithm of the Fourier transform linearizes the convolution.

As another application of the above Fourier transform formula, which is of key impor-
tance, we can now establish the Poisson Limit Theorem, as follows:

THEOREM 1.15 (PLT). We have the following convergence, in moments,
t t *7
((-1)asla)
n n

PROOF. Let us denote by v, the measure under the convolution sign, namely:

Vp = (1—2)504—3(51
n n

We have the following computation, for the Fourier transform of the limit:

. ¢ r
F&T(y> = ew"y e FVn (y) = (1 — _) + — ely
n n

= Fply) = ((1 - %) +%eiy)n
= Ly = (H@)n

—  F(y) =exp ((e¥ — 1)t)

Thus, we obtain indeed the Fourier transform of p;, as desired. Il

for any t > 0.

At the level of moments now, things are quite subtle for Poisson laws. We first have
the following result, dealing with the simplest case, where the parameter is ¢t = 1:
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THEOREM 1.16. The moments of p; are the Bell numbers,
Mi(p1) = [P (k)]
where P(k) is the set of partitions of {1,...,k}.

PRrROOF. The moments of p; are given by the following formula:
k

1
Me= 0300

We therefore have the following recurrence formula for these moments:

,,,.+1k‘+1
My = —Z CEN

- 3 ()

s

With this done, let us try now to find a recurrence for the Bell numbers:
By = |P(k)]

A partition of {1,...,k + 1} appears by choosing s neighbors for 1, among the k
numbers available, and then partitioning the £ — s elements left. Thus, we have:

By = Z (i) By_s

s

Thus, our moments M, satisfy the same recurrence as the numbers B;. Regarding
now the initial values, in what concerns the first moment of p;, we have:

Also, by using the above recurrence for the numbers My, we obtain from this:

1
M2—Z<S)Mks—1+1—2

s

On the other hand, By = 1 and B, = 2. Thus we obtain M, = By, as claimed. ]
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More generally now, we have the following result, dealing with the case t > 0:

THEOREM 1.17. The moments of p, with t > 0 are given by

— 3>

weP(k)
where |.| is the number of blocks.

PROOF. The moments of the Poisson law p; with ¢ > 0 are given by:

trk

Mk = e_tz 7'7;

T

We have the following recurrence formula for these moments:

trH(r 4 1)k
(r+1)!

, k
- (1)
T‘+1k‘
- Y ()
k‘ B tr—i—l,,Jc s
_ Z(s) ey

—_— zg: (]:) Mk_:

Regarding now the initial values, the first moment of p; is given by:

_ t" _ t"
M1:€ tzr—;’ﬂze th:t

r

Mk+1 =

Now by using the above recurrence we obtain from this:

1
My, =t Mi_s=t(1+t)=t+1¢
On the other hand, consider the numbers in the statement, namely:

— Y

weP(k)

23
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Since a partition of {1,...,k + 1} appears by choosing s neighbors for 1, among the
k numbers available, and then partitioning the k — s elements left, we have:

k
Sky1 = tz (s) Sk—s

As for the initial values of these numbers, these are S; = ¢, Sy = t + t2. Thus the
initial values coincide, and so these numbers are the moments of p;, as stated. U

Summarizing, we have so far a quite good understanding of discrete probability theory.
Of course, this is just the beginning of things, and we will be back to this, later.

1c. Central limits

Moving on, and in relation with what we want to do in this book, normal variables,
you have certainly heard about bell-shaped curves, and perhaps even observed them in
physics or chemistry class, because any routine measurement leads to such curves.

Mathematically, here is the question that we would like to solve:

QUESTION 1.18. Given random variables fi, fa, f3, ..., say taken discrete, which are
i.i.d., centered, and with common variance t > 0, do we have

1 n
% ; Ji~ g
in the n — oo limit, for some bell-shaped density g; ? And, what is the formula of g;?

Observe that this question perfectly makes sense, with the probability theory that we
know, say by assuming that our random variables fi, fo, f3, ... are discrete, as said above.
But of course, we would like to solve this question in general too.

As for the 1/4/n factor, there is certainly need for a normalization factor there, as for
things to have a chance to converge, and the good factor is 1/4/n, as shown by:

PROPOSITION 1.19. In order for a sum of the following type to have a chance to
converge, with f1, fa, f3,... being i.1.d., centered, and with common variance t > 0,

§=2 1
i=1
we must normalize this sum by a 1/+/n factor, as in Question 1.18.

PROOF. The idea here is to look at the moments of S. Since all variables f; are
centered, E(f;) = 0, so is their sum, E(S) = 0, and no contradiction here. However,
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when looking at the variance of S, which equals the second moment, due to E(S) = 0,
things become interesting, due to the following computation:

V(S) = E(S?
- E(Zfzfj)
= ZEw(fifj)
_ iE(ff)—i-;E(fi)E(fj)
= ZjE(ff) -

= nt

Thus, we are in need a normalization factor «, in order for our sum to have a chance
to converge. But, repeating the computation with S replaced by a.S gives:

V(aS) = a’nt
Thus, the good normalization factor is o = 1/4/n, as claimed. O

So far, so good, we have a nice problem above, and time now to make a plan, in order
to solve it. With the tools that we have, from this book so far, here is such a plan:
PLAN 1.20. In order to solve our central limiting question, we have to:

(1) Apply Fourier and let n — oo, as to compute the Fourier transform of g;.
(2) Do some combinatorics and calculus, as to compute the moments of g;.
(3) Recover g; out of its moments, again via combinatorics and calculus.

Getting to work now, let us start with (1). Things are quickly done here, by using the
standard linearization results for convolution, which lead to:

THEOREM 1.21. Given discrete variables f1, fa, f3,..., which are i.i.d., centered, and
with common variance t > 0, we have

1 n
%Zlfif\“gt

—ta? )2

with n — oo, with gy being the law having F(x) = e as Fourier transform.

PROOF. There are several things going on here, the idea being as follows:
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(1) Observe first that in terms of moments, the Fourier transform of an arbitrary
random variable f : X — R is given by the following formula:

Fy(z) = B(e")

B
— (i) E(f")
>

k=0

f: i* M (f) ok
k!
k=0
(2) In particular, in the case of a centered variable, E(f) = 0, as those that we are
interested in, the Fourier transform formula that we get is as follows:

M) M)
: !

Moreover, by further assuming that the Fourier variable is small, z ~ 0, the Fourier
transform formula that we get, that we will use in what follows, becomes:

Ms(f)
2

(3) In addition to this, we will also need to know what happens to the Fourier transform
when rescaling. But the formula here is very easy to find, as follows:

Fop(z) = E(e™)
= E(eio‘xf)
= Fylax)

(4) Good news, we can now do our computation. By using the above formulae in (2)
and (3), the Fourier transform of the variable in the statement is given by:

o - (o)

Ff(l’) =1

Fp(z)=1— -2® + O(z?)

2 n
ta? "
= |[1-=—+0(n"?
0]
N ta2]"
o 2n
—ta? /2
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(5) Thus, we are led to the conclusion in the statement, modulo the fact that we do

not know yet that a density ¢, having as Fourier transform F'(x) = e 17°/2 really exists.

(6) Summarizing, we can declare our theorem proved, modulo finding that law g,
which still remains to be done. But no worries here, we will do this, very soon. Il

Getting now to step (2) of our Plan 1.20, that is easy to work out too, via some
elementary one-variable calculus, with the result here being as follows:

THEOREM 1.22. The “normal” law g;, having as Fourier transform
F(z) = 71"/
must have all odd moments zero, and its even moments must be the numbers
Mi(ge) = tF2 x kI
where k!l = (kK —1)(k —3)(k—5)..., for k € 2N.
PROOF. Again, several things going on here, the idea being as follows:

(1) To start with, at the level of formalism and notations, in view of Question 1.18
and of Theorem 1.21, we have adopted the term “normal” for the mysterious law g; that
we are looking for, the one having F(z) = e~**/2 a5 Fourier transform.

(2) Getting towards the computation of the moments, as a first useful observation,

according to Theorem 1.21 this normal law g; must be centered, as shown by:

n
fi = centered — Z fi = centered
i=1

1 n
— — fi = centered
—> ¢; = centered

Moreover, the same argument works by replacing “centered” with “having an even
function as density”, and this shows, via some standard calculus, that we will leave here
as an exercise, that the odd moments of our normal law must vanish:

Mo11(ge) =0
Thus, first assertion proved, and we only have to care about the even moments.

(3) As a comment here, as we will see in a moment, our study below of the moments
computes in fact the odd moments too, as being all equal to 0, this time without making
reference to Theorem 1.21. Thus, definitely no worries with the odd moments.
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—tx?/2

(4) Getting to work now, we must reformulate the equation F(z) = e , in terms

of moments. We know from the proof of Theorem 1.21 that we have:

k=0 )

On the other hand, we have the following formula, for the exponential:

o)

21T
ftz2/2 o . rt x
¢ n Z( 1 2rr!

r=0

—tx?/2

Thus, our equation F(x) =e takes the following form:

(e 9] [e.9]

ZkMk:(gt) . Ttrl‘2r
D D e

k=0 ) r=0

(5) As a first observation, the odd moments must vanish, as said in (2) above. As for
the even moments, these can be computed as follows:
tk/2
X _—
2K/2(k /2)!
k!
2K/2(k/2)!
2.3-4...(k—1)-k
2-4-6... (k—2)-k
= t"2%x3.5. . (k=3)(k—1)
= "2 x kll

A4k(gt) = k!
= th2x

= F/2 %

Thus, we are led to the formula in the statement. Il

The moment formula that we found is quite interesting, and before going ahead with
step (3) of our Plan 1.20, let us look a bit at this, and see what we can further say.

To be more precise, in analogy with what we know from before about the Poisson laws,
making reference to interesting combinatorics and partitions, when it comes to computing
moments, we have the following result, regarding the normal laws:

THEOREM 1.23. The moments of the normal law g; are given by
Mi(g:) = 72| Py(k)|
for any k € N, with Py(k) standing for the pairings of {1,...,k}.
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ProoF. This is a reformulation of Theorem 1.22, the idea being as follows:

(1) We know from Theorem 1.22 that the moments of the normal law My = M (g;)
that we are interested in are given by the following formula, with the convention k!! =0
for k odd, and k! = (k — 1)(k — 3)(k — 5) ... for k even, for the double factorials:

Mi(ge) = t*/% x kN

Now observe that, according to our above convention for the double factorials, these
are subject to the following recurrence relation, with initial data 1! = 0,2!! = 1:

kKl = (k — 1)(k — 2)!

We conclude that the moments of the normal law M) = M;(g;) are subject to the
following recurrence relation, with initial data M; = 0, My = t:

M, = t(k — 1)My_s

(2) On the other hand, let us first count the pairings of the set {1,...,k}. In order
to have such a pairing, we must pair 1 with one of the numbers 2, ..., k, and then use a
pairing of the remaining k£ — 2 numbers. Thus, we have the following recurrence formula
for the number Py of such pairings, with the initial data P, =0, P, = 1:

P,=(k—1)P,2

Now by multiplying by t*/2, the resulting numbers N, = t*/2P, will be subject to the
following recurrence relation, with initial data Ny = 0, Ny = ¢:

Ny, = t(k — 1)Ny_s

(3) Thus, the moments My = My(g;) and the numbers N = tk12p, are subject to the
same recurrence relation, with the same initial data, so they are equal, as claimed. Il

Still in analogy with what we know from before about the Poisson laws, we can further
process what we found in Theorem 1.23, and we are led in this way to:

THEOREM 1.24. The moments of the normal law g; are given by

My(g)= Y "

ﬂ‘EPg(k)
where Py(k) is the set of pairings of {1,...,k}, and |.| is the number of blocks.

Proor. This is a quick reformulation of Theorem 1.23, with the number of blocks of
a pairing of {1,...,k} being trivially k£/2, independently of the pairing. O

As a philosophical conclusion now to all this, let us formulate:
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CONCLUSION 1.25. The normal laws g; have properties which are quite similar to those
of the Poisson laws p;, and combinatorially, the passage

Pt — 9t
appears by replacing the partitions with the pairings.

Which sounds quite conceptual, and promising, hope you agree with me. In the
meantime, however, we still need to know what the density of g, is.

1d. Density search

So, let us get now to step (3) of our Plan 1.20. This does not look obvious at all, but
some partial integration know-how leads us to the following statement:

THEOREM 1.26. The normal laws are given by

1 6—x2/2tdl,

gt = \/ﬂ ] I
with the constant on the bottom being I = fR e dx.
ProoOF. This comes from partial integration, as follows:

(1) Let us first do a naive computation. Consider the following quantities:

Mk—/xkemzdx
R

It is quite obvious that by partial integration we will get a recurrence formula for these
numbers, similar to the one that we have for the moments of the normal laws. So, let us
do this. By partial integration we obtain the following formula, for any k£ € N:

1 /
M, = ——/xk_l (e_x2> dx
2 Jr

1
= 5/(!{—1)1"“26’”2613:
R
kE—1
AL VA
5 k—2

(2) Thus, we are on the good way, with the recurrence formula that we got being the
same as that for the moments of g, /5. Now let us fine-tune this, as to reach to the same
recurrence as for the moments of g,. Consider the following quantities:

Ny = /xke_xQ/Qtdx
R
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By partial integration as before, we obtain the following formula:

/
N, = /(t;vk_l) (—e‘x2/2t> dx
R
= /t(k — 1)ak2e " 2y
R

= tlk— 1)/l’k_26_x2/2td$
R
- t(k’ - 1)Nk_2

(3) Thus, almost done, and it remains to discuss normalization. We know from the
above that we must have a formula as follows, with ; being a certain constant:

1

= Tt e~ 2 gy

gt

But the constant I; must be the one making g; of mass 1, and so:

I, = /e$2/2tdx
R

_ / e 2012 /oty
R
= V2 / eV’ dy
R
Thus, we are led to the formula in the statement. Il

What we did in the above is good work, and it remains to compute the constant [
appearing in Theorem 1.26. So, almost done, modulo solving the following question:

_ 2
/ewdx:?
R

However, and here comes the bad news, this integral seems impossible to compute,
with the usual tools of calculus. So, let us formulate the following question:

QUESTION 1.27. What is the value of the following integral,

]:/e_xde
R

that we need as input, for our normal variable theory?

And good question this is. We will see in the next chapter that this question can be
solved indeed, but only with some advanced integration know-how.
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le. Exercises

This was a standard introduction to probability, mostly focusing on enumerating,
counting, and other discrete aspects, and as exercises on this, we have:

EXERCISE 1.28.
EXERCISE 1.29.
EXERCISE 1.30.
EXERCISE 1.31.
EXERCISE 1.32.
EXERCISE 1.33.
EXERCISE 1.34.

EXERCISE 1.35.

What happens when flipping a coin several times in a row?
What happens when rolling a die several times in a row?
Learn about the binomial laws, and their various properties.
Redo all the poker computations, using ordered hands.
Clarify if needed all the basics, including learning Fubina.
What can be i € C in the definition of Fourier good for?
Learn more about the Poisson laws, and their properties.

Spend a few days in trying to compute fR e d.

As bonus exercise, read some measure theory, which is needed for a good understanding
of probability theory, and with this being an excellent investment.



CHAPTER 2

Normal variables

2a. Calculus, Gauss

We recall from the previous chapter that we have unfinished business with the central
limits, with the remaining problem being as follows:

2
/6xdx:?
R

To be more precise, this integral is impossible to compute, with one-variable tech-
niques. However, we can solve it by using two dimensions, as follows:

THEOREM 2.1. We have the following formula,

/e_”’zdm =7
R

called Gauss integral formula.

PROOF. As already mentioned, this is something which is nearly impossible to prove,
with bare hands. However, this can be proved by using two dimensions, as follows:

//6_5"’2_92dxdy = 4/ / e‘x2_y2dxdy
R JR

/ vy ydtdy

/ 1+t2)dydt
1+t2) !

/ dydt

1+t2

— 122

)
)
-2
)+

= 2/ (arctant)’dt
0
=T
Thus, we are led to the conclusion in the statement. U

33
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Before going further, we would like to present as well a second proof for the Gauss
formula, which is quite standard too, using polar coordinates. Let us start with:

PROPOSITION 2.2. We have the change of variable formula

b d
/fmm:/fw@wwﬁ

where ¢ = ¢~ (a) and d = @~ (b).
ProOF. This follows with f = F”’, from the following differentiation rule:
(Fp)'(t) = F'(e(1)¢'(1)
Indeed, by integrating between ¢ and d, we obtain the result. U
In several variables now, things are quite similar, the result being as follows:

THEOREM 2.3. Given a transformation ¢ = (p1,...,¢nN), we have

L= [ oo

with the J, quantity, called Jacobian, being given by

J,(t) = det [( Z:; (:E))ij]

and with this generalizing the usual formula from one variable calculus.

Proor. This is something quite tricky, the idea being as follows:

(1) Observe first that this generalizes indeed the change of variable formula in 1
dimension, from Proposition 2.2, the point here being that the absolute value on the
derivative appears as to compensate for the lack of explicit bounds for the integral.

(2) As a second observation, we can assume if we want, by linearity, that we are dealing
with the constant function f = 1. For this function, our formula reads:

vol(E) = / T,(0))dt
e~ H(E)
In terms of D = ¢~ !(E), this amounts in proving that we have:

www»aéwww

Now since this latter formula is additive with respect to D, it is enough to prove it
for small cubes D. And here, as a first remark, our formula is clear for the linear maps
v, by using the definition of the determinant of real matrices, as a signed volume.
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(3) However, the extension of this to the case of non-linear maps ¢ is something which
looks non-trivial, so we will not follow this path, in what follows. So, while the above
f = 1 discussion is certainly something nice, our theorem is still in need of a proof.

(4) In order to prove the theorem, as stated, let us rather focus on the transformations
used ¢, instead of the functions to be integrated f. Our first claim is that the validity of
the theorem is stable under taking compositions of such transformations ¢.

(5) In order to prove this claim, consider a composition, as follows:
p:EF—>F |, v:D—FE | poty:D—F

Assuming that the theorem holds for ¢, 1, we have the following computation:

/F f@)ds = / (o)1 a(s)ds

_ / F(p 0 BT (W (1)) - |Ju(t)dt
:/fsoo Do (8)dt

Thus, our theorem holds as well for ¢ o, and we have proved our claim.

(6) Next, as a key ingredient, let us examine the case where we are in N = 2 dimen-
sions, and our transformation ¢ has one of the following special forms:

oz, y) = W(z,y),y) , v,y = (z,¢(y))

By symmetry, it is enough to deal with the first case. Here the Jacobian is di)/dx, and
by replacing if needed 1) — —1), we can assume that this Jacobian is positive, diy/dzx > 0.
Now by assuming as before that D = ¢~ 1(FE) is a rectangle, D = [a,b] X [c,d], we can
prove our formula by using the change of variables in 1 dimension, as follows:

/Ef(s)ds = / f(x,y)dxdy
= //ay) (x,y)dxdy

- / / P 9),0) % dndy
- /D Flo(8) T (1)t

(7) But with this, we can now prove the theorem, in N = 2 dimensions. Indeed, given
a transformation ¢ = (1, p2), consider the following two transformations:

¢(x,y) = (gol(x,y),y) ) ¢($ay) = (x7<102 © ¢71(x7y))
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We have then ¢ = 1) o ¢, and by using (6) for 1, ¢, which are of the special form there,
and then (3) for composing, we conclude that the theorem holds for ¢, as desired.

(8) Thus, theorem proved in N = 2 dimensions, and the extension of the above proof
to arbitrary N dimensions is straightforward, that we will leave this as an exercise. [

In order to discuss now the applications, in 2 dimensions, let us start with:

PROPOSITION 2.4. We have polar coordinates in 2 dimensions,
T = rcost
y = rsint
the corresponding Jacobian being J =r.

ProoOF. This is something elementary, with the Jacobian being as follows:

d(r cost) d(r cost)
dr dt
J =
d(rsint) d(rsint)
dr dt
_ |cost —rsint
~ [sint rcost
= rcos’t+rsin’t
= r
Thus, we have indeed the formula in the statement. Il

We can now compute the Gauss integral, which is the best calculus formula ever:

THEOREM 2.5. We have the following formula,
/ e dr = Nz
R

called Gauss integral formula.
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PROOF. Let I be the above integral. By using polar coordinates, we obtain:

P o— / / e~V dndy
R JR
2w 0o )
= / / e "rdrdt
o Jo
) 2\’
e
= 2 — d
1
— orlo— (==
- (3)]

= 7

Thus, we are led to the formula in the statement. U
Finally, let us record as well the following result, that we will need at some point:

THEOREM 2.6. We have spherical coordinates in 3 dimensions,

T = TCOSSs
Yy = rsinscost
z = rsinssint

2

the corresponding Jacobian being J(r,s,t) = r*sins.

PRrROOF. The fact that we have indeed spherical coordinates is clear. Regarding now
the Jacobian, this is given by the following formula:

J(r,s,t)

COS S —rsin s 0
= |sinscost rcosscost —rsinssint
sinssint rcosssint rsinscost

COS S —rsin s
sinscost rcosscost

COS S —rsin s

. . . + rsinscost
sinssint rcosssint

= r?sinssint

coss —rsins
sins rcoss

coss —rsins

. + rsinscos®t
sins 7rcoss

= rsinssin’®t

coss —rsins

= rsins(sin®t + cos®t) | .
sins  rcoss

= rsinsx1xr

= r’sins

Thus, we have indeed the formula in the statement. U
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Very nice all this, and getting back now to probability theory, and to our central
limiting question, raised some time ago, back in chapter 1, we can now fully answer this
question, and formulate the Central Limit Theorem (CLT), as follows:

THEOREM 2.7 (CLT). Given discrete random variables f1, fa, fs, ..., which are i.i.d.,
centered, and with common variance t > 0, we have

1 n
%;fiwgt

in the n — oo limit, in moments, with the limiting mesure being
1

= V27t

called normal, or Gaussian law of parameter t > 0.

2
e~ /2tdI

PRroor. This follows indeed from our various results above, and more specifically from
the results in chapter 1, complemented by Theorem 2.1, or Theorem 2.5. U

2b. Normal variables

Let us study now more in detail the laws that we found. Normally we already have
everything that is needed, but it is instructive at this point to do some computations,
based on the explicit formula of ¢g; found in Theorem 2.7. We first have:

PROPOSITION 2.8. We have the variance formula

Vig) =t
valid for any t > 0.
ProoF. We already know this, but we can establish this as well directly, starting from

our formula of g; from Theorem 2.7. Indeed, the first moment is 0, because our normal
law g; is centered. As for the second moment, this can be computed as follows:

1 2
My, = / 22 2y
2 V2t Jr

1 2 /
= tx (—e’x /Qt) dz
\ 27t /R( )
1 2
= te™ " /Ptdx
\ 27t /R

=t

We conclude from this that the variance is V' = M, = t, as claimed. (|

More generally, we can recover in this way the computation of all moments:
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THEOREM 2.9. The even moments of the normal law are the numbers
My (g;) = t°/% x k!
where k!l = (k—1)(k — 3)(k —5) ..., and the odd moments vanish.

PRrROOF. Again, we already know this, but we can establish this as well directly, start-
ing from our formula above of g;. Indeed, we have the following computation:

1 2
M, = kv /2t
k Tmf/]gy Y

1 IR
T Vnt /R(tyk ) (=) dy
1

— tHk — 1)y~ 2e v /2
oo /R ( )y y

1 2
= t(k—1)x / h2emv /2y
(k—1) Vo Y
- t(k’ - 1)Mk_2
Thus by recurrence, we are led to the formula in the statement. U

Here is another result, which is the key one for the study of the normal laws:
THEOREM 2.10. We have the following formula, valid for any t > 0:
Fy, () = et/
In particular, the normal laws satisfy gs * g = gs1¢, for any s,t > 0.

PROOF. As before, we already know this, but we can establish now the Fourier trans-
form formula as well directly, by using the explicit formula of g;, as follows:

1 2 /90ti
F (x — e Y /2t+2xyd
gt( ) \/ﬁ /R Yy
_ ! / o~ /VE— i)t 2 g
V27t Jr
1 _ 27t 2/2
= e~ T2/t
V2mt /R
1 —t 2/2/ _ .2
= —e e “dz
e R
e—tx2/2
As for the last assertion, this follows from the fact that log F}, is linear in t. O

Observe that, thinking retrospectively, the above computation formally solves the
question raised in chapter 1, and so could have been used there, afterwards. However, all
this remains based on the Gauss integral formula, and there is no escape from that.
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CLT, revised.

2. NORMAL VARIABLES

2c. CLT, revised

2d. Basic illustrations

Basic illustrations.

2e. Exercises

This was a standard chapter on the normal laws, and as exercises, we have:

EXERCISE 2.11.
EXERCISE 2.12.
EXERCISE 2.13.
EXERCISE 2.14.
EXERCISE 2.15.
EXERCISE 2.16.
EXERCISE 2.17.

EXERCISE 2.18.

Clarify the details in the first proof of the Gauss formula.

Clarify the details in the proof of the change of variables theorem.
Does the proof of this theorem simplify, for the polar coordinates?
What about spherical coordinates in 3D, any simplifications there?
By the way, clarify the range of the angles, in that 3D formula.
And also, learn about the stereographic projection too.

Learn some other proofs of the Gauss formula.

Further work on the exact convergence in the CLT.

As bonus exercise, do some experiments, reaching to normal law readings.



CHAPTER 3

Advanced formulae

3a. Cumulants

We have seen a lot of interesting combinatorics in the previous chapter, but this is not
the end of the story. Following Rota, let us formulate indeed the following definition:

DEFINITION 3.1. Associated to any real probability measure p = iy is the following
modification of the logarithm of the Fourier transform F,(¢) = E(e®7),

Ku(g) = log E(egf)

called cumulant-generating function. The Taylor coefficients k,(u) of this series, given by

GRS AL

are called cumulants of the measure . We also use the notations kg, Ky for these cumu-
lants and their generating series, where f is a variable following the law p.

In other words, the cumulants are more or less the coefficients of the logarithm of
the Fourier transform log F),, up to some normalizations. To be more precise, we have
K, (&) = log F,,(—i&), so the formula relating log F), to the cumulants k, (p) is:

log Fj(—=i€) = > kn(n) %
n=1 :

Equivalently, the formula relating log F}, to the cumulants &, (x) is:

08 Fu€) = 3 k) -

We will see in a moment the reasons for the above normalizations, namely change of
variables & — —i&, and Taylor coefficients instead of plain coefficients, the idea being that
for simple laws like g4, p;, we will obtain in this way very simple quantities. Let us also
mention that there is a reason for indexing the cumulants by n = 1,2, 3,... instead of
n=20,1,2,..., and more on this later, once we will have some theory and examples.

As a first observation, the sequence of cumulants kq, ko, k3, ... appears as a modifica-
tion of the sequence of moments M, My, Ms, ..., the numerics being as follows:

41
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PROPOSITION 3.2. The sequence of cumulants kq, ko, ks, ... appears as a modification
of the sequence of moments My, My, M3, ..., and uniquely determines . We have

ki = M,
ky = —M? + M,
ks = 2M; — 3M; My + Ms
ky = —6M;} + 12M7Z My — 3MZ — 4M; M3 + M,

in one sense, and in the other sense we have

My = k2 + ky
Ms = k¥ + 3kyky + ks
My = ki + 6kiky + 3k3 + 4k k3 + ky

with in both cases the correspondence being polynomaial, with integer coefficients.
ProoOF. We know from Definition 3.1 that the cumulants are given by:

log B(e) = Y k() &)

s=1

By exponentiating, we obtain from this the following formula:

E(eﬁf) = exp <Z ks(f) g)

Now by looking at the terms of order 1,2, 3,4, this gives the above formulae. O

The interest in cumulants comes from the fact that log F),, and so the cumulants &, (1)
too, linearize the convolution. To be more precise, we have the following result:

THEOREM 3.3. The cumulants have the following properties:
(1) kn(cf) = c"kn(f).
(2) ki(f+d) =ki(f) +d, and k,(f +d) = k,(f) forn > 1.
(3) kn(f +9) = kn(f) + kn(g), if f,g are independent.
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PROOF. Here (1) and (2) are both clear from definitions, because we have:
Kepva(€) = log E(e/+)
= log[egd . E(egcf)]
= &d+ Ky(cf)

As for (3), this follows from the fact that the Fourier transform Fy(§) = FE(e’f)
satisfies the following formula, whenever f, g are independent random variables:

Frig(§) = Fr(§)Fy(E)
Indeed, by applying the logarithm, we obtain the following formula:

log Fy14(§) = log Fy(€) + log Fy(€)
With the change of variables & — —i&, we obtain the following formula:

Kerg(f) = Kf(g) + Kg(f)
Thus, at the level of coefficients, we obtain k,(f + ¢) = kn(f) + kn(g), as claimed. O
At the level of examples now, we have the following result:

THEOREM 3.4. The sequence of cumulants ki, ks, ks, ... is as follows:

(1) For u =9, the cumulants are ¢,0,0,. ..
(2) For u = g; the cumulants are 0,t,0,0,. ..
(3) For u = p; the cumulants are t,t,t, ...

PrROOF. We have 3 computations to be done, the idea being as follows:
(1) For u = 6. we have the following computation:

Ku(f) = log E(ecg)

= log(e%)
But the plain coefficients of this series are the numbers ¢, 0,0, ..., and so the Taylor
coefficients of this series are these same numbers ¢, 0,0, ..., as claimed.

(2) For i = g; we have the following computation:

Ku(§) = log (i)
= logexp [—t(—i&)*/2]
= t&*/2

But the plain coefficients of this series are the numbers 0,¢/2,0,0,..., and so the
Taylor coefficients of this series are the numbers 0,¢,0,0,..., as claimed.
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(3) For pn = p; we have the following computation:

Ku(f) = log Fu(_ia
= logexp [(e""%) — 1)t]

(ef — 1)t

But the plain coefficients of this series are the numbers ¢/n!, and so the Taylor coeffi-
cients of this series are the numbers ¢,¢,t, ..., as claimed. Il

There are many other interesting illustrations. We will be back to this.

3b. Inversion formula

Getting back to theory now, the sequence of cumulants ki, ko, k3,... appears as a
modification of the sequence of moments My, My, M3, ..., and understanding the relation
between moments and cumulants will be our next task. Let us start with:

DEFINITION 3.5. The Mobius function of any lattice, and so of P, is given by

1 fr=v
M(TF, V) = - Zﬂ§7<1/ /,L(’]T,T) if TV
0 ifrLv

with the construction being performed by recurrence.
As an illustration here, for P(2) = {||,M}, we have by definition:
pl 1) = p(m,m) =1
Also, || < M, with no intermediate partition in between, so we obtain:
u(ll,1) = —p(l 1)) = -1
Finally, we have M £ ||, and so we have as well the following formula:
u(M, 1) =0

The main interest in the Mobius function comes from the Mobius inversion formula,
which in linear algebra terms can be stated and proved as follows:

THEOREM 3.6. We have the following implication,

f@ =Y gv) = gm)=> pyn)f

v<m v<m

valid for any two functions f,g: P(n) — C.



3B. INVERSION FORMULA 45

PRrROOF. Consider the adjacency matrix of P, given by the following formula:

A, = 1 %f T<v
0 frgLv
Our claim is that the inverse of this matrix is the Mobius matrix of P, given by:

Mm/ = /L<7T, V)

Indeed, the above matrix A is upper triangular, and when trying to invert it, we are
led to the recurrence in Definition 3.5, so to the Mobius matrix M. Thus we have:

M=A"
Thus, in practice, we are led to the inversion formula in the statement. U
With these ingredients in hand, let us go back to probability. We first have:
DEFINITION 3.7. We define quantities M, (f), k.(f), depending on partitions
m e P(k)
by starting with M, (f), k.(f), and using multiplicativity over the blocks.

To be more precise, the convention here is that for the one-block partition 1, € P(n),
the corresponding moment and cumulant are the usual ones, namely:

Mln(f):Mn(f) ) k1n<f):kn<f)

Then, for an arbitrary partition = € P(k), we decompose this partition into blocks,
having sizes by, ..., bs, and we set, by multiplicativity over blocks:

M (f) = My, (f) - My, () ka(f) =k, (f) - K, (f)

With this convention, following Rota and others, we can now formulate a key result,
fully clarifying the relation between moments and cumulants, as follows:

THEOREM 3.8. We have the moment-cumulant formulae

My(f)= Y k(f) o k()= D nl(v, 1) M(f)
)

veP(n vEP(n)

or, equivalently, we have the moment-cumulant formulae

M(f) = k() o kalf) =D v, )M, (f)

v<mw v<m

where u is the Mébius function of P(n).
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PROOF. There are several things going on here, the idea being as follows:

(1) According to our conventions above, the first set of formulae is equivalent to the
second set of formulae. Also, due to the Mobius inversion formula, in the second set
of formulae, the two formulae there are in fact equivalent. Thus, the 4 formulae in the
statement are all equivalent. In what follows we will focus on the first 2 formulae.

(2) Let us first work out some examples. At n = 1,2,3 the moment formula gives the
following equalities, which are in tune with the findings from Proposition 3.2:

M1:k|:k'1
M2:k||+k|—|:k%+k2
Ms = kjj| + kry + ko + ko 4 km = k7 + 3kiky + ks

At n = 4 now, which is a case which is of particular interest for certain considerations
to follow, the computation is as follows, again in tune with Proposition 3.2:

M, = k‘|‘|+(k?r||‘—f—...)+(l€|—m+...)+(k‘|—[—||+...)—|—/{:r|—|—|
6 t 3 terms 4t

= ki + 6k7ky + 3k3 + 4k1ks + ky

As for the cumulant formula, at n = 1,2,3 this gives the following formulae for the
cumulants, again in tune with the findings from Proposition 3.2:

ki = M, = M,
ke = (=1)M|| + Mn = —M7 + M,
ks = 2M)| + (=1)Mnj + (=1)Mn+ (=1)Mjn + M = 2M} — 3My My + M;

Finally, at n = 4, after computing the Mobius function of P(4), we obtain the following
formula for the fourth cumulant, again in tune with Proposition 3.2:

ki = (=6)M+2(Mq)+...)+ (1) (Mnn+...)+ (-1)(Mm|+...) + M
6 t 3 terms 4 ¢

= —6M;] 4+ 12M2My — 3MZ — 4M M + M,

(3) Time now to get to work, and prove the result. As mentioned above, the formulae
in the statement are all equivalent, and it is enough to prove the first one, namely:

Zk

veP(n

In order to do this, we use the very deﬁmtlon of the cumulants, namely:

log E(e*)) Z/{:
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By exponentiating, we obtain from this the following formula:

B(e) = exp (Z k(f) 5—,)

(4) Let us first compute the function on the left. This is easily done, as follows:

B(e) = E (fj “jﬁ”) S uns

n=0
(5) Regarding now the function on the right, this is given by:

o s 0 0o £5\P
exp (stm%) = Z(Zsﬂ’;(f) 1)

p=0
B 00 1 o 551 00 gsp
— pzoﬁslzlk81(f)5_1! ...... ;ksp(f)s_p!
0o 1 0 [e's) 631+...+8p

But the point now is that all this leads us into partitions. Indeed, we are summing
over indices si,...,s, € N, which can be thought of as corresponding to a partition of
n =51+ ...+ 5. 50, let us rewrite our sum, as a sum over partitions. For this purpose,
recall that the number of partitions v € P(n) having blocks of sizes si,...,s, is:

< n ) n!
51,35 P!l

Also, when resumming over partitions, there will be a p! factor as well, coming from
the permutations of si,...,s,. Thus, our sum can be rewritten as follows:

e POLE D 9 7 I S e

n=0 p= 0 Csi+.. A+sp=n

=Zn.2p, > (81"7’873)1651(1‘“)-~~k‘sp(f)

S1t+...+sp=n

— &
DI
n=0 veP(n)
(6) We are now in position to conclude. According to (3,4,5), we have:

S =30 3

veP(n
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Thus, we have the following formula, valid for any n € N:

Mu(f)= > k(f)

veP(n)

We are therefore led to the conclusions in the statement. O

3c. Stieltjes inversion

An interesting question, that we met since chapter 1, is how to recover a probability
measure out of its moments. And the answer here, which is non-trivial, is as follows:

THEOREM 3.9. The density of a real probability measure p can be recaptured from the
sequence of moments { My }r>o via the Stieltjes inversion formula

du(z) = 11\13 —% Im (G(x +it)) - dz

where the function on the right, given in terms of moments by
GE) ="+ ME?+ M 4 ...
is the Cauchy transform of the measure p.

PRrROOF. The Cauchy transform of our measure p is given by:

G = &' Mt
k=0

g—l
—>  duly
[ e
1
= | 7——duly
/Ré—y )
Now with & = x + it, we obtain the following formula:
(Gl +it)) = /Im b N auw)
1 1 1
= — — d
/R22’ <x—y+it x—y—it) Hy)

t
= —/Rmdu(y)
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By integrating over [a, b] we obtain, with the change of variables = = y + tz:
b b "
/a [m(G(iC + ’lt))dl' = — / / J}——Q—l—tQ dx dﬂ(y)
L.
= ————tdzdu(y
op (E2)P +8 W
/ /(b y /t »
= dz du(y
we 1+ 22

- —/ (arctan — Y arctan 2= y) du(y)
= t t

Now observe that with £ \, 0 we have:

~

3-5=0  (y<a
T _()== =
. b—vy a—vy 2 L2 (y = a)
11\1}3 arctan T arctan ; =q5—(=5)=7 (a<y<b)
0-(-H=3 =9
\_%_(_g =0 (y>b)
We therefore obtain the following formula:
b
b
lim [ Im(G(z+it))de = —7 (M(a, b) + M)
tNO J, 2
Thus, we are led to the conclusion in the statement. U

Before getting further, let us mention that the above result does not fully solve the
moment problem, because we still have the question of understanding when a sequence of

numbers My, My, M3, ... can be the moments of a measure p. For instance we certainly
must have My = 1, but we must have as well the following inequality:
My > M

In answer now, we have the following result, complementing Theorem 3.9:

THEOREM 3.10. A sequence of numbers My, My, My, M3, ... € R, with My =1, is the
series of moments of a real probability measure u precisely when:

My M; M,
M| >0 %0 ]\]\j‘[[l >0 , |My My M;|>0 |,
b My M; M,y

That is, the associated Hankel determinants must be all positive.
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PRrooF. This is something a bit more advanced, the idea being as follows:

(1) As a first observation, the positivity conditions in the statement tell us that the
following associated linear forms must be positive:

n
E CiéjMi+j Z 0
i,j=1

(2) But this is something very classical, in one sense the result being elementary,
coming from the following computation, which shows that we have positivity indeed:

n 2 n
/ Zcixi du(z) = /ZCiiji+jdﬂ(x)
R | R

1,j=1

n
= E CiéjMi+j

1,j=1

(3) As for the other sense, here the result comes once again from the above formula,
this time via some standard functional analysis. O

Getting back now to more concrete things, the point is that we have:

Fact 3.11. Given a graph X, with distinguished vertex x, we can talk about the prob-
ability measure p having as k-th moment the number of length k loops based at *:

As basic examples, for the graph N the moments must be the Catalan numbers Cy, and
for the graph Z, the moments must be the central binomial coefficients Dy,.

To be more precise, the first assertion, regarding the existence and uniqueness of u,
follows from a basic linear algebra computation, by diagonalizing the adjacency matrix of
X. As for the examples, involving the graphs N and 7Z, these are both very standard.

Needless to say, counting loops on graphs, as in Fact 3.11, is something important in
applied mathematics, and physics. So, back to our business now, motivated by all this,
as a basic application of the Stieltjes formula, let us solve the moment problem for the
Catalan numbers CY, and for the central binomial coefficients Dy. We first have:

THEOREM 3.12. The real measure having as even moments the Catalan numbers,
Cy = %H(Zkk), and having all odd moments 0 is the measure

1
"= 2—\/4 — x%dx
T

called Wigner semicircle law on [—2,2].
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PROOF. In order to apply the inversion formula, our starting point will be the well-
known formula for the generating series of the Catalan numbers, namely:

2z

> 1—+1—4
e
k=0

By using this formula with z = €72, we obtain the following formula:
GE) = 'Y o™
k=0
o 1=31 —4£2
262
(1 _ /1= 45*2)
VE—1

Now let us apply Theorem 3.9. The study here goes as follows:

N[ DO v I

N —

(1) According to the general philosophy of the Stieltjes formula, the first term, namely
€/2, which is “trivial”, will not contribute to the density.

(2) As for the second term, which is something non-trivial, this will contribute to the
density, the rule here being that the square root /&2 — 4 will be replaced by the “dual”
square root v/4 — z2 dx, and that we have to multiply everything by —1/.

(3) As a conclusion, by Stieltjes inversion we obtain the following density:

1 1 1
du(r) = —— - —=vV4 — x2dx = —V4 — 2%dx
s 2 27
Thus, we have obtained the mesure in the statement, and we are done. Il

We have the following version of the above result:

THEOREM 3.13. The real measure having as sequence of moments the Catalan num-

bers, Cy = %H(Qkk), s the measure

1
™ = 2—\/4x—1 —1ldx
T

called Marchenko-Pastur law on [0, 4].
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PROOF. As before, we use the standard formula for the generating series of the Catalan
numbers. With z = ¢! in that formula, we obtain the following formula:

G(E) = &) G
k=0
L 1= /1 -4t

= 5_. 2571
1
- 3oV

With this in hand, let us apply now the Stieltjes inversion formula, from Theorem 3.9.
We obtain, a bit as before in Theorem 3.12, the following density:

1 1 1
du(x) = ——- —5\/41'—1 —1ldz = 2—\/41;—1 —1ldz
T T
Thus, we are led to the conclusion in the statement. Il
Regarding now the central binomial coefficients, we have here:

THEOREM 3.14. The real probability measure having as moments the central binomial
coefficients, Dy = (2:), 1s the measure
1
a0 = ——————=dx
x4 — )

called arcsine law on [0, 4].

ProOF. We have the following computation, using some well-known formulae:

G = &) Dt
k=0

1 £\ "
pr— — D R —
¢ = ’“( 4)
_ 1 1
§

V1—4/¢
1
Ve

But this gives the density in the statement, via Theorem 3.9. U

Finally, we have the following version of the above result:
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THEOREM 3.15. The real probability measure having as moments the middle binomial
coefficients, Ej, = ([k];Q]), is the following law on [—2,2],
1 /2
_ L Aty
2n\V 2 —=x

called modified the arcsine law on [—2,2].

01 Xz

PRrROOF. In terms of the central binomial coefficients D), we have:

EQk = Dk ’ EQkfl - 5

2
Standard calculus based on the Taylor formula for (1 +¢)~/2 gives:

1 142z B > k
(i) -3
With z = £~ we obtain the following formula for the Cauchy transform:

G = ') B
_ L itz
e\V1—2e
_ Lf]Ee+2
- 5(\/5—2 1)

By Stieltjes inversion we obtain the density in the statement. O

Finally, the above technology applies of course to the normal laws too.

3d. Orthogonal polynomials
Let us start our discussion with the following standard result:

THEOREM 3.16. Any Hilbert space H has an orthonormal basis {e;}icr, which is by
definition a set of vectors whose span is dense in H, and which satisfy

< €65 >= 6ij
with § being a Kronecker symbol. The cardinality |I| of the index set, which can be finite,
countable, or uncountable, depends only on H, and is called dimension of H. We have
H ~ I*(I)

in the obvious way, mapping Y Nie; — (N;). The Hilbert spaces with dim H = |I| being
countable, such as [*(N), are all isomorphic, and are called separable.
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PROOF. We have many assertions here, the idea being as follows:

(1) In finite dimensions an orthonormal basis {e;};c; can be constructed by starting
with any vector space basis { f;}ics, and using the Gram-Schmidt procedure. As for the
other assertions, these are all clear, from basic linear algebra.

(2) In general, the same method works, namely Gram-Schmidt, with a subtlety coming
from the fact that the basis {e;};e; will not span in general the whole H, but just a dense
subspace of it, as it is in fact obvious by looking at the standard basis of [*(N).

(3) And there is a second subtlety as well, coming from the fact that the recurrence
procedure needed for Gram-Schmidt must be replaced by some sort of “transfinite recur-
rence”, using standard tools from logic, and more specifically the Zorn lemma.

(4) Finally, everything at the end, regarding our notion of separability for the Hilbert
spaces, is clear from definitions, and from our various results above. O

According to Theorem 3.16, there is only one separable Hilbert space, up to isomor-
phism. There are many interesting things that can be said, about this magic and unique
Hilbert space. As a first result such result, which is something theoretical, we have:

THEOREM 3.17. The following happen, in relation with separability:

(1) The Hilbert space H = L*[—1,1] is separable, with orthonormal basis coming by
applying Gram-Schmidt to the basis {x*}ren, coming from Weierstrass.

(2) In fact, any H = L*(R, ), with du(z) = f(z)dz, is separable, and the same
happens in higher dimensions, for H = L* (RN ), with du(z) = f(z)dw.

(3) More generally, given a separable abstract measured space X, the associated
Hilbert space of square-summable functions H = L*(X) is separable.

PROOF. Many things can be said here, the idea being as follows:

(1) The fact that H = L?*[—1,1] is separable is clear indeed from the Weierstrass
density theorem, which provides us with the algebraic basis g, = x*, which can be or-
thogonalized by using the Gram-Schmidt procedure, as explained in Theorem 3.16.

(2) Regarding now more general spaces, of type H = L*(R, ), we can use here the
same argument, after modifying if needed our measure s, in order for the functions g, = «*
to be indeed square-summable. As for higher dimensions, the situation here is similar,
because we can use here the multivariable polynomials gy (z) = 2% ... 25N,

(3) Finally, the last assertion, regarding the general spaces of type H = L?(X), which
generalizes all this, comes as a consequence of general measure theory, and we will leave
some learning, and working out the details here, as an instructive exercise. U

As a conclusion to all this, which is a bit philosophical, we have:
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CONCLUSION 3.18. We are interested in one space, namely the unique separable Hilbert
space H, but due to various technical reasons, it is often better to forget that we have
H = [*(N), and say instead that we have H = L*(X), with X being a separable measured
space, or simply say that H is an abstract separable Hilbert space.

It is also possible to make some physics comments here, with the unique separable
Hilbert space H from Conclusion 3.18, that we will be presumably obsessed with, in what
follows, being, and no surprise here, the space that we live in.

Let us go back now to Theorem 3.17 and its proof, which is something quite subtle.
That material leads us into orthogonal polynomials, which are defined as follows:

DEFINITION 3.19. The orthogonal polynomials with respect to du(x) = f(x)dzx are
polynomials Py, € R[x| of degree k € N, which are orthogonal inside H = L*(R, p):

/R Pu(@)Pw) f(a)de =0, W A1

Equivalently, these orthogonal polynomials { Py }ren, which are each unique modulo scalars,
appear from the Weierstrass basis {x*}ren, by doing Gram-Schmidt.

As a first observation, the orthogonal polynomials exist indeed for any real measure
dp(r) = f(x)dr, because we can obtain them from the monomials z* via Gram-Schmidt,
as indicated above. It is possible to be a bit more explicit here, as follows:

THEOREM 3.20. The orthogonal polynomials with respect to p are given by

My M, ... M,
My My ... Mgy
Py=c| : :
My My ... Mo
1 T ... "

where My = fR a¥du(z) are the moments of u, and ¢, € R* can be any numbers.

PROOF. Let us first see what happens at small values of £ € N. At k& = 0 our formula
is as follows, stating that the first polynomial Py must be a constant, as it should:

PO = C(]’Mo‘ = Cy
At k =1 now, again by using M, = 1, the formula is as follows:

My M,

P1201 1

= Cl(l' — Ml)
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But this is again the good formula, because the degree is 1, and we have:

<1L,P> = c1<l,x—M; >
= (< lz>—<1,M >)
= Cl(Ml—Ml)
=0

At k = 2 now, things get more complicated, with the formula being as follows:

Moy My M,
P2 = Cy Ml M2 M3
1 z 2P

However, no need for big computations here, in order to check the orthogonality,
because by using the fact that z* integrates up to M}, we obtain:

My My M,
<1, P >= / PQ(ZL‘)CZM(I’) =cy|M; My M3 =0
R My M, M,

Similarly, again by using the fact that x* integrates up to Mj, we have as well:

My My M,
<x, P >= / ng(z)d,u(x) =cy|M; My M3 =0
R My My Ms
Thus, result proved at k = 0, 1, 2, and the proof in general is similar. U

In practice now, all this leads us to a lot of interesting combinatorics, and countless
things can be said. For the simplest measured space X C R, which is the interval [—1, 1],
with its uniform measure, the orthogonal basis problem can be solved as follows:

THEOREM 3.21. The orthonormal polynomials for L?[—1,1], subject to

/_ PPy di =

1

and called Legendre polynomials, satisfy the equation
(1 —2®)P}/(x) — 22 P (x) + k(k + 1) Py(z) = 0
which s the Legendre equation from physics. Moreover, we have the formula

1 dr
=
called Rodrigues formula for the Legendre polynomials.

_ Iz)k
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PROOF. The idea here is that thinking at what Gram-Schmidt does, this is certainly
something by recurrence. And examining the recurrence leads to the Legendre equation.
As for the Rodrigues formula, we have two choices here, either by verifying that {P,} is
orthonormal, or by verifying the Legendre equation. And both methods work. O

The above result is just the tip of the iceberg, and as a continuation, we have:
THEOREM 3.22. The orthogonal polynomials for L?[—1, 1], with measure
du(z) = (1 — 2)*(1 + 2)°dx
called Jacobi polynomaials, satisfy as well a degree 2 equation, and are given by:

Py(z) = (;5{;)' (1—2)"*(1+ x)_B% [(1—2)*(1+2)°(1 — 2*)¥]

At o« = f = 0 we recover the Legendre polynomials, and at o = = j:% we recover the
Chebycheff polynomials of the first and second kind, from trigonometry.

ProOF. Obviously, many things going on here, and much more can be added, but the
idea is quite simple, namely that this appears as a generalization of Theorem 10.31. We
will leave learning more about all this as an interesting exercise. U

Getting now to other spaces X C R, of particular interest here is the following result,
which complements well Theorem 10.31, for the needs of basic quantum mechanics:

THEOREM 3.23. The orthogonal polynomials for L?[0,00), with scalar product

<ﬁg>:Amme@wﬂdx

are the Laguerre polynomials { Py}, given by the following formula,

e dF

called Rodrigues formula for the Laguerre polynomaials.

PROOF. The story here is very similar to that of the Legendre polynomials, and many
further things can be said here, with exercise for you to learn a bit about all this. U

Finally, regarding the space X = R itself, we have here the following result:
THEOREM 3.24. The orthogonal polynomials for L*(R), with scalar product

<ﬁg>=Amfumukxﬂm

are the Hermite polynomials { Py}, given by the following formula,

k
Pela) = (-1 (o)

called Rodrigues formula for the Hermite polynomials.
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PROOF. As before, the story here is quite similar to that of the Legendre and other
orthogonal polynomials, and exercise for you to learn a bit about all this. O

And with this, good news, end of the story with the orthogonal polynomials, at least
at the very introductory level, and this due to the following fact, which is something quite
technical, and that we will not attempt to prove, or even explain in detail here:

Fact 3.25. From an abstract point of view, coming from degree 2 equations, and
Rodrigues formulae for the solutions, there are only three types of “classical” orthogonal
polynomials, namely the Jacobi, Laguerre and Hermite ones, discussed above.

Finally, as already mentioned, the above results are very useful in the context of
basic quantum mechanics, and more specifically, for solving the hydrogen atom, following
Heisenberg and Schrodinger. Again, exercise for you to learn a bit about this.

3e. Exercises
We had a lot of combinatorics in this chapter, and as exercises, we have:
EXERCISE 3.26. Compute the cumulants of other known measures.
EXERCISE 3.27. Learn more about Mobius functions, and their applications.
EXERCISE 3.28. Clarify what happens for Dirac masses, in Stieltjes inversion.
EXERCISE 3.29. Clarify what we said above, regarding Hankel determinants.
EXERCISE 3.30. Do the Stieltjes inversion for the normal laws.
EXERCISE 3.31. Do the Stieltjes inversion for other known laws.
EXERCISE 3.32. Learn more about orthogonal polynomials, and their properties.
EXERCISE 3.33. In particular, get to know everything about Chebycheff polyomials.

As bonus exercise, read more about Hilbert spaces, and about operators too.



CHAPTER 4

Geometric aspects

4a. Spheres, Wallis

Let us work out now the general spherical coordinate formula, in arbitrary N dimen-
sions. The formula here, which generalizes those at N = 2, 3, is as follows:

THEOREM 4.1. We have spherical coordinates in N dimensions,
(

1 = rcost

To = rsint; costs

Tn_1 = rsint;sinty...sinty_ocosty_q
ry = rsint;sinty...sinty_osinty_;

\

the corresponding Jacobian being given by the following formula,
J(r,t) = rNtsinV 2ty sinV 3, L. sin® ty_ssinty_o
and with this generalizing the known formulae at N = 2, 3.
PROOF. As before, the fact that we have spherical coordinates is clear. Regarding
now the Jacobian, also as before, by developing over the last column, we have:
Jy = rsint;...sinty_osinty_; X sinty_1Jy_1
4+ rsint;...sinty_ocosty_1 X costy_1Jn_1
= rsint;...sinty_o(sin®ty_; + cos®ty_1)Jy_1
= rsint;...sinty_oJn_1
Thus, we obtain the formula in the statement, by recurrence. Il

As a comment here, the above convention for spherical coordinates is one among many;,
designed to best work in arbitrary N dimensions. Also, in what regards the precise range
of the angles tq,...,ty_1, we will leave this to you, as an instructive exercise.

As an application, let us compute the volumes of spheres. For this purpose, we must
understand how the products of coordinates integrate over spheres. Let us start with the
case N = 2. Here the sphere is the unit circle T, and with z = € the coordinates are
cost,sint. We can first integrate arbitrary powers of these coordinates, as follows:

59
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THEOREM 4.2 (Wallis). We have the following formulae,

/2 /2 (p) I
/ cosPtdt = / sin? t dt = (E) _p
0 0 2 (p+ 1!

where e(p) = 1 if p is even, and £(p) = 0 if p is odd, and where
m!l=(m—1)(m—3)(m—2>5)...
with the product ending at 2 if m s odd, and ending at 1 if m is even.

PROOF. Let us first compute the integral on the left in the statement:

/2
I, = / cos? t dt
0

We do this by partial integration. We have the following formula:
(cosPtsint) = pcosP ' t(—sint)sint + cos’ t cost
= pcosP™ t —pcosP 1t + cosPT ¢
= (p+1)cos®™t —pcosP 1t
By integrating between 0 and 7/2, we obtain the following formula:

(]9 + 1)]P+1 =ply
Thus we can compute [, by recurrence, and we obtain:

—1
)
D

p p—2

p—1 p—3
p p-2""
p—1 p—3 p—>

. . I, ¢
p p—2 p—4

p!! 7
(p+ D1 W

But Iy = § and I; = 1, so we get the result. As for the second formula, this follows from
the first one, with ¢t = 7 — s. Thus, we have proved both formulae in the statement. [

We can now compute the volume of the sphere, as follows:

THEOREM 4.3. The volume of the unit sphere in RY is given by
v — (z)[N/Q] 2N
2 (N + 1!
with our usual convention NIl = (N —1)(N —3)(N —5)...
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PROOF. Let us denote by B™ the positive part of the unit sphere, or rather unit ball
B, obtained by cutting this unit ball in 2V parts. At the level of volumes, we have:

vV =2Ny+

We have the following computation, using spherical coordinates:

VT o= / 1
Bt
1 /2 w/2
= // / PN leinV 2t L osinty o drdty .. din
o Jo 0
2

1 w/ /2 /2
= / erl dr / sinN72 f,‘l dtl . / sin tN,thN72 / 1dthl
0 0 0 0

1 <7T>[N/21 (N—2)t (N-3 2
= — X |= X . e — -
N7 \3 (N— DIl (N —2)l" 31 2l
1 (W)[N/Q] 1
ey — X —_ X —
N~ \2 (N — 1)

B <7r>[N/21 1
\2 (N + D!

Here we have used the following formula, for computing the exponent of 7 /2:

e(0)+e(l)+e2)+...+e(N—=2) = 14+0+1+...4e(N—2)

- [

N
]2
Thus, we are led to the formula in the statement. U

As main particular cases of the above formula, we have:

THEOREM 4.4. The volumes of the low-dimensional spheres are as follows:

(1) At N =1, the length of the unit interval is V = 2.
(2) At N =2, the area of the unit disk is V = m.
(3) At N = 3, the volume of the unit sphere is V = 4?”

(4) At N =4, the volume of the corresponding unit sphere is V = %2

PROOF. Some of these results are well-known, but we can obtain all of them as par-
ticular cases of the general formula in Theorem 4.3, as follows:

(1) At N=1weobtain V =1-2=2.
(2) At N =2 we obtain V = 7 -

[

= T.
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(3) At N =3 we obtain V =28 =4
(4)AtN:4weobtainV:7l—2-%:%2. O

We can compute in the same way the area of the sphere, the result being:

THEOREM 4.5. The area of the unit sphere in RY is given by

()"

oN

(N =1

with the our usual convention for double factorials, namely:
NIl'=(N—=1)(N—=3)(N —-5)...

In particular, at N = 2,3,4 we obtain respectively A = 27, 4m, 2m2.

PROOF. Regarding the first assertion, there is no need to compute again, because the
formula in the statement can be deduced from Theorem 4.3, as follows:

(1) We can either use a standard “pizza” argument, as in 1 dimension, which shows
that the area and volume of the sphere in R are related by the following formula:

A=N-V
Together with the formula in Theorem 4.3 for V', this gives the result.

(2) Or, we can start the computation in the same way as we started the proof of
Theorem 4.3, the beginning of this computation being as follows:

/2 w/2
’lJOl(SJr) = / / sinN*Qtl...sintN,Q dtl...dtN,1
0 0

Now by comparing with the beginning of the proof of Theorem 4.3, the only thing
that changes is the following quantity, which now dissapears:

' N-1 1
Lgr — —
/O r r N

Thus, we have vol(ST) = N - vol(B"), and so we obtain the following formula:
vol(S) = N - vol(B)

But this means A = N -V, and together with the formula in Theorem 4.3 for V,
this gives the result. As for the last assertion, this can be either worked out directly, or
deduced from the results for volumes that we have so far, by multiplying by V. O

Let us record as well the asymptotics, obtained via Stirling, as follows:
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THEOREM 4.6. The volume of the unit sphere in RY is given by

Ve~ <27re>N/2 1
N vV N

in the N — oo limit. As for the area, this is A= N -V.

PROOF. This is something very standard, the idea being as follows:

(1) We use the exact formula found in Theorem 4.3, namely:

m\ [V/2]
v=(3)

2N
(N + D

(2) But the double factorials can be estimated by using the Stirling formula. Indeed,
in the case where N = 2K is even, we have the following computation:

(N+ 1) = 2FK!
2K\ "
(—) Vo2rK

12

e

_ (ﬂ) =

e

As for the case where N = 2K — 1 is odd, here the estimate goes as follows:

(N+ 1)l =

12
|
VRN
[\
E
N—
=

ﬁ

>
VN
=l e
=




64 4. GEOMETRIC ASPECTS

(3) Now back to the spheres, when N is even, the estimate goes as follows:

V- )

() ()"
2 N VTN
B 2re\V? 1
- (%) &
As for the case where N is odd, here the estimate goes as follows:

Vo <E>(N1)/2 N
2 (N + 1)

12

N <E>(N—1)/2 o (£>N/2 1
\2 N V2N
B \/5 ore\V? 1
V(%) @
B ore\V? 1
- (%) 7
Thus, we are led to the uniform formula in the statement. O

4b. Spherical integrals

Let us discuss now the computation of arbitrary integrals over the sphere. We will
need an extension of the previous Wallis formula, from Theorem 4.2, as follows:

THEOREM 4.7 (Wallis). We have the following formula,
/W/Q cos? tsin?t dt = (Z)E(p)a(q) _ pliglt
0 2 (p+q+ 1)
where e(p) = 1 if p is even, and £(p) = 0 if p is odd, and where
mll=(m—1)(m—3)(m—2>5)...
with the product ending at 2 if m is odd, and ending at 1 if m is even.

PROOF. We use the same idea as in the proof of Theorem 4.2. Let I, be the integral
in the statement. In order to do the partial integration, observe that we have:

(cosPtsin?t) = pcosP ' t(—sint)sin?t
+ cosPt-gsin? ! tcost

= —pcosP ttsin?™ t + gcosP tsin? 1t
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By integrating between 0 and 7/2, we obtain, for p,q > 0:

pIp—l,q—i—l = qu-i—l,q—l
Thus, we can compute I, by recurrence. When ¢ is even we have:

—1
Iy = Z?Izﬂr?,q—?
¢=1 9=3,
p+1 .p+3 p+4,g—4
g—1 ¢g=3 ¢qg->5

: : I
p+1 p+3 p+b PO

7q_6

Cplig!
BTt

But the last term comes from Theorem 4.2, and we obtain the result:

pllig!

Iy = mfpw
pllg!!  sm\eta)  (p+ g)!!
= orara) G
T\ £(P)e(a) pllg!!
-3 ot

Observe that this gives the result for p even as well, by symmetry. Indeed, we have

I,,; = I, by using the following change of variables:

i T
=—-—5
2

In the remaining case now, where both p, ¢ are odd, we can use once again the formula

plp—14+1 = qlpt1,4-1 established above, and the recurrence goes as follows:

Ipq = ]%[p—m,q—z

a=1 q¢=3,

p-l-l p+3 p+4,9—4
q—l.q—3_q—5]
p+1 p+3 p+p PHo0

pllig! I
S (prg-ptTH
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In order to compute the last term, observe that we have:

/2
I, = / cosP tsintdt
0

1 w/2
= —— (cosPTht) dt
p+1Jo
B 1
- p+1
Thus, we can finish our computation in the case p, ¢ odd, as follows:
B plligh
Iy = CEX R Iptg-11
pllg!! 1
 (p+e—-D! p+g
pllg!
 (p+g+
Thus, we obtain the formula in the statement, the exponent of 7/2 appearing there
being e(p)e(q) = 0-0 = 0 in the present case, and this finishes the proof. O

We can now integrate over the spheres, as follows:

THEOREM 4.8. The polynomial integrals over the unit sphere S]fg_l C RY, with respect
to the normalized, mass 1 measure, are given by the following formula,
N — DUk k!
/ :U'fl...x]fVNd:U:( )t N
sy-1 (N + Xk, — 1)!!

valid when all exponents k; are even. If an exponent k; is odd, the integral vanishes.

PROOF. Assume first that one of the exponents k; is odd. We can make then the
following change of variables, which shows that the integral in the statement vanishes:

T, — —T;

Assume now that all exponents k; are even. As a first observation, the result holds
indeed at N = 2, due to the formula from Theorem 4.7, which reads:

/2 e(p)e(q) gl il
/ cosP tsin?t dt = (E) Pq = Pq
0 2 p+q+D"  (p+qg+ 1!

In the general case now, where the dimension N € N is arbitrary, the integral in the
statement can be written in spherical coordinates, as follows:

N w/2 w/2
I:—/ / xlfl...l‘écVNJdtl...dtN_l
A 0 0
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Here A is the area of the sphere, J is the Jacobian, and the 2 factor comes from the
restriction to the 1/2" part of the sphere where all the coordinates are positive. According
to Theorem 4.5, the normalization constant in front of the integral is:

oN 7o\ [N/
()

™

As for the unnormalized integral, this is given by:

w/2 /2
I = / / (costy )™ (sint; costy)r2
0 0

(sintysinty...sinty_pcosty_1)™-1
(sinty sints...sinty_osin tN_l)kN
sin™ 72 ¢, sinV 3¢5 . . . sin? tn_3sinty_o
dtl c.. dtN_l

By rearranging the terms, we obtain:

w/2
I' = / cosk ¢y sinfet AN EN=24 qp
0

/2
/ cosk? to ginfs T HRNEN=3 ¢ qp,
0

/2
/ COSkN_Q tN_Q SinkN_1+kN+1 tN_Q dtN_Q
0

w/2
/ cosFN=1 ¢y sinfN iy dty_q
0

Now by using the above-mentioned formula at N = 2, this gives:
EWky+ ...+ ky + N =2)Il ym\e(N=2)
(k14 ...+ ky + N — 1) <§>
Eoll(ks+ ...+ ky + N =3)!l /r\e(V=3)
(ka4 ...+ ky + N —2)! (5)

I/

kn_oW(ky—1 + ky + 1! (E)E(l)
(kn—o + kno1 +In+2)11\2
k:N_lllkN!! 7\ €(0)

(kn_1 + kn + 1) (5)
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Now let F' be the part involving the double factorials, and P be the part involving the
powers of /2, so that I’ = F - P. Regarding F, by cancelling terms we have:

k. k!
- (Zki+ N =1
As in what regards P, by summing the exponents, we obtain P = (%)[N/ﬂ‘ We can
now put everything together, and we obtain:
2N
I = —xFxP
T x F x
(N/2]
2 kR [N/2]
= |- (N — 1! x ! N X (E>
0 (3Xk; + N —1)!! 2
(N — DR Rt
(3Xk; + N — 1!
Thus, we are led to the conclusion in the statement. Il

Let us record as well the following useful version of the above formula:

THEOREM 4.9. We have the following integration formula over 51{{‘1 c RN, with
respect to the normalized, mass 1 measure, valid for any exponents k; € N,

o b ge = (2 OV Dkl e

R

with ¥ = [odds/2] if N is odd and ¥ = [(odds + 1)/2] if N is even, where “odds” denotes

the number of odd numbers in the sequence ky, ..., ky.

PROOF. As before, the formula holds at N = 2, due to Theorem 4.7. In general, the
integral in the statement can be written in spherical coordinates, as follows:

N w/2 w/2
1:—/ / af kg dty . dty
A Jo 0

Here A is the area of the sphere, J is the Jacobian, and the 2V factor comes from
the restriction to the 1/2" part of the sphere where all the coordinates are positive. The
normalization constant in front of the integral is, as before:

N [V/2]
27 _ <2> (N — 1)1

T
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As for the unnormalized integral, this can be written as before, as follows:

/2

I' = coskt ty gink2 T RN EN=2¢  qp

w/2

cosk? to ginfs T HRNEN=3 ¢ qp,

S— S—

/2
cosfN=2 ¢ o sinfv-1tEN Ly o dEy

w/2
cosfN=1 ¢y 1 sinfN tn  dty g

Now by using the formula at N = 2, we get:

r 7 kM(ks+ ...+ ky+ N =2 (2)6(k1,k2+...+kN+N—2)
2 (ki+...+ky+N-1DI \7
7 koll(ks 4 ...+ ky + N = 3)!! (Q)J(kz,k3+--.+kN+N—3)
2 (ka+...+ky+N-=21 \7
T kn_oWky_y + ky + D)1 20 Vool
2 (ky_o+ kn_1 + ky +2)! (%)
™ fen—_1 k! 9\ kN -1.kn)
2 (ky—1 +ky + D! (%)

In order to compute this quantity, let us denote by F' the part involving the double
factorials, and by P the part involving the powers of 7/2, so that we have:

I'=F-P
Regarding F', there are many cancellations there, and we end up with:

kel k!
(Ski + N — DI

As in what regards P, the ¢ exponents on the right sum up to the following number:

N-1
A(klaakN):Zé(kwszrl_"+kN+N_Z_1)
i=1
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In other words, with this notation, the above formula reads:
. (E>N—1 [T R TI T <3>A(’“’”"k“
2 (b1 +...+ky+N-DI\7
9\ Ak kn) =N+ kallko!l .. kalt
- (_) (k1 + ...+ kxy+ N =1
9\ Z(ho-hn)—[N/2] Jey W\l Eep !
(_) (kv +...+ky+ N =1

To be more precise, here the formula relating A to 3 follows from a number of simple
observations, the first of which being the fact that, due to obvious parity reasons, the
sequence of 0 numbers appearing in the definition of A cannot contain two consecutive
zeroes. Together with I = (2V/V)I', this gives the formula in the statement. O

™

A

4c. Hyperspherical laws
We can go back now to probability, and we have the following result:

THEOREM 4.10. The moments of the hyperspherical variables are

N — 1)lipl!
pgp — Y = Diiplt
/s]{s—lxl T W Ep-

and the rescaled variables y; = V/Nz; become normal and independent with N — oo.

PrROOF. The moment formula in the statement follows from the general formula from
Theorem 4.8. As a consequence, with N — oo we have the following estimate:

/ aPde ~ NP2 xpll
Sp !

= Nﬁp/2Mp(91>

Thus, the rescaled variables v Nx; become normal with N — oo, as claimed. As for
the proof of the asymptotic independence, this is standard too, once again by using the

formula in Theorem 4.8. Indeed, the joint moments of xy,...,xy are given by:
k1 kn (N =N RN
/Sﬂlgf—l Ty ... Ty dr = (N_‘_Ekz_l)”

—Sk;
~ N X k!l kn!!

By rescaling, the joint moments of the variables y; = vV Nx; are given by:
/ Yoy dr ~ kg k!
CEN

Thus, we have multiplicativity, and so independence with N — oo, as claimed. U
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4d. Rotation groups

Importantly, we can recover the normal laws as well in connection with the rotation
groups. Indeed, we have the following reformulation of Theorem 4.10:

THEOREM 4.11. We have the integration formula
N — 1)!ipht
/ U, dU = V= Diph
On (N +p—1!
and the rescaled variables Vi; = \/NUZ»]- become normal and independent with N — oo.

PrROOF. We use the basic fact that the rotations U € Op act on the points of the real
sphere z € Sg'~!, with the stabilizer of z = (1,0,...,0) being the subgroup Oy_; C Oy.
In algebraic terms, this gives an identification as follows:

SN = On/On4

In functional analytic terms, this result provides us with an embedding as follows, for
any ¢, which makes correspond the respective integration functionals:

C(Sg™) cCOn) @ — Uy
With this identification made, the result follows from Theorem 4.10. O
In order to go beyond this, we will need an advanced result, as follows:

THEOREM 4.12. The Haar integration over a closed subgroup G C, Uy is given on
the dense subalgebra of smooth functions by the Weingarten type formula

/ G -9 dg = D ()0 ()HWilm,v)
¢ m,veD(k)

valid for any colored integer k = e . .. ey and any multi-indices i, j, where D(k) is a linear
basis of Fix(v®), the associated generalized Kronecker symbols are given by

0r(i) =<m e ®...Qe, >
and Wy, = G is the inverse of the Gram matriz, Gy(m,v) =< 7,v >.

PRrOOF. This is something very standard, coming from the fact that the above inte-
grals form altogether the orthogonal projection P* onto the following space:

Fiz(v®) = span(D(k))

Consider now the following linear map, with D(k) = {£x} being as in the statement:

E(l’) = Z <$a€ﬂ' >€7r

weD(k)
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By a standard linear algebra computation, it follows that we have P = W E, where
W is the inverse of the restriction of E to the following space:

K= span(

ﬂweDw»

But this restriction is the linear map given by the matrix Gy, and so W is the linear
map given by the inverse matrix Wy = G;l, and this gives the result. U

In the easy case, we have the following more concrete result:

THEOREM 4.13. For an easy group G C Uy, coming from a category of partitions
D = (D(k,1)), we have the Weingarten formula

/ Gils, - 95, dg = Z 02 (1)0, () Wi (, )
G 7r1/6D

for any k = ey...ex and any i,j, where D(k) = D(0,k), 6 are usual Kronecker type
symbols, checking whether the indices match, and Wiy = G,;}V, with

GkN(ﬂ', I/) = N'WVV‘
where |.| is the number of blocks.

PrROOF. We use the abstract Weingarten formula, from Theorem 4.12. Indeed, the
Kronecker type symbols there are then the usual ones, as shown by:

5f7r(7') = <€7r76i1®-..®6ik >

— <Z(5 jl,...,]k €J1®...®€jk,6i1®...®6ik>

= Op(i1,. .., 0k)

The Gram matrix being as well the correct one, we obtain the result. U

Let us go back now to the general easy groups G C Uy, with the idea in mind of
computing the laws of truncated characters. First, we have the following formula:

PROPOSITION 4.14. The moments of truncated characters are given by the formula
/(911 + ...+ gss)kdg = TT(WkNGkS)
G

where Gy and Win = G,;]b are the associated Gram and Weingarten matrices.
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PRrROOF. We have indeed the following computation:

/(gll+-"+gss)kdg = ZZ/gllllglklkdg
G G

i1=1  ix=1

= ) Win(mw) Y o) 6:(0)0,(0)

m,veD(k) 11=1 ig=1
= Z Win (m,v)Grs(v, )
m,veD(k)
= TT(WkNGkS)
Thus, we have reached to the formula in the statement. U

In order to process now the above formula, and reach to concrete results, we must
impose on our group a uniformity condition. Let us start with:

PROPOSITION 4.15. For an easy group G = (Gx), coming from a category of partitions
D C P, the following conditions are equivalent:

(1) Gy-1 = Gy N Upn_1, via the embedding Ux_1 C Uy given by u — diag(u, 1).
(2) Gny_1 = Gy NUn_1, via the N possible diagonal embeddings Uy_1 C Uy.
(3) D is stable under the operation which consists in removing blocks.

If these conditions are satisfied, we say that G = (Gy) is uniform.

PROOF. The equivalence (1) <= (2) comes from the inclusion Sy C Gy, which
makes everything Sy-invariant. As for (1) <= (3), this is something standard too. O

Now back to the laws of truncated characters, we have the following result:
THEOREM 4.16. For a uniform easy group G = (Gn), we have the formula
li k ||
dm 2
weD(k)
with D C P being the associated category of partitions.

PRrOOF. We use Proposition 4.14. With s = [tN], the formula there becomes:

/ Xf = TT(WkNGk[tN])
GnN
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The point now is that in the uniform case the Gram matrix, and so the Weingarten
matrix too, is asymptotically diagonal. Thus, we obtain the following estimate:

/ = ST Wi )G (7, 7)
GnN

meD(k)

12

Z NI (NI

meD(k)

— 3

weD(k)
Thus, we are led to the formula in the statement. U

We can now enlarge our collection of truncated character results, and we have:

THEOREM 4.17. With N — oo, the laws of truncated characters are as follows:

(1) For Oy we obtain the Gaussian law g;.
(2) For Sy we obtain the Poisson law p;.
(3) For Hy we obtain the Bessel law by.

Proor. We already know these results at ¢ = 1. In the general case, ¢ > 0, these
follow via some standard combinatorics, from the formula in Theorem 4.16. U

4e. Exercises
This was a quite exciting geometric chapter, and as exercises, we have:
EXERCISE 4.18. Clarify the range of angles in the spherical coordinate formula.
EXERCISE 4.19. Memorize what comes from the first Wallis formula, at small p.
EXERCISE 4.20. Compute the volume of the unit sphere, by some other means.
EXERCISE 4.21. Learn if needed the proof of the Stirling formula, with full details.
EXERCISE 4.22. Tualking double factorials, learn about the gamma function too.
EXERCISE 4.23. Memorize what comes from the Wallis 2 formula, at small p, q.
EXERCISE 4.24. Compute the hyperspherical laws, at small values of N.
EXERCISE 4.25. Learn in detail the Weingarten formula, and its applications.

As bonus exercise, read a bit about analysis on manifolds, and about Lie groups too.
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Complex variables






CHAPTER 5

Complex variables

5a. Complex CLT

We have seen so far a number of interesting results regarding the normal laws, and
their geometric interpretation. As a main topic for this present Part II, let us discuss now
the complex analogues of all this. To start with, we have the following definition:

DEFINITION 5.1. A complex random variable is a variable f : X — C. In the discrete
case, the law of such a variable is the complex probability measure

,u:Zaidzi , ;>0 Z%’Il , ze€C

given by the following formula, with P being the probability over X,

p=> P(f=2z).

zeC

with the sum being finite or countable, as per our discretness assumption.

Observe the similarity with the analogous notions introduced in chapter 1, for the real
variables f : X — R. In fact, what we are doing here is to extend the formalism from
chapter 1, from real to complex, in a straightforward way. As a basic example for this,
any real variable f : X — R can be regarded as a complex variable f : X — C.

In order to understand the precise relation with the real theory, from chapter 1, we
can decompose any complex variable f : X — C as a sum, as follows:

f=g+ih . g=Re(f), h=1Im(f)
7
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With this done, we have the following computation, for the corresponding law:

po= Y P(f=2).

zeC

= Z P(f =2+ 1y)0pyiy

z,yeR

= Z P(g+ih =2+ iy)0s1iy

z,yeR

= Z P(g =T, h = y)6x+iy

z,yeR

In the case where the real and imaginary parts g,h : X — R are independent, we can
say more about this, with the above computation having the following continuation:

po= > Plg=2h=1y)0uy

z,yeR
= Y P(g=x)P(h=y)d,
z,yeR
= ) Plg=x)P(h=y)d, 3
z,yeR
— (Z P(g= x)(ic) x (Z P(h = y)5i31>
zeR yEeR
= g ki

To be more precise, we have used here in the beginning the independence of the
variables h, g : X — R, and at the end we have denoted the measure on the right, which
is obtained from py by putting this measure on the imaginary axis, by fy,.

All this is quite interesting, going beyond what we know so far about basic probability,
in the real case, so let us record this finding, along with a bit more, as follows:

THEOREM 5.2. For a discrete complex random variable f : X — C, decomposed into
real and imaginary parts as f = g+ ih, and with g, h assumed independent, we have

of = [ * Uit

with % being the usual convolution operation, 6, * 0y = 0,44, and with u — iy denoting the
rotated version, R — iR. If g, h are not independent, this formula does not hold.

Proor. We already know that the first assertion holds, as explained in the above.
As for the second assertion, this follows by carefully examining the above computation.
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Indeed, we have used only at one point the independence of g,h, so for the formula
[y = g * tpu, to hold, the equality used at that point, which is as follows, must hold:

Y Plg=a2,h=y)0uiy= Y Plg=2)P(h=y)dusy
z,yeR z,yeR
But this is the same as saying that the following must hold, for any x, y:
Plg=xzh=y)=Plg=x)P(h=y)
We conclude that, in order for the decomposition formula g1y = 14 * ipt5 to hold, the

real and imaginary parts g, h : X — R must be independent, as stated. O

Many other things can be said, along the same lines, inspired by the basic theory of
the complex numbers. Indeed, what we used in the above was the fact that any complex
number decomposes as z = x + iy with x,y € R, but at a more advanced level, we can
equally use formulae of type z = re®, or |z|*> = 2z and so on, and we are led in this way
to a whole collection of results, connecting real and complex probability theory.

Going now straight to the point, probabilistic limiting theorems, let us discuss the
complex analogue of the CLT. We have the following statement, to start with:

THEOREM 5.3. Given discrete complex variables fi, fo, f3, ... whose real and imaginary
parts are i.1.d., centered, and with common variance t > 0, we have

1 n
%ZlfiNCt

with n — o0, in moments, where C; is the law of a complexr variable whose real and
imaginary parts are independent, and each following the law g;.

Proor. This follows indeed from the real CLT, established in chapter 2, simply by
taking the real and imaginary parts of all the variables involved. U

It is tempting at this point to call Theorem 5.3 the complex CLT, or CCLT, but before
doing that, let us study a bit more all this. We would like to have a better understanding
of the limiting law C; at the end, and for this purpose, let us look at a sum as follows,
with a, b being real independent variables, both following the normal law g,:

c=a-+1b
To start with, this variable is centered, in a complex sense, because we have:
E(c) = E(a+ib)
= FE(a)+iE(b)
= 0+:-0
=0
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Regarding now the variance, things are more complicated, because the usual variance
formula from the real case, which is V(¢) = E(c?) in the centered case, will not provide
us with a positive number, in the case where our variable is not real. So, in order to
have a variance which is real, and positive too, we must rather use a formula of type
V(c) = E(|c|?), in the centered case. And, with this convention for the variance, we have
then the following computation, for the variance of the above variable ¢:

Vie) = E(|c¢f’)
= E(a®+b)
= E(d®) + E(’)
= V(a®) + V()
= t+t
= 2

But this suggests to divide everything by v/2, as to have in the end a variable having
complex variance ¢, in our sense, and we are led in this way into:

DEFINITION 5.4. The complex normal, or Gaussian law of parametert > 0 is

Gy = law <%(a + z’b))

where a,b are real and independent, each following the law g;.

In short, the complex normal laws appear as natural complexifications of the real
normal laws. As in the real case, these measures form convolution semigroups:

PROPOSITION 5.5. The complex Gaussian laws have the property
Gs * Gt = Gs+t
for any s,t > 0, and so they form a convolution semigroup.

Proor. This follows indeed from the real result, namely g, * g = g5+, established in
chapter 2, simply by taking real and imaginary parts. U

We have as well the following complex analogue of the CLT:

THEOREM 5.6 (CCLT). Given discrete complex variables fi, fo, f3, ... whose real and
imaginary parts are i.1.d. and centered, and having variance t > 0, we have

1 n
= Z fz ~ Gy
Vi
with n — 00, in moments.

Proor. This follows indeed from our previous CCLT result, from Theorem 5.3, by
dividing everything by v/2, as explained in the above. U
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5b. Wick formula

Regarding now the moments, the situation here is more complicated than in the real
case, because in order to have good results, we have to deal with both the complex
variables, and their conjugates. Let us formulate the following definition:

DEFINITION 5.7. The moments a complex variable f € L>(X) are the numbers
M, = E(f*)
depending on colored integers k = o e @ o ..., with the conventions
=1, fr=f ., =7
and multiplicativity, in order to define the colored powers f*.

As an illustration for this notion, which is something very intuitive, here are the
formulae of the four possible order 2 moments of a complex variable f:

Moo = E(f?) , Mo = E(ff)
Me =E(ff) , M= E(f?)

Observe that, since f, f commute, we have the following identity, which shows that
there is a bit of redundancy in our above definition, as formulated:

Moo = Moo

In fact, again since f, f commute, we can permute terms, in the general context of
Definition 5.7, and restrict the attention to exponents of the following type:

k:...OOO....,,,

However, our results about the complex Gaussian laws, and other complex laws, later
on, not to talk about laws of matrices, random matrices and other noncommuting vari-
ables, that will appear later too, will look better without doing this. So, we will use
Definition 5.7 as stated. Getting to work now, we first have the following result:

THEOREM 5.8. The moments of the complex normal law are given by

My(Gy) = {

tPp! (K uniform, of length 2p)
0 (k not uniform)

where k = o eeo... is called uniform when it contains the same number of o and e.

Proor. We must compute the moments, with respect to colored integer exponents
k =oeeo...as above, of the variable from Definition 5.4, namely:

1 :
f= E(a—i—zb)

We can assume that we are in the case t = 1, and the proof here goes as follows:
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(1) As a first observation, in the case where our exponent k = ceeo. .. is not uniform,
a standard rotation argument shows that the corresponding moment of f vanishes. To

be more precise, the variable f" = wf is complex Gaussian too, for any complex number
w € T, and from My(f) = Mi(f') we obtain My(f) = 0, in this case.

(2) In the uniform case now, where the exponent k = ceeo ... consists of p copies of
o and p copies of e | the corresponding moment can be computed as follows:

M, = /(ff)p

_ 1 2 2\p

_1 p 2 2p—2r
= ()/ /“

— zip r (f)(zr)!!(zp—m)!!

1 p! (2r)!  (2p—2r)!
2w £ ri(p—r)l 2rrl 277(p —1r)!

P! Z 2r\ (2p — 2r
o 4 —~\r p—r
(3) In order to finish now the computation, let us recall that we have the following
formula, coming from the generalized binomial formula, or from the Taylor formula:

A (&)
T+t = \4d 4
By taking the square of this series, we obtain the following formula:
1 —t\” 2r\ (2p — 2r
2 (7) 2 ()0
Now by looking at the coefficient of t on both sides, we conclude that the sum on the
right equals 4. Thus, we can finish the moment computation in (2), as follows:

RO I

We are therefore led to the conclusion in the statement. O
What we have in Theorem 5.8 is usually what is needed in practice, when dealing with

moments. But, as before with the real normal laws, or even before with the Poisson laws,
a better-looking statement regarding the moments is in terms of partitions.
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Indeed, given a colored integer k = o e eo ..., let us say that m € Py(k) is matching
when it pairs o — e symbols. With this convention, we have the following result:

THEOREM 5.9. The moments of the complex normal law are the numbers
My (Gy) = Z ¢
weP2(k)

where Py(k) are the matching pairings of {1,...,k}, and |.| is the number of blocks.

PRroOF. This is a reformulation of Theorem 5.8. Indeed, we can assume that we are
in the case t = 1, and here we know from Theorem 5.8 that the moments are:

M, — {<|k|/2>! (k uniform)

0 (k not uniform)

On the other hand, the numbers |Py(k)| are given by exactly the same formula. Indeed,
in order to have a matching pairing of k, our exponent £k = o e @ o ... must be uniform,
consisting of p copies of o and p copies of e, with p = |k|/2. But then the matching
pairings of k correspond to the permutations of the e symbols, as to be matched with
o symbols, and so we have p! such pairings. Thus, we have the same formula as for the
moments of f, and we are led to the conclusion in the statement. U

In practice, we also need to know how to compute joint moments. We have here:

THEOREM 5.10 (Wick formula). Given independent variables f;, each following the
complex normal law Gy, with t > 0 being a fived parameter, we have the formula

E (fikl .. fis) = 13/24 {7r € Pa(k)|m < kerz'}

where k = ky...ks and i = 11...15, for the joint moments of these variables, where
m < keri means that the indices of © must fit into the blocks of 7, in the obvious way.

Proor. This is something well-known, which can be proved as follows:

(1) Let us first discuss the case where we have a single variable f, which amounts in
taking f; = f for any ¢ in the formula in the statement. What we have to compute here
are the moments of f, with respect to colored integer exponents k = oeeo ... and the
formula in the statement tells us that these moments must be:

E(f*) = t"72|Py (k)|
But this is the formula in Theorem 5.9, so we are done with this case.

(2) In general now, when expanding the product fi'? o fzk and rearranging the terms,
we are left with doing a number of computations as in (1), and then making the product
of the expectations that we found. But this amounts in counting the partitions in the
statement, with the condition 7 < keri there standing for the fact that we are doing the
various type (1) computations independently, and then making the product. U
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The above statement is one of the possible formulations of the Wick formula, and
there are many more formulations, which are all useful. For instance, we have:

THEOREM 5.11 (Wick formula 2). Given independent variables f;, each following the
complex normal law Gy, with t > 0 being a fized parameter, we have the formula

E(fi-o fufl . f) = 54 {w € Siline) = jr,Vr}

for the non-vanishing joint moments of these variables.

Proo¥. This follows from the usual Wick formula, from Theorem 5.10. With some
changes in the indices and notations, the formula there reads:

B i) =24 {o € Po(K) o <ker T}

Now observe that we have Py(K) = (), unless the colored integer K = Kj...Kj
is uniform, in the sense that it contains the same number of o and e symbols. Up to
permutations, the non-trivial case, where the moment is non-vanishing, is the case where
the colored integer K = K7 ... K, is of the following special form:

K=00...000...0
—_—— —
k k

So, let us focus on this case, which is the non-trivial one. Here we have s = 2k, and
we can write the multi-index I = I ... I, in the following way:

I=1d1... 0 j1... ]k
With these changes made, the above usual Wick formula reads:
E(fi o fufl . ) = thg {a c PQ(K)‘U < ker(z’j)}

The point now is that the matching pairings o € Py(K), with K =o...ce...e of
length 2k, as above, correspond to the permutations 7= € Sy, in the obvious way. With
this identification made, the above modified usual Wick formula becomes:

E (le e 'fikf;l e f]*k) = tk# {ﬂ- S Sk 7:7r(7") = jrvvr}

Thus, we have reached to the formula in the statement, and we are done. Il

Finally, here is one more formulation of the Wick formula, useful as well:

THEOREM 5.12 (Wick formula 3). Given independent variables f;, each following the
complex normal law Gy, with t > 0 being a fived parameter, we have the formula

E(fify - fiudy) = 14 {7 € Seliney = i}

for the non-vanishing joint moments of these variables.
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Proor. This follows from our second Wick formula, from Theorem 5.11, simply by
permuting the terms, as to have an alternating sequence of plain and conjugate variables.
Alternatively, we can start with Theorem 5.10, and then perform the same manipulations
as in the proof of Theorem 5.11, but with the exponent being this time as follows:

K=o0eo0e...... ce
2%k
Thus, we are led to the conclusion in the statement. Il

5c. Complex spheres

Getting now to geometric aspects, we have the following variation of the formula for
spherical integrals from chapter 4, dealing now with the complex sphere:

THEOREM 5.13. We have the following integration formula over the complex sphere
Sév L CV, with respect to the normalized uniform measure,

N — D)k k!
/ |Zl|2k1...|ZN‘2kNdZ: ( ) 1
sh-1 (N + Z k; — 1)'
valid for any exponents k; € N. As for the other polynomial integrals in z1,...,zn and

their conjugates zy, ..., Zn, these all vanish.

Proor. Consider an arbitrary polynomial integral over S(JCV ~! containing the same
number of plain and conjugated variables, as to not vanish trivially, written as follows:

I = / ZilziQ c. ’Zi2k712’i2k dz
SNfl
C

By using transformations of type p — Ap with |A\| = 1, we see that this integral
vanishes, unless each z, appears as many times as z, does, and this gives the last assertion.
So, assume now that we are in the non-vanishing case. Then the k, copies of z, and the
k, copies of z, produce by multiplication a factor |z,|***, so we have:

I:/ |21|2k1...|ZN|2kN dz
gN-1

C
Now by using the standard identification S(]CV 1~ 52N e obtain:

I= [ )+ ) ey
S2N71

R

= Z (]ﬁ) o (kN) / a;fkl_%yf” .. .x?\'fN_%Ny?\fN d(z,y)
r]. SD%N—I

N
r1...TN
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By using the formula from chapter 4, for the real spheres, we obtain:

I
o k‘l ]{ZN (2N—1)”(27’1)”(27’]\[)”(2]{71—27“1)”(2]{3]\[—27“]\[)”
2 <7‘1)( ) (2N +23 k; — 1!

_ k1 Ea\ 2V 1V —1)! [1@r)/ (27! [T(2k; — 2ri)!/(2ki_ri(kzi —r))
= TLZ;N <7’1)( ) 2N+Zki—1(N+Zki_1)!

k1 En\ (N —D!I2r)! ... (2ry)(2ky — 2rp)! ... (2ky — 2rpy)!
= Z <7~1) oo (TN> 4Zkz(N+ Zkl — 1)'7’1' - .’I“N!(kfl — 7“1)! Ce (kN — ’I“N)!

N
71...TN

N

T1...TN

Now observe that can rewrite this quantity in the following way:

1
N — 4ZkZ(N+Zk’7,—1)'(’I"1'TN'(kil—Tl)'(k?N—TN)')Q

2r1) (2k1 = 2m 2ry (2kn — 2rn\ (N = 1)lk! .. ky!
;<T1)(k1_rl).”;(TN>(]€N_TN)4zki(N+Z/€i—1)!
(N = 1)lky! . k!
4XHk(N + 3k — 1)
(N = D)lky! . k!
(N+> k—1)!

Thus, we are led to the formula in the statement. O

= 4k x4k %

In what regards now the hyperspherical laws, the result here is as follows:
THEOREM 5.14. The rescalings /N z; of the unit complex sphere coordinates
z: St = C
as well as the rescalings \/NUZ-]- of the unitary group coordinates
Uyj Uy —C
become complex Gaussian and independent with N — oo.
PrROOF. We have several assertions to be proved, the idea being as follows:

(1) According to the formula in Theorem 5.13, the polynomials integrals in z;, Z; vanish,
unless the number of z;, z; is the same. In this latter case these terms can be grouped
together, by using 2;%; = |2|?, and the relevant integration formula is:

. (V=D
/sg—l‘zl’ gy T
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Now with N — oo, we obtain from this the following estimate:
/ |zi|#da ~ N7F x k!
sot

Thus, the rescaled variables v/Nz; become normal with N — oo, as claimed.

(2) As for the proof of the asymptotic independence, this is standard too, again by

using the formula in Theorem 5.13. Indeed, the joint moments of z1,..., 2y are given by:
N =Dkl k!
2k1 2k N d _ ( 1 n
/N_1|Z1‘ ol de (N + 3k — 1))

R

~ N_Eki Xl{fl'kN'

By rescaling, the joint moments of the variables y; = v Nz; are given by:
/ [y |22y Y dae ~ k! Ky
st

Thus, we have multiplicativity, and so independence with N — oo, as claimed.

(3) Regarding the last assertion, we can use here the basic fact that the rotations
U € Uy act on the points of the sphere z € SY ™!, with the stabilizer of z = (1,0,...,0)
being the subgroup Uyx_1 C Uy. In algebraic terms, this gives an equality as follows:

S =Un/Uyn_4

In functional analytic terms, this result provides us with an embedding as follows, for
any 4, which makes correspond the respective integration functionals:

C(sg™) cCUn) , = Uy
With this identification made, the result follows from (1,2). d

5d. Unitary groups
We can enlarge as well our collection of character results, as follows:

THEOREM 5.15. With N — oo, the laws of truncated characters are as follows:

) For Ux we obtain the complex Gaussian law Gy.
) For Sy we obtain the Poisson law p;.

) For Hy we obtain the Bessel law b;.

) For HY, we obtain the generalized Bessel law b;.
) For Ky we obtain the complex Bessel law By.

ProOOF. We already know these results in the real case, and in the complex case the
proof is similar, based on the real version of the Weingarten formula from chapter 4. [J
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Exercises:

EXERCISE 5.16.
EXERCISE 5.17.
EXERCISE 5.18.
EXERCISE 5.19.
EXERCISE 5.20.
EXERCISE 5.21.
EXERCISE 5.22.

EXERCISE 5.23.

Bonus exercise.

5. COMPLEX VARIABLES

5e. Exercises



CHAPTER 6

Rayleigh variables

6a. Rayleigh variables

As a consequence of the moment computations from chapter 5, we have:
THEOREM 6.1. The moments of the Rayleigh law, given by
R, = law(|Gy|)
are given by the following formula, at the parameter value t = 1,
M, = p!
and are given by the formula M, = tPp!, in general.
Proor. This follows indeed from the moment computations from chapter 5. U

Many other things can be said about the Rayleigh laws, which are quite interesting
mathematical objects, notably with some further formulae, regarding the Fourier trans-
form, and the cumulants, which can be obtained as a consequence of Theorem 6.1.

Let us record as well the following statement, called Rayleigh Central Limiting Theo-
rem, which is something of theoretical importance:

THEOREM 6.2 (RCLT). Given discrete complex variables fi, fa, f3, ... whose real and
imaginary parts are i.1.d. and centered, and having variance t > 0, we have

~ R,

1 n
=2
v i=1
with n — 00, in moments.

Proor. This follows indeed from our previous Central Limiting result, namely the
CCLT from chapter 5, by taking absolute values on both sides. O

As a comment here, observe that the Rayleigh laws, while being certainly real, capture
the essentials of the two-dimensional nature of the normal laws.

89
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Exercises:
EXERCISE 6.3.
EXERCISE 6.4.
EXERCISE 6.5.
EXERCISE 6.6.
EXERCISE 6.7.
EXERCISE 6.8.
EXERCISE 6.9.
EXERCISE 6.10.

Bonus exercise.

6. RAYLEIGH VARIABLES
6b.
6c.
6d.

6e. Exercises



CHAPTER 7

Formulae, analysis

7a. Formulae, analysis

7b.

7c.

7d.

7e. Exercises

Exercises:
EXERCISE 7.1.
EXERCISE 7.2.
EXERCISE 7.3.
EXERCISE 7.4.
EXERCISE 7.5.
EXERCISE 7.6.
EXERCISE 7.7.
EXERCISE 7.8.

Bonus exercise.
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CHAPTER 8

Invariance questions

8a. Invariance questions

8b.

8c.

8d.

8e. Exercises

Exercises:
EXERCISE 8.1.
EXERCISE 8.2.
EXERCISE 8.3.
EXERCISE 8.4.
EXERCISE 8.5.
EXERCISE 8.6.
EXERCISE 8.7.
EXERCISE 8.8.

Bonus exercise.
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CHAPTER 9

Gaussian vectors

9a. Gaussian vectors

9b.

9c.

9d.

9e. Exercises

Exercises:
EXERCISE 9.1.
EXERCISE 9.2.
EXERCISE 9.3.
EXERCISE 9.4.
EXERCISE 9.5.
EXERCISE 9.6.
EXERCISE 9.7.
EXERCISE 9.8.

Bonus exercise.
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Exercises:

EXERCISE 10.1.
EXERCISE 10.2.
EXERCISE 10.3.
EXERCISE 10.4.
EXERCISE 10.5.
EXERCISE 10.6.
EXERCISE 10.7.

EXERCISE 10.8.

Bonus exercise.

CHAPTER 10

Functional analysis

10a. Functional analysis
10b.
10c.
10d.

10e. Exercises
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CHAPTER 11

The heat kernel

11a. Heat diffusion

Time now for some applications of what we learned, to theoretical physics, and more
specifically, to thermodynamics. And with this being something significant, because it is
in relation with questions from thermodynamics that probability theory really shines.

As a main question, that we would like to investigate in this chapter, we have:

QUESTION 11.1. How does heat propagate, in the context of two of several materials
put in contact, or even in the case of a single material, not uniformly heated?

As a first observation, this is a quite wide-ranging and tricky question, and even in
the case of gases, assuming the Boltzmann theory developed, talking about such things
will full mathematical rigor will be no easy task. In short, we are here deep into physics,
or very physical type, and of material science flavor, so modesty, and time to discuss all
this, with a mixture of general laws, experimental findings, and some math too.

Regarding several materials put in contact, we already had a flavor of that in the
context of basic thermodynamics, when talking about the Clapeyron equation, with the
“materials” in that case being the liquid and gaseous form of the same material.

However, all this is rather something quite advanced. The simplest diffusion problems
appear in fact when putting several gases, at different temperatures, in contact, and with
these several gases being allowed to be actually samples of the same gas, but at different
temperatures. And there are countless things that can be said here, both at the level of
basic thermodynamics, and at the level of more advanced theory.

In practice, the simplest heat diffusion question, studied and understood since long,
concerns a container containing two gases, having initial different temperatures T < T5,
separated by a membrane. Heat transfer goes on, in this setting, and obviously, we can
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model this by focusing on the membrane, with a basic grid model for it, as follows:

O——O0 —O0—O0 —0—0
I R L N
O——O0 — 0 —O0 —0—0
I R N
O——O0 —O0—O0 —0 —0
I N L
O——O0 —O0—O0 —0—0
I N L N
O——O0 —O0—O0 —0—0

There is some sort of “game” played by the two gases, over this grid, and we can
model this, and then recover the known results about heat diffusion, in this setting.

At a more advanced level, we can remove the membrane. Again, there is some sort of
“game” here, played by the two gases, which can be 2D or 3D, depending on modelling.
Also, in this setting, we can actually keep the membrane, but allow it to inflate.

11b. Some calculus

In order to further study the heat diffusion, we will need some standard multivariable
calculus. Let us start with a straightforward definition, as follows:

DEFINITION 11.2. We say that a map f : RY — RM s differentiable at x € RY if
flz+t) = flx) + fl(2)t
for some linear map f'(x) : RN — RM  called derivative of f at the point x € RY.

But is this the correct definition. I can hear you screaming that we are probably going
the wrong way, because for functions f : R — R the derivative is something much simpler,
as follows, and that we should try to imitate, in our higher dimensional setting:

o) — pim LD = 1)

t—0 t
However, this is not possible, for a number of reasons, that are worth discussing in
detail. So, here is the discussion, answering all kinds of questions that you might have:

(1) First of all, the above formula does not make any sense for a function f : RY — RM
with N # M, because we cannot divide oranges by apples. And it doesn’t make sense
cither at N = M € N, because, well, here we have R" oranges, I agree with you, but
there is no way of dividing these oranges, unless we are in the special cases N =1, 2.

(2) More philosophically know, we have seen that having f’(x) defined as a number is
difficult, but the question is, do we really want to have f’(z) defined as a number? And
my claim here is that, this would be a pity. Think at the case where f : RY — RM is
linear. Such a map is just “perfect”, and so should equal its own derivative, f = f’.
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(3) Summarizing, our Definition 11.2 is perfection, and is waiting for some further
study, and this is what we will do. And in case you're still secretly dreaming about
having f’(z) defined as some sort of number, wait for it. When N = M at least, there is
indeed a lucky number, namely det(f’(z)), called Jacobian, but more on this later.

Getting back now to Definition 11.2 as formulated, and agreed upon, we have there
a linear map f'(z) : RY — RM waiting to be further understood. So, time now to use
our linear algebra knowledge. We know from there that such linear maps correspond to
rectangular matrices A € My, n(R), and we are led in this way to:

QUESTION 11.3. Given a differentiable map f : RY — RM  in the abstract sense of
Definition 7.2, what exactly is its derivative

fl(z) : RY = RM
regarded as a rectangular matriz, f'(z) € Myxn(R)?

Again, I might hear scream you here, arguing that you come after a long battle, just
agreeing that the derivative is a linear map, and not a number, and now what, we are
trying to replace this linear map by a matrix, and so by a bunch of numbers. Good
point, and I have no good answer to this. What we are doing here, Definition 11.2, then

Question 11.3, and finally Theorem 11.4 to follow, are things that took mankind several
centuries to develop, and that we are now presenting in a compressed form.

In any case, hope that you're still with me, and here is the answer to Question 11.3:

THEOREM 11.4. The derivative of a differentiable function f : RN — RM  making the
approximation formula

fla+t) = f(z)+ f'(2)t
work, 1s the matrix of partial derivatives at x, namely

i) = (o <x>>ij & Maps(R)

d.Tj

acting on the vectors t € RN by usual multiplication.

PROOF. As a first observation, the formula in the statement makes sense indeed, as
an equality, or rather approximation, of vectors in R as follows:

T+t x %(m) e %(@ 131
f : ~fl |+ : : :
TN +in TN %(JJ) . gf;—ﬂg(x) In

In order to prove now this formula, which does make sense, the idea is as follows:
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(1) First of all, at N = M = 1 what we have is a usual 1-variable function f: R — R,
and the formula in the statement is something that we know well, namely:

flz+1t) = f(z) + fl(a)t
(2) Let us discuss now the case N = 2, M = 1. Here what we have is a function
f:R? - R, and by using twice the basic approximation result from (1), we obtain:

f(ajl-l-tl) ~ f(x1+tl)+i(9@)t2

To + o T2 dxy

~ f(“) + Tt + Yy,

i) dﬂ?l dx'g

- 1)+ {80 ()

(3) More generally, we can deal in this way with the general case M = 1, as follows:

T+ 1 1
d d
f : ~ f| : +—f(x)t1+...+—f(x)tN
dxq dry
Ty +1In TN
T t
= f| : +(%(m) %(x))
TN tN

(4) But this gives the result in the case where both N, M € N are arbitrary too.
Indeed, consider a function f: RY — RM and let us write it as follows:

fi
f=1:
fu
We can apply (3) to each of the components f; : RY — R, and we get:
r, + tl T tl
o =l ) (e @)
TN + tN TN tN

But this collection of M formulae tells us precisely that the following happens, as an
equality, or rather approximation, of vectors in RM:

d d
T+ X dlel(x) %(x) tq
f : ~f1 |+ : : :
TN +itn TN ‘flfTI‘f(flj) ZJ;—”;(:B) tn

Thus, we are led to the conclusion in the statement. U
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Moving forward, let us formulate something nice, namely:
DEFINITION 11.5. Given f : RN — RY its Jacobian at x € RY is the number
det(f'(z)) € R
measuring the infinitesimal rate of the volume inflation by f, at the point x.

Here the first part is standard, because when N = M, as above, the derivative is a
linear map f'(x) : RY — RY, which is the same as a square matrix f'(z) € My (R), and
so we can consider the determinant of this matrix, det(f'(x)) € R. As for the second
part, this comes from our knowledge of the determinant from linear algebra.

All this is very nice, and as a first observation, according to our formula of f'(x) as
being the matrix formed by the partial derivatives, we have:

%11(33) %(:c)
det(f'(z)) = | :
%(w) jﬁ—flvv(x)

Now back to Theorem 11.4, generally speaking, that is what you need to know for
upgrading from calculus to multivariable calculus. As a standard result here, we have:

THEOREM 11.6. We have the chain derivative formula
(fog)(z) = f(9(x)) - g'(x)
as an equality of matrices.
Proor. Consider indeed a composition of functions, as follows:
fRYSRM | ¢g:RESRY | fog:RE S RM

According to Theorem 11.4, the derivatives of these functions are certain linear maps,
corresponding to certain rectangular matrices, as follows:

f(g(@)) € Myxn(R) , g'(x) € Myxx(R)  (fog)(r) € Muxx(R)

Thus, our formula makes sense indeed. As for proof, this comes from:

(fog)x+t) = flgz+1))
~ f(g(x) + g (x)t)
~ flg(x)) + f'(g(x))g' ()t

Thus, we are led to the conclusion in the statement. Il

Let us recall now from one variable calculus that we have the following result:
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PrOPOSITION 11.7. We have the change of variable formula
/ sesia= "1t

Proor. This follows with f = F’, from the following differentiation rule, that we
know well, and whose proof is something elementary:

(F)'(t) = F'(o(t)¢'(t)

Indeed, by integrating between ¢ and d, we obtain the result. O

where ¢ = = (a) and d = 1

In several variables now, we can only expect the above ¢/(t) factor to be replaced by
something similar, a sort of “derivative of ¢, arising as a real number”. We are led to:

THEOREM 11.8. Given a transformation ¢ = (p1,...,pN), we have

= [ oo

with the J, quantity, called Jacobian, being given by

() |

and with this generalizing the formula from Proposition 11.7.

J,(t) = det

Proor. This is something quite tricky, the idea being as follows:

(1) Observe first that this generalizes indeed the change of variable formula in 1
dimension, from Proposition 11.7, the point here being that the absolute value on the
derivative appears as to compensate for the lack of explicit bounds for the integral.

(2) In general now, we can first argue that, the formula in the statement being linear
in f, we can assume f = 1. Thus we want to prove vol(F) = f “1(E) |J,(t)|dt, and with

D = ¢~ !(E), this amounts in proving vol(p = [, |J,(t)|dt.

(3) NOW smce this latter formula is additive with respect to D, it is enough to prove
that vol(p =[,J p Jo(t)dt, for small cubes D, and assuming .J, > 0. But this basically
follows by usmg the deﬁnltlon of the determmant of real matrices, as a volume. O

All the above was of course quite tricky, and you may wonder if there is a simpler
proof for this. Good question, and in answer, yes this is a difficult problem, which is
actually open, and every now and then mathematicians still publish papers about this.
In the hope that one day we will see a smart new paper on this from you too, reader.

Moving now towards second derivatives, that we will need too, we have here:
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THEOREM 11.9. The second derivative of a function ¢ : RN — R, making the formula

< ¢"(x)h,h >
2

work, is its Hessian matriz ¢"(x) € My(R), given by the following formula:

d*p
1" o
7le) = <dxidxj>ij

Moreover, this Hessian matriz is symmetric, ¢"(z);; = ¢'(x) ;.

p(z+h) = o(z) + ' (2)h +

PROOF. There are several things going on here, the idea being as follows:

(1) As a first observation, at N = 1 the Hessian matrix constructed above is simply
the 1 x 1 matrix having as entry the second derivative ¢”(z), and the formula in the
statement is something that we know well from basic calculus, namely:

gO”(.I’)hQ
2

(2) At N = 2 now, we obviously need to differentiate ¢ twice, and the point is that
we come in this way upon the following formula, called Clairaut formula:

o &P
dedy — dydx

But, is this formula correct or not? As an intuitive justification for it, let us consider
a product of power functions, ¢(z) = zPy9. We have then our formula, due to:

d? d ([ dxPy? d N 1o
. ( ) = (ay"™") = pga” "y

p(z+h) = o(z) + ' (x)h +

dxdy T da dy
d? d (dxPy? d _ o

Next, let us consider a linear combination of power functions, p(z) = qu Cpg TPy,
which can be finite or not. We have then, by using the above computation:
d*p d*p

-1, g-1
dzdy B dydx - Zcpqpqxp y?
P

Thus, we can see that our commutation formula for derivatives holds indeed, due to
the fact that the functions in x,y commute. Of course, all this does not fully prove our
formula, in general. But exercise for you, to have this idea fully working, or to look up
the standard proof of the Clairaut formula, using the mean value theorem.
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(3) Moving now to N = 3 and higher, we can use here the Clairaut formula with
respect to any pair of coordinates, which gives the Schwarz formula, namely:

d*p B d*p
dl’id.fj n da:]dxl

Thus, the second derivative, or Hessian matrix, is symmetric, as claimed.

(4) Getting now to the main topic, namely approximation formula in the statement,
in arbitrary N dimensions, this is in fact something which does not need a new proof,
because it follows from the one-variable formula in (1), applied to the restriction of ¢ to
the following segment in RY, which can be regarded as being a one-variable interval:

I =[z,z+h]
To be more precise, let y € RY, and consider the following function, with r € R:
f(r) = ¢l +ry)
We know from (1) that the Taylor formula for f, at the point r = 0, reads:

) = £0) + o+ L7

And our claim is that, with h = ry, this is precisely the formula in the statement.

(5) So, let us see if our claim is correct. By using the chain rule, we have the following
formula, with on the right, as usual, a row vector multiplied by a column vector:

f'ir)y=¢'@+ry) -y

By using again the chain rule, we can compute the second derivative as well:

f(r) = (¢@+ry) -y

= (Z 5; (a+ 1Y) yz-)

d*p d(z+ry);

i
d*p

= <¢"(z+ryy,y>

(6) Time now to conclude. We know that we have f(r) = ¢(x + ry), and according
to our various computations above, we have the following formulae:

fO)=p(x) , fO0)=¢'(x) , f10)=<¢"(x)y,y >
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Buit with this data in hand, the usual Taylor formula for our one variable function f,
at order 2, at the point r = 0, takes the following form, with A = ry:

< ¢"(@)y,y > 1’
2
O’ (x)h, h >
2
Thus, we have obtained the formula in the statement. O

plx+ry) =~ @)+ ¢ (x)ry +

= oln) + ()t + =

As before in the one variable case, many more things can be said, as a continuation
of the above. For instance the local minima and maxima of ¢ : RV — R appear at the
points # € RY where the derivative vanishes, ¢/(x) = 0, and where the second derivative
¢"(x) € My(R) is positive, respectively negative. But, you surely know all this.

Let us just record here the following key fact, that we will need later:
PRrOPOSITION 11.10. Intuitively, the following quantity, called Laplacian of ¢,

N
d2
Ap = —f
— dx;
i=1 ?
measures how much different is p(z), compared to the average of o(y), with y ~ x.

ProOOF. This is something a bit heuristic, but good to know. Let us write the formula
in Theorem 7.9, as such, and with » — —h too:
< ¢"(x)h,h >
2

oz — h) ~ p(x) — ¢ (2)h + = ‘P"($2)h, h >

By making the average, we obtain the following formula:
p(z+h)+p(x—h) < ¢"(x)h,h >
~ p(z) +
2 2
Thus, thinking a bit, we are led to the conclusion in the statement, modulo some
discussion about integrating all this, that we will not really need, in what follows. U

p(z+h) = o(z) + ' (x)h +

With this understood, the problem is now, what can we say about the mathematics
of A? We have here the following straightforward question, inspired by linear algebra:

QUESTION 11.11. The Laplace operator being linear,
Aap + bp) = aAp + bAY

what can we say about it, inspired by usual linear algebra?
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In answer now, the space of functions ¢ : RY — R, on which A acts, being infinite
dimensional, the usual tools from linear algebra do not apply as such, and we must be
extremely careful. For instance, we cannot really expect to diagonalize A, via some sort
of explicit procedure, as we usually do in linear algebra, for the usual matrices.

Thinking some more, there is actually a real bug too with our problem, because at
N =1 this problem becomes “what can we say about the second derivatives ¢ : R — R
of the functions ¢ : R — R, inspired by linear algebra”, with answer “not much”.

And by thinking even more, still at N = 1, there is a second bug too, because if
¢ : R — R is twice differentiable, nothing will guarantee that its second derivative
¢” : R — R is twice differentiable too. Thus, we have some issues with the domain and
range of A, regarded as linear operator, and these problems will persist at higher V.

So, shall we trash Question 11.117 Not so quick, because, very remarkably, some
magic comes at N = 2 and higher in relation with complex analysis, according to:
PRINCIPLE 11.12. The functions ¢ : RV — R which are 0-eigenvectors of A,
Ap =0
called harmonic functions, have the following properties:

(1) At N =1, nothing spectacular, these are just the linear functions.
(2) At N = 2, these are, locally, the real parts of holomorphic functions.
(3) At N > 3, these still share many properties with the holomorphic functions.

In order to understand this, or at least get introduced to it, let us first look at the
case N = 2. Here, any ¢ : R? — R can be regarded as function ¢ : C — R, depending on
z = x +4y. Thus, it is natural to enlarge the attention to the functions ¢ : C — C, and
ask which of these functions are harmonic, Ay = 0. And here, we have:

THEOREM 11.13. Any holomorphic function ¢ : C — C, when regarded as function
0:R* = C
s harmonic. Moreover, the conjugates @ of holomorphic functions are harmonic too.

PRrROOF. The first assertion comes from the following computation, with z = x + iy:

A2z P

Azl = dx? + dy?
~d(nz"h) N d(inz""1)
dx dy
= n(n—1)2"2—n(n—1)z""?
=0

As for the second assertion, this follows from Ag = Ap. O
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Many more things can be said, along these lines, notably a proof of the assertion (2)
in Principle 11.12, which is however a quite tough piece of mathematics, and then with a
clarification of the assertion (3) too, from that same principle, which again requires some
substantial mathematics. We will be back to both these topics, in due time.

11c. Heat equation

Back to physics, as a second question that we would like to investigate in this chapter,
we have the problem of understanding how heat will get diffused over time ¢ > 0 inside a
piece of a material, which is unevenly heated, initially. The result here is as follows:

THEOREM 11.14. Heat diffusion is described by the heat equation
p=alyp

where a > 0 is a constant, called thermal diffusivity of the medium, and
d
T
1s the Laplace operator.

PrROOF. The study here can be done by using lattice models, as follows:

(1) To start with, as an intuitive explanation for the equation, since the second de-
rivative ¢” in one dimension, or the quantity Ay in general, computes the average value
of a function ¢ around a point, minus the value of ¢ at that point, the heat equation as
formulated above tells us that the rate of change ¢ of the temperature of the material at
any given point must be proportional, with proportionality factor a > 0, to the average
difference of temperature between that given point and the surrounding material.

(2) The heat equation as formulated above is of course something approximative, and
several improvements can be made to it, first by incorporating a term accounting for heat
radiation, and then doing several fine-tunings, depending on the material involved. But
more on this later, for the moment let us focus on the heat equation above.

(3) In relation with our modelling questions, we can recover this equation by using a
basic lattice model. Indeed, let us first assume that we are in the one-dimensional case,
N = 1. Here our model looks as follows, with distance [ > 0 between neighbors:

l l
Og—1 Og Ogz+l

In order to model heat diffusion, we have to implement the intuitive mechanism ex-
plained above, namely “the rate of change of the temperature of the material at any given
point must be proportional, with proportionality factor o > 0, to the average difference
of temperature between that given point and the surrounding material”.
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(4) In practice, this leads to a condition as follows, expressing the change of the
temperature ¢, over a small period of time § > 0:

oo, t46) = oo 1) + By 3 [0, 0) — ol )]

T~y
To be more precise, we have made several assumptions here, as follows:

— General heat diffusion assumption: the change of temperature at any given point x
is proportional to the average over neighbors, y ~ x, of the differences p(y,t) — p(z,1)
between the temperatures at z, and at these neighbors .

— Infinitesimal time and length conditions: in our model, the change of temperature
at a given point x is proportional to small period of time involved, § > 0, and is inverse
proportional to the square of the distance between neighbors, 2.

(5) Regarding these latter assumptions, the one regarding the proportionality with the
time elapsed 0 > 0 is something quite natural, physically speaking, and mathematically
speaking too, because we can rewrite our equation as follows, making it clear that we
have here an equation regarding the rate of change of temperature at z:

gp(x,t+(5)—<,0(a:,t) o
; =5 le D) — el b)]

r~y

As for the second assumption that we made above, namely inverse proportionality
with {2, this can be justified on physical grounds too, but again, perhaps the best is to do
the math, which will show right away where this proportionality comes from.

(6) So, let us do the math. In the context of our 1D model the neighbors of x are the
points x + [, and so the equation that we wrote above takes the following form:

oz, t+9) — p(x,t Q@
LD =PI _ @ (ol 41,1) — ol ) + (o — 1) — 1)
Now observe that we can write this equation as follows:

oz, t+9) — p(z,t) o, olx +1,t) — 2p(x,t) + p(xz — 1,t)

4] [?
(7) We recognize on the right the usual approximation of the second derivative, coming

from calculus, and more specifically from the Taylor formula, at order 2. Thus, when
taking the continuous limit of our model, [ — 0, we obtain the following equation:

oz, t+0) — p(x,t)
)

Now with ¢t — 0, we are led in this way to the heat equation, namely:

=a-¢"(z,t)

p(z,t) = a-¢"(z,1)
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(8) In practice now, there are of course still a few details to be discussed, in relation
with all this, for instance at the end, in relation with the precise order of the limiting
operations [ — 0 and 6 — 0 to be performed, but these remain minor aspects, because
our equation makes it clear, right from the beginning, that time and space are separated,
and so that there is no serious issue with all this. And so, fully done with 1D.

(9) With this done, let us discuss now 2 dimensions. Here we can use a lattice model
as follows, with all lengths being [ > 0, for simplifying:

—0—0—0—0—
I N
—0—0—0—0—
I N
—0—0—0—0—

(10) We have to implement now the physical heat diffusion mechanism, namely “the
rate of change of the temperature of the material at any given point must be proportional,
with proportionality factor @ > 0, to the average difference of temperature between that
given point and the surrounding material”. In practice, this leads to a condition as follows,
expressing the change of the temperature ¢, over a small period of time § > 0:

ad
ple,y,t+0) = e,y t)+— Y [eu,v,t) = o(w,y,1)]
(xvy)'\"(u’v)

In fact, we can rewrite our equation as follows, making it clear that we have here an
equation regarding the rate of change of temperature at x:

Qp(xayat+5)_90($ayat) _ o Z

[Qp(uv U, t) o SO($’ Y, t)]

o [2

(2,y)~(u0)

(11) So, let us do the math. In the context of our 2D model the neighbors of x are
the points (z £ [,y £ 1), so the equation above takes the following form:

QO(ZE,y,t—f-(S) B @(Iayﬂf)
0

[((p(l’ + l7y7t> - 90(‘7:7 yvt)) + (@(I - l: Y, t) - go(x, y7t)>:|

[(cp(x,y + l,t> - @(Iay’t)) + (@('x’y - l7t) - So(xui%t))]

Tl w|IQ
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Now observe that we can write this equation as follows:

90(377y7t + 6) B QD(.T, y7t> - a- QD(.% + lvyv t) B 2@(%,:%25) + QO(.% B l7y>t>
) [?
ez, y+1,t) —20(x,y,t) + o(z,y — L 1)
12
(12) As it was the case before in one dimension, we recognize on the right the usual
approximation of the second derivative, coming from calculus. Thus, when taking the
continuous limit of our model, [ — 0, we obtain the following equation:

5 @ A2 dy2 (;U,y,t)

Now with ¢ — 0, we are led in this way to the heat equation, namely:

+ a-

(,O(ZB,y,t) = Q- AQO(I’,y,t)

Finally, in arbitrary N dimensions the same argument carries over, namely a straight-
forward lattice model, and gives the heat equation, as formulated in the statement. [

Observe that we can use if we want different lengths [ > 0 on the vertical and on
the horizontal, because these will simplify anyway due to proportionality. Also, for some
further mathematical fun, we can build our model on a cylinder, or a torus.

Also, as mentioned before, our heat equation above is something approximative, and
several improvements can be made to it, first by incorporating a term accounting for heat
radiation, and also by doing several fine-tunings, depending on the material involved.
Some of these improvements can be implemented in the lattice model setting.

11d. Into the heat

Let us go back now to the heat equation, and try to solve it. To start with, as a result
often used by mathematicians, as to assume a = 1 for their mathematics, we have:

ProOPOSITION 11.15. Up to a time rescaling, we can assume o = 1, as to deal with
¢ =Ap
called normalized heat equation.

Proor. This is clear physically speaking, because according to our model, changing
the parameter a > 0 will result in accelerating or slowing the heat diffusion, in time ¢ > 0.
Mathematically, this follows via a change of variables, for the time variable t. O

Regarding now the resolution of the heat equation, we have here:
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THEOREM 11.16. The heat equation, normalized as ¢ = Ap, and with initial condition
o(x,0) = f(x), has as solution the function

p(e,t) = (Ki* f)(x)
where the function K, : RN — R, called heat kernel, is given by
Ki(z) = (4mt) N2 ll2lP/4

with ||x|| being the usual norm of vectors x € RY.

PROOF. According to the definition of the convolution operation %, we have to check
that the following function satisfies ¢ = Ay, with initial condition ¢(z,0) = f(z):

(1) = (4t) N2 / el £ )y

RN

But both checks are elementary, coming from definitions. O

Getting back now to calculus, in order to get more advanced results about the heat
equation, for instance regarding the case where we have a point heat source, we will need
a tough piece of mathematics, namely the formula of A in spherical coordinates.

Ready for this? First, we have the following result, that you know well:

THEOREM 11.17. We have spherical coordinates in 3 dimensions,

= rcoss
Yy = rsinscost
z = rsinssint

the corresponding Jacobian being J(r,s,t) = r*sins.
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PROOF. The fact that we have indeed spherical coordinates is clear. Regarding now
the Jacobian, this is given by the following formula:

J(r,s,t)

COS S —rsin s 0
= |sinscost rcosscost —rsinssint
sinssint rcosssint rsinscost

COS S —rsin s
sinscost rcosscost

COS S —rsin s

. . . + rsinscost
sinssint rcosssint

= r?ginssint

COssS —rsins
sins 7CosSs

coss —rsins

) + rsinscos®t
sins rcoss

= rsinssin®t

coss —rsins

= rsins(sin®t + cos®t) | .
sins 7rcoss

= rsinsx1xr

= r?sins
Thus, we have indeed the formula in the statement. ]

We will need the formula of the Laplace operator A in spherical coordinates. The
result here, and its proof, which are quite tricky, are as follows:

THEOREM 11.18. The Laplace operator in spherical coordinates is

A_1 d (, d N 1 d y d N 1 d?
2 dr " dr r?sins ds s ds r2sin®s  dt?

with our conventions above for the spherical coordinates.

PROOF. There are several proofs here, a short, elementary one being as follows:

(1) Let us first see how A behaves under a change of coordinates {z;} — {v;}, in
arbitrary N dimensions. Our starting point is the chain rule for derivatives:

d d dy;
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By using this rule, then Leibnitz for products, then again this rule, we obtain:

& f

(A
; dl’z dy] diCz
-y (G ATy
y Zi.d% (ﬁ).
- - dy, dz; dy;
Z df &’ a’y;
dy; dx

(2) Now by summing over i, we obtain the following formula, with A being the deriv-
ative of © — y, that is to say, the matrix of partial derivatives dy;/dz;:

2
dz;

da Py,
dy;  da;

dy;
dl’i

f dy; df dy;
Af — Ok 45, “Yi
/ dyrdy; dxz dx; Z dy; da:
d’y; df
= Ak"L z —L .
%}; J kdy dx;  dy;
d*f daf
= AAY; +>» A
%:( )Jkdykdyj Zj: ( >dyg

(3) So, this will be the formula that we will need. Observe that this formula can be
further compacted as follows, with all the notations being self-explanatory:

Af =Tr(AAH,(f)+ < Ay), V,(f) >

(4) Getting now to spherical coordinates, (z,y,2) — (r,s,t), the derivative of the
inverse, obtained by differentiating z,y, z with respect to r, s, t, is given by:

Cos S —rsin s 0
A7l = | sinscost rcosscost —rsinssint
sinssint rcosssint rsinscost

The product (A™1)?A~! of the transpose of this matrix with itself is then:

COs S sin scost sinssint CcoS S —rsin s 0
—rsins rcosscost rcosssint sinscost rcosscost —rsinssint
0 —rsinssint rsinscost sinssint rcosssint rsinscost
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But everything simplifies here, and we have the following remarkable formula, which
by the way is something very useful, worth to be memorized:

1 0 0
(AHAT =0 r? 0
0

0 r’sin’s
Now by inverting, we obtain the following formula, in relation with the above:

0 0
1/r? 0
0 1/(r%sin’s)

AA" =

O O =

(5) Let us compute now the Laplacian of 7, s,t. We first have the following formula,
that we will use many times in what follows, and is worth to be memorized:

d
_7’ */x2+y2+z2
dx

2z

a2+ y?+ 22

3|8 N=Q
! =

Of course the same computation works for y, z too, and we therefore have:

dr x dr vy dr z

dr 1 @_;

dz 1
(6) By using the above formulae, twice, we can compute the Laplacian of r:
Alr) = A (x/:z? oyt z2)

- =500
2 2 2 2 2 2

r-—= r—-y r-—=z
3 + 3 + 3
r r T

2
r
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(7) In what regards now s, the computation here goes as follows:

A(s) = A <arccos <£>>

r
_d r? — a2 d xy d xz
2012 — 22 N r?(22 — 2y?) + 22°y? N r?(y? — 22%) + 22222
rd rir2 — 22 rir2 — a2
2012 — 22 x(22% —r?)
Ny

x
r2/72 — 2
COS §
r2sin s

(8) Finally, in what regards ¢, the computation here goes as follows:

Alt) = A(arctan (5))

d d z d Y
- 50+ 5 (prs) i ()

29z n 2yz
(v2 +22)2 (v +2%)?

= 0

(9) We can now plug the data from (4) and (6,7,8) in the general formula that we
found in (2) above, and we obtain in this way:

a2f 1 d2f+ 1 _dzf 2 df = coss df

Af = 2L 4~ z. A
/ dr2 1?2 ds®  r2sin’s dt2  r dr  r?sins ds
2 df d*f coss df N 1 d*f N 1 d*f
r dr dr?  r?sins ds 1?2 ds®  r2sin’s dt?
1 d o df 1 d [ . df 1 d*f
r2 dr (T dr) * r?sins ds (sms ds) * r2sin®s  dt?
Thus, we are led to the formula in the statement. O

Regarding now our discretization questions, things here are quite tricky. In relation
with Theorem 11.16, and with the heat kernel, the first thought towards discretization
goes to the Central Limit Theorem (CLT) from probability theory, which produces the
normal laws, in dimension N = 1, but also in general, in arbitrary N > 1 dimensions.
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11le. Exercises

Exercises:

EXERCISE 11.19.
EXERCISE 11.20.
EXERCISE 11.21.
EXERCISE 11.22.
EXERCISE 11.23.
EXERCISE 11.24.
EXERCISE 11.25.
EXERCISE 11.26.

Bonus exercise.



Exercises:

EXERCISE 12.1.
EXERCISE 12.2.
EXERCISE 12.3.
EXERCISE 12.4.
EXERCISE 12.5.
EXERCISE 12.6.
EXERCISE 12.7.

EXERCISE 12.8.

Bonus exercise.

CHAPTER 12

Into manifolds

12a. Into manifolds
12b.
12c.
12d.

12e. Exercises
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Quantum versions






CHAPTER 13

Free probability

13a. Freeness

Welcome to free probability. We have met some already, and in this chapter and in
the next three ones we discuss the foundations and main results of free probability, in
analogy with the foundations and main results of classical probability.

The common framework for classical and free probability is “noncommutative proba-
bility”. This is something very general. Let us start with the following definition:

DEFINITION 13.1. A C*-algebra is a complex algebra A, having a norm ||.|| making it
a Banach algebra, and an involution *, related to the norm by the formula
llaa™|| = [|al[?
which must hold for any a € A.

As a basic example, the algebra B(H) of the bounded linear operators T': H — H on
a complex Hilbert space H is a C*-algebra, with the usual norm and involution:

Tl = sup ||Tz|| , <Tzy>=<zTy>

[lz]|=1

More generally, any closed x-subalgebra of B(H) is a C*-algebra. It is possible to
prove that any C*-algebra appears in this way, as follows:

AC B(H)

In finite dimensions we have H = CV, and so the operator algebra B(H) is the usual
matrix algebra My (C), with the usual norm and involution, namely:

IM|| = sup [[Mz]| , (M) =M

[|f|=1

As explained in chapter 4, in the context of Peter-Weyl theory, some algebra shows
that the finite dimensional C*-algebras are the direct sums of matrix algebras:

A=M,(C)®...® M, (C)

Summarizing, the C*-algebra formalism is something in between the *-algebras, which
are purely algebraic objects, and whose theory basically leads nowhere, and the fully
advanced operator algebras, which are the von Neumann algebras. More on this later.
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As yet another class of examples now, which are of particular importance for us, we
have various algebras of functions f : X — C. The theory here is as follows:

THEOREM 13.2. The commutative C*-algebras are the algebras of type C(X), with X
being a compact space, the correspondence being as follows:

(1) Given a compact space X, the algebra C(X) of continuous functions f: X — C
1s a commutative C*-algebra, with norm and involution as follows:

Il =suplf@)] . () =70

(2) Conwversely, any commutative C*-algebra can be written as A = C(X), with its
“spectrum” appearing as the space of Banach algebra characters of A:

Xz{x:A—)C}

In view of this, given an arbitrary C*-algebra A, not necessarily commutative, we agree
to write A = C(X), and call the abstract space X a compact quantum space.

ProoF. This is something that we know from before, the idea being as follows:

(1) First of all, the fact that C'(X) is a Banach algebra is clear, because a uniform
limit of continuous functions must be continuous. As for the formula ||ff*|| = || f]|?, this
is something trivial for functions, because on both sides we obtain sup,. y |f(x)[*.

(2) Given a commutative C*-algebra A, the character space X = {x : A — C} is
indeed compact, and we have an evaluation morphism ev : A — C(X). The tricky point,
which follows from basic spectral theory, is to prove that ev is indeed isometric. O

The above result is quite interesting for us, because it allows one to formally write
any C*-algebra as A = C'(X), with X being a noncommutative compact space. This is
certainly something very nice, and in order to do now some probability theory over such
spaces X, we would need probability measures p. But, the problem is that these measures
i are impossible to define, because our spaces X have no points in general.

However, we can trick, and do probability theory just by using expectations functionals
E : A — C, instead of the probability measures i themselves. These expectations are
called traces, are are denoted tr : A — C, and their axiomatization is as follows:

DEFINITION 13.3. A trace, or expectation, or integration functional, on a C*-algebra
A is a linear form tr : A — C having the following properties:

(1) tr is unital, and continuous.
(2) tr is positive, a > 0 = ¢(a) > 0.
(3) tr has the trace property tr(ab) = tr(ba).

We call tr faithful when a >0 = ¢(a) > 0.
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In the commutative case, A = C'(X), the Riesz theorem shows that the positive traces
tr : A — C appear as integration functionals with respect to positive measures u:

tr(f) = /X f() dyu(z)

Moreover, the unitality of ¢r corresponds to the fact that u has mass one, and the
faithfulness of tr corresponds to the faithfulness of u. Thus, in general, when A is no
longer commutative, in order to do probability theory on the underlying noncommutative
compact space X, what we need is a faithful trace tr : A — C as above.

So, this will be our philosophy in what follows, a noncommutative probability space
(X, 1) being something abstract, corresponding in practice to a pair (A, ¢r). This is of
course something a bit simplified, because associated to any space X, noncommutative
or even classical, there are in fact many possible C*-algebras of functions f : X — C,
such as C(X), L>*(X) and so on, and for a better theory, we would have to make a choice
between these various C*-algebras associated to X. But let us not worry with this for the
moment, what we have is good for starting some computations, so let us just do these
computations, see what we get, and we will come back later to more about formalism.

Going ahead with definitions, everything in what follows will be based on:

DEFINITION 13.4. Let A be a C*-algebra, given with a trace tr : A — C.

(1) The elements a € A are called random variables.
(2) The moments of such a variable are the numbers My(a) = tr(a®).
(3) The law of such a variable is the functional p: P — tr(P(a)).

Here k = ceeo. .. is by definition a colored integer, and the corresponding powers a”

are defined by the following formulae, and multiplicativity:
=1, a®=a , o =a"
As for the polynomial P, this is a noncommuting *-polynomial in one variable:
PeC< X, X*>

Observe that the law is uniquely determined by the moments, because we have:
P(X) =) MX" = u(P) = A\eMy(a)
k k

Generally speaking, the above definition is something quite abstract, but there is no
other way of doing things, at least at this level of generality. However, in certain special
cases, the formalism simplifies, and we recover more familiar objects, as follows:
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THEOREM 13.5. Assuming that a € A is normal, aa* = a*a, its law corresponds to a
probability measure on its spectrum o(a) C C, according to the following formula:

tr(P(a)) = / | Plintz)

When the trace is faithful we have supp(un) = o(a). Also, in the particular case where the
variable is self-adjoint, a = a*, this law is a real probability measure.

ProoF. This is something very standard, coming from the continuous functional cal-
culus for the C*-algebras. In fact, we can deduce from this that more is true, in the sense
that the following formula holds, for any f € C(o(a)):

tr(f(a)) = " f(@)du(z)

In addition, assuming that we are in the case A C B(H), the measurable functional
calculus tells us that the above formula holds in fact for any f € L>®(o(a)). O

We have the following independence notion, generalizing the one from chapter 1:

DEFINITION 13.6. Two subalgebras A, B C C are called independent when the follow-
ing condition is satisfied, for any a € A and b € B:

tr(ab) = tr(a)tr(b)
Equivalently, the following condition must be satisfied, for any a € A and b € B:
tr(a) =tr(b) =0 = tr(ab) =0
Also, two variables a,b € C' are called independent when the algebras that they generate,
A=<a> , B=<b>
are independent inside C', in the above sense.

Observe that the above two independence conditions are indeed equivalent, with this
following from the following computation, with the convention a’ = a — tr(a):

tr(ab) = tr{(a’ +tr(a)) +tr(b))]
= tr(d't) +t(a)tr(d) + tr(a)tr(d) + tr(a)tr(b)
tr(a’t") + tr(a)tr(b)
tr(a)tr(b)

The other remark is that the above notion generalizes indeed the usual notion of
independence, from the classical case, the precise result here being as follows:

THEOREM 13.7. Given two compact measured spaces X,Y , the algebras
CX)cC(XxY) , CY)CcC(XxY)

are independent in the above sense, and a converse of this fact holds too.
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PRrROOF. We have two assertions here, the idea being as follows:

(1) First of all, given two abstract compact spaces X,Y, we have embeddings of
algebras as in the statement, defined by the following formulae:

f—=1zy) = f@)] , g—I[(z,y) = 9(y)]

In the measured space case now, the Fubini theorems tells us that we have:

[ @) = /X f(@) /Y o)

Thus, the algebras C(X), C(Y) are independent in the sense of Definition 13.6.

(2) Conversely, assume that A, B C C are independent, with C' being commutative.
Let us write our algebras as follows, with X, Y, Z being certain compact spaces:

A=C(X) , B=CY) , C=0C(2)
In this picture, the inclusions A, B C C' must come from quotient maps, as follows:
p:Z—=X , q:Z—=Y

Regarding now the independence condition from Definition 13.6, in the above picture,
this tells us that the following equality must happen:

[ 160 = [ 166 [ ga)

Thus we are in a Fubini type situation, and we obtain from this:
XxYcZ
Thus, the independence of the algebras A, B C C appears as in (1) above. O

It is possible to develop some theory here, but this is ultimately not very interesting.
As a much more interesting notion now, we have Voiculescu’s freeness [89]:

DEFINITION 13.8. Two subalgebras A, B C C are called free when the following con-
dition is satisfied, for any a; € A and b; € B:

tr(a;) =tr(b;)) =0 = tr(aibjagby...) =0
Also, two variables a,b € C are called free when the algebras that they generate,
A=<a> , B=<b>
are free inside C, in the above sense.

In short, freeness appears by definition as a kind of “free analogue” of usual inde-
pendence, taking into account the fact that the variables do not necessarily commute.
As a first observation, of theoretical nature, there is actually a certain lack of symmetry
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between Definition 13.6 and Definition 13.8, because in contrast to the former, the latter
does not include an explicit formula for the quantities of the following type:

t?"(alblagbg .. )

However, this is not an issue, and is simply due to the fact that the formula in the
free case is something more complicated, the precise result being as follows:

PROPOSITION 13.9. Assuming that A, B C C are free, the restriction of tr to < A, B >
can be computed in terms of the restrictions of tr to A, B. To be more precise,

tr(aibashs . ..) = P({tr(ailai2 o) b {tr (b, by, - )}]>

where P s certain polynomial in several variables, depending on the length of the word

ai1biasbsy . .., and having as variables the traces of products of type
Qi Qg - - - s bjlij e
with the indices being chosen increasing, i1 < is < ... and j; < jo < ...

ProoOF. This is something a bit theoretical, so let us begin with an example. Our
claim is that if a, b are free then, exactly as in the case where we have independence:

tr(ab) = tr(a)tr(b)

Indeed, let us go back to the computation performed after Definition 13.6, which was
as follows, with the convention o’ = a — tr(a):

tr(ab) = tr[(a’ +tr(a))(¥' + tr(b))]
= tr(a't’) +t(a')tr(b) + tr(a)tr(b’) + tr(a)tr(b)
= tr(d't') + tr(a)tr(b)
= tr(a)tr(b)

Our claim is that this computation perfectly works under the sole freeness assumption.
Indeed, the only non-trivial equality is the last one, which follows from:

tr(d)=tr(t) =0 = tr(a't)) =0

In general, the situation is of course more complicated than this, but the same trick
applies. To be more precise, we can start our computation as follows:

tT(Clela,ng c. ) = tr [((lll + tT(CL1>>(b/1 + t’f’(bl))(aé + tT’(CQ))(bé + tT(bQ)) ...... }
= tr(ajbiabby...) + other terms
= other terms

Observe that we have used here the freeness condition, in the following form:

tr(a;) =tr(b) =0 = tr(ajbiayby...) =0
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Now regarding the “other terms”, those which are left, each of them will consist of a
product of traces of type tr(a;) and tr(b;), and then a trace of a product still remaining
to be computed, which is of the following form, for some elements o; € A and ; € B:

tr(aifragfs .. .)

To be more precise, the variables o; € A appear as ordered products of those a; € A
not getting into individual traces tr(a;), and the variables 5; € B appear as ordered
products of those b; € B not getting into individual traces ¢r(b;). Now since the length
of each such alternating product a;Bicsfs ... is smaller than the length of the original
product a;biasbs . . ., we are led into of recurrence, and this gives the result. |

Let us discuss now some models for independence and freeness. We have the following
result, from [89], which clarifies the analogy between independence and freeness:

THEOREM 13.10. Given two algebras (A, tr) and (B,tr), the following hold:

(1) A, B are independent inside their tensor product AQ B, endowed with its canonical
tensor product trace, given by tr(a ® b) = tr(a)tr(b).

(2) A, B are free inside their free product A x B, endowed with its canonical free
product trace, given by the formulae in Proposition 13.9.

PROOF. Both the above assertions are clear from definitions, as follows:

(1) This is clear with either of the definitions of the independence, from Definition
13.6, because we have by construction of the product trace:

tr(ab) = trj(a®1)(1®0b)]
= tr(a®b)
= tr(a)tr(b)
Observe that there is a relation here with Theorem 13.7 as well, due to the following
formula for compact spaces, with ® being a topological tensor product:

C(X xY) =C(X)® OY)

To be more precise, the present statement generalizes the first assertion in Theorem
13.7, and the second assertion tells us that this generalization is more or less the same
thing as the original statement. All this comes of course from basic measure theory.

(2) This is clear too from definitions, the only point being that of showing that the
notion of freeness, or the recurrence formulae in Proposition 13.9, can be used in order to
construct a canonical free product trace, on the free product of the algebras involved:

tr: AxB — C

But this can be checked for instance by using a GNS construction. Indeed, consider
the GNS constructions for the algebras (A, tr) and (B, tr):

A— B(2(4)) , B— B(B))
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By taking the free product of these representations, we obtain a representation as
follows, with the % on the right being a free product of pointed Hilbert spaces:

Ax B — B(I*(A) = I*(B))

Now by composing with the linear form T —< T, & >, where £ = 14 = 1p is the
common distinguished vector of [?(A), I*(B), we obtain a linear form, as follows:

tr: Ax B — C

It is routine then to check that ¢r is indeed a trace, and this is the “canonical free
product trace” from the statement. Then, an elementary computation shows that A, B
are free inside A x B, with respect to this trace, and this finishes the proof. See [89]. [

13b. Free convolution

All the above was quite theoretical, and as a concrete application of the above results,
bringing us into probability, we have the following result, from [90]:

THEOREM 13.11. We have a free convolution operation B for the distributions
w:C< X, X*>—C
which is well-defined by the following formula, with a,b taken to be free:
pa B py = flats
This restricts to an operation, still denoted H, on the real probability measures.
PRrROOF. We have several verifications to be performed here, as follows:

(1) We first have to check that given two variables a,b which live respectively in
certain C*-algebras A, B, we can recover inside some C*-algebra C, with exactly the
same distributions g, 15, as to be able to sum them and talk about p,44. But this comes
from Theorem 13.10, because we can set C' = A x B, as explained there.

(2) The other verification which is needed is that of the fact that if two variables a, b
are free, then the distribution .., depends only on the distributions i, pp. But for this
purpose, we can use the general formula from Proposition 13.9, namely:

tT(a1b1a2b2 .. ) = P({tr(ailaiQ .. )}Z, {tr(bjlbjz .. )}J>

Now by plugging in arbitrary powers of a, b as variables a;, b;, we obtain a family of
formulae of the following type, with ) being certain polyomials:

tr(af bl akept ) = Q({tr(ak)}k, {tr(bl)}l)

Thus the moments of a + b depend only on the moments of a, b, with of course colored
exponents in all this, according to our moment conventions, and this gives the result.
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(3) Finally, in what regards the last assertion, regarding the real measures, this is clear
from the fact that if the variables a, b are self-adjoint, then so is their sum a + b. Il

Along the same lines, but with some technical subtleties this time, we can talk as well
about multiplicative free convolution, following [91], as follows:

THEOREM 13.12. We have a free convolution operation X for the distributions
p:C< X X*">—=C
which is well-defined by the following formula, with a,b taken to be free:
fha B piy, = piap

In the case of the self-adjoint variables, we can equally set

ta X o = i /abva

and so we have an operation, still denoted X, on the real probability measures.
ProOOF. We have two statements here, the idea being as follows:

(1) The verifications for the fact that X as above is indeed well-defined at the general
distribution level are identical to those done before for H, with the result basically coming
from the formula in Proposition 13.9, and with Theorem 13.10 invoked as well, in order
to say that we have a model, and so we can indeed use this formula.

(2) Regarding now the last assertion, regarding the real measures, this was something
trivial for H, but is something trickier now for X, because if we take a, b to be self-adjoint,
thier product ab will in general not be self-adjoint, and definitely it will be not if we want
a,b to be free, and so the formula u, X p, = pg will apparently makes us exit the world
of real probability measures. However, this is not exactly the case. Indeed, let us set:

c = +abyva

This new variable is then self-adjoint, and its moments are given by:

tr(c") = tr((vabva)"]
= tr[\aba...aby/d]
= trlva-+/aba...ab
= tr[(ad)"]

Thus, we are led to the conclusion in the statement. Il

We would like now to have linearization results for HH and X, in the spirit of the known
results for * and x. We will do this slowly, in several steps. As a first objective, we would
like to convert our one and only modeling result so far, namely Theorem 13.10, which is
a rather abstract result, into something more concrete. Let us start with:
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THEOREM 13.13. Let I be a discrete group, and consider the complex group algebra
C[I'], with involution given by the fact that all group elements are unitaries:

g-=97' , VgerT
The mazimal C*-seminorm on C[I'] is then a C*-norm, and the closure of C[I'| with
respect to this norm is a C*-algebra, denoted C*(I'). Moreover,
t?”(g) = Og1

defines a positive unital trace tr : C*(I') — C, which is faithful on C[I.

ProOF. We have two assertions to be proved, the idea being as follows:

(1) In order to prove the first assertion, regarding the maximal seminorm which is a
norm, we must find a x-algebra embedding as follows, with H being a Hilbert space:

C[I'l c B(H)
For this purpose, consider the Hilbert space H = [*(T'), having the family {h},cr as
orthonormal basis. Our claim is that we have an embedding, as follows:
m:ClITc B(H) , =(g)(h) =gh

Indeed, since 7(g) maps the basis {h}per into itself, this operator is well-defined
and bounded, and is an isometry. It is also clear from the formula 7(g)(h) = gh that
g — m(g) is a morphism of algebras, and since this morphism maps the unitaries g € T’
into isometries, this is a morphism of x-algebras. Finally, the faithfulness of 7 is clear.

(2) Regarding the second assertion, we can use here once again the above construction.
Indeed, we can define a linear form on the image of C*(I"), as follows:

tT(T) =< T51751 >

This functional is then positive, and is easily seen to be a trace. Moreover, on the
group elements g € I, this functional is given by the following formula:

t?”(g) — Og1
Thus, it remains to show that ¢r is faithful on C[I']. But this follows from the fact
that tr is faithful on the image of C*(I"), which contains C[I']. O

As an illustration, we have the following more precise result, in the abelian case:

PROPOSITION 13.14. Given a discrete abelian group I', we have an isomorphism
C*(T) ~ C(G)

where G =T is its Pontrjagin dual, formed by the characters x : I' — T. Moreover,

tr(g) = 0g1

corresponds in this way to the Haar integration over G.
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PrROOF. We have two assertions to be proved, the idea being as follows:

(1) Since I' is abelian, A = C*(I") is commutative, so by the Gelfand theorem we have
A = C(X). The spectrum X = Spec(A), consisting of the characters x : C*(I') — C, can
be then identified with the Pontrjagin dual G = T'; and this gives the result.

(2) Regarding now the last assertion, we must prove here that we have:

tr(f) = /G f(2)da

But this is clear via the above identifications, for instance because the linear form
tr(g) = d41, when viewed as a functional on C(G), is left and right invariant. O

Getting back now to our questions, we can now formulate a general modelling result
for independence and freeness, providing us with large classes of examples, as follows:
THEOREM 13.15. We have the following results, valid for group algebras:
(1) C*(T"),C*(A) are independent inside C*(I' x A).
(2) C*(T"),C*(A) are free inside C*(I" x A).
PROOF. In order to prove these results, we have two possible methods:

(1) We can either use the general results in Theorem 13.10, along with the following
two isomorphisms, which are both standard:

CTx A) = C*(A) @ C*(T) , C*(T%A)=C*(A)*CH(T)

(2) Or, we can prove this directly, by using the fact that each algebra is spanned
by the corresponding group elements. Indeed, this shows that it is enough to check the
independence and freeness formulae on group elements, which is in turn trivial. U

13c. Linearization

We have seen so far the foundations of free probability, in analogy with those of
classical probability, taken with a functional analysis touch. The idea now is that with
a bit of luck, the basic theory from the classical case, namely the Fourier transform, and
then the CLT, should have free extensions. Let us being our discussion with the following
definition, from [90], coming from the theory developed in the above:

DEFINITION 13.16. The real probability measures are subject to operations x and H,
called classical and free convolution, given by the formulae

Pa * flb = Hatb >  fo B g = lats

with a,b being independent, and o, B being free, and all variables being self-adjoint.
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The problem now is that of linearizing these operations * and H. In what regards x,
we know from chapter 1 that this operation is linearized by the logarithm log F' of the
Fourier transform, which in the present setting, where £ = tr, is given by:

F,(x) = tr(e™)

In order to find a similar result for H, we need some efficient models for the pairs of
free random variables (a,b). This is a priori not a problem, because once we have a € A
and b € B, we can form the free product A x B, which contains a, b as free variables.

However, the initial choice, that of the variables a € A, b € B modeling some given
laws pu,v € P(R), matters a lot. Indeed, any kind of abstract choice here would lead
us into an abstract algebra A % B, and so into the abstract combinatorics of the free
convolution, that cannot be solved with bare hands, and that we want to avoid.

In short, we must be tricky, at least in what concerns the beginning of our computation.
Following [90], the idea will be that of temporarily lifting the self-adjointness assumption
on our variables a, b, and looking instead for random variables «, 3, not necessarily self-
adjoint, modelling in integer moments our given laws p, v € P(R), as follows:

tr(a®) = My(n) , tr(B%) = My(v)

To be more precise, assuming that «, 5 are indeed not self-adjoint, the above formulae
are not the general formulae for «, 5, simply because these latter formulae involve colored
integers k = oceeo... as exponents. Thus, in the context of the above formulae, u, v are
not the distributions of «, 8, but just some “parts” of these distributions.

Now with this idea in mind, due to Voiculescu and quite tricky, the solution to the law
modelling problem comes in a quite straightforward way, involving the good old Hilbert
space H = [*(N) and the good old shift operator S € B(H), as follows:

THEOREM 13.17. Consider the shift operator on the space H = I*(N), given by S(e;) =
eir1. The variables of the following type, with f € C[X]| being a polynomial,

S*+ f(9)
model then in moments, up to finite order, all the distributions p : C[X] — C.

ProOOF. We have already met the shift S before, as the simplest example of an isom-
etry which is not a unitary, S*S =1, 55* = 1, with this coming from:

i >0

S*(el) _ €i—1 (7’ )
0 (1=0)

Consider now a variable as in the statement, namely:

T=S54ay+aS+aS*+...+a,S"
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The computation of the moments of 7" is then as follows:
— We first have tr(T) = ay.

— Then the computation of ¢r(7?) will involve a;.

— Then the computation of tr(7%) will involve as.

— And so on.

Thus, we are led to a certain recurrence, that we will not attempt to solve now, with
bare hands, but which definitely gives the conclusion in the statement. O

Before getting further, with free products of such models, let us work out a very basic
example, which is something fundamental, that we will need in what follows:

PROPOSITION 13.18. In the context of the above correspondence, the variable
T=54+5"
follows the Wigner semicircle law, v, = %\/4 — 22dx.

PROOF. In order to compute the law of variable T" in the statement, we can use the
moment method. The moments of this variable are as follows:

M, = tr(TF)
= tr((S+ 89
= #(1 e (S+5))
Now since the S shifts to the right on N, and S* shifts to the left, while remaining

positive, we are left with counting the length k& paths on N starting and ending at 0. Since
there are no such paths when k£ = 2r + 1 is odd, the odd moments vanish:

M2r+1 =0

In the case where k = 2r is even, such paths on N are best represented as paths in the
upper half-plane, starting at 0, and going at each step NE or SE, depending on whether
the original path on N goes at right or left, and finally ending at k¥ € N. With this picture
we are led to the following formula for the number of such paths:

M2r+2 = Z M23M2r75

But this is exactly the recurrence formula for the Catalan numbers, and so:

1 2
M27": (r)
r+1\r

Summarizing, the odd moments of T vanish, and the even moments are the Catalan
numbers. But these numbers being the moments of the Wigner semicircle law ~;, as
explained before, we are led to the conclusion in the statement. U
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Getting back now to our linearization program for H, the next step is that of taking a
free product of the model found in Theorem 13.17 with itself. There are two approaches
here, one being a bit abstract, and the other one being more concrete. We will explain
in what follows both of them. The abstract approach, which is quite nice, making a link
with our main modeling result so far, involving group algebras, is as follows:

PROPOSITION 13.19. We can talk about semigroup algebras C*(T') C B(I1*(T)), exactly
as we did for the group algebras, and at the level of examples:
(1) With T =N we recover the shift algebra A =< S > on H = [*(N).
(2) WithT = Nx*N, we obtain the algebra A =< S;, Sy > on H = [>(NxN).

PROOF. We can talk indeed about semigroup algebras C*(T") C B(I*(T")), exactly as
we did for the group algebras, the only difference coming from the fact that the semigroup
elements g € I" will now correspond to isometries, which are not necessarily unitaries. Now
this construction in hand, both the assertions are clear, as follows:

(1) With I" = N we recover indeed the shift algebra A =< S > on the Hilbert space
H = [*(N), the shift S itself being the isometry associated to the element 1 € N.

(2) With I' = N* N we recover the double shift algebra A =< 51, S, > on the Hilbert
space H = [*(N % N), the two shifts S, S, themselves being the isometries associated to
two copies of the element 1 € N, one for each of the two copies of N which are present. [J

In what follows we will rather use an equivalent, second approach to our problem,
which is exactly the same thing, but formulated in a less abstract way, as follows:

ProproSITION 13.20. We can talk about the algebra of creation operators
S, v —=>r®U
on the free Fock space associated to a real Hilbert space H, given by
FH)=CQoHo H*® ...

and at the level of examples, we have:

(1) With H = C we recover the shift algebra A =< S > on H = [*(N).
(2) With H = C?, we obtain the algebra A =< Sy, Sy > on H = [*(N*N).

PROOF. We can talk indeed about the algebra A(H) of creation operators on the free
Fock space F'(H) associated to a real Hilbert space H, with the remark that, in terms of
the abstract semigroup notions from Proposition 13.19, we have:

As for the assertions (1,2) in the statement, these are both clear, either directly, or by
passing via (1,2) from Proposition 13.19, which were both clear as well. O

The advantage with this latter model comes from the following result, from [90], which
has a very simple formulation, without linear combinations or anything:
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PROPOSITION 13.21. Given a real Hilbert space H, and two orthogonal vectors x L v,
the corresponding creation operators Sy and S, are free with respect to
tr(T) =< TQ,Q >
called trace associated to the vacuum vector.

PRrOOF. In standard tensor product notation for the elements of the free Fock space
F(H), the formula of a creation operator associated to a vector z € H is as follows:

SN ® ... QYn) =T Q... QYn

As for the formula of the adjoint of this creation operator, called annihilation operator
associated to the vector x € H, this is as follows:

S;(yl®---®?/n) =<z,Y1 > QY & ... Yp
We obtain from this the following formula, which holds for any two vectors z,y € H:
SySy =<wx,y>id

With these formulae in hand, the result follows by doing some elementary computa-
tions, in the spirit of those done for the group algebras, in the above. O

With this technology in hand, let us go back to our linearization program for H. We
know from Theorem 13.17 how to model the individual distributions p € P(R), and by
combining this with Proposition 13.10 and Proposition 13.21, we therefore know how to
freely model pairs of distributions u, v € P(R), as required by the convolution problem.
We are therefore left with doing the sum in the model, and then computing its distribution.
And the point here is that, still following [90], we have:

THEOREM 13.22. Given two polynomials f,g € C[X], consider the variables
ST+ f(S) . T +g(T)

where S, T are two creation operators, or shifts, associated to a pair of orthogonal norm
1 vectors. These variables are then free, and their sum has the same law as

R+ (f +9)(R)
with R being the usual shift on [*(N).
PRrOOF. We have two assertions here, the idea being as follows:

(1) The freeness assertion comes from the general freeness result from Proposition
13.21, via the various identifications coming from the previous results.

(2) Regarding the second assertion, the idea is that this comes from a 45° rotation
trick. Let us write indeed the two variables in the statement as follows:

X:S*+a0+a15+a252—|—...
Y =T"+by+ 0T +aT*+ ...
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Now let us perform the following 45° base change, on the real span of the vectors
s,t € H producing our two shifts S, T, as follows:
s+t s—1
vz A
The new shifts, associated to these vectors r,u € H, are then given by:
RoSET ST
V2o V2

By using now these two new shifts, which are free according to Proposition 13.21, we
obtain the following equality of distributions:

X+Y = S*+T*+ZakSk+ka’“
k
R+U\" R-U\*
() e (55)
zk: V2 V2

R\" R\"
~ V2R* +Y ay (—> + by, (—>
27 ¥
k

To be more precise, here at the end we have used the freeness property of R,U in
order to cut U from the computation, as it cannot bring anything, and then we did a
basic rescaling at the very end. Thus, we are led to the conclusion in the statement. [

As a conclusion, the operation yu — f from Theorem 13.17 linearizes H. In order to
reach now to something concrete, we are left with a computation inside C*(N), which
is elementary, and whose conclusion is that R, = f can be recaptured from p via the
Cauchy transform G,,. The precise result here, due to Voiculescu [90], is as follows:

THEOREM 13.23. Given a real probability measure ., define its R-transform as follows:

60 = [P — 6, (i + ;) ¢

rRE—T
The free convolution operation is then linearized by this R-transform.

ProoOF. This can be done by using the above results, in several steps, as follows:

(1) According to Theorem 13.22, the operation g — f from Theorem 13.17 linearizes
the free convolution operation BH. We are therefore left with a computation inside C*(N).
To be more precise, consider a variable as in Theorem 13.17:

X =5"+ f(9)
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In order to establish the result, we must prove that the R-transform of X, constructed
according to the procedure in the statement, is the function f itself.

(2) In order to do so, we fix |z| < 1 in the complex plane, and we set:
g = 0o + Z 210
k=1

The shift and its adjoint act then on this vector as follows:
Sq. =2"g. — &) , S¢. =2
It follows that the adjoint of our operator X acts on this vector as follows:
X*QZ = (S + f(S*))QZ
= 27'(q: — 0o) + f(2)g
= (27 + f(2))g: — 271
Now observe that the above formula can be written as follows:
7l = (27N 4 f(2) = X

The point now is that when |z| is small, the operator appearing on the right is invert-
ible. Thus, we can rewrite the above formula as follows:

(27 4 f(2) = X) 7Moo = 24
Now by applying the trace, we are led to the following formula:
[z f(2) =X = (7 + f(2) = X7) o, do)
= < 2q.,,00 >
= z

(3) Let us apply now the procedure in the statement to the real probability measure
f modelled by X. The Cauchy transform G|, is then given by:

Gu(§) = tr((€-X)7")
= tr((f—X*)*l)
= tr(( - X"

Now observe that, with the choice £ = 271 + f(2) for our complex variable, the trace
formula found in (2) above tells us that we have:

Gu(z_l + f(z)) =z

Thus, by definition of the R-transform, we have the following formula:

Ru(z) = f(z)
But this finishes the proof, as explained before in step (1) above. O




142 13. FREE PROBABILITY

Summarizing, the situation in free probability is quite similar to the one in classical
probability, the product spaces needed for the basic properties of the Fourier transform
being replaced by something “noncommutative”, namely the free Fock space models. This
is of course something quite surprising, and the credit for this remarkable discovery, which
has drastically changed operator algebras, goes to Voiculescu’s paper [90].

13d. Central limits

With the above linearization technology in hand, we can do many things. First, we
have the following free analogue of the CLT, at variance 1, due to Voiculescu [90]:

THEOREM 13.24. Given self-adjoint variables x1, xo, x3, ... which are f.u.d., centered,
with variance 1, we have, with n — 00, in moments,

1 n
= Z Ti~ M1
Vi
with the limiting measure being the Wigner semicircle law on [—2,2]:
1
Y= 2—\/4 —2?dx
T
Due to this, we also call this Wigner law free Gaussian law.

Proor. We follow the same idea as in the proof of the CLT, from chapter 2:

(1) The R-transform of the variable in the statement on the left can be computed by
using the linearization property from Theorem 13.23, and is given by:

R(€) = nR, (%) ~ ¢

(2) Regarding now the right term, our first claim here is that the Cauchy transform
of the Wigner law ~; satisfies the following equation:

1
G 1) =

Indeed, we know from before that the even moments of ~; are given by:
1 /2
o V4 — 222 dx = C,,
TJ-2

On the other hand, we also know from before that the generating series of the Catalan
numbers is given by the following formula:

> 1—+1—4
T
k=0

2z
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By using this formula with z = y=2, we obtain the following formula:
Guly) = vy ') Cu™
k=0

o 1=/l -4y

y 2y
1
55V
Now with y = £ + 71, this formula becomes, as claimed in the above:

6 (¢+7) - - gV

¢ 2 2
E+& 1 -¢
N 2 2
= ¢

(3) We conclude from the formula found in (2) and from Theorem 13.23 that the
R-transform of the Wigner semicircle law 7, is given by the following formula:

R’Yl (5) =<

Observe that this follows in fact as well from the following formula, coming from
Proposition 13.18, and from the technical details of the R-transform:

S+ 5%~ 1
Thus, the laws in the statement have the same R-transforms, so they are equal. [

Summarizing, we have proved the free CLT at ¢ = 1. The passage to the general case,
where ¢ > 0 is arbitrary, is routine, and still following Voiculescu [90], we have:

THEOREM 13.25 (Free CLT). Given self-adjoint variables x1, xo, x3, . .. which are f.i.d.,
centered, with variance t > 0, we have, with n — 00, in moments,

1 n
\/ﬁ ZZ:; Yt
with the limiting measure being the Wigner semicircle law on [—2v/t, 2/t

1
v = — VA4t — 2% dx

27t
Due to this, we also call this Wigner law free Gaussian law.
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PrOOF. We follow the above proof at ¢ = 1, by making changes where needed:

(1) The R-transform of the variable in the statement on the left can be computed by
using the linearization property from Theorem 13.23, and is given by:

R(€) = nR, (%) ~ i€

(2) Regarding now the right term, our claim here is that we have:

1
(16 ) =

Indeed, we know from before that the even moments of +; are given by:
1
— 4t — 220%*dx = t*C,
27Tt —2\/{
On the other hand, we know from before that we have the following formula:
= . 1—y1T—4z
N
2z
k=0

By using this formula with z = ty~2, we obtain the following formula:

Guly) = y ') t"Cy™
k=0
Vi T
2ty—2
Al 2)
= Y (1 JT—dy2
2 4
y 1 =
N
ot 2 VY

Now with y = t& + £, this formula becomes, as claimed in the above:

G’Yt (tf-ﬁ-l) — M—%\/tzf2+£_2—2t

¢ ot
tE+Et -t
- o 2
= ¢

(3) We conclude from the formula found in (2) and from Theorem 13.23 that the
R-transform of the Wigner semicircle law 7, is given by the following formula:

Ry, (§) = #€

Thus, the laws in the statement have the same R-transforms, so they are equal. [
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Regarding the limiting measures ~;, one problem that we were having was that of
understanding how 7; exactly appears, out of 7;. We can now solve this question:

THEOREM 13.26. The Wigner semicircle laws have the property
Vs H Tt = Vs+t
so they form a 1-parameter semigroup with respect to free convolution.

Proor. This follows either from Theorem 13.25, or from Theorem 13.23, by using
the fact that the R-transform of ~;, which is given by R, () = t¢, is linear in ¢. U

As a conclusion to what we have so far, we have:

THEOREM 13.27. The Gaussian laws g;, given by
1
g v 2mt

.2
e~ /2tdx

and the Wigner laws v, given by
1
v = Q—t\/ 4t — x2%dx
T

have the following properties:

) They appear via the CLT, and the free CLT.

) They form semigroups with respect to * and .

) Their transforms are log F,, (z) = —tz*/2, R,,(x) = tx.

4) Their moments are My, = 3~ p tl with D = Py, NCs.

(1
(2
(3
(

PROOF. These are all results that we already know, the idea being as follows:
(1,2) These assertions follow from (3,4), via the general theory.

(3,4) These assertions follow by doing some combinatorics and calculus. U

To summarize, our initial purpose for this chapter was to vaguely explore the basics
of free probability, but all of a sudden, due to the power of Voiculescu’s R-transform [90],
we are now into stating and proving results which are on par with what we have been
doing in the first part of this book, namely reasonably advanced probability theory.

This is certainly quite encouraging, and we will keep developing free probability in
what follows, in the remainder of this book, with free analogues of everything, or almost,
of what we have been doing in chapters 1-12, in relation with classical probability and its
applications, and also with some results about the random matrices.
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13e. Exercises

Exercises:

EXERCISE 13.28.
EXERCISE 13.29.
EXERCISE 13.30.
EXERCISE 13.31.
EXERCISE 13.32.
EXERCISE 13.33.
EXERCISE 13.34.
EXERCISE 13.35.

Bonus exercise.



CHAPTER 14

Random matrices

14a. Spectral measures

Welcome to the random matrices, which are first class mathematics and physics. In
order to talk about such matrices and their spectral measures, we need to do some more
linear algebra in infinite dimensions, as a continuation of our operator theory discussion
from the previous chapters. It is convenient to upgrade our formalism, as follows:

DEFINITION 14.1. An abstract operator algebra, or C*-algebra, is a complex algebra
A having a norm ||.|| and an involution x, subject to the following conditions:
(1) A is closed with respect to the norm.
(2) We have ||aa*|| = ||al|?, for any a € A.

In other words, what we did here is to axiomatize the abstract properties of the oper-
ator algebras A C B(H), coming from the various general results about linear operators
from chapter 13, without any reference to the ambient Hilbert space H.

As basic examples here, we have the usual matrix algebras My (C), with the norm
and the involution being the usual matrix norm and involution, given by:

1Al = sup [[Az]| (A7) = Ajs

l|ll=1

Some other basic examples are the algebras L>(X) of essentially bounded functions
f X — C on a measured space X, with the usual norm and involution, namely:

fll=sup[f(z)] , f(z)=/f(z)
zeX
We can put these two basic classes of examples together, as follows:

PROPOSITION 14.2. The random matriz algebras A = My (L>®(X)) are C*-algebras,
with their usual norm and involution, given by:

1Z|| = sup||Z:|| . (Z7)i; =2y
reX

These algebras generalize both the algebras My (C), and the algebras L>°(X).

PrRoOF. The fact that the C*-algebra axioms are satisfied is clear from definitions.
As for the last assertion, this follows by taking X = {.} and N = 1, respectively. O

147
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We can in fact say more about the above algebras, as follows:
THEOREM 14.3. Any algebra of type L™= (X) is an operator algebra, as follows:
L(X) € BUIA(X)) . f— (93— fg)
More generally, any random matriz algebra is an operator algebra, as follows,
My (L™(X)) C B (CY ® L*(X))
with the embedding being the above one, tensored with the identity.
ProoOF. We have two assertions to be proved, the idea being as follows:
(1) Given f € L*(X), consider the following operator, acting on H = L*(X):

Ty(9) = fyg
Observe that T is indeed well-defined, and bounded as well, because:

1 fgll2 = \//X (@) Plg(@)[2dp(z) < [[f]lolgll2

The application f — T} being linear, involutive, continuous, and injective as well, we
obtain in this way a C*-algebra embedding L>*(X) C B(H), as desired.

(2) Regarding the second assertion, this is best viewed in the following way:
My(L*(X)) = My(C)® L™(X)
C My(C)® B(L*(X))
= B(CY® L*(X))
Here we have used (1), and some standard tensor product identifications. U

Our purpose in what follows is to develop the spectral theory of the C*-algebras, and
in particular that of the random matrix algebras A = My (L (X)) that we are interested
in, one of our objectives being that of talking about spectral measures, in the normal
case, in analogy with what we know about the usual matrices. Let us start with:

THEOREM 14.4. Given an element a € A of a C*-algebra, define its spectrum as:
o(a) = {)\ECa—AgéA*l}

The following spectral theory results hold, exactly as in the A= B(H) case:
(1) We have o(ab) U {0} = o(ba) U {0}.
(2) We have o(f(a)) = f(o(a)), for any f € C(X) having poles outside o(a).
(3) The spectrum o(a) is compact, non-empty, and contained in Dy(||al|).
(4) The spectra of unitaries (u* = u™') and self-adjoints (a = a*) are on T, R.
(5) The spectral radius of normal elements (aa* = a*a) is given by p(a) = ||al|.

In addition, assuming a € A C B, the spectra of a with respect to A and to B coincide.
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PROOF. Here the assertions (1-5), which are of course formulated a bit informally, are
well-known for the full operator algebra A = B(H), and the proof in general is similar:

(1) Assuming that 1 — ab is invertible, with inverse ¢, we have abc = cab = ¢ — 1, and
it follows that 1 — ba is invertible too, with inverse 1 + bca. Thus o(ab),o(ba) agree on
1 € C, and by linearity, it follows that o(ab), o(ba) agree on any point A € C*.

(2) The formula o(f(a)) = f(o(a)) is clear for polynomials, f € C[X], by factorizing
f — A, with A € C. Then, the extension to the rational functions is straightforward,
because P(a)/Q(a) — X is invertible precisely when P(a) — AQ(a) is.

(3) By using 1/(1—b) =1+b+0b*+... for ||b]| < 1 we obtain that a — X is invertible
for |A| > ||al|, and so o(a) C Dy(||a||). It is also clear that o(a) is closed, so what we
have is a compact set. Finally, assuming o(a) = @ the function f(A\) = ¢((a — X)) is
well-defined, for any ¢ € A*, and by Liouville we get f = 0, contradiction.

(4) Assuming u* = u~! we have ||u|| = 1, and so o(u) C Dy(1). But with f(z) = 27!
we obtain via (2) that we have as well o(u) C f(Do(1)), and this gives o(u) C T. As
for the result regarding the self-adjoints, this can be obtained from the result for the
unitaries, by using (2) with functions of type f(z) = (z +it)/(z —it), with ¢ € R.

(5) It is routine to check, by integrating quantities of type z"/(z — a) over circles cen-
tered at the origin, and estimating, that the spectral radius is given by p(a) = lim ||a”||*/".
But in the self-adjoint case, a = a*, this gives p(a) = ||a||, by using exponents of type
n = 2* and then the extension to the general normal case is straightforward.

(6) Regarding now the last assertion, the inclusion og(a) C o4(a) is clear. For the
converse, assume a — A € B~!, and set b = (a — A\)*(a — \). We have then:

oa(b) — op(b) = {u eC—opb)|-ptenB- A}

Thus this difference in an open subset of C. On the other hand b being self-adjoint,
its two spectra are both real, and so is their difference. Thus the two spectra of b are
equal, and in particular b is invertible in A, and so a — A € A~!, as desired. Il

We can now a prove a key result, as follows:

THEOREM 14.5 (Gelfand). If X is a compact space, the algebra C(X) of continuous
functions on it f: X — C is a C*-algebra, with usual norm and involution, namely:

Ifll =sup|f(x)] . [ (z)=f(z)
zeX
Conversely, any commutative C*-algebra is of this form, A = C(X), with
X = { x : A — C , normed algebra Character}

with topology making continuous the evaluation maps ev, : x — x(a).
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PROOF. There are several things going on here, the idea being as follows:

(1) The first assertion is clear from definitions. Observe that we have indeed:
1 £7]] = sup | f(2)* = || f1]”
reX

Observe also that the algebra C'(X) is commutative, because fg = gf.

(2) Conversely, given a commutative C*-algebra A, let us define X as in the statement.
Then X is compact, and a — ev, is a morphism of algebras, as follows:

ev:A— C(X)

(3) We first prove that ev is involutive. We use the following formula, which is similar
to the z = Re(z) + iIm(z) decomposition formula for usual complex numbers:
a+a* | a—a"
a= 5 +2- %
Thus it is enough to prove ev, = ev} for the self-adjoint elements a. But this is the
same as proving that a = a* implies that ev, is a real function, which is in turn true, by
Theorem 14.4, because ev,(x) = x(a) is an element of o(a), contained in R.

(4) Since A is commutative, each element is normal, so ev is isometric:

|leval| = p(a) = |lal|
It remains to prove that ev is surjective. But this follows from the Stone-Weierstrass
theorem, because ev(A) is a closed subalgebra of C'(X), which separates the points. [

As a main consequence of the Gelfand theorem, we have:
THEOREM 14.6. For any normal element a € A we have an identification as follows:
<a>=C(c(a))
In addition, given a function f € C(o(a)), we can apply it to a, and we have
o(f(a)) = f(o(a))
which generalizes the previous rational calculus formula, in the normal case.

PROOF. Since a is normal, the C*-algebra < a > that is generates is commutative, so
if we denote by X the space of the characters y :< a >— C, we have:

<a>=C(X)
Now since the map X — o(a) given by evaluation at a is bijective, we obtain:
<a>=C(o(a))
Thus, we are dealing here with usual functions, and this gives all the assertions. [

In order to get now towards noncommutative probability, we first have to develop the
theory of positive elements, and linear forms. First, we have the following result:
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PROPOSITION 14.7. For an element a € A, the following are equivalent:

(1) a is positive, in the sense that o(a) C [0,00).
(2) a = b2, for some b € A satisfying b = b*.
(3) a = cc*, for some c € A.

Proor. This is something very standard, as follows:

(1) = (2) Observe first that o(a) C R implies a = a*. Thus the algebra < a > is
commutative, and by using Theorem 14.6, we can set b = /a.

(2) = (3) This is trivial, because we can simply set ¢ = b.
(2) = (1) This is clear too, because we have:
o(a) = o(b?) = o(b)* C R* = [0, 00)

(3) = (1) We proceed by contradiction. By multiplying ¢ by a suitable element of
< cc* >, we are led to the existence of an element d # 0 satisfying:

—dd" >0
By writing now d = x + iy with x = 2%,y = y* we have:
dd* + d*d = 2(z* + y*) > 0
Thus d*d > 0, which is easily seen to contradict the condition —dd* > 0. U
We can talk as well about positive linear forms, as follows:

DEFINITION 14.8. Consider a linear map ¢ : A — C.
(1) ¢ is called positive when a >0 = ¢(a) > 0.
(2) @ is called faithful and positive when a > 0,a #0 = ¢(a) > 0.

In the commutative case, A = C(X), the positive linear forms appear as follows, with
1 being positive, and strictly positive if we want ¢ to be faithful and positive:

o(f) = /X f (@) dp(z)

In general, the positive linear forms can be thought of as being integration functionals
with respect to some underlying “positive measures”. We have:

DEFINITION 14.9. Let A be a C*-algebra, given with a positive trace tr : A — C.

(1) The elements a € A are called random variables.
(2) The moments of such a variable are the numbers My(a) = tr(a®).
(3) The law of such a variable is the functional p, : P — tr(P(a)).
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Here the exponent k = c e e o ... is by definition a colored integer, and the powers a”

are defined by the following formulae, and multiplicativity:
=1, a°=a , a"=a
As for the polynomial P, this is a noncommuting *-polynomial in one variable:
PeC< X, X*>

Observe that the law is uniquely determined by the moments, because we have:
P(X) =) MX" = p(P) = N\eMy(a)
k k

At the level of the general theory, we have the following key result, extending the
various results that we have, regarding the self-adjoint and normal matrices:

THEOREM 14.10. Let A be a C*-algebra, with a trace tr, and consider an element
a € A which is normal, in the sense that aa* = a*a.

(1) pq is a complex probability measure, satisfying supp(pq) C o(a).
(2) In the self-adjoint case, a = a*, this measure i, is real.
(3) Assuming that tr is faithful, we have supp(p,) = o(a).

ProoF. This is something very standard, that we already know for the usual complex
matrices, and whose proof in general is quite similar, as follows:

(1) In the normal case, aa* = a*a, the Gelfand theorem, or rather the subsequent
continuous functional calculus theorem, tells us that we have:

<a>=C(c(a))

Thus the functional f(a) — tr(f(a)) can be regarded as an integration functional on
the algebra C'(o(a)), and by the Riesz theorem this latter functional must come from a
probability measure p on the spectrum o(a), in the sense that we must have:

/fdu

We are therefore led to the conclusions in the statement, with the uniqueness assertion
coming from the fact that the elements a*, taken as usual with respect to colored integer
exponents, k = oeeo ..., generate the whole C*-algebra C'(o(a)).

(2) This is something which is clear from definitions.

(3) Once again, this is something which is clear from definitions. 0

As a first concrete application now, by getting back to the random matrices, and to
the various questions raised in the beginning of this chapter, we have:
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THEOREM 14.11. Given a random matric Z € My(L>(X)) which is normal,
70" =77

its law, which is by definition the following abstract functional,
1
B:C< X, X*>5C P—>—/ 1r(P(2))
N Jx
when restricted to the usual polynomials in two variables,
1
§iCX, X" »C , P —/ tr(P(2))
N Jx
must come from a probability measure on the spectrum o(Z) C C, as follows:
u(P) = [ Pla)duta)
o(T)

We agree to use the symbol p for all these notions.

ProoF. This follows indeed from what we know from Theorem 14.10, applied to the
normal element a = Z, belonging to the C*-algebra A = My (L®(X)). O

14b. Gaussian matrices

We have now all the needed ingredients for launching some explicit random matrix
computations. Our goal will be that of computing the asymptotic moments, and then the
asymptotic laws, with N — oo, for the main classes of large random matrices.

Let us begin by specifying the precise classes of matrices that we are interested in.
First we have the complex Gaussian matrices, which are constructed as follows:

DEFINITION 14.12. A complex Gaussian matriz is a random matrixz of type
Z € My(L™(X))
which has i.i.d. centered complex normal entries.

To be more precise, the assumption in this definition is that all the matrix entries Z;;
are independent, and follow the same complex normal law G, for a fixed value of t > 0.
We will see that the above matrices have an interesting, and “central” combinatorics,
among all kinds of random matrices, with the study of the other random matrices being
usually obtained as a modification of the study of the Gaussian matrices.

As a somewhat surprising remark, using real normal variables in Definition 14.12,
instead of the complex ones appearing there, leads nowhere. The correct real versions of
the Gaussian matrices are the Wigner random matrices, constructed as follows:
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DEFINITION 14.13. A Wigner matriz is a random matrix of type
Z € My(L™(X))
which has i.i.d. centered complex normal entries, up to the constraint Z = Z*.

This definition is something a bit compacted, and to be more precise, a Wigner matrix
is by definition a random matrix as follows, with the diagonal entries being real normal
variables, a; ~ ¢4, for some t > 0, the upper diagonal entries being complex normal
variables, b;; ~ Gy, the lower diagonal entries being the conjugates of the upper diagonal
entries, as indicated, and with all the variables a;, b;; being independent:

aq b12 blN

bia  a

Z:

B aN-1 bn-1,n
blN bN—l,N an
As a comment here, for many concrete applications the Wigner matrices are in fact the
central objects in random matrix theory, and in particular, they are often more important
than the Gaussian matrices. In fact, these are the random matrices which were first
considered and investigated, a long time ago, by Wigner himself.

However, as we will soon discover, the Gaussian matrices are somehow more funda-
mental than the Wigner matrices, at least from an abstract point of view, and this will
be the point of view that we will follow here, with the Gaussian matrices coming first.

Finally, we will be interested as well in the complex Wishart matrices, which are the
positive versions of the above random matrices, constructed as follows:

DEFINITION 14.14. A complex Wishart matriz is a random matriz of type
Z =YY" € My(L®(X))
with Y being a complex Gaussian matriz.

As before with the Gaussian and Wigner matrices, there are many possible comments
that can be made here, of technical or historical nature. As a first key fact, using real
Gaussian variables instead of complex ones leads to a less interesting combinatorics. Also,
these matrices were introduced and studied by Marchenko and Pastur not long after
Wigner, and so historically came second. Finally, in what regards their combinatorics
and applications, these matrices quite often come first, before both the Gaussian and the
Wigner ones, with all this being of course a matter of knowledge and taste.

Summarizing, we have three main types of random matrices, which can be thought of
as being “complex”, “real” and “positive”, and that we will study in what follows, in this
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precise order, with this order being the one that fits us best here. Let us also mention that
there are many other interesting classes of random matrices, which are more specialized,
usually appearing as modifications of the above. More on these later.

In order to compute the asymptotic laws of the Gaussian, Wigner and Wishart ma-
trices, we use the moment method. We first have the following result:
THEOREM 14.15. Given a sequence of Gaussian random matrices
Zn € My(L>(X))

having independent Gy variables as entries, for some fized t > 0, we have
Z

for any colored integer k = oeeo ... inthe N — oo limit.
PRrROOF. This is something standard, which can be done as follows:

(1) We fix N € N, and we let Z = Zy. Let us first compute the trace of Z¥. With
k = k... ks, and with the convention (:5)° = ij, (ij)® = ji, we have:

Tr(Z%) = Tr(Z" ... Z%)

(Z")i1is(Z7)igis - - (270,

1213

I
'MZ
'MZ

-
=
Il
—
-
w
Il
—_

1192

I
Mz
M

(Z(iliz)kl)kl(Z(iQig)kQ)kQ e (Z(isil)’%')ks

Il
N
-
Il
—

s

.

1

(2) Next, we rescale our variable Z by a v/ N factor, as in the statement, and we also
replace the usual trace by its normalized version, tr = Tr/N. Our formula becomes:

Z \" 1 - &
tr — = s/l Z . Z(Z(iﬂg)kl)kl (Z(izis)kz)kz .. (Z(isil)ks)ks
V) ) =

i1=1 is=1

Thus, the moment that we are interested in is given by:

N N
Z 1 k k ks
M <\/N) = ez > ”Z/X<Z(i1iz)k1) (Zigigyra)™ -+ (Zaiyes )™

i1=1 is=1
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(3) Let us apply now the Wick formula, that we know well from before. We conclude
that the moment that we are interested in is given by the following formula:

(%)

B2~ ke y
= N Z . Z # {7r € PQ(]{)‘W < ker ((i142)"", (i2i3)™, . . ., (zszl)ks)}
1=l =1
1 : s - . -
= tS/Q Z W# {Z < {17 s 7N} T < ker ((ZIZQ)kla (1223)@7 R (Zszl)ks>}
TEP2 (k)

(4) Our claim now is that in the N — oo limit the combinatorics of the above sum
simplifies, with only the noncrossing partitions contributing to the sum, and with each of
them contributing precisely with a 1 factor, so that we will have, as desired:

M, (i> = 2 ) (57reNCQ(k)+O(N_1)>

wE€P2(k)

~ 2 Z OreNCs (k)
wEP2(k)

= 2N Cy (k)|

(5) In order to prove this, the first observation is that when k is not uniform, in the
sense that it contains a different number of o, ® symbols, we have Py(k) = ), and so:

Jm(§%>:ﬁﬂN@@ﬂ:o

(6) Thus, we are left with the case where k is uniform. Let us examine first the case
where k consists of an alternating sequence of o and e symbols, as follows:

k=oceoce.. . ... ce
2
In this case it is convenient to relabel our multi-index i = (iy,...,4s), with s = 2p, in
the form (jy, 1, ja.lo, . - ., Jp, lp). With this done, our moment formula becomes:
Z 1 , . . . .
Mk (\/_N) — tp Z Nerl# {j,l € {1, ey N}p m S ker (]1[1,]2[1,]2[2, Ce 7]1lp)}

TEP2(k)

Now observe that, with k being as above, we have an identification Py(k) =~ S,
obtained in the obvious way. With this done too, our moment formula becomes:

Z 1o ,

TESp

jr = jw(r)—‘rl? lr = l7r(7‘)7 VT}
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(7) We are now ready to do our asymptotic study, and prove the claim in (4). Let
indeed v € S, be the full cycle, which is by definition the following permutation:

vy=(12...p)
In terms of ~, the conditions j, = jr()4+1 and I, = lr( found above read:
yr <kerj , mw<kerl
Counting the number of free parameters in our moment formula, we obtain:

Z tP
— § : w4yl — § : |7 |+lyr|—p—1
Mk(\/ﬁ)_NPH NITHT — P NIl —p

TESp TESp

(8) The point now is that the last exponent is well-known to be < 0, with equality
precisely when the permutation 7 € .S, is geodesic, which in practice means that 7 must
come from a noncrossing partition. Thus we obtain, in the N — oo limit, as desired:

M, (\%) ~ PINC, (k)]

This finishes the proof in the case of the exponents k& which are alternating, and the
case where £ is an arbitrary uniform exponent is similar, by permuting everything.  [J

The above result is very nice, but the resulting asymptotic measure is still in need to
be interpreted. For more on all this, we refer to free probability theory [91].

14c. Wigner and Wishart

Regarding now the Wigner matrices, we have here the following result, coming as a
consequence of Theorem 14.15, via some simple algebraic manipulations:

THEOREM 14.16. Given a sequence of Wigner random matrices
Zn € My(L™(X))

having independent G, variables as entries, with t > 0, up to Zny = Z};, we have

M, (%) ~ 12 NCy(B)|

for any integer k € N, in the N — oo limit.

ProOF. This can be deduced from a direct computation based on the Wick formula,
similar to that from the proof of Theorem 14.15, but the best is to deduce this result
from Theorem 14.15 itself. Indeed, we know from there that for Gaussian matrices Yy €
My (L>(X)) we have the following formula, valid for any colored integer K =oceeo. ..,
in the N — oo limit, with A/C, standing for noncrossing matching pairings:

My (\%) ~ (KA Co ()]
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By doing some combinatorics, we deduce from this that we have the following formula
for the moments of the matrices Re(Yy), with respect to usual exponents, k € N:

() - o (s )
= 27k M <ﬁ)
&=
~ 27 NP INC(K)|
|K|=k
= 27k R2 ORI NC, (K|
27k/2 k2N Cy (k)|

Now since the matrices Zy = v2Re(Yy) are of Wigner type, this gives the result. [
Now by putting everything together, we obtain the Wigner theorem, as follows:
THEOREM 14.17. Given a sequence of Wigner random matrices
Zn € My(L>(X))
which by definition have i.i.d. complex normal entries, up to Zy = Z3, we have
ZN ~m
in the N — oo limit, where vy, = ﬁ\/mmn 15 the Wigner semicircle law.

ProoOF. This follows indeed from Theorem 14.16, via some combinatorics, that we
know from before, in order to recover the Wigner law, out of the Catalan numbers.  [J

Let us discuss now the Wishart matrices, which are the positive analogues of the
Wigner matrices. Quite surprisingly, the computation here leads to the Catalan numbers,
but not in the same way as for the Wigner matrices, the result being as follows:

THEOREM 14.18. Given a sequence of complex Wishart matrices
Wy =YnYy € My(L>(X))

with Yy being N x N complexr Gaussian of parameter t > 0, we have

W,

for any exponent k € N, in the N — oo limit.

PROOF. There are several possible proofs for this result, as follows:
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(1) A first method is by using the formula that we have in Theorem 14.15, for the
Gaussian matrices Yy. Indeed, we know from there that we have the following formula,
valid for any colored integer K = oeeo ..., in the N — oo limit:

Y,
My (\/%) ~ 2N Cy (K
With K =oceoce..., alternating word of lenght 2k, with k € N, this gives:

M, (Y’FVYN) ~ tNCo ()|

Thus, in terms of the Wishart matrix Wy = Yy Yy we have, for any £ € N:

W
M, (TN) ~ t* N Cy(K)|

The point now is that, by doing some combinatorics, we have:
INCo(K)| = |[NCoy(2k)| = Cy
Thus, we are led to the formula in the statement.

(2) A second method, that we will explain now as well, is by proving the result directly,
starting from definitions. The matrix entries of our matrix W = Wy are given by:

1 N N
tT(Wk) — N Z Z 1112 1213 M/’Lkn
) o s ) )
= N Z cee Z Z s Z Yiﬂ”lY;QﬁY;zT’zY;:ﬁ"z ce }/;krk}/;l'f’k
i1=1  dp=1ri=1  ru=1

W k 1 N N N N B B B
tr ((N> > = W Z cee Z Z ce Z }/;11"1}/;27‘1}/;27'2}/;37'2 ce YvikrkY;lrk
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By using now the Wick rule, we obtain the following formula for the moments, with

K =oeoe... alternating word of lenght 2k, and with I = (4171, 4971, ..., ik, 117%):
W & N N N N
M (N) - Y LYY Y #{r e Pl < ker(D)
=1 dg=lrm=1 =1
tF _ i
= W Z #{z,re{l,...,]\f} ‘ﬁgker(f)}
TI'GPQ(K)

In order to compute this quantity, we use the standard bijection Py(K) ~ Si. By
identifying the pairings m € Po(K) with their counterparts m € Sy, we obtain:

k
M%%) _ #Z#{i,re{l,...,N}k

TESk

iy = iﬂ(8)+17 Ts = rﬂ'(s)’vs}

Now let v € Sy be the full cycle, which is by definition the following permutation:
vy=(12... k)

The general factor in the product computed above is then 1 precisely when following
two conditions are simultaneously satisfied:

yr <ker: , mw<kerr
Counting the number of free parameters in our moment formula, we obtain:

W k ||+ |ym|—k—1
My <F) =tF )y " NI

TES)

The point now is that the last exponent is well-known to be < 0, with equality precisely
when the permutation m € Sy is geodesic, which in practice means that m must come from
a noncrossing partition. Thus we obtain, in the N — oo limit:

w

Thus, we are led to the conclusion in the statement. U
We are led in this way to the following result:
THEOREM 14.19. Given a sequence of complex Wishart matrices

Wxn =YnYxy € My(L>(X))

with Yy being N x N complexr Gaussian of parameter t > 0, we have

Wy 1
ON AT 1
tN 2 v du

with N — oo, with the limiting measure being the Marchenko-Pastur law 7.
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Proor. This follows indeed from Theorem 14.18, via some standard combinatorics,
in order to recover the Marchenko-Pastur law, out of the Catalan numbers. O

Let us discuss now a generalization of the above results, motivated by a whole array
of concrete questions, and bringing into the picture a “true” parameter ¢ > 0, which is
different from the parameter ¢t > 0 used above, which is something quite trivial.

For this purpose, let us go back to the definition of the Wishart matrices. There were
as follows, with Y being a N x N matrix with i.i.d. entries, each following the law G;:
W =YY"

The point now is that, more generally, we can use in this construction a N x M matrix
Y with i.i.d. entries, each following the law G;, with M € N being arbitrary. Thus, we
have a new parameter, and by ditching the old parameter ¢t > 0, we are led to the following
definition, which is the “true” definition of the Wishart matrices:

DEFINITION 14.20. A complex Wishart matriz is a N X N matrix of the form
W=YY~*
where Y 1s a N x M matrix with i.1.d. entries, each following the law G.

In order to see now what is going on, combinatorially, let us compute moments. The
result here is substantially more interesting than that for the previous Wishart matrices,
with the new revelant numeric parameter being now the number ¢ = M /N, as follows:

THEOREM 14.21. Given a sequence of complex Wishart matrices
Wy =YnYy € My(L™(X))
with Yy being N x M complex Gaussian of parameter 1, we have
Wh\ o &
(%)= %,
for any exponent k € N, in the M = tN — oo limit.
ProoFr. This is something which is very standard, as follows:

(1) Before starting, let us clarify the relation with our previous Wishart matrix results.
In the case M = N we have t = 1, and the formula in the statement reads:

M () = Ive)

Thus, what we have here is the previous Wishart matrix formula, in full generality, at
the value t = 1 of our old parameter ¢t > 0.
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(2) Observe also that by rescaling, we can obtain if we want from this the previous
Wishart matrix formula, in full generality, at any value ¢ > 0 of our old parameter. Thus,
things fine, we are indeed generalizing what we did before.

(3) In order to prove now the formula in the statement, we proceed as usual, by using
the Wick formula. The matrix entries of our Wishart matrix W = Wy are given by:

M
Wz’j = Z er'rffjr
r=1

Thus, the normalized traces of powers of W are given by the following formula:
N

N
tr(Wh) = % Z . Z WivisWisig - - Wiy

1 N N M M - - B
- N Z T Z Z e Z )/;17‘1}/;21”1}/;21“21/@'31”2 cee Y;krkmlrk

By rescaling now W by a 1/N factor, as in the statement, we obtain:

W k 1 N N M M B B B
tr ((N) > - W Z .. Z Z ce. Z }/ilTll/iQTlYigT'z i3T9 * v - Y;krk}/ilrk

i1:1 ’Lkil 7"121 Tkzl

(4) By using now the Wick rule, we obtain the following formula for the moments,

with K = oeoe ... alternating word of lenght 2k, and I = (171,271, . . ., ixTk, 117%):
W [ N N M M
M, (ﬂ = A >y Y # {re P <)
=1  ig=lr=1  re=1
1 .
=Y #{z e{l,...,NY,re {1,...,M}k)7r < kerl}
TE€P2(K)

(5) In order to compute this quantity, we use the standard bijection Py(K) ~ Si. By
identifying the pairings m € Po(K) with their counterparts m € Sy, we obtain:

w 1
Mk<ﬁ) = WZ#{ie{1,...,N}k,r€{1,...,M}k

TESk

1y = Z‘71'(3)—4—17 Ts = rw(s)}

Now let v € Sy be the full cycle, which is by definition the following permutation:
vy=(12... k)

The general factor in the product computed above is then 1 precisely when following
two conditions are simultaneously satisfied:

yr <ker: , mw<kerr
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Counting the number of free parameters in our expectation formula, we obtain:

w 1 s T 7| —k—1 0
Mk(F)ZNkHZN’YIMI:ZNIV M

TES) TESK

(6) Now by using the same arguments as in the case M = N, from the proof of
Theorem 15.18, we conclude that in the M = tN — oo limit the permutations © € S,
which matter are those coming from noncrossing partitions, and so that we have:

( ) Z NI e Z ol
TeNC(k TeNC(k

We are therefore led to the conclusion in the statement. O

In order to recapture now the density out of the moments, we can of course use the
Stieltjes inversion formula, but the computations here are a bit opaque. So, inspired from
what happens at ¢t = 1, let us cheat a bit, and formulate things as follows:

DEFINITION 14.22. The Marchenko-Pastur law m; of parameter t > 0 is given by:
an~ vy — CL2 ~ Tt
That is, m; the law of the square of a variable following the law ;.

This is certainly nice and simple, and we know that at ¢ = 1 we obtain indeed the
Marchenko-Pastur law 7, as constructed above. In general, we have:

ProOPOSITION 14.23. The Marchenko-Pastur law of parameter t > 0 is

Vit —(z —1—1)?

2rx

7 = max(1 —¢,0)dy + dx

the support being [0, 4t%], and the moments of this measure are
- ¥
TeNC(k

exactly as for the asymptotic moments of the comple:z: Wishart matrices.

Proor. This follows as usual, by doing some computations, either combinatorics, or
calculus. To be more precise, we have three formulae for m; to be connected, namely the
one in Definition 14.22, and the two ones from the present statement, and the connections
between them can be established exactly as we did before, at t = 1. U

Now back to the complex Wishart matrices that we are interested in, we can now
formulate a final result regarding them, as follows:
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THEOREM 14.24. Given a sequence of complex Wishart matrices
Wy =YnNYy € My (L™(X))

with Yy being N x M complex Gaussian of parameter 1, we have

Wy Vit —(z—1—1t)?

N " max(1 —¢,0)d + - dx
with M = tN — oo, with the limiting measure being the Marchenko-Pastur law ;.
Proor. This follows indeed from Theorem 14.21 and Proposition 14.23. U

Many other things can be said, along these lines, and for more on all this, we refer to
free probability theory [91], which has answers to nearly all potential questions that can
be asked, regarding the various classes of random matrices investigated above.

14d. Block modifications

Our goal now will be that of explaining a surprising result, stating that when suit-
ably block-transposing the entries of a complex Wishart matrix, we obtain as asymptotic
distribution a shifted version of Wigner’s semicircle law. Let us start with:

DEFINITION 14.25. The partial transpose of a complex Wishart matriz W of parame-
ters (dn,dm) is the matriz

W =(idot)W
where id is the identity of My(C), and t is the transposition of M, (C).

In more familiar terms of bases and indices, the standard decomposition C™* = C?@C"
induces an algebra decomposition Mg, (C) = M;(C) @ M,(C), and with this convention
made, the partial transpose matrix W constructed above has entries as follows:

VNVia,jb = Wib,ja

Our goal in what follows will be that of computing the law of W, first when d, n, m
are fixed, and then in the d — oo regime. For this purpose, we will need a number of
standard facts regarding the noncrossing partitions. Let us start with:

PROPOSITION 14.26. For a permutation o € S,, we have the formula
o] +#0=p

where |o| is the number of cycles of o, and #o is the minimal k € N such that o is a
product of k transpositions. Also, the following formula defines a distance on Sy,

(0,7) = #(0™'m)
and the set of permutations o € S, which saturate the triangular inequality
#Ho+H 0 =H#r=p—1
where v € S, is a full cycle, is in bijection with the set NC(p).
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ProoOF. All this is standard combinatorics, that we will leave here as an exercise. [J
We will need as well the following well-known result:
PROPOSITION 14.27. The number ||7|| of blocks having even size is given by
L+ [l = [mv]
for every noncrossing partition T € NC(p).

PrROOF. We use a recurrence over the number of blocks of 7. If 7 has just one block,
its associated geodesic permutation is v and we have:

] = {1 (p odd)

2 (peven)

For partitions 7w with more than one block, we can assume without loss of generality
that m = 1 U n’, where 1, is a contiguous block of size k. Recall that the number of
blocks of the permutation 7 is given by the following formula, where p14 € P»(2p) is the
pair partition which pairs an element i with 7 + (—1)"13:

[Ty =17V pua

If £ is an even number, £ = 2r, consider the following partition, which contains
the block (1458 ...4r — 34r), along with the blocks coming from elements of the form
4i+2,4i 4+ 3 from {1,...,4r} and from 7’

—_—

O':igruﬂ'/\/pl4

We can count the blocks of the join of two partitions by drawing them one beneath the
other and counting the number of connected components of the curve, without taking into
account, the possible crossings. We conclude that we have the following formula, where
P4 18 p1g restricted to the set {2k + 1,2k +2...,2p}:

[TV pul =1+ 17V phy|
If k is odd, k = 2r + 1, there is no extra block appearing, so we have:
7V pual = |7V pll
Thus, we are led to the conclusion in the statement. Il
We can now investigate the block-transposed Wishart matrices, and we have:
THEOREM 14.28. For any p > 1 we have the formula
lim (E o tr) (mW)p = Z m/p/Iml

d—o0
TeNC(p)

where |.| and ||.|| are the number of blocks, and the number of blocks of even size.
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PRrROOF. The matrix elements of the partial transpose matrix are given by:

Wia,jb = VVib,ja - E E sz kc ja,kc

k=1 c=1
This gives the following formula:

tT(Wp) = (dn)” Z Z H i5Qs it 10041

i1,eip=1ai,...,ap=1 s=1

= (dn)” Z Z HWlsas+1,zs+1as

Q1. ,zp—lal7 Lap=1s=1

= (dn)” Z Z H Z Z stas+17]sbs is41as,jsbs

1, ﬂp—lah sap=1s=1 j1,.. 7]p—1b17 7bp—]-

The average of the general term can be computed by the Wick rule, namely:

p p
E <H Gis(lerlajsbsGierlasvjsbs) = § :H5is»i7r(s)+15as+lva‘rr(s)5js:j7r(s)5bs:b7r(s)

s=1 TESp s=1

Let v € S, be the full cycle y = (12 ... p)~'. The general factor in the above product
is 1 if and only if the following four conditions are simultaneously satisfied:

’7_171' <kert: , my<kera , w<kerj , w<kerb
Counting the number of free parameters in the above equation, we obtain:

(Eotr)(WP) = (dn)""(dm)® > dm*h "yl

€S,
_ Zd\ﬂ|+|v‘1Wl—p—lm\WI—pnlm\—l
TSy
The exponent of d in the last expression on the right is:
N(r) = ||+ 7| -p-1
= p—1—(#r+#(y'7))
= p—1—(#r+#(""y))

As explained in the beginning of this section, this quantity is known to be < 0, with
equality iff 7 is geodesic, hence associated to a noncrossing partition. Thus:

(Eotr)(WP) = (14+0(d™! LY
TeNC(p)

Together with || = ||«|| 4+ 1, this gives the result. O



14D. BLOCK MODIFICATIONS 167

We would like now to find an equation for the moment generating function of the
asymptotic law of mW . This moment generating function is defined by:

F(z) = lim (E o tr) (W)

We have the following result, regarding this moment generating function:

THEOREM 14.29. The moment generating function of mW satisfies the equation
(F—1)(1 - 2*F?) = mzF (1 4+ nzF)
in the d — oo limit.

PrROOF. We use the formula in Theorem 14.28. If we denote by N(p, b, €) the number
of partitions in NC'(p) having b blocks and e even blocks, we have:

Fo— 1+Z Z Pyl
p=1 7eNC(p

oo o o0

= 1+ ZZZmebneN(p, b, e)

p=1 b=0 e=0

Let us try to find a recurrence formula for the numbers N(p, b, e). If we look at the
block containing 1, this block must have r» > 0 other legs, and we get:

p,b 6 Z Z Z Z N p1,517€1 N(pr+1,br+1,€r+1)

re2N p=3p;+r+1 b=Xb;+1 e=Xe;

+ Z Z Z Z N(plablu61>~-N(pr+1;br+17€7‘+1)

re2N+1 p=3p;+r+1 b=3b;+1 e=Xe;+1

Here pq, ..., p,11 are the number of points between the legs of the block containing 1,
so that we have p = (p1+...4+pr+1)+7+1, and the whole sum is split over two cases, r even
or odd, because the parity of r affects the number of even blocks of our partition. Now
by multiplying everything by a 2Pm®’n¢ factor, and by carefully distributing the various
powers of z,m, b on the right, we obtain the following formula:

r+1
b eN( b ) = r+1 Pignbinéi N b
n b,0,¢€ = m < £Umen (pzv i?ei)
re2N p=%Xp;+r+1b=3b;+1 e=3e; 1=1
r+1

+ mn Z 2t Z Z Z HzpimbineiN(Pi,buei)

re2N+1 p=%Xp;+r+1b=%b;+1 e=Xe;+1 1=1

Let us sum now all these equalities, over all p > 1 and over all b,e > 0. According to
the definition of F', at left we obtain F' — 1. As for the two sums appearing on the right,
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that is, at right of the two 2"! factors, when summing them over all p > 1 and over all
b,e > 0, we obtain in both cases F"*!. So, we have the following formula:
F—-1 = mZ(zF)TH—{—mn Z (zF) 1
re2N re2N+1
2F 222

m 1 — 22F? +mnl—zQF2
14+ nzF
1— 22F?
But this gives the formula in the statement, and we are done. U

= mzF

We can reformulate Theorem 14.29 as follows:
THEOREM 14.30. The Cauchy transform of mW satisfies the equation
(€G —1)(1 — G?) = mG(1 +nG)

in the d — oo limit. Moreover, this equation simply reads

m(n+1 n-—1
R=— —
2(1—z 1+z>

with the substitutions G — z and € — R+ 2z~ .

ProoFr. We have two assertions to be proved, the idea being as follows:
(1) Consider the equation of F', found in Theorem 14.29, namely:
(F—1)(1—2°F?) = mzF(1 + nzF)
With z — ¢t and F — £G, so that zF — G, we obtain, as desired:
(€G —1)(1 — G?) = mG(1 +nG)

(2) Thus, we have our equation for the Cauchy transform, and with this in hand, we
can try to go ahead, and use somehow the Stieltjes inversion formula, in order to reach
to a formula for the density. This is certainly possible, but our claim is that we can do
better, by performing first some clever manipulations on the Cauchy transform.

(3) To be more precise, with ¢ — K and G — z, this equation becomes:
(zK — 1)(1 — 2%) = mz(1 + nz)
The point now is that with K — R + 27! this latter equation becomes:
zR(1 — 2%) = mz(1 + n2)
But the solution of this latter equation is trivial to compute, given by:
l1+nz m(n+1 n-1
R=m = — —
1— 22 2 \1—2z 142z

Thus, we are led to the conclusion in the statement. U
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All the above suggests the following definition:

DEFINITION 14.31. Given a real probability measure u, define its R-transform by:

du(t 1
G#(g) = / L == Gu (Ru(g) + _) =¢
rRE—1 3
That is, the R-transform is the inverse of the Cauchy transform, up to a £~ factor.

Getting back now to our questions, we would like to find the probability measure
having as R-transform the function in Theorem 14.30. But here, we can only expect to
find some kind of modification of the Marchenko-Pastur law, so as a first piece of work,
let us just compute the R-transform of the Marchenko-Pastur law. We have here:

PROPOSITION 14.32. The R-transform of the Marchenko-Pastur law m; is

t
R, = —
for any t > 0.
PRroOOF. This can be done in two steps, as follows:

(1) At t = 1, we know that the moments of 7; are the Catalan numbers, M, = C},
and we obtain that the Cauchy transform is given by the following formula:

GE) =5 —5VI— T

2 2

Now with R(§) = ﬁ being the function in the statement, at t = 1, we have:
1 1 1
o(mo+1) = (1)
) § S

=

|
)

1 1
= — — —/1 -4+ 482
) § 448
1 1
= - -(1-2
= ¢
Thus, the function R(&) = 117& is indeed the R-transform of 7, in the above sense.

(2) In the general case, t > 0, the proof is similar, by using the moment formula for
7, that we know from the above, and we will leave this as an exercise. Il

All this is very nice, and we can now further build on Theorem 14.30, as follows:
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THEOREM 14.33. The R-transform of mW is given by
R=R. — R,
in the d — oo limit, where s =m(n+1)/2 and t = m(n —1)/2.
PROOF. We know from Theorem 14.30 that the R-transform of mW is given by:
mn+1 n-—1
R=— =
2 <1 -z 1+ z)

By using now the formula in Proposition 14.32, this gives the result. U

We can now formulate a final result, due to Aubrun, as follows:

THEOREM 14.34. For a block-transposed Wishart matriz W = (id @ t)W we have, in
the n = fm — oo limit, with 5 > 0 fized, the formula

w 1
T
with yé being the shifted version of the semicircle law v, with support centered at 1.

Proor. This follows from Theorem 14.33. Indeed, in the n = fm — oo limit, with
£ > 0 fixed, we are led to the following formula for the Stieltjes transform:

VAB — (1 — )
But this is the density of the shifted semicircle law having support as follows:

S=[1-2VB,1+25]

Thus, we are led to the conclusion in the statement. ]

14e. Exercises

This was a quite exciting chapter, and as exercises on this, we have:

EXERCISE 14.35. Compute the spectral measures of various matrices, of your choice.
EXERCISE 14.36. Learn more about C*-algebras, including the GNS theorem.
EXERCISE 14.37. Importantly, learn as well about the von Neumann algebras.
EXERCISE 14.38. Learn as well some other approaches to the spectral measures.
EXERCISE 14.39. Is the asymptotic law of Gaussian matrices a “circular law”?
EXERCISE 14.40. Is the Wigner semicircle law some sort of “free Gaussian law”?
EXERCISE 14.41. Is the Marchenko-Pastur law some sort of “free Poisson law”?
EXERCISE 14.42. Read more, from Aubrun and others, about block modifications.

As bonus exercise, learn some free probability theory, from [91].



CHAPTER 15

Circular systems

15a. Circular variables

We have seen so far that free probability theory leads to a remarkable free analogue
of the CLT, with the limiting measure being the Wigner semicircle law. This is certainly
something very interesting, theoretically speaking, and by reminding the fact that the
Wigner laws appear in connection with many fundamental questions in mathematics, in
relation with random walks on graphs, with Lie groups, and with random matrices as
well, there are certainly many things to be done, as a continuation of this.

However, no hurry, and we will do this slowly. As a first objective, which is something
quite straightforward, now that we have a free CLT, we would like to have as well a free
analogue of the complex central limiting theorem (CCLT), adding to the classical CCLT,
and providing us with free analogues I'; of the complex Gaussian laws Gy.

This will be something quite technical, and in order to get started, let us begin by
recalling the theory of the complex Gaussian laws G;. We first have:

DEFINITION 15.1. The complex Gaussian law of parameter t > 0 is

1
G = law (E(a + zb))
where a,b are independent, each following the law g;.

There are many things that can be said about these laws, simply by adapting the
known results from the real case, regarding the usual normal laws ¢;. As a first such
result, the above measures form convolution semigroups:

PROPOSITION 15.2. The compler Gaussian laws have the property
Gs * Gt = Gs+t
for any s,t > 0, and so they form a convolution semigroup.

PRrROOF. This is something that we know from chapter 5, coming from g¢s * g; = gsi¢,
by taking the real and imaginary parts of all variables involved. U

We have as well the following complex analogue of the CLT:
171
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THEOREM 15.3 (CCLT). Given complex variables fi, fa, f3,... € L>®(X) which are
i.9.d., centered, and with variance t > 0, we have, with n — oo, in moments,

1 n
= Z fz ~ Gt
Vi
where Gy 1s the compler Gaussian law of parameter t.

ProoF. This is something that we know too from chapter 5, which follows from the
real CLT, by taking real and imaginary parts. Indeed, let us write:

fi= %(ﬂfz + iy;)

The variables z; satisfy then the assumptions of the CLT, so their rescaled averages
converge to a normal law ¢;, and the same happens for the variables y;. The limiting laws
that we obtain being independent, their rescaled sum is complex Gaussian, as desired. [J

Regarding now the moments, we have here the following result:
PROPOSITION 15.4. The moments of the complex normal law are the numbers
My (Gy) = tH2|Py (k)|
where Py(k) is the set of matching pairings of {1,...,k}.

ProoF. This is again something that we know well too, from chapter 5, the idea being

as follows, with ¢ = %(a + ib) being the variable in Definition 15.1:

(1) In the case where k contains a different number of o and e symbols, a rotation
argument shows that the corresponding moment of ¢ vanishes. But in this case we also
have Py(k) = 0, so the formula in the statement holds indeed, as 0 = 0.

(2) In the case left, where k consists of p copies of o and p copies of e | the corresponding
moment is the p-th moment of |c|?, which by some calculus is t’p!. But in this case we
have as well |P2(k)| = p!, so the formula in the statement holds indeed, as t*p! = tPp!. O

As a final basic result regarding the laws Gy, we have the Wick formula:

THEOREM 15.5. Given independent variables X;, each following the complexr normal
law Gy, with t > 0 being a fixed parameter, we have the Wick formula

E(XP . Xf) =t {77 S PQ(k)‘w < kerz'}
where k =ky ... ks and i =1y ...14, for the joint moments of these variables.

Proor. This is something from chapter 5 too, the idea being as follows:
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(1) In the case where we have a single complex normal variable X, we have to compute
the moments of X, with respect to colored integer exponents k = ceeo. .., and the formula
in the statement coincides with the one in Theorem 15.4, namely:

E(X"*) = tH72[Py(k)]

(2) In general now, when expanding Xfl1 o ij and rearranging the terms, we are left
with doing a number of computations as in (1), then making the product of the numbers
that we found. But this amounts in counting the partitions in the statement. U

Let us discuss now the free analogues of the above results. As in the classical case,
there is actually not so much work to be done here, in order to get started, because we
can obtain the free convolution and central limiting results, simply by taking the real and
imaginary parts of our variables. Following Voiculescu [89], [90], we first have:

DEFINITION 15.6. The Voiculescu circular law of parameter t > 0 is given by

Iy = law <%(a + zb))

where a,b are free, each following the Wigner semicircle law ;.

In other words, the passage v, — I'; is by definition entirely similar to the passage
g — Gy from the classical case, by taking real and imaginary parts. As before in other
similar situations, the fact that I'; is indeed well-defined is clear from definitions.

Let us start with a number of straightforward results, obtained by complexifying the
free probability theory that we have. As a first result, we have, as announced above:

PROPOSITION 15.7. The Voiculescu circular laws have the property
IHI, = Fs+t
so they form a 1-parameter semigroup with respect to free convolution.

Proor. This follows from our result from chapter 13 stating that the Wigner laws -,
have the free semigroup convolution property, by taking real and imaginary parts. O

Next in line, also as announced above, and also from [90], we have the following
natural free analogue of the complex central limiting theorem (CCLT):

THEOREM 15.8 (Free CCLT). Given random variables 1, xo,x3, ... which are f.i.d.,
centered, with variance t > 0, we have, with n — 00, in moments,

1 n
ﬁ;leFt

where Ty is the Voiculescu circular law of parameter t.
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Proor. This follows indeed from the free CLT, established in chapter 13, by taking
real and imaginary parts. Indeed, let us write:

1

V2

The variables y; satisfy then the assumptions of the free CLT, and so their rescaled
averages converge to a semicircle law 74, and the same happens for the variables z;:

R 1 —
—Zyw\/% ) —Zzi”\'%
Vn i=1 v i=1
Now since the two limiting semicircle laws that we obtain in this way are free, their
rescaled sum is circular, in the sense of Definition 15.6, and this gives the result. |

Summarizing, we have so far complex analogues of both the classical and free CLT,
and the basic theory of the limiting measures, including their semigroup property. As a
conclusion to all this, let us formulate the following statement:

THEOREM 15.9. We have classical and free limiting theorems, as follows,

FCLT — FCCLT
CLT ———CCLT
the limiting laws being the following measures,
Yy I
g — Gy

which form classical and free convolution semigroups.

Proor. This follows indeed from the various results established above. To be more
precise, the results about the left edge of the square are from the previous chapter, and
the results about the right edge are those discussed in the above. O

Going ahead with more study of the Voiculescu circular variables, less trivial now is
the computation of their moments. We will do this in what follows, among others in order
to expand Theorem 15.9 into something much sharper, involving as well moments.

For our computations, we will need explicit models for the circular variables. Following
[90], and the material in chapter 13, let us start with the following key result:
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PROPOSITION 15.10. Let H be the complex Hilbert space having as basis the colored
integers k = oeeo... and consider the shift operators on this space:

S:k—ok |, T:k— ek
We have then the following equalities of distributions,
S+S*~vy , S+T"~1T4
with respect to the state p(T) =< Te,e >, where e is the empty word.
Proor. This is standard free probability, the idea being as follows:

(1) The first formula, namely S 4+ S* ~ =1, is something that we already know, in a
slightly different formulation, from chapter 13, when proving the CLT.

(2) As for the second formula, S + T* ~ I'y, this follows from the first formula, by
using the freeness results and the rotation tricks established in chapter 13. O

At the combinatorial level now, we have the following result, which is in analogy with
the moment theory of the Wigner semicircle law, developed above:

THEOREM 15.11. A wvariable a € A follows the law 'y precisely when its moments are
tr(a®) = N Ca(k)|
for any colored integer k = oceeo . ..

PRrROOF. By using Proposition 15.10, it is enough to do the computation in the model
there. To be more precise, we can use the following explicit formulae for .S, 7™

S:k—ok , T:k— ek
With these formulae in hand, our claim is that we have the following formula:
< (S+T%) e e >=|NCsy(k)|

In order to prove this formula, we can proceed as for the semicircle laws, in chapter 9
above. Indeed, let us expand the quantity (S + 7%)¥, and then apply the state .

With respect to the previous computation, from chapter 13, what happens is that
the contributions will come this time via the following formulae, which must succesively
apply, as to collapse the whole product of S, S*, T, T* variables into a 1 quantity:

$*S =1, T"T=1

As before, in the proof for the semicircle laws, from chapter 13, these applications of
the rules 5*S = 1, T*T = 1 must appear in a noncrossing manner, but what happens
now, in contrast with the computation from the proof in chapter 9 where S+ S* was self-
adjoint, is that at each point where the exponent k has a o entry we must use 7%7T = 1,
and at each point where the exponent k has a e entry we must use S*S = 1. Thus the
contributions, which are each worth 1, are parametrized by the partitions 7 € NCa(k).
Thus, we obtain the above moment formula, as desired. U
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More generally now, by rescaling, we have the following result:

THEOREM 15.12. A wvariable a € A is circular, a ~ T'y, precisely when its moments
are given by the formula

tr(ak) = tM2INCy (k)|
for any colored integer k =oceeo ...

PRrROOF. This follows indeed from Theorem 15.11, by rescaling. Alternatively, we can
get this as well directly, by suitably modifying Proposition 15.10 first. U

Even more generally now, we have the following free version of the Wick rule:

THEOREM 15.13. Given free variables a;, each following the Voiculescu circular law
[y, with t > 0 being a fized parameter, we have the Wick type formula

triaf'...af) =t /24 {ﬂ' € NC2(]€)‘7T < kerz’}

where k = ky...ks and i = i1...15, for the joint moments of these variables, with the
inequality m < keri on the right being taken in a technical, appropriate sense.

Proor. This follows a bit as in the classical case, the idea being as follows:

(1) In the case where we have a single complex normal variable a, we have to compute
the moments of a, with respect to colored integer exponents £k = oce e o ... and the
formula in the statement coincides with the one in Theorem 15.12, namely:

tr(ak) = tM2INCy (k)|

(2) In general now, when expanding the product afll o afj and rearranging the terms,
we are left with doing a number of computations as in (1), and then making the product
of the expectations that we found. But this amounts precisely in counting the partitions
in the statement, with the condition m < keri there standing precisely for the fact that
we are doing the various type (1) computations independently. O

All the above was a bit brief, based on Voiculescu’s original paper [90], and on his
foundational free probability book with Dykema and Nica [91]. The combinatorics of the
free families of circular variables, called “circular systems”, is something quite subtle, and
there has been a lot of work developed in this direction, since [91].

Getting back now to the case of the single variables, from Theorem 15.12, the formula
there has the following more conceptual interpretation:

THEOREM 15.14. The moments of the Voiculescu laws are the numbers
My(T,) = Z 17l
TENCa (k)

with “N'Cy” standing for the noncrossing matching pairings.
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ProoF. This follows from the formula in Theorem 15.12. Indeed, we know from there
that a variable a € A is circular, of parameter ¢ > 0, precisely when we have the following
formula, for any colored integer k = ceeo...:

tr(ak) = tM2INCy (k)|

Now since the number of blocks of a pairing © € NCz(k) is given by |r| = |k|/2, this
formula can be written in the following alternative way:

tr(a®) = Z ¢!

TENCa (k)

Thus, we are led to the conclusion in the statement. U

All this is quite nice, when compared with the similar results from the classical case,
regarding the complex Gaussian laws, that we established above, and with other results
of the same type as well. As a conclusion to these considerations, we can now formulate
a global result regarding the classical and free complex Gaussian laws, as follows:

THEOREM 15.15. The complex Gaussian laws G; and the circular Voiculescu laws Ty,
given by the formulae

Gy = law <%(a + ib)) . Iy =law (%(a + zﬂ))

where a,b/a, B are independent/free, following g;/v:, have the following properties:

(1) They appear via the complex CLT, and the free complex CLT.
(2) They form semigroups with respect to the operations * and H.
(3) Their moments are My = - tI*l with D = Py, NCs.

Proor. This is a summary of results that we know, the idea being as follows:

(1) This is something quite straightforward, by using the linearization results provided
by the logarithm of the Fourier transform, and by the R-transform.

(2) This is quite straightforward, too, once again by using the linearization results
provided by the logarithm of the Fourier transform, and by the R-transform.

(3) This comes by doing some combinatorics and calculus in the classical case, and
some combinatorics and operator theory in the free case, as explained above. U

More generally now, we can put everything together, with some previous results in-
cluded as well, and we have the following result at the level of the moments of the asymp-
totic laws that we found so far, in classical and free probability:
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THEOREM 15.16. The moments of the various central limiting measures, namely

Y —— 1L

g — Gy
are always given by the same formula, involving partitions, namely
= ¥ i
weD(k)

where the sets of partitions D(k) in question are respectively

NCs NC,

P

Po
and where |.| is the number of blocks.

Proor. This follows by putting together the various moment results that we have,
from the previous chapter, and from Theorem 15.15. U

Summarizing, we are done with the combinatorial program outlined in the beginning
of the present chapter. We will be back to this in the next chapter, by adding some new
laws to the picture, coming from the classical and free PLT and CPLT, and then in the
chapter afterwards, 16 below, with full conceptual explanations for all this.

15b. Multiplicative results

With the above basic combinatorial study done, let us discuss now a number of more
advanced results regarding the Voiculescu circular laws I'y, which are of multiplicative
nature, and quite often have no classical counterpart. Things here will be quite technical,
and all that follows will be rather an introduction to the subject.

In general now, in order to deal with multiplicative questions for the free random
variables, we are in need of results regarding the multiplicative free convolution operation
X. Let us recall from chapter 13 that we have the following result:

DEFINITION 15.17. We have a free convolution operation X, constructed as follows:

(1) For abstract distributions, via pia X iy = piap, with a,b free.
(2) For real measures, via pia X py = /1. /2, with a,b self-adjoint and free.
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All this is quite tricky, explained in chapter 13, the idea being that, while (1) is
straightforward, (2) is not, and comes by considering the variable ¢ = /aby/a, which
unlike ab is always self-adjoint, and whose moments are given by:

tr(c®) = tr[(vabya)"]
= tr[\aba...aby/adl
= trlva-+/aba...ab|
= tr[(ab)"]

As a remark here, observe that we have used in the above, and actually for the first
time since talking about freeness, the trace property of the trace, namely:

tr(ab) = tr(ba)

This is quite interesting, philosophically speaking, because in the operator algebra
world there are many interesting examples of subalgebras A C B(H) coming with natural
linear forms ¢ : A — C which are continuous and positive, but which are not traces. It is
possible to do a bit of free probability on such algebras, but not much.

Quite remarkably, the free multiplicative convolution operation X can be linearized, in
analogy with what happens for the usual multiplicative convolution x, and the additive
operations *, B as well. We have here the following result, due to Voiculescu [90]:

THEOREM 15.18. The free multiplicative convolution operation X for the real proba-
bility measures pn € P(R) can be linearized as follows:

(1) Start with the sequence of moments My, then compute the moment generating
function, or Stieltjes transform of the measure:

f(2) =1+ Mz + Myz* + M2® + ...
(2) Perform the following operations to the Stieltjes transform:
U(z) = f(z) -1
U(x(2)) = 2

S(z) = (1 + é) X(2)

(3) Then log S linearizes the free multiplicative convolution, Sz, = S,.5,.

PROOF. There are several proofs here, with the original proof of Voiculescu being
quite similar to the proof of the R-transform theorem, using free Fock space models,
then with a proof by Haagerup, obtained by further improving on this, and finally with
the proof from the book of Nica and Speicher, using pure combinatorics. The proof of
Haagerup, which is the most in tune with the present book, is as follows:
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(1) According to our conventions from Definition 15.17, we want to prove that, given
noncommutative variables a, b which are free, we have the following formula:

S (2) = S (2) 51, (2)

(2) For this purpose, consider the orthogonal shifts S,7T on the free Fock space, as
in chapter 9. By using the algebraic arguments from chapter 13, from the proof of the
R-transform theorem, we can assume as there that our variables have a special form, that
fits our present objectives, and to be more specifically, the following form:

a=1+9)f(S*) , b=(1+T)g(T")

Our claim, which will prove the theorem, is that we have the following formulae, for

the S-transforms of the various variables involved:

1 1 1
Sp(2)=—= , S,(2)=— , Su,(2)=—-——
Ma( ) f(Z) Mb( ) g(Z) Mb( ) f(z)g(z)
(3) Let us first compute S,,,. We know that we have a = (1 +5) f(S*), with S being
the shift on [?(N). Given |z| < 1, consider the following vector:

k>0
The shift and its adjoint act on this vector in the following way:

b—=¢€o
Sp = Z Zk€k+1 =

z

S*p = Z Fep_1 = zp
k>1
Thus f(S*)p = f(2)p, and we deduce from this that we have:

ap = (1+95)f(2)p
= f(z)(p+ Sp)

- 1) (p+222)
= <1 + %) f(2)p — %2)60

By dividing everything by (1 + 1/2)f(2), this formula becomes:

z 1 €o
- —qQ — —
112 fi»)P=7

We can write this latter formula in the following way:

1 z 1 €
e L=
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Now by inverting, we obtain from this the following formula:

(1 - La)leoz(wz)p

14z f(2)

(4) But this gives us the formula of S,,. Indeed, consider the following function:

_Z 1
14z f(2)

p(z)
With this notation, the formula that we found in (3) becomes:

(1= p(z)a)"reg = (1+ 2)p
By using this, in terms of ¢(T") =< T'eg, ¢y >, we obtain:

p((1=pz)a)™") = <(1—p(z)a) e eq >

= <(1+2)p,e >
1+2

Thus the above function p is the inverse of the following function:

o) = (122 ) -1

But this latter function is the ¢ function from the statement, and so p is the function
x from the statement, and we can finish our computation, as follows:

Sulz) = 272 p2)

z
142 z 1

: 1+z f(2)
1
f(2)

(5) A similar computation, or just a symmetry argument, gives S, (z) = 1/g(z). In
order to compute now S, ,(z), we use a similar trick. Consider the following vector of
(N x N), with the primes and double primes referring to the two copies of N:

g=eo+ Y (¢ +ef +¢) @ef)®
k>1

The adjoints of the shifts S, T" act as follows on this vector:
S*q=z2(1+T)q , T'q=zq
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By using these formulae, we have the following computation:
abg = (1+S5)f(S")(1+T)g(T")q
= A+ 5)f(S)(1+T)g(2)q
9(2)(L+ 8) f(S*)(1+T)q
In order to compute the last term, observe that we have:
S*1+T)q = (S*+5"T)q
= 2(1+T)q
Thus f(S*)(1+T)g = f(z)(1 + T)q, and back to our computation, we have:

9(z) 1+ 9)f(2)(1 +T)q
F(2)g(2)(1+5)(1+T)q
(

o) (FEE =)

Now observe that we can write this formula as follows:

1 z 1 b €
(‘1+z'f<z>g<z>'“>q‘m

By inverting, we obtain from this the following formula:

(R Ere b) %0={1+2)

(6) But this formula that we obtained is similar to the formula that we obtained at
the end of (3) above. Thus, we can use the same argument as in (4), and we obtain:

1
S (%) = 50300

We are therefore done with the computations, and this finishes the proof. Il

abg =

=

Getting back now to the circular variables, let us look at the polar decomposition of
such variables. In order to discuss this, let us start with a well-known result:

THEOREM 15.19. We have the following results:
(1) Any matrix T € Mn(C) has a polar decomposition, T' = U|T.
(2) Assuming T € A C My(C), we have U, |T| € A.
(3) Any operator T € B(H) has a polar decomposition, T = U|T.
(4) Assuming T € A C B(H), we have U, |T| € A, weak closure.
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Proor. All this is standard, the idea being as follows:

(1) In each case under consideration, the first observation is that the matrix or general
operator 1T being positive, it has a square root:

IT| = VT*T

(2) With this square root extracted, in the invertible case we can compare the action
of T'and |T|, and we conclude that we have 7" = U|T|, with U being a unitary. In the
general, non-invertible case, a similar analysis leads to the conclusion that we have as well
T = U|T|, but with U being this time a partial isometry.

(3) In what regards now algebraic and topological aspects, in finite dimensions the
extraction of the square root, and so the polar decomposition itself, takes place over the
matrix blocks of the ambient algebra A C My(C), and so takes place inside A itself.

(4) In infinite dimensions however, we must take the weak closure, an illustrating
example here being the functions f € A belonging to the algebra A = C(X), represented
on H = L*(X), whose polar decomposition leads into the bigger algebra A = L>(X). O

Summarizing, we have a basic linear algebra result, regarding the polar decomposition
of the usual matrices, and in infinite dimensions pretty much the same happens, with the
only subtlety coming from the fact that the ambient operator algebra A C B(H) must
be taken weakly closed. We will be back to this, with more details, in chapter 16 below,
when talking about such algebras A C B(H), which are called von Neumann algebras.

In connection with our probabilistic questions, we first have the following result:

PROPOSITION 15.20. The polar decomposition of semicircular variables is s = eq, with
the variables e, q being as follows:
(1) e has moments 1,0,1,0,1, ...
(2) q is quarter-circular.
(3) e, q are independent.

PROOF. It is enough to prove the result in a model of our choice, and the best choice
here is the most straightforward model for the semicircular variables, namely:

s=ux¢€ L°°<[—2, 2],’71)

To be more precise, we endow the interval [—2, 2] with the probability measure =,
and we consider here the variable s = z = (z — z), which is trivially semicircular. The
polar decomposition of this variable is then s = eq, with e, ¢ being as follows:

e=sgn(z) , q=|z|
Now since e has moments 1,0,1,0,1,..., and also ¢ is quarter-circular, and finally e, q
are independent, this gives the result in our model, and so in general. U



184 15. CIRCULAR SYSTEMS

Less trivial now is the following result, due to Voiculescu [90]:
THEOREM 15.21. The polar decomposition of circular variables is ¢ = uq, with the
variables u, q being as follows:

(1) w is a Haar unitary.
(2) q is quarter-circular.
(3) u,q are free.

Proo¥r. This is something which looks quite similar to Proposition 15.20, but which

is more difficult, and can be however proved, via various techniques:

(1) The original proof, by Voiculescu in [90], uses Gaussian random matrix models for
the circular variables. We will discuss this proof at the end of the present chapter, after
developing the needed Gaussian random matrix model technology.

(2) A second proof can be obtained by pure combinatorics, in the spirit of Theorem
15.13, regarding the free Wick formula, and of Theorem 15.18, regarding the S-transform,
or rather in the spirit of the underlying combinatorics of these results.

(3) Finally, there is as well a third known proof, more in the spirit of the free Fock
space proofs for the R and S transform results, from [90], using a suitable generalization
of the free Fock spaces. We will discuss this proof right below. O

15c. Semigroup models

We discuss here the direct approach to Theorem 15.21, with purely algebraic tech-
niques. We will use semigroup algebras, jointly generalizing the main models that we
have, namely group algebras, and free Fock spaces. Let us start with:

DEFINITION 15.22. We call “semigroup” a unital semigroup, embeddable into a group:
McCdG
For such a semigroup M, we use the notation
Mt = {mme m}
regarded as a subset of some group G containing M, as above.

As a first observation, the above embeddability assumption M C G tells us that the
usual group cancellation rules hold in M, namely:

ab=ac = b=c
ba =ca = b=c
Regarding the precise relation between M and the various groups G containing it, it

is possible to talk here about the Grothendieck group G associated to such a semigroup
M. However, we will not need this in what follows, and use Definition 15.22 as such.
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With the above definition in hand, we have the following construction, which unifies
the main models that we have, namely the group algebras, and the free Fock spaces:

PROPOSITION 15.23. Let M be a semigroup. By using the left simplifiability of M we
can define, as for the discrete groups, an embedding of semigroups, as follows:
(M) = (B(I*(M)), )
m — Ay (m) = [0, = Omn)
Via this embedding, the C*-algebra C*(M) C B(I*(M)) generated by \p(M), together
with the following canonical state, is a noncommutative random variable algebra:
T (T) =< T, 0e >

Also, the operators in A\y(M) are isometries, but not necessarily unitaries.

PRrOOF. Everything here is standard, as for the usual group algebras, with the only
subtlety appearing at the level of the isometry property of the operators A\y;(m). To be
more precise, for every m € M, the adjoint operator Ay;(m)* is given by:

zeM reM

Thus we have indeed the isometry property for these operators, namely:

As for the unitarity propety of the such operators, this definitely holds in the usual
discrete group case, M = G, but not in general. As a basic example here, for the semigroup
M = N, which satisfies of course the assumptions in Definition 15.22, the operator Ays(m)
associated to the element m = 1 € N is the usual shift:

An(1) = S € B(I*(N))
But this shift S, that we know well from the above, is an isometry which is not a
unitary. Thus, we are led to the conclusions in the statement. O

At the level of examples now, as announced above, we have:

PROPOSITION 15.24. The construction M — C*(M) is as follows:

(1) For the discrete groups, M = G, we obtain in this way the usual discrete group
algebras C*(G), as previously constructed in the above.

(2) For a free semigroup, M = N*I we obtain the algebra of creation operators over
the full Fock space over R!, with the state associated to the vacuum vector.

ProoOF. All this is clear from definitions, with (1) being obvious, and (2) coming via
our usual identifications for the free Fock spaces and related algebras. U

As a key observation now, enabling us to do some probability, we have:
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ProOPOSITION 15.25. If M C N are semigroups satisfying the condition
M(N—-M)=N-M
then for every family {a;}icr of elements in M, we have the formula
{An (@) bier ~ {Am(@i) bier
as an equality of joint distributions, with respect to the canonical states.
PROOF. Assuming M C N we have [*(M) C I>(N), and for m,m’ € M we have:
At (M) Oy = An (M)
Thus if we suppose M (N — M) = N — M, as in the statement, then we have:
Ar(m) S =Y St mas

zeM

= Z 6m’ ,m:p(sm

zeN
= An(m) o
In particular, if mq,...,my € M, and oy, ..., are exponents in {1, *}, then:
A (ma)® o Ay (me) 5. = An(mg)® .. An (my) 0,
Thus, we are led to the conclusion in the statement. Il

Following [8], let us introduce the following technical notion:

DEFINITION 15.26. Let N be a semigroup. Consider the following order on it:
a=3yb < beaN

We say that N is in the class E if it satlisfies one of the following equivalent conditions:
(1) For <y every bounded subset is totally ordered.
(2) a2c¢,b2c = a=Xborb=a.
(3) aNNON #() = aN C bN or bN C aN.
(4) NN"'AN-'N = NUN-L.
Also by following [8], let us introduce as well the following notion, which is something
standard in the combinatorial theory of semigroups:

DEFINITION 15.27. Let (a;)ier be a family of elements in a semigroup N .
(1) We say that (a;)ier is a code if the semigroup M C N generated by the a; is
isomorphic to N* | via a; — e;, and satisfies M(N — M) = N — M.
(2) We say that (a;)ier is a prefiv if a; € a;N == i = j, which means that the
elements a; are not comparable via the order relation <.

In our probabilistic setting, the notion of code is of interest, due to:
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PROPOSITION 15.28. Assuming that (a;, b;)icr is a code, the family

(50000 + 2w

is a circular family, in the sense of free probability theory.

i€l

PROOF. Let (a;,b;):er be a code, and consider the following family:
(M@ aw(b)) € BEAN))

By using Proposition 15.25, this family has the same distribution as a family of creation
operators associated to a family of 21 orthonormal vectors, on the free Fock space:

(Mrerlea) es(f)) € BUAN)
i€
Thus, we obtain the result, via the standard facts about the circular systems on free
Fock spaces, that we know from chapter 13. U

In view of this, the following result provides us with a criterion for finding circular
systems in the algebras of the semigroups in the class E, from Definition 15.26:

PROPOSITION 15.29. For a semigroup N € E, a family
(ai)ier C N
having at least two elements is a prefix if and only if it is a code.

PROOF. We have two implications to be proved, as follows:

(1) Let first (a;);e;r be a code which is not a prefix, for instance because we have
a; = ajn with i # j,n € N. Then n is in the semigroup M generated by the a; and
a; = ajn with ¢ # j, so M cannot be free, and this is a contradiction, as desired.

(2) Conversely, suppose now that (a;);cs is a prefix and let, with m € N:
B Bs
o a
We have then a;, = A, a;, < A, and so i; = j;. We can therefore simplify A to the
left by a;,. A reccurence on ) «; shows then that we have n < s and:

— 4% Qn —
A=ai' .. .ai"m=a

a;, =a;, , Vk<n
=B , Vk<n
an < By
m = a?:ia"a?::f o afj

Finally, we know that m is in the semigroup generated by the a;, so we have a code.
Moreover, for m = e we obtain that we have n = s, a;, = a;, and o = S for any k < n.
Thus the variables a; freely generate the semigroup M, and so the family (a;);c; is a code.
Thus, we are led to the conclusion in the statement. U
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Summarizing, we have some good freeness results, for our semigroups. Before getting
into applications, let us discuss now the examples. We have here the following result:

PRrROPOSITION 15.30. The class E has the following properties:
(1) All the groups are in E.

(2) The positive parts of totally ordered abelian groups are in E.

(3) If G is a group and M € E, then M x G € E.

(4) If Ay, Ay are in E, then the free product Ay x A is in E.
PRroOF. This is something elementary, whose proof goes as follows:
(1) This is obvious, coming from definitions.

(2) This is obvious as well, because M is here totally ordered by =<,.
(3) Let G be a group and M € E. We have then, as desired:
(M x G)(M xG) PN (M xG)"HM x Q)
(MXG)( 'x)N(M™ x G)(M x G)
(MM xG)Nn (MM x G)
= (MM 'nM'M)xG
(MUM™) x G
(M xG)U (M~ xG)
= (MxG)U (MXG) !
(4) Let a,b,c € Ay % Ay such that ab = c. We write, as reduced words:
a=2x1...T, , b=UY1...Yyn , C=21...%
Now let s be such that the following equalities happen:
=1, . Tpsp¥Ys =1, TuYs1 #F1
Consider now the following element:
U= Ty T = (Y1...Ys) "
We have then the following computation:
c=ab=121...Tp_sYsi1---Ym
Now let i € {1,2} be such that z, s € A;. There are two cases:

~Ifx, ;€ Aiandys 1 € Agorife, € Ay and ysiq € Ay, then xy ... T sYsi1 -+ Ym
is a reduced word. In particular, we have x1 = 21, 9 = 29, and so on up to x,_s = 2z,_s.
Thus we have a = z1 ... z,_su, with u invertible.

~Ifx, s, ysi1 € A;thenzy = zy and soon, uptox, s 1 = 2,51 and T, _Ysi1 = Zn_s-
In this case we have a = 21 ... z,_s_1T,_su, with u invertible.



15C. SEMIGROUP MODELS 189

Now observe that in both cases we obtained that a is of the form z; ... zfzu for some
f, with w invertible and such that if zy; € A;, then there exists y € A; such that:

LY = Zf+1
Indeed, we can take f =n—s—1and x = 2, 4,y = 1 in the first case, and z =
Tn_s,Y = Ysu1 in the second one. Suppose now that Ay, Ay € F and let a,b,a’,b € Ay Ay

such that ab = a'l/. Let 21 ...z, be the decomposition of ab = a'l’ as a reduced word.
Then we can decompose our words, as above, in the following way:

a=z...zpzu , a =z ...zpx'u
We have to show that a = a’m or that a’ = am for some m € A; * A;. But this is
clear in all three cases that can appear, namely f < f', f' < f, f= [ O

We can now formulate a main result about semigroup freeness, as follows:

THEOREM 15.31. The following happen:
(1) Given M C N, both in the class E, satisfying M(N — M) =N — M, any x in
the x-algebra generated by A(M) can be written as follows, with p;, q; € M :

T = Zai/\N(pi)/\N(Qi)*

2

(2) Asssume A, B € E, and let = be an element of the x-algebra generated by A a.p(A)
such that 7(x) = 0. If W4, Wgy are respectively the sets of reduced words beginning
by an element of A, B, then x acts as follows:

P(WpU{e}) — *(Wy)
(3) Let A,B € E. Then Aa.p(A) and Aa.p(B) are free.
ProoF. This follows from our results so far, the idea being is as follows:

(1) It is enough to prove this for elements of the form = = A\(m)*A(n) with m,n € M,
because the general case will follow easily from this. In order to do so, observe that
x = A(m)*A(n) is different from 0 precisely when there exist a,b € N such that:

< Am)*A(n)da, 0p ># 0
That is, the following condition must be satisfied:
na = mb

We know that there exists ¢ € N with n = mc or with m = nc. Moreover, as
M(N — M) = N — M, it follows that ¢ € M. Thus x = A(m)*A(n) # 0 implies that
z = Xc) or x = A(c)* with ¢ € M, and this finishes the proof.

(2) We apply (1) with M = A and N = A x B for writing, with p;, ¢; € A:
T = Zai)\<pi))\<qZ')*



190 15. CIRCULAR SYSTEMS

Consider now the following element:
TAPIAG)) =D Sepiadeqia

This element is nonzero precisely when p; = ¢; is invertible, and in this case:
Api) M) =1
Now since we assumed 7(x) = 0, it follows that we can write:
r = Z aA(pi)M(a)” . T(Api)A(g:)) =0

By linearity, it is enough to prove the result for z = A(p;)A(¢;)*. Let m € WyU{e} and
suppose that z6d,, # 0. Then A(g;)*d,, # 0 implies that m = g;c for some word ¢ € A * B.
As ¢; € A and m € Wy U {e}, it follows that g; is invertible. Now observe that:

pig =1 = 7(z)=1
It follows that we have, as desired:

.T(Sm =4 1, & l2(WA)

Pig; m
(3) This follows from (2) above. Indeed, let P = x,,...x; be a product of elements in
ker(7), such that xg is in the x-algebra generated by A\(B) and x4 is in the x-algebra
generated by A(A). Then x,6, € I(Wa). Thus zo210. € [?(Wg), and so on. By a
reccurence, P9, is in [2(W4) or in ((Wg). But this implies that 7(P) = 0, as desired. [

As a main application of the above semigroup technology, we have:
THEOREM 15.32. Consider a Haar unitary u, free from a semicircular s. Then
c=us
s a circular variable.

PROOF. Denote by z the image of 1 € Z and by n the image of 1 € N by the canonical
embeddings into the free product Z x N. Let A = Az,n. We know that Z « N € E. Also
(zn,nz"1) is obviously a prefix, so it is a code. Thus, the following variable is circular:

c= %(A(zn) + Anz )Y

The point now is that we have the following formula:

1()\(,zn) +Anz ) = us

2
But this gives the result, in our model and so in general as well, because u = \(z) is
a Haar-unitary, s = 1/2(A(n) + A(n)*) is semicircular, and u and s are free. O

We can now recover the Voiculescu polar decomposition result for the circular vari-
ables, obtained in [90], by using random matrix techniques, as follows:
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THEOREM 15.33. Consider the polar decomposition of a circular variable, in some von
Neumann algebraic probability space with faithful normal state:

x =vb
Then v is Haar unitary, b is quarter-circular, and (v,b) are free.

Proor. This follows by suitably manipulating Theorem 15.32, as to replace the semi-
circular element there by a quarter-circular. Consider indeed the following group:

G=7x(Zx7/27)
Let z,t,a be the images of the following elements, into this group G:
lez , (1,00eZx(z/22) , (0,1)€Zx (Z/27)

Let u = Ag(z), d = Ag(a) and choose a quarter-circular ¢ € C*(Ag(t)). Then (q,d)
are independent, so dq is semicircular, and so ¢ = udq is circular, and:

— The module of ¢ is ¢, which is a quarter-circular.
— The polar part of ¢ is ud, which is obviously a Haar unitary.

— Consider the automorphism of G which is the identity on Z x Z /27 and maps z — za.
This extends to a trace-preserving automorphism of C*(G) which maps:

u—ud , q—q

Since u, q are free, it follows that ud, ¢ are free too, finishing the proof. O

15d. Gaussian matrices

As an application of the semicircular and circular variable theory developed so far,
and of free probability in general, let us go back now to the random matrices. Following
Voiculescu’s paper [90], we will prove now a number of key freeness results for them,
complementing the basic random matrix theory developed in chapter 14. As a first result,
completing our asymptotic law study for the Gaussian matrices, we have:

THEOREM 15.34. Given a sequence of complex Gaussian matrices
Zn € My(L™(X))

having independent Gy variables as entries, with t > 0, we have

2T

VN

in the N — oo limit, with the limiting measure being Voiculescu’s circular law.
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PRrROOF. We know from chapter 14, with this having been actually our very first mo-
ment computation for random matrices, in this book, that the asymptotic moments of
the complex Gaussian matrices are given by the following formula:

M, (%) ~ tF2| NCy (k)|

On the other hand, we also know from the above that an abstract noncommutative
variable a € A is circular, following the law I';, precisely when its moments are:

My(a) = tM2INC, (k)|
Thus, we are led to the conclusion in the statement. Il

The above result is of course something quite theoretical, and having it formulated
as such is certainly something nice. However, and here comes our point, it is actually
possible to use free probability theory in order to go well beyond this, with this time
some truly “new” results on the random matrices. We will explain this now, following
Voiculescu’s paper [90]. Let us begin with the Wigner matrices. We have here:

THEOREM 15.35. Given a family of sequences of Wigner matrices,
Zh € My(L™(X)) , i€l

with pairwise independent entries, each following the complex normal law Gy, with t > 0,
up to the constraint Z% = (Z)*, the rescaled sequences of matrices
Zi € My(L*>®(X)) X<yl
, 1
vN

become with N — oo semucircular, each following the Wigner law ~;, and free.

Proor. This is something quite subtle, the idea being as follows:

(1) First of all, we know from chapter 14 that for any ¢ € I the corresponding sequence
of rescaled Wigner matrices becomes semicircular in the N — oo limit:

Zi
L~ Tt
VN
(2) Thus, what is new here, and that we have to prove, is the asymptotic freeness

assertion. For this purpose we can assume that we are dealing with the case of 2 sequences
of matrices, |I| = 2. So, assume that we have Wigner matrices as follows:

Zn, Zy € My(L™(X))

We have to prove that these matrices become asymptotically free, with N — oo.

(3) But this something that can be proved directly, via various routine computations
with partitions, which simplify as usual in the N — oo limit, and bring freeness.
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(4) However, we can prove this as well by using a trick, based on the result in Theorem
15.34. Consider indeed the following random matrix:

Yy = %(ZN + ZZ;V)
This is then a complex Gaussian matrix, and so by using Theorem 15.34, we obtain
that in the limit N — oo, we have:
Yy
VN
Now recall that the circular law I'; was by definition the law of the following variable,
with a, b being semicircular, each following the law ~;, and free:

1
c=—(a+1ib)

V2

We are therefore in the situation where the variable (Zy + iZ4)/v/N, which has
asymptotically semicircular real and imaginary parts, converges to the distribution of
a + 1b, equally having semicircular real and imaginary parts, but with these real and
imaginary parts being free. Thus Zy, Z)y become asymptotically free, as desired. U

Getting now to the complex case, we have a similar result here, as follows:

THEOREM 15.36. Given a family of sequences of complexr Gaussian matrices,
7y € My(L®(X)) , i€l

with pairwise independent entries, each following the complexr normal law Gy, with t > 0,
the rescaled sequences of matrices

Zy
VN

become with N — oo circular, each following the Voiculescu law Ty, and free.

e My(L¥(X)) , iel

Proor. This follows from Theorem 15.35, which applies to the real and imaginary
parts of our complex Gaussian matrices, and gives the result. O

The above results are interesting for both free probability and random matrices. As
an illustration here, we have the folowing application to free probability:

THEOREM 15.37. Consider the polar decomposition of a circular variable in some von
Neumann algebraic probability space with faithful normal state:

xr =wvb
Then v is Haar-unitary, b is quarter-circular and (v,b) are free.

Proor. This is indeed easy to see in the Gaussian matrix model provided by Theorem
15.36, and for details here, we refer to Voiculescu’s paper [90]. U
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There are many other applications along these lines, and conversely, free probability
can be used as well for the detailed study of the Wigner and Gaussian matrices.

15e. Exercises

Exercises:

EXERCISE 15.38.
EXERCISE 15.39.
EXERCISE 15.40.
EXERCISE 15.41.
EXERCISE 15.42.
EXERCISE 15.43.
EXERCISE 15.44.
EXERCISE 15.45.

Bonus exercise.



CHAPTER 16

Discrete versions

16a. Poisson limits

We have seen that free probability leads to two key limiting theorems, namely the free
analogues of the CLT and CCLT. The limiting measures are the Wigner semicircle laws
v; and the Voiculescu circular laws I';. Together with the Gaussian laws g, and G; coming
from the classical CLT and CCLT, these laws form a square diagram, as follows:

w1

g — Gy

Motivated by this, in this chapter we develop more free limiting theorems. First, we
will find a free analogue of the PLT, with the corresponding limiting measures, appearing
as the free analogues of the Poisson laws p;, being the Marchenko-Pastur laws 7;. This
will lead to an extension to the above square diagram, into a rectangle, as follows:

Tt Vt Iy

Dbt gt Gy

More generally, we will find a free analogue of the compound Poisson limit theorem
(CPLT), that we know from before. At the level of the philosophy, and of the above
diagram, there are no complex analogues of p;, m;, but by using certain measures found
via the classical and free CPLT, namely the real and purely complex Bessel laws b;, B;
discussed before, and their free analogues f;,B; to be discussed here, we will be able to

195
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modify and then fold the diagram, as to complete it into a cube, as follows:

B, —— I}

e

@f Tt

By G,

v

b ———a
Which is of course quite nice, theoretically speaking, because this leads to a kind of
3D orientation inside classical and free probability, which is something very useful.

Getting started now, we would first like to have a free analogue of the Poisson Limit
Theorem (PLT). Although elementary from what we have, this was something not done by
Voiculescu himself, and not appearing in the foundational book [91], and only explained
later, in the book of Hiai and Petz. The statement is as follows:

THEOREM 16.1 (Free PLT). The following limit converges, for anyt > 0,

Hn
lim ((1 — i) 50 + itsl)
n—o0 n n

and we obtain the Marchenko-Pastur law of parameter t,

\/4t—(x—1—t)2d

2mx

7 = max(1 —¢,0)dy + T
also called free Poisson law of parameter t.
ProOF. Consider the measure in the statement, under the convolution sign:

t t
77:(1——)50-1-—51
n n

The Cauchy transform of this measure is easy to compute, and is given by:

t\1 t 1
G = (1—-—=) -4+ - —
In order to prove the result, we want to compute the following R-transform:
R = R,g.(y) = nR,(y)

According to the formula of G, the equation for this function R is as follows:

t 1 t 1
1- 2 4. -
( n) 1/y+R/n+n l/y+R/n—1 Y
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By multiplying both sides by n/y, this equation can be written as:

t+yR t
1+yR/n - l+yR/n—y
With n — oo things simplify, and we obtain the following formula:
t+yR = 1i—y
Thus we have the following formula, for the R-transform that we are interested in:
t

— m
But this gives the result, since R, is elementary to compute from what we have, by
“doubling” the results for the Wigner law ~;, and is given by the same formula. U

As in the continuous case, most of the basic theory of 7; was already done before, with
all this partly coming from the theory of SO3, at ¢ = 1. One thing which was missing
there, however, was that of understanding how the law m;, with parameter ¢ > 0, exactly
appears, out of ;. We can now solve this question, as follows:

THEOREM 16.2. The Marchenko-Pastur laws have the property
e B = T
so they form a 1-parameter semigroup with respect to free convolution.

Proor. This follows either from Theorem 16.1, or from the fact that the R-transform
of m, computed in the proof of Theorem 16.1, is linear in t. U

All this is very nice, conceptually speaking, and we can now summarize the various
discrete probability results that we have, classical and free, as follows:

THEOREM 16.3. The Poisson laws p; and the Marchenko-Pastur laws 7y, given by

=et ﬁ )
Dt X k
k

\/4t—(:v—1—t)2d
2mx

m = max(1 —¢,0)dy +

T

have the following properties:

(1) They appear via the PLT, and the free PLT.

(2) They form semigroups with respect to * and H.

(3) Their transforms are log F,, (z) = t(e” — 1), Ry, (z) =t/(1 — z).
(4) Their moments are My = 3 ™l with D = P,NC.
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PROOF. These are all results that we already know, from here and from the previous
chapters. To be more precise:

(1) The PLT is from before, and the FPLT is from here.

(2) The semigroup properties are from before, and from here.

(3) The formula for F), is from before, and the one for R,,, from here.

(4) The moment formulae follow from the formulae of functional transforms. U
We can in fact merge this with our previous continuous results, and we obtain:

THEOREM 16.4. The moments of the various central limiting measures, namely

Tt Vi I

ygs gt Gy

are always given by the same formula, involving partitions, namely

M= Yt

weD(k)

where the sets of partitions D(k) in question are respectively

Ty Mt Iy

Dt gt G
and where |.| is the number of blocks.

Proor. This follows indeed by putting together the various results that we have, from
chapter 10 for the square on the right, and from here for the edge on the left. O

We will later some more conceptual explanations for all this, featuring classical and
free cumulants, classical and free quantum groups, and many more.

Moving ahead now, let us try to find a free analogue of the CPLT. We will follow
the CPLT material from before, by performing modifications where needed, as to replace
everywhere classical probability with free probability. Let us start with the following
straightforward definition, similar to the one from the classical case:
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DEFINITION 16.5. Associated to any compactly supported positive measure p on C is

the probability measure
c 1\™
7, = lim ((1 — —) do + —p)
n—00 n n

where ¢ = mass(p), called compound free Poisson law.

In what follows we will be mostly interested in the case where p is discrete, as is for
instance the case for the measure p = t6; with ¢ > 0, which produces the free Poisson
laws. The following result allows one to detect compound free Poisson laws:

PROPOSITION 16.6. For a discrete measure, written as

s

p= Z Ciézi

=1

with ¢; > 0 and z; € C, we have the following formula,

where R denotes as usual the Voiculescu R-transform.

PROOF. In order to prove this result, let 7, be the measure appearing in Definition
16.5, under the free convolution sign, namely:

1
nn=<1—£)5o+—p
n n

The Cauchy transform of 7, is then given by the following formula:

eyl 1S ¢
Gra(§ = (1-2) 242 1
Consider now the R-transform of the measure n", which is given by:

Ryan(y) = nRy, (y)

By using the general theory of the R-transform, from chapter 13, the above formula
of Gy, shows that the equation for R = R, g is as follows:

S

c 1 1 C;
(1_ﬁ> 1/y+R/n+ﬁzl/y+R/n—zi -

=1

s

c 1 1 c
— 1——)— - i —1
( n 1+yR/n+nzl+yR/n—yzi

i=1
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Now multiplying by n, then rearranging the terms, and letting n — oo, we get:

S S

c+yR G &
— = — c+yR; =
1+yR/n ;1+yR/n—yzi Yl () gl—yzi
° CiZ;
— Rﬂp(y)zzl_ =
i=1 Yz
Thus, we are led to the conclusion in the statement. U

We have as well the following result, providing an alternative to Definition 16.5, and
which, together with Definition 16.5, can be thought of as being the free CPLT:

THEOREM 16.7. For a discrete measure, written as

s

p= Z Ciézi

i=1
with ¢; > 0 and z; € C, we have the formula
T, = law (Z Ziozi>
i=1
where the variables c; are free Poisson(c;), free.

PROOF. Let « be the sum of free Poisson variables in the statement:

s
o = E y2107%;
=1

In order to prove the result, we will show that the R-transform of « is given by the
formula in Proposition 16.6. We have the following computation:

C; Cizi
Ra- = - Rz-a- =
)= ) = 25
z CiZ;
— Ra =
(y) ; Ty
Thus we have the same formula as in Proposition 16.6, and we are done. U

All the above is quite general, and in practice, in order to obtain concrete results, the
simplest measures that we can use as “input” for the CPLT are the same measures as
those that we used in the classical case, namely the measures of type p = te,, with ¢t > 0,
and with €, being the uniform measure on the s-th roots of unity. We will discuss this in
what follows, by following the literature on the subject.
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16b. Bessel laws

As mentioned above, for various reasons, including the construction of the “standard
cube” discussed in the beginning of this chapter, we are interested in the applications of
the free CPLT with the “simplest” input measures, with these simplest measures being
those of type p = tes, with ¢ > 0, and with €, being the uniform measure on the s-th
roots of unity. We are led in this way the following class of measures:

DEFINITION 16.8. The Bessel and free Bessel laws, depending on parameters s €
NU {oo} and t > 0, are the following compound Poisson and free Poisson laws,
bf = Ptes, > ﬁf = Tte,
with €, being the uniform measure on the s-th roots of unity. In particular:

(1) At s =1 we recover the Poisson laws py, m.
(2) At s = 2 we have the real Bessel laws by, (.
(3) At s = co we have the complex Bessel laws By, Bs.

The terminology here comes from the fact, that we know from before, that the density
of the measure b;, appearing at s = 2, is a Bessel function of the first kind.

Our next task will be that upgrading our results about the free Poisson law m; in this
setting, using a parameter s € NU {oco}. First, we have the following result:

THEOREM 16.9. The free Bessel laws have the property
BB B = Bl

so they form a 1-parameter semigroup with respect to free convolution.

Proor. This follows indeed from the fact that the R-transform of f3; is linear in ¢,
which is something that we already know, from the above. U

Let us discuss now some more advanced aspects. Given a real probability measure u,
one can ask whether the convolution powers p** and p® exist, for various values of the
parameters s,t > 0. For the free Poisson law, the answer to this is as follows:

PROPOSITION 16.10. The free convolution powers of the free Poisson law
LR
exist for any positive values of the paremeters, s,t > 0.
ProOF. We have two measures to be studied, the idea being as follows:

(1) The free Poisson law 7 is by definition the ¢ = 1 particular case of the free Poisson
law of parameter ¢, or Marchenko-Pastur law of parameter ¢t > 0, given by:

\/4t—(:v—1—t)2dx

2rx

7 = max(1 —¢,0)dy +
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The Cauchy transform of this measure is given by:

E+1—t)+/(E+1—1)2 -4
28

We can compute now the R transform, by proceeding as follows:

P H1=(¢+1-1G = KZ2+1=(K+1-1)z
— RA+z+1=(R+1-1)z+1
— Rz=R-t
— R=t/(1—-2)

G(&) =

The last expression being linear in ¢, the measures m; form a semigroup with respect
to free convolution. Thus we have m; = 7, which proves the second assertion.

(2) Regarding now the measure 7, there is no explicit formula for its density. How-
ever, we can prove that this measure exists, by using some abstract results. Indeed, we
have the following computation for the S transform of 7;:

P+ 1=(E+1-1)G = zfP+1=(1+z—zt)f
= 2+ 1) +1=1+2z—2t)(x+1)
= xe+1)2+1=>1+x—xt)(z+1)
= X+t =z
— S=1/(t+2)

In particular at £ = 1 we have the following formula:

1
S pu—
(2) 142
Thus the ¥ transform of 7, which is by definition X(2) = S(z/(1 — 2)), is given by:
Y(z)=1-=2

On the other hand, it is well-known from the general theory of the S-transform that the
>’ transforms of the probability measures which are X-infinitely divisible are the functions
of the form 3(2) = €*®), where v : C — [0, 00) — C is analytic, satisfying:

v(z) =0(z) , w(ChH) cC

Now in the case of the free Poisson law, the function v(z) = log(1 — z) satisfies these
properties, and we are led to the conclusion in the statement. U

Getting now towards the free Bessel laws, we have the following remarkable identity,
in relation with the above convolution powers of :
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THEOREM 16.11. We have the formula
T R = (1 — )0 + to;) K 7%
valid for any s > 1, and any t € (0, 1].

Proor. We know from the previous proof that the S transform of the free Poisson
law 7 is given by the following formula:

Sl(Z)

We also know from there that the S transform of 7% is given by:
1

- t+z

Thus the measure on the left in the statement has the following S transform:
1 1

(1421 t+2

B 1
14z

Si(2)

S(z) =

The S transform of oy = (1 — t)dy + td; can be computed as follows:

f=1+tz/(1—-2) = Y=tz/(1-2)
— (-
= x=z/(t+2)
= S=(1+42)/(t+=2)

Thus the measure on the right in the statement has the following .S transform:

1 1+ 2
S(z) = .
G =ai 7
Thus the S transforms of our two measures are the same, and we are done. Ol

The relation with the free Bessel laws, as previously defined, comes from:
THEOREM 16.12. The free Bessel law is the real probability measure [3;, with
(57t) < (0700) X (07 OO) - (O, 1) X (17 OO)

defined concretely as follows:

(1) For s > 1 we set 8§ = 721 X 7Bt
(2) Fort <1 we set 3 = ((1 — )5y + t0y) K 7.

Proor. This follows indeed from the above results. To be more precise, these results
show that the measures constructed in the statement exist indeed, and coincide with the
free Bessel laws, as previously defined, as compound free Poisson laws. U
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In view of the above, we can regard the free Bessel law 3] as being a natural two-
parameter generalization of the free Poisson law 7, in connection with Voiculescu’s free
convolution operations X and H. Observe that we have the following formulae:

ﬁf — 7.‘.|Z8
B = ==
As a comment here, concerning the precise range of the parameters (s,t), the above
results can be probably improved. The point is that the measure 3; still exists for certain
points in the critical rectangle (0,1) x (1, 00), but not for all of them.
Next in line, we have the following result:
PROPOSITION 16.13. The Stieltjes transform of B; satisfies:
f=1+zf(f+t—1)
In particular at t = 1 we have the formula f =1+ zf5*!.

ProOF. We have the following computation:
1 1 z 1

S = . _ .
(1+z)t t42 X (1+2) t+2
(0 1
z = .
A+0) 110
f-1 1
— z= -
o t+f-1
Thus, we obtain the equation in the statement. O

At t = 1, we have in fact the following result, which is more explicit:

THEOREM 16.14. The Stieltjes transform of 5} with s € N is given by
f)= 2, 2V
PGNCS

where NCj is the set of noncrossing partitions all whose blocks have as size multiples of
s, and where k : NCy — N s the normalized length.

ProOF. With the notation Cy = #NC(k), where NCi(k) C NCs consists of the
partitions of {1,..., sk} belonging to NCj, the sum on the right is:

f(z) = Z 2"
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For a given partition p € NCs(k + 1) we can consider the last s legs of the first block,
and make cuts at right of them. This gives a decomposition of p into s + 1 partitions in
Ny, and we obtain in this way the following recurrence formula for the numbers C}:

Ck+1 - Z Cko"'Cks
Ski=k

By multiplying now by z**!, and then summing over k, we obtain that the generating
series of these numbers C}, satisfies the following equation:

f—1=zf"
But this is the equation found in Proposition 16.13, so we obtain the result. Il

Next, we have the following result, dealing with the case t > 0:

THEOREM 16.15. The Stieltjes transform of 5] with s € N is given by:
f(z) = Z Sk(P) 4b(p)
PGNC'S

where k,b: NCys — N are the normalized length, and the number of blocks.

ProoF. With notations from the previous proof, let F}; be the number of partitions
in NC(k) having b blocks, and set Fy, = 0 for other integer values of k,b. All sums will
be over integer indices > 0. The sum on the right in the statement is then:

f(z) = Z Fp2kt?
kb

The recurrence formula for the numbers C} in the previous proof becomes:
E Frpip = E E Froo - -+ Flob,
b Ski=k b,

In this formula, each term contributes to Fji1, with b = Xb;, except for those of the
form FooFi,p, - - - Fi.p,, which contribute to Fjiqp41. We get:

Fk—f—l,b = Z Z Fkobo s stbs

Yk;=k 3b;=b

+ > > Fuy P,

Yki=k Xb;=b—-1

= Y > Fuy - Fr,

Ski=k $b;=b
This gives the following formula for the polynomials P, = Y, Fypt:
Py = Z Py ... P, +(t—1) Z Py ... Py,

Yki=k Yki=k
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Consider now the following generating function:

f= Z B2

k
In terms of this generating function, we get the following equation:
f—1=zf 4 (t—-1)zf*
But this is the same as the equation of the Stieltjes transform of 37, namely:
f=14+zf(f+t—-1)

Thus, we are led to the conclusion in the statement. O

Let us discuss now the computation of the moments of the free Bessel laws. The idea
will be that of expressing these moments in terms of generalized binomial coefficients. We
recall that the coefficient corresponding to a € R, k£ € N is:

(Z) :a<a—1>..l.€!(a—k+1)

We denote by mq, mo, ms, ... the sequence of moments of a given probability measure.
With this convention, we first have the following result:

THEOREM 16.16. The moments of 3] with s > 0 are

— 1 sk +k
sk 1\ k

which are the Fuss-Catalan numbers.

PROOF. In the case s € N, we know that we have my = #NC(k). The formula in
the statement follows then by counting such partitions. In the general case s > 0, observe
first that the Fuss-Catalan number in the statement is a polynomial in s:

1 <s/€+k’) _ (sk +2)(sk+3)...(sk+k)

sk+1 k k!

Thus, in order to pass from the case s € N to the case s > 0, it is enough to check that
the k-th moment of 7,; is analytic in s. But this is clear from the equation f = 1+ zf**!
of the Stieltjes transform of 74, and this gives the result. O

We have as well the following result, which deals with the general case t > 0:

THEOREM 16.17. The moments of 5; with s > 0 are

N~ L (RN (sk ),
e \b-1) b1

which are the Fuss-Narayana numbers.
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PROOF. In the case s € N, we know from the above that we have the following formula,
where FJ; is the number of partitions in NC(k) having b blocks:

myp = Z Fkbtb
b

With this observation in hand, the formula in the statement follows by counting such
partitions, with this count being well-known. This result can be then extended to any
parameter s > 0, by using a standard complex variable argument, as before. U

In the case s ¢ N, the moments of 37 can be further expressed in terms of gamma
functions. In the case s = 1/2, the result is as follows:

THEOREM 16.18. The moments of Bim are given by the following formulae:

()
Moy = ——
T p+1\p

2 pl(6p)!
P Gp-1)(2p+ 1) (2p)!(2p)!(3p)!

PRrROOF. According to our various results above, the even moments of the free Bessel
law 37 with s =n —1/2, n € N, are given by:

1 ((n +1 /2)2p>

(n—1/2)(2p) +1 2p

- il )

With n = 1 we get the formula in the statement. Now for the odd moments, we can
use here the following well-known identity:

m—1/2\ 4% @2m)!  (m—k)!
( k )_W' m!  (2m — 2k)!

mgp =

With m =2np+p —n and k = 2p — 1 we get:

1 ((n +1/2)(2p — 1))
n—1/2)(2p—1)+1 2p —1

_ 2 ((2np+p—n)—1/2>
2n—1)2p—1)+2 2p —1

270 (dnp+2p—2n)!  (2np—p-—n+1)!

2p—1)! (np+p—n)! (4np—2p —2n+ 3)!

Mop—1
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In particular with n = 1 we obtain:

2743 (6p — 2)! p!
m2p_1 = . .
2p—1)! Bp—-1)! (2p+1)!
_27"(2p)  (6p)!(3p) P!
2p)!  (Bp)l6p—1)6p (2p)!(2p+1)
But this gives the formula in the statement. O

16c. The standard cube

Let us get back now to the fundamental question, mentioned in the beginning of this
chapter, of arranging the main probability measures that we know, classical and free, into
a cube, and this for having some kind of 3D orientation, inside probability. We have:

THEOREM 16.19. The various classical and free central limiting measures,

Bts Vi I

bf gt Gy
have moments always given by the same formula, involving partitions, namely
= 3
weD(k)

where the sets of partitions D(k) in question are respectively

NC® NC, NC,

P? Py Ps
and where |.| is the number of blocks.
Proor. This follows by putting together the various moment results that we have. [J

The above result is quite nice, and is complete as well, containing all the moment
results that we have established so far, throughout this book. However, forgetting about
being as general as possible, we can in fact do better. Nothing in life is better than having
some 3D orientation, and as a main application of the above, we can modify a bit the
above diagram, as to have a nice-looking cube, as follows:
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THEOREM 16.20. The moments of the main central limiting measures,

B, — I}

e

Bt Vi

Bt Gt
by ——————— g
are always given by the same formula, involving partitions, namely
-y
weD(k)

where the sets of partitions D(k) in question are respectively

Nceven -~ NCZ

even

Proor. This follows by putting together the various moment results that we have.
To be more precise, the result follows from Theorem 16.19, by restricting the attention on
the left to the cases s = 2, 00, which can be thought of as being “fully real” and “purely
complex”, and then folding the 8-measure diagram into a cube, as above. U

C’UC’VZ

Peven

and where |.| is the number of blocks.

16d. Matrix models

Let us discuss now the relation between the above free PLT theory and the random
matrices. As a starting point, the free Poisson laws m; that we found in the above, via
the free PLT, coincide with the Marchenko-Pastur laws, shown in chapter 14 to appear
as limiting laws for the complex Wishart matrices. This is certainly nice, conceptually
speaking, but the point is that we can now truly improve the Marchenko-Pastur result
from chapter 14, with an asymptotic freeness statement added, as follows:
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THEOREM 16.21. Given a family of sequences of complex Wishart matrices,
Zy =Yy(Yy) € My(L®(X)) , i€l
with each Y3 being a N x M matriz, with entries following the normal law Gy, and with
all these entries being pairwise independent, the rescaled sequences of matrices
Zy
N
become with M = tN — oo Marchenko-Pastur, each following the law m;, and free.

€ My(L*(X)) , i€l

PROOF. Here the first assertion is the Marchenko-Pastur theorem, and the second
assertion follows from the freeness result for the Gaussian matrices, from chapter 15. [J

At a more technical level now, many things to be done, which promise to be quite
technical. Let us start with the multiplicative models. We will first restrict attention to
the case t = 1, since we have 3§ = 757! X 7% and therefore matrix models for 3¢ will
follow from matrix models for 7%¢. We first have the following result:

THEOREM 16.22. Let Gy, ...,Gs be a family of N x N independent matrices formed
by independent centered Gaussian variables, of variance 1/N. Then with

M:Gl...Gs

the moments of the spectral distribution of M M* converge, up to a normalization, to the
corresponding moments of B, as N — oo.

PrROOF. We prove this by recurrence. At s = 1 it is well-known that M M* is a model
for 31 = m. So, assume that the result holds for s — 1 > 1. We have:

tr(MM*E = tr(Gy...G,G:... .G
= tr(Gi(Ga...GsG: .. .GiG1)F Gy .. . GGEL . GY)
We can pass the first G; matrix to the right, and we get:
tr(MM*)F = tr((Gy...GG:.. . GiG) ' Gy.. . GGr .. .GiGh)
= tr(Gy...G,Gr...GIG)F
= tr((Gy...G,G%...G5)(GiGy))k
We know that GG, is a Wishart matrix, hence is a model for 7:
GGy~
Also, we know by recurrence that Gy ...G,G* ... G% gives a matrix model for 557!
Gy.. GG .G~ Bt

Now since the matrices G7G; and Gy ...GG% ... G5 are asymptotically free, their
product gives a matrix model for 7,_; ; W m; = 37, and we are done. O

We have as well the following result, which is of different nature:
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THEOREM 16.23. If W is a complex Wishart matriz of parameters (sN, N) and

I 0 0
0 0 ws_llN

with w = e*™/* then the moments of the spectral distribution of (DW)® converge, up to a
normalization, to the corresponding moments of Bi, as N — oco.

Proor. We use the following complex Wishart matrix formula of Graczyk, Letac and
Massam, whose proof is via standard combinatorics:
M(o~tm)

E(Tr(DW)") = Vi

oESK

74(D)

Here W is by definition a complex Wishart matrix of parameters (M, N), and D is a
deterministic M x M matrix. As for the right term, this is as follows:

(1) = is the cycle (1,..., K).
(2) (o) is the number of disjoint cycles of o.

(3) If we denote by C(0) the set of such cycles and for any cycle ¢, by |c| its length,
then the function on the right is given by:

re(D) =[] Tr(D)
ceC(o)
In our situation we have K = sk and M = sN, and we get:

gN (e im)
E(Tr(DW)*) = Y~ (s 7

ey "r(P)
gESk

Now since D is uniformly formed by s-roots of unity, we have:
N if
roon = [Nl
0 ifs/p

Thus if we denote by S%, the set of permutations o € Sy having the property that all
the cycles of ¢ have length multiple of s, the above formula reads:

B(Tr(DW)*) = Y el 2

(SN)'Y(U)
sk
o€S3, (SN>

In terms of the normalized trace tr, we obtain the following formula:

E(tr(DW)®*) = Z (sN) e m+(0)=sk=1

o€eSs,
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The exponent on the right, say L,, can be estimated by using the distance on the
Cayley graph of Sy, in the following way:

Ly = (o 'n)+~(0) —sk—1
= (sk—d(o,m))+ (sk —d(e,0)) — sk —1
= sk—1—(d(e,o) +d(o,))
< sk—1—d(e,m)

0

Now when taking the limit N — oo in the above formula of E(tr(DW)**), the only
terms that count are those coming from permutations o € S%, having the property L, = 0,
which each contribute with a 1 value. We therefore obtain:

Jm Br(DW)) = #{o € 55| L =0}
#{o € S, | dle,o)+d(o,m)=d(e,m)}
= #{oe Sy |oelen]}

But this number that we obtained is well-known to be the same as the number of
noncrossing partitions of {1,..., sk} having all blocks of size multiple of s. Thus we have
reached to the sets NCs(k) from the above, and we are done. U

As a consequence of the above random matrix formula, we have the following alterna-
tive approach to the free CPLT, in the case of the free Bessel laws:

THEOREM 16.24. The moments of the free Bessel law mg with s € N coincide with

k=

where v, . .., aq are free random variables, each of them following the free Poisson law of
parameter 1/s, and w = e*™/*.

ProoOF. This is something that we already know, coming from the combinatorics
of the free CPLT, but we can prove this now by using random matrices as well. For
this purpose, let Gy,...,Gs be a family of independent sN x N matrices formed by
independent, centered complex Gaussian variables, of variance 1/(sN). The following
matrices Hq, ..., H, are then complex Gaussian and independent as well:

1 — .
Hk:%;prp
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Thus the following matrix provides a model for the variable Sw*ay:

M = ) wH.H;
k=1

e

k=1 p=1 g=1

S S 1 S B §
- 2n(ige)es

= GG+ GGt ..+ Gy G+ GG

Now observe that this matrix can be written as follows:

Gy
G
M = (Gl G2 Gs—l GS)
Gy
Gy
0 1y 0 ... O G3
0O 0 1y ... 0 G3
- (Gl GQ Gs—l Gs)
0O 0 0 ... 1y Gi_,
Iy 0 0 ... O G
= GOG”

In this formula G = (G; ... Gy) is the sN x sN Gaussian matrix obtained by
concatenating G, ..., Gy, and O is the matrix in the middle. But this latter matrix is of
the form O = UDU* with U unitary, so and we have:

M = GUDU*G*

Now since GU is a Gaussian matrix, M has the same law as M’ = GDG*. By using
this, we obtain the following moment formula:

s sk
E (Z wlozl) = A}im E(tr(M®))
=1 e
= lim E(tr(GDG*)*%)
N—o0
= lim E(tr(D(G*G))*)
N—o00

Thus with W = G*G we get the result. O
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As a last topic regarding the free CPLT, which is perhaps the most important, let us
review now the results regarding the block-modified Wishart matrices from chapter 14,
with free probability tools. We will see in particular that the laws obtained there are free
combinations of free Poisson laws, or compound free Poisson laws.

Consider a complex Wishart matrix of parameters (dn,dm). In other words, we start
with a dn x dm matrix Y having independent complex G; entries, and we set:
W =YY"

This matrix has size dn x dn, and is best thought of as being a d x d array of n x n
matrices. We will be interested here in the study of the block-modified versions of W,
obtained by applying to the n x n blocks a given linear map, as follows:

v : M,(C) — M,(C)

We recall from chapter 8 that we have the following asymptotic moment formula,
extending the usual moment computation for the Wishart matrices:

THEOREM 16.25. The asymptotic moments of a block-modified Wishart matriz
W = (id® o)W
with parameters d,m,n € N, as above, are given by the formula

. /W o o Y
lim M, <7> = ) (mn)"\(M7 ® M))(A)

d—o0
ceNCY)
where A € M, (C) ® M, (C) is the square matriz associated to ¢ : M,(C) — M, (C).

ProOF. This is something that we know well from chapter 14, coming from the Wick
formula, and with the correspondence between linear maps ¢ : M,(C) — M, (C) and
square matrices A € M, (C) ® M, (C) being as well explained there. O

As explained in chapter 14, it is possible to further build on the above result, with
some concrete applications, by doing some combinatorics and calculus. With the free
probability theory that we learned so far, we can now clarify all this. We first have:

PROPOSITION 16.26. Given a square matriz A € M, (C)® M, (C), having distribution
p = law(A)
the moments of the compound free Poisson law Ty, are given by

Me(Tamp) = ), (mn)\*/(M7 @ MZ)(A)

oceNC)

for any choice of the extra parameter m € N.
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PRroOF. This can be proved in several ways, as follows:

(1) A first method is by a straightforward computation, based on the general formula
of the R-transform of the compound free Poisson laws, given in the above, and we will
leave the computations here, which are all elementary, as an instructive exercise.

(2) Another method is by using the well-known fact that the free cumulants of ,,,,
coincide with the moments of mnp. Thus, these free cumulants are given by:

"ie(ﬂ'mnp) = M€<mnp)
= mn- M.(A)
= mn- (M @ M])(A)
By using now Speicher’s free moment-cumulant formula, this gives the result. O

We can see now an obvious similarity with the formula in Theorem 16.25. In order to
exploit this similarity, let us introduce:

DEFINITION 16.27. We call a square matriz A € M, (C) ® M, (C) multiplicative when
(M7 @ M2)(A) = (M7 © MZ)(A)
holds for any p € N, any exponents ey, ..., e, € {1,%}, and any o0 € NC,.

This notion is something quite technical, but we will see many examples in what fol-
lows. For instance, the square matrices A coming from the basic linear maps ¢ appearing
in chapter 14 are all multiplicative. Now with the above notion in hand, we can formulate
an asymptotic result regarding the block-modified Wishart matrices, as follows:

THEOREM 16.28. Consider a block-modified Wishart matrix
W = (id® @)W
and assume that the matrizc A € M, (C) @ M,,(C) associated to ¢ is multiplicative. Then
W
T T
holds, in moments, in the d — oo limit, where p = law(A\).

PROOF. By comparing the moment formulae in Theorem 16.25 and in Proposition

16.26, we conclude that the asymptotic formula % ~ Tmnp 18 equivalent to the following
equality, which should hold for any p € N, and any exponents ey, ..., e, € {1, *}:

> (mn)7N(MZ @ MI)(A) = Y (mn) N (M7 @ MZ)(A)
gENC, gENC,

Now by assuming that A is multiplicative, in the sense of Definition 16.27, these two
sums are trivially equal, and this gives the result. U

Many other things can be said, as a continuation of the above.
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16e. Exercises

Congratulations for having read this book, and no exercises for this final chapter.
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