
Ordinary differential equations

Teo Banica

Department of Mathematics, University of Cergy-Pontoise, F-95000
Cergy-Pontoise, France. teo.banica@gmail.com



2010 Mathematics Subject Classification. 34A05

Key words and phrases. Differential equation, Dynamical system

Abstract. This is an introduction to the ordinary differential equations, with all needed
preliminaries included. We first study the basic differential equations, of low order,
notably with a detailed discussion regarding the classical orthogonal polynomials. Then
we consider differential equations of arbitrary order, and we develop the standard theory
here, using linearization ideas, and tools from linear algebra. As a continuation of this,
we further discuss the geometric aspects, using tools from differential geometry. Finally,
we restrict the attention to problems coming from classical and celestial mechanics, and
we provide an introduction to the advanced theory here.



Preface

This is an introduction to the ordinary differential equations, with all needed prelim-
inaries included. The book is organized in 4 parts, as follows:

I. We first study the basic differential equations, of low order, notably with a detailed
discussion regarding the classical orthogonal polynomials.

II. Then we consider differential equations of arbitrary order, and we develop the
standard theory here, using linearization ideas, and tools from linear algebra.

III. As a continuation of this, we further discuss the geometric aspects of the various
equations and their solutions, by using tools from differential geometry.

IV. Finally, we restrict the attention to problems coming from classical and celestial
mechanics, and we provide an introduction to the advanced theory here.

This book is based on lecture notes from various classes that I taught at Toulouse and
Cergy, on differential equations and dynamical systems, and I would like to thank my
students. Many thanks as well to my cats, for some help with the computations.

Cergy, September 2025

Teo Banica
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Differential equations





CHAPTER 1

Basic functions

1a. Basic functions

1b.

1c.

1d.

1e. Exercises

Exercises:

Exercise 1.1.

Exercise 1.2.

Exercise 1.3.

Exercise 1.4.

Exercise 1.5.

Exercise 1.6.

Exercise 1.7.

Exercise 1.8.

Bonus exercise.
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CHAPTER 2

Differential equations

2a. Differential equations

Let us start with some basic mechanics. We will be interested in free falls, and the
result here, which is something quite familiar, and that we can establish right from the
Newton principles, with just a bit of basic calculus, is as follows:

Theorem 2.1. In the context of a free fall from distance x0 = R >> 0, with initial
velocity v0 = 0, the equation of the trajectory is

x ≃ R− gt2

2

with the constant being g = GM/R2, called gravity of M , at distance R from it.

Proof. As before, the equation of motion of our object m is as follows:

ẍ = − Kx

||x||3

In one dimension now, things get simpler, and the equation of motion reads:

ẍ = −K
x2

Since we assumed R >> 0, we must look for a solution of type x ≃ R + ct2, with the
lack of the t term coming from v0 = 0. But with x ≃ R + ct2, our equation reads:

2c ≃ −K

R2

Now by multiplying by t2/2, and adding R, we obtain as solution:

x ≃ R− Kt2

2R2

Thus, we have indeed x ≃ R− gt2/2, with g being the following number:

g =
K

R2
=
GM

R2

We are therefore led to the conclusion in the statement. □

Along the same lines, as a second result now, which is more advanced, we have:

13



14 2. DIFFERENTIAL EQUATIONS

Theorem 2.2. In the context of a free fall from distance x0 = R >> 0, with initial
plane velocity vector v0 = v, the equation of the trajectory is

x ≃ R + vt− gt2

2

where g = GM/R2 as usual, and with the quantities R, g in the above being regarded now
as vectors, pointing upwards. The approximate trajectory is a parabola.

Proof. We have several assertions here, the idea being as follows:

(1) Let us first discuss the simpler case where we are still in 1D, as in Theorem 2.1,
but with an initial velocity v0 = v added. In order to find the equation of motion, we can
just redo the computations from the proof of Theorem 2.1, with now looking for a general
solution of type x ≃ R + vt+ ct2, and we get, as stated above:

x ≃ R + vt− gt2

2

Alternatively, we can simply argue that, by linearity, what we have to do is to take
the solution x ≃ R− gt2/2 found in Theorem 2.1, and add an extra vt term to it.

(2) In the general 2D case now, where the initial velocity v0 = v is a vector in R2, the
same arguments apply, either by redoing the computations from the proof of Theorem
2.1, or simply by arguing that by linearity we can just take the solution x ≃ R − gt2/2
found there, and add an extra vt term to it. Thus, we have our solution.

(3) Let us study now the solution that we found. In standard (x, y) coordinates, with
v = (p, q), and with R, g being now back scalars, our solution looks as follows:

x = pt , y ≃ R + qt− gt2

2

From the first equation we get t = x/p, and by substituting into the second:

y ≃ R +
qx

p
− gx2

2p2

We recognize here the approximate equation of a parabola, and we are done. □

Let us discuss now an important topic, namely the conservation of energy, in the
gravitational context. The simplest situation is that of a free fall with initial velocity
v0 = 0, and our conservation principle here is as follows:

Proposition 2.3. In the context of a free fall from distance x0 = R >> 0, with initial
velocity v0 = 0, if we define the potential energy to be

V = mgx

then the total energy E = T + V , with T = mv2/2 as usual, is constant, E ≃ mgR.
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Proof. We know that the equation of motion is as follows, with g = GM/R2:

x ≃ R− gt2

2

The kinetic energy, from now on to be denoted T , is then given by:

T ≃ mv2

2
=
mg2t2

2

Thus with V = mgx as in the statement, and then with E = T + V , we have:

E = T + V ≃ mgR

But this is a constant, and so we have our conservation principle, as desired. □

Along the same lines, as a next result, we have:

Theorem 2.4. In the context of a free fall from distance x0 = R >> 0, with initial
velocity vector v0 ∈ R2, if we define the potential energy to be

V = m < g, x >

with g = GM/R2 being regarded as usual as a vector pointing upwards, then

E = T + V

with T = m||v||2/2 as usual, is constant, E ≃ T0 +mgR, with g now back scalar.

Proof. We can do this in two steps, first by adding an extra parameter to the com-
putation in Proposition 2.3, and then by adding another extra parameter:

(1) Let us first examine the 1D case, where v0 = s is a vector aligned to x, and so a
number. Here the equation of motion is as follows, with g = GM/R2 as usual:

x ≃ R + st− gt2

2

The speed being v ≃ s− gt, with V = mgx and E = T + V as above, we have:

E = T + V

≃ m(s− gt)2

2
+mg

(
R + st− gt2

2

)
=

ms2

2
+mgR

= T0 +mgR
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(2) In the general case now, with v0 = s, the equation of motion is as before, with
R, g being now vectors pointing upwards, and if we write s = (a, b), then we have:

T ≃ m||s− gt||2

2

=
m((a− gt)2 + b2)

2

=
m(a2 + b2)

2
−magt+

mg2t2

2

= T0 −mg

(
at− gt2

2

)
With g vector pointing upwards, the last quantity is m < g, x − R >, so if we add

V = m < g, x >, we obtain T0 +mgR, with g,R being back scalars, as desired. □

With the above done, let us get back to the real thing, 3D gravity. We are interested in
the general 2-body problem, where M is fixed at 0, and m moves under the gravitational
force of M . The above computations, coming from our “kinetic energy gets converted
into height, and vice versa” principle, suggest defining the potential energy as:

V ∼ ||x||
However, this is wrong, because in our formula V = mgx the quantity g = GM/R2

depends on the average height, which is the parameter R, no longer assumed to satisfy
R >> 0. In view of this, the correct formula for the potential energy should be:

V ∼ 1

||x||
In order now to find the constant, it is enough to rewrite V = mgx by getting rid of

the parameter g = GM/R2. We obtain in this way, with K = GM as usual:

V = mgx =
mGMx

R2
≃ mGM

||x||
=
Km

||x||
Thus, we have our formula for V , and the question now is if E = T+V is constant. And

the answer here is unfortunately no, due to some bizarre reasons, with rather E = T − V
appearing to be constant, or at least that’s what computations tend to suggest.

So, let us change the sign of V , and see what we get. We are led in this way to:

Theorem 2.5. In the context of the 2-body problem, with M fixed at 0 and with m
moving, if we define the kinetic and potential energy of m to be

T =
m||v||2

2
, V = −Km

||x||
with K = GM as usual, then the total energy E = T + V is constant.
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Proof. The idea will be that of proving Ė = 0. We first have:

Ṫ =
m(< v, v̇ > + < v̇, v >)

2
= m < v, v̇ >

= m < v, a >

Next, let us compute the derivative of the function f(x) = 1/||x||. We have:

ḟ = −1

2
· < x, ẋ > + < ẋ, x >

< x, x >3/2

= − < x, ẋ >

< x, x >3/2

= −< x, v >

||x||3

Thus, getting now to the potential energy V , we have the following formula:

V̇ =
Km < x, v >

||x||3

In order to further process this, remember the equation of motion of m, namely:

a = − Kx

||x||3

We will of course jump on this, as to get rid of ||x||3, and we finally obtain:

V̇ = −m < a, v >

We are ready now to prove our result. Indeed, we have:

Ė = Ṫ + V̇ = m < v, a > −m < a, v >= 0

Now since the derivative vanishes, E is constant, as claimed. □

Nice all this, but we still have to understand the relation with Proposition 2.3 and
Theorem 2.4, with that sign of V mysteriously switching. And we have here the following
result, upgrading Proposition 2.3 and Theorem 2.4, and clarifying the whole thing:

Theorem 2.6. In the context of a free fall from distance x0 = R >> 0, with initial
velocity v0 = 0, if we define the kinetic and potential energy of m to be

T =
mv2

2
, V = −Km

x
with K = GM as usual, then the total energy E = T + V is constant. Moreover,

V ≃ mgx− 2mgR

with g = GM/R2, and so E ′ = T +mgx is appoximately constant, E ′ ≃ mgR. The same
happens for a free fall from x0 = R >> 0, with initial velocity vector v0 ∈ R2.
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Proof. The first assertion is something that we know, coming from Theorem 2.5. In
order to clarify now the relation with Proposition 2.3, we first have:

V = −Km
x

= −GMm

x
= −mgR

2

x
Now by writing x = R(1− ε), we obtain the estimate in the statement, namely:

V = −mgR
1− ε

≃ −mgR(1 + ε)

= mgR[(1− ε)− 2]

= mgx− 2mgR

Thus with V ′ = mgx we have V ≃ V ′ − 2mgR, and so E ′ = T + V ′ satisfies:

E ′ ≃ E + 2mgR

= E0 + 2mgR

= V0 + 2mgR

= mgR

Finally, the last assertion, which is a bit more general, follows in the same way. □

We will be back to all this later, following Lagrange and Hamilton.

2b.

2c.

2d.

2e. Exercises

Exercises:

Exercise 2.7.

Exercise 2.8.

Exercise 2.9.

Exercise 2.10.

Exercise 2.11.

Exercise 2.12.

Exercise 2.13.

Exercise 2.14.

Bonus exercise.



CHAPTER 3

Theorems and tricks

3a. Theorems and tricks

3b.

3c.

3d.

3e. Exercises

Exercises:

Exercise 3.1.

Exercise 3.2.

Exercise 3.3.

Exercise 3.4.

Exercise 3.5.

Exercise 3.6.

Exercise 3.7.

Exercise 3.8.

Bonus exercise.
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CHAPTER 4

Orthogonal polynomials

4a. Scalar products

We discuss in this chapter an extension of the basic linear algebra results, obtained
by looking at the linear operators T : H → H, with the space H being no longer assumed
to be finite dimensional. Our main motivations come from physics, and more specifically
quantum mechanics, and in order to get motivated, here is some suggested reading:

(1) Generally speaking, physics is best learned from Feynman [32]. If you already
know some, and want to learn quantum mechanics, go with Griffiths [42]. And if you are
already a bit familiar with quantum mechanics, a good book is Weinberg [95].

(2) A look at classics like Dirac [22], von Neumann [32] or Weyl [97] can be instructive
too. On the opposite, you have as well modern, fancy books on quantum information,
such as Bengtsson-Życzkowski [32], Nielsen-Chuang [32] or Watrous [32].

(3) In short, many ways of getting familiar with this big mess which is quantum
mechanics, and as long as you stay away from books advertised as “rigorous”, “axiomatic”,
“mathematical”, things fine. By the way, you can try as well my book [11].

Getting to work now, physics tells us to look at infinite dimensional complex spaces,
such as the space of wave functions ψ : R3 → C of the electron. In order to do some
mathematics on these spaces, we will need scalar products. So, let us start with:

Definition 4.1. A scalar product on a complex vector space H is a binary operation
H ×H → C, denoted (x, y) →< x, y >, satisfying the following conditions:

(1) < x, y > is linear in x, and antilinear in y.
(2) < x, y > =< y, x >, for any x, y.
(3) < x, x >> 0, for any x ̸= 0.

As before in the previous chapters, we use here mathematicians’ convention for scalar
products, that is, < ,> linear at left, as opposed to physicists’ convention, < ,> linear
at right. The reasons for this are quite subtle, coming from the fact that, while basic
quantum mechanics looks better with < ,> linear at right, advanced quantum mechanics
looks better with < ,> linear at left. Or at least that’s what my cats say.
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22 4. ORTHOGONAL POLYNOMIALS

As a basic example for Definition 4.1, we have the finite dimensional vector space
H = CN , with its usual scalar product, namely:

< x, y >=
∑
i

xiȳi

We will see later in this chapter that in finite dimensions, this is in fact the only
example, the point being that algebrically we must have H ≃ CN , for some N ∈ N, and
then we can always change the basis, as to make it orthogonal with respect to < ,>, which
in practice makes < ,> to be given by the above formula. More on this in a moment.

In infinite dimensions now, there are many interesting examples of spaces naturally
coming with scalar products, and notably various spaces of L2 functions, which appear
for instance in various problems coming from physics. We will discuss them later.

Summarizing, what we have in Definition 4.1 is a potentially useful generalization of
the usual scalar product < ,> on the simplest complex vector space, CN . In order to
study now the scalar products, let us formulate the following definition:

Definition 4.2. The norm of a vector x ∈ H is the following quantity:

||x|| =
√
< x, x >

We also call this number length of x, or distance from x to the origin.

The terminology comes from what happens in CN , where the length of the vector, as
defined above, coincides with the usual length, given by:

||x|| =
√∑

i

|xi|2

In analogy with what happens in finite dimensions, we have two important results
regarding the norms. First we have the Cauchy-Schwarz inequality, as follows:

Theorem 4.3. We have the Cauchy-Schwarz inequality,

| < x, y > | ≤ ||x|| · ||y||

and the equality case holds precisely when x, y are proportional.

Proof. This is something very standard, the idea being as follows:

(1) Consider, and we will understand why in a moment, the following quantity, de-
pending on a real variable t ∈ R, and on a variable on the unit circle, w ∈ T:

f(t) = ||twx+ y||2
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By developing f , we see that this is a degree 2 polynomial in t:

f(t) = < twx+ y, twx+ y >

= t2 < x, x > +tw < x, y > +tw̄ < y, x > + < y, y >

= t2||x||2 + 2tRe(w < x, y >) + ||y||2

(2) Since f is obviously positive, its discriminant must be negative:

4Re(w < x, y >)2 − 4||x||2 · ||y||2 ≤ 0

But this is equivalent to the following condition:

|Re(w < x, y >)| ≤ ||x|| · ||y||
Now the point is that we can arrange for the number w ∈ T to be such that the

quantity w < x, y > is real. Thus, we obtain the Cauchy-Schwarz inequality:

| < x, y > | ≤ ||x|| · ||y||
(3) Finally, the study of the equality case is straightforward, by using the fact that

the discriminant of f vanishes precisely when we have a root. Indeed, this shows that
having equality in Cauchy-Schwarz is the same as asking for the following to happen:

f(t) = 0

But this latter condition is very easy to process, as follows:

f(t) = 0 ⇐⇒ ||twx+ y||2 = 0

⇐⇒ ||twx+ y|| = 0

⇐⇒ twx+ y = 0

⇐⇒ x ∼ y

Thus we are led to the conclusion in the statement, namely that in order to have
equality in the Cauchy-Schwarz inequality, the vectors x, y must be proportional. □

As a second main result now, we have the Minkowski inequality:

Theorem 4.4. We have the Minkowski inequality

||x+ y|| ≤ ||x||+ ||y||
and the equality case holds precisely when x, y are proportional.

Proof. This follows indeed from the Cauchy-Schwarz inequality, as follows:

||x+ y|| ≤ ||x||+ ||y||
⇐⇒ ||x+ y||2 ≤ (||x||+ ||y||)2

⇐⇒ ||x||2 + ||y||2 + 2Re < x, y >≤ ||x||2 + ||y||2 + 2||x|| · ||y||
⇐⇒ Re < x, y >≤ ||x|| · ||y||

As for the equality case, this is clear from Cauchy-Schwarz as well. □
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In abstract terms, the Minkowski inequality tells us that the following happens:

Proposition 4.5. The following function is a norm on H,

||x|| =
√
< x, x >

in the usual sense, that of the abstract normed spaces.

Proof. Recall indeed that a normed space is an abstract vector space X with a
function ||.|| : X → [0,∞), called norm, subject to the following conditions:

– ||x|| > 0 for x ̸= 0.

– ||λx|| = |λ| · ||x||.
– ||x+ y|| ≤ ||x||+ ||y||.
In our case, the first two axioms are trivially satisfied, and the third axiom, called

triangle inequality, is the Minkowski inequality. Thus, the result holds indeed. □

Alternatively, and perhaps more illustrating, we have the following result:

Theorem 4.6. The following function is a distance on H,

d(x, y) = ||x− y||
in the usual sense, that of the abstract metric spaces.

Proof. This follows indeed from the Minkowski inequality, which corresponds to the
triangle inequality, the other two axioms being trivially satisfied. To be more precise:

(1) Let us first recall that a metric space is an abstract space X with a function
d : X ×X → [0,∞), called distance, which is subject to the following conditions:

– d(x, y) > 0 for x ̸= y, and d(x, x) = 0.

– d(x, y) = (y, x).

– d(x, y) ≤ d(x, z) + d(y, z).

(2) Now let us try to check these axioms for d(x, y) = ||x − y||. The first axiom is
clear, and so is the second axiom, so we are led with checking the third axiom, the triangle
inequality one, which in practice means to establish the following inequality:

||x− y|| ≤ ||x− z||+ ||y − z||
(3) But this is clear, because with x′ = x− z and y′ = z − y, our estimate reads:

||x′ + y′|| ≤ ||x′||+ ||y′||
And this being the Minkowski inequality, done with the axiom check, as desired. □

The above result is quite important, because it shows that we can normally do geom-
etry and analysis in our present setting, a bit as in the finite dimensional case. In order
to do such abstract geometry, we will often need the following key result:
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Theorem 4.7. The distances on H are subject to the identity

||x+ y||2 + ||x− y||2 = 2(||x||2 + ||y||2)

called parallelogram identity.

Proof. This is something quite fundamental, the idea being as follows:

(1) To start with, there is a relation here with a basic result from plane geometry, that
you might know or not. Consider indeed a parallelogram in the plane:

C

B

D

A

The above-mentioned formula from plane geometry is then as follows:

AC2 +BD2 = AB2 +BC2 + CD2 +DA2

But this is more or less the formula in the statement. Indeed, if we choose the origin
to be A, and relabel x, y the points B,D, our parallelogram becomes:

x+ y

x

y

O

Now with this done, observe we have the following two formulae:

AC2 +BD2 = ||x+ y||2 + ||x− y||2

AB2 +BC2 + CD2 +DA2 = 2(||x||2 + ||y||2)

Thus, the plane geometry formula is the same as the formula in the statement.

(2) In practice now, all this remains a mere remark, because our spaces are complex
instead of real, have arbitrary dimension instead of 2, and also because we have not said
in the above how the proof of the elementary geometry formula goes. So, better forget
about all this, and try to prove the formula in the statement, from scratch.
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(3) But here, things are in fact quite straightforward, because we have:

||x+ y||2 + ||x− y||2

= < x+ y, x+ y > + < x− y, x− y >

= ||x||2 + ||y||2+ < x, y > + < y, x > +||x||2 + ||y||2− < x, y > − < y, x >

= 2(||x||2 + ||y||2)

Thus, we have proved our formula, and as a bonus, we have understood as well how
the above-mentioned plane geometry formula works. Indeed, our computation above
obviously works as well for the real scalar products, and this gives the result. □

As a second result now, which is something fundamental too, everything can be for-
mally recovered in terms of distances, as follows:

Theorem 4.8. The scalar products can be recovered from distances, via the formula

4 < x, y >= ||x+ y||2 − ||x− y||2 + i||x+ iy||2 − i||x− iy||2

called complex polarization identity.

Proof. This is something that we have already met in finite dimensions. In arbitrary
dimensions the proof is similar, as follows:

||x+ y||2 − ||x− y||2 + i||x+ iy||2 − i||x− iy||2

= ||x||2 + ||y||2 − ||x||2 − ||y||2 + i||x||2 + i||y||2 − i||x||2 − i||y||2

+2Re(< x, y >) + 2Re(< x, y >) + 2iIm(< x, y >) + 2iIm(< x, y >)

= 4 < x, y >

Thus, we are led to the conclusion in the statement. □

Summarizing, all the basic formulae involving scalar products and norms, that we
know well from linear algebra, do hold in our abstract vector space setting. As a word of
warning here, however, not ever to be forgotten, we have:

Warning 4.9. Unlike other things, the basic formula for real scalar products,

< x, y >= ||x|| · ||y|| · cosα

does not hold, in our complex vector space setting.

To be more precise here, in what regards the above formula, you certainly know from
plane geometry that the formula holds indeed for R2, and you might know too, from space
geometry, that the formula holds as well for R3. The same goes for any RN , with similar
proof, and going a bit abstract, for any real vector space coming with a scalar product,
and this because by Cauchy-Schwarz we have | < x, y > | ≤ ||x|| · ||y||, so the above
formula can stand as a definition for the angle α ∈ [0, π) between our vectors x, y.
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In the complex space setting, however, this does not work. Indeed, we still have the
Cauchy-Schwarz inequality, telling us that | < x, y > | ≤ ||x|| · ||y||, but the scalar product
being now a complex number, < x, y >∈ C, so is its quotient by ||x|| · ||y|| ∈ R, so we
cannot come with an angle α ∈ [0, π) whose cosine equals this quotient.

Nevermind. After all, Theorem 4.8 tells us that scalar products, and so the subsequent
notion of angle, be that well-defined or not, are not really needed. We will often use this
philosophy in what follows, with Theorem 4.8 standing as an answer to Warning 4.9.

4b. Hilbert spaces

In order to do analysis on our spaces, we need the Cauchy sequences that we construct
to converge. This is something which is automatic in finite dimensions, but in arbitrary
dimensions, this can fail. It is convenient here to formulate a detailed new definition, as
follows, which will be the starting point for our various considerations to follow:

Definition 4.10. A Hilbert space is a complex vector space H given with a scalar
product < x, y >, satisfying the following conditions:

(1) < x, y > is linear in x, and antilinear in y.
(2) < x, y > =< y, x >, for any x, y.
(3) < x, x >> 0, for any x ̸= 0.
(4) H is complete with respect to the norm ||x|| = √

< x, x >.

In other words, what we did here is to take Definition 4.1, and add the condition that
H must be complete with respect to the norm ||x|| = √

< x, x >, that we know indeed to
be a norm, according to the Minkowski inequality proved above. As a basic example, as
before, we have the space H = CN , with its usual scalar product:

Proposition 4.11. The space H = CN , with its usual scalar product, namely

< x, y >=
∑
i

xiȳi

is a Hilbert space, which is finite dimensional.

Proof. Here the fact that < x, y >=
∑

i xiȳi is indeed a scalar product on CN is
something that we know well, and the completness condition is automatic. □

We will see later in this chapter, when talking about orthogonal bases for our spaces,
that any finite dimensional Hilbert space H appears as above, H ≃ CN . Thus, at least
we know one thing, done with finite dimensions, no bad surprises here.

More generally now, we have the following construction of Hilbert spaces:
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Proposition 4.12. The sequences of numbers (xi) which are square-summable,∑
i

|xi|2 <∞

form a Hilbert space l2(N), with the following scalar product:

< x, y >=
∑
i

xiȳi

In fact, given any index set I, we can construct a Hilbert space l2(I), in this way.

Proof. There are several things to be proved, as follows:

(1) Our first claim is that l2(N) is a vector space. For this purpose, we must prove that
x, y ∈ l2(N) implies x + y ∈ l2(N). But this leads us into proving ||x + y|| ≤ ||x|| + ||y||,
where ||x|| = √

< x, x >. Now since we know this inequality to hold on each subspace
CN ⊂ l2(N) obtained by truncating, this inequality holds everywhere, as desired.

(2) Our second claim is that < ,> is well-defined on l2(N). But this follows from
the Cauchy-Schwarz inequality, | < x, y > | ≤ ||x|| · ||y||, which can be established by
truncating, a bit like we established the Minkowski inequality in (1) above.

(3) It is also clear that < ,> is a scalar product on l2(N), so it remains to prove that
l2(N) is complete with respect to ||x|| = √

< x, x >. But this is clear, because if we pick
a Cauchy sequence {xn}n∈N ⊂ l2(N), then each numeric sequence {xni }i∈N ⊂ C is Cauchy,
and by setting xi = limn→∞ xni , we have xn → x inside l2(N), as desired.

(4) Finally, the same arguments extend to the case of an arbitrary index set I, leading
to a Hilbert space l2(I), and with the remark here that there is absolutely no problem
of taking about quantities of type ||x||2 =

∑
i∈I |xi|2 ∈ [0,∞], even if the index set I is

uncountable, because we are summing positive numbers. □

Even more generally, we have the following construction of Hilbert spaces:

Theorem 4.13. Given a measured space X, the functions f : X → C, taken up to
equality almost everywhere, which are square-summable,∫

X

|f(x)|2dx <∞

form a Hilbert space L2(X), with the following scalar product:

< f, g >=

∫
X

f(x)g(x)dx

In the case X = I, with the counting measure, we obtain in this way the space l2(I).
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Proof. This is a straightforward generalization of Proposition 4.12, with the argu-
ments from the proof of Proposition 4.12 carrying over in our case, as follows:

(1) The first part, regarding Cauchy-Schwarz and Minkowski, extends without prob-
lems, by using this time approximation by step functions.

(2) Regarding the fact that < ,> is indeed a scalar product on L2(X), there is a
subtlety here, because if we want < f, f >> 0 for f ̸= 0, we must declare that f = 0
when f = 0 almost everywhere, and so that f = g when f = g almost everywhere.

(3) Regarding the fact that L2(X) is complete with respect to ||f || =
√
< f, f >, this

is again basic measure theory, by picking a Cauchy sequence {fn}n∈N ⊂ L2(X), and then
constructing a pointwise, and hence L2 limit, fn → f , almost everywhere.

(4) Finally, the last assertion is clear, because the integration with respect to the
counting measure is by definition a sum, and so L2(I) = l2(I) in this case. □

As a conclusion to what we did so far, the Hilbert spaces are now axiomatized, and the
main examples discussed. In order to do now some geometry on our spaces, in analogy
with what we know from finite dimensions, let us start with the following definition:

Definition 4.14. Let H be a Hilbert space.

(1) We call two vectors orthogonal, x ⊥ y, when < x, y >= 0.
(2) Given a subset S ⊂ H, we set S⊥ =

{
x ∈ H

∣∣x ⊥ y,∀y ∈ S
}
.

Here the first notion is something very familiar and intuitive, with the comment how-
ever that in the present complex space setting, orthogonality does not exactly mean that
“we have a right angle between our vectors x, y”, as explained in Warning 4.9.

In what regards (2), this is something very familiar too, and as an observation here, the
subset S⊥ ⊂ H constructed there is a closed linear space. In finite dimensions a useful,
well-known formula here is E⊥⊥ = E, in case E ⊂ H is a linear space. As explained
below, this generalizes to the infinite dimensional setting as E⊥⊥ = Ē.

Getting now to what can be done with orthogonality, we have here:

Theorem 4.15. Let H be a Hilbert space, and E ⊂ H be a closed subspace.

(1) Given x ∈ H, we can find a unique y ∈ E, minimizing ||x− y||.
(2) With x, y as above, we have x = y + z, for a certain z ∈ E⊥.
(3) Thus, we have a direct sum decomposition H = E ⊕ E⊥.
(4) In terms of H = E ⊕ E⊥, the projection x→ y is given by P (x, y) = x.

Proof. This is something very standard, the idea being as follows:
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(1) Given x ∈ H and two vectors v, w ∈ E, we have the following estimate:

||x− v||2 + ||x− w||2 = 2

(∣∣∣∣∣∣∣∣x− v + w

2

∣∣∣∣∣∣∣∣2 + ∣∣∣∣∣∣∣∣v − w

2

∣∣∣∣∣∣∣∣2
)

≥ 2d(x,E)2 +
||v − w||2

2

But this shows that any sequence in E realizing the inf in the definition of d(x,E) is
Cauchy, so it converges to a vector y. Since E is closed we have y ∈ E, so y realizes the
inf. Moreover, again from the above inequality, such a y realizing the inf is unique.

(2) In order to prove x−y ∈ E⊥, let v ∈ E and choose w ∈ T such that w < x−y, v >
is a real number. For any t ∈ R we have the following equality:

||x− y + twv|| = ||x− y||2 + 2tw < x− y, v > +t2||v||2

By construction of the vector y we know that this function has a minimum at t = 0.
But this function is a degree 2 polynomial, so the middle term must vanish:

2w < x− y, v >= 0

Now since this must hold for any v ∈ E, we must have x− y ∈ E⊥, as desired.

(3) This is consequence of what we found in (1,2).

(4) This is also a consequence of what we found in (1,2). □

Many things can be said, as a continuation of the above, as for instance with:

Proposition 4.16. For a closed subspace E ⊂ H, we have:

E⊥⊥ = E

More generally, for an arbitrary linear subspace E ⊂ H, we have

E⊥⊥ = Ē

and with the closing operation being needed, in infinite dimensions.

Proof. All this comes indeed as an elementary application of our orthogonal projec-
tion technology from Theorem 4.15, and we will leave the details here as an exercise. □

Moving forward now, let us discuss some abstract aspects of the Hilbert spaces. You
might know a bit, or not, about the Banach spaces, which are something more general
than the Hilbert spaces. In view of this, our goal now will be to see what the general
Banach space theory has to say, in the particular case of the Hilbert spaces.

And here, things are very simple, because we have, as a main result:
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Theorem 4.17. Given a Hilbert space H and a closed subspace E ⊂ H, any linear
form f : E → C can be extended into a linear form

f̃ : H → C

having the same norm, and this by using H = E ⊕ E⊥, and setting f̃ = 0 on E⊥.

Proof. This is indeed something self-explanatory. Observe that what we have here
is the Hahn-Banach theorem, for the Hilbert spaces, coming with a trivial proof. □

Still talking abstract functional analysis, the few other basic Banach space results
trivialize in the case of Hilbert spaces, as shown by the following result:

Theorem 4.18. Let H be a Hilbert space.

(1) Any linear form f : H → C must be of type f(y) =< z, y >, with z ∈ H.
(2) Thus, we have a Banach space isomorphism H∗ ≃ H̄.
(3) In particular, H is reflexive as Banach space, H∗∗ = H.

Proof. This is something that you might already know from Banach space theory,
but we have an elementary proof for this, as follows:

(1) Consider a linear form f : H → C. Choose v ∈ H such that f(v) ̸= 0. By linearity
we may assume f(v) = 1. Then each z ∈ H decomposes in the following way:

z = (z − f(z)v) + f(z)v

This shows that we have a direct sum decomposition of H, as follows:

H = ker(f)⊕ Cv

Now pick z ∈ ker(f)⊥ and consider the kernel of the linear form fz(y) =< z, y >:

Ker(fz) = {y ∈ H| < z, y >= 0} ⊃ Ker(f)

The linear forms fz and f are then given by the following formulae:

fz(a+ λv) = λfz(v) , f(a+ λv) = λ

It follows that we have f = µfz, with µ = fz(v)
−1, and so that we have, as desired:

f = fµz

(2) This is just an abstract reformulation of what we found in (1).

(3) This follows from (2), because we have H∗∗ = H̄∗ = ¯̄H = H. □

As a conclusion to all this, which is really pleasant, the various general Banach space
results are all clear in the Hilbert space setting. However, do not worry, the Hilbert spaces
have their own amount of mystery, that we will explore in what follows.
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4c. Bases, separability

At a more advanced level now, we can talk about orthonormal bases, and the related
notion of dimension of a Hilbert space. However, this is something quite tricky, in the
present infinite dimensional setting, that will take us some time to understand.

Let us start with the following result, that you surely know from linear algebras:

Theorem 4.19. Any system of linearly independent vectors {f1, . . . , fn} can be turned
into an orthogonal system {e1, . . . , en} by using the Gram-Schmidt procedure,

e1 = f1

e2 = f2 + α1f1
e3 = f3 + β1f1 + β2f2

e4 = f4 + γ1f1 + γ2f2 + γ3f3
...

with the needed scalars αi, βi, γi, . . . being uniquely determined.

Proof. Many things can be said here, depending on how sharp you want to be, with
the essentials of what is to be known being as follows:

(1) Let us first study the case n = 2. With e1 = f1 and e2 = f2 + α1f1 as in the
statement, the needed orthogonality condition can be processed as follows:

e1 ⊥ e2 ⇐⇒ < f1, f2 + α1f1 >= 0

⇐⇒ α1 < f1, f1 >= − < f1, f2 >

⇐⇒ α1 = −< f1, f2 >

< f1, f1 >

Thus, we get our result, and with the remark that, alternatively, we can set:

e2 = f2 − Proje1(f2)

Indeed, with the above formula of α1 in hand, the vector e2 = f2 + α1f1 that we get
is precisely this one. Or, we can simply argue that this latter vector e2 does the job, and
with some basic linear algebra telling us that this vector e2 is indeed unique.

(2) At n = 3 now, with e1, e2 already constructed, and with e3 = f3 + β1f1 + β2f2 as
in the statement, the first orthogonality condition can be processed as follows:

e1 ⊥ e3 ⇐⇒ < f1, f3 + β1f1 + β2f2 >= 0

⇐⇒ β1 < f1, f1 > +β2 < f1, f2 >= − < f1, f3 >

As for the second orthogonality condition, this can be now processed as follows:

e2 ⊥ e3 ⇐⇒ < f2, f3 + β1f1 + β2f2 >= 0

⇐⇒ β1 < f2, f1 > +β2 < f2, f2 >= − < f2, f3 >
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Thus, we are led to the following system, for the parameters β1, β2:

β1 < f1, f1 > +β2 < f1, f2 >= − < f1, f3 >

β1 < f2, f1 > +β2 < f2, f2 >= − < f2, f3 >

Now let us compute the determinant of this system. This is given by:

D =

∣∣∣∣< f1, f1 > < f1, f2 >
< f2, f1 > < f2, f2 >

∣∣∣∣
= < f1, f1 >< f2, f2 > − < f1, f2 >< f2, f1 >

= ||f1||2||f2||2 − | < f1, f2 > |2

But this is exactly the quantity from the Cauchy-Schwarz inequality, so we haveD ≥ 0,
with equality when f1, f2 are proportional. Now since f1, f2 were assumed to be linearly
independent, we conclude that we have D > 0, so our system has indeed solutions.

(3) Alternatively, we can say at n = 3 that with the vectors e1, e2 being already
constructed, we can construct the vector e3 as follows, obviously doing the orthogonality
job, and with its uniqueness coming from some standard linear algebra:

e3 = f3 − Proje1(f3)− Proje2(f3)

(4) Summarizing, we have two possible proofs for our result. Getting now to the
general case, as a first proof, which is perhaps the most straightforward, we can set:

e1 = f1

e2 = f2 − Proje1(f2)

e3 = f3 − Proje1(f3)− Proje2(f3)

e4 = f4 − Proje1(f4)− Proje2(f4)− Proje3(f4)

...

Indeed, these vectors do indeed the needed orthogonality job, and their uniqueness is
clear too, via some basic linear algebra, that we will leave here as an exercise.

(5) Alternatively, by doing some explicit computations, as in (1) and (2), we must
prove that a certain determinant is nonzero. To be more precise, at step k + 1 of the
orthogonalization algorithm, the system to be solved is as follows:

x1 < f1, f1 > +x2 < f1, f2 > + . . .+ xk < f1, fk >= − < f1, fk+1 >

x1 < f2, f1 > +x2 < f2, f2 > + . . .+ xk < f2, fk >= − < f2, fk+1 >

...

x1 < fk, f1 > +x2 < fk, f2 > + . . .+ xk < fk, fk >= − < fk, fk+1 >
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Thus, the determinant to be studied, in order to prove that our system has indeed
solutions, is the Gram determinant of f1, . . . , fk, given by the following formula:

Dk =

∣∣∣∣∣∣∣∣
< f1, f1 > < f1, f2 > . . . < f1, fk >
< f2, f1 > < f2, f2 > . . . < f2, fk >

...
...

< fk, f1 > < fk, f2 > . . . < fk, fk >

∣∣∣∣∣∣∣∣
(6) Now in relation with this latter question, we have already seen in (2) that we have

D2 > 0, but with this being something quite complicated, coming from Cauchy-Schwarz.
So, not very good news, but fortunately, linear algebra comes to the rescue. Consider the
square matrix formed by our vectors f1, . . . , fk, arranged horizontally, as follows:

F =

(f1)1 . . . (f1)k
...

(fk)1 . . . (fk)k


We have then the following computation, for any two indices i, j:

(FF ∗)ij =
∑
l

Fil(F
∗)lj

=
∑
l

FilF̄jl

=
∑
l

(fi)l(fj)l

= < fi, fj >

We conclude that at the matrix level, we have the following formula:

FF ∗ =


< f1, f1 > < f1, f2 > . . . < f1, fk >
< f2, f1 > < f2, f2 > . . . < f2, fk >

...
...

< fk, f1 > < fk, f2 > . . . < fk, fk >


Thus, at the level of the corresponding determinants we obtain, as desired:

Dk = det(FF ∗) = | detF |2 > 0
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(7) Finally, and getting back now to the system, we can work out some explicit for-
mulae for ei, alternative to those in (4), based on this. To be more precise, we have:

ek =
1

Dk−1

∣∣∣∣∣∣∣∣∣∣

< f1, f1 > < f1, f2 > . . . < f1, fk >
< f2, f1 > < f2, f2 > . . . < f2, fk >

...
...

< fk−1, f1 > < fk−1, f2 > . . . < fk−1, fk >
f1 f2 . . . fk

∣∣∣∣∣∣∣∣∣∣
And we will leave some illustrations here as an instructive exercise, and please do

better than my students, who usually stop after 2-3 steps. □

Getting back now to our Hilbert space questions, we have the following result:

Theorem 4.20. Any Hilbert space H has an orthonormal basis {ei}i∈I , which is by
definition a set of vectors whose span is dense in H, and which satisfy

< ei, ej >= δij

with δ being a Kronecker symbol. The cardinality |I| of the index set, which can be finite,
countable, or uncountable, depends only on H, and is called dimension of H. We have

H ≃ l2(I)

in the obvious way, mapping
∑
λiei → (λi). The Hilbert spaces with dimH = |I| being

countable, such as l2(N), are all isomorphic, and are called separable.

Proof. We have many assertions here, the idea being as follows:

(1) In finite dimensions an orthonormal basis {ei}i∈I can be constructed by starting
with any vector space basis {fi}i∈I , and using the Gram-Schmidt procedure. As for the
other assertions, these are all clear, from basic linear algebra.

(2) In general, the same method works, namely Gram-Schmidt, with a subtlety coming
from the fact that the basis {ei}i∈I will not span in general the whole H, but just a dense
subspace of it, as it is in fact obvious by looking at the standard basis of l2(N).

(3) And there is a second subtlety as well, coming from the fact that the recurrence
procedure needed for Gram-Schmidt must be replaced by some sort of “transfinite recur-
rence”, using standard tools from logic, and more specifically the Zorn lemma.

(4) Finally, everything at the end, regarding our notion of separability for the Hilbert
spaces, is clear from definitions, and from our various results above. □

So long for abstract Hilbert space questions, and orthonormal bases, and many other
things can be said here. In practice now, and getting to the essentials, according to
Theorem 4.20, there is only one separable Hilbert space, up to isomorphism.

As a first result regarding this unique space that we are interested in, we have:
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Theorem 4.21. The following happen, in relation with separability:

(1) The Hilbert space H = L2[−1, 1] is separable, with orthonormal basis coming by
applying Gram-Schmidt to the basis {xk}k∈N, coming from Weierstrass.

(2) In fact, any H = L2(R, µ), with dµ(x) = f(x)dx, is separable, and the same
happens in higher dimensions, for H = L2(RN , µ), with dµ(x) = f(x)dx.

(3) More generally, given a separable abstract measured space X, the associated
Hilbert space of square-summable functions H = L2(X) is separable.

Proof. Many things can be said here, the idea being as follows:

(1) The fact that H = L2[−1, 1] is separable is clear indeed from the Weierstrass
density theorem, which provides us with the algebraic basis gk = xk, which can be or-
thogonalized by using the Gram-Schmidt procedure, as explained in Theorem 4.20.

(2) Regarding now more general spaces, of type H = L2(R, µ), we can use here the
same argument, after modifying if needed our measure µ, in order for the functions gk = xk

to be indeed square-summable. As for higher dimensions, the situation here is similar,
because we can use here the multivariable polynomials gk(x) = xk11 . . . xkNN .

(3) Finally, the last assertion, regarding the general spaces of type H = L2(X), which
generalizes all this, comes as a consequence of general measure theory, and we will leave
working out the details here as an instructive exercise. □

As a conclusion to all this, which is a bit philosophical, we have:

Conclusion 4.22. We are interested in one space, namely the unique separable Hilbert
space H, but due to various technical reasons, it is often better to forget that we have
H = l2(N), and say instead that we have H = L2(X), with X being a separable measured
space, or simply say that H is an abstract separable Hilbert space.

It is also possible to make some physics comments here, with this unique separable
Hilbert space being, and no surprise here, the space that we live in.

4d. Orthogonal polynomials

Let us go back now to Theorem 4.20 and its proof, which was something quite subtle.
That material leads us into orthogonal polynomials, which are defined as follows:

Definition 4.23. The orthogonal polynomials with respect to dµ(x) = f(x)dx are
polynomials Pk ∈ R[x] of degree k ∈ N, which are orthogonal inside H = L2(R, µ):∫

R
Pk(x)Pl(x)f(x)dx = 0 , ∀k ̸= l

Equivalently, these orthogonal polynomials {Pk}k∈N, which are each unique modulo scalars,
appear from the Weierstrass basis {xk}k∈N, by doing Gram-Schmidt.
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Observe that the orthogonal polynomials exist indeed for any real measure dµ(x) =
f(x)dx, as explained above. It is possible to be a bit more explicit here, as follows:

Theorem 4.24. The orthogonal polynomials with respect to µ are given by

Pk = ck

∣∣∣∣∣∣∣∣∣∣

M0 M1 . . . Mk

M1 M2 . . . Mk+1
...

...
...

Mk−1 Mk . . . M2k−1

1 x . . . xk

∣∣∣∣∣∣∣∣∣∣
where Mk =

∫
R x

kdµ(x) are the moments of µ, and ck ∈ R∗ can be any numbers.

Proof. Let us first see what happens at small values of k ∈ N. At k = 0 our formula
is as follows, stating that the first polynomial P0 must be a constant, as it should:

P0 = c0|M0| = c0

At k = 1 now, again by using M0 = 1, the formula is as follows:

P1 = c1

∣∣∣∣M0 M1

1 x

∣∣∣∣ = c1(x−M1)

But this is again the good formula, because the degree is 1, and we have:

< 1, P1 > = c1 < 1, x−M1 >

= c1(< 1, x > − < 1,M1 >)

= c1(M1 −M1)

= 0

At k = 2 now, things get more complicated, with the formula being as follows:

P2 = c2

∣∣∣∣∣∣
M0 M1 M2

M1 M2 M3

1 x x2

∣∣∣∣∣∣
However, no need for big computations here, in order to check the orthogonality,

because by using the fact that xk integrates up to Mk, we obtain:

< 1, P2 >=

∫
R
P2(x)dµ(x) = c2

∣∣∣∣∣∣
M0 M1 M2

M1 M2 M3

M0 M1 M2

∣∣∣∣∣∣ = 0

Similarly, again by using the fact that xk integrates up to Mk, we have as well:

< x, P2 >=

∫
R
xP2(x)dµ(x) = c2

∣∣∣∣∣∣
M0 M1 M2

M1 M2 M3

M1 M2 M3

∣∣∣∣∣∣ = 0

Thus, result proved at k = 0, 1, 2, and the proof in general is similar. □
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In practice now, all this leads us to a lot of interesting combinatorics, and countless
things can be said. For the simplest measured space X ⊂ R, which is the interval [−1, 1],
with its uniform measure, the orthogonal basis problem can be solved as follows:

Theorem 4.25. The orthonormal polynomials for L2[−1, 1], subject to∫ 1

−1

Pk(x)Pl(x) dx = δkl

and called Legendre polynomials, satisfy the following differential equation,

(1− x2)P ′′
k (x)− 2xP ′

k(x) + k(k + 1)Pk(x) = 0

which is the Legendre equation from physics. Moreover, we have the formula

(k + 1)Pk+1(x) = (2k + 1)xPk(x)− kPk−1(x)

called Bonnet recurrence formula, as well as the formula

Pk(x) =
1

2kk!
· d

k

dxk
(
1− x2

)k
called Rodrigues formula for the Legendre polynomials.

Proof. As a first observation, we are not lost somewhere in abstract math, because
of the occurrence of the Legendre equation. As for the proof, this goes as follows:

(1) The first assertion is clear, because the Gram-Schmidt procedure applied to the
Weierstrass basis {xk} can only lead to a certain family of polynomials {Pk}, with each
Pk being of degree k, and also unique, if we assume that it has positive leading coefficient,
with this ± choice being needed, as usual, at each step of Gram-Schmidt.

(2) In order to have now an idea about these beasts, here are the first few of them,
which can be obtained say via a straightforward application of Gram-Schmidt:

P0 = 1

P1 = x

P2 = (3x2 − 1)/2

P3 = (5x3 − 3x)/2

P4 = (35x4 − 30x2 + 3)/8

P5 = (63x5 − 70x3 + 15x)/8

(3) Now thinking about what Gram-Schmidt does, this is certainly something by
recurrence. And examining the recurrence leads to the Legendre equation, as stated. As
for the Bonnet recurrence formula, the story here is similar.

(4) Regarding the Rodrigues formula, by uniqueness no need to try to understand
where this formula comes from, and we have two choices here, either by verifying that
{Pk} is orthonormal, or by verifying the Legendre equation. And both methods work. □
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The above result is just the tip of the iceberg, and as a continuation, we have:

Theorem 4.26. The orthogonal polynomials for L2[−1, 1], with measure

dµ(x) = (1− x)a(1 + x)bdx

called Jacobi polynomials, satisfy as well a degree 2 equation, namely

(1− x2)P ′′
k (x) + (b− a− (a+ b+ 2)x)P ′

k(x) + k(k + a+ b+ 1)Pk(x) = 0

as well as an order 2 recurrence relation, and are given by the following formula:

Pk(x) =
(−1)k

2kk!
(1− x)−a(1 + x)−b d

k

dxk
[
(1− x)a(1 + x)b(1− x2)k

]
At a = b = 0 we recover the Legendre polynomials, and at a = b = ±1

2
we recover the

Chebycheff polynomials of the first and second kind, from trigonometry.

Proof. There are many things going on here, the idea being as follows:

(1) To start with, in what regards the precise statement, the order 2 recurrence relation
mentioned there is something quite complicated, as follows:

2k(k + a+ b)(2k + a+ b− 2)Pk(x)

= (2k + a+ b− 1)
[
(2k + a+ b)(2k + a+ b− 2)x+ a2 − b2

]
Pk−1(x)

− 2(k + a− 1)(k + b− 1)(2k + a+ b)Pk−2(x)

(2) Regarding now the proof, the statement itself appears as a generalization of The-
orem 4.25, which corresponds to the particular case a = b = 0, and the proof is quite
similar. We will leave learning more about all this as an interesting exercise.

(3) For completness, let us record as well a few numerics, as follows:

P0 = 1

P1 = (a+ 1) + (a+ b+ 2)
x− 1

2

P2 =
(a+ 1)(a+ 2)

2
+ (a+ 2)(a+ b+ 3)

x− 1

2

+
(a+ b+ 3)(a+ b+ 4)

2

(
x− 1

2

)2

(4) Regarding now the main particular cases of the Jacobi polynomials, these are
the Gegenbauer polynomials, appearing at a = b. However, there is not that much of a
simplification when passing from general parameters a, b to equal parameters, a = b, so
in practice, the main particular cases are those indicated in the statement, namely:

– The Legendre polynomials, that we know well from Theorem 4.25, appearing at the
simplest values of the parameters, namely a = b = 0.
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– The Chebycheff polynomials of the first kind Tk, which are given by the formula
Tk(cos t) = cos(kt) from trigonometry, appearing at a = b = −1

2
.

– The Chebycheff polynomials of the second kind Uk, which are given by the formula
Uk(cos t) sin t = sin((k + 1)t), appearing at a = b = 1

2
.

(5) So, this was for the story of the Jacobi polynomials, and their main particular
cases, and in practice, we will leave some further learning here as an exercise, coming as
a continuation of the further learning of Theorem 4.25, and its details. □

Getting now to other spaces X ⊂ R, of particular interest here is the following result,
which complements well Theorem 4.25, for the needs of basic quantum mechanics:

Theorem 4.27. The orthogonal polynomials for L2[0,∞), with scalar product

< f, g >=

∫ ∞

0

f(x)g(x)e−x dx

are the Laguerre polynomials {Pk}, satisfying the following differential equation,

xP ′′
k (x) + (1− x)P ′

k(x) + kPk(x) = 0

as well as the following order 2 recurrence relation,

(k + 1)Pk+1(x) = (2k + 1− x)Pk(x)− kPk−1(x)

and which are given by the following formula,

Pk(x) =
ex

k!
· d

k

dxk
(
e−xxk

)
called Rodrigues formula for the Laguerre polynomials.

Proof. The story here is very similar to that of the Legendre and Jacobi polynomials,
and many further things can be said here, with exercise for you to learn a bit about all
this. Let us record as well a few numeric values, for the Laguerre polynomials:

P0 = 1

P1 = 1− x

P2 = (x2 − 4x+ 2)/2

P3 = (−x3 + 9x2 − 18x+ 6)/6

P4 = (x4 − 16x3 + 72x2 − 96x+ 24)/24

Finally, for the story to be complete, no discussion about the Laguerre polynomials
would be complete without a word about their use, in quantum mechanics. And here, as
usual, we will leave some exploration of this as an instructive exercise. □

Finally, regarding the space X = R itself, we have here the following result:
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Theorem 4.28. The orthogonal polynomials for L2(R), with scalar product

< f, g >=

∫ ∞

0

f(x)g(x)e−x2

dx

are the Hermite polynomials {Pk}, satisfying the following differential equation,

P ′′
k (x)− 2xP ′

k(x) + Pk(x) = 0

as well as the following order 2 recurrence relation,

Pk+1(x) = 2xPk(x)− 2kPk−1(x)

and which are given by the following formula,

Pk(x) = (−1)kex
2 · d

k

dxk
(
e−x2)

called Rodrigues formula for the Hermite polynomials.

Proof. As before, the story here is quite similar to that of the Legendre and other
orthogonal polynomials, and exercise for you to learn a bit about all this. Let us record
as well a few numeric values, for the Hermite polynomials:

P0 = 1

P1 = 2x

P2 = 4x2 − 2

P3 = 8x3 − 12x

P4 = 16x4 − 48x2 + 12

P5 = 32x5 − 160x3 + 120x

P6 = 64x6 − 480x4 + 720x2 − 120

With of course, exercise for you to deduce all these formulae. □

And with this, good news, end of the story with the orthogonal polynomials, at least
at the very introductory level, and this due to the following fact, which is something quite
technical, and that we will not attempt to prove, or even explain in detail here:

Fact 4.29. From an abstract point of view, coming from degree 2 equations, and
Rodrigues formulae for the solutions, there are only three types of “classical” orthogonal
polynomials, namely the Jacobi, Laguerre and Hermite ones, discussed above.

Finally, as already mentioned, the above results are very useful in the context of
basic quantum mechanics, and more specifically, for solving the hydrogen atom, following
Heisenberg and Schrödinger. Again, exercise for you to learn a bit about this.
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4e. Exercises

Exercises:

Exercise 4.30.

Exercise 4.31.

Exercise 4.32.

Exercise 4.33.

Exercise 4.34.

Exercise 4.35.

Exercise 4.36.

Exercise 4.37.

Bonus exercise.
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General theory





CHAPTER 5

Linear equations

5a. Linear equations

In order to discuss order and chaos, in the context of classical mechanics, let us start
with some abstract mathematics. Here is a good, concrete question, which appears in
mathematics, physics, and related disciplines, that we would like to solve:

Question 5.1. How to solve differential equations?

Obviously, this question is quite broad, and as a first concrete example, let us examine
the case of a falling object. If we denote by x = x(t) : R → R3 the position of our falling
object, then its speed v = v(t) : R → R3 and acceleration a = a(t) : R → R3 are given by
the following formulae, with the dots standing for derivatives with respect to time t:

v = ẋ , a = v̇ = ẍ

Regarding now the equation of motion, this is as follows, coming from Newton, with
m being the mass of our object, and with F being the gravitational force:

m · a(t) = F (x(t))

Thus, in terms of derivatives as above, in order to have as only unknown the position
vector x = x(t) : R → R3, the equation of motion is as follows:

m · ẍ(t) = F (x(t))

Which looks nice, but since what we have here is a degree 2 equation, instead of degree
1, which would be better, was it really a good idea to get rid of speed v : R → R3 and
acceleration a : R → R3, and reformulate everything in terms of position x : R → R3.

Nevermind. So going all over again, with the aim this time of reaching to a degree 1
equation, let us replace our 3-dimensional unknown x : R → R3 with the 6-dimensional
unknown (x, v) : R → R6. And with this done, surprise, we have our degree 1 system:{

ẋ(t) = v(t)

v̇(t) = 1
m
F (x(t))

Which was a nice trick, wasn’t it. So, before going further, let us record the following
conclusion, that we will come back to in a moment, after done with gravity:

45
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Conclusion 5.2. We can convert differential equations of higher order into differen-
tial equations of first order, by suitably enlarging the size of our unknown vectors.

Now back to gravity and free falls, and to the degree 1 system found above, we will
assume in what follows that our object is subject to a free fall under a uniform gravitational
field. In practice, this means that the force F is given by the following formula, withm > 0
being as usual the mass of our object, and with g > 0 being a certain constant:

F (x) = −mg

0
0
1


With this data, the system that we found takes the following form:

ẋ(t) = v(t)

v̇(t) = −g

0

0

1


But this latter system is very easy to solve. Indeed, the second equation gives:

v(t) = v(0)− g

0
0
1

 t

Now by integrating once again, we can recover as well the formula of x, as follows:

x(t) = x(0) + v(0)t− g

2

0
0
1

 t2

Which is very nice, good work that we did here, so let us record our findings, along
with a bit more, in the form of a complete statement, as follows:

Theorem 5.3. For a free fall in a uniform gravitational field, with gravitational ac-
celeration constant g > 0, the equation of motion is

x(t) = x(0) + v(0)t− g

2

0
0
1

 t2

and the trajectory is a parabola, unless in the case where the free fall is straight downwards,
where the trajectory is a line.

Proof. This is a conclusion to what we found above, namely equation of motion, and
its obvious implications, and the level of the corresponding trajectory. □
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Now back to theory, let us go back to Conclusion 5.2, which was our main theoretical
finding so far, and further comment on that. Of course in the case of extremely simple
equations, like the above uniform gravity ones, there is no really need to use this trick,
because you can directly integrate twice, and so on. However, in general, this remains a
very useful trick, worth some discussion, and we will discuss this now.

Let us start with some generalities in one variable. We have here:

Definition 5.4. A general ordinary differential equation (ODE) is an equation as
follows, with a function x = x(t) : R → R as unknown,

F (t, x, ẋ, . . . , x(k)) = 0

depending on a given function F : U → R, with U ⊂ Rk+2 being an open set.

As a first observation, under suitable assumptions on our function F : U → R, and
more specifically non-vanishing of its partial derivatives, in all directions, we can use the
implicit function theorem, in order to reformulate our equation as follows, for a certain
function f : V → R, with V ⊂ Rk+1 being a certain open set:

x(k) = f(t, x, ẋ, . . . , x(k−1))

In practice, we will make this change, which often comes by default, when investigating
questions coming from physics, and these will be the ODE that we will be interested in.

Now moving to several variables, more generally, let us formulate:

Definition 5.5. A standard system of ODE is a system as follows,

x
(k)
1 = f1(t, x, ẋ, . . . , x

(k−1))

...

x
(k)
N = fN(t, x, ẋ, . . . , x

(k−1))

with the unknown being a vector function x = x(t) : R → RN .

Here the adjective “standard” refers to the implicit function theorem manipulation
made in the above, which can be of course made in the context of several variables too.

Now with these abstract definitions in hand, we can go back to Conclusion 5.2, and
formulate a more precise version of that observation, as follows:

Theorem 5.6. We can convert any standard system of ODE into a standard order 1
system of ODE, by suitably enlarging the size of the unknown vector.
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Proof. This is indeed clear from definitions, because with y = (x, ẋ, . . . , x(k−1)), in
the context of Definition 5.1, the system there takes the following form, as desired:

ẏ1 = y2

ẏ2 = y3
...

ẏk−1 = yk

ẏk = f(t, y)

Thus, we are led to the conclusion in the statement. There are of course many explicit
applications of this method, and further comments that can be made. □

We will be back to this in chapter 6 below, when investigating more in detail the ODE,
and the related notion of dynamical systems, by using methods from linear algebra.

Getting now to the point where we wanted to get, in order to get truly started with
all this, with some mathematics going on, let us have a look at the systems of ODE which
are linear. That is, we would like to solve equations as follows, with fi being linear:

x
(k)
1 = f1(t, x, ẋ, . . . , x

(k−1))

...

x
(k)
N = fN(t, x, ẋ, . . . , x

(k−1))

By doing the manipulation in Theorem 5.6, and assuming that we are in the “au-
tonomous” case, where there is no time t in our linear function which produces the system,
we are led to a vector equation as follows, with A ∈MN(R) being a certain matrix:

x′ = Ax

But here, we are in familiar territory, namely very standard calculus, because in the
1D case, the solution simply appears by exponentiating, as follows:

x = etAx0

Which is something very nice, and with this understood, we can now go back to our
original Question 5.1, from the beginning of this chapter. As already mentioned, that
question was something very broad, and as something more concrete now, we have:

Question 5.7. The solution of a system of linear differential equations,

x′ = Ax , x(0) = x0

with A ∈MN(R), is normally given by x = etAx0, and this because we should have:

(etAx0)
′ = AetAx0

But, what exactly is etA, and then, importantly, how to explicitly compute etA?
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To be more precise, again as with Question 5.1, this question appears indeed in a
myriad contexts, all across physics and science, and with all this needing no further
presentation. Observe also that, due to Theorem 5.6, this question allows us to deal with
differential equations of higher order too, by enlarging the size of our vectors.

5b. Matrix exponential

So, let us attempt to solve Question 5.7. As a first task, and forgetting now about
time t and differential equations, we would like to talk about exponentials of matrices.
But here, the answer can only be given by the following formula:

eA =
∞∑
k=0

Ak

k!

Which leads us into analysis over MN(R), or over MN(C), if we want to deal directly
with the complex case. So, getting started with our study, let us begin with:

Theorem 5.8. The following quantity, with sup over the norm 1 vectors,

||A|| = sup
||x||=1

||Ax||

where ||x|| =
√∑

|xi|2 as usual, is a norm on the space of matrices MN(C).

Proof. This is indeed clear from definitions. In fact, we already saw such things in
Part I, in an indirect form, when talking about density results inside MN(C). Note also
that MN(C) being finite dimensional, all possible norms on it are equivalent. □

Now with the above result in hand, we can do analysis over MN(C), and in particular
we can investigate our exponentiation problem, with the following conclusions:

Theorem 5.9. We can talk about the exponentials of matrices A ∈MN(C), given by

eA =
∞∑
k=0

Ak

k!

and these exponentials have the following basic properties:

(1) ||eA|| ≤ e||A||.
(2) If D = diag(λi) then e

D = diag(eλi).

(3) If P is invertible, ePDP−1
= PeDP−1.

(4) If A = PDP−1 with D = diag(λi), then e
A = Pdiag(eλi)P−1.

Proof. The fact that our exponential series converges indeed follows from (1), so we
are left with proving (1-4), and this can be done as follows:
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(1) We have indeed the following computation, using the various properties of the
norm, and notably the formula ||AB|| ≤ ||A|| · ||B||, which is clear from definitions:

||eA|| =

∣∣∣∣∣
∣∣∣∣∣

∞∑
k=0

Ak

k!

∣∣∣∣∣
∣∣∣∣∣

≤
∞∑
k=0

∣∣∣∣∣∣∣∣Ak

k!

∣∣∣∣∣∣∣∣
=

∞∑
k=0

||Ak||
k!

≤
∞∑
k=0

||A||k

k!

= e||A||

(2) This is clear from definitions, with the computation being as follows:

exp

λ1 . . .
λN

 =
∞∑
k=0

λ1 . . .
λN

k/
k!

=
∞∑
k=0

λk1 . . .

λkN

/k!
=


∑∞

k=0 λ
k
1/k!

. . . ∑∞
k=0 λ

k
N/k!


=

eλ1

. . .

eλN


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(3) Again, this is clear from definitions, the computation being as follows:

ePDP−1

=
∞∑
k=0

(PDP−1)k

k!

=
∞∑
k=0

PDP−1 · PDP−1 . . . PDP−1

k!

=
∞∑
k=0

PDkP−1

k!

= P

(
∞∑
k=0

Dk

k!

)
P−1

= PeDP−1

(4) This follows indeed by combining (2) and (3). □

As a consequence of our theory, we can now state, in relation with Question 5.7:

Theorem 5.10. Given a matrix A ∈MN(C), the vector function

x = etAx0

satisfies the system of linear differential equations x′ = Ax, x(0) = x0.

Proof. In what regards the first formula, this comes from:

x′ = (etAx0)
′

=

(
∞∑
k=0

(tA)kx0
k!

)′

=
∞∑
k=0

ktk−1Akx0
k!

= A

∞∑
k=1

tk−1Ak−1x0
(k − 1)!

= A
∞∑
l=0

tlAlx0
l!

= AetAx0

= Ax

As for the second formula, this is clear from e0N = 1N , that is, from the fact that the
exponential of the null N ×N matrix is the identity N ×N matrix. □
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As a key result now, which shows that things are certainly more complicated with
matrices than with real numbers, when talking exponentials, we have:

Theorem 5.11. We have the following formula, when A,B commute:

eA+B = eAeB

When the matrices A,B do not commute, this formula might fail.

Proof. We have two assertions here, the idea being as follows:

(1) As a first observation, when two matrices A,B commute we can compute the
powers (A+B)k as for the usual numbers, and we get a binomial formula, namely:

(A+B)k = (A+B)(A+B) . . . (A+B)

= Ak + kAk−1B + . . .+ kABk−1 +Bk

=
k∑

r=0

(
k

r

)
ArBk−r

Now by using this binomial formula for A,B we obtain, as for the usual numbers:

eA+B =
∞∑
k=0

(A+B)k

k!

=
∞∑
k=0

k∑
r=0

(
k

r

)
ArBk−r

k!

=
∞∑
k=0

k∑
r=0

ArBk−r

r!(k − r)!

=
∞∑
r=0

∞∑
s=0

ArBs

r!s!

=
∞∑
r=0

Ar

r!

∞∑
s=0

Bs

s!

= eAeB

(2) In order to find now a counterexample to eA+B = eAeB, we need some matrices
which do not commute, AB ̸= BA, and the simplest such matrices are as follows:

J =

(
0 1
0 0

)
, J∗ =

(
0 0
1 0

)
Indeed, the products of two matrices are given by the following formulae:

JJ∗ =

(
1 0
0 0

)
, J∗J =

(
0 0
0 1

)
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Now observe that, since these two products are both diagonal, we can compute right
away their exponentials, and we are led to the following conclusion:

eJJ
∗
=

(
e 0
0 0

)
̸=
(
0 0
0 e

)
= eJ

∗J

Thus, we have a counterexample to eAB = eBA, but bad luck, this being not the
counterexample we were looking for, still some work to do. So, let us exponentiate our
matrices. Regarding J , by using the formula J2 = 0, we obtain:

eJ =
∞∑
k=0

(
0 1
0 0

)k/
k!

=

(
1 0
0 1

)
+

(
0 1
0 0

)
=

(
1 1
0 1

)
Similarly, regarding J∗, by using the formula (J∗)2 = 0, we obtain:

eJ
∗

=
∞∑
k=0

(
0 0
1 0

)k/
k!

=

(
1 0
0 1

)
+

(
0 0
1 0

)
=

(
1 0
1 1

)
Now by making the products, we obtain the following formulae:

eJeJ
∗
=

(
1 1
0 1

)(
1 0
1 1

)
=

(
2 1
1 1

)

eJ
∗
eJ =

(
1 0
1 1

)(
1 1
0 1

)
=

(
1 1
1 2

)
But these two formulae give, at least in theory, our counterexample to the multiplica-

tion formula eA+B = eAeB, due to the following logical implication:

eJeJ
∗ ̸= eJ

∗
eJ =⇒ eJ+J∗ ̸= eJeJ

∗
or eJ

∗+J ̸= eJ
∗
eJ

This being said, let us do a clean work, and find out the explicit counterexample. For
this purpose, we must compute eJ+J∗

. The matrix to be exponentiated is:

J + J∗ =

(
0 1
1 0

)
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Now this matrix being a symmetry, (J+J∗)2 = 1, we are led to the following formula,
with R, S being certain sums, still in need to be computed:

eJ+J∗
=

∞∑
k=0

(
0 1
1 0

)k/
k!

=
∞∑
l=0

(
1 0
0 1

)/
(2l)! +

∞∑
l=0

(
0 1
1 0

)/
(2l + 1)!

=

(
R S
S R

)

It remains to compute R, S. But these are given by the following formulae:

R =
∞∑
l=0

1

(2l)!
=
e+ e−1

2
= cosh 1

S =
∞∑
l=0

1

(2l + 1)!
=
e− e−1

2
= sinh 1

Thus, as a conclusion, the matrix eJ+J∗
is something quite complicated, as follows:

eJ+J∗
=

(
cosh 1 sinh 1
sinh 1 cosh 1

)

Which looks quite exciting, isn’t this good mathematics, and more on such things in
a moment. But in any case, this matrix being flagrantly different from eJeJ

∗
, and from

eJ
∗
eJ too, we have now our counterexample to eA+B = eAeB, as desired. □

Moving forward, in order to compute the exponential, with our knowledge so far,
the main workhorse remains the formula from Theorem 5.9 (4), for the diagonalizable
matrices. So, let us see how that formula works, in practice. We can actually use here as
input the symmetry J + J∗ from the previous proof, which diagonalizes as follows:

(
0 1
1 0

)
=

1

2

(
1 1
1 −1

)(
1 0
0 −1

)(
1 1
1 −1

)



5B. MATRIX EXPONENTIAL 55

Now by using Theorem 5.9 (4) we obtain, as established in the previous proof:

exp

(
0 1
1 0

)
=

1

2

(
1 1
1 −1

)(
e 0
0 e−1

)(
1 1
1 −1

)
=

1

2

(
1 1
1 −1

)(
e e
e−1 −e−1

)
=

1

2

(
e+ e−1 e− e−1

e− e−1 e+ e−1

)
=

(
cosh 1 sinh 1
sinh 1 cosh 1

)
Beyond the diagonalizable case, the only computations that we have so far are those

for the matrices J, J∗, from the above proof. But these computations, crucially based on
the fact that J, J∗ are nilpotent, suggest formulating a general result, as follows:

Theorem 5.12. Assuming that A ∈MN(C) is nilpotent, As = 0, we have:

eA =
s−1∑
k=0

Ak

k!

More generally, assuming As = 0, we have the following formula,

eλ+A = eλ
s−1∑
k=0

Ak

k!

valid for any extra parameter λ ∈ C.

Proof. The first formula is clear from definitions, and the second one follows from
it, by using the fact that the matrices λI and A commute, as follows:

eλI+A = eλIeA

= (eλI)
s−1∑
k=0

Ak

k!

= eλ
s−1∑
k=0

Ak

k!

Thus, we are led to the conclusions in the statement. □

Before going further with our study, which normally means going head-first into the
non-diagonalizable case, let us have a listen to cat, who’s meowing something, as usual
since I started this mathematics chapter, about the diagonalizable matrices being dense.
Good point, cat, and double meal for you tonight, because thinking well, by using that
density result we can indeed say something very nice about exponentials, as follows:
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Theorem 5.13. We have the following formula,

det(eA) = eTr(A)

valid for any matrix A ∈MN(C).

Proof. This is something quite tricky, because according to the definition of the
exponential, the computation that we have to do looks of extreme difficulty:

det

(
∞∑
k=0

Ak

k!

)
=?

But we won’t be discouraged by this. For the diagonal matrices, we have:

det

exp
λ1 . . .

λN

 = det

eλ1

. . .

eλN


= eλ1+...+λN

= exp

Tr
λ1 . . .

λN


Next, by using this, for the diagonalizable matrices, A = PDP−1, we have:

det(eA) = det(ePDP−1

)

= det(PeDP−1)

= det(eD)

= eTr(D)

= eTr(PDP−1)

= eTr(A)

And finally, since the diagonalizable matrices are dense, as it is well-known, and more
on this in a moment, we get by continuity our result in general. As simple as that. □

So long for the matrix exponential, using beautiful mathematics and tricks. But,
everything has to come to an end, and time now to get into some dirty work.

5c. The Jordan form

In order to reach to the Jordan form, we must first do some abstract algebra, for the
eigenspaces. Let us begin with some general discussion about these eigenspaces. The
basic diagonalization theory, formulated in terms of matrices, is as follows:
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Proposition 5.14. A vector v ∈ CN is called eigenvector of A ∈ MN(C), with
corresponding eigenvalue λ, when A multiplies by λ in the direction of v:

Av = λv

In the case where CN has a basis v1, . . . , vN formed by eigenvectors of A, with correspond-
ing eigenvalues λ1, . . . , λN , in this new basis A becomes diagonal, as follows:

A ∼

λ1 . . .
λN


Equivalently, if we denote by D = diag(λ1, . . . , λN) the above diagonal matrix, and by
P = [v1 . . . vN ] the square matrix formed by the eigenvectors of A, we have:

A = PDP−1

In this case we say that the matrix A is diagonalizable.

Proof. This is something which is clear, the idea being as follows:

(1) The first assertion is clear, because the matrix which multiplies each basis element
vi by a number λi is precisely the diagonal matrix D = diag(λ1, . . . , λN).

(2) The second assertion follows from the first one, by changing the basis. We can
prove this by a direct computation as well, because we have Pei = vi, and so:

PDP−1vi = PDei = Pλiei = λiPei = λivi

Thus, the matrices A and PDP−1 coincide, as stated. □

In order to study now the diagonalization problem, the idea is that the eigenvectors
can be grouped into linear spaces, called eigenspaces, as follows:

Theorem 5.15. Let A ∈MN(C), and for any eigenvalue λ ∈ C define the correspond-
ing eigenspace as being the vector space formed by the corresponding eigenvectors:

Eλ =
{
v ∈ CN

∣∣∣Av = λv
}

These eigenspaces Eλ are then in a direct sum position, in the sense that given vectors
v1 ∈ Eλ1 , . . . , vk ∈ Eλk

corresponding to different eigenvalues λ1, . . . , λk, we have:∑
i

civi = 0 =⇒ ci = 0

In particular, we have
∑

λ dim(Eλ) ≤ N , with the sum being over all the eigenvalues, and
our matrix is diagonalizable precisely when we have equality.
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Proof. We prove the first assertion by recurrence on k ∈ N. Assume by contradiction
that we have a formula as follows, with the scalars c1, . . . , ck being not all zero:

c1v1 + . . .+ ckvk = 0

By dividing by one of these scalars, we can assume that our formula is:

vk = c1v1 + . . .+ ck−1vk−1

Now let us apply A to this vector. On the left we obtain:

Avk = λkvk = λkc1v1 + . . .+ λkck−1vk−1

On the right we obtain something different, as follows:

A(c1v1 + . . .+ ck−1vk−1) = c1Av1 + . . .+ ck−1Avk−1

= c1λ1v1 + . . .+ ck−1λk−1vk−1

We conclude from this that the following equality must hold:

λkc1v1 + . . .+ λkck−1vk−1 = c1λ1v1 + . . .+ ck−1λk−1vk−1

On the other hand, we know by recurrence that the vectors v1, . . . , vk−1 must be
linearly independent. Thus, the coefficients must be equal, at right and at left:

λkc1 = c1λ1
...

λkck−1 = ck−1λk−1

Now since at least one of the numbers ci must be nonzero, from λkci = ciλi we obtain
λk = λi, which is a contradiction. Thus our proof by recurrence of the first assertion is
complete. As for the second assertion, this follows from the first one. □

In order to reach to more advanced results about diagonalization, we can use the
characteristic polynomial, which appears via the following fundamental result:

Theorem 5.16. Given a matrix A ∈MN(C), consider its characteristic polynomial:

P (x) = det(A− x1N)

The eigenvalues of A are then the roots of P . Also, we have the inequality

dim(Eλ) ≤ mλ

where mλ is the multiplicity of λ, as root of P .

Proof. The first assertion follows from the following computation, using the fact that
a linear map is bijective when the determinant of the associated matrix is nonzero:

∃v, Av = λv ⇐⇒ ∃v, (A− λ1N)v = 0

⇐⇒ det(A− λ1N) = 0
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Regarding now the second assertion, given an eigenvalue λ of our matrix A, consider
the dimension dλ = dim(Eλ) of the corresponding eigenspace. By changing the basis of
CN , as for the eigenspace Eλ to be spanned by the first dλ basis elements, our matrix
becomes as follows, with B being a certain smaller matrix:

A ∼
(
λ1dλ 0
0 B

)
We conclude that the characteristic polynomial of A is of the following form:

PA = Pλ1dλ
PB = (λ− x)dλPB

Thus the multiplicity mλ of our eigenvalue λ, as a root of P , satisfies mλ ≥ dλ, and
this leads to the conclusion in the statement. □

We can now put together Theorem 5.15 and Theorem 5.16, and by using as well the
well-known fact that any complex polynomial of degree N has exactly N complex roots,
when counted with multiplicities, we obtain the folowing result:

Theorem 5.17. Given a matrix A ∈MN(C), consider its characteristic polynomial

P (X) = det(A−X1N)

then factorize this polynomial, by computing the complex roots, with multiplicities,

P (X) = (−1)N(X − λ1)
n1 . . . (X − λk)

nk

and finally compute the corresponding eigenspaces, for each eigenvalue found:

Ei =
{
v ∈ CN

∣∣∣Av = λiv
}

The dimensions of these eigenspaces satisfy then the following inequalities,

dim(Ei) ≤ ni

and A is diagonalizable precisely when we have equality for any i.

Proof. This follows by combining the above results. Indeed, by summing the in-
equalities dim(Eλ) ≤ mλ from Theorem 5.16, we obtain an inequality as follows:∑

λ

dim(Eλ) ≤
∑
λ

mλ ≤ N

On the other hand, we know from Theorem 5.15 that our matrix is diagonalizable
when we have global equality. Thus, we are led to the conclusion in the statement. □

This was for the main result of linear algebra. There are countless applications of
this, and we will see illustrations in a moment, and generally speaking, advanced linear
algebra, including the Jordan theory to come, consists in building on Theorem 5.17.

Let us record as well a useful algorithmic version of the above result:



60 5. LINEAR EQUATIONS

Theorem 5.18. The square matrices A ∈MN(C) can be diagonalized as follows:

(1) Compute the characteristic polynomial.
(2) Factorize the characteristic polynomial.
(3) Compute the eigenvectors, for each eigenvalue found.
(4) If there are no N eigenvectors, A is not diagonalizable.
(5) Otherwise, A is diagonalizable, A = PDP−1.

Proof. This is an informal reformulation of Theorem 5.17, with (4) referring to the
total number of linearly independent eigenvectors found in (3), and with A = PDP−1 in
(5) being the usual diagonalization formula, with P,D being as before. □

As an illustration for all this, which is a must-know computation, we have:

Proposition 5.19. The rotation of angle t ∈ R in the plane diagonalizes as:(
cos t − sin t
sin t cos t

)
=

1

2

(
1 1
i −i

)(
e−it 0
0 eit

)(
1 −i
1 i

)
Over the reals this is impossible, unless t = 0, π, where the rotation is diagonal.

Proof. Observe first that, as indicated, unlike we are in the case t = 0, π, where our
rotation is ±12, our rotation is a “true” rotation, having no eigenvectors in the plane.
Fortunately the complex numbers come to the rescue, via the following computation:(

cos t − sin t
sin t cos t

)(
1

i

)
=

(
cos t− i sin t

i cos t+ sin t

)
= e−it

(
1

i

)
We have as well a second complex eigenvector, coming from:(

cos t − sin t
sin t cos t

)(
1

−i

)
=

(
cos t+ i sin t

−i cos t+ sin t

)
= eit

(
1

−i

)
Thus, we are led to the conclusion in the statement. □

At the level of basic examples of diagonalizable matrices, we first have the following
result, which provides us with the “generic” examples:

Theorem 5.20. For a matrix A ∈MN(C) the following conditions are equivalent,

(1) The eigenvalues are different, λi ̸= λj,
(2) The characteristic polynomial P has simple roots,
(3) The characteristic polynomial satisfies (P, P ′) = 1,
(4) The resultant of P, P ′ is nonzero, R(P, P ′) ̸= 0,
(5) The discriminant of P is nonzero, ∆(P ) ̸= 0,

and in this case, the matrix is diagonalizable.

Proof. The last assertion holds indeed, due to Theorem 5.17. As for the equivalences
in the statement, these are all standard, by using the basic theory of the resultant R and
of the discriminant ∆, for which we refer to any advanced linear algebra book. □
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As already mentioned, one can prove that the matrices having distinct eigenvalues are
“generic”, and so the above result basically captures the whole situation. We have in fact
the following collection of density results, which are quite advanced:

Theorem 5.21. The following happen, inside MN(C):
(1) The invertible matrices are dense.
(2) The matrices having distinct eigenvalues are dense.
(3) The diagonalizable matrices are dense.

Proof. These are quite advanced results, which can be proved as follows:

(1) This is clear, intuitively speaking, because the invertible matrices are given by the
condition detA ̸= 0. Thus, the set formed by these matrices appears as the complement
of the hypersurface detA = 0, and so must be dense inside MN(C), as claimed.

(2) Here we can use a similar argument, this time by saying that the set formed by
the matrices having distinct eigenvalues appears as the complement of the hypersurface
given by ∆(PA) = 0, and so must be dense inside MN(C), as claimed.

(3) This follows from (2), via the fact that the matrices having distinct eigenvalues are
diagonalizable, that we know from Theorem 5.20. There are some other proofs as well,
for instance by putting the matrix in Jordan form, and more on this in a moment. □

Moving forward, in order to reach to the Jordan form, we must do some more abstract
algebra, for the eigenspaces. But this is something which is quite routine, by further
building on the material above, and more specifically, by working out what happens,
when we have strict inequalities in the various inequalities that we established.

We are led in this way to the Jordan form, which applies to any matrix:

Theorem 5.22. Any matrix A ∈MN(C) can be written, up to a base change, as

A =

J1 . . .
Jk


with each Ji being a Jordan block, meaning a matrix as follows,

Ji =


λi 1

λi 1
. . . . . .

λi 1
λi


with our usual convention that blank spaces stand for 0 entries.
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Proof. This follows indeed from the above discussion. In fact, we have already met
Jordan blocks in the above, on various occasions, and we are quite familiar with them. □

In practice, there are many illustrations for this theorem. We will be back to this, on
a regular basis, in the remainder of this chapter, and in the next chapter too.

In analogy with our diagonalization algorithm given above, we can talk about algo-
rithms, regarding the Jordan form, the precise statement here being as follows:

Algorithm 5.23. In order to find the Jordan blocks of our matrix,

Ji =


λi 1

λi 1
. . . . . .

λi 1
λi


we must, for each eigenvalue λi, do a number of computations.

To be more precise, all this is based of course on Theorem 5.22, which gives the result
as formulated above, and in practice, nothing better than working out some particular
cases, for some matrices of your choice, chosen of course not to be diagonalizable.

For instance, as a must-do computation here, which is very illustrating, for all the
above, you can try to see what happens in the particular case of the 2× 2 matrices.

We will actually do a number of such exercises right next, when talking applications,
in relation with the differential equations questions that we started with.

5d. Basic applications

There are many concrete illustrations for the Jordan decomposition theorem, and we
can, for instance, explicitly compute the Jordan form of any 2× 2 matrix.

As a first application now, we can go back to exponentials, and compute eA for any
matrix, decomposed in Jordan form. In fact, we have already seen such computations, in
the proof of Theorem 5.11, and the computations in general are quite similar.

To be more precise, let us write the matrix to be exponentiated in Jordan form, as in
Theorem 5.22, as follows, with P denoting the passage matrix used there:

A = P

J1 . . .
Jk

P−1
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According to Theorem 5.9, the exponential is then given by the following formula:

eA = P

eJ1 . . .

eJk

P−1

Thus, it is enough to know how to exponentiate Jordan blocks. So, consider a Jordan
block, as follows, with our usual convention that blank spaces stand for 0 entries:

J =


λ 1

λ 1
. . . . . .

λ 1
λ


In order to exponentiate this matrix, the best is to use Theorem 5.12. Indeed, what

we have here is a multiple of the identity, summed with a nilpotent matrix:

J = λ+


0 1

0 1
. . . . . .

0 1
0


Thus, we have the following formula for the exponential of our Jordan block:

eJ = eλ exp


0 1

0 1
. . . . . .

0 1
0


So, we are led to the question of exponentiating the matrix on the right, namely:

N =


0 1

0 1
. . . . . .

0 1
0


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Now in order to exponentiate this latter matrix, we can use the fact that this matrix
is nilpotent. Indeed, the square of this matrix is given by the following formula:

N2 =



0 0 1
0 0 1

. . . . . . . . .
0 0 1

0 0
0


Then, the third power of this matrix is given by the following formula:

N3 =



0 0 0 1
0 0 0 1

. . . . . . . . . . . .
0 0 0 1

0 0 0
0 0

0


And so on up to the (s − 1)-th power, with s being the size of our matrix, which is

given by the following formula, with our usual convention for blank spaces:

N s =



0 . . . . . . 0 1
0 0

. . .
...

. . .
...

0
0


Now by using the exponentiating formula in Theorem 5.12, for this nilpotent matrix

N , we obtain the following formula, for its exponential:

eN =



1 1 1
2

1
6

. . . 1
(s−1)!

1 1 1
2

1
6

. . . . . . . . . . . .
...

. . . . . . . . . . . .

1 1 1
2

1
6

1 1 1
2

1 1
1


Summarizing, done with our computation, and we can now formulate:
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Theorem 5.24. For a matrix written in Jordan form, as follows,

A = P

J1 . . .
Jk

P−1

the corresponding exponential is given by the following formula,

eA = P

eJ1 . . .

eJk

P−1

with the exponential of each Jordan block being computed by the formula

exp


λ 1

λ 1
. . . . . .

λ 1
λ

 = eλ



1 1 1
2

1
6

. . . 1
(s−1)!

1 1 1
2

1
6

. . . . . . . . . . . .
...

. . . . . . . . . . . .

1 1 1
2

1
6

1 1 1
2

1 1
1


with s being the size of our Jordan block.

And good news, this is all we need to know, this being obviously something very
powerful, closing any further mathematical discussion about exponentiation.

But with this is hand, we can now go back to the linear differential equations, and say
more about them. We will be back to all this in the next chapter, on a more systematic
basis, when discussing dynamical systems, at a quite general level.

As another application of our theory, we can recover the density of the diagonalizable
matrices, that we can get via the Jordan form, by perturbing the diagonal.

As another application, we can apply other complex functions to our matrices, under
suitable assumptions. All this is quite technical, called “functional calculus”, and as a
basic result here, coming from the Cauchy formula, we can apply any holomorphic function
to any matrix. More on such things, which can be quite technical, later, when needed.

Passed the holomorphic functions, things become more complicated. In the normal
case, we can apply continuous functions, and even measurable ones, to our matrices.
Indeed, this follows from the well-known spectral theorem for the normal matrices.
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5e. Exercises

Exercises:

Exercise 5.25.

Exercise 5.26.

Exercise 5.27.

Exercise 5.28.

Exercise 5.29.

Exercise 5.30.

Exercise 5.31.

Exercise 5.32.

Bonus exercise.



CHAPTER 6

Ordinary equations

6a. Differential equations

Let us go back to the general ordinary differential equations (ODE), briefly discussed
in the beginning of chapter 5. We recall from there that a standard system of ODE is a
system as follows, with the unknown being a vector function x = x(t) : R → RN :

x
(k)
1 = f1(t, x, ẋ, . . . , x

(k−1))

...

x
(k)
N = fN(t, x, ẋ, . . . , x

(k−1))

The point now is that, up to suitably enlarging the size of the unknown vector, we
can convert this standard system of ODE into a standard order 1 system of ODE. Indeed,
with y = (x, ẋ, . . . , x(k−1)), the system takes the following form, as desired:

ẏ1 = y2

ẏ2 = y3
...

ẏk−1 = yk

ẏk = f(t, y)

Moreover, in the autonomous case, that where the function f does not depend on time
t, we can further set z = (t, y), and we are led in this way to a system as follows:

ż1 = 1

ż2 = z3
...

żk = zk+1

żk+1 = f(z)

Our first goal in this chapter will be that of finding existence and uniqueness results
for the solutions of such systems of ODE. But let us begin with some examples, in 1D.
More specifically, we will be interested in the following type of equations:

67
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Definition 6.1. An autonomous order 1 ODE is an equation of type

ẋ = f(x) , x(0) = x0

with f ∈ C(R) being a certain function.

In order to solve now our equation, assume that we are in the case f(x0) ̸= 0. Then,
around t = 0, we can divide our equation by f(x(s)), and then integrate:∫ t

0

ẋ(s)

f(x(s))
ds = t

In view of this observation, consider the following function:

F (x) =

∫ x

x0

1

f(y)
dy

We have then the following computation, taking into account our equation:

F (x(t)) =

∫ x(t)

x0

1

f(y)
dy

=

∫ t

0

ẋ(s)

f(x(s))
ds

= t

Obviously, the converse holds too, so our original equation is equivalent to:

F (x(t)) = t

Now recall that we assumed f(x0) ̸= 0. But this means that F (x) is monotone around
x0, and so invertible, so we have a unique solution to our equation, given by:

φ(t) = F−1(t)

Note also that we have, as we should, as required by Definition 6.1:

φ(0) = F−1(0) = x0

With this discussion made, which was something local, let us turn now to global
questions. We have here the following question, that we would like to solve:

Question 6.2. In the context of the above autonomous order 1 ODE, and discussion,
what is the interval where the solution is defined? And, when is this interval R itself?

In order to discuss this latter question, in view of f(x0) ̸= 0, assume that we are in
the case f(x0) > 0, with the other case, f(x0) < 0, being similar. We have then f > 0 on
a certain interval (x1, x2) around x0. Now consider the following two limits:

T+ = lim
x↗x2

F (x) ∈ (0,∞]

T+ = lim
x↘x1

F (x) ∈ [−∞, 0)
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We have then f ∈ C1(T−, T+), and the following equalities hold:

lim
t↗T+

φ(t) = x2

lim
t↘T−

φ(t) = x1

Now according to the first equation, φ exists for any t > 0 precisely when:

T+ =

∫ x2

x0

1

f(y)
dy = ∞

Also, according to the second equation, φ exists for any t < 0 precisely when:

T− =

∫ x0

x1

1

f(y)
dy = −∞

Summarizing, we are led to the following answer to Question 6.2:

Answer 6.3. In the context of the above autonomous order 1 ODE, and discussion
involving the interval (x1, x2) around x0, the solution φ is as follows:

(1) φ exists for any t > 0 when 1/f is not integrable around x2.
(2) φ exists for any t < 0 when 1/f is not integrable around x1.

All this was quite theoretical, so let us work out now some examples. For f(x) = x,
and with x0 > 0, we have (x1, x2) = (0,∞), and the function F is given by:

F (x) = log

(
x

x0

)
Also, we have T± = ±∞, and the solution is as follows, defined on the whole R:

φ(t) = x0e
t

As a second example now, let us take f(x) = x2, and x0 > 0. In this case we have
(x1, x2) = (0,∞), and the function F is given by:

F (x) =
1

x0
− 1

x

Also, in this case we have T+ = 1/x0 and T− = −∞, and the solution of our equation
is as follows, defined on the interval (−∞, 1/x0):

φ(t) =
x0

1− x0t

We will see some other examples for all this, in what follows.

As a continuation of the above discussion, dealing with the case f(x0) ̸= 0, it remains
now to discuss the case f(x0) = 0. Here we have the trivial solution φ(t) = x0, and we
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can have as well non-trivial solutions. Assume for instance that we have:∣∣∣∣∫ x0+ε

x0

1

f(y)
dy

∣∣∣∣ <∞

Then, we have the following non-trivial solution, to our equation:

φ(t) = F−1(t) , F (x) =

∫ x

x0

1

f(y)
dy

Again, in order to understand this, nothing better than an explicit example. Let us
take f(x) =

√
|x|. In the case x0 > 0, studied before, we have (x1, x2) = (0,∞), then

F (x) = 2(
√
x−√

x0), and the solution is as follows, with t ∈ (−2
√
x0,∞):

φ(t) =

(
√
x0 +

t

2

)2

In the case x0 = 0, however, we have several solutions, that can be obtained by gluing
the trivial solution, and the generic solution. Indeed, we can take:

φ(t) =


− (t−t0)2

4
for t ≤ t0

0 for t0 ≤ t ≤ t1
(t−t1)2

4
for t1 ≤ t

Based on the above study, and on our various examples, let us formulate:

Conclusion 6.4. In the context of the above autonomous order 1 ODE:

(1) Even when the function f is C∞, we can only have local solutions.
(2) Also, in general, we do not have the uniqueness of the solution.

Before getting into a heavier theoretical study of the existence and uniqueness of
solutions, let us discuss as well a few tricks for the ODE, sometimes leading to explicit
solutions. A useful method is that of using a change of variables, as follows:

(t, x) → (s, y)

To be more precise, we are looking for suitable functions σ, η, as follows:

s = σ(t, x) , y = η(t, x)

In order to have a change of variables, our transformation must be of course invertible.
However, this assumption is not enough, at the level of solutions, because by rotating the
graph of a function, we do not necessarily obtain the graph of a function.

In view of this, a reasonable assumption is that our transformations must preserve the
fibers, with “fiber” meaning here corresponding to constant time. That is, we are looking
for changes of variables, suitably adapted to our ODE, of the following special type:

s = σ(t) , y = η(t, x)
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Now assume that we have such a transformation, which is invertible, as any change of
variables should be, with inverse given by formulae as follows:

t = τ(s) , x = ξ(s, y)

Then φ(t) is a solution of ẋ = f(t, x) precisely when ψ(s) = η(τ(s), φ(τ(s))) is a
solution of the following equation, where τ = τ(s) and ξ = ξ(s, y):

ẏ = τ̇

(
dη

dt
(τ, ξ) +

dη

dx
(τ, ξ)f(t, ξ)

)
Which is quite nice, becase we can get some concrete results in this way, that is,

explicit solutions for explicit ODE, by doing some reverse engineering, based on this.

Finally, for ending this preliminary section on general ODE theory, let us discuss some
well-known equations. First we have the Bernoulli equations, which are as follows:

ẋ = f(t)x+ g(t)xn

Assuming n ̸= 1, we can set y = x1−n, and our equation takes the following form:

ẏ = (1− n)f(t)y + (1− n)g(t)

But this is a linear equation, that we can solve by using the linear algebra methods
from chapter 5. We will be back to this later, with further details.

As a second class of well-known equations, again coming from a variety of questions
from physics, we have the Riccati equations, which are as follows:

ẋ = f(t)x+ g(t)x2 + h(t)

Now assuming that we have found a particular solution xp(t), we can set:

y =
1

x− xp(t)

With this change of variables, our equation takes the following form:

ẏ = −(f(t) + 2xp(t)g(t))y − g(t)

But this is again a linear equation, that we can solve by using the linear algebra
methods from chapter 5. We will be back to this later, with further details.

6b. Functional analysis

With the above discussed, which remains something a bit ad-hoc, let us try now to
develop some general theory. We would like to solve the following problem:

Problem 6.5. Do we have the local existence and uniqueness of the solutions of

ẋ = f(t, x) , x(t0) = x0

under suitable assumptions on the function f ∈ C(U,RN), with U ⊂ RN+1 open?
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In order to solve this latter question, we have a strategy which is quite straightforward.
Indeed, we can integrate our equation, which takes the following form:

x(t) = x0 +

∫ t

t0

f(s, x(s))ds

Based on this observation, consider the following function:

K(x)(t) = x0 +

∫ t

t0

f(s, x(s))ds

In terms of this function, our original equation reads:

K(x) = x

So, all in all, we are into a fixed point problem. But, as you certainly know from basic
calculus, such questions can be simply solved by iterating. Thus, we are led to:

Questions 6.6. In relation with the above strategy, for solving Problem 6.5:

(1) Can we develop a theory of infinite dimensional complete normed spaces?
(2) Do we have fixed point theorems, inside such complete normed spaces?
(3) Can we apply these fixed point theorems, as to solve our ODE problem?

We will see in what follows that the answers to these latter questions are yes, yes, yes.
However, this is something quite technical, which will take some time. In order to solve
the first question, in relation with the normed spaces, let us start with:

Definition 6.7. A normed space is a complex vector space V , which can be finite or
infinite dimensional, together with a map

||.|| : V → R+

called norm, subject to the following conditions:

(1) ||x|| = 0 implies x = 0.
(2) ||λx|| = |λ| · ||x||, for any x ∈ V , and λ ∈ C.
(3) ||x+ y|| ≤ ||x||+ ||y||, for any x, y ∈ V .

As a basic example here, which is finite dimensional, we have the space V = CN , with
the norm on it being the usual length of the vectors, namely:

||x|| =
√∑

i

|xi|2

Indeed, for this space (1) is clear, (2) is clear too, and (3) is something well-known,
which is equivalent to the triangle inequality in CN , and which can be deduced from the
Cauchy-Schwarz inequality. More on this, with some generalizations, in a moment.

Getting back now to the general case, we have the following result:
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Proposition 6.8. Any normed vector space V is a metric space, with

d(x, y) = ||x− y||

as distance. If this metric space is complete, we say that V is a Banach space.

Proof. This follows from the definition of the metric spaces, as follows:

(1) The first distance axiom, d(x, y) ≥ 0, and d(x, y) = 0 precisely when x = y, follows
from the fact that the norm takes values in R+, and from ||x|| = 0 =⇒ x = 0.

(2) The second distance axiom, which is the symmetry one, d(x, y) = d(y, x), follows
from our condition ||λx|| = |λ| · ||x||, with λ = −1.

(3) As for the third distance axiom, which is the triangle inequality d(x, y) ≤ d(x, z)+
d(y, z), this follows from our third norm axiom, namely ||x+ y|| ≤ ||x||+ ||y||. □

Very nice all this, and it is possible to develop some general theory here, but before
everything, however, we need more examples, besides CN with its usual norm.

However, these further examples are actually quite tricky to construct, needing some
inequality know-how. Let us start with a very basic result, as follows:

Theorem 6.9 (Jensen). Given a convex function f : R → R, we have the following
inequality, for any x1, . . . , xN ∈ R, and any λ1, . . . , λN > 0 summing up to 1,

f(λ1x1 + . . .+ λNxN) ≤ λ1f(x1) + . . .+ λNxN

with equality when x1 = . . . = xN . In particular, by taking the weights λi to be all equal,
we obtain the following inequality, valid for any x1, . . . , xN ∈ R,

f

(
x1 + . . .+ xN

N

)
≤ f(x1) + . . .+ f(xN)

N

and once again with equality when x1 = . . . = xN . We have a similar statement holds for
the concave functions, with all the inequalities being reversed.

Proof. This is indeed something quite routine, the idea being as follows:

(1) First, we can talk about convex functions in a usual, intuitive way, with this
meaning by definition that the following inequality must be satisfied:

f

(
x+ y

2

)
≤ f(x) + f(y)

2

(2) But this means, via a simple argument, by approximating numbers t ∈ [0, 1] by
sums of powers 2−k, that for any t ∈ [0, 1] we must have:

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)
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Alternatively, via yet another simple argument, this time by doing some geometry
with triangles, this means that we must have:

f

(
x1 + . . .+ xN

N

)
≤ f(x1) + . . .+ f(xN)

N

But then, again alternatively, by combining the above two simple arguments, the
following must happen, for any λ1, . . . , λN > 0 summing up to 1:

f(λ1x1 + . . .+ λNxN) ≤ λ1f(x1) + . . .+ λNxN

(3) Summarizing, all our Jensen inequalities, at N = 2 and at N ∈ N arbitrary, are
equivalent. The point now is that, if we look at what the first Jensen inequality, that we
took as definition for the convexity, means, this is simply equivalent to:

f ′′(x) ≥ 0

(4) Thus, we are led to the conclusions in the statement, regarding the convex func-
tions. As for the concave functions, the proof here is similar. Alternatively, we can say
that f is concave precisely when −f is convex, and get the results from what we have. □

As a basic application of the Jensen inequality, we have:

Proposition 6.10. For p ∈ (1,∞) we have the following inequality,∣∣∣∣x1 + . . .+ xN
N

∣∣∣∣p ≤ |x1|p + . . .+ |xN |p

N

and for p ∈ (0, 1) we have the following reverse inequality,∣∣∣∣x1 + . . .+ xN
N

∣∣∣∣p ≥ |x1|p + . . .+ |xN |p

N

with in both cases equality precisely when |x1| = . . . = |xN |.

Proof. This follows indeed from Theorem 6.9, because we have:

(xp)′′ = p(p− 1)xp−2

Thus xp is convex for p > 1 and concave for p < 1, which gives the results. □

Observe that at p = 2 we obtain as particular case of the above inequality the Cauchy-
Schwarz inequality, or rather something equivalent to it, namely:(

x1 + . . .+ xN
N

)2

≤ x21 + . . .+ x2N
N

As another basic application of the Jensen inequality, we have:
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Theorem 6.11 (Young). We have the following inequality,

ab ≤ ap

p
+
bq

q

valid for any a, b ≥ 0, and any exponents p, q > 1 satisfying 1
p
+ 1

q
= 1.

Proof. We use the logarithm function, which is concave on (0,∞), due to:

(log x)′′ =

(
−1

x

)′

= − 1

x2

Thus we can apply the Jensen inequality, and we obtain in this way:

log

(
ap

p
+
bq

q

)
≥ log(ap)

p
+

log(bq)

q

= log(a) + log(b)

= log(ab)

Now by exponentiating, we obtain the Young inequality. □

Observe that for the simplest exponents, namely p = q = 2, the Young inequality
gives something which is trivial, but is very useful and basic, namely:

ab ≤ a2 + b2

2
In general, the Young inequality is something non-trivial, and the idea with it is that

“when stuck with a problem, and with ab ≤ a2+b2

2
not working, try Young”.

Moving forward now, as a consequence of the Young inequality, we have:

Theorem 6.12 (Hölder). Assuming that p, q ≥ 1 are conjugate, in the sense that

1

p
+

1

q
= 1

we have the following inequality, valid for any two vectors x, y ∈ CN ,∑
i

|xiyi| ≤

(∑
i

|xi|p
)1/p(∑

i

|yi|q
)1/q

with the convention that an ∞ exponent produces a max |xi| quantity.

Proof. This is something very standard, the idea being as follows:

(1) Assume first that we are dealing with finite exponents, p, q ∈ (1,∞). By linearity
we can assume that x, y are normalized, in the following way:∑

i

|xi|p =
∑
i

|yi|q = 1
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In this case, we want to prove that the following inequality holds:

∑
i

|xiyi| ≤ 1

For this purpose, we use the Young inequality, which gives, for any i:

|xiyi| ≤
|xi|p

p
+

|yi|q

q

By summing now over i = 1, . . . , N , we obtain from this, as desired:

∑
i

|xiyi| ≤
∑
i

|xi|p

p
+
∑
i

|yi|q

q

=
1

p
+

1

q
= 1

(2) In the case p = 1 and q = ∞, or vice versa, the inequality holds too, trivially, with
the convention that an ∞ exponent produces a max quantity, according to:

lim
p→∞

(∑
i

|xi|p
)1/p

= max |xi|

Thus, we are led to the conclusion in the statement. □

As a consequence now of the Hölder inequality, we have:

Theorem 6.13 (Minkowski). Assuming p ∈ [1,∞], we have the inequality

(∑
i

|xi + yi|p
)1/p

≤

(∑
i

|xi|p
)1/p

+

(∑
i

|yi|p
)1/p

for any two vectors x, y ∈ CN , with our usual conventions at p = ∞.
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Proof. We have indeed the following estimate, using the Hölder inequality, and the
conjugate exponent q ∈ [1,∞], given by 1/p+ 1/q = 1:∑

i

|xi + yi|p =
∑
i

|xi + yi| · |xi + yi|p−1

≤
∑
i

|xi| · |xi + yi|p−1 +
∑
i

|yi| · |xi + yi|p−1

≤

(∑
i

|xi|p
)1/p(∑

i

|xi + yi|(p−1)q

)1/q

+

(∑
i

|yi|p
)1/p(∑

i

|xi + yi|(p−1)q

)1/q

=

(∑
i

|xi|p
)1/p

+

(∑
i

|yi|p
)1/p

(∑
i

|xi + yi|p
)1−1/p

Here we have used the following fact, at the end:

1

p
+

1

q
= 1 =⇒ 1

q
=
p− 1

p
=⇒ (p− 1)q = p

Now by dividing both sides by the last quantity at the end, we obtain:(∑
i

|xi + yi|p
)1/p

≤

(∑
i

|xi|p
)1/p

+

(∑
i

|yi|p
)1/p

Thus, we are led to the conclusion in the statement. □

Good news, done with inequalities, and as a consequence of the above results, and
more specifically of the Minkowski inequality obtained above, we can formulate:

Theorem 6.14. Given an exponent p ∈ [1,∞], the formula

||x||p =

(∑
i

|xi|p
)1/p

with usual conventions at p = ∞, defines a norm on CN , making it a Banach space.

Proof. Here the normed space assertion follows from the Minkowski inequality, es-
tablished above, and the Banach space assertion is trivial, because our space being finite
dimensional, by standard linear algebra all the Cauchy sequences converge. □

Very nice all this, but you might wonder at this point, what is the relation of all this
with functions. In answer, Theorem 6.14 can be reformulated as follows:
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Theorem 6.15. Given an exponent p ∈ [1,∞], the formula

||f ||p =
(∫

|f(x)|p
)1/p

with usual conventions at p = ∞, defines a norm on the space of functions

f : {1, . . . , N} → C
making it a Banach space.

Proof. This is a just fancy reformulation of Theorem 6.14, by using the fact that the
space formed by the functions f : {1, . . . , N} → C is canonically isomorphic to CN . □

In order to further extend the above result, let us start with:

Theorem 6.16. Given two functions f, g : X → C and an exponent p ≥ 1, we have(∫
X

|f + g|p
)1/p

≤
(∫

X

|f |p
)1/p

+

(∫
X

|g|p
)1/p

called Minkowski inequality. Also, assuming that p, q ≥ 1 satisfy 1/p+ 1/q = 1, we have∫
X

|fg| ≤
(∫

X

|f |p
)1/p(∫

X

|g|q
)1/q

called Hölder inequality. These inequalities hold as well for ∞ values of the exponents.

Proof. This is very standard, exactly as in the case of sequences, as follows:

(1) Let us first prove Hölder, in the case of finite exponents, p, q ∈ (1,∞). By linearity
we can assume that f, g are normalized, in the following way:∫

X

|f |p =
∫
X

|g|q = 1

In this case, we want to prove that the following inequality holds:∫
X

|fg| ≤ 1

For this purpose, we use the Young inequality, which gives, for any x ∈ X:

|f(x)g(x)| ≤ |f(x)|p

p
+

|g(x)|q

q

By integrating now over x ∈ X, we obtain from this, as desired:∫
X

|fg| ≤
∫
X

|f(x)|p

p
+

∫
X

|g(x)|q

q

=
1

p
+

1

q
= 1
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(2) Let us prove now Minkowski, again in the finite exponent case, p ∈ (1,∞). We
have the following estimate, using the Hölder inequality, and the conjugate exponent:∫

X

|f + g|p =

∫
X

|f + g| · |f + g|p−1

≤
∫
X

|f | · |f + g|p−1 +

∫
X

|g| · |f + g|p−1

≤
(∫

X

|f |p
)1/p(∫

X

|f + g|(p−1)q

)1/q

+

(∫
X

|g|p
)1/p(∫

X

|f + g|(p−1)q

)1/q

=

[(∫
|f |p
)1/p

+

(∫
X

|g|p
)1/p

](∫
X

|f + g|p
)1−1/p

Thus, we are led to the Minkowski inequality in the statement.

(3) Finally, in the infinite exponent cases we have similar results, which are trivial this
time, with the convention that an∞ exponent produces an essential supremum, according
to the following formula, which follows from the measure theory that we know:

lim
p→∞

(∫
X

|f |p
)1/p

= ess sup|f |

Thus, we are led to the conclusion in the statement. □

We can now extend Theorem 6.16, into something very general, as follows:

Theorem 6.17. Given a measured space X, and p ∈ [1,∞], the following space, with
the convention that functions are identified up to equality almost everywhere,

Lp(X) =

{
f : X → C

∣∣∣ ∫
I

|f(x)|pdx <∞
}

is a vector space, and the following quantity

||f ||p =
(∫

X

|f(x)|p
)1/p

is a norm on it, making it a Banach space.

Proof. This follows indeed from Theorem 6.16, with due attention to the null sets,
and this because of the first normed space axiom, namely:

||x|| = 0 =⇒ x = 0

To be more precise, in order for this axiom to hold, we must identify the functions up
to equality almost everywhere, as indicated in the statement. □
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6c. Existence, uniqueness

Getting now towards our ODE business, existence and uniqueness results, as explained
before, we would like to use some fixed point technology. So, let us formulate:

Definition 6.18. Let V be a Banach space, and K : C ⊂ V → C be a linear map,
with C being closed. We say that K is a contraction if

||K(x)−K(y)|| ≤ θ||x− y||

for some θ ∈ [0, 1). Also, we call fixed point of K any x ∈ C such that K(x) = x.

Observe that the fixed point of a contraction, if it exists, is unique, due to our as-
sumption θ < 1. Now with these notions in hand, we have the following result:

Theorem 6.19. Any contraction K : C ⊂ V → C has a unique fixed point x̄ ∈ C,
which can be obtained by starting with any point x ∈ C, and iterating K:

x̄ = lim
n→∞

Kn(x)

In addition, we have the following estimate,

||Kn(x)− x̄|| ≤ θn

1− θ
||K(x)− x||

valid for any x ∈ C, regarding the convergence K(n)(x) → x̄.

Proof. As explained in the above, the uniqueness of the fixed point is clear, coming
from our assumption θ < 1. Regarding now the existence part, and the precise estimate
in the statement too, pick x = x0 ∈ C, and set xn = Kn(x0). We have then:

||xn+1 − xn|| ≤ θ||xn − xn−1||
≤ θ2||xn−1 − xn−2||

...

≤ θn||x1 − x0||

Now by using the triangle inequality, we obtain from this, for n > m:

||xn − xm|| ≤
n∑

j=m+1

||xj − xj−1||

≤ θm
n−m−1∑
j=0

θj||x1 − x0||

≤ θm

1− θ
||x1 − x0||
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Thus the sequence {xn} is Cauchy, and since we are in a Banach space, this sequence
converges. Moreover, since C ⊂ V was chosen closed, the limit belongs to C:

xn → x̄ ∈ C

Now since our map K was assumed to be a contraction, it is continuous, and by
continuity we obtain, as desired, that we have indeed a fixed point, due to:

||K(x̄)− x̄|| = lim
n→∞

||xn+1 − xn|| = 0

Finally, in what regards the estimate at the end, in the statement, let us go back to
the main estimate obtained before, which was as follows, for any n > m:

||xn − xm|| ≤
θm

1− θ
||x1 − x0||

But this gives, with m→ ∞, the estimate in the statement, as desired. □

Now by getting back to our ODE questions, recall from before that the map which
was needing fixed points was as follows:

K(x)(t) = x0 +

∫ t

t0

f(s, x(s))ds

Thus, we are led into the question on whether such a map K is a contraction or not.
In order to discuss this, let us introduce the following technical definition:

Definition 6.20. A map f ∈ C(U,RN), with U ⊂ RN+1 open, is called locally Lips-
chitz with respect to x, uniformly with respect to t, if for any V ⊂ U compact we have

|f(t, x)− f(t, y)|
||x− y||

≤ L

for any (t, x) ̸= (t, y) ∈ V , for a certain number L ∈ (0,∞).

Observe that in the case L ≤ 1, our map is a contraction, at any t. Now with this
notion in hand, we can formulate, following Cauchy-Lipschitz and Picard-Lindelöf:

Theorem 6.21. An equation as follows, with f ∈ C(U,RN), with U ⊂ RN+1 open,
has a unique local solution,

ẋ = f(t, x) , x(t0) = x0

provided that f is locally Lipschitz with respect to x, uniformly with respect to t.

Proof. Consider, as already indicated above, the following map:

K(x)(t) = x0 +

∫ t

t0

f(s, x(s))ds
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We assume for simplifying t0 = 0. In order to verify that K is a contraction, for t > 0
small, consider the following Banach space, with T > 0 to be determined later:

V = C(I,RN) , I = [0, T ]

Let also δ > 0, and consider the following closed ball, inside this space V :

C = B̄δ(x0)

We would like to apply Theorem 6.19, and in order to do so, we need to check two
things, namely that we have indeed K : C → C, and that K is a contraction.

(1) Let us first check that we have K : C → C. For this purpose, let us set:

W = [0, T ]× C ⊂ U

We have then the following estimate, coming from definitions:

|K(x)(t)− x0| ≤
∫ t

0

|f(s, x(s))|ds

≤ t max
(t,v)∈W

|f(t, x)|

In view of this, consider the number appearing on the right, namely:

M = max
(t,v)∈W

|f(t, x)|

With this notation, we conclude from our estimate above that we have:

TM ≤ δ =⇒ |K(x)(t)− x0| ≤ δ, ∀t ∈ [0, T ]

On the other hand, inside the Banach space C([0, T ],RN), we have:

||K(x)− x0|| = sup
t∈[0,T ]

|K(x)(t)− x0|

Thus, under the above assumption TM ≤ δ, the following happens:

||K(x)− x0|| ≤ δ

But this shows that we have K(x) ∈ B̄δ(x0) = C, and so that we have, as desired:

K : C → C

(2) With this done, let us turn now to the second check, that of the fact that our
linear map K is indeed a contraction. For this purpose, we use the Lipschitz property of
f from the statement, or rather from Definition 6.20, namely:

|f(t, x)− f(t, y)|
||x− y||

≤ L
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By using this, and integrating, we obtain the following estimate:∫ t

0

|f(s, x(s))− f(s, y(s))|ds ≤ L

∫ t

0

|x(s)− y(s)|ds

≤ Lt sup
0≤s≤t

|x(s)− y(s)|

Thus, in terms of our linear map K, we have the following estimate:

||K(x)−K(y)|| ≤ LT ||x− y||

But this shows that, with T ≤ 1/L, we have indeed a contraction, as desired.

(3) Summarizing, we have shown that we have K : C → C, and that this map is a
contraction. Thus Theorem 6.19 applies, and gives the result. □

Before getting into further theory, let us discuss a simple application of the above.
Consider the following linear equation, that we certainly know how to solve:

ẋ = x , x(0) = 1

Observe that f(t, x) = x is indeed Lipschitz as in Definition 6.20, with L = 1. Re-
garding now the linear map K, this is given by the following formula:

K(x)(t) = x0 +

∫ t

t0

f(s, x(s))ds

= 1 +

∫ t

0

x(s)ds

By choosing now y = 1 as starting point, the iteration goes as follows:

K(y) = 1 +

∫ t

0

1ds = 1 + t

K2(y) = 1 +

∫ t

0

(1 + s)ds = 1 + t+
t2

2

K3(y) = 1 +

∫ t

0

(
1 + s+

s2

2

)
ds = 1 + t+

t2

2
+
t3

6

...

Thus we obtain in the limit, as we should, the following solution:

K∞(y) =
∞∑
n=0

tn

n!
= et

There are of course many other illustrations, and more on this later.
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6d. Gronwall estimates

Getting now to technical comments, in relation with Theorem 6.21, many things can
be said here, and here are two of them, which are of particular importance:

(1) In the context of Theorem 6.21, it is possible to prove that if f ∈ Ck(U,RN) with
k ≥ 1, then the solution is Ck+1. This is indeed elementary, by recurrence on k.

(2) Also in the context of Theorem 6.21, assume that [t0, T ]× RN ⊂ U is such that:∫ T

t0

L(t)dt <∞ , L(t) = sup
x ̸=y∈RN

|f(t, x)− f(t, y)|
||x− y||

Then, by suitably changing the Banach space norm, and suitably modifying the con-
traction principle too, it is possible to prove that the solution is defined on [t0, T ].

We refer to the ODE literature for more on the above, which is something quite
standard. As a main question now that we would like to solve, we have:

Question 6.22. How does the solution depend on the initial data, and also, on the
equation itself?

This is something quite general. To be more precise, assume that we have two functions
f, g ∈ C(U,RN), with U ⊂ RN+1 open, which are both locally Lipschitz with respect to
x, uniformly with respect to t. In this case Theorem 6.21 applies to the following two
equations, and provides us with local solutions x, y to them, which are unique:

ẋ = f(t, x) , x(t0) = x0

ẏ = g(t, y) , y(t0) = y0

The problem that we would like to solve is that of finding an estimate for the quantity
||x(t)− y(t)||. And, we will prove in what follows that we have indeed such an estimate,
which looks as follows, with M,L > 0 being certain constants, depending on f, g:

||x(t)− y(t)|| ≤ ||x0 − y0||eL|t−t0| +
M

L

(
eL|t−t0| − 1

)
Obviously, such things are of key importance, in relation with our order vs chaos

problematics. However, such questions non-trivial, and our tools so far, which are quite
abstract, do not provide a direct answer to them. So, we have to work some more.

In order to solve our question, let us begin with a key technical statement, of classical
analysis type, not obviously related to equations, due to Gronwall, as follows:
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Proposition 6.23. Assume that a function ψ satisfies the estimate

ψ(t) ≤ α(t) +

∫ t

0

β(s)ψ(s)ds

for any t ∈ [0, T ], with α(t) ∈ R, and β(t) > 0. We have then

ψ(t) ≤ α(t) +

∫ t

0

α(s)β(s) exp

(∫ t

s

β(r)dr

)
ds

for any t ∈ [0, T ]. Moreover, assuming that α is increasing, we have

ψ(t) ≤ α(t) exp

(∫ t

0

β(s)ds

)
for any t ∈ [0, T ].

Proof. This is something quite tough, and for the story, it happened to me more
than once, when teaching this to our graduate math students in Cergy, for one student to
leave the class during or after the proof, in protest, never to be seen again. Well, in the
hope that these protesting kids got some friends, spouses and jobs, not quite sure about
that, and here is the proof of the result, that I personally find quite cute:

(1) Let us first prove the first assertion, which is the main one. For this purpose, we
use a trick. Consider the following function:

ϕ(t) = exp

(
−
∫ t

0

β(s)ds

)
We have then the following computation, using the Leibnitz rule for derivatives, and

also using at the end our assumption on ψ from the statement:

d

dt

[
ϕ(t)

∫ t

0

β(s)ψ(s)ds

]
=

[
d

dt
ϕ(t)

] ∫ t

0

β(s)ψ(s)ds+ ϕ(t)

[
d

dt

∫ t

0

β(s)ψ(s)ds

]
= −β(t)ϕ(t)

∫ t

0

β(s)ψ(s)ds+ ϕ(t)β(t)ψ(t)

= β(t)ψ(t)

(
ψ(t)−

∫ t

0

β(s)ψ(s)ds

)
≤ α(t)β(t)ϕ(t)

Now by integrating with respect to t, we obtain from this:

ϕ(t)

∫ t

0

β(s)ψ(s)ds ≤
∫ t

0

α(s)β(s)ϕ(s)ds
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We conclude that we have the following estimate:∫ t

0

β(s)ψ(s)ds ≤
∫ t

0

α(s)β(s)
ϕ(s)

ϕ(t)
ds

By adding now α(t) to both sides, we obtain the following estimate:

α(t) +

∫ t

0

β(s)ψ(s)ds ≤ α(t) +

∫ t

0

α(s)β(s)
ϕ(s)

ϕ(t)
ds

But in this situation, we can use once again our assumption on ψ from the statement,
and we obtain the following estimate:

ψ(t) ≤ α(t) +

∫ t

0

α(s)β(s)
ϕ(s)

ϕ(t)
ds

Now let us look at the fraction on the right. This is given by:

ϕ(s)

ϕ(t)
=

exp
(
−
∫ s

0
β(r)dr

)
exp

(
−
∫ t

0
β(r)dr

)
= exp

(∫ t

0

β(r)dr −
∫ s

0

β(r)dr

)
= exp

(∫ t

s

β(r)dr

)
We conclude that the estimate that we found above reads:

ψ(t) ≤ α(t) +

∫ t

0

α(s)β(s) exp

(∫ t

s

β(r)dr

)
ds

But this is precisely what we wanted to prove, the first estimate in the statement.

(2) With this done, let us turn now to the second assertion in the statement. So,
assume that the function α there is increasing. We have then:

ψ(t) ≤ α(t) +

∫ t

0

α(s)β(s) exp

(∫ t

s

β(r)dr

)
ds

≤ α(t) +

∫ t

0

α(t)β(s) exp

(∫ t

s

β(r)dr

)
ds

= α(t)

[
1 +

∫ t

0

β(s) exp

(∫ t

s

β(r)dr

)
ds

]
= α(t)

[
1 +

∫ t

0

β(s) exp

(∫ t

0

β(r)dr −
∫ s

0

β(r)dr

)
ds

]
= α(t)

[
1 + exp

(∫ t

0

β(r)dr

)∫ t

0

β(s) exp

(
−
∫ s

0

β(r)dr

)
ds

]
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Now recall that we can consider, as in (1), the following function:

ϕ(t) = exp

(
−
∫ t

0

β(s)ds

)
The derivative of this function satisfies then the following formula:

ϕ′(t) = −β(t)ϕ(t)

Thus, we have the following formula, for this derivative:

ϕ′(s) = −β(s) exp
(
−
∫ s

0

β(r)dr

)
We conclude that the estimate found before reformulates as:

ψ(t) ≤ α(t)

[
1 + exp

(∫ t

0

β(r)dr

)∫ t

0

β(s) exp

(
−
∫ s

0

β(r)dr

)
ds

]
= α(t)

[
1 + exp

(∫ t

0

β(r)dr

)
(−ϕ′)

∣∣∣t
0

]
= α(t)

[
1 + exp

(∫ t

0

β(r)dr

)
(1− ϕ(t))

]
In order to finish, consider the following number, depending on t:

K =

∫ t

0

β(r)dr

In terms of this number, the estimate that we found above reads:

ψ(t) ≤ α(t)(1 + eK(1− e−K))

= α(t)(1 + eK − 1)

= α(t)eK

Thus, as a conclusion, we have reached to the following estimate:

ψ(t) ≤ α(t) exp

(∫ t

0

β(s)ds

)
But this is exactly what we wanted to prove, namely second estimate in the statement,

and so good news, eventually, done with the proof of the present statement. □

Very good all this, welcome to analysis, and still with me, I hope.

As a continuation now of the above, we won’t leave such beautiful things like this, we
would definitely love to spend more time with them, we have:
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Proposition 6.24. Assume that a function ψ satisfies the estimate

ψ(t) ≤ α(t) +

∫ t

0

(βψ(s) + γ)ds

for any t ∈ [0, T ], with α ∈ R, β ≥ 0 and γ ∈ R. We have then

ψ(t) ≤ α exp(βt) +
γ

β
(exp(βt)− 1)

for any t ∈ [0, T ].

Proof. In order to prove this result, consider the following function:

ψ̃(t) = ψ(t) +
γ

β

In terms of this function ψ̃, our assumption on ψ in the statement reads:

ψ̃ − γ

β
≤ α + β

∫ t

0

ψ̃(s)ds

Thus, our modified function ψ̃ satisfies the following estimate:

ψ̃ ≤
(
α +

γ

β

)
+ β

∫ t

0

ψ̃(s)ds

Thus, we can apply the second assertion in Proposition 6.23, with the following values
for the functions α(t) and β(t) there, both chosen to be constant functions:

α(t) = α +
γ

β
, β(t) = β

We obtain in this way the following estimate, for our modified function ψ̃:

ψ̃ ≤
(
α +

γ

β

)
exp(βt)

But this gives, in terms of the original function ψ, the following estimate:

ψ(t) ≤
(
α +

γ

β

)
exp(βt)− γ

β

= α exp(βt) +
γ

β
(exp(βt)− 1)

Thus, we have reached to the conclusion in the statement. □

Now back to the ODE, the above results apply, and we can answer Question 6.22. To
be more precise, in the general context of Theorem 6.21, we have the following result:
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Theorem 6.25. Assume that f, g ∈ C(U,RN), with U ⊂ RN+1 open, are locally
Lipschitz with respect to x, uniformly with respect to t. If x, y are solutions of

ẋ = f(t, x) , x(t0) = x0

ẏ = g(t, y) , y(t0) = y0

then we have the following estimate, for any t in the interval of definition of x, y,

||x(t)− y(t)|| ≤ ||x0 − y0||eL|t−t0| +
M

L

(
eL|t−t0| − 1

)
with the constant M on the right being given by the following formula,

M = sup
(t,x)∈U

|f(t, x)− g(t, x)|

and with L > 0 being a common Lipschitz constant for both f, g.

Proof. We know from Theorem 6.21 that the above equations have indeed solutions.
We can assume for simplifying that we have t0 = 0. Now observe that we have:

||x(t)− y(t)||

≤ ||x0 − y0||+
∫ t

0

|f(s, x(s))− g(s, y(s))|ds

≤ ||x0 − y0||+
∫ t

0

(
|f(s, x(s))− f(s, y(s))|+ |f(s, y(s))− g(s, y(s))|

)
ds

≤ ||x0 − y0||+
∫ t

0

(
L||x(s)− y(s)||+M

)
ds

In view of this estimate, consider the following function:

ψ(t) = ||x(t)− y(t)||
In terms of this function, the estimate that we found above reads:

ψ(t) ≤ ||x0 − y0||+
∫ t

0

(Lψ(s) +M)ds

But this shows that the Gronwall estimate from Proposition 6.24 applies, with the
following choices for the constants α ∈ R, β ≥ 0 and γ ∈ R appearing there:

α = ||x0 − y0|| , β = L , γ =M

So, let us apply Proposition 6.24, with these values of α, β, γ. We obtain:

ψ(t) ≤ α exp(βt) +
γ

β
(exp(βt)− 1)

= ||x0 − y0||eL|t−t0| +
M

L

(
eL|t−t0| − 1

)
But this is exactly the estimate in the statement, as desired. □
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6e. Exercises

Exercises:

Exercise 6.26.

Exercise 6.27.

Exercise 6.28.

Exercise 6.29.

Exercise 6.30.

Exercise 6.31.

Exercise 6.32.

Exercise 6.33.

Bonus exercise.



CHAPTER 7

Dynamical systems

7a. Dynamical systems

Generally speaking, a dynamical system is an action of a semigroup (G, ·) on a space
M . That is, we must have a map as follows, satisfying TgTh = Tgh, for any g, h ∈ G:

T : G×M →M , (g, x) → Tg(x)

All this is quite general. As a first remark, the dynamical systems fall into two classes,
namely discrete, where G = N,Z, . . . , and continuous, where G = R+,R, . . .

The discrete systems are quite easy to construct. Indeed, as a basic example here,
with G = N, you can take any function f : I → I, and then set Tn = fn, for any n ∈ N.
Observe that when the function f is invertible, we can extend this into a system with
G = Z, again by setting Tn = fn, but this time for any n ∈ Z.

In what follows we will be mainly interested in continuous dynamical systems, with
G = R, coming from the ODE. To be more precise, consider, as in the previous chapter,
an autonomous system as follows, with f ∈ Ck(M,RN), and M ⊂ RN open:

ẋ = f(x) , x(0) = x0

Assuming that the system has solutions, coming for instance via the general existence
results from the previous chapter, we call these solutions integral curves of the system.

The point now is that, for any initial data x = x0, we can talk about the maximal
integral curve of our system, passing through x, which is by definition the solution on the
maximal possible interval, that we will denote, as usual, as follows:

Ix = (T−(x), T+(x))

With this notion in hand, consider now the following space W ⊂ R×M :

W =
⋃
x∈M

Ix × {x}

The solutions φ of our system are then encoded into a map, as follows:

Φ : W →M , (t, x) → φ(t, x)

We will call this map Φ, encoding the solutions, the flow of the system.

91
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The flow has a number of basic properties, which can be summarized as follows:

Proposition 7.1. The flow of a system ẋ = f(x), x(0) = x0, written as

Φ : W →M , (t, x) → φ(t, x)

with W =
⋃

x∈M Ix × {x} as above, has the following properties:

(1) Its domain W is open.
(2) If f ∈ Ck(M,RN) then Φ ∈ Ck(W,M).
(3) We have Φ(0, x) = x, for any x.
(4) Flow property: Φ(s+ t, x) = Φ(s,Φ(t, x)).

Proof. These are all obvious properties, coming from our general existence and
uniqueness results for the solutions, that we assumed, as explained above, to apply. □

In relation now with the abstract notion of dynamical system, as axiomatized before,
assuming that we have Ix = R for any x, we can consider the following map:

Φt(x) = Φ(t, x)

Then, according to the flow property, (4) above, we have, for any s, t:

Φs+t(x) = Φ(s+ t, x)

= Φ(s,Φ(t, x))

= Φs(Φ(t, x))

= ΦsΦt(x)

Thus, we have indeed an abstract dynamical system, with G = R.

With this discussed, let us formulate now a key definition, as follows:

Definition 7.2. The orbit of a point x is the following set:

γ(x) = Φ(Ix, x) ⊂M

We say that x is a fixed point when γ(x) = x, and that x is regular, otherwise.

As a first remark about the orbits, as constructed above, observe that these are by
definition disjoint. Thus, we have an equivalence relation, given by:

x ≃ y ⇐⇒ γ(x) = γ(y)

In what follows we will need as well a refinement of this. With Ix = (T−(x), T+(x)),
as usual, let us define the backwards orbit of x as being the following set:

γ−(x) = Φ((T−(x), 0), x)

Similarly, we can talk about the forward orbit of x, as being the following set:

γ+(x) = Φ((0, T+(x)), x)
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We have then the following equality, coming from definitions:

γ(x) = γ−(x) ∪ {x} ∪ γ+(x)
As yet another related notion, that we will need, let us introduce:

Definition 7.3. We say that x is a periodic point when Φ(T, x) = x, for some T > 0.
In this case we call the number

T (x) = inf
{
T > 0

∣∣∣Φ(T, x) = x
}

the period of our point x.

Observe that, due to the flow property in Proposition 7.1 (4), under the above cir-
cumstances, the orbit is indeed periodic, of period T , as shown by:

Φ(t+ T (x), x) = Φ(t, x)

As another remark, in terms of the backwards orbit γ−(x) and forward orbit γ+(x),
constructed above, the fact that the point is periodic is equivalent to:

γ−(x) ∩ γ+(x) ̸= ∅
Indeed, this follows again from the flow property. Finally, observe too that when x is

periodic, any point in its orbit γ(x) is periodic too, and of the same period.

As a summary to this preliminary discussion about orbits, let us formulate:

Conclusion 7.4. The points of our dynamical system can be of 3 types:

(1) Fixed points, γ(x) = {x}.
(2) Regular periodic points, 0 < T <∞.
(3) Non-periodic points.

Hang on, still not done with the definitions, several more still to come. We first have
the following notions, which are something quite useful as well:

Definition 7.5. We say that a point x is:

(1) + complete, if T+(x) = ∞.
(2) − complete, if T−(x) = −∞.
(3) Complete, if it is both + and − complete.

Observe that any periodic point is complete, since we can indefinitely travel forward,
or backwards, on its orbit. The converse of this does of course not hold, in general.

As another remark, in relation with the above notions, when our system is complete,
in the sense that any point is complete, then, as explained in the discussion following
Proposition 7.1, we have an abstract dynamical system, with G = R.

Here is now a key definition, which will be of importance, in what follows:
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Definition 7.6. We say that a subset U ⊂M is:

(1) + invariant, if x ∈ U =⇒ γ+(x) ⊂ U .
(2) − invariant, if x ∈ U =⇒ γ−(x) ⊂ U .
(3) Invariant, if it is both + and − invariant.

Obviously, this is something which will allow us to do some geometry.

As a preliminary remark here, the above various types of invariant sets are stable
under taking intersections, taking unions, and under taking closures too. Indeed, these
properties are clear from definitions. We will use them many times, in what follows.

Moving ahead, let us attempt now to study the orbits, in the non-periodic case. In
order to do so, we will need one more definition, as follows:

Definition 7.7. We let w±(x) be the set of points y ∈M satisfying:

∃tn → ±∞ , Φ(tn, x) → y

That is, w±(x) are the limit points of the forward/backwards orbit of x.

Observe that, for a periodic point, both the above sets w±(x) coincide with the orbit.
Also, when our point is not complete, these sets w±(x) are both empty.

And with this, good news, end of definitions, and time now for some theorems. As a
first result, in relation with the sets w±(x) introduced above, we have:

Proposition 7.8. The sets w±(x) are closed, and invariant.

Proof. We have two things to be proved, the idea being as follows:

(1) Closedness. Consider indeed a point in the closure of one of our sets:

y ∈ w±(x)

Thus, for any n ∈ N, we can find a point yn ∈ w±(x) such that:

|y − yn| <
1

2n

According now to our definition of w±(x), we can find tn → ±∞ such that:

|Φ(tn, x)− yn| <
1

2n

We therefore obtain, by adding, the following inequality:

|Φ(tn, x)− yn| <
1

n

But this shows, with n→ ∞, that we have y ∈ w±(x), as desired.
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(2) Invariance. Assume indeed that we have Φ(tn, x) → y. We obtain:

Φ(tn + t, x) = Φ(t,Φ(tn, x))

→ Φ(t, y)

∈ γ(y)

Thus the orbit of y is included in w±(x), as desired. □

As a question now, we would like to understand if for a complete point, the sets w±(x)
are empty or not. For this purpose, let us see what happens for the following equation:

ẋ = −x

Here the solutions are very easy to find, given by the following formula:

x = e−tx0

Regarding now the sets w±(x), observe first that we have w+(x) = {0}, for any x ∈ R,
and this because e−tx → 0 with t → ∞. Similarly, we have w−(x) = ∅, for any x ̸= 0,
and this because e−tx→ ±∞ with t→ −∞, for x ̸= 0. Thus, as a conclusion:

Conclusion 7.9. We can have complete points with w±(x) = ∅.

Getting now to more general theory, we have the following result, coming as a com-
plement to what we already know about the sets w±(x), from Proposition 7.8:

Theorem 7.10. If γ±(x) ⊂ C, compact, then the set w±(x) is:

(1) Non-empty.
(2) Compact.
(3) Connected.

Proof. The first two assertions, regarding the non-emptiness and the compactness,
are both clear. Regarding now the connectedness assertion, assume that, inside our
compact set C, we can separate w±(x) by two parts U1, U2, lying at distance δ > 0. Now
let us pick an increasing or decreasing sequence tn → ±∞, such that:

Φ(t2n+1, x) ∈ U1 , Φ(t2n, x) ∈ U2

Since Φ((t2n, t2n+1), x) is connected, we can find t′n ∈ (t2n, t2n+1) such that:

Φ(t′n, x) ∈ C − (U1 ∪ U2)

But, by choosing a suitable subsequence of {t′n}, this would give us a limit point,
which cannot be in U1, nor in U2, and so we have here a contradiction, as desired. □
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7b. Stability issues

Getting now to the whole point with the dynamical systems, let us discuss stability
issues. We will be interested in the stable points, in the following sense:

Definition 7.11. Let x0 be a fixed point.

(1) We say that x0 is stable if, for any neighborhood U(x0), there is a smaller neigh-
borhood V (x0) ⊂ U(x0) such that any solution departing from a point of V (x0)
remains inside U(x0), at any time t ≥ 0.

(2) Also, we say that x0 is asymptotically stable if it is stable, in the above sense,
and in addition, there is a neighborhood U(x0) such that limt→∞ |Φ(t, x)−x0| = 0
holds, for any point x ∈ U(x0).

These notions are both quite intuitive, and of obvious interest, when thinking for
instance mechanics. As an illustration, consider the following equation:

ẋ = ax

The solution of this equation is then trivial to find, given by:

x = eatx0

We have a fixed point, x0 = 0, and according to our conventions above, this fixed
point is stable when a ≤ 0, and asymptotically stable when a < 0.

In order to study the stable points, we will need the following key notion:

Definition 7.12. Let x0 be a fixed point, and U(x0) be an open neighborhood of it. A
Lyapunov function for x0, on U(x0), is a continuous function

L : U(x0) → R

satisfying L(x0) = 0, and L(x) > 0 for x ̸= x0, and which is such that

t0 < t1 =⇒ L(Φ(t0)) ≥ L(Φ(t1))

for any solution Φ, provided that Φ(tj) ∈ U(x0)− {x0}. That is, L must decrease on the
integral curves. We say that L is strict, when the above inequality is strict.

As a first observation, assuming that a Lyapunov function as above exists, the set
U(x0)− {x0} contains no periodic orbits. This is indeed clear from definitions.

The interest in the Lyapunov functions comes from the following key result:

Theorem 7.13. Assuming that x0 is fixed, and that a Lyapunov function as above

L : U(x0) → R

exists, then x0 must be stable.
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Proof. This is something quite technical, the idea being as follows:

(1) For any δ > 0, let us denote by Sδ the connected component containing x0 of the
following set, which contains indeed x0, according to our conventions above:{

x ∈ U(x0)
∣∣∣L(x) ≤ δ

}
Our first claim is then that the following happens:

∀δ > 0,∃ε > 0, Sε ⊂ Bδ(x0)

(2) We will prove this claim by contradiction. So, assume by contradiction that, for a
certain fixed δ > 0, for any n ∈ N we can find xn ∈ S1/n, such that:

|xn − x0| ≥ δ

Now recall that S1/n was chosen connected. Thus, we can assume that we have:

|xn − x0| = δ

Now since the spheres are compact, we can assume that our sequence is convergent:

xn → y

By using now the continuity of the Lyapunov function L, we have:

L(xn) → L(y)

On the other hand, from our assumption xn ∈ S1/n, we know that we have:

L(xn) ≤
1

n

Thus L(y) = 0, and so y = x0, which contradicts |y − x0| = δ > 0, as desired.

(3) Our next claim now is that, conversely, the following happens:

∀δ > 0,∃ε > 0, Bε(x0) ⊂ Sδ

Again, we will prove this by contradiction. So, assume by contradiction that we can
find a sequence of points xn satisfying the following two conditions:

|xn − x0| ≤
1

n
, L(xn) > δ

We therefore obtain, by taking the n→ ∞ limit, in this situation:

δ ≤ lim
n→∞

L(xn) = L(x0) = 0

But this is a contradiction, as desired, and so our present second claim is proved.

(4) With the above in hand, namely the claims in (1) and (3), we can now finish the
proof. Assume indeed that x0 is a fixed point, and that U(x0) is a neighborhood for it,
with a Lyapunov function. We fix δ > 0, such that the following happens:

Bδ(x0) ⊂ U(x0)
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By using now our claims in (1) and (3), we can find ε, ε′ > 0 such that:

Sε ⊂ Bδ(x0) , Bε′(x0) ⊂ Sε

In order to prove the theorem, that is, in order to prove that x0 is indeed stable, in
the sense of Definition 7.11, consider the following neighborhood of x0:

V (x0) = Bε′(x0)

We will show in what follows that any solution departing from a point of V (x0) stays
in U(x0), and so that x0 is indeed stable, in the sense of Definition 7.11.

(5) In order to do so, it is enough to show that our solution stays inside Sε, and this
because, according to our various choices above, we have inclusions as follows:

Sε ⊂ Bδ(x0) ⊂ V (x0)

Now since we know as well that we have Bε′(x0) ⊂ Sε, it is enough to prove that Sε is
+ invariant. Thus, as a conclusion to all this, we must show that Sε is + invariant.

(6) We will prove this, as usual, by contradiction. So, assume by contradiction that
the solution Φ(t) exists our set Sδ at a certain time t0 > 0. We then set:

x = Φ(t0)

With this done, we can then find a suitable ball Br(x) ⊂ U(x0), around our point x,
such that the following happens, for ε > 0 small:

Φ(t0 + ε) ∈ Br(x)− Sδ

But this shows that, in relation with the Lyapunov function L, we have:

Φ(t0 + ε) /∈ Sδ =
{
x ∈ U(x0)

∣∣∣L(x) ≤ δ
}

In order words, we have reached here to the following conclusion:

L(Φ(t0 + ε)) > δ

But this contradicts our assumption on the Lyapunov function L, from Definition 7.12,
that this must decrease on the integral curves. Thus, our theorem is now proved. □

And with this, good news, end of our general theoretical discussion regarding the
dynamical systems, in general. In what follows we will go towards more concrete questions,
and we will also see, of course, some illustrations for the above general results.
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7c. Integral equations

In mathematics, it all comes down to linearization. You surely know about this general
principle, for instance from basic calculus, where the functions, be them of one or several
variables, can be thought of as being locally linear, with the help of the derivative.

Further illustrations of this general linearization principle include the fact that the
smooth manifolds are locally linear too, with the help of the tangent space. And even
complicated beasts like continuous groups of transformations are locally linear too, again
with the help of the same ideas, namely tangent vectors and spaces.

We discuss in this section, and in the remainder of this chapter, a very fruitful lin-
earization idea, in the context of the dynamical systems, as follows:

Idea 7.14 (Linearization). In order to deal with an arbitrary, non-linear system

ẋ = f(x) , x0 = 0

we can write the function f as follows, with A = f ′(x) ∈MN(R) being its derivative,

f(x) = Ax+ o(||x||)

and then use, by perturbing, the results regarding the linear system ẋ = Ax.

Which sounds very good, normally this type of idea will lead us into classical and
rock-solid mathematics, as classical and rock-solid mathematics can get.

Before getting head-first into this, however, let us go back to the general theory of the
linear equations ẋ = Ax, as developed in detail in chapters 5-6. Obviously, in view of our
above idea, what we need to do is to scan the material there, in search for things that
can be perturbed into results about non-linear systems ẋ = f(x), as above.

But, and here comes the point, what we did in chapters 5-6 is not exactly satisfying,
from this perspective, and so, good news, we will have to work some more.

So, working some more on the linear systems ẋ = Ax, with the above type of ideas in
mind. To start with, the solution of the system is, as we know well:

x(t) = etAx0

But this leads us, as explained in chapters 5-6, into diagonalizing A, and more gener-
ally, when this is not possible, into putting A into Jordan form.

Now based on this, what we know about the Jordan form, let us formulate:
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Notations 7.15. Given A ∈MN(R), we write its characteristic polynomial as

P (z) =
∏
i

(z − αi)
ai

so that we have a direct sum decomposition of the ambient space, as follows:

CN =
⊕
i

ker [(A− αi)
ai ]

We also consider the corresponding geometric multiplicities, given by

gi = dimker(A− ai)

and satisfying gi ≤ ai, with equalities when A is diagonalizable.

We refer to chapters 5-6 for more on all this, theory and applications. Now back to
our equation ẋ = Ax, let us formulate the following key definition:

Definition 7.16. We say that a linear system ẋ = Ax is hyperbolic when

Re(α) ̸= 0

for any eigenvalue α. In this case, we consider the linear spaces

E± =
⊕

±Re(αi)<0

ker [(A− αi)
ai ]

which are therefore in direct sum position, CN = E+ ⊕ E−.

So, studying these hyperbolic linear systems, and then extending our results to the
hyperbolic non-linear systems, according to Idea 7.14, will be our job, in what follows.

In what regards the study in the linear case, this is something quickly done, by using
the general theory developed in chapters 5-6, the result here being as follows:

Theorem 7.17. For a hyperbolic linear system ẋ = Ax, the following happen:

(1) The spaces E± are both invariant by the flow.
(2) Any integral curve departing from E± converges to 0, with t→ ±∞.
(3) In fact, we have the following explicit estimate for the decay,

|etAx±| ≤ Ce±tα|x±|

for any ±t > 0 and any x± ∈ E±, with α > 0 subject to

α < min
{
|Re(αi)| : ±Re(αi) < 0

}
and with C > 0 depending on α.
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Proof. This is something quite straightforward, the idea being as follows:

(1) This is something which is obvious.

(2) This is something that we already know, as a consequence of our general results
from chapters 5-6, and which follows also from (3), that we will prove next.

(3) We will just discuss here the proof of the “+” result, with the proof of the “−”
result being similar, or just by replacing A→ −A. We put our matrix A in Jordan form,
as explained in chapters 5-6, and we consider the following quantity:

m = min
{
|Re(αi)| : Re(αi) < 0

}
Now let α < m as in the statement, and let us set:

ε = m− α

Then, for any eigenvalue satisfying Re(αi) < 0, the entry of maximal absolute value,
say Mi, of the corresponding component etJai of the matrix etA, appearing by exponenti-
ating t times the corresponding Jordan block Jai , can be estimated as follows:

Mi =
|tneait|
F

≤ |tne−εt|e−αt

F
≤ Ce−αt

To be more precise, here F is a certain factorial, namely F = (s − 1)!, with s being
the size of the Jordan block, and C > 0 at the end is a certain constant, depending on
this nunber F , and on α. Thus, we are led to the conclusion in the statement. □

Good news, with this in hand, we can go back now to the non-linear systems. Indeed,
inspired by Idea 7.14, let us formulate the following definition:

Definition 7.18. We say that a non-linear system

ẋ = f(x) , x0 = 0

is hyperbolic when the associated linear system

ẋ = Ax , x0 = 0

with A = f ′(x) ∈MN(R) being the derivative of f , is hyperbolic.

With this done, our goal now will be to extend what we have in Theorem 7.17, to
the case of the non-linear hyperbolic systems. But this can be done indeed, with a lot of
routine approximation work, and with some differential geometry helping too, the point
being that, in the non-linear case, the spaces E± considered there become manifolds.

Getting started now, we first have the following result:
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Theorem 7.19. Consider a non-linear system, written in the following form, with
A = f ′(x) ∈MN(R) being the derivative of f , and g(x) = o(|x|) being the remainder:

ẋ = f(x) , f(x) = Ax+ g(x)

This system is then equivalent to the following equation,

x(t) = etAx0 +

∫ t

0

e(t−r)Ag(xr)dr

called Volterra integral equation.

Proof. This is indeed something elementary, which follows from a direct computa-
tion, by computing the time derivative of the function in the statement. Let us set:

x(t) = etAC(t)

The derivative of this function is then given by the following formula:

ẋ(t) = AetAC(t) + etAĊ(t)

Now observe that this latter formula reads:

Ax(t) + g(x(t)) = Ax(t) + etAĊ(t)

We conclude from this that we have the following equality:

etAĊ(t) = g(x(t))

Equivalently, we have the following formula:

Ċ(t) = e−tAg(x(t))

Now by integrating, this gives the following formula:

C(t) = x(0) +

∫ t

0

e−rAg(x(r))dr

Thus, the solution is given by the following formula:

x(t) = etA
(
x0 +

∫ t

0

e−rAg(x(r))dr

)
= etAx(0) +

∫ t

0

e(t−r)Ag(x(r))dr

We are therefore led to the conclusion in the statement. □

In order to study now the integral equations as above, we will need some functional
analysis tools, namely the following result, called uniform contraction principle:
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Theorem 7.20. Given a Banach space X, and a closed subset C ⊂ X, assume that
we have maps as follows, depending on parameters λ ∈ Λ, in some Banach space,

Kλ : C → C

which are continuous with respect to them, and which are uniform contractions,

||Kλ(x)−Kλ(y)|| ≤ θ||x− y||

with θ ∈ [0, 1). Then, these maps have unique fixed points x̄(λ), which are continuous
with respect to λ. Moreover, if λn → λ, then with xn+1 = Kλn(xn) we have xn → x̄(λ).

Proof. The existence and uniqueness of each of the fixed points x̄(λ) follows from
the usual contraction principle, that we know well from before. Thus, we are left with
proving the last assertions, regarding the continuity properties of the following map:

λ→ x̄(λ)

(1) Let us first prove that this map is indeed continuous. We have:

||x̄(λ)− x̄(η)|| = ||Kλ(x̄(λ))−Kη(x̄(η))||
≤ θ||x̄(λ)− x̄(η)||+ ||Kλ(x̄(η))−Kη(x̄(η))||

We deduce from this that we have the following estimate:

||x̄(λ)− x̄(η)|| ≤ 1

1− θ
||Kλ(x̄(η))−Kη(x̄(η))||

=
1

1− θ
||(Kλ −Kη)x̄(η)||

Now since λ→ η implies Kλ → Kη, the map λ→ x̄(λ) is indeed continuous.

(2) Let us prove now the last assertion of the theorem. For this purpose, pick a point
x0 ∈ C, and construct a sequence as in the statement, namely:

xn+1 = Kλn(xn)

We want to show that the following happens, as claimed in the statement:

λn → λ =⇒ xn → x̄(λ)

For this purpose, consider the following two quantities:

∆n = ||xn − x̄(λ)|| , εn = ||x̄(λn)− x̄(λ)||



104 7. DYNAMICAL SYSTEMS

We have then the following estimate, by using the triangle inequality, then our con-
traction assumption on the maps Kλ, and then the triangle inequality again:

∆n+1 = ||xn+1 − x̄(λ)||
≤ ||xn+1 − x̄(λn)||+ ||x̄(λn)− x̄(λ)||
= ||Kλn(xn)−Kλn(x̄(λn))||+ εn

= ||Kλn(xn − x̄(λn))||+ εn

≤ θ||xn − x̄(λn)||+ εn

≤ θ(||xn − x̄(λ)||+ ||x̄(λ)− x̄(λn)||) + εn

= θ(∆n + εn) + εn

= θ∆n + (1 + θ)εn

We conclude from this, by iterating, that we have the following estimate:

∆n ≤ θn∆0 + (1 + θ)
n∑

j=1

θn−jεj−1

Now since we have εn → 0, this estimate gives then ∆n → 0, as desired. □

In practice, we will need as well the following version of the above result:

Theorem 7.21. Given a Banach space X, and a closed subset C ⊂ X, assume that
we have maps as follows, depending on parameters λ ∈ Λ, in some Banach space,

Kλ : C → C

which are continuous with respect to them, and are uniform contractions, satisfying

||Kλn . . . Kλ1(x)−Kλn . . . Kλ1(y)|| ≤ θn||x− y||
with

∑
n θn < ∞. Then, these maps have unique fixed points x̄(λ), which are continuous

with respect to λ. Moreover, if λn → λ, then with xn+1 = Kλn(xn) we have xn → x̄(λ).

Proof. This is something more technical, the idea being as follows:

(1) Consider the following maps, depending on parameters λ′ = (λ1, . . . , λn) ∈ Λn:

Kλ′ = Kλn . . . Kλ1

In order to prove the result, the idea will be to show that these maps are continuous
with respect to their parameters λ′ ∈ Λn, and then apply the previous theorem.

(2) So, let us prove the above-mentioned continuity property. We do this by recurrence
on n ∈ N, with the case n = 1 being clear from definitions. So, assume that we have
continuity at n− 1, and let us try to prove that we have continuity at n.

(3) For this purpose, consider two parameters at n− 1, denoted as follows:

λ′ = (λ1, . . . , λn−1) , η′ = (η1, . . . , ηn−1)
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We have then the following estimate, obtained by using the triangle inequality, and
then our assumptions from the statement, on our maps Kλ:

||KλnKλ′(x)−KηnKη′(x)||
≤ ||KλnKλ′(x)−KλnKη′(x)||+ ||KλnKη′(x)−KηnKη′(x)||
≤ θ1||Kλ′(x)−Kη′(x)||+ ||(Kλn −Kηn)Kη′(x)||

Now when assuming (λ1, . . . , λn) → (η1, . . . , ηn), both terms at the end go to 0, and
so the quantity itself, that we estimated above, goes to 0 too, as desired.

(4) Summarizing, we have proved the continuity claim in (1). But with this in hand,
the previous theorem applies, with the remark that our assumption

∑
n θn < ∞ forces

indeed θn < 1, for n ∈ N big enough, and this gives the result. □

Very nice all this, so we have now functional analysis tools for dealing with the Volterra
integral equations from Theorem 7.19. It is actually convenient to go beyond the frame-
work of Theorem 7.19, with more general results. Let us formulate indeed:

Definition 7.22. A Volterra integral operator is an operator of type

Kλ(x)(t) = k(t, λ) +

∫ t

0

K(s, x(s), λ)ds

depending on functions as follows,

k ∈ C(I × Λ, U) , K ∈ C(I × U × Λ,RN)

with I = [−T, T ] being an interval, U ⊂ RN an open set, and Λ ⊂ RN a compact set.

Observe that the previous Volterra integral equations, from Theorem 7.19, make ap-
pear indeed such operators. There are some other interesting examples as well.

The point now is that we can apply our fixed point theorems, and we obtain:

Theorem 7.23. Assume that there exists L > 0 such that

||K(t, x, λ)−K(t, y, λ)|| ≤ L||x− y||

holds, for any t, any λ, and any x, y ∈ U . Then the equation

Kλ(x) = x

has a unique solution, which is continuous with respect to λ.

Proof. This follows indeed by applying our general fixed point theorems, with the
existence of L > 0 as above guaranteeing that the contraction conditions are satisfied. □
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7d. Linearization

Getting now to more advanced topics, we would like to know more about the solutions.
For this purpose, we will need some classical analysis results. Let us start with:

Theorem 7.24. Assume that fn → f pointwise, with fn, f : U ⊂ RN → RN being
integrable, and assume in addition that we have

|fn(x)| ≤ g(x)

for some integrable function g : U ⊂ RN → RN . Then, the following happens:

lim
n→∞

∫
fn(x) =

∫
f(x)

Moreover, this latter conclusion can fail, without our assumption using g.

Proof. This is a very standard analysis theorem, called dominated convergence the-
orem, and for a complete proof of this, see for instance Rudin [79]. □

Next, we have the following result, which is something more specialized:

Theorem 7.25. Assume that fn → f and f ′
n → g pointwise, and that we have

|f ′
n| ≤ γ

for some integrable function γ. Then f is differentiable, with derivative given by:

f ′(x) = g(x)

Moreover, this latter conclusion can fail, without our assumption using γ.

Proof. It is enough to deal with the case of the one-variable functions, f : R → R.
But here, we can use the following formula:

fn(x) = fn(x0) +

∫ x

x0

f ′
n(t)dt

Indeed, with n→ ∞ we obtain from this, by using Theorem 7.24 on the right:

f(x) = f(x0) +

∫ x

x0

g(t)dt

On the other hand, we know that we have the following formula:

f(x) = f(x0) +

∫ x

x0

f(t)dt

We conclude that the following equality must hold, for any x:∫ x

x0

f(t)dt =

∫ x

x0

g(t)dt

But now, by differentiating we obtain f = g, as desired. As for the counterexample
at the end, we will leave this as an instructive exercise. □
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Hang on, we are not done yet with classical analysis. Here is in fact the result that
we will need, in connection with the questions that we are interested in:

Theorem 7.26. Assume that f(x, λ) is integrable with respact to x, for any λ, and
C1 with respect to λ, for any x. Assume in addition that∣∣∣∣ dfdλ(x, λ)

∣∣∣∣ ≤ g(x)

for some integrable function g. Then the function given by

F (λ) =

∫
f(x, λ)dx

is C1, and its derivative is given by the following formula:

dF

dλ
(λ) =

∫
df

dλ
(x, λ)dx

Moreover, this latter conclusion can fail, without our assumption using g.

Proof. As before with Theorem 7.25, it is enough to do this in 1 dimension. In order
to simplify the notations, let us denote by f ′ the derivative of f with respect to λ:

f ′ =
df

dλ

We have then the following formula, coming from standard calculus:

f(x, λ+ ε)− f(x, λ) = ε

∫ 1

0

f ′(x, λ+ εt)dt

Thus, in terms of the function F from the statement, we have:

F (λ+ ε)− F (λ)

ε
=

∫ ∫ 1

0

f ′(x, λ+ εt)dtdx

According to our assumption |f ′| ≤ g, the following estimate holds:

|f ′(x, λ+ εt)| ≤ g(x)

Thus we can apply Theorem 7.24, and we obtain in this way:

lim
ε→0

∫ 1

0

f ′(x, λ+ εt)dt =

∫ 1

0

lim
ε→0

f ′(x, λ+ εt)dt

= f ′(x, λ)

On the other hand, we have as well the following estimate:∣∣∣∣∫ 1

0

f ′(x, λ+ εt)dt

∣∣∣∣ ≤ g(x)
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Thus, we can apply Theorem 7.24 again, and we obtain in this way:

lim
ε→0

F (λ+ ε)− F (λ)

ε
= lim

ε→0

∫ ∫ 1

0

f ′(x, λ+ εt)dtdx

=

∫
lim
ε→0

∫ 1

0

f ′(x, λ+ εt)dtdx

=

∫
f ′(x, λ)dx

But this is exactly the formula that we wanted to establish, so done. □

Good news, we can now go back to our integral equations. Let us recall indeed from
Definition 7.22 that a Volterra integral operator was an operator of the following type,
depending on functions k ∈ C(I × Λ, U) and K ∈ C(I × U × Λ,RN):

Kλ(x)(t) = k(t, λ) +

∫ t

0

K(s, x(s), λ)ds

As explained in Theorem 7.23, we are interested in the corresponding fixed points:

Kλ(x) = x

And the point now is that we have the following result regarding these fixed points,
coming as a complement to what we already know from Theorem 7.23:

Theorem 7.27. In the context of a Volterra integral operator

Kλ(x)(t) = k(t, λ) +

∫ t

0

K(s, x(s), λ)ds

if k,K are assumed both Cr with respect to λ, x, then the solution of

Kλ(x) = x

is Cr too, with respect to its variable.

Proof. This comes indeed by applying Theorem 7.26, as follows:

(1) As a first observation, by suitably modifying the functionK(t, x, λ), we can assume
that we have k(t, λ) = 0. That is, we can assume that our operator is as follows:

Kλ(x)(t) =

∫ t

0

K(s, x(s), λ)ds

(2) The idea will be that of proceeding by recurrence on r. Let us first prove that the
solution is C0. For this purpose, we use the triangle inequality, which gives:

|x̄(t, λ)− x̄(s, η)| ≤ |x̄(t, λ)− x̄(s, λ)|+ |x̄(s, λ)− x̄(s, η)|
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Now observe that with (t, λ) → (s, η), we have the following estimate:

|x̄(t, λ)− x̄(s, λ)| ≤
∣∣∣∣∫ t

0

K(r, x̄(r, λ), λ)dr

∣∣∣∣→ 0

As for the other term appearing above, again with (t, λ) → (s, η), from the fixed point
theorem that we used in order to construct the solution, we know that we have:

|x̄(s, λ)− x̄(s, η)| → 0

As a conclusion, with (t, λ) → (s, η), we have, as desired:

|x̄(t, λ)− x̄(s, η)| → 0

(2) In order to discuss now the case r ≥ 1, the idea will be that of constructing integral
equations for the partial derivatives of the solutions, that we can solve afterwards by using
the calculus rules coming from Theorem 7.24, and its various versions above.

(3) To be more precise, let us first discuss the usual differentiability, r = 1. By
following the above idea, let us consider the following function:

ȳ(t, λ) =
d

dλ
x̄(t, λ)

Consider as well the following modification of our original integral operator:

K̄λ(x, y)(t) =

∫ t

0

d

dλ
Kλ(s, x(s), λ)y(s)ds

Our claim is then that ȳ(t, λ) is the solution of the following equation:

K̄λ(x̄(λ), y) = y

(4) Indeed, by our result from (2) above we know that this latter equation has a certain
continuous solution, say ỹ. In order to prove now that we have ȳ = ỹ, let us set:

(x0(t), y0(t)) = (0, 0) , (xn+1, yn+1) = (Kλ(xn), K̄λ(xn, yn))

By using the fixed point theorem, in its second, technical version, we obtain:

(xn, yn) → (x̄, ỹ)

Now since (xn, yn) is uniformly bounded with respect to λ, we can apply Theorem
7.26, and we obtain ȳ = ỹ, as desired, proving our claim in (3).

(5) So, this was for the idea of the proof at r = 1, and the proof in general, at r ∈ N,
is similar, by recurrence. We will leave the details here as an instructive exercise. □

Along the same lines, we have as well the following useful result:
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Theorem 7.28. In the context of a Volterra integral operator

Kλ(x)(t) = k(t, λ) +

∫ t

0

K(s, x(s), λ)ds

the solution of the equation Kλ(x) = x exists and is unique on

C([−T0, T0]× Λ, U)

and satisfies the following explicit estimate,

|x̄(t, λ)− k(t, λ)| ≤ eLT0 sup
λ∈Λ

∫ T0

−T0

|K(s, k(s, λ), λ)|ds

with the number T0 > 0 depending on K and k.

Proof. This is something very standard, exactly as in the case without parameters,
which was worked out in the above, and we will leave clarifying the details, including
working out the formula of T0 > 0, as function of K and k, as an instructive exercise. □

As a conclusion to this, we have a quite good understanding of the Volterra integral
equations, that can be applied for instance to questions related to the linear equations.

Getting now to the non-linear case, the idea here will be that of using the linearization
strategy explained earlier in this chapter, in the hyperbolic case.

So, consider such a non-linear equation ẋ = f(x), and denote as usual by Φ(t, x) its
flow, describing the solution in time t, with initial data x(0) = x. We have:

Definition 7.29. We associate to the equation ẋ = f(x) the following sets,

W±(x0) =

{
x
∣∣∣ lim
t→±∞

Φ(t, x) = x0

}
gathering the initial data x such that the solution converges to x0, with t→ ±∞.

Observe that both the above sets W±(x0) are stable under the flow. In order now to
compute these sets, we use our linearization idea. So, let us introduce as well:

Definition 7.30. We associate to the equation ẋ = f(x) the sets

M±,α =

{
x
∣∣∣γ±(x) ⊂ U(x0), sup

±t≥0
e±αt|Φ(t, x)− x0| <∞

}
and then we consider the intersection of these sets, over eigenvalues,

M±(x0) =
⋃
α>0

M±,α

which in the linear case, ẋ = Ax, are the spaces E± that we knew from before.
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To be more precise here, in the linear case, ẋ = Ax, the spaces M±,α constructed
above correspond to the spaces E±,α spanned by the eigenvectors of A corresponding to
the eingenvalues satisfying Re(λ) ≥ α and Re(λ) ≤ −α, and so by intersecting, we obtain
indeed the spaces E± that we knew from before, as claimed in the above.

Observe also that, in general, the spaces constructed above are invariant by the flow.

We can now formulate our main linearization result, as follows:

Theorem 7.31. For a hyperbolic point x0, the following happen:

(1) M±(x0) is a C
1 manifold.

(2) M±(x0) is tangent to E
± at 0.

(3) M±(x0) = W±(x0).

Proof. The idea here will be that of using the standard direct sum decomposition
RN = E+ ⊕E−, in order to decompose everything, and then using the theory of integral
equations developed in the above, in order to prove the various assertions.

(1) Let us begin with some notations. We let P± be the orthogonal projection onto
the linear space E±, and we consider the following quantities:

x± = P±x(0) , g±(x) = P±g(x) , x±(t) = P±x(t)

(2) Our first claim is that, assuming that x(t) is bounded with t > 0, any solution
solves the following equation, where P (t) = P+ for t > 0, and P (t) = −P− for t ≤ 0:

x(t) = K(x)(t) , K(x)(t) = etAx+ +

∫ ∞

0

e(t−r)AP (t− r)g(x(r))dr

But this follows indeed from a routine computation, based on Theorem 7.19.

(2) Our second claim is that, assuming that f ∈ Ck, and that α > 0 is such that
A + α1N is hyperbolic, we can find a neighborhood U(x0) = x0 + U and a function
ht,α ∈ Ck(Et,α ∩ U,E−,α) such that both ht,α and its derivative vanish at 0, and that:

M+,α(x0) ∩ U(x0) =
{
x0 + a+ ht,α(a)

∣∣∣a ∈ Et,α ∩ U
}

Moreover, we also claim that in this situation, the following happen:

α1 ≤ α2 =⇒ M+,α2(x0) ≤M+,α1(x0)

E+,α2 = E+,α1 =⇒ M+,α2(x0) =M+,α1(x0)

But all this can be proved, by carefully applying our contraction principles above.

(3) Now the point is that the first claim in (2) proves that M±(x0) is indeed tangent
to E± at 0, and so, with a bit more work, we are led to the proof of the theorem. We will
leave the details here, including learning about manifolds, as an instructive exercise. □
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