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Abstract. This is an introduction to the theory of linear operators. We first discuss
the basic examples of Hilbert spaces, for the most appearing in relation with questions
from physics, and the relevant linear operators on them. Then we get into a systematic
study of such operators, notably featuring the spectral theorem in infinite dimensions,
in its various formulations, and its applications. We then discuss in detail, with some
further theory and examples, the case of the compact operators, which are quite close to
the usual, finite matrices. Finally, we provide an introduction to the theory of operator
algebras, with the basics here explained, by using the spectral theorem.



Preface

Operator theory is a wide business, and this for good reason, the point being that
such operators are in fact infinite matrices, and so all the linear algebra that you know,
or perhaps that you don’t know yet, is naturally part of the theory. To be more precise,
linear algebra is the “trivial” part of operator theory, corresponding to the case where
that infinite matrix, that we are trying hard to understand, happens to be finite.

Besides linear algebra, operator theory knows as well how to swallow probability, and
this because one of the most beautiful and advanced objects of modern probability, which
are the random matrices, can be thought of as being linear operators too.

Finally, differential geometry, analysis on manifolds, Fourier transform theory, ordi-
nary and partial differential equations, and so on, are all related to operator theory too,
the general principle being that, no matter what geometry or analysis problem you are
looking at, there is always a key operator there, waiting to be diagonalized.

So, this is the general principle of operator theory, by definition some sort of linear
algebra in infinite dimensions, and with this point of view providing the main tools for
the study of operators, in analogy what we know from linear algebra, and in practice,
with all this being related to mathematics and physics in a large sense, for all tastes.

The present book is a standard introduction to operator theory, with the aim being,
as usual for operator theory books, double. On one hand we would like to present some
tools for the study of linear operators, as much and as sharp as we can, inspired by usual
linear algebra. And on the other hand we would like to keep en eye on the main examples
of operators, coming from geometry, analysis, probability and physics.

More in detail now, the book is organized in 4 parts, as follows:

Part I discusses the basic examples of Hilbert spaces, for the most appearing in relation
with questions from physics, and the relevant linear operators on them.

Part II gets into a systematic study of such operators, notably featuring the spectral
theorem in infinite dimensions, in its various formulations, and its applications.
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4 PREFACE

Part III discusses in detail, with some further theory and examples, the case of the
compact operators, which are quite close to the usual, finite matrices.

Part IV is an introduction to the theory of the algebras that the linear operators can
form, with the basics here explained, by using the spectral theorem.

In the hope that you will find this book useful. As briefly explained above, operator
theory is a wide discipline, and there are many ways of getting introduced to it, depending
on the main examples of operators that you have in mind. Here we will be rather guided
by old quantum mechanics, as developed by Heisenberg, Schrödinger and others, and it
is my hope is that you will like this approach, which is something quite natural.

Many thanks to my linear algebra undergraduate students, and to my functional anal-
ysis graduate students too, operator theory and related physics aspects are fun and inter-
esting, and are a good topic for side discussions, and even for some systematic teaching,
when things in linear algebra or in functional analysis get a bit boring.

Thanks as well to my cats, operator theory is an art, involving never-ending learning,
and nothing more inspiring, than watching a cat quickly diagonalizing a mouse.

Cergy, March 2025

Teo Banica
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Part I

Linear operators



We’re leaving together
But still, it’s farewell

And maybe we’ll come back
To Earth, who can tell



CHAPTER 1

Linear algebra

1a. Linear maps

According to various findings in physics, starting with those of Heisenberg from the
early 1920s, basic quantum mechanics involves linear operators T : H → H from a
complex Hilbert space H to itself. The space H is typically infinite dimensional, a basic
example being the Schrödinger space H = L2(R3) of the wave functions ψ : R3 → C of
the electron. In fact, in what regards the electron, this space H = L2(R3) is basically
the correct one, with the only adjustment needed, due to Pauli and others, being that of
tensoring with a copy of K = C2, in order to account for the electron spin.

But more on this later. Let us start this book more modestly, as follows:

Fact 1.1. We are interested in quantum mechanics, taking place in infinite dimen-
sions, but as a main source of inspiration we will have H = CN , with scalar product

< x, y >=
∑
i

xiȳi

with the linearity at left being the standard mathematical convention. More specifically,
we will be interested in the mathematics of the linear operators T : H → H.

The point now, that you surely know about, is that the above operators T : H → H
correspond to the square matrices A ∈ MN(C). Thus, as a preliminary to what we want
to do in this book, we need a good knowledge of linear algebra over C.

You probably know well linear algebra, but always good to recall this, and this will
be the purpose of the present chapter. Let us start with the very basics:

Theorem 1.2. The linear maps T : CN → CN are in correspondence with the square
matrices A ∈MN(C), with the linear map associated to such a matrix being

Tx = Ax

and with the matrix associated to a linear map being Aij =< Tej, ei >.

Proof. The first assertion is clear, because a linear map T : CN → CN must send a
vector x ∈ CN to a certain vector Tx ∈ CN , all whose components are linear combinations
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12 1. LINEAR ALGEBRA

of the components of x. Thus, we can write, for certain complex numbers Aij ∈ C:

T


x1
...
...
xN

 =


A11x1 + . . .+ A1NxN

...

...
AN1x1 + . . .+ ANNxN


Now the parameters Aij ∈ C can be regarded as being the entries of a square matrix

A ∈MN(C), and with the usual convention for matrix multiplication, we have:

Tx = Ax

Regarding the second assertion, with Tx = Ax as above, if we denote by e1, . . . , eN
the standard basis of CN , then we have the following formula:

Tej =


A1j
...
...

ANj


But this gives the second formula, < Tej, ei >= Aij, as desired. □

Our claim now is that, no matter what we want to do with T or A, of advanced type,
we will run at some point into their adjoints T ∗ and A∗, constructed as follows:

Theorem 1.3. The adjoint operator T ∗ : CN → CN , which is given by

< Tx, y >=< x, T ∗y >

corresponds to the adjoint matrix A∗ ∈MN(C), given by

(A∗)ij = Āji

via the correspondence between linear maps and matrices constructed above.

Proof. Given a linear map T : CN → CN , fix y ∈ CN , and consider the linear form
φ(x) =< Tx, y >. This form must be as follows, for a certain vector T ∗y ∈ CN :

φ(x) =< x, T ∗y >

Thus, we have constructed a map y → T ∗y as in the statement, which is obviously
linear, and that we can call T ∗. Now by taking the vectors x, y ∈ CN to be elements of
the standard basis of CN , our defining formula for T ∗ reads:

< Tei, ej >=< ei, T
∗ej >

By reversing the scalar product on the right, this formula can be written as:

< T ∗ej, ei >= < Tei, ej >

But this means that the matrix of T ∗ is given by (A∗)ij = Āji, as desired. □
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Getting back to our claim, the adjoints ∗ are indeed ubiquitous, as shown by:

Theorem 1.4. The following happen:

(1) T (x) = Ux with U ∈MN(C) is an isometry precisely when U∗ = U−1.
(2) T (x) = Px with P ∈MN(C) is a projection precisely when P 2 = P ∗ = P .

Proof. Let us first recall that the lengths, or norms, of the vectors x ∈ CN can be
recovered from the knowledge of the scalar products, as follows:

||x|| =
√
< x, x >

Conversely, we can recover the scalar products out of norms, by using the following
difficult to remember formula, called complex polarization identity:

4 < x, y >= ||x+ y||2 − ||x− y||2 + i||x+ iy||2 − i||x− iy||2

The proof of this latter formula is indeed elementary, as follows:

||x+ y||2 − ||x− y||2 + i||x+ iy||2 − i||x− iy||2

= ||x||2 + ||y||2 − ||x||2 − ||y||2 + i||x||2 + i||y||2 − i||x||2 − i||y||2

+2Re(< x, y >) + 2Re(< x, y >) + 2iIm(< x, y >) + 2iIm(< x, y >)

= 4 < x, y >

Finally, we will use Theorem 1.3, and more specifically the following formula coming
from there, valid for any matrix A ∈MN(C) and any two vectors x, y ∈ CN :

< Ax, y >=< x,A∗y >

(1) Given a matrix U ∈ MN(C), we have indeed the following equivalences, with the
first one coming from the polarization identity, and the other ones being clear:

||Ux|| = ||x|| ⇐⇒ < Ux,Uy >=< x, y >

⇐⇒ < x,U∗Uy >=< x, y >

⇐⇒ U∗Uy = y

⇐⇒ U∗U = 1

⇐⇒ U∗ = U−1

(2) Given a matrix P ∈MN(C), in order for x→ Px to be an oblique projection, we
must have P 2 = P . Now observe that this projection is orthogonal when:

< Px− x, Py >= 0 ⇐⇒ < P ∗Px− P ∗x, y >= 0

⇐⇒ P ∗Px− P ∗x = 0

⇐⇒ P ∗P − P ∗ = 0

⇐⇒ P ∗P = P ∗

The point now is that by conjugating the last formula, we obtain P ∗P = P . Thus we
must have P = P ∗, and this gives the result. □
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Summarizing, the linear operators come in pairs T, T ∗, and the associated matrices
come as well in pairs A,A∗. This is something quite interesting, philosophically speaking,
and will keep this in mind, and come back to it later, on numerous occasions.

1b. Diagonalization

Let us discuss now the diagonalization question for the linear maps and matrices.
Again, we will be quite brief here, and for more, we refer to any standard linear algebra
book. By the way, there will be some complex analysis involved too, and here we refer to
Rudin [81]. Which book of Rudin will be in fact the one and only true prerequisite for
reading the present book, but more on references and reading later.

The basic diagonalization theory, formulated in terms of matrices, is as follows:

Proposition 1.5. A vector v ∈ CN is called eigenvector of A ∈ MN(C), with corre-
sponding eigenvalue λ, when A multiplies by λ in the direction of v:

Av = λv

In the case where CN has a basis v1, . . . , vN formed by eigenvectors of A, with correspond-
ing eigenvalues λ1, . . . , λN , in this new basis A becomes diagonal, as follows:

A ∼

λ1 . . .
λN


Equivalently, if we denote by D = diag(λ1, . . . , λN) the above diagonal matrix, and by
P = [v1 . . . vN ] the square matrix formed by the eigenvectors of A, we have:

A = PDP−1

In this case we say that the matrix A is diagonalizable.

Proof. This is something which is clear, the idea being as follows:

(1) The first assertion is clear, because the matrix which multiplies each basis element
vi by a number λi is precisely the diagonal matrix D = diag(λ1, . . . , λN).

(2) The second assertion follows from the first one, by changing the basis. We can
prove this by a direct computation as well, because we have Pei = vi, and so:

PDP−1vi = PDei

= Pλiei

= λiPei

= λivi

Thus, the matrices A and PDP−1 coincide, as stated. □
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Let us recall as well that the basic example of a non diagonalizable matrix, over the
complex numbers as above, is the following matrix:

J =

(
0 1
0 0

)
Indeed, we have J

(
x
y

)
=
(
y
0

)
, so the eigenvectors are the vectors of type

(
x
0

)
, all with

eigenvalue 0. Thus, we have not enough eigenvectors for constructing a basis of C2.

In general, in order to study the diagonalization problem, the idea is that the eigen-
vectors can be grouped into linear spaces, called eigenspaces, as follows:

Theorem 1.6. Let A ∈MN(C), and for any eigenvalue λ ∈ C define the corresponding
eigenspace as being the vector space formed by the corresponding eigenvectors:

Eλ =
{
v ∈ CN

∣∣∣Av = λv
}

These eigenspaces Eλ are then in a direct sum position, in the sense that given vectors
v1 ∈ Eλ1 , . . . , vk ∈ Eλk

corresponding to different eigenvalues λ1, . . . , λk, we have:∑
i

civi = 0 =⇒ ci = 0

In particular we have the following estimate, with sum over all the eigenvalues,∑
λ

dim(Eλ) ≤ N

and our matrix is diagonalizable precisely when we have equality.

Proof. We prove the first assertion by recurrence on k ∈ N. Assume by contradiction
that we have a formula as follows, with the scalars c1, . . . , ck being not all zero:

c1v1 + . . .+ ckvk = 0

By dividing by one of these scalars, we can assume that our formula is:

vk = c1v1 + . . .+ ck−1vk−1

Now let us apply A to this vector. On the left we obtain:

Avk = λkvk = λkc1v1 + . . .+ λkck−1vk−1

On the right we obtain something different, as follows:

A(c1v1 + . . .+ ck−1vk−1) = c1Av1 + . . .+ ck−1Avk−1

= c1λ1v1 + . . .+ ck−1λk−1vk−1

We conclude from this that the following equality must hold:

λkc1v1 + . . .+ λkck−1vk−1 = c1λ1v1 + . . .+ ck−1λk−1vk−1
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On the other hand, we know by recurrence that the vectors v1, . . . , vk−1 must be
linearly independent. Thus, the coefficients must be equal, at right and at left:

λkc1 = c1λ1

...

λkck−1 = ck−1λk−1

Now since at least one of the numbers ci must be nonzero, from λkci = ciλi we obtain
λk = λi, which is a contradiction. Thus our proof by recurrence of the first assertion is
complete. As for the second assertion, this follows from the first one. □

In order to reach now to more advanced results, we can use the characteristic polyno-
mial, which appears via the following fundamental result:

Theorem 1.7. Given a matrix A ∈MN(C), consider its characteristic polynomial:

P (x) = det(A− x1N)

The eigenvalues of A are then the roots of P . Also, we have the inequality

dim(Eλ) ≤ mλ

where mλ is the multiplicity of λ, as root of P .

Proof. The first assertion follows from the following computation, using the fact that
a linear map is bijective when the determinant of the associated matrix is nonzero:

∃v, Av = λv ⇐⇒ ∃v, (A− λ1N)v = 0

⇐⇒ det(A− λ1N) = 0

Regarding now the second assertion, given an eigenvalue λ of our matrix A, consider
the dimension dλ = dim(Eλ) of the corresponding eigenspace. By changing the basis of
CN , as for the eigenspace Eλ to be spanned by the first dλ basis elements, our matrix
becomes as follows, with B being a certain smaller matrix:

A ∼
(
λ1dλ 0
0 B

)
We conclude that the characteristic polynomial of A is of the following form:

PA = Pλ1dλ
PB = (λ− x)dλPB

Thus the multiplicity mλ of our eigenvalue λ, as a root of P , satisfies mλ ≥ dλ, and
this leads to the conclusion in the statement. □

Now recall that we are over C, which is something that we have not used yet, in our
last two statements. And the point here is that we have the following key result:
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Theorem 1.8. Any polynomial P ∈ C[X] decomposes as

P = c(X − a1) . . . (X − aN)

with c ∈ C and with a1, . . . , aN ∈ C.

Proof. It is enough to prove that P has one root, and we do this by contradiction.
Assume that P has no roots, and pick a number z ∈ C where |P | attains its minimum:

|P (z)| = min
x∈C

|P (x)| > 0

Since Q(t) = P (z+ t)−P (z) is a polynomial which vanishes at t = 0, this polynomial
must be of the form ctk + higher terms, with c ̸= 0, and with k ≥ 1 being an integer. We
obtain from this that, with t ∈ C small, we have the following estimate:

P (z + t) ≃ P (z) + ctk

Now let us write t = rw, with r > 0 small, and with |w| = 1. Our estimate becomes:

P (z + rw) ≃ P (z) + crkwk

Now recall that we have assumed P (z) ̸= 0. We can therefore choose w ∈ T such that
cwk points in the opposite direction to that of P (z), and we obtain in this way:

|P (z + rw)| ≃ |P (z) + crkwk| = |P (z)|(1− |c|rk)
Now by choosing r > 0 small enough, as for the error in the first estimate to be small,

and overcame by the negative quantity −|c|rk, we obtain from this:

|P (z + rw)| < |P (z)|
But this contradicts our definition of z ∈ C, as a point where |P | attains its minimum.

Thus P has a root, and by recurrence it has N roots, as stated. □

Now by putting everything together, we obtain the following result:

Theorem 1.9. Given a matrix A ∈MN(C), consider its characteristic polynomial

P (X) = det(A−X1N)

then factorize this polynomial, by computing the complex roots, with multiplicities,

P (X) = (−1)N(X − λ1)
n1 . . . (X − λk)

nk

and finally compute the corresponding eigenspaces, for each eigenvalue found:

Ei =
{
v ∈ CN

∣∣∣Av = λiv
}

The dimensions of these eigenspaces satisfy then the following inequalities,

dim(Ei) ≤ ni

and A is diagonalizable precisely when we have equality for any i.
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Proof. This follows by combining Theorem 1.6, Theorem 1.7 and Theorem 1.8. In-
deed, the statement is well formulated, thanks to Theorem 1.8. By summing the inequal-
ities dim(Eλ) ≤ mλ from Theorem 1.7, we obtain an inequality as follows:∑

λ

dim(Eλ) ≤
∑
λ

mλ ≤ N

On the other hand, we know from Theorem 1.6 that our matrix is diagonalizable when
we have global equality. Thus, we are led to the conclusion in the statement. □

This was for the main result of linear algebra. There are countless applications of this,
and generally speaking, advanced linear algebra consists in building on Theorem 1.9.

In practice, diagonalizing a matrix remains something quite complicated. Let us record
a useful algorithmic version of the above result, as follows:

Theorem 1.10. The square matrices A ∈MN(C) can be diagonalized as follows:

(1) Compute the characteristic polynomial.
(2) Factorize the characteristic polynomial.
(3) Compute the eigenvectors, for each eigenvalue found.
(4) If there are no N eigenvectors, A is not diagonalizable.
(5) Otherwise, A is diagonalizable, A = PDP−1.

Proof. This is an informal reformulation of Theorem 1.9, with (4) referring to the
total number of linearly independent eigenvectors found in (3), and with A = PDP−1 in
(5) being the usual diagonalization formula, with P,D being as before. □

As an illustration for all this, which is a must-know computation, we have:

Theorem 1.11. The rotation of angle t ∈ R in the plane diagonalizes as:(
cos t − sin t
sin t cos t

)
=

1

2

(
1 1
i −i

)(
e−it 0
0 eit

)(
1 −i
1 i

)
Over the reals this is impossible, unless t = 0, π, where the rotation is diagonal.

Proof. Observe first that, as indicated, unlike we are in the case t = 0, π, where our
rotation is ±12, our rotation is a “true” rotation, having no eigenvectors in the plane.
Fortunately the complex numbers come to the rescue, via the following computation:(

cos t − sin t
sin t cos t

)(
1

i

)
=

(
cos t− i sin t

i cos t+ sin t

)
= e−it

(
1

i

)
We have as well a second complex eigenvector, coming from:(

cos t − sin t
sin t cos t

)(
1

−i

)
=

(
cos t+ i sin t

−i cos t+ sin t

)
= eit

(
1

−i

)
Thus, we are led to the conclusion in the statement. □
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As another basic illustration, we have the following result:

Theorem 1.12. The all-one, or flat matrix, namely

IN =

1 . . . 1
...

...
1 . . . 1


diagonalizes as follows, over the complex numbers,

IN =
1

N
FNQF

∗
N

with FN = (wij)ij with w = e2πi/N being the Fourier matrix, and Q = diag(N, 0, . . . , 0).

Proof. It is clear that we have IN = NPN , with PN being the projection on the all-1
vector ξ = (1)i ∈ RN . Thus, IN diagonalizes over R, as follows:

IN ∼


N

0
. . .

0


The problem, however, is that when looking for 0-eigenvectors, in order to have an

explicit diagonalization formula, we must solve the following equation:

x1 + . . .+ xN = 0

And this is not an easy task, if we want a nice basis for the space of solutions. For-
tunately, complex numbers come to the rescue, and we are led to the conclusion in the
statement. We will leave the verifications here as an instructive exercise. □

1c. Matrix tricks

At the level of basic examples of diagonalizable matrices, we first have the following
result, which provides us with the “generic” examples:

Theorem 1.13. For a matrix A ∈MN(C) the following conditions are equivalent,

(1) The eigenvalues are different, λi ̸= λj,
(2) The characteristic polynomial P has simple roots,
(3) The characteristic polynomial satisfies (P, P ′) = 1,
(4) The resultant of P, P ′ is nonzero, R(P, P ′) ̸= 0,
(5) The discriminant of P is nonzero, ∆(P ) ̸= 0,

and in this case, the matrix is diagonalizable.
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Proof. The last assertion holds indeed, due to Theorem 1.9. As for the equivalences
in the statement, these are all standard, the idea for their proofs, along with some more
theory, needed for using in practice the present result, being as follows:

(1) ⇐⇒ (2) This follows from Theorem 1.9.

(2) ⇐⇒ (3) This is standard, the double roots of P being roots of P ′.

(3) ⇐⇒ (4) The idea here is that associated to any two polynomials P,Q is their
resultant R(P,Q), which checks whether P,Q have a common root. Let us write:

P = c(X − a1) . . . (X − ak)

Q = d(X − b1) . . . (X − bl)

We can define then the resultant as being the following quantity:

R(P,Q) = cldk
∏
ij

(ai − bj)

The point now, that we will explain as well, is that this is a polynomial in the coeffi-
cients of P,Q, with integer coefficients. Indeed, this can be checked as follows:

– We can expand the formula of R(P,Q), and in what regards a1, . . . , ak, which are
the roots of P , we obtain in this way certain symmetric functions in these variables, which
will be therefore polynomials in the coefficients of P , with integer coefficients.

– We can then look what happens with respect to the remaining variables b1, . . . , bl,
which are the roots of Q. Once again what we have here are certain symmetric functions,
and so polynomials in the coefficients of Q, with integer coefficients.

– Thus, we are led to the above conclusion, that R(P,Q) is a polynomial in the
coefficients of P,Q, with integer coefficients, and with the remark that the cldk factor is
there for these latter coefficients to be indeed integers, instead of rationals.

Alternatively, let us write our two polynomials in usual form, as follows:

P = pkX
k + . . .+ p1X + p0

Q = qlX
l + . . .+ q1X + q0

The corresponding resultant appears then as the determinant of an associated matrix,
having size k + l, and having 0 coefficients at the blank spaces, as follows:

R(P,Q) =

∣∣∣∣∣∣∣∣∣∣∣

pk ql
...

. . .
...

. . .
p0 pk q0 ql

. . .
...

. . .
...

p0 q0

∣∣∣∣∣∣∣∣∣∣∣
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(4) ⇐⇒ (5) Once again this is something standard, the idea here being that the
discriminant ∆(P ) of a polynomial P ∈ C[X] is, modulo scalars, the resultant R(P, P ′).
To be more precise, let us write our polynomial as follows:

P (X) = cXN + dXN−1 + . . .

Its discriminant is then defined as being the following quantity:

∆(P ) =
(−1)(

N
2 )

c
R(P, P ′)

This is a polynomial in the coefficients of P , with integer coefficients, with the division
by c being indeed possible, under Z, and with the sign being there for various reasons,
including the compatibility with some well-known formulae, at small values of N . □

All the above might seem a bit complicated, so as an illustration, let us work out an
example. Consider the case of a polynomial of degree 2, and a polynomial of degree 1:

P = ax2 + bx+ c , Q = dx+ e

In order to compute the resultant, let us factorize our polynomials:

P = a(x− p)(x− q) , Q = d(x− r)

The resultant can be then computed as follows, by using the two-step method:

R(P,Q) = ad2(p− r)(q − r)

= ad2(pq − (p+ q)r + r2)

= cd2 + bd2r + ad2r2

= cd2 − bde+ ae2

Observe that R(P,Q) = 0 corresponds indeed to the fact that P,Q have a common
root. Indeed, the root of Q is r = −e/d, and we have:

P (r) =
ae2

d2
− be

d
+ c =

R(P,Q)

d2

We can recover as well the resultant as a determinant, as follows:

R(P,Q) =

∣∣∣∣∣∣
a d 0
b e d
c 0 e

∣∣∣∣∣∣ = ae2 − bde+ cd2

Finally, in what regards the discriminant, let us see what happens in degree 2. Here
we must compute the resultant of the following two polynomials:

P = aX2 + bX + c , P ′ = 2aX + b
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The resultant is then given by the following formula:

R(P, P ′) = ab2 − b(2a)b+ c(2a)2

= 4a2c− ab2

= −a(b2 − 4ac)

Now by doing the discriminant normalizations, we obtain, as we should:

∆(P ) = b2 − 4ac

As already mentioned, one can prove that the matrices having distinct eigenvalues are
“generic”, and so the above result basically captures the whole situation. We have in fact
the following collection of density results, which are quite advanced:

Theorem 1.14. The following happen, inside MN(C):
(1) The invertible matrices are dense.
(2) The matrices having distinct eigenvalues are dense.
(3) The diagonalizable matrices are dense.

Proof. These are quite advanced results, which can be proved as follows:

(1) This is clear, intuitively speaking, because the invertible matrices are given by the
condition detA ̸= 0. Thus, the set formed by these matrices appears as the complement
of the hypersurface detA = 0, and so must be dense inside MN(C), as claimed.

(2) Here we can use a similar argument, this time by saying that the set formed by
the matrices having distinct eigenvalues appears as the complement of the hypersurface
given by ∆(PA) = 0, and so must be dense inside MN(C), as claimed.

(3) This follows from (2), via the fact that the matrices having distinct eigenvalues are
diagonalizable, that we know from Theorem 1.13. There are of course some other proofs
as well, for instance by putting the matrix in Jordan form. □

As an application of the above results, and of our methods in general, we have:

Theorem 1.15. The following happen:

(1) We have PAB = PBA, for any two matrices A,B ∈MN(C).
(2) AB,BA have the same eigenvalues, with the same multiplicities.
(3) If A has eigenvalues λ1, . . . , λN , then f(A) has eigenvalues f(λ1), . . . , f(λN).

Proof. These results can be deduced by using Theorem 1.14, as follows:

(1) It follows from definitions that the characteristic polynomial of a matrix is invariant
under conjugation, in the sense that we have the following formula:

PC = PACA−1

Now observe that, when assuming that A is invertible, we have:

AB = A(BA)A−1
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Thus, we have the result when A is invertible. By using now Theorem 1.14 (1), we
conclude that this formula holds for any matrix A, by continuity.

(2) This is a reformulation of (1), via the fact that P encodes the eigenvalues, with
multiplicities, which is hard to prove with bare hands.

(3) This is something quite informal, clear for the diagonal matrices D, then for the
diagonalizable matrices PDP−1, and finally for all matrices, by using Theorem 1.14 (3),
provided that f has suitable regularity properties. We will be back to this. □

Let us go back to the main problem raised by the diagonalization procedure, namely
the computation of the roots of characteristic polynomials. We have here:

Theorem 1.16. The complex eigenvalues of a matrix A ∈MN(C), counted with mul-
tiplicities, have the following properties:

(1) Their sum is the trace.
(2) Their product is the determinant.

Proof. Consider indeed the characteristic polynomial P of the matrix:

P (X) = det(A−X1N)

= (−1)NXN + (−1)N−1Tr(A)XN−1 + . . .+ det(A)

We can factorize this polynomial, by using its N complex roots, and we obtain:

P (X) = (−1)N(X − λ1) . . . (X − λN)

= (−1)NXN + (−1)N−1

(∑
i

λi

)
XN−1 + . . .+

∏
i

λi

Thus, we are led to the conclusion in the statement. □

Regarding now the intermediate terms, we have here:

Theorem 1.17. Assume that A ∈ MN(C) has eigenvalues λ1, . . . , λN ∈ C, counted
with multiplicities. The basic symmetric functions of these eigenvalues, namely

ck =
∑

i1<...<ik

λi1 . . . λik

are then given by the fact that the characteristic polynomial of the matrix is:

P (X) = (−1)N
N∑
k=0

(−1)kckX
k

Moreover, all symmetric functions of the eigenvalues, such as the sums of powers

ds = λs1 + . . .+ λsN

appear as polynomials in these characteristic polynomial coefficients ck.
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Proof. These results can be proved by doing some algebra, as follows:

(1) Consider indeed the characteristic polynomial P of the matrix, factorized by using
its N complex roots, taken with multiplicities. By expanding, we obtain:

P (X) = (−1)N(X − λ1) . . . (X − λN)

= (−1)NXN + (−1)N−1

(∑
i

λi

)
XN−1 + . . .+

∏
i

λi

= (−1)NXN + (−1)N−1c1X
N−1 + . . .+ (−1)0cN

= (−1)N
(
XN − c1X

N−1 + . . .+ (−1)NcN
)

With the convention c0 = 1, we are led to the conclusion in the statement.

(2) This is something standard, coming by doing some abstract algebra. Working out
the formulae for the sums of powers ds =

∑
i λ

s
i , at small values of the exponent s ∈ N, is

an excellent exercise, which shows how to proceed in general, by recurrence. □

1d. Spectral theorems

Let us go back now to the diagonalization question. Here is a key result:

Theorem 1.18. Any matrix A ∈MN(C) which is self-adjoint, A = A∗, is diagonaliz-
able, with the diagonalization being of the following type,

A = UDU∗

with U ∈ UN , and with D ∈MN(R) diagonal. The converse holds too.

Proof. As a first remark, the converse trivially holds, because if we take a matrix of
the form A = UDU∗, with U unitary and D diagonal and real, then we have:

A∗ = (UDU∗)∗

= UD∗U∗

= UDU∗

= A

In the other sense now, assume that A is self-adjoint, A = A∗. Our first claim is that
the eigenvalues are real. Indeed, assuming Av = λv, we have:

λ < v, v > = < λv, v >

= < Av, v >

= < v,Av >

= < v, λv >

= λ̄ < v, v >
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Thus we obtain λ ∈ R, as claimed. Our next claim now is that the eigenspaces
corresponding to different eigenvalues are pairwise orthogonal. Assume indeed that:

Av = λv , Aw = µw

We have then the following computation, using λ, µ ∈ R:

λ < v,w > = < λv,w >

= < Av,w >

= < v,Aw >

= < v, µw >

= µ < v,w >

Thus λ ̸= µ implies v ⊥ w, as claimed. In order now to finish the proof, it remains to
prove that the eigenspaces of A span the whole space CN . For this purpose, we will use
a recurrence method. Let us pick an eigenvector of our matrix:

Av = λv

Assuming now that we have a vector w orthogonal to it, v ⊥ w, we have:

< Aw, v > = < w,Av >

= < w, λv >

= λ < w, v >

= 0

Thus, if v is an eigenvector, then the vector space v⊥ is invariant under A. Moreover,
since a matrix A is self-adjoint precisely when < Av, v >∈ R for any vector v ∈ CN , as
one can see by expanding the scalar product, the restriction of A to the subspace v⊥ is
self-adjoint. Thus, we can proceed by recurrence, and we obtain the result. □

As basic examples of self-adjoint matrices, we have the orthogonal projections. The
diagonalization result regarding them is as follows:

Proposition 1.19. The matrices P ∈MN(C) which are projections,

P 2 = P ∗ = P

are precisely those which diagonalize as follows,

P = UDU∗

with U ∈ UN , and with D ∈MN(0, 1) being diagonal.
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Proof. The equation for the projections being P 2 = P ∗ = P , the eigenvalues λ are
real, and we have as well the following condition, coming from P 2 = P :

λ < v, v > = < λv, v >

= < Pv, v >

= < P 2v, v >

= < Pv, Pv >

= < λv, λv >

= λ2 < v, v >

Thus we obtain λ ∈ {0, 1}, as claimed, and as a final conclusion here, the diagonal-
ization of the self-adjoint matrices is as follows, with ei ∈ {0, 1}:

P ∼

e1 . . .
eN


To be more precise, the number of 1 values is the dimension of the image of P , and

the number of 0 values is the dimension of space of vectors sent to 0 by P . □

An important class of self-adjoint matrices, which includes for instance all the projec-
tions, are the positive matrices. The theory here is as follows:

Theorem 1.20. For a matrix A ∈MN(C) the following conditions are equivalent, and
if they are satisfied, we say that A is positive:

(1) A = B2, with B = B∗.
(2) A = CC∗, for some C ∈MN(C).
(3) < Ax, x >≥ 0, for any vector x ∈ CN .
(4) A = A∗, and the eigenvalues are positive, λi ≥ 0.
(5) A = UDU∗, with U ∈ UN and with D ∈MN(R+) diagonal.

Proof. The idea is that the equivalences in the statement basically follow from some
elementary computations, with only Theorem 1.18 needed, at some point:

(1) =⇒ (2) This is clear, because we can take C = B.

(2) =⇒ (3) This follows from the following computation:

< Ax, x > = < CC∗x, x >

= < C∗x,C∗x >

≥ 0

(3) =⇒ (4) By using the fact that < Ax, x > is real, we have:

< Ax, x > = < x,A∗x >

= < A∗x, x >
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Thus we have A = A∗, and the remaining assertion, regarding the eigenvalues, follows
from the following computation, assuming Ax = λx:

< Ax, x > = < λx, x >

= λ < x, x >

≥ 0

(4) =⇒ (5) This follows indeed by using Theorem 1.18.

(5) =⇒ (1) Assuming A = UDU∗, with U ∈ UN , and with D ∈ MN(R+) being

diagonal, we can set B = U
√
DU∗. Then B is self-adjoint, and its square is given by:

B2 = U
√
DU∗ · U

√
DU∗

= UDU∗

= A

Thus, we are led to the conclusion in the statement. □

Let us record as well the following technical version of the above result:

Theorem 1.21. For a matrix A ∈MN(C) the following conditions are equivalent, and
if they are satisfied, we say that A is strictly positive:

(1) A = B2, with B = B∗, invertible.
(2) A = CC∗, for some C ∈MN(C) invertible.
(3) < Ax, x >> 0, for any nonzero vector x ∈ CN .
(4) A = A∗, and the eigenvalues are strictly positive, λi > 0.
(5) A = UDU∗, with U ∈ UN and with D ∈MN(R∗

+) diagonal.

Proof. This follows either from Theorem 1.20, by adding the various extra assump-
tions in the statement, or from the proof of Theorem 1.20, by modifying where needed. □

Let us discuss now the case of the unitary matrices. We have here:

Theorem 1.22. Any matrix U ∈ MN(C) which is unitary, U∗ = U−1, is diagonaliz-
able, with the eigenvalues on T. More precisely we have

U = V DV ∗

with V ∈ UN , and with D ∈MN(T) diagonal. The converse holds too.
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Proof. As a first remark, the converse trivially holds, because given a matrix of type
U = V DV ∗, with V ∈ UN , and with D ∈MN(T) being diagonal, we have:

U∗ = (V DV ∗)∗

= V D∗V ∗

= V D−1V −1

= (V ∗)−1D−1V −1

= (V DV ∗)−1

= U−1

Let us prove now the first assertion, stating that the eigenvalues of a unitary matrix
U ∈ UN belong to T. Indeed, assuming Uv = λv, we have:

< v, v > = < U∗Uv, v >

= < Uv, Uv >

= < λv, λv >

= |λ|2 < v, v >

Thus we obtain λ ∈ T, as claimed. Our next claim now is that the eigenspaces
corresponding to different eigenvalues are pairwise orthogonal. Assume indeed that:

Uv = λv , Uw = µw

We have then the following computation, using U∗ = U−1 and λ, µ ∈ T:

λ < v,w > = < λv,w >

= < Uv,w >

= < v,U∗w >

= < v,U−1w >

= < v, µ−1w >

= µ < v,w >

Thus λ ̸= µ implies v ⊥ w, as claimed. In order now to finish the proof, it remains to
prove that the eigenspaces of U span the whole space CN . For this purpose, we will use
a recurrence method. Let us pick an eigenvector of our matrix:

Uv = λv
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Assuming that we have a vector w orthogonal to it, v ⊥ w, we have:

< Uw, v > = < w,U∗v >

= < w,U−1v >

= < w, λ−1v >

= λ < w, v >

= 0

Thus, if v is an eigenvector, then the vector space v⊥ is invariant under U . Now since
U is an isometry, so is its restriction to this space v⊥. Thus this restriction is a unitary,
and so we can proceed by recurrence, and we obtain the result. □

The self-adjoint matrices and the unitary matrices are particular cases of the general
notion of a “normal matrix”, and we have here:

Theorem 1.23. Any matrix A ∈ MN(C) which is normal, AA∗ = A∗A, is diagonal-
izable, with the diagonalization being of the following type,

A = UDU∗

with U ∈ UN , and with D ∈MN(C) diagonal. The converse holds too.

Proof. As a first remark, the converse trivially holds, because if we take a matrix of
the form A = UDU∗, with U unitary and D diagonal, then we have:

AA∗ = UDU∗ · UD∗U∗

= UDD∗U∗

= UD∗DU∗

= UD∗U∗ · UDU∗

= A∗A

In the other sense now, this is something more technical. Our first claim is that a
matrix A is normal precisely when the following happens, for any vector v:

||Av|| = ||A∗v||

Indeed, the above equality can be written as follows:

< AA∗v, v >=< A∗Av, v >

But this is equivalent to AA∗ = A∗A, by expanding the scalar products. Our next
claim is that A,A∗ have the same eigenvectors, with conjugate eigenvalues:

Av = λv =⇒ A∗v = λ̄v
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Indeed, this follows from the following computation, and from the trivial fact that if
A is normal, then so is any matrix of type A− λ1N :

||(A∗ − λ̄1N)v|| = ||(A− λ1N)
∗v||

= ||(A− λ1N)v||
= 0

Let us prove now, by using this, that the eigenspaces of A are pairwise orthogonal.
Assume that we have two eigenvectors, corresponding to different eigenvalues, λ ̸= µ:

Av = λv , Aw = µw

We have the following computation, which shows that λ ̸= µ implies v ⊥ w:

λ < v,w > = < λv,w >

= < Av,w >

= < v,A∗w >

= < v, µ̄w >

= µ < v,w >

In order to finish, it remains to prove that the eigenspaces of A span the whole CN .
This is something that we have already seen for the self-adjoint matrices, and for unitaries,
and we will use here these results, in order to deal with the general normal case. As a
first observation, given an arbitrary matrix A, the matrix AA∗ is self-adjoint:

(AA∗)∗ = AA∗

Thus, we can diagonalize this matrix AA∗, as follows, with the passage matrix being
a unitary, V ∈ UN , and with the diagonal form being real, E ∈MN(R):

AA∗ = V EV ∗

Now observe that, for matrices of type A = UDU∗, which are those that we supposed
to deal with, we have the following formulae:

V = U , E = DD̄

In particular, the matrices A and AA∗ have the same eigenspaces. So, this will be
our idea, proving that the eigenspaces of AA∗ are eigenspaces of A. In order to do so, let
us pick two eigenvectors v, w of the matrix AA∗, corresponding to different eigenvalues,
λ ̸= µ. The eigenvalue equations are then as follows:

AA∗v = λv , AA∗w = µw
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We have the following computation, using the normality condition AA∗ = A∗A, and
the fact that the eigenvalues of AA∗, and in particular µ, are real:

λ < Av,w > = < λAv,w >

= < Aλv,w >

= < AAA∗v, w >

= < AA∗Av,w >

= < Av,AA∗w >

= < Av, µw >

= µ < Av,w >

We conclude that we have < Av,w >= 0. But this reformulates as follows:

λ ̸= µ =⇒ A(Eλ) ⊥ Eµ

Now since the eigenspaces of AA∗ are pairwise orthogonal, and span the whole CN ,
we deduce from this that these eigenspaces are invariant under A:

A(Eλ) ⊂ Eλ

But with this result in hand, we can finish. Indeed, we can decompose the problem,
and the matrix A itself, following these eigenspaces of AA∗, which in practice amounts
in saying that we can assume that we only have 1 eigenspace. Now by rescaling, this is
the same as assuming that we have AA∗ = 1. But with this, we are now into the unitary
case, that we know how to solve, as explained in Theorem 1.22, and so done. □

As a first application, we have the following result:

Theorem 1.24. Given a matrix A ∈MN(C), we can construct a matrix |A| as follows,
by using the fact that A∗A is diagonalizable, with positive eigenvalues:

|A| =
√
A∗A

This matrix |A| is then positive, and its square is |A|2 = A∗A. In the case N = 1, we
obtain in this way the usual absolute value of the complex numbers.

Proof. Consider indeed the matrix A∗A, which is normal. According to Theorem
1.23, we can diagonalize this matrix as follows, with U ∈ UN , and with D diagonal:

A = UDU∗

From A∗A ≥ 0 we obtain D ≥ 0. But this means that the entries of D are real, and
positive. Thus we can extract the square root

√
D, and then set:

√
A∗A = U

√
DU∗

Thus, we are basically done. Indeed, if we call this latter matrix |A|, then we are led to
the conclusions in the statement. Finally, the last assertion is clear from definitions. □
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We can now formulate a first polar decomposition result, as follows:

Theorem 1.25. Any invertible matrix A ∈MN(C) decomposes as

A = U |A|
with U ∈ UN , and with |A| =

√
A∗A as above.

Proof. This is routine, and follows by comparing the actions of A, |A| on the vectors
v ∈ CN , and deducing from this the existence of a unitary U ∈ UN as above. We will be
back to this, later on, directly in the case of the linear operators on Hilbert spaces. □

Observe that at N = 1 we obtain in this way the usual polar decomposition of the
nonzero complex numbers. More generally now, we have the following result:

Theorem 1.26. Any square matrix A ∈MN(C) decomposes as

A = U |A|
with U being a partial isometry, and with |A| =

√
A∗A as above.

Proof. Again, this follows by comparing the actions of A, |A| on the vectors v ∈ CN ,
and deducing from this the existence of a partial isometry U as above. Alternatively, we
can get this from Theorem 1.25, applied on the complement of the 0-eigenvectors. □

This was for our basic presentation of linear algebra. There are of course many other
things that can be said, but we will come back to some of them in what follows, directly
in the case of the linear operators on the arbitrary Hilbert spaces.

1e. Exercises

Exercises:

Exercise 1.27.

Exercise 1.28.

Exercise 1.29.

Exercise 1.30.

Exercise 1.31.

Exercise 1.32.

Exercise 1.33.

Exercise 1.34.

Bonus exercise.



CHAPTER 2

Linear operators

2a. Hilbert spaces

We discuss in what follows an extension of the linear algebra results from the previous
chapter, obtained by looking at the linear operators T : H → H, with the space H
being no longer assumed to be finite dimensional. Our motivations come from quantum
mechanics, and in order to get motivated, here is some suggested reading:

(1) Generally speaking, physics is best learned from Feynman [39]. If you already
know some, and want to learn quantum mechanics, go with Griffiths [45]. And if you’re
already a bit familiar with quantum mechanics, a good book is Weinberg [96].

(2) A look at classics like Dirac [32], von Neumann [93] or Weyl [97] can be instructive
too. On the opposite, you have as well modern, fancy books on quantum information,
such as Bengtsson-Życzkowski [14], Nielsen-Chuang [76] or Watrous [94].

(3) In short, many ways of getting familiar with this big mess which is quantum
mechanics, and as long as you stay away from books advertised as “rigorous”, “axiomatic”,
“mathematical”, things fine. By the way, you can try as well my book [12].

Getting to work now, physics tells us to look at infinite dimensional complex spaces,
such as the space of wave functions ψ : R3 → C of the electron. In order to do some
mathematics on these spaces, we will need scalar products. So, let us start with:

Definition 2.1. A scalar product on a complex vector space H is a binary operation
H ×H → C, denoted (x, y) →< x, y >, satisfying the following conditions:

(1) < x, y > is linear in x, and antilinear in y.
(2) < x, y > =< y, x >, for any x, y.
(3) < x, x >> 0, for any x ̸= 0.

As before in chapter 1, we use here mathematicians’ convention for scalar products,
that is, < ,> linear at left, as opposed to physicists’ convention, < ,> linear at right.
The reasons for this are quite subtle, coming from the fact that, while basic quantum
mechanics looks better with < ,> linear at right, advanced quantum mechanics looks
better with < ,> linear at left. Or at least that’s what my cats say.

33
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As a basic example for Definition 2.1, we have the finite dimensional vector space
H = CN , with its usual scalar product, namely:

< x, y >=
∑
i

xiȳi

There are many other examples, and notably various spaces of L2 functions, which
naturally appear in problems coming from physics. We will discuss them later on. In
order to study now the scalar products, let us formulate the following definition:

Definition 2.2. The norm of a vector x ∈ H is the following quantity:

||x|| =
√
< x, x >

We also call this number length of x, or distance from x to the origin.

The terminology comes from what happens in CN , where the length of the vector, as
defined above, coincides with the usual length, given by:

||x|| =
√∑

i

|xi|2

In analogy with what happens in finite dimensions, we have two important results
regarding the norms. First we have the Cauchy-Schwarz inequality, as follows:

Theorem 2.3. We have the Cauchy-Schwarz inequality

| < x, y > | ≤ ||x|| · ||y||

and the equality case holds precisely when x, y are proportional.

Proof. This is something very standard. Consider indeed the following quantity,
depending on a real variable t ∈ R, and on a variable on the unit circle, w ∈ T:

f(t) = ||twx+ y||2

By developing f , we see that this is a degree 2 polynomial in t:

f(t) = < twx+ y, twx+ y >

= t2 < x, x > +tw < x, y > +tw̄ < y, x > + < y, y >

= t2||x||2 + 2tRe(w < x, y >) + ||y||2

Since f is obviously positive, its discriminant must be negative:

4Re(w < x, y >)2 − 4||x||2 · ||y||2 ≤ 0

But this is equivalent to the following condition:

|Re(w < x, y >)| ≤ ||x|| · ||y||
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Now the point is that we can arrange for the number w ∈ T to be such that the
quantity w < x, y > is real. Thus, we obtain the following inequality:

| < x, y > | ≤ ||x|| · ||y||

Finally, the study of the equality case is straightforward, by using the fact that the
discriminant of f vanishes precisely when we have a root. But this leads to the conclusion
in the statement, namely that the vectors x, y must be proportional. □

As a second main result now, we have the Minkowski inequality:

Theorem 2.4. We have the Minkowski inequality

||x+ y|| ≤ ||x||+ ||y||

and the equality case holds precisely when x, y are proportional.

Proof. This follows indeed from the Cauchy-Schwarz inequality, as follows:

||x+ y|| ≤ ||x||+ ||y||
⇐⇒ ||x+ y||2 ≤ (||x||+ ||y||)2

⇐⇒ ||x||2 + ||y||2 + 2Re < x, y >≤ ||x||2 + ||y||2 + 2||x|| · ||y||
⇐⇒ Re < x, y >≤ ||x|| · ||y||

As for the equality case, this is clear from Cauchy-Schwarz as well. □

As a consequence of this, we have the following result:

Theorem 2.5. The following function is a distance on H,

d(x, y) = ||x− y||

in the usual sense, that of the abstract metric spaces.

Proof. This follows indeed from the Minkowski inequality, which corresponds to the
triangle inequality, the other two axioms for a distance being trivially satisfied. □

The above result is quite important, because it shows that we can do geometry and
analysis in our present setting, with distances and angles, a bit as in the finite dimensional
case. In order to do such abstract geometry, we will often need the following key result,
which shows that everything can be recovered in terms of distances:

Proposition 2.6. The scalar products can be recovered from distances, via the formula

4 < x, y >= ||x+ y||2 − ||x− y||2 + i||x+ iy||2 − i||x− iy||2

called complex polarization identity.
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Proof. This is something that we have already met in finite dimensions. In arbitrary
dimensions the proof is similar, as follows:

||x+ y||2 − ||x− y||2 + i||x+ iy||2 − i||x− iy||2

= ||x||2 + ||y||2 − ||x||2 − ||y||2 + i||x||2 + i||y||2 − i||x||2 − i||y||2

+2Re(< x, y >) + 2Re(< x, y >) + 2iIm(< x, y >) + 2iIm(< x, y >)

= 4 < x, y >

Thus, we are led to the conclusion in the statement. □

In order to do analysis on our spaces, we need the Cauchy sequences that we construct
to converge. This is something which is automatic in finite dimensions, but in arbitrary
dimensions, this can fail. It is convenient here to formulate a detailed new definition, as
follows, which will be the starting point for our various considerations to follow:

Definition 2.7. A Hilbert space is a complex vector space H given with a scalar
product < x, y >, satisfying the following conditions:

(1) < x, y > is linear in x, and antilinear in y.
(2) < x, y > =< y, x >, for any x, y.
(3) < x, x >> 0, for any x ̸= 0.
(4) H is complete with respect to the norm ||x|| = √

< x, x >.

In other words, what we did here is to take Definition 2.1, and add the condition that
H must be complete with respect to the norm ||x|| = √

< x, x >, that we know indeed to
be a norm, according to the Minkowski inequality proved above. As a basic example, as
before, we have the space H = CN , with its usual scalar product, namely:

< x, y >=
∑
i

xiȳi

More generally now, we have the following construction of Hilbert spaces:

Proposition 2.8. The sequences of complex numbers (xi) which are square-summable,∑
i

|xi|2 <∞

form a Hilbert space l2(N), with the following scalar product:

< x, y >=
∑
i

xiȳi

In fact, given any index set I, we can construct a Hilbert space l2(I), in this way.

Proof. There are several things to be proved, as follows:

(1) Our first claim is that l2(N) is a vector space. For this purpose, we must prove that
x, y ∈ l2(N) implies x + y ∈ l2(N). But this leads us into proving ||x + y|| ≤ ||x|| + ||y||,
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where ||x|| = √
< x, x >. Now since we know this inequality to hold on each subspace

CN ⊂ l2(N) obtained by truncating, this inequality holds everywhere, as desired.

(2) Our second claim is that < ,> is well-defined on l2(N). But this follows from
the Cauchy-Schwarz inequality, | < x, y > | ≤ ||x|| · ||y||, which can be established by
truncating, a bit like we established the Minkowski inequality in (1) above.

(3) It is also clear that < ,> is a scalar product on l2(N), so it remains to prove that
l2(N) is complete with respect to ||x|| = √

< x, x >. But this is clear, because if we pick
a Cauchy sequence {xn}n∈N ⊂ l2(N), then each numeric sequence {xni }i∈N ⊂ C is Cauchy,
and by setting xi = limn→∞ xni , we have xn → x inside l2(N), as desired.

(4) Finally, the same arguments extend to the case of an arbitrary index set I, leading
to a Hilbert space l2(I), and with the remark here that there is absolutely no problem
of taking about quantities of type ||x||2 =

∑
i∈I |xi|2 ∈ [0,∞], even if the index set I is

uncountable, because we are summing positive numbers. □

Even more generally, we have the following construction of Hilbert spaces:

Theorem 2.9. Given a measured space X, the functions f : X → C, taken up to
equality almost everywhere, which are square-summable,∫

X

|f(x)|2dx <∞

form a Hilbert space L2(X), with the following scalar product:

< f, g >=

∫
X

f(x)g(x)dx

In the case X = I, with the counting measure, we obtain in this way the space l2(I).

Proof. This is a straightforward generalization of Proposition 2.8, with the argu-
ments from the proof of Proposition 2.8 carrying over in our case, as follows:

(1) The first part, regarding Cauchy-Schwarz and Minkowski, extends without prob-
lems, by using this time approximation by step functions.

(2) Regarding the fact that < ,> is indeed a scalar product on L2(X), there is a
subtlety here, because if we want < f, f >> 0 for f ̸= 0, we must declare that f = 0
when f = 0 almost everywhere, and so that f = g when f = g almost everywhere.

(3) Regarding the fact that L2(X) is complete with respect to ||f || =
√
< f, f >, this

is again basic measure theory, by picking a Cauchy sequence {fn}n∈N ⊂ L2(X), and then
constructing a pointwise, and hence L2 limit, fn → f , almost everywhere.

(4) Finally, the last assertion is clear, because the integration with respect to the
counting measure is by definition a sum, and so L2(I) = l2(I) in this case. □
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Quite remarkably, any Hilbert space must be of the form L2(X), and even of the
particular form l2(I). This follows indeed from the following key result:

Theorem 2.10. Let H be a Hilbert space.

(1) Any algebraic basis of this space {fi}i∈I can be turned into an orthonormal basis
{ei}i∈I , by using the Gram-Schmidt procedure.

(2) Thus, H has an orthonormal basis, and so we have H ≃ l2(I), with I being the
indexing set for this orthonormal basis.

Proof. All this is standard by Gram-Schmidt, the idea being as follows:

(1) First of all, in finite dimensions an orthonormal basis {ei}i∈I is by definition a
usual algebraic basis, satisfying < ei, ej >= δij. But the existence of such a basis follows
by applying the Gram-Schmidt procedure to any algebraic basis {fi}i∈I , as claimed.

(2) In infinite dimensions, a first issue comes from the fact that the standard basis
{δi}i∈N of the space l2(N) is not an algebraic basis in the usual sense, with the finite linear
combinations of the functions δi producing only a dense subspace of l2(N), that of the
functions having finite support. Thus, we must fine-tune our definition of “basis”.

(3) But this can be done in two ways, by saying that {fi}i∈I is a basis of H when
the functions fi are linearly independent, and when either the finite linear combinations
of these functions fi form a dense subspace of H, or the linear combinations with l2(I)
coefficients of these functions fi form the whole H. For orthogonal bases {ei}i∈I these
definitions are equivalent, and in any case, our statement makes now sense.

(4) Regarding now the proof, in infinite dimensions, this follows again from Gram-
Schmidt, exactly as in the finite dimensional case, but by using this time a tool from
logic, called Zorn lemma, in order to correctly do the recurrence. □

The above result, and its relation with Theorem 2.9, is something quite subtle, so let
us further get into this. First, we have the following definition, based on the above:

Definition 2.11. A Hilbert space H is called separable when the following equivalent
conditions are satisfied:

(1) H has a countable algebraic basis {fi}i∈N.
(2) H has a countable orthonormal basis {ei}i∈N.
(3) We have H ≃ l2(N), isomorphism of Hilbert spaces.

In what follows we will be mainly interested in the separable Hilbert spaces, where
most of the questions coming from quantum physics take place. In view of the above, the
following philosophical question appears: why not simply talking about l2(N)?

In answer to this, we cannot really do so, because many of the separable spaces that
we are interested in appear as spaces of functions, and such spaces do not necessarily have
a very simple or explicit orthonormal basis, as shown by the following result:
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Proposition 2.12. The Hilbert space H = L2[0, 1] is separable, having as orthonormal
basis the orthonormalized version of the algebraic basis fn = xn with n ∈ N.

Proof. This follows from the Weierstrass theorem, which provides us with the basis
fn = xn, which can be orthogonalized by using the Gram-Schmidt procedure, as explained
in Theorem 2.10. Working out the details here is actually an excellent exercise. □

As a conclusion to all this, we are interested in 1 space, namely the unique separable
Hilbert space H, but due to various technical reasons, it is often better to forget that we
have H = l2(N), and say instead that we have H = L2(X), with X being a separable
measured space, or simply say that H is an abstract separable Hilbert space.

2b. Linear operators

Let us get now into the study of linear operators T : H → H. Before anything,
we should mention that things are quite tricky with respect to quantum mechanics, and
physics in general. Indeed, if there is a central operator in physics, this is the Laplace
operator on the smooth functions f : RN → C, given by:

∆f(x) =
∑
i

d2f

dx2i

And the problem is that what we have here is an operator ∆ : C∞(RN) → C∞(RN),
which does not extend into an operator ∆ : L2(RN) → L2(RN). Thus, we should perhaps
look at operators T : H → H which are densely defined, instead of looking at operators
T : H → H which are everywhere defined. We will not do so, for two reasons:

(1) Tactical retreat. When physics looks too complicated, as it is the case now, you can
always declare that mathematics comes first. So, let us be pure mathematicians, simply
looking in generalizing linear algebra to infinite dimensions. And from this viewpoint, it
is a no-brainer to look at everywhere defined operators T : H → H.

(2) Modern physics. We will see later, towards the end of the present book, when
talking about various mathematical physics findings of Connes, Jones, Voiculescu and
others, that a lot of interesting mathematics, which is definitely related to modern physics,
can be developed by using the everywhere defined operators T : H → H.

In short, you’ll have to trust me here. And hang on, we are not done yet, because with
this choice made, there is one more problem, mathematical this time. The problem comes
from the fact that in infinite dimensions the everywhere defined operators T : H → H
can be bounded or not, and for reasons which are mathematically intuitive and obvious,
and physically acceptable too, we want to deal with the bounded case only.

Long story short, let us avoid too much thinking, and start in a simple way, with:
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Proposition 2.13. For a linear operator T : H → H, the following are equivalent:

(1) T is continuous.
(2) T is continuous at 0.
(3) T (B) ⊂ cB for some c <∞, where B ⊂ H is the unit ball.
(4) T is bounded, in the sense that ||T || = sup||x||≤1 ||Tx|| satisfies ||T || <∞.

Proof. This is elementary, with (1) ⇐⇒ (2) coming from the linearity of T , then
(2) ⇐⇒ (3) coming from definitions, and finally (3) ⇐⇒ (4) coming from the fact that
the number ||T || from (4) is the infimum of the numbers c making (3) work. □

Regarding such operators, we have the following result:

Theorem 2.14. The linear operators T : H → H which are bounded,

||T || = sup
||x||≤1

||Tx|| <∞

form a complex algebra with unit B(H), having the property

||ST || ≤ ||S|| · ||T ||
and which is complete with respect to the norm.

Proof. The fact that we have indeed an algebra, satisfying the product condition in
the statement, follows from the following estimates, which are all elementary:

||S + T || ≤ ||S||+ ||T ||
||λT || = |λ| · ||T ||
||ST || ≤ ||S|| · ||T ||

Regarding now the last assertion, if {Tn} ⊂ B(H) is Cauchy then {Tnx} is Cauchy
for any x ∈ H, so we can define the limit T = limn→∞ Tn by setting:

Tx = lim
n→∞

Tnx

Let us first check that the application x→ Tx is linear. We have:

T (x+ y) = lim
n→∞

Tn(x+ y)

= lim
n→∞

Tn(x) + Tn(y)

= lim
n→∞

Tn(x) + lim
n→∞

Tn(y)

= T (x) + T (y)

Similarly, we have as well the following computation:

T (λx) = lim
n→∞

Tn(λx)

= λ lim
n→∞

Tn(x)

= λT (x)
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Thus we have a linear map T : A → A. It remains to prove that we have T ∈ B(H),
and that we have Tn → T in norm. For this purpose, observe that we have:

||Tn − Tm|| ≤ ε , ∀n,m ≥ N

=⇒ ||Tnx− Tmx|| ≤ ε , ∀||x|| = 1 , ∀n,m ≥ N

=⇒ ||Tnx− Tx|| ≤ ε , ∀||x|| = 1 , ∀n ≥ N

=⇒ ||TNx− Tx|| ≤ ε , ∀||x|| = 1

=⇒ ||TN − T || ≤ ε

As a first consequence, we obtain T ∈ B(H), because we have:

||T || = ||TN + (T − TN)||
≤ ||TN ||+ ||T − TN ||
≤ ||TN ||+ ε

< ∞

As a second consequence, we obtain TN → T in norm, and we are done. □

In the case where H comes with a basis {ei}i∈I , we can talk about the infinite matrices
M ∈ MI(C), with the remark that the multiplication of such matrices is not always
defined, in the case |I| = ∞. In this context, we have the following result:

Theorem 2.15. Let H be a Hilbert space, with orthonormal basis {ei}i∈I . The bounded
operators T ∈ B(H) can be then identified with matrices M ∈MI(C) via

Tx =Mx , Mij =< Tej, ei >

and we obtain in this way an embedding as follows, which is multiplicative:

B(H) ⊂MI(C)

In the case H = CN we obtain in this way the usual isomorphism B(H) ≃ MN(C). In
the separable case we obtain in this way a proper embedding B(H) ⊂M∞(C).

Proof. We have several assertions to be proved, the idea being as follows:

(1) Regarding the first assertion, given a bounded operator T : H → H, let us associate
to it a matrix M ∈MI(C) as in the statement, by the following formula:

Mij =< Tej, ei >

It is clear that this correspondence T → M is linear, and also that its kernel is {0}.
Thus, we have an embedding of linear spaces B(H) ⊂MI(C).
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(2) Our claim now is that this embedding is multiplicative. But this is clear too,
because if we denote by T →MT our correspondence, we have:

(MST )ij = < STej, ei >

=

〈
S
∑
k

< Tej, ek > ek, ei

〉
=

∑
k

< Sek, ei >< Tej, ek >

=
∑
k

(MS)ik(MT )kj

= (MSMT )ij

(3) Finally, we must prove that the original operator T : H → H can be recovered
from its matrix M ∈ MI(C) via the formula in the statement, namely Tx = Mx. But
this latter formula holds for the vectors of the basis, x = ej, because we have:

(Tej)i = < Tej, ei >

= Mij

= (Mej)i

Now by linearity we obtain from this that the formula Tx = Mx holds everywhere,
on any vector x ∈ H, and this finishes the proof of the first assertion.

(4) In finite dimensions we obtain an isomorphism, because any matrix M ∈ MN(C)
determines an operator T : CN → CN , according to the formula < Tej, ei >= Mij. In
infinite dimensions, however, we do not have an isomorphism. For instance on H = l2(N)
the following matrix does not define an operator:

M =

1 1 . . .
1 1 . . .
...

...


Indeed, T (e1) should be the all-one vector, which is not square-summable. □

In connection with our previous comments on bases, the above result is something
quite theoretical, because for basic Hilbert spaces like L2[0, 1], which do not have a simple
orthonormal basis, the embedding B(H) ⊂M∞(C) that we obtain is not something very
useful. In short, while the bounded operators T : H → H are basically some infinite
matrices, it is better to think of these operators as being objects on their own.

As another comment, the construction T → M makes sense for any linear operator
T : H → H, but when dimH = ∞, we do not obtain an embedding L(H) ⊂ MI(C) in
this way. Indeed, set H = l2(N), let E = span(ei) be the linear space spanned by the
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standard basis, and pick an algebraic complement F of this space E, so that we have
H = E ⊕ F , as an algebraic direct sum. Then any linear operator S : F → F gives rise
to a linear operator T : H → H, given by T (e, f) = (0, S(f)), whose associated matrix is
0. And, restrospectively speaking, it is in order to avoid such pathologies that we decided
some time ago to restrict the attention to the bounded case, T ∈ B(H).

As in the finite dimensional case, we can talk about adjoint operators, in this setting,
the definition and main properties of the construction T → T ∗ being as follows:

Theorem 2.16. Given a bounded operator T ∈ B(H), the following formula defines
a bounded operator T ∗ ∈ B(H), called adjoint of H:

< Tx, y >=< x, T ∗y >

The correspondence T → T ∗ is antilinear, antimultiplicative, and is an involution, and
an isometry. In finite dimensions, we recover the usual adjoint operator.

Proof. There are several things to be done here, the idea being as follows:

(1) We will need a standard functional analysis result, stating that the continuous
linear forms φ : H → C appear as scalar products, as follows, with z ∈ H:

φ(x) =< x, z >

Indeed, in one sense this is clear, because given z ∈ H, the application φ(x) =< x, z >
is linear, and continuous as well, because by Cauchy-Schwarz we have:

|φ(x)| ≤ ||x|| · ||z||

Conversely now, by using a basis we can assume H = l2(N), and our linear form
φ : H → C must be then, by linearity, given by a formula of the following type:

φ(x) =
∑
i

xiz̄i

But, again by Cauchy-Schwarz, in order for such a formula to define indeed a contin-
uous linear form φ : H → C we must have z ∈ l2(N), and so z ∈ H, as desired.

(2) With this in hand, we can now construct the adjoint T ∗, by the formula in the
statement. Indeed, given y ∈ H, the formula φ(x) =< Tx, y > defines a linear map
H → C. Thus, we must have a formula as follows, for a certain vector T ∗y ∈ H:

φ(x) =< x, T ∗y >

Moreover, this vector T ∗y ∈ H is unique with this property, and we conclude from
this that the formula y → T ∗y defines a certain map T ∗ : H → H, which is unique with
the property in the statement, namely < Tx, y >=< x, T ∗y > for any x, y.
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(3) Let us prove that we have T ∗ ∈ B(H). By using once again the uniqueness of T ∗,
we conclude that we have the following formulae, which show that T ∗ is linear:

T ∗(x+ y) = T ∗x+ T ∗y , T ∗(λx) = λT ∗x

Observe also that T ∗ is bounded as well, because we have:

||T || = sup
||x||=1

sup
||y||=1

< Tx, y >

= sup
||y||=1

sup
||x||=1

< x, T ∗y >

= ||T ∗||

(4) The fact that the correspondence T → T ∗ is antilinear, antimultiplicative, and is
an involution comes from the following formulae, coming from uniqueness:

(S + T )∗ = S∗ + T ∗ , (λT )∗ = λ̄T ∗

(ST )∗ = T ∗S∗ , (T ∗)∗ = T

As for the isometry property with respect to the operator norm, ||T || = ||T ∗||, this is
something that we already know, from the proof of (3) above.

(5) Regarding finite dimensions, let us first examine the general case where our Hilbert
space comes with a basis, H = l2(I). We can compute the matrixM∗ ∈MI(C) associated
to the operator T ∗ ∈ B(H), by using < Tx, y >=< x, T ∗y >, in the following way:

(M∗)ij = < T ∗ej, ei >

= < ei, T ∗ej >

= < Tei, ej >

= M ji

Thus, we have reached to the usual formula for the adjoints of matrices, and in the
particular case H = CN , we conclude that T ∗ comes indeed from the usual M∗. □

As in finite dimensions, the operators T, T ∗ can be thought of as being “twin brothers”,
and there is a lot of interesting mathematics connecting them. We first have:

Proposition 2.17. Given a bounded operator T ∈ B(H), the following happen:

(1) kerT ∗ = (ImT )⊥.
(2) ImT ∗ = (kerT )⊥.

Proof. Both these assertions are elementary, as follows:

(1) Let us first prove “⊂”. Assuming T ∗x = 0, we have indeed x ⊥ ImT , because:

< x, Ty >=< T ∗x, y >= 0
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As for “⊃”, assuming < x, Ty >= 0 for any y, we have T ∗x = 0, because:

< T ∗x, y >=< x, Ty >= 0

(2) This can be deduced from (1), applied to the operator T ∗, as follows:

(kerT )⊥ = (ImT ∗)⊥⊥ = ImT ∗

Here we have used the formula K⊥⊥ = K̄, valid for any linear subspace K ⊂ H of a
Hilbert space, which for K closed reads K⊥⊥ = K, and comes from H = K ⊕K⊥, and
which in general follows from K⊥⊥ ⊂ K̄⊥⊥ = K̄, the reverse inclusion being clear. □

Let us record as well the following useful formula, relating T and T ∗:

Theorem 2.18. We have the following formula,

||TT ∗|| = ||T ||2

valid for any operator T ∈ B(H).

Proof. We recall from Theorem 2.16 that the correspondence T → T ∗ is an isometry
with respect to the operator norm, in the sense that we have:

||T || = ||T ∗||
In order to prove now the formula in the statement, observe first that we have:

||TT ∗|| ≤ ||T || · ||T ∗|| = ||T ||2

On the other hand, we have as well the following estimate:

||T ||2 = sup
||x||=1

| < Tx, Tx > |

= sup
||x||=1

| < x, T ∗Tx > |

≤ ||T ∗T ||
By replacing T → T ∗ we obtain from this that we have:

||T ||2 ≤ ||TT ∗||
Thus, we have obtained the needed inequality, and we are done. □

2c. Unitaries, projections

Let us discuss now some explicit examples of operators, in analogy with what happens
in finite dimensions. The most basic examples of linear transformations are the rotations,
symmetries and projections. Then, we have certain remarkable classes of linear trans-
formations, such as the positive, self-adjoint and normal ones. In what follows we will
develop the basic theory of such transformations, in the present Hilbert space setting.

Let us begin with the rotations. The situation here is quite tricky in arbitrary dimen-
sions, and we have several notions instead of one. We first have the following result:
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Theorem 2.19. For a linear operator U ∈ B(H) the following conditions are equiva-
lent, and if they are satisfied, we say that U is an isometry:

(1) U is a metric space isometry, d(Ux, Uy) = d(x, y).
(2) U is a normed space isometry, ||Ux|| = ||x||.
(3) U preserves the scalar product, < Ux,Uy >=< x, y >.
(4) U satisfies the isometry condition U∗U = 1.

In finite dimensions, we recover in this way the usual unitary transformations.

Proof. The proofs are similar to those in finite dimensions, as follows:

(1) ⇐⇒ (2) This follows indeed from the formula of the distances, namely:

d(x, y) = ||x− y||
(2) ⇐⇒ (3) This is again standard, because we can pass from scalar products to

distances, and vice versa, by using ||x|| = √
< x, x >, and the polarization formula.

(3) ⇐⇒ (4) We have indeed the following equivalences, by using the standard formula
< Tx, y >=< x, T ∗y >, which defines the adjoint operator:

< Ux,Uy >=< x, y > ⇐⇒ < x,U∗Uy >=< x, y >

⇐⇒ U∗Uy = y

⇐⇒ U∗U = 1

Thus, we are led to the conclusions in the statement. □

The point now is that the condition U∗U = 1 does not imply in general UU∗ = 1, the
simplest counterexample here being the shift operator on l2(N):

Proposition 2.20. The shift operator on the space l2(N), given by

S(ei) = ei+1

is an isometry, S∗S = 1. However, we have SS∗ ̸= 1.

Proof. The adjoint of the shift is given by the following formula:

S∗(ei) =

{
ei−1 if i > 0

0 if i = 0

When composing S, S∗, in one sense we obtain the following formula:

S∗S(ei) = ei

In other other sense now, we obtain the following formula:

SS∗(ei) =

{
ei if i > 0

0 if i = 0
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Summarizing, the compositions are given by the following formulae:

S∗S = 1 , SS∗ = Proj(e⊥0 )

Thus, we are led to the conclusions in the statement. □

As a conclusion, the notion of isometry is not the correct infinite dimensional analogue
of the notion of unitary, and the unitary operators must be introduced as follows:

Theorem 2.21. For a linear operator U ∈ B(H) the following conditions are equiva-
lent, and if they are satisfied, we say that U is a unitary:

(1) U is an isometry, which is invertible.
(2) U , U−1 are both isometries.
(3) U , U∗ are both isometries.
(4) UU∗ = U∗U = 1.
(5) U∗ = U−1.

Moreover, the unitary operators from a group U(H) ⊂ B(H).

Proof. There are several statements here, the idea being as follows:

(1) The various equivalences in the statement are all clear from definitions, and from
Theorem 2.19 in what regards the various possible notions of isometries which can be
used, by using the formula (ST )∗ = T ∗S∗ for the adjoints of the products of operators.

(2) The fact that the products and inverses of unitaries are unitaries is also clear, and
we conclude that the unitary operators from a group U(H) ⊂ B(H), as stated. □

Let us discuss now the projections. Modulo the fact that all the subspaces K ⊂ H
where these projections project must be assumed to be closed, in the present setting, here
the result is perfectly similar to the one in finite dimensions, as follows:

Theorem 2.22. For a linear operator P ∈ B(H) the following conditions are equiva-
lent, and if they are satisfied, we say that P is a projection:

(1) P is the orthogonal projection on a closed subspace K ⊂ H.
(2) P satisfies the projection equations P 2 = P ∗ = P .

Proof. As in finite dimensions, P is an abstract projection, not necessarily orthogo-
nal, when it is an idempotent, algebrically speaking, in the sense that we have:

P 2 = P

The point now is that this projection is orthogonal when:

< Px− x, Py >= 0 ⇐⇒ < P ∗Px− P ∗x, y >= 0

⇐⇒ P ∗Px− P ∗x = 0

⇐⇒ P ∗P − P ∗ = 0

⇐⇒ P ∗P = P ∗



48 2. LINEAR OPERATORS

Now observe that by conjugating, we obtain P ∗P = P . Thus, we must have P = P ∗,
and so we have shown that any orthogonal projection must satisfy, as claimed:

P 2 = P ∗ = P

Conversely, if this condition is satisfied, P 2 = P shows that P is a projection, and
P = P ∗ shows via the above computation that P is indeed orthogonal. □

There is a relation between the projections and the general isometries, such as the
shift S that we met before, and we have the following result:

Proposition 2.23. Given an isometry U ∈ B(H), the operator

P = UU∗

is a projection, namely the orthogonal projection on Im(U).

Proof. Assume indeed that we have an isometry, U∗U = 1. The fact that P = UU∗

is indeed a projection can be checked abstractly, as follows:

(UU∗)∗ = UU∗

UU∗UU∗ = UU∗

As for the last assertion, this is something that we already met, for the shift, and the
situation in general is similar, with the result itself being clear. □

More generally now, along the same lines, and clarifying the whole situation with the
unitaries and isometries, we have the following result:

Theorem 2.24. An operator U ∈ B(H) is a partial isometry, in the usual geometric
sense, when the following two operators are projections:

P = UU∗ , Q = U∗U

Moreover, the isometries, adjoints of isometries and unitaries are respectively character-
ized by the conditions Q = 1, P = 1, P = Q = 1.

Proof. The first assertion is a straightforward extension of Proposition 2.23, and the
second assertion follows from various results regarding isometries established above. □

It is possible to talk as well about symmetries, in the following way:

Definition 2.25. An operator S ∈ B(H) is called a symmetry when S2 = 1, and a
unitary symmetry when one of the following equivalent conditions is satisfied:

(1) S is a unitary, S∗ = S−1, and a symmetry as well, S2 = 1.
(2) S satisfies the equations S = S∗ = S−1.
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Here the terminology is a bit non-standard, because even in finite dimensions, S2 = 1
is not exactly what you would require for a “true” symmetry, as shown by the following
transformation, which is a symmetry in our sense, but not a unitary symmetry:(

0 2
1/2 0

)(
x

y

)
=

(
2y

x/2

)
Let us study now some larger classes of operators, which are of particular importance,

namely the self-adjoint, positive and normal ones. We first have:

Theorem 2.26. For an operator T ∈ B(H), the following conditions are equivalent,
and if they are satisfied, we call T self-adjoint:

(1) T = T ∗.
(2) < Tx, x >∈ R.

In finite dimensions, we recover in this way the usual self-adjointness notion.

Proof. There are several assertions here, the idea being as follows:

(1) =⇒ (2) This is clear, because we have:

< Tx, x > = < x, Tx >

= < T ∗x, x >

= < Tx, x >

(2) =⇒ (1) In order to prove this, observe that the beginning of the above computa-
tion shows that, when assuming < Tx, x >∈ R, the following happens:

< Tx, x >=< T ∗x, x >

Thus, in terms of the operator S = T − T ∗, we have:

< Sx, x >= 0

In order to finish, we use a polarization trick. We have the following formula:

< S(x+ y), x+ y >=< Sx, x > + < Sy, y > + < Sx, y > + < Sy, x >

Since the first 3 terms vanish, the sum of the 2 last terms vanishes too. But, by using
S∗ = −S, coming from S = T − T ∗, we can process this latter vanishing as follows:

< Sx, y > = − < Sy, x >

= < y, Sx >

= < Sx, y >

Thus we must have < Sx, y >∈ R, and with y → iy we obtain < Sx, y >∈ iR too,
and so < Sx, y >= 0. Thus S = 0, which gives T = T ∗, as desired.

(3) Finally, in what regards the finite dimensions, or more generally the case where our
Hilbert space comes with a basis, H = l2(I), here the condition T = T ∗ corresponds to
the usual self-adjointness condition M =M∗ at the level of the associated matrices. □
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At the level of the basic examples, the situation is as follows:

Proposition 2.27. The folowing operators are self-adjoint:

(1) The projections, P 2 = P ∗ = P . In fact, an abstract, algebraic projection is an
orthogonal projection precisely when it is self-adjoint.

(2) The unitary symmetries, S = S∗ = S−1. In fact, a unitary is a unitary symmetry
precisely when it is self-adjoint.

Proof. These assertions are indeed all clear from definitions. □

Next in line, we have the notion of positive operator. We have here:

Theorem 2.28. The positive operators, which are the operators T ∈ B(H) satisfying
< Tx, x >≥ 0, have the following properties:

(1) They are self-adjoint, T = T ∗.
(2) As examples, we have the projections, P 2 = P ∗ = P .
(3) More generally, T = S∗S is positive, for any S ∈ B(H).
(4) In finite dimensions, we recover the usual positive operators.

Proof. All these assertions are elementary, the idea being as follows:

(1) This follows from Theorem 2.26, because < Tx, x >≥ 0 implies < Tx, x >∈ R.

(2) This is clear from P 2 = P = P ∗, because we have:

< Px, x > = < P 2x, x >

= < Px, Px >

= ||Px||2

(3) This follows from a similar computation, namely:

< S∗Sx, x >=< Sx, Sx >= ||Sx||2

(4) This is well-known, the idea being that the condition < Tx, x >≥ 0 corresponds
to the usual positivity condition A ≥ 0, at the level of the associated matrix. □

It is possible to talk as well about strictly positive operators, and we have here:

Theorem 2.29. The strictly positive operators, which are the operators T ∈ B(H)
satisfying < Tx, x >> 0, for any x ̸= 0, have the following properties:

(1) They are self-adjoint, T = T ∗.
(2) As examples, T = S∗S is positive, for any S ∈ B(H) injective.
(3) In finite dimensions, we recover the usual strictly positive operators.

Proof. As before, all these assertions are elementary, the idea being as follows:

(1) This is something that we know, from Theorem 2.28.
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(2) This follows from the injectivity of S, because for any x ̸= 0 we have:

< S∗Sx, x > = < Sx, Sx >

= ||Sx||2

> 0

(3) This is well-known, the idea being that the condition < Tx, x >> 0 corresponds
to the usual strict positivity condition A > 0, at the level of the associated matrix. □

As a comment, while any strictly positive matrix A > 0 is well-known to be invertible,
the analogue of this fact does not hold in infinite dimensions, a counterexample here being
the following operator on l2(N), which is strictly positive but not invertible:

T =


1

1
2

1
3

. . .


As a last remarkable class of operators, we have the normal ones. We have here:

Theorem 2.30. For an operator T ∈ B(H), the following conditions are equivalent,
and if they are satisfied, we call T normal:

(1) TT ∗ = T ∗T .
(2) ||Tx|| = ||T ∗x||.

In finite dimensions, we recover in this way the usual normality notion.

Proof. There are several assertions here, the idea being as follows:

(1) =⇒ (2) This is clear, due to the following computation:

||Tx||2 = < Tx, Tx >

= < T ∗Tx, x >

= < TT ∗x, x >

= < T ∗x, T ∗x >

= ||T ∗x||2

(2) =⇒ (1) This is clear as well, because the above computation shows that, when
assuming ||Tx|| = ||T ∗x||, the following happens:

< TT ∗x, x >=< T ∗Tx, x >

Thus, in terms of the operator S = TT ∗ − T ∗T , we have:

< Sx, x >= 0

In order to finish, we use a polarization trick. We have the following formula:

< S(x+ y), x+ y >=< Sx, x > + < Sy, y > + < Sx, y > + < Sy, x >
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Since the first 3 terms vanish, the sum of the 2 last terms vanishes too. But, by using
S = S∗, coming from S = TT ∗ − T ∗T , we can process this latter vanishing as follows:

< Sx, y > = − < Sy, x >

= − < y, Sx >

= −< Sx, y >

Thus we must have < Sx, y >∈ iR, and with y → iy we obtain < Sx, y >∈ R too,
and so < Sx, y >= 0. Thus S = 0, which gives TT ∗ = T ∗T , as desired.

(3) Finally, in what regards finite dimensions, or more generally the case where our
Hilbert space comes with a basis, H = l2(I), here the condition TT ∗ = T ∗T corresponds to
the usual normality condition MM∗ =M∗M at the level of the associated matrices. □

Observe that the normal operators generalize both the self-adjoint operators, and the
unitaries. We will be back to such operators, on many occassions, in what follows.

2d. Diagonal operators

Let us work out now what happens in the case that we are mostly interested in, namely
H = L2(X), with X being a measured space. We first have:

Theorem 2.31. Given a measured space X, consider the Hilbert space H = L2(X).
Associated to any function f ∈ L∞(X) is then the multiplication operator

Tf : H → H , Tf (g) = fg

which is well-defined, linear and bounded, having norm as follows:

||Tf || = ||f ||∞
Moreover, the correspondence f → Tf is linear, multiplicative and involutive.

Proof. There are several assertions here, the idea being as follows:

(1) We must first prove that the formula in the statement, Tf (g) = fg, defines indeed
an operator H → H, which amounts in saying that we have:

f ∈ L∞(X), g ∈ L2(X) =⇒ fg ∈ L2(X)

But this follows from the following explicit estimate:

||fg||2 =

√∫
X

|f(x)|2|g(x)|2dµ(x)

≤ sup
x∈X

|f(x)|2
√∫

X

|g(x)|2dµ(x)

= ||f ||∞||g||2
< ∞
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(2) Next in line, we must prove that T is linear and bounded. We have:

Tf (g + h) = Tf (g) + Tf (h) , Tf (λg) = λTf (g)

As for the boundedness condition, this follows from the estimate from the proof of (1),
which gives, in terms of the operator norm of B(H):

||Tf || ≤ ||f ||∞
(3) Let us prove now that we have equality, ||Tf || = ||f ||∞, in the above estimate. For

this purpose, we use the well-known fact that the L∞ functions can be approximated by
L2 functions. Indeed, with such an approximation gn → f we obtain:

||fgn||2 =

√∫
X

|f(x)|2|gn(x)|2dµ(x)

≃ sup
x∈X

|f(x)|2
√∫

X

|gn(x)|2dµ(x)

= ||f ||∞||gn||2
Thus, with n → ∞ we obtain ||Tf || ≥ ||f ||∞, which is reverse to the inequality

obtained in the proof of (2), and this leads to the conclusion in the statement.

(4) Regarding now the fact that the correspondence f → Tf is indeed linear and
multiplicative, the corresponding formulae are as follows, both clear:

Tf+h(g) = Tf (g) + Th(g) , Tλf (g) = λTf (g)

(5) Finally, let us prove that the correspondence f → Tf is involutive, in the sense
that it transforms the standard involution f → f̄ of the algebra L∞(X) into the standard
involution T → T ∗ of the algebra B(H). We must prove that we have:

T ∗
f = Tf̄

But this follows from the following computation:

< Tfg, h > = < fg, h >

=

∫
X

f(x)g(x)h̄(x)dµ(x)

=

∫
X

g(x)f(x)h̄(x)dµ(x)

= < g, f̄h >

= < g, Tf̄h >

Indeed, since the adjoint is unique, we obtain from this T ∗
f = Tf̄ . Thus the correspon-

dence f → Tf is indeed involutive, as claimed. □
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In what regards now the basic classes of operators, the above construction provides
us with many new examples, which are very explicit, and are complementary to the usual
finite dimensional examples that we usually have in mind, as follows:

Theorem 2.32. The multiplication operators Tf (g) = fg on the Hilbert space H =
L2(X) associated to the functions f ∈ L∞(X) are as follows:

(1) Tf is unitary when f : X → T.
(2) Tf is a symmetry when f : X → {−1, 1}.
(3) Tf is a projection when f = χY with Y ∈ X.
(4) There are no non-unitary isometries.
(5) There are no non-unitary symmetries.
(6) Tf is positive when f : X → R+.
(7) Tf is self-adjoint when f : X → R.
(8) Tf is always normal, for any f : X → C.

Proof. All these assertions are clear from definitions, and from the various properties
of the correspondence f → Tf , established above, as follows:

(1) The unitarity condition U∗ = U−1 for the operator Tf reads f̄ = f−1, which means
that we must have f : X → T, as claimed.

(2) The symmetry condition S2 = 1 for the operator Tf reads f 2 = 1, which means
that we must have f : X → {−1, 1}, as claimed.

(3) The projection condition P 2 = P ∗ = P for the operator Tf reads f 2 = f = f̄ ,
which means that we must have f : X → {0, 1}, or equivalently, f = χY with Y ⊂ X.

(4) A non-unitary isometry must satisfy by definition U∗U = 1, UU∗ ̸= 1, and for the
operator Tf this means that we must have |f |2 = 1, |f |2 ̸= 1, which is impossible.

(5) This follows from (1) and (2), because the solutions found in (2) for the symmetry
problem are included in the solutions found in (1) for the unitarity problem.

(6) The fact that Tf is positive amounts in saying that we must have < fg, g >≥ 0
for any g ∈ L2(X), and this is equivalent to the fact that we must have f ≥ 0, as desired.

(7) The self-adjointness condition T = T ∗ for the operator Tf reads f = f̄ , which
means that we must have f : X → R, as claimed.

(8) The normality condition TT ∗ = T ∗T for the operator Tf reads ff̄ = f̄f , which is
automatic for any function f : X → C, as claimed. □

The above result might look quite puzzling, at a first glance, messing up our intuition
with various classes of operators, coming from usual linear algebra. However, a bit of
further thinking tells us that there is no contradiction, and that Theorem 2.32 in fact
is very similar to what we know about the diagonal matrices. To be more precise, the
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diagonal matrices are unitaries precisely when their entries are in T, there are no non-
unitary isometries, all such matrices are normal, and so on. In order to understand all
this, let us work out what happens with the correspondence f → Tf , in finite dimensions.
The situation here is in fact extremely simple, and illuminating, as follows:

Theorem 2.33. Assuming X = {1, . . . , N} with the counting measure, the embedding

L∞(X) ⊂ B(L2(X))

constructed via multiplication operators, Tf (g) = fg, corresponds to the embedding

CN ⊂MN(C)
given by the diagonal matrices, constructed as follows:

f → diag(f1, . . . , fN)

Thus, Theorem 2.32 generalizes what we know about the diagonal matrices.

Proof. The idea is that all this is trivial, with not a single new computation needed,
modulo some algebraic thinking, of quite soft type. Let us go back indeed to Theorem
2.31 above and its proof, with the abstract measured space X appearing there being now
the following finite space, with its counting mesure:

X = {1, . . . , N}
Regarding the functions f ∈ L∞(X), these are now functions as follows:

f : {1, . . . , N} → C
We can identify such a function with the corresponding vector (f(i))i ∈ CN , and so

we conclude that our input algebra L∞(X) is the algebra CN :

L∞(X) = CN

Regarding now the Hilbert space H = L2(X), this is equal as well to CN , and for the
same reasons, namely that g ∈ L2(X) can be identified with the vector (g(i))i ∈ CN :

L2(X) = CN

Observe that, due to our assumption that X comes with its counting measure, the
scalar product that we obtain on CN is the usual one, without weights. Now, let us
identify the operators on L2(X) = CN with the square matrices, in the usual way:

B(L2(X)) =MN(C)
This was our final identification, in order to get started. Now by getting back to

Theorem 2.31, the embedding L∞(X) ⊂ B(L2(X)) constructed there reads:

CN ⊂MN(C)
But this can only be the embedding given by the diagonal matrices, so are basically

done. In order to finish, however, let us understand what the operator associated to an
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arbitrary vector f ∈ CN is. We can regard this vector as a function, f(i) = fi, and so
the action Tf (g) = fg on the vectors of L2(X) = CN is by componentwise multiplica-
tion by the numbers f1, . . . , fN . But this is exactly the action of the diagonal matrix
diag(f1, . . . , fN), and so we are led to the conclusion in the statement. □

There are other things that can be said about the embedding L∞(X) ⊂ B(L2(X)), a
key observation here, which is elementary to prove, being the fact that the image of L∞(X)
is closed with respect to the weak topology, the one where Tn → T when Tnx → Tx for
any x ∈ H. And with this meaning that L∞(X) is a so-called von Neumann algebra on
L2(X). We will be back to this, on numerous occasions, in what follows.

2e. Exercises

Exercises:

Exercise 2.34.

Exercise 2.35.

Exercise 2.36.

Exercise 2.37.

Exercise 2.38.

Exercise 2.39.

Exercise 2.40.

Exercise 2.41.

Bonus exercise.



CHAPTER 3

Spectral radius

3a. The spectrum

We would like now to discuss the diagonalization problem for the operators T ∈ B(H),
in analogy with the diagonalization problem for the usual matrices A ∈ MN(C). As a
first observation, we can talk about eigenvalues and eigenvectors, as follows:

Definition 3.1. Given an operator T ∈ B(H), assuming that we have

Tx = λx

we say that x ∈ H is an eigenvector of T , with eigenvalue λ ∈ C.
We know many things about eigenvalues and eigenvectors, in the finite dimensional

case. However, most of these will not extend to the infinite dimensional case, or at least
not extend in a straightforward way, due to a number of reasons:

(1) Most of basic linear algebra is based on the fact that Tx = λx is equivalent to
(T − λ)x = 0, so that λ is an eigenvalue when T − λ is not invertible. In the
infinite dimensional setting T − λ might be injective and not surjective, or vice
versa, or invertible with (T − λ)−1 not bounded, and so on.

(2) Also, in linear algebra T −λ is not invertible when det(T −λ) = 0, and with this
leading to most of the advanced results about eigenvalues and eigenvectors. In
infinite dimensions, however, it is impossible to construct a determinant function
det : B(H) → C, and this even for the diagonal operators on l2(N).

Summarizing, we are in trouble with our extension program, and this right from the
beginning. In order to have some theory started, however, let us forget about (2), which
obviously leads nowhere, and focus on the difficulties in (1).

In order to cut short the discussion there, regarding the various properties of T − λ,
we can just say that T − λ is either invertible with bounded inverse, the “good case”, or
not. We are led in this way to the following definition:

Definition 3.2. The spectrum of an operator T ∈ B(H) is the set

σ(T ) =
{
λ ∈ C

∣∣∣T − λ ̸∈ B(H)−1
}

where B(H)−1 ⊂ B(H) is the set of invertible operators.

57
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As a basic example, in the finite dimensional case, H = CN , the spectrum of a usual
matrix A ∈ MN(C) is the collection of its eigenvalues, taken without multiplicities. We
will see many other examples. In general, the spectrum has the following properties:

Proposition 3.3. The spectrum of T ∈ B(H) contains the eigenvalue set

ε(T ) =
{
λ ∈ C

∣∣∣ ker(T − λ) ̸= {0}
}

and ε(T ) ⊂ σ(T ) is an equality in finite dimensions, but not in infinite dimensions.

Proof. We have several assertions here, the idea being as follows:

(1) First of all, the eigenvalue set is indeed the one in the statement, because Tx = λx
tells us precisely that T − λ must be not injective. The fact that we have ε(T ) ⊂ σ(T ) is
clear as well, because if T − λ is not injective, it is not bijective.

(2) In finite dimensions we have ε(T ) = σ(T ), because T − λ is injective if and only if
it is bijective, with the boundedness of the inverse being automatic.

(3) In infinite dimensions we can assumeH = l2(N), and the shift operator S(ei) = ei+1

is injective but not surjective. Thus 0 ∈ σ(T )− ε(T ). □

We will see more examples and counterexamples, and some general theory, in a mo-
ment. Philosophically speaking, the best way of thinking at all this is as follows:

– The numbers λ /∈ σ(T ) are good, because we can invert T − λ.

– The numbers λ ∈ σ(T )− ε(T ) are bad.

– The eigenvalues λ ∈ ε(T ) are evil.

Note that this is somewhat contrary to what happens in linear algebra, where the
eigenvalues are highly valued, and cherished, and regarded as being the source of all good
things on Earth. Welcome to operator theory, where some things are upside down.

Let us develop now some general theory for the spectrum, or perhaps for its comple-
ment, with the promise to come back to eigenvalues later. As a first result, we would like
to prove that the spectra are non-empty. This is something tricky, and we will need:

Proposition 3.4. The following happen:

(1) ||T || < 1 =⇒ (1− T )−1 = 1 + T + T 2 + . . .
(2) The set B(H)−1 is open.
(3) The map T → T−1 is differentiable.

Proof. All these assertions are elementary, as follows:
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(1) This follows as in the scalar case, the computation being as follows, provided that
everything converges under the norm, which amounts in saying that ||T || < 1:

(1− T )(1 + T + T 2 + . . .) = 1− T + T − T 2 + T 2 − T 3 + . . .

= 1

(2) Assuming T ∈ B(H)−1, let us pick S ∈ B(H) such that:

||T − S|| < 1

||T−1||
We have then the following estimate:

||1− T−1S|| = ||T−1(T − S)||
≤ ||T−1|| · ||T − S||
< 1

Thus we have T−1S ∈ B(H)−1, and so S ∈ B(H)−1, as desired.

(3) In the scalar case, the derivative of f(t) = t−1 is f ′(t) = −t−2. In the present
normed space setting the derivative is no longer a number, but rather a linear transfor-
mation, which can be found by developing f(T ) = T−1 at order 1, as follows:

(T + S)−1 = ((1 + ST−1)T )−1

= T−1(1 + ST−1)−1

= T−1(1− ST−1 + (ST−1)2 − . . .)

≃ T−1(1− ST−1)

= T−1 − T−1ST−1

Thus f(T ) = T−1 is indeed differentiable, with derivative f ′(T )S = −T−1ST−1. □

We can now formulate our first theorem about spectra, as follows:

Theorem 3.5. The spectrum of a bounded operator T ∈ B(H) is:

(1) Compact.
(2) Contained in the disc D0(||T ||).
(3) Non-empty.

Proof. This can be proved by using Proposition 3.4, along with a bit of complex and
functional analysis, for which we refer to Rudin [81] or Lax [68], as follows:

(1) In view of (2) below, it is enough to prove that σ(T ) is closed. But this follows
from the following computation, with |ε| being small:

λ /∈ σ(T ) =⇒ T − λ ∈ B(H)−1

=⇒ T − λ− ε ∈ B(H)−1

=⇒ λ+ ε /∈ σ(T )
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(2) This follows from the following computation:

λ > ||T || =⇒
∣∣∣∣∣∣T
λ

∣∣∣∣∣∣ < 1

=⇒ 1− T

λ
∈ B(H)−1

=⇒ λ− T ∈ B(H)−1

=⇒ λ /∈ σ(T )

(3) Assume by contradiction σ(T ) = ∅. Given a linear form f ∈ B(H)∗, consider the
following map, which is well-defined, due to our assumption σ(T ) = ∅:

φ : C → C , λ→ f((T − λ)−1)

By using the fact that T → T−1 is differentiable, that we know from Proposition 3.4,
we conclude that this map is differentiable, and so holomorphic. Also, we have:

λ→ ∞ =⇒ T − λ→ ∞
=⇒ (T − λ)−1 → 0

=⇒ f((T − λ))−1 → 0

Thus by the Liouville theorem we obtain φ = 0. But, in view of the definition of φ,
this gives (T − λ)−1 = 0, which is a contradiction, as desired. □

Here is now a second basic result regarding the spectra, inspired from what happens
in finite dimensions, for the usual complex matrices, and which shows that things do not
necessarily extend without troubles to the infinite dimensional setting:

Theorem 3.6. We have the following formula, valid for any operators S, T :

σ(ST ) ∪ {0} = σ(TS) ∪ {0}
In finite dimensions we have σ(ST ) = σ(TS), but this fails in infinite dimensions.

Proof. There are several assertions here, the idea being as follows:

(1) This is something that we know in finite dimensions, coming from the fact that
the characteristic polynomials of the associated matrices A,B coincide:

PAB = PBA

Thus we obtain σ(ST ) = σ(TS) in this case, as claimed. Observe that this improves
twice the general formula in the statement, first because we have no issues at 0, and
second because what we obtain is actually an equality of sets with mutiplicities.

(2) In general now, let us first prove the main assertion, stating that σ(ST ), σ(TS)
coincide outside 0. We first prove that we have the following implication:

1 /∈ σ(ST ) =⇒ 1 /∈ σ(TS)
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Assume indeed that 1− ST is invertible, with inverse denoted R:

R = (1− ST )−1

We have then the following formulae, relating our variables R, S, T :

RST = STR = R− 1

By using RST = R− 1, we have the following computation:

(1 + TRS)(1− TS) = 1 + TRS − TS − TRSTS

= 1 + TRS − TS − TRS + TS

= 1

A similar computation, using STR = R− 1, shows that we have:

(1− TS)(1 + TRS) = 1

Thus 1 − TS is invertible, with inverse 1 + TRS, which proves our claim. Now by
multiplying by scalars, we deduce from this that for any λ ∈ C− {0} we have:

λ /∈ σ(ST ) =⇒ λ /∈ σ(TS)

But this leads to the conclusion in the statement.

(3) Regarding now the counterexample to the formula σ(ST ) = σ(TS), in general, let
us take S to be the shift on H = L2(N), given by the following formula:

S(ei) = ei+1

As for T , we can take it to be the adjoint of S, which is the following operator:

S∗(ei) =

{
ei−1 if i > 0

0 if i = 0

Let us compose now these two operators. In one sense, we have:

S∗S = 1 =⇒ 0 /∈ σ(S∗S)

In the other sense, however, the situation is different, as follows:

SS∗ = Proj(e⊥0 ) =⇒ 0 ∈ σ(SS∗)

Thus, the spectra do not match on 0, and we have our counterexample, as desired. □
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3b. Functional calculus

Let us develop now some systematic theory for the computation of the spectra, based
on what we know about the eigenvalues of the usual complex matrices. As a first result,
which is well-known for the usual matrices, and extends well, we have:

Theorem 3.7. We have the “polynomial functional calculus” formula

σ(P (T )) = P (σ(T ))

valid for any polynomial P ∈ C[X], and any operator T ∈ B(H).

Proof. We pick a scalar λ ∈ C, and we decompose the polynomial P − λ:

P (X)− λ = c(X − r1) . . . (X − rn)

We have then the following equivalences:

λ /∈ σ(P (T )) ⇐⇒ P (T )− λ ∈ B(H)−1

⇐⇒ c(T − r1) . . . (T − rn) ∈ B(H)−1

⇐⇒ T − r1, . . . , T − rn ∈ B(H)−1

⇐⇒ r1, . . . , rn /∈ σ(T )

⇐⇒ λ /∈ P (σ(T ))

Thus, we are led to the formula in the statement. □

The above result is something very useful, and generalizing it will be our next task.
As a first ingredient here, assuming that A ∈MN(C) is invertible, we have:

σ(A−1) = σ(A)−1

It is possible to extend this formula to the arbitrary operators, and we will do this in
a moment. Before starting, however, we have to think in advance on how to unify this
potential result, that we have in mind, with Theorem 3.7 itself.

What we have to do here is to find a class of functions generalizing both the poly-
nomials P ∈ C[X] and the inverse function x → x−1, and the answer to this question is
provided by the rational functions, which are as follows:

Definition 3.8. A rational function f ∈ C(X) is a quotient of polynomials:

f =
P

Q

Assuming that P,Q are prime to each other, we can regard f as a usual function,

f : C−X → C

with X being the set of zeros of Q, also called poles of f .
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We should mention here that the term “poles” comes from the fact that, if you want
to imagine the graph of such a rational function f , in two complex dimensions, what you
get is some sort of tent, supported by poles of infinite height, situated at the zeros of Q.
For more on all this, and on complex analysis in general, we refer as usual to Rudin [81].
Although a look at an abstract algebra book can be interesting as well.

Now that we have our class of functions, the next step consists in applying them to
operators. Here we cannot expect f(T ) to make sense for any f and any T , for instance
because T−1 is defined only when T is invertible. We are led in this way to:

Definition 3.9. Given an operator T ∈ B(H), and a rational function f = P/Q
having poles outside σ(T ), we can construct the following operator,

f(T ) = P (T )Q(T )−1

that we can denote as a usual fraction, as follows,

f(T ) =
P (T )

Q(T )

due to the fact that P (T ), Q(T ) commute, so that the order is irrelevant.

To be more precise, f(T ) is indeed well-defined, and the fraction notation is justified
too. In more formal terms, we can say that we have a morphism of complex algebras as
follows, with C(X)T standing for the rational functions having poles outside σ(T ):

C(X)T → B(H) , f → f(T )

Summarizing, we have now a good class of functions, generalizing both the polynomials
and the inverse map x→ x−1. We can now extend Theorem 3.7, as follows:

Theorem 3.10. We have the “rational functional calculus” formula

σ(f(T )) = f(σ(T ))

valid for any rational function f ∈ C(X) having poles outside σ(T ).

Proof. We pick a scalar λ ∈ C, we write f = P/Q, and we set:

F = P − λQ

By using now Theorem 3.7, for this polynomial, we obtain:

λ ∈ σ(f(T )) ⇐⇒ F (T ) /∈ B(H)−1

⇐⇒ 0 ∈ σ(F (T ))

⇐⇒ 0 ∈ F (σ(T ))

⇐⇒ ∃µ ∈ σ(T ), F (µ) = 0

⇐⇒ λ ∈ f(σ(T ))

Thus, we are led to the formula in the statement. □
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As an application of the above methods, we can investigate certain special classes of
operators, such as the self-adjoint ones, and the unitary ones. Let us start with:

Proposition 3.11. The following happen:

(1) We have σ(T ∗) = σ(T ), for any T ∈ B(H).
(2) If T = T ∗ then X = σ(T ) satisfies X = X.
(3) If U∗ = U−1 then X = σ(U) satisfies X−1 = X.

Proof. We have several assertions here, the idea being as follows:

(1) The spectrum of the adjoint operator T ∗ can be computed as follows:

σ(T ∗) =
{
λ ∈ C

∣∣∣T ∗ − λ /∈ B(H)−1
}

=
{
λ ∈ C

∣∣∣T − λ̄ /∈ B(H)−1
}

= σ(T )

(2) This is clear indeed from (1).

(3) For a unitary operator, U∗ = U−1, Theorem 3.10 and (1) give:

σ(U)−1 = σ(U−1) = σ(U∗) = σ(U)

Thus, we are led to the conclusion in the statement. □

In analogy with what happens for the usual matrices, we would like to improve now
(2,3) above, with results stating that the spectrum X = σ(T ) satisfies X ⊂ R for self-
adjoints, and X ⊂ T for unitaries. This will be tricky. Let us start with:

Theorem 3.12. The spectrum of a unitary operator

U∗ = U−1

is on the unit circle, σ(U) ⊂ T.

Proof. Assuming U∗ = U−1, we have the following norm computation:

||U || =
√

||UU∗|| =
√
1 = 1

Now if we denote by D the unit disk, we obtain from this:

σ(U) ⊂ D

On the other hand, once again by using U∗ = U−1, we have as well:

||U−1|| = ||U∗|| = ||U || = 1

Thus, as before with D being the unit disk in the complex plane, we have:

σ(U−1) ⊂ D

Now by using Theorem 3.10, we obtain σ(U) ⊂ D ∩D−1 = T, as desired. □
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We have as well a similar result for self-adjoints, as follows:

Theorem 3.13. The spectrum of a self-adjoint operator

T = T ∗

consists of real numbers, σ(T ) ⊂ R.

Proof. The idea is that we can deduce the result from Theorem 3.12, by using the
following remarkable rational function, depending on a parameter r ∈ R:

f(z) =
z + ir

z − ir

Indeed, for r >> 0 the operator f(T ) is well-defined, and we have:(
T + ir

T − ir

)∗

=
T − ir

T + ir
=

(
T + ir

T − ir

)−1

Thus f(T ) is unitary, and by using Theorem 3.12 we obtain:

σ(T ) ⊂ f−1(f(σ(T )))

= f−1(σ(f(T )))

⊂ f−1(T)
= R

Thus, we are led to the conclusion in the statement. □

As a theoretical remark, it is possible to deduce as well Theorem 3.12 from Theorem
3.13, by performing the above computation in the other sense. Indeed, by assuming that
Theorem 3.13 holds indeed, and starting with a unitary U ∈ B(H), we obtain:

σ(U) ⊂ f(f−1(σ(U)))

= f(σ(f−1(U)))

⊂ f(R)
= T

As a conclusion now, we have so far a beginning of spectral theory, with results allowing
us to investigate the unitaries and the self-adjoints, and with the remark that these two
classes of operators are related by a certain wizarding rational function, namely:

f(z) =
z + ir

z − ir

Let us keep now building on this, with some more complex analysis involved. One key
thing that we know about matrices, and which follows for instance by using the fact that
the diagonalizable matrices are dense, is the following formula:

σ(eA) = eσ(A)
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We would like to have such formulae for the general operators T ∈ B(H), but this is
something quite technical. Consider the rational calculus morphism from Definition 3.9,
which is as follows, with the exponent standing for “having poles outside σ(T )”:

C(X)T → B(H) , f → f(T )

As mentioned before, the rational functions are holomorphic outside their poles, and
this raises the question of extending this morphism, as follows:

Hol(σ(T )) → B(H) , f → f(T )

Normally this can be done in several steps. Let us start with:

Proposition 3.14. We can exponentiate any operator T ∈ B(H), by setting:

eT =
∞∑
k=0

T k

k!

Similarly, we can define f(T ), for any holomorphic function f : C → C.

Proof. We must prove that the series defining eT converges, and this follows from:

||eT || ≤
∞∑
k=0

||T ||k

k!
= e||T ||

The case of the arbitrary holomorphic functions f : C → C is similar. □

In general, the holomorphic functions are not entire, and the above method won’t
cover the rational functions f ∈ C(X)T that we want to generalize. Thus, we must use
something else. And the answer here comes from the Cauchy formula:

f(t) =
1

2πi

∫
γ

f(z)

z − t
dz

Indeed, given a rational function f ∈ C(X)T , the operator f(T ) ∈ B(H), constructed
in Definition 3.9, can be recaptured in an analytic way, as follows:

f(T ) =
1

2πi

∫
γ

f(z)

z − T
dz

Now given an arbitrary function f ∈ Hol(σ(T )), we can define f(T ) ∈ B(H) by the
exactly same formula, and we obtain in this way the desired correspondence:

Hol(σ(T )) → B(H) , f → f(T )

This was for the plan. In practice now, all this needs a bit of care, with many verifi-
cations needed, and with the technical remark that a winding number must be added to
the above Cauchy formulae, for things to be correct. Let us start with:
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Definition 3.15. If γ is a loop in C the number of times γ goes around a point
z ∈ C− γ is computed by the following integral, called winding number:

Ind(γ, z) =
1

2πi

∫
γ

dξ

ξ − z

We say that γ turns around z if Ind(γ, z) = 1, and that it does not turn if Ind(γ, z) = 0.
Otherwise, we say that γ turns around z many times, or in the bad sense, or both.

Let f : U → C be an holomorphic function defined on an open subset of C, and γ be
a loop in U . If Ind(γ, z) ̸= 0 for z ∈ C− U then f(z) is given by the Cauchy formula:

Ind(γ, z)f(z) =
1

2πi

∫
γ

f(ξ)

ξ − z
dξ

Also, if Ind(γ, z) = 0 for z ∈ C− U then the integral of f on γ is zero:∫
γ

f(ξ) dξ = 0

It is convenient to use formal combinations of loops, called cycles:

Σ = n1γ1 + . . .+ nrγr

The winding number for Σ is by definition the corresponding linear combination of
winding numbers of its loop components, and the Cauchy formula holds for arbitrary
cycles. Now by getting back to operators, we can formulate:

Definition 3.16. Let T ∈ B(H) and let f : U → C be an holomorphic function
defined on an open set containing σ(T ). Define an element f(T ) by the formula

f(T ) =
1

2πi

∫
Σ

f(ξ)

ξ − T
dξ

where Σ is a cycle in U − σ(T ) which turns around σ(T ) and doesn’t turn around C−U .

The formula makes sense because Σ is in U − σ(T ). Also, f(T ) is independent of the
choice of Σ. Indeed, let Σ1 and Σ2 be two cycles. Their difference Σ1−Σ2 is a cycle which
doesn’t turn around σ(a), neither around C − U . The function z → f(z)/(z − T ) being
holomorphic U − σ(T ) → B(H), its integral on Σ1 − Σ2 must be zero:∫

Σ1−Σ2

f(ξ)

ξ − T
dξ = 0

Thus f(T ) is the same with respect to Σ1 and to Σ2, and so Definition 3.16 is fully
justified. Now with this definition in hand, we first have the following result:

Proposition 3.17. We have the formula

f(T )g(T ) = (fg)(T )

whenever the equality makes sense.
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Proof. Let Σ1 be a cycle in U − σ(T ) around σ(T ) and consider the following set:

Int(Σ1) =
{
z ∈ C− Σ1

∣∣∣Ind(Σ1, z) ̸= 0
}
∪ Σ1

This is a compact set, included in U and containing the spectrum of T :

σ(T ) ⊂ Int(Σ1) ⊂ U

Let Σ2 be a cycle in U − Int(Σ1) turning around Int(Σ1). Consider two holomorphic
functions f, g defined around σ(T ), so that the statement make sense. We have:

f(T )g(T ) =

(
1

2πi

)2(∫
Σ1

f(ξ)

ξ − T
dξ

)(∫
Σ2

g(η)

η − T
dη

)
=

(
1

2πi

)2 ∫
Σ1

∫
Σ2

f(ξ)g(η)

(ξ − T )(η − T )
dηdξ

In order to integrate, we can use the following identity:

1

(ξ − T )(η − T )
=

1

(η − ξ)(ξ − T )
+

1

(ξ − η)(η − T )

Thus our integral, and so our formula for f(T )g(T ), splits into two terms. The first
term can be computed by integrating first over Σ2, and we obtain:

1

2πi

∫
Σ1

f(ξ)g(ξ)

ξ − T
dξ = (fg)(T )

As for the second term, here we can integrate first over Σ1, and we get:

1

2πi

∫
Σ2

g(η)

η − T

(
1

2πi

∫
Σ1

f(ξ)

ξ − η
dξ

)
dη = 0

It follows that f(T )g(T ) is equal to (fg)(T ), as claimed. □

We can now formulate our extension of Theorem 3.10, as follows:

Theorem 3.18. Given T ∈ B(H), we have a morphism of algebras as follows, where
Hol(σ(T )) is the algebra of functions which are holomorphic around σ(T ),

Hol(σ(T )) → B(H) , f → f(T )

which extends the previous rational functional calculus f → f(T ). We have:

σ(f(T )) = f(σ(T ))

Moreover, if σ(T ) is contained in an open set U and fn, f : U → C are holomorphic
functions such that fn → f uniformly on compact subsets of U then fn(T ) → f(T ).
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Proof. There are several things to be proved here, as follows:

(1) Consider indeed the algebra Hol(σ(T )), with the convention that two functions are
identified if they coincide on an open set containing σ(T ). We have then a construction
f → f(T ) as in the statement, provided by Definition 3.16 and Proposition 3.17.

(2) Let us prove now that our construction extends the one for rational functions.
Since 1, z generate C(X), it is enough to show that f(z) = 1 implies f(T ) = 1, and that
f(z) = z implies f(T ) = T . For this purpose, we prove that f(z) = zn implies f(T ) = T n

for any n. But this follows by integrating over a circle γ of big radius, as follows:

f(T ) =
1

2πi

∫
γ

ξn

ξ − T
dξ

=
1

2πi

∫
γ

ξn−1

(
1− T

ξ

)−1

dξ

=
1

2πi

∫
γ

ξn−1

(
∞∑
k=0

ξ−kT k

)
dξ

=
∞∑
k=0

(
1

2πi

∫
γ

ξn−k−1dξ

)
T k

= T n

(3) Regarding σ(f(T )) = f(σ(T )), it is enough to prove that this equality holds on
the point 0, and we can do this by double inclusion, as follows:

“⊃”. Assume that f(σ(T )) contains 0, and let z0 ∈ σ(T ) be such that f(z0) = 0.
Consider the function g(z) = f(z)/(z − z0). We have g(T )(T − z0) = f(T ) by using the
morphism property. Since T − z0 is not invertible, f(T ) is not invertible either.

“⊂”. Assume now that f(σ(T )) does not contain 0. With the holomorphic function
g(z) = 1/f(z) we get g(T ) = f(T )−1, so f(T ) is invertible, and we are done.

(4) Finally, regarding the last assertion, this is clear from definitions. And with the
remark that this can be applied to holomorphic functions written as series:

f(z) =
∞∑
n=0

an(z − z0)
n

Indeed, if this is the expansion of f around z0, with convergence radius r, and if σ(T )
is contained in the disc centered at z0 of radius r, then f(T ) is given by:

f(T ) =
∞∑
n=0

an(T − z0)
n

Summarizing, we have proved the result, and fully extended Theorem 3.10. □
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3c. Spectral radius

In order to formulate now our next result, which will be a key step towards a theory
of diagonalization, for the normal operators, we will need the following notion:

Definition 3.19. Given an operator T ∈ B(H), its spectral radius

ρ(T ) ∈
[
0, ||T ||

]
is the radius of the smallest disk centered at 0 containing σ(T ).

Here we have included for convenience a number of basic results from Theorem 3.5,
namely the fact that the spectrum is non-empty, and is contained in the disk D0(||T ||),
which provide us respectively with the inequalities ρ(T ) ≥ 0, with the usual convention
sup ∅ = −∞, and ρ(T ) ≤ ||T ||. Now with this notion in hand, we have the following key
result, improving our key result so far, namely σ(T ) ̸= ∅, from Theorem 3.5:

Theorem 3.20. The spectral radius of an operator T ∈ B(H) is given by

ρ(T ) = lim
n→∞

||T n||1/n

and in this formula, we can replace the limit by an inf.

Proof. We have several things to be proved, the idea being as follows:

(1) Our first claim is that the numbers un = ||T n||1/n satisfy:

(n+m)un+m ≤ nun +mum

Indeed, we have the following estimate, using the Young inequality ab ≤ ap/p+ bq/q,
with exponents p = (n+m)/n and q = (n+m)/m:

un+m = ||T n+m||1/(n+m)

≤ ||T n||1/(n+m)||Tm||1/(n+m)

≤ ||T n||1/n · n

n+m
+ ||Tm||1/m · m

n+m

=
nun +mum
n+m

(2) Our second claim is that the second assertion holds, namely:

lim
n→∞

||T n||1/n = inf
n
||T n||1/n
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For this purpose, we just need the inequality found in (1). Indeed, fix m ≥ 1, let
n ≥ 1, and write n = lm+ r with 0 ≤ r ≤ m− 1. By using twice uab ≤ ub, we get:

un ≤ 1

n
(lmulm + rur)

≤ 1

n
(lmum + ru1)

≤ um +
r

n
u1

It follows that we have lim supn un ≤ um, which proves our claim.

(3) Summarizing, we are left with proving the main formula, which is as follows, and
with the remark that we already know that the sequence on the right converges:

ρ(T ) = lim
n→∞

||T n||1/n

In one sense, we can use the polynomial calculus formula σ(T n) = σ(T )n. Indeed, this
gives the following estimate, valid for any n, as desired:

ρ(T ) = sup
λ∈σ(T )

|λ|

= sup
ρ∈σ(T )n

|ρ|1/n

= sup
ρ∈σ(Tn)

|ρ|1/n

= ρ(T n)1/n

≤ ||T n||1/n

(4) For the reverse inequality, we fix a number ρ > ρ(T ), and we want to prove that
we have ρ ≥ limn→∞ ||T n||1/n. By using the Cauchy formula, we have:

1

2πi

∫
|z|=ρ

zn

z − T
dz =

1

2πi

∫
|z|=ρ

∞∑
k=0

zn−k−1T k dz

=
∞∑
k=0

1

2πi

(∫
|z|=ρ

zn−k−1dz

)
T k

=
∞∑
k=0

δn,k+1T
k

= T n−1
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By applying the norm we obtain from this formula:

||T n−1|| ≤ 1

2π

∫
|z|=ρ

∣∣∣∣∣∣∣∣ zn

z − T

∣∣∣∣∣∣∣∣ dz
≤ ρn · sup

|z|=ρ

∣∣∣∣∣∣∣∣ 1

z − T

∣∣∣∣∣∣∣∣
Since the sup does not depend on n, by taking n-th roots, we obtain in the limit:

ρ ≥ lim
n→∞

||T n||1/n

Now recall that ρ was by definition an arbitrary number satisfying ρ > ρ(T ). Thus,
we have obtained the following estimate, valid for any T ∈ B(H):

ρ(T ) ≥ lim
n→∞

||T n||1/n

Thus, we are led to the conclusion in the statement. □

In the case of the normal elements, we have the following finer result:

Theorem 3.21. The spectral radius of a normal element,

TT ∗ = T ∗T

is equal to its norm.

Proof. We can proceed in two steps, as follows:

Step 1. In the case T = T ∗ we have ||T n|| = ||T ||n for any exponent of the form

n = 2k, by using the formula ||TT ∗|| = ||T ||2, and by taking n-th roots we get:

ρ(T ) ≥ ||T ||
Thus, we are done with the self-adjoint case, with the result ρ(T ) = ||T ||.
Step 2. In the general normal case TT ∗ = T ∗T we have T n(T n)∗ = (TT ∗)n, and by

using this, along with the result from Step 1, applied to TT ∗, we obtain:

ρ(T ) = lim
n→∞

||T n||1/n

=
√

lim
n→∞

||T n(T n)∗||1/n

=
√

lim
n→∞

||(TT ∗)n||1/n

=
√
ρ(TT ∗)

=
√

||T ||2

= ||T ||
Thus, we are led to the conclusion in the statement. □
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As a first comment, the spectral radius formula ρ(T ) = ||T || does not hold in general,
the simplest counterexample being the following non-normal matrix:

J =

(
0 1
0 0

)
As another comment, we can combine the formula ρ(T ) = ||T || for normal operators

with the formula ||TT ∗|| = ||T ||2, and we are led to the following statement:

Theorem 3.22. The norm of B(H) is given by

||T || =
√

sup
{
λ ∈ C

∣∣∣TT ∗ − λ /∈ B(H)−1
}

and so is a purely algebraic quantity.

Proof. We have the following computation, using the formula ||TT ∗|| = ||T ||2, then
the spectral radius formula for TT ∗, and finally the definition of the spectral radius:

||T || =
√

||TT ∗||
=

√
ρ(TT ∗)

=

√
sup

{
λ ∈ C

∣∣∣λ ∈ σ(TT ∗)
}

=

√
sup

{
λ ∈ C

∣∣∣TT ∗ − λ /∈ B(H)−1
}

Thus, we are led to the conclusion in the statement. □

The above result is quite interesting, philosophically speaking. We will be back to this
later, with some further results on B(H), and other algebras of the same type.

3d. Normal operators

By using Theorem 3.21 we can say a number of non-trivial things about the normal
operators, which are commonly known as “spectral theorem for normal operators”. As a
first result here, we can improve the polynomial functional calculus formula:

Theorem 3.23. Given T ∈ B(H) normal, we have a morphism of algebras

C[X] → B(H) , P → P (T )

having the properties ||P (T )|| = ||P|σ(T )||, and σ(P (T )) = P (σ(T )).

Proof. This is an improvement of Theorem 3.7 in the normal case, with the extra
assertion being the norm estimate. But the element P (T ) being normal, we can apply to
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it the spectral radius formula for normal elements, and we obtain:

||P (T )|| = ρ(P (T ))

= sup
λ∈σ(P (T ))

|λ|

= sup
λ∈P (σ(T ))

|λ|

= ||P|σ(T )||

Thus, we are led to the conclusions in the statement. □

We can improve as well the rational calculus formula, as follows:

Theorem 3.24. Given T ∈ B(H) normal, we have a morphism of algebras

C(X)T → B(H) , f → f(T )

having the properties ||f(T )|| = ||f|σ(T )||, and σ(f(T )) = f(σ(T )).

Proof. This is an improvement of Theorem 3.10 in the normal case, with all the
details of the proof being identical to those of the proof of Theorem 3.23. □

It is possible to improve as well the holomorphic calculus formula, as follows:

Theorem 3.25. Given T ∈ B(H) normal, we have a morphism of algebras

Hol(σ(T )) → B(H) , f → f(T )

having the properties ||f(T )|| = ||f|σ(T )||, and σ(f(T )) = f(σ(T )).

Proof. This is an improvement of Theorem 3.18 in the normal case, with all the
details of the proof being again identical to those of the proof of Theorem 3.23. □

Summarizing, by using the spectral radius formula, we have now improvements of all
our previous functional calculus theorems, in the case of the normal operators.

Importantly, in the case of the normal operators we have as well some new functional
calculus results, using more general functions than those used before. There is a long
story here, which is quite technical, and we will start our study here in this chapter, and
be back to this in chapter 5, with shaper results. So, here is our first result:

Theorem 3.26. Given T ∈ B(H) normal, we have a morphism of algebras

C(σ(T )) → B(H) , f → f(T )

which is isometric, ||f(T )|| = ||f ||, and has the property σ(f(T )) = f(σ(T )).
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Proof. The idea here is to “complete” the morphism in Theorem 3.23, namely:

C[X] → B(H) , P → P (T )

Indeed, we know from Theorem 3.23 that this morphism is continuous, and is in fact
isometric, when regarding the polynomials P ∈ C[X] as functions on σ(T ):

||P (T )|| = ||P|σ(T )||

We conclude from this that we have a unique isometric extension, as follows:

C(σ(T )) → B(H) , f → f(T )

It remains to prove σ(f(T )) = f(σ(T )), and we can do this by double inclusion:

“⊂” Given a continuous function f ∈ C(σ(T )), we must prove that we have:

λ /∈ f(σ(T )) =⇒ λ /∈ σ(f(T ))

For this purpose, consider the following function, which is well-defined:

1

f − λ
∈ C(σ(T ))

We can therefore apply this function to T , and we obtain:(
1

f − λ

)
T =

1

f(T )− λ

In particular f(T )− λ is invertible, so λ /∈ σ(f(T )), as desired.

“⊃” Given a continuous function f ∈ C(σ(T )), we must prove that we have:

λ ∈ f(σ(T )) =⇒ λ ∈ σ(f(T ))

But this is the same as proving that we have:

µ ∈ σ(T ) =⇒ f(µ) ∈ σ(f(T ))

For this purpose, we approximate our function by polynomials, Pn → f , and we
examine the following convergence, which follows from Pn → f :

Pn(T )− Pn(µ) → f(T )− f(µ)

We know from polynomial functional calculus that we have:

Pn(µ) ∈ Pn(σ(T )) = σ(Pn(T ))

Thus, the operators Pn(T ) − Pn(µ) are not invertible. On the other hand, we know
that the set formed by the invertible operators is open, so its complement is closed. Thus
the limit f(T )− f(µ) is not invertible either, and so f(µ) ∈ σ(f(T )), as desired. □
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As an important comment, Theorem 3.26 is not exactly in final form, because it misses
an important point, namely that our correspondence maps:

z̄ → T ∗

However, this is something non-trivial, and we will be back to this later. Observe
however that Theorem 3.26 is fully powerful for the self-adjoint operators, T = T ∗.

With this discussed, we can now review the theory of positive operators, as follows:

Theorem 3.27. For an operator T ∈ B(H), the following are equivalent:

(1) < Tx, x >≥ 0, for any x ∈ H.
(2) T is normal, and σ(T ) ⊂ [0,∞).
(3) T = S2, for some S ∈ B(H) satisfying S = S∗.
(4) T = R∗R, for some R ∈ B(H).

If these conditions are satisfied, we call T positive, and write T ≥ 0.

Proof. We have already seen some implications in chapter 2, but the best is to forget
the few partial results that we know, and prove everything, as follows:

(1) =⇒ (2) Assuming < Tx, x >≥ 0, with S = T − T ∗ we have:

< Sx, x > = < Tx, x > − < T ∗x, x >

= < Tx, x > − < x, Tx >

= < Tx, x > −< Tx, x >

= 0

The next step is to use a polarization trick, as follows:

< Sx, y > = < S(x+ y), x+ y > − < Sx, x > − < Sy, y > − < Sy, x >

= − < Sy, x >

= < y, Sx >

= < Sx, y >

Thus we must have < Sx, y >∈ R, and with y → iy we obtain < Sx, y >∈ iR too,
and so < Sx, y >= 0. Thus S = 0, which gives T = T ∗. Now since T is self-adjoint, it is
normal as claimed. Moreover, by self-adjointness, we have:

σ(T ) ⊂ R
In order to prove now that we have indeed σ(T ) ⊂ [0,∞), as claimed, we must invert

T + λ, for any λ > 0. For this purpose, observe that we have:

< (T + λ)x, x > = < Tx, x > + < λx, x >

≥ < λx, x >

= λ||x||2
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But this shows that T + λ is injective. In order to prove now the surjectivity, and the
boundedness of the inverse, observe first that we have:

Im(T + λ)⊥ = ker(T + λ)∗

= ker(T + λ)

= {0}

Thus Im(T + λ) is dense. On the other hand, observe that we have:

||(T + λ)x||2 = < Tx+ λx, Tx+ λx >

= ||Tx||2 + 2λ < Tx, x > +λ2||x||2

≥ λ2||x||2

Thus for any vector in the image y ∈ Im(T + λ) we have:

||y|| ≥ λ
∣∣∣∣(T + λ)−1y

∣∣∣∣
As a conclusion to what we have so far, T + λ is bijective and invertible as a bounded

operator from H onto its image, with the following norm bound:

||(T + λ)−1|| ≤ λ−1

But this shows that Im(T + λ) is complete, hence closed, and since we already knew
that Im(T + λ) is dense, our operator T + λ is surjective, and we are done.

(2) =⇒ (3) Since T is normal, and with spectrum contained in [0,∞), we can use
the continuous functional calculus formula for the normal operators from Theorem 3.26,
with the function f(x) =

√
x, as to construct a square root S =

√
T .

(3) =⇒ (4) This is trivial, because we can set R = S.

(4) =⇒ (1) This is clear, because we have the following computation:

< R∗Rx, x >=< Rx,Rx >= ||Rx||2

Thus, we have the equivalences in the statement. □

In analogy with what happens in finite dimensions, where among the positive matrices
A ≥ 0 we have the strictly positive ones, A > 0, given by the fact that the eigenvalues
are strictly positive, we have as well a “strict” version of the above result, as follows:

Theorem 3.28. For an operator T ∈ B(H), the following are equivalent:

(1) T is positive and invertible.
(2) T is normal, and σ(T ) ⊂ (0,∞).
(3) T = S2, for some S ∈ B(H) invertible, satisfying S = S∗.
(4) T = R∗R, for some R ∈ B(H) invertible.

If these conditions are satisfied, we call T strictly positive, and write T > 0.
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Proof. Our claim is that the above conditions (1-4) are precisely the conditions (1-4)
in Theorem 3.27, with the assumption “T is invertible” added. Indeed:

(1) This is clear by definition.

(2) In the context of Theorem 3.27 (2), namely when T is normal, and σ(T ) ⊂ [0,∞),
the invertibility of T , which means 0 /∈ σ(T ), gives σ(T ) ⊂ (0,∞), as desired.

(3) In the context of Theorem 3.27 (3), namely when T = S2, with S = S∗, by using
the basic properties of the functional calculus for normal operators, the invertibility of T
is equivalent to the invertibility of its square root S =

√
T , as desired.

(4) In the context of Theorem 3.27 (4), namely when T = RR∗, the invertibility of T
is equivalent to the invertibility of R. This can be either checked directly, or deduced via
the equivalence (3) ⇐⇒ (4) from Theorem 3.27, by using the above argument (3). □

As a subtlety now, we have the following complement to the above result:

Proposition 3.29. For a strictly positive operator, T > 0, we have

< Tx, x >> 0 , ∀x ̸= 0

but the converse of this fact is not true, unless we are in finite dimensions.

Proof. We have several things to be proved, the idea being as follows:

(1) Regarding the main assertion, the inequality can be deduced as follows, by using

the fact that the operator S =
√
T is invertible, and in particular injective:

< Tx, x > = < S2x, x >

= < Sx, S∗x >

= < Sx, Sx >

= ||Sx||2

> 0

(2) In finite dimensions, assuming < Tx, x >> 0 for any x ̸= 0, we know from Theorem
3.27 that we have T ≥ 0. Thus we have σ(T ) ⊂ [0,∞), and assuming by contradiction
0 ∈ σ(T ), we obtain that T has λ = 0 as eigenvalue, and the corresponding eigenvector
x ̸= 0 has the property < Tx, x >= 0, contradiction. Thus T > 0, as claimed.

(3) Regarding now the counterexample, consider the following operator on l2(N):

T =


1

1
2

1
3

. . .


This operator T is well-defined and bounded, and we have < Tx, x >> 0 for any

x ̸= 0. However T is not invertible, and so the converse does not hold, as stated. □
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Good news, we can now discuss the polar decomposition. Let us start with:

Theorem 3.30. Given an operator T ∈ B(H), we can construct a positive operator
|T | ∈ B(H) as follows, by using the fact that T ∗T is positive:

|T | =
√
T ∗T

The square of this operator is then |T |2 = T ∗T . In the case H = C, we obtain in this way
the usual absolute value of the complex numbers:

|z| =
√
zz̄

More generally, in the case where H = CN is finite dimensional, we obtain in this way
the usual moduli of the complex matrices A ∈MN(C).

Proof. We have several things to be proved, the idea being as follows:

(1) The first assertion follows from Theorem 3.27. Indeed, according to (4) there the
operator T ∗T is indeed positive, and then according to (2) there we can extract the square
root of this latter positive operator, by applying to it the function

√
z.

(2) By functional calculus we have then |T |2 = T ∗T , as desired.

(3) In the case H = C, we obtain indeed the absolute value of complex numbers.

(4) In the case where the space H is finite dimensional, H = CN , we obtain indeed
the usual moduli of the complex matrices A ∈MN(C). □

As a comment here, it is possible to talk as well about
√
TT ∗, which is in general

different from
√
T ∗T . Note that when T is normal, no issue, because we have:

TT ∗ = T ∗T =⇒
√
TT ∗ =

√
T ∗T

Regarding now the polar decomposition formula, let us start with a weak version of
this statement, regarding the invertible operators, as follows:

Theorem 3.31. We have the polar decomposition formula

T = U
√
T ∗T

with U being a unitary, for any T ∈ B(H) invertible.

Proof. According to our definition of the modulus, |T | =
√
T ∗T , we have:

< |T |x, |T |y > = < x, |T |2y >
= < x, T ∗Ty >

= < Tx, Ty >

Thus we can define a unitary operator U ∈ B(H) by the following formula:

U(|T |x) = Tx

But this formula shows that we have T = U |T |, as desired. □
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Observe that we have uniqueness in the above result, in what regards the choice of
the unitary U ∈ B(H), due to the fact that we can write this unitary as follows:

U = T (
√
T ∗T )−1

More generally now, we have the following result:

Theorem 3.32. We have the polar decomposition formula

T = U
√
T ∗T

with U being a partial isometry, for any T ∈ B(H).

Proof. As before, we have the following equality, for any two vectors x, y ∈ H:

< |T |x, |T |y >=< Tx, Ty >

We conclude that the following linear application is well-defined, and isometric:

U : Im|T | → Im(T ) , |T |x→ Tx

Now by continuity we can extend this isometry U into an isometry between certain
Hilbert subspaces of H, as follows:

U : Im|T | → Im(T ) , |T |x→ Tx

Moreover, we can further extend U into a partial isometry U : H → H, by setting

Ux = 0, for any x ∈ Im|T |
⊥
, and with this convention, the result follows. □
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Part II

Spectral theorems



All right, we’re jamming
I wanna jam it with you
We’re jamming, jamming

And I hope you like jamming, too



CHAPTER 5

Spectral theorems

5a. Measurable calculus

Welcome to advanced operator theory. Our purpose in this chapter, and in this whole
Part II of the present book, will be to develop spectral theorems, mostly for the normal
operators, and their applications, going beyond what we know from chapter 3.

As a starting point for our study, we have the material from chapter 3, with the main
result there, along with a bit more, being summarized as follows:

Theorem 5.1. Given T ∈ B(H) normal, we have a unique morphism of algebras

C(σ(T )) → B(H) , f → f(T )

given by X → T , which has the following properties:

(1) σ(f(T )) = f(σ(T )).
(2) ||f(T )|| = ||f ||.
(3) Tx = λx =⇒ f(T )x = f(λ)x.
(4) [S, T ] = 0 =⇒ [S, f(T )] = 0.

Proof. This is a slight improvement of what we know from chapter 3, with all the
extra assertions, which are good to know, in practice, being clear from definitions. □

As a first new result now, along the same lines, but better, we can further extend
Theorem 5.1 into a measurable functional calculus theorem, as follows:

Theorem 5.2. Given T ∈ B(H) normal, we have a unique continuous morphism of
algebras as follows, with L∞ standing for abstract measurable functions

L∞(σ(T )) → B(H) , f → f(T )

given by z → T , which has the following properties:

(1) ||f(T )|| = ||f ||.
(2) σ(f(T )) = f(σ(T )).
(3) Tx = λx =⇒ f(T )x = f(λ)x.
(4) [S, T ] = 0 =⇒ [S, f(T )] = 0.

Proof. As before, the idea will be that of “completing” what we have. To be more
precise, we can use the Riesz theorem and a polarization trick, as follows:

85
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(1) Given a vector x ∈ H, consider the following functional:

C(σ(T )) → C , g →< g(T )x, x >

By the Riesz theorem, this functional must be the integration with respect to a certain
measure µ on the space σ(T ). Thus, we have a formula as follows:

< g(T )x, x >=

∫
σ(T )

g(z)dµ(z)

Now given an arbitrary Borel function f ∈ L∞(σ(T )), as in the statement, we can
define a number < f(T )x, x >∈ C, by using exactly the same formula, namely:

< f(T )x, x >=

∫
σ(T )

f(z)dµ(z)

Thus, we have managed to define numbers < f(T )x, x >∈ C, for all vectors x ∈ H,
and in addition we can recover these numbers as follows, with gn ∈ C(σ(T )):

< f(T )x, x >= lim
gn→f

< gn(T )x, x >

(2) In order to define now numbers < f(T )x, y >∈ C, for all vectors x, y ∈ H, we can
use a polarization trick. Indeed, for any operator S ∈ B(H) we have:

< S(x+ y), x+ y > = < Sx, x > + < Sy, y >

+ < Sx, y > + < Sy, x >

By replacing y → iy, we have as well the following formula:

< S(x+ iy), x+ iy > = < Sx, x > + < Sy, y >

−i < Sx, y > +i < Sy, x >

By multiplying this latter formula by i, we obtain the following formula:

i < S(x+ iy), x+ iy > = i < Sx, x > +i < Sy, y >

+ < Sx, y > − < Sy, x >

Now by summing this latter formula with the first one, we obtain:

< S(x+ y), x+ y > +i < S(x+ iy), x+ iy > = (1 + i)[< Sx, x > + < Sy, y >]

+2 < Sx, y >

(3) But with this, we can now finish. Indeed, by combining (1,2), given a Borel
function f ∈ L∞(σ(T )), we can define numbers < f(T )x, y >∈ C for any x, y ∈ H, and it
is routine to check, by using approximation by continuous functions gn → f as in (1), that
we obtain in this way an operator f(T ) ∈ B(H), having all the desired properties. □
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Very nice all this, we are learning new things, but for the rest, exactly as for Theorem
5.1, the same comments as in chapter 3 apply. Indeed, Theorem 5.2 is not exactly in final
form, because it misses an important point, namely that our correspondence maps:

z̄ → T ∗

However, this is something non-trivial, and we will be back to this later. Observe
however that Theorem 5.2 is fully powerful for the self-adjoint operators, T = T ∗, where
the spectrum is real, and so where z = z̄ on the spectrum. We will be back to this.

As another comment, the above result and its proof provide us with more than a Borel
functional calculus, because what we got is a certain measure on the spectrum σ(T ), along
with a functional calculus for the L∞ functions with respect to this measure.

Again, this is something quite subtle, and we will be back to it later. For the moment,
in view of some applications, to be developed next, we will only need Theorem 5.2 as
formulated, with L∞(σ(T )) standing, a bit abusively, for the Borel functions on σ(T ).

5b. Basic applications

With this done, let us discuss now some useful decomposition results for the bounded
operators T ∈ B(H), that we can now establish, by using the above measurable calculus
technology. We know that any z ∈ C can be written as follows, with a, b ∈ R:

z = a+ ib

Also, we know that both the real and imaginary parts a, b ∈ R, and more generally
any real number c ∈ R, can be written as follows, with r, s ≥ 0:

c = r − s

In order to discuss now the operator theoretic generalizations of these results, which
by the way covers the usual matrix case too, let us start with the following basic fact:

Theorem 5.3. Any operator T ∈ B(H) can be written as

T = Re(T ) + iIm(T )

with Re(T ), Im(T ) ∈ B(H) being self-adjoint, and this decomposition is unique.

Proof. This is something elementary, the idea being as follows:

(1) As a first observation, in the case H = C our operators are usual complex numbers,
and the formula in the statement corresponds to the following basic fact:

z = Re(z) + iIm(z)
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(2) In general now, we can use the same formulae for the real and imaginary part as
in the complex number case, the decomposition formula being as follows:

T =
T + T ∗

2
+ i · T − T ∗

2i
To be more precise, both the operators on the right are self-adjoint, and the summing

formula holds indeed, and so we have our decomposition result, as desired.

(3) Regarding now the uniqueness, by linearity it is enough to show that R + iS = 0
with R, S both self-adjoint implies R = S = 0. But this follows by applying the adjoint
to R + iS = 0, which gives R− iS = 0, and so R = S = 0, as desired. □

More generally now, as a continuation of this, and as an answer to some of the questions
raised in the beginning of this section, we have the following result:

Theorem 5.4. Given an operator T ∈ B(H), the following happen:

(1) We can write T = A+ iB, with A,B ∈ B(H) being self-adjoint.
(2) When T = T ∗, we can write T = R− S, with R, S ∈ B(H) being positive.
(3) Thus, we can write any T as a linear combination of 4 positive elements.

Proof. All this follows from basic spectral theory, as follows:

(1) This is something that we already know, from Theorem 5.3, with the decomposition
formula there being something straightforward, as follows:

T =
T + T ∗

2
+ i · T − T ∗

2i

(2) This follows from the measurable functional calculus. Indeed, assuming T = T ∗

we have σ(T ) ⊂ R, so we can use the following decomposition formula on R:
1 = χ[0,∞) + χ(−∞,0)

To be more precise, let us multiply by z, and rewrite this formula as follows:

z = χ[0,∞)z − χ(−∞,0)(−z)
Now by applying these measurable functions to T , we obtain as formula as follows,

with both the operators T+, T− ∈ B(H) being positive, as desired:

T = T+ − T−

(3) This follows indeed by combining the results in (1) and (2) above. □

Going ahead with our decomposition results, another basic thing that we know about
complex numbers is that any z ∈ C appears as a real multiple of a unitary:

z = reit

Finding the correct operator theoretic analogue of this is quite tricky, and this even
for the usual matrices A ∈MN(C). As a basic result here, we have:
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Theorem 5.5. Given an operator T ∈ B(H), the following happen:

(1) When T = T ∗ and ||T || ≤ 1, we can write T as an average of 2 unitaries:

T =
U + V

2

(2) In the general T = T ∗ case, we can write T as a rescaled sum of unitaries:

T = λ(U + V )

(3) Thus, in general, we can write T as a rescaled sum of 4 unitaries.

Proof. This follows from the results that we have, as follows:

(1) Assuming T = T ∗ and ||T || ≤ 1 we have 1− T 2 ≥ 0, and the decomposition that
we are looking for is as follows, with both the components being unitaries:

T =
T + i

√
1− T 2

2
+
T − i

√
1− T 2

2

To be more precise, the square root can be extracted as explained in chapter 3, and
the check of the unitarity of the components goes as follows:

(T + i
√
1− T 2)(T − i

√
1− T 2) = T 2 + (1− T 2)

= 1

(2) This simply follows by applying (1) to the operator T/||T ||.

(3) Assuming first that we have ||T || ≤ 1, we know from Theorem 5.4 (1) that we can
write T = A + iB, with A,B being self-adjoint, and satisfying ||A||, ||B|| ≤ 1. Now by
applying (1) to both A and B, we obtain a decomposition of T as follows:

T =
U + V +W +X

2

In general, we can apply this to the operator T/||T ||, and we obtain the result. □

So long for decomposition results for the linear operators. Needless to say, what we
learned in the above, coming as a complement to the polar decomposition result from
chapter 3, was just the tip of the iceberg, and this because the comparison of what we
have with the usual decomposition theory of the complex numbers shows that we are still
quite far away from that, with many natural questions remaining still open.

In answer, such questions are in fact non-trivial even for the usual matrices, and we
will be back to more such decomposition results later on, in Part III of the present book,
when discussing the compact operators, which are quite close to the usual matrices.
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5c. Diagonalization

Good news, we are now in position to diagonalize the normal operators. Indeed, in
order to diagonalize the normal operators, we can do this in 3 steps, first for the self-
adjoint operators, then for the families of commuting self-adjoint operators, and finally
for the general normal operators, by using a trick of the following type:

T = Re(T ) + iIm(T )

So, we have a good plan here, just waiting to be developed. However, technically
speaking now, and coming somewhat as bad news, the diagonalization in infinite dimen-
sions is more tricky than in finite dimensions, and instead of writing a formula of type
T = UDU∗, with U,D ∈ B(H) being respectively unitary and diagonal, we will ex-
press our operator as T = U∗MU , with U : H → K being a certain unitary, and with
M ∈ B(K) being a certain diagonal operator. Which will be something a bit abstract.

However, there is no escape from this, because this is indeed how the spectral theorem
is best formulated, in view of applications. That is, in practice, the explicit construction
of U,M , which will be actually rather part of the proof, is also needed.

But probably too much talking, let us get to work. For the self-adjoint operators, the
statement and proof of the spectral theorem, in its most general form, are as follows:

Theorem 5.6. Any self-adjoint operator T ∈ B(H) can be diagonalized,

T = U∗MfU

with U : H → L2(X) being a unitary operator from H to a certain L2 space associated to
T , with f : X → R being a certain function, once again associated to T , and with

Mf (g) = fg

being the usual multiplication operator by f , on the Hilbert space L2(X).

Proof. The construction of U, f can be done in several steps, as follows:

(1) We first prove the result in the special case where our operator T has a cyclic
vector x ∈ H, with this meaning that the following holds:

span
(
T kx

∣∣∣n ∈ N
)
= H

For this purpose, let us go back to the proof of Theorem 5.2. We will use the following
formula from there, with µ being the measure on X = σ(T ) associated to x:

< g(T )x, x >=

∫
σ(T )

g(z)dµ(z)
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Our claim is that we can define a unitary U : H → L2(X), first on the dense part
spanned by the vectors T kx, by the following formula, and then by continuity:

U [g(T )x] = g

Indeed, the following computation shows that U is well-defined, and isometric:

||g(T )x||2 = < g(T )x, g(T )x >

= < g(T )∗g(T )x, x >

= < |g|2(T )x, x >

=

∫
σ(T )

|g(z)|2dµ(z)

= ||g||22
We can then extend U by continuity into a unitary U : H → L2(X), as claimed. Now

observe that we have the following formula:

UTU∗g = U [Tg(T )x]

= U [(zg)(T )x]

= zg

Thus our result is proved in the present case, with U as above, and with f(z) = z.

(2) We discuss now the general case. Our first claim is that H has a decomposition
as follows, with each Hi being invariant under T , and admitting a cyclic vector xi:

H =
⊕
i

Hi

Indeed, this is something elementary, the construction being by recurrence in finite
dimensions, in the obvious way, and by using the Zorn lemma in general. Now with this
decomposition in hand, we can make a direct sum of the diagonalizations obtained in (1),
for each of the restrictions T|Hi

, and we obtain the formula in the statement. □

Next, we have the following technical generalization of the above result:

Theorem 5.7. Any family of commuting self-adjoint operators Ti ∈ B(H) can be
jointly diagonalized,

Ti = U∗MfiU

with U : H → L2(X) being a unitary operator from H to a certain L2 space associated to
{Ti}, with fi : X → R being certain functions, once again associated to Ti, and with

Mfi(g) = fig

being the usual multiplication operator by fi, on the Hilbert space L2(X).
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Proof. This is similar to the proof of Theorem 5.6, by suitably modifying the mea-
surable calculus formula, and the measure µ itself, as to have this formula working for all
the operators Ti. With this modification done, everything extends. □

Good news, after all these preliminaries, that you enjoyed I hope, as much as I did, we
can eventually discuss the case of arbitrary normal operators. We have here the following
result, generalizing what we know from chapter 1 about the normal matrices:

Theorem 5.8. Any normal operator T ∈ B(H) can be diagonalized,

T = U∗MfU

with U : H → L2(X) being a unitary operator from H to a certain L2 space associated to
T , with f : X → C being a certain function, once again associated to T , and with

Mf (g) = fg

being the usual multiplication operator by f , on the Hilbert space L2(X).

Proof. This is our main diagonalization theorem, the idea being as follows:

(1) Consider the decomposition of T into its real and imaginary parts, as constructed
in the proof of Theorem 5.3, namely:

T =
T + T ∗

2
+ i · T − T ∗

2i
We know that the real and imaginary parts are self-adjoint operators. Now since T

was assumed to be normal, TT ∗ = T ∗T , these real and imaginary parts commute:[
T + T ∗

2
,
T − T ∗

2i

]
= 0

Thus Theorem 5.7 applies to these real and imaginary parts, and gives the result.

(2) Alternatively, we can use methods similar to those that we used in chapter 1, in
order to deal with the usual normal matrices, involving the special relation between T and
the operator TT ∗, which is self-adjoint. We will leave this as an instructive exercise. □

This was for our series of diagonalization theorems. There is of course one more result
here, regarding the families of commuting normal operators, as follows:

Theorem 5.9. Any family of commuting normal operators Ti ∈ B(H) can be jointly
diagonalized,

Ti = U∗MfiU

with U : H → L2(X) being a unitary operator from H to a certain L2 space associated to
{Ti}, with fi : X → C being certain functions, once again associated to Ti, and with

Mfi(g) = fig

being the usual multiplication operator by fi, on the Hilbert space L2(X).
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Proof. This is similar to the proof of Theorem 5.6 and Theorem 5.8, by combining
the arguments there. To be more precise, this follows as Theorem 5.6, by using the
decomposition trick from the proof of Theorem 5.8. □

5d. Further results

With the above diagonalization results in hand, we can now “fix” the continuous and
measurable functional calculus theorems, with a key complement, as follows:

Theorem 5.10. Given a normal operator T ∈ B(H), the following hold, for both the
functional calculus and the measurable calculus morphisms:

(1) These morphisms are ∗-morphisms.
(2) The function z̄ gets mapped to T ∗.
(3) The functions Re(z), Im(z) get mapped to Re(T ), Im(T ).
(4) The function |z|2 gets mapped to TT ∗ = T ∗T .
(5) If f is real, then f(T ) is self-adjoint.

Proof. These assertions are more or less equivalent, with (1) being the main one,
which obviously implies everything else. But this assertion (1) follows from the diagonal-
ization result for normal operators, from Theorem 5.6. □

This was for the spectral theory of the arbitrary and normal operators, or at least for
the basics of this theory. As a conclusion here, our main results are as follows:

(1) Regarding the arbitrary operators, the main results here, or rather the most
advanced results that we have, are the holomorphic calculus formula from chapter
3, and the spectral radius estimate, from chapter 3 too.

(2) For the self-adjoint operators, the main results that we have are the spectral
radius formula from chapter 3, the measurable calculus formula from Theorem
5.2, and the diagonalization result from Theorem 5.6.

(3) For general normal operators, the main results are the spectral radius formula
from chapter 3, the measurable calculus formula from Theorem 5.2, comple-
mented by Theorem 5.10, and the diagonalization result in Theorem 5.8.

(4) Finally, we have as well some joint diagonalization results, for the commuting
families of self-adjoint or normal operators, namely Theorem 5.7 and Theorem
5.9. These results are something very useful too, for various applications.

There are of course many other things that can be said about the spectral theory of
the bounded operators T ∈ B(H), and on that of the unbounded operators too. We will
be back to these questions, on numerous occasions, in what follows.
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5e. Exercises

Exercises:

Exercise 5.11.

Exercise 5.12.

Exercise 5.13.

Exercise 5.14.

Exercise 5.15.

Exercise 5.16.

Exercise 5.17.

Exercise 5.18.

Bonus exercise.



CHAPTER 6

Random matrices

6a. Random matrices

Beyond the usual matrices, the simplest examples of operators are the random matri-
ces. In order to talk about such random matrices, and their laws, we will need:

Theorem 6.1. Given an operator algebra A ⊂ B(H) with a faithful trace tr : A→ C,
any normal element T ∈ A has a law, namely a probability measure µ satisfying

tr(T k) =

∫
C
zkdµ(z)

with the powers being with respect to colored exponents k = ◦ • • ◦ . . . , defined via

a∅ = 1 , a◦ = a , a• = a∗

and multiplicativity. This law is unique, and is supported by the spectrum σ(T ) ⊂ C. In
the non-normal case, TT ∗ ̸= T ∗T , such a law does not exist.

Proof. We have two assertions here, the idea being as follows:

(1) In the normal operator case, where TT ∗ = T ∗T , we know from the continuous
functional calculus theorem that we have a formula as follows:

< T >= C(σ(T ))

Thus the functional f(T ) → tr(f(T )) can be regarded as an integration functional on
the algebra C(σ(T )), and by the Riesz theorem, this latter functional must come from a
probability measure µ on the spectrum σ(T ), in the sense that we must have:

tr(f(T )) =

∫
σ(T )

f(z)dµ(z)

We are therefore led to the conclusions in the statement, with the uniqueness assertion
coming from the fact that the operators T k, taken as usual with respect to colored integer
exponents, k = ◦ • • ◦ . . . , generate the whole operator algebra C(σ(T )).

95
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(2) In the non-normal case now, TT ∗ ̸= T ∗T , we must show that such a law does not
exist. For this purpose, we can use a positivity trick, as follows:

TT ∗ − T ∗T ̸= 0 =⇒ (TT ∗ − T ∗T )2 > 0

=⇒ TT ∗TT ∗ − TT ∗T ∗T − T ∗TTT ∗ + T ∗TT ∗T > 0

=⇒ tr(TT ∗TT ∗ − TT ∗T ∗T − T ∗TTT ∗ + T ∗TT ∗T ) > 0

=⇒ tr(TT ∗TT ∗ + T ∗TT ∗T ) > tr(TT ∗T ∗T + T ∗TTT ∗)

=⇒ tr(TT ∗TT ∗) > tr(TTT ∗T ∗)

Now assuming that T has a law µ ∈ P(C), in the sense that the moment formula
in the statement holds, the above two different numbers would have to both appear by
integrating |z|2 with respect to this law µ, which is contradictory, as desired. □

Back now to the random matrices, as a basic example, assume X = {.}, so that we
are dealing with a usual scalar matrix, T ∈MN(C). By changing the basis of CN , which
won’t affect our trace computations, we can assume that T is diagonal:

T ∼

λ1 . . .
λN


But for such a diagonal matrix, we have the following formula:

tr(T k) =
1

N
(λk1 + . . .+ λkN)

Thus, the law of T is the average of the Dirac masses at the eigenvalues:

µ =
1

N
(δλ1 + . . .+ δλN

)

As a second example now, assume N = 1, and so T ∈ L∞(X). In this case we obtain
the usual law of T , because the equation to be satisfied by µ is:∫

X

φ(T ) =

∫
C
φ(x)dµ(x)

Let us record these simple observations, in the form of a theorem, as follows:

Theorem 6.2. The laws of basic random matrices T ∈MN(L
∞(X)) are as follows:

(1) In the case N = 1 the random matrix is a usual random variable, T ∈ L∞(X),
automatically normal, and its law as defined above is the usual law.

(2) In the case X = {.} the random matrix is a usual scalar matrix, T ∈ MN(C),
and in the diagonalizable case, the law is µ = 1

N
(δλ1 + . . .+ δλN

).

Proof. This is something that we know from the above, and which is elementary.
Indeed, the first assertion follows from definitions, and the above discussion. As for the
second assertion, this follows by diagonalizing the matrix. □
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In general, what we have can only be a mixture of (1) and (2) above. Our plan will
be that of discussing more in detail (1), and then getting into the general case, or rather
into the case of the most interesting random matrices, with inspiration from (2).

At a more advanced level now, the main problem regarding the random matrices is
that of computing the law of various classes of such matrices, coming in series:

Question 6.3. What is the law of random matrices coming in series

TN ∈MN(L
∞(X))

in the N >> 0 regime?

The general strategy here, coming from physicists, is that of computing first the as-
ymptotic law µ0, in the N → ∞ limit, and then looking for the higher order terms as
well, as to finally reach to a series in N−1 giving the law of TN , as follows:

µN = µ0 +N−1µ1 +N−2µ2 + . . .

As a basic example here, of particular interest are the matrices having i.i.d. complex
normal entries, under the constraint T = T ∗. Here the asymptotic law µ0 is the Wigner
semicircle law on [−2, 2]. We will discuss this in a moment, after some preliminaries.

6b. Probability theory

Let us set N = 1. Here our algebra is A = L∞(X), an arbitrary commutative von
Neumann algebra. The most interesting linear operators T ∈ A, that we will rather
denote as complex functions f : X → C, and call random variables, as it is customary,
are the normal, or Gaussian variables, which are defined as follows:

Definition 6.4. A variable f : X → R is called standard normal when its law is:

g1 =
1√
2π
e−x2/2dx

More generally, the normal law of parameter t > 0 is the following measure:

gt =
1√
2πt

e−x2/2tdx

These are also called Gaussian distributions, with “g” standing for Gauss.
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Observe that these normal laws have indeed mass 1, as they should, as shown by a
quick change of variable, and the Gauss formula, namely:(∫

R
e−x2

dx

)2

=

∫
R

∫
R
e−x2−y2dxdy

=

∫ 2π

0

∫ ∞

0

e−r2rdrdt

= 2π × 1

2
= π

Let us start with some basic results regarding the normal laws. We first have:

Proposition 6.5. The normal law gt with t > 0 has the following properties:

(1) The variance is V = t.
(2) The density is even, so the odd moments vanish.
(3) The even moments are Mk = tk/2 × k!!, with k!! = (k − 1)(k − 3)(k − 5) . . . .
(4) Equivalently, the moments are Mk =

∑
π∈P2(k)

t|π|, for any k ∈ N.
(5) The Fourier transform Ff (x) = E(eixf ) is given by F (x) = e−tx2/2.
(6) We have the convolution semigroup formula gs ∗ gt = gs+t, for any s, t > 0.

Proof. All this is very standard, with the various notations used in the statement
being explained below, the idea being as follows:

(1) The normal law gt being centered, its variance is the second moment, V = M2.
Thus the result follows from (3), proved below, which gives in particular:

M2 = t2/2 × 2!! = t

(2) This is indeed something self-explanatory.

(3) We have indeed the following computation, by partial integration:

Mk =
1√
2πt

∫
R
xke−x2/2tdx

=
1√
2πt

∫
R
(txk−1)

(
−e−x2/2t

)′
dx

=
1√
2πt

∫
R
t(k − 1)xk−2e−x2/2tdx

= t(k − 1)× 1√
2πt

∫
R
xk−2e−x2/2tdx

= t(k − 1)Mk−2

The initial value being M0 = 1, we obtain the result.
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(4) We know from (2,3) that the moments of the normal law gt satisfy the following
recurrence formula, with the initial data M0 = 1,M1 = 0:

Mk = t(k − 1)Mk−2

Now let us look at P2(k), the set of pairings of {1, . . . , k}. In order to have such a
pairing, we must pair 1 with a number chosen among 2, . . . , k, and then come up with a
pairing of the remaining k − 2 numbers. Thus, the number Nk = |P2(k)| of such pairings
is subject to the following recurrence formula, with initial data N0 = 1, N1 = 0:

Nk = (k − 1)Nk−2

But this solves our problem at t = 1, because in this case we obtain the following
formula, with |.| standing as usual for the number of blocks of a partition:

Mk = Nk = |P2(k)| =
∑

π∈P2(k)

1 =
∑

π∈P2(k)

1|π|

Now back to the general case, t > 0, our problem here is solved in fact too, because
the number of blocks of a pairing π ∈ P2(k) being constant, |π| = k/2, we obtain:

Mk = tk/2Nk =
∑

π∈P2(k)

tk/2 =
∑

π∈P2(k)

t|π|

(5) The Fourier transform formula can be established as follows:

F (x) =
1√
2πt

∫
R
e−y2/2t+ixydy

=
1√
2πt

∫
R
e−(y/

√
2t−

√
t/2ix)2−tx2/2dy

=
1√
2πt

∫
R
e−z2−tx2/2

√
2tdz

=
1√
π
e−tx2/2

∫
R
e−z2dz

= e−tx2/2

(6) This follows indeed from (5), because logFgt is linear in t. □

We are now ready to establish the Central Limit Theorem (CLT), which is a key result,
telling us why the normal laws appear a bit everywhere, in the real life:

Theorem 6.6. Given a sequence of real random variables f1, f2, f3, . . . ∈ L∞(X),
which are i.i.d., centered, and with variance t > 0, we have

1√
n

n∑
i=1

fi ∼ gt

with n→ ∞, in moments.
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Proof. In terms of moments, the Fourier transform Ff (x) = E(eixf ) is given by:

Ff (x) = E

(
∞∑
k=0

(ixf)k

k!

)
=

∞∑
k=0

ikMk(f)

k!
xk

Thus, the Fourier transform of the variable in the statement is:

F (x) =

[
Ff

(
x√
n

)]n
=

[
1− tx2

2n
+O(n−2)

]n
≃

[
1− tx2

2n

]n
≃ e−tx2/2

But this latter function being the Fourier transform of gt, we obtain the result. □

Let us discuss as well the “discrete” counterpart of the above results, that we will need
too a bit later, in relation with the random matrices. We have:

Definition 6.7. The Poisson law of parameter 1 is the following measure,

p1 =
1

e

∑
k

δk
k!

and the Poisson law of parameter t > 0 is the following measure,

pt = e−t
∑
k

tk

k!
δk

with the letter “p” standing for Poisson.

We will see in a moment why these laws appear everywhere, in discrete probability,
the reasons behind this coming from the Poisson Limit Theorem (PLT). Getting started
now, in analogy with the normal laws, the Poisson laws have the following properties:

Proposition 6.8. The Poisson law pt with t > 0 has the following properties:

(1) The variance is V = t.
(2) The moments are Mk =

∑
π∈P (k) t

|π|.

(3) The Fourier transform is F (x) = exp ((eix − 1)t).
(4) We have the semigroup formula ps ∗ pt = ps+t, for any s, t > 0.

Proof. We have four formulae to be proved, the idea being as follows:

(1) The variance is V =M2−M2
1 , and by using the formulae M1 = t and M2 = t+ t2,

coming from (2), proved below, we obtain as desired, V = t.



6B. PROBABILITY THEORY 101

(2) This is something more tricky. Consider indeed the set P (k) of all partitions of
{1, . . . , k}. At t = 1, to start with, the formula that we want to prove is:

Mk = |P (k)|
We have the following recurrence formula for the moments of p1:

Mk+1 =
1

e

∑
s

(s+ 1)k+1

(s+ 1)!

=
1

e

∑
s

sk

s!

(
1 +

1

s

)k

=
1

e

∑
s

sk

s!

∑
r

(
k

r

)
s−r

=
∑
r

(
k

r

)
· 1
e

∑
s

sk−r

s!

=
∑
r

(
k

r

)
Mk−r

Our claim is that the numbers Bk = |P (k)| satisfy the same recurrence formula.
Indeed, since a partition of {1, . . . , k + 1} appears by choosing r neighbors for 1, among
the k numbers available, and then partitioning the k − r elements left, we have:

Bk+1 =
∑
r

(
k

r

)
Bk−r

Thus we obtain by recurrence Mk = Bk, as desired. Regarding now the general case,
t > 0, we can use here a similar method. We have the following recurrence formula for
the moments of pt, obtained by using the binomial formula:

Mk+1 = e−t
∑
s

ts+1(s+ 1)k+1

(s+ 1)!

= e−t
∑
s

ts+1sk

s!

(
1 +

1

s

)k

= e−t
∑
s

ts+1sk

s!

∑
r

(
k

r

)
s−r

=
∑
r

(
k

r

)
· e−t

∑
s

ts+1sk−r

s!

= t
∑
r

(
k

r

)
Mk−r
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On the other hand, consider the numbers in the statement, Sk =
∑

π∈P (k) t
|π|. As

before, since a partition of {1, . . . , k + 1} appears by choosing r neighbors for 1, among
the k numbers available, and then partitioning the k − r elements left, we have:

Sk+1 = t
∑
r

(
k

r

)
Sk−r

Thus we obtain by recurrence Mk = Bk, as desired.

(3) The Fourier transform formula can be established as follows:

Fpt(x) = e−t
∑
k

tk

k!
Fδk(x)

= e−t
∑
k

tk

k!
eikx

= e−t
∑
k

(eixt)k

k!

= exp(−t) exp(eixt)
= exp

(
(eix − 1)t

)
(4) This follows from (3), because logFpt is linear in t. □

We are now ready to establish the Poisson Limit Theorem (PLT), as follows:

Theorem 6.9. We have the following convergence, in moments,((
1− t

n

)
δ0 +

t

n
δ1

)∗n

→ pt

for any t > 0.

Proof. Let us denote by µn the Bernoulli measure appearing under the convolution
sign. We have then the following computation:

Fδr(x) = eirx =⇒ Fµn(x) =

(
1− t

n

)
+
t

n
eix

=⇒ Fµ∗n
n
(x) =

((
1− t

n

)
+
t

n
eix
)n

=⇒ Fµ∗n
n
(x) =

(
1 +

(eix − 1)t

n

)n

=⇒ F (x) = exp
(
(eix − 1)t

)
Thus, we obtain the Fourier transform of pt, as desired. □
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As a third and last topic from classical probability, let us discuss now the complex
normal laws, that we will need too. To start with, we have the following definition:

Definition 6.10. The complex Gaussian law of parameter t > 0 is

Gt = law

(
1√
2
(a+ ib)

)
where a, b are independent, each following the law gt.

As in the real case, these measures form convolution semigroups:

Proposition 6.11. The complex Gaussian laws have the property

Gs ∗Gt = Gs+t

for any s, t > 0, and so they form a convolution semigroup.

Proof. This follows indeed from the real result, namely gs ∗ gt = gs+t, established
above, simply by taking real and imaginary parts. □

We have the following complex analogue of the CLT:

Theorem 6.12 (CCLT). Given complex random variables f1, f2, f3, . . . ∈ L∞(X)
which are i.i.d., centered, and with variance t > 0, we have, with n→ ∞, in moments,

1√
n

n∑
i=1

fi ∼ Gt

where Gt is the complex Gaussian law of parameter t.

Proof. This follows indeed from the real CLT, established above, simply by taking
the real and imaginary parts of all the variables involved. □

Regarding now the moments, we have to use here a more general formalism, involving
colored integer exponents k = ◦ • • ◦ . . . We say that a pairing π ∈ P2(k) is matching
when it pairs ◦ − • symbols. With this convention, we have the following result:

Theorem 6.13. The moments of the complex normal law are the numbers

Mk(Gt) =
∑

π∈P2(k)

t|π|

where P2(k) are the matching pairings of {1, . . . , k}, and |.| is the number of blocks.

Proof. This is something well-known, which can be established as follows:

(1) As a first observation, by using a standard dilation argument, it is enough to do
this at t = 1. So, let us first recall from the above that the moments of the real Gaussian
law g1, with respect to integer exponents k ∈ N, are the following numbers:

mk = |P2(k)|
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Numerically, we have the following formula, explained as well in the above:

mk =

{
k!! (k even)

0 (k odd)

(2) We will show here that in what concerns the complex Gaussian law G1, similar
results hold. Numerically, we will prove that we have the following formula, where a
colored integer k = ◦ • • ◦ . . . is called uniform when it contains the same number of ◦
and • , and where |k| ∈ N is the length of such a colored integer:

Mk =

{
(|k|/2)! (k uniform)

0 (k not uniform)

Now since the matching partitions π ∈ P2(k) are counted by exactly the same numbers,
and this for trivial reasons, we will obtain the formula in the statement, namely:

Mk = |P2(k)|

(3) This was for the plan. In practice now, we must compute the moments, with
respect to colored integer exponents k = ◦ • • ◦ . . . , of the variable in the statement:

c =
1√
2
(a+ ib)

As a first observation, in the case where such an exponent k = ◦••◦ . . . is not uniform
in ◦, • , a rotation argument shows that the corresponding moment of c vanishes. To be
more precise, the variable c′ = wc can be shown to be complex Gaussian too, for any
w ∈ C, and from Mk(c) =Mk(c

′) we obtain Mk(c) = 0, in this case.

(4) In the uniform case now, where k = ◦ • • ◦ . . . consists of p copies of ◦ and p copies
of • , the corresponding moment can be computed as follows:

Mk =
1

2p

∫
(a2 + b2)p

=
1

2p

∑
s

(
p

s

)∫
a2s
∫
b2p−2s

=
1

2p

∑
s

(
p

s

)
(2s)!!(2p− 2s)!!

=
1

2p

∑
s

p!

s!(p− s)!
· (2s)!
2ss!

· (2p− 2s)!

2p−s(p− s)!

=
p!

4p

∑
s

(
2s

s

)(
2p− 2s

p− s

)
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(5) In order to finish now the computation, let us recall that we have the following
formula, coming from the generalized binomial formula, or from the Taylor formula:

1√
1 + t

=
∞∑
k=0

(
2k

k

)(
−t
4

)k

By taking the square of this series, we obtain the following formula:

1

1 + t
=

∑
ks

(
2k

k

)(
2s

s

)(
−t
4

)k+s

=
∑
p

(
−t
4

)p∑
s

(
2s

s

)(
2p− 2s

p− s

)
Now by looking at the coefficient of tp on both sides, we conclude that the sum on the

right equals 4p. Thus, we can finish the moment computation in (4), as follows:

Mp =
p!

4p
× 4p = p!

(6) As a conclusion, if we denote by |k| the length of a colored integer k = ◦ • • ◦ . . . ,
the moments of the variable c in the statement are given by:

Mk =

{
(|k|/2)! (k uniform)

0 (k not uniform)

On the other hand, the numbers |P2(k)| are given by exactly the same formula. Indeed,
in order to have matching pairings of k, our exponent k = ◦ • • ◦ . . . must be uniform,
consisting of p copies of ◦ and p copies of •, with p = |k|/2. But then the matching
pairings of k correspond to the permutations of the • symbols, as to be matched with ◦
symbols, and so we have p! such matching pairings. Thus, we have the same formula as
for the moments of c, and we are led to the conclusion in the statement. □

This was for the basic probability theory, which is in a certain sense advanced operator
theory, inside the commutative von Neumann algebras, A = L∞(X). We will be back to
this, with some further limiting theorems, in chapter 15 below.

6c. Wigner matrices

Let us exit now the classical world, that of the commutative von Neumann algebras
A = L∞(X), and do as promised some random matrix theory. We recall that a random
matrix algebra is a von Neumann algebra of type A = MN(L

∞(X)), and that we are
interested in the computation of the laws of the operators T ∈ A, called random matrices.
Regarding the precise classes of random matrices that we are interested in, first we have
the complex Gaussian matrices, which are constructed as follows:
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Definition 6.14. A complex Gaussian matrix is a random matrix of type

Z ∈MN(L
∞(X))

which has i.i.d. complex normal entries.

We will see that the above matrices have an interesting, and “central” combinatorics,
among all kinds of random matrices, with the study of the other random matrices being
usually obtained as a modification of the study of the Gaussian matrices.

As a somewhat surprising remark, using real normal variables in Definition 6.14, in-
stead of the complex ones appearing there, leads nowhere. The correct real versions of
the Gaussian matrices are the Wigner random matrices, constructed as follows:

Definition 6.15. A Wigner matrix is a random matrix of type

Z ∈MN(L
∞(X))

which has i.i.d. complex normal entries, up to the constraint Z = Z∗.

In other words, a Wigner matrix must be as follows, with the diagonal entries being
real normal variables, ai ∼ gt, for some t > 0, the upper diagonal entries being complex
normal variables, bij ∼ Gt, the lower diagonal entries being the conjugates of the upper
diagonal entries, as indicated, and with all the variables ai, bij being independent:

Z =


a1 b12 . . . . . . b1N

b̄12 a2
. . .

...
...

. . . . . . . . .
...

...
. . . aN−1 bN−1,N

b̄1N . . . . . . b̄N−1,N aN


As a comment here, for many concrete applications the Wigner matrices are in fact the

central objects in random matrix theory, and in particular, they are often more important
than the Gaussian matrices. In fact, these are the random matrices which were first
considered and investigated, a long time ago, by Wigner himself [99].

Finally, we will be interested as well in the complex Wishart matrices, which are the
positive versions of the above random matrices, constructed as follows:

Definition 6.16. A complex Wishart matrix is a random matrix of type

Z = Y Y ∗ ∈MN(L
∞(X))

with Y being a complex Gaussian matrix.
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As before with the Gaussian and Wigner matrices, there are many possible comments
that can be made here, of technical or historical nature. First, using real Gaussian
variables instead of complex ones leads to a less interesting combinatorics. Also, these
matrices were introduced and studied by Marchenko-Pastur not long after Wigner, in
[70], and so historically came second. Finally, in what regards their combinatorics and
applications, these matrices quite often come first, before both the Gaussian and the
Wigner ones, with all this being of course a matter of knowledge and taste.

Summarizing, we have three main types of random matrices, which can be somehow
designated as “complex”, “real” and “positive”, and that we will study in what follows.
Let us also mention that there are many other interesting classes of random matrices,
usually appearing as modifications of the above. More on these later.

In order to compute the asymptotic laws of the above matrices, we will use the moment
method. We have the following result, which will be our main tool here:

Theorem 6.17. Given independent variables Xi, each following the complex normal
law Gt, with t > 0 being a fixed parameter, we have the Wick formula

E
(
Xk1

i1
. . . Xks

is

)
= ts/2#

{
π ∈ P2(k)

∣∣∣π ≤ ker i
}

where k = k1 . . . ks and i = i1 . . . is, for the joint moments of these variables.

Proof. This is something well-known, and the basis for all possible computations
with complex normal variables, which can be proved in two steps, as follows:

(1) Let us first discuss the case where we have a single complex normal variable X,
which amounts in taking Xi = X for any i in the formula in the statement. What we
have to compute here are the moments of X, with respect to colored integer exponents
k = ◦ • • ◦ . . . , and the formula in the statement tells us that these moments must be:

E(Xk) = t|k|/2|P2(k)|
But this is something that we know well from the above, the idea being that at t = 1

this follows by doing some combinatorics and calculus, in analogy with the combinatorics
and calculus from the real case, where the moment formula is identical, save for the
matching pairings P2 being replaced by the usual pairings P2, and then that the general
case t > 0 follows from this, by rescaling. Thus, we are done with this case.

(2) In general now, the point is that we obtain the formula in the statement. Indeed,
when expanding the product Xk1

i1
. . . Xks

is
and rearranging the terms, we are left with doing

a number of computations as in (1), and then making the product of the expectations
that we found. But this amounts precisely in counting the partitions in the statement,
with the condition π ≤ ker i there standing precisely for the fact that we are doing the
various type (1) computations independently, and then making the product. □
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Now by getting back to the Gaussian matrices, we have the following result, with
NC2(k) = P2(k) ∩NC(k) standing for the noncrossing pairings of a colored integer k:

Theorem 6.18. Given a sequence of Gaussian random matrices

ZN ∈MN(L
∞(X))

having independent Gt variables as entries, for some fixed t > 0, we have

Mk

(
ZN√
N

)
≃ t|k|/2|NC2(k)|

for any colored integer k = ◦ • • ◦ . . . , in the N → ∞ limit.

Proof. This is something standard, which can be done as follows:

(1) We fix N ∈ N, and we let Z = ZN . Let us first compute the trace of Zk. With
k = k1 . . . ks, and with the convention (ij)◦ = ij, (ij)• = ji, we have:

Tr(Zk) = Tr(Zk1 . . . Zks)

=
N∑

i1=1

. . .
N∑

is=1

(Zk1)i1i2(Z
k2)i2i3 . . . (Z

ks)isi1

=
N∑

i1=1

. . .
N∑

is=1

(Z(i1i2)k1 )
k1(Z(i2i3)k2 )

k2 . . . (Z(isi1)ks )
ks

(2) Next, we rescale our variable Z by a
√
N factor, as in the statement, and we also

replace the usual trace by its normalized version, tr = Tr/N . Our formula becomes:

tr

((
Z√
N

)k
)

=
1

N s/2+1

N∑
i1=1

. . .

N∑
is=1

(Z(i1i2)k1 )
k1(Z(i2i3)k2 )

k2 . . . (Z(isi1)ks )
ks

Thus, the moment that we are interested in is given by:

Mk

(
Z√
N

)
=

1

N s/2+1

N∑
i1=1

. . .

N∑
is=1

∫
X

(Z(i1i2)k1 )
k1(Z(i2i3)k2 )

k2 . . . (Z(isi1)ks )
ks
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(3) Let us apply now the Wick formula, from Theorem 6.17. We conclude that the
moment that we are interested in is given by the following formula:

Mk

(
Z√
N

)
=

ts/2

N s/2+1

N∑
i1=1

. . .

N∑
is=1

#
{
π ∈ P2(k)

∣∣∣π ≤ ker
(
(i1i2)

k1 , (i2i3)
k2 , . . . , (isi1)

ks
)}

= ts/2
∑

π∈P2(k)

1

N s/2+1
#
{
i ∈ {1, . . . , N}s

∣∣∣π ≤ ker
(
(i1i2)

k1 , (i2i3)
k2 , . . . , (isi1)

ks
)}

(4) Our claim now is that in the N → ∞ limit the combinatorics of the above sum
simplifies, with only the noncrossing partitions contributing to the sum, and with each of
them contributing precisely with a 1 factor, so that we will have, as desired:

Mk

(
Z√
N

)
= ts/2

∑
π∈P2(k)

(
δπ∈NC2(k) +O(N−1)

)
≃ ts/2

∑
π∈P2(k)

δπ∈NC2(k)

= ts/2|NC2(k)|
(5) In order to prove this, the first observation is that when k is not uniform, in the

sense that it contains a different number of ◦, • symbols, we have P2(k) = ∅, and so:

Mk

(
Z√
N

)
= ts/2|NC2(k)| = 0

(6) Thus, we are left with the case where k is uniform. Let us examine first the case
where k consists of an alternating sequence of ◦ and • symbols, as follows:

k = ◦ • ◦ • . . . . . . ◦ •︸ ︷︷ ︸
2p

In this case it is convenient to relabel our multi-index i = (i1, . . . , is), with s = 2p, in
the form (j1, l1, j2, l2, . . . , jp, lp). With this done, our moment formula becomes:

Mk

(
Z√
N

)
= tp

∑
π∈P2(k)

1

Np+1
#
{
j, l ∈ {1, . . . , N}p

∣∣∣π ≤ ker (j1l1, j2l1, j2l2, . . . , j1lp)
}

Now observe that, with k being as above, we have an identification P2(k) ≃ Sp,
obtained in the obvious way. With this done too, our moment formula becomes:

Mk

(
Z√
N

)
= tp

∑
π∈Sp

1

Np+1
#
{
j, l ∈ {1, . . . , N}p

∣∣∣jr = jπ(r)+1, lr = lπ(r),∀r
}
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(7) We are now ready to do our asymptotic study, and prove the claim in (4). Let
indeed γ ∈ Sp be the full cycle, which is by definition the following permutation:

γ = (1 2 . . . p)

In terms of γ, the conditions jr = jπ(r)+1 and lr = lπ(r) found above read:

γπ ≤ ker j , π ≤ ker l

Counting the number of free parameters in our moment formula, we obtain:

Mk

(
Z√
N

)
=

tp

Np+1

∑
π∈Sp

N |π|+|γπ| = tp
∑
π∈Sp

N |π|+|γπ|−p−1

(8) The point now is that the last exponent is well-known to be ≤ 0, with equality
precisely when the permutation π ∈ Sp is geodesic, which in practice means that π must
come from a noncrossing partition. Thus we obtain, in the N → ∞ limit, as desired:

Mk

(
Z√
N

)
≃ tp|NC2(k)|

This finishes the proof in the case of the exponents k which are alternating, and the
case where k is an arbitrary uniform exponent is similar, by permuting everything. □

As a conclusion to this, we have obtained as asymptotic law for the Gaussian matrices
a certain mysterious distribution, having as moments some numbers which are similar to
the moments of the usual normal laws, but with the “underlying matching pairings being
now replaced by underlying matching noncrossing pairings”. More on this later.

Regarding now the Wigner matrices, we have here the following result, coming as a
consequence of Theorem 6.18, via some simple algebraic manipulations:

Theorem 6.19. Given a sequence of Wigner random matrices

ZN ∈MN(L
∞(X))

having independent Gt variables as entries, with t > 0, up to ZN = Z∗
N , we have

Mk

(
ZN√
N

)
≃ tk/2|NC2(k)|

for any integer k ∈ N, in the N → ∞ limit.

Proof. This can be deduced from a direct computation based on the Wick formula,
similar to that from the proof of Theorem 6.18, but the best is to deduce this result
from Theorem 6.18 itself. Indeed, we know from there that for Gaussian matrices YN ∈
MN(L

∞(X)) we have the following formula, valid for any colored integer K = ◦ • • ◦ . . . ,
in the N → ∞ limit, with NC2 standing for noncrossing matching pairings:

MK

(
YN√
N

)
≃ t|K|/2|NC2(K)|
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By doing some combinatorics, we deduce from this that we have the following formula
for the moments of the matrices Re(YN), with respect to usual exponents, k ∈ N:

Mk

(
Re(YN)√

N

)
= 2−k ·Mk

(
YN√
N

+
Y ∗
N√
N

)
= 2−k

∑
|K|=k

MK

(
YN√
N

)
≃ 2−k

∑
|K|=k

tk/2|NC2(K)|

= 2−k · tk/2 · 2k/2|NC2(k)|
= 2−k/2 · tk/2|NC2(k)|

Now since the matrices ZN =
√
2Re(YN) are of Wigner type, this gives the result. □

Summarizing, all this brings us into counting noncrossing pairings. So, let us start
with some preliminaries here. We first have the following well-known result:

Theorem 6.20. The Catalan numbers, which are by definition given by

Ck = |NC2(2k)|
satisfy the following recurrence formula, with initial data C0 = C1 = 1,

Ck+1 =
∑

a+b=k

CaCb

their generating series f(z) =
∑

k≥0Ckz
k satisfies the equation

zf 2 − f + 1 = 0

and is given by the following explicit formula,

f(z) =
1−

√
1− 4z

2z
and we have the following explicit formula for these numbers:

Ck =
1

k + 1

(
2k

k

)
Numerically, these numbers are 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, . . .

Proof. We must count the noncrossing pairings of {1, . . . , 2k}. Now observe that
such a pairing appears by pairing 1 to an odd number, 2a + 1, and then inserting a
noncrossing pairing of {2, . . . , 2a}, and a noncrossing pairing of {2a + 2, . . . , 2l}. We
conclude that we have the following recurrence formula for the Catalan numbers:

Ck =
∑

a+b=k−1

CaCb
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In terms of the generating series f(z) =
∑

k≥0Ckz
k, this recurrence formula reads:

zf 2 =
∑
a,b≥0

CaCbz
a+b+1

=
∑
k≥1

∑
a+b=k−1

CaCbz
k

=
∑
k≥1

Ckz
k

= f − 1

Thus f satisfies zf 2 − f + 1 = 0, and by solving this equation, and choosing the
solution which is bounded at z = 0, we obtain the following formula:

f(z) =
1−

√
1− 4z

2z

In order to finish, we use the generalized binomial formula, which gives:

√
1 + t = 1− 2

∞∑
k=1

1

k

(
2k − 2

k − 1

)(
−t
4

)k

Now back to our series f , we obtain the following formula for it:

f(z) =
1−

√
1− 4z

2z

=
∞∑
k=1

1

k

(
2k − 2

k − 1

)
zk−1

=
∞∑
k=0

1

k + 1

(
2k

k

)
zk

It follows that the Catalan numbers are given by:

Ck =
1

k + 1

(
2k

k

)
Thus, we are led to the conclusion in the statement. □

In order to recapture now the Wigner measure from its moments, we can use:

Proposition 6.21. The Catalan numbers are the even moments of

γ1 =
1

2π

√
4− x2dx

called standard semicircle law. As for the odd moments of γ1, these all vanish.
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Proof. The even moments of the semicircle law in the statement can be computed
with the change of variable x = 2 cos t, and we are led to the following formula:

M2k =
1

π

∫ 2

0

√
4− x2x2kdx

=
1

π

∫ π/2

0

√
4− 4 cos2 t (2 cos t)2k2 sin t dt

=
4k+1

π

∫ π/2

0

cos2k t sin2 t dt

=
4k+1

π
· π
2
· (2k)!!2!!

(2k + 3)!!

= 2 · 4k · (2k)!/2kk!

2k+1(k + 1)!

= Ck

As for the odd moments, these all vanish, because the density of γ1 is an even function.
Thus, we are led to the conclusion in the statement. □

More generally, we have the following result, involving a parameter t > 0:

Proposition 6.22. Given t > 0, the real measure having as even moments the num-
bers M2k = tkCk and having all odd moments 0 is the measure

γt =
1

2πt

√
4t− x2dx

called Wigner semicircle law on [−2
√
t, 2

√
t].

Proof. This follows indeed from Proposition 6.21, via a change of variables. □

Now by putting everything together, we obtain the Wigner theorem, as follows:

Theorem 6.23. Given a sequence of Wigner random matrices

ZN ∈MN(L
∞(X))

which by definition have i.i.d. complex normal entries, up to ZN = Z∗
N , we have

ZN ∼ γt

in the N → ∞ limit, where γt =
1

2πt

√
4t− x2dx is the Wigner semicircle law.

Proof. This follows indeed from all the above, and more specifically, by combining
Theorem 6.19, Theorem 6.20 and Proposition 6.22. □

Regarding now the complex Gaussian matrices, in view of this result, it is natural to
think at the law found in Theorem 6.18 as being “circular”. But this is just a thought,
and more on this later, in chapter 15 below, when doing free probability.
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6d. Wishart matrices

Let us discuss now the Wishart matrices, which are the positive analogues of the
Wigner matrices. Quite surprisingly, the computation here leads to the Catalan numbers,
but not in the same way as for the Wigner matrices, the result being as follows:

Theorem 6.24. Given a sequence of complex Wishart matrices

WN = YNY
∗
N ∈MN(L

∞(X))

with YN being N ×N complex Gaussian of parameter t > 0, we have

Mk

(
WN

N

)
≃ tkCk

for any exponent k ∈ N, in the N → ∞ limit.

Proof. There are several possible proofs for this result, as follows:

(1) A first method is by using the formula that we have in Theorem 6.18, for the
Gaussian matrices YN . Indeed, we know from there that we have the following formula,
valid for any colored integer K = ◦ • • ◦ . . . , in the N → ∞ limit:

MK

(
YN√
N

)
≃ t|K|/2|NC2(K)|

With K = ◦ • ◦ • . . . , alternating word of length 2k, with k ∈ N, this gives:

Mk

(
YNY

∗
N

N

)
≃ tk|NC2(K)|

Thus, in terms of the Wishart matrix WN = YNY
∗
N we have, for any k ∈ N:

Mk

(
WN

N

)
≃ tk|NC2(K)|

The point now is that, by doing some combinatorics, we have:

|NC2(K)| = |NC2(2k)| = Ck

Thus, we are led to the formula in the statement.

(2) A second method, that we will explain now as well, is by proving the result directly,
starting from definitions. The matrix entries of our matrix W = WN are given by:

Wij =
N∑
r=1

YirȲjr
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Thus, the normalized traces of powers of W are given by the following formula:

tr(W k) =
1

N

N∑
i1=1

. . .

N∑
ik=1

Wi1i2Wi2i3 . . .Wiki1

=
1

N

N∑
i1=1

. . .

N∑
ik=1

N∑
r1=1

. . .
N∑

rk=1

Yi1r1Ȳi2r1Yi2r2Ȳi3r2 . . . Yikrk Ȳi1rk

By rescaling now W by a 1/N factor, as in the statement, we obtain:

tr

((
W

N

)k
)

=
1

Nk+1

N∑
i1=1

. . .
N∑

ik=1

N∑
r1=1

. . .
N∑

rk=1

Yi1r1Ȳi2r1Yi2r2Ȳi3r2 . . . Yikrk Ȳi1rk

By using now the Wick rule, we obtain the following formula for the moments, with
K = ◦ • ◦ • . . . , alternating word of lenght 2k, and with I = (i1r1, i2r1, . . . , ikrk, i1rk):

Mk

(
W

N

)
=

tk

Nk+1

N∑
i1=1

. . .
N∑

ik=1

N∑
r1=1

. . .
N∑

rk=1

#
{
π ∈ P2(K)

∣∣∣π ≤ ker(I)
}

=
tk

Nk+1

∑
π∈P2(K)

#
{
i, r ∈ {1, . . . , N}k

∣∣∣π ≤ ker(I)
}

In order to compute this quantity, we use the standard bijection P2(K) ≃ Sk. By
identifying the pairings π ∈ P2(K) with their counterparts π ∈ Sk, we obtain:

Mk

(
W

N

)
=

tk

Nk+1

∑
π∈Sk

#
{
i, r ∈ {1, . . . , N}k

∣∣∣is = iπ(s)+1, rs = rπ(s), ∀s
}

Now let γ ∈ Sk be the full cycle, which is by definition the following permutation:

γ = (1 2 . . . k)

The general factor in the product computed above is then 1 precisely when following
two conditions are simultaneously satisfied:

γπ ≤ ker i , π ≤ ker r

Counting the number of free parameters in our moment formula, we obtain:

Mk

(
W

N

)
= tk

∑
π∈Sk

N |π|+|γπ|−k−1

The point now is that the last exponent is well-known to be≤ 0, with equality precisely
when the permutation π ∈ Sk is geodesic, which in practice means that π must come from
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a noncrossing partition. Thus we obtain, in the N → ∞ limit:

Mk

(
W

N

)
≃ tkCk

Thus, we are led to the conclusion in the statement. □

As a consequence of the above result, we have a new look on the Catalan numbers,
which is more adapted to our present Wishart matrix considerations, as follows:

Proposition 6.25. The Catalan numbers Ck = |NC2(2k)| appear as well as

Ck = |NC(k)|

where NC(k) is the set of all noncrossing partitions of {1, . . . , k}.

Proof. This follows indeed from the proof of Theorem 6.24. Observe that we obtain
as well a formula in terms of matching pairings of alternating colored integers. □

The direct explanation for the above formula, relating noncrossing partitions and
pairings, comes form the following result, which is very useful, and good to know:

Proposition 6.26. We have a bijection between noncrossing partitions and pairings

NC(k) ≃ NC2(2k)

which is constructed as follows:

(1) The application NC(k) → NC2(2k) is the “fattening” one, obtained by doubling
all the legs, and doubling all the strings as well.

(2) Its inverse NC2(2k) → NC(k) is the “shrinking” application, obtained by col-
lapsing pairs of consecutive neighbors.

Proof. The fact that the two operations in the statement are indeed inverse to each
other is clear, by computing the corresponding two compositions, with the remark that
the construction of the fattening operation requires the partitions to be noncrossing. □

Getting back now to probability, we are led to the question of finding the law having
the Catalan numbers as moments, in the above way. The result here is as follows:

Proposition 6.27. The real measure having the Catalan numbers as moments is

π1 =
1

2π

√
4x−1 − 1 dx

called Marchenko-Pastur law of parameter 1.
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Proof. The moments of the law π1 in the statement can be computed with the change
of variable x = 4 cos2 t, as follows:

Mk =
1

2π

∫ 4

0

√
4x−1 − 1xkdx

=
1

2π

∫ π/2

0

sin t

cos t
· (4 cos2 t)k · 2 cos t sin t dt

=
4k+1

π

∫ π/2

0

cos2k t sin2 t dt

=
4k+1

π
· π
2
· (2k)!!2!!

(2k + 3)!!

= 2 · 4k · (2k)!/2kk!

2k+1(k + 1)!

= Ck

Thus, we are led to the conclusion in the statement. □

Now back to the Wishart matrices, we are led to the following result:

Theorem 6.28. Given a sequence of complex Wishart matrices

WN = YNY
∗
N ∈MN(L

∞(X))

with YN being N ×N complex Gaussian of parameter t > 0, we have

WN

tN
∼ 1

2π

√
4x−1 − 1 dx

with N → ∞, with the limiting measure being the Marchenko-Pastur law π1.

Proof. This follows indeed from Theorem 6.24 and Proposition 6.27. □

As a comment now, while the above result is definitely something interesting at t = 1,
at general t > 0 this looks more like a “fake” generalization of the t = 1 result, because the
law π1 stays the same, modulo a trivial rescaling. The reasons behind this phenomenon
are quite subtle, and skipping some discussion, the point is that Theorem 6.28 is indeed
something “fake” at general t > 0, and the correct generalization of the t = 1 computation,
involving more general classes of complex Wishart matrices, is as follows:

Theorem 6.29. Given a sequence of general complex Wishart matrices

WN = YNY
∗
N ∈MN(L

∞(X))

with YN being N ×M complex Gaussian of parameter 1, we have

WN

N
∼ max(1− t, 0)δ0 +

√
4t− (x− 1− t)2

2πx
dx

with M = tN → ∞, with the limiting measure being the Marchenko-Pastur law πt.
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Proof. This follows once again by using the moment method, the limiting moments
in the M = tN → ∞ regime being as follows, after doing the combinatorics:

Mk

(
WN

N

)
≃

∑
π∈NC(k)

t|π|

But these numbers are the moments of the Marchenko-Pastur law πt, which in addition
has the density given by the formula in the statement, and this gives the result. □

As a philosophical conclusion now, we have 4 main laws in what we have been doing
so far, namely the Gaussian laws gt, the Poisson laws pt, the Wigner laws γt and the
Marchenko-Pastur laws πt. These laws naturally form a diagram, as follows:

πt γt

pt gt

We will see in chapter 15 that πt, γt appear as “free analogues” of pt, gt, and that a
full theory can be developed, with central limiting theorems for all 4 laws, convolution
semigroup results for all 4 laws too, and Lie group type results for all 4 laws too. And
also, we will be back to the random matrices as well, with further results about them.

6e. Exercises

Exercises:

Exercise 6.30.

Exercise 6.31.

Exercise 6.32.

Exercise 6.33.

Exercise 6.34.

Exercise 6.35.

Exercise 6.36.

Exercise 6.37.

Bonus exercise.
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Part III

Compact operators



Shut up and let me go
This hurts, what I can’t show

For the last time you have me in bits
Now shut up and let me go



CHAPTER 9

Functional analysis

9a. Normed spaces

We have seen so far the basic theory of bounded operators, in the arbitrary, normal
and self-adjoint cases, and in a few other cases of interest. In this Part III we discuss a
number of more specialized questions, for the most dealing with the compact operators,
which are particularly close, conceptually speaking, to the usual complex matrices.

We have in fact considerably many interesting things that we can talk about, in this
present Part III, and our choices will be as follows:

(1) We will first need a number of preliminaries, namely some basic functional analysis,
to be explained in the present chapter, and some advanced linear algebra too, namely the
singular value theorem for matrices, to be explained in the beginning of chapter 10.

(2) Motivated by this advanced linear algebra, we will first go on a lengthy discussion
on the algebra of compact operators K(H) ⊂ B(H), which for many advanced operator
theory purposes is the correct generalization of the matrix algebra MN(C).

(3) Our discussion on the compact operators will feature as well some more specialized
types of operators, F (H) ⊂ B1(H) ⊂ B2(H) ⊂ K(H), with F (H) being the finite rank
ones, B1(H) being the trace class ones, and B2(H) being the Hilbert-Schmidt ones.

Getting started now, for a more advanced study of the linear operators we will need
some further functional analysis knowledge, going beyond what we got away with, so far.
Things here will be a bit abstract, but do not worry, all this will be quality mathematics,
which is good to know, and which will have applications. Let us start with:

Definition 9.1. A normed space is a complex vector space V , which can be finite or
infinite dimensional, together with a map

||.|| : V → R+

called norm, subject to the following conditions:

(1) ||x|| = 0 implies x = 0.
(2) ||λx|| = |λ| · ||x||, for any x ∈ V , and λ ∈ C.
(3) ||x+ y|| ≤ ||x||+ ||y||, for any x, y ∈ V .

125



126 9. FUNCTIONAL ANALYSIS

As a basic example here, which is finite dimensional, we have the space V = CN , with
the norm on it being the usual length of the vectors, namely:

||x|| =
√∑

i

|xi|2

Indeed, for this space (1) is clear, (2) is clear too, and (3) is something well-known,
which is equivalent to the triangle inequality in CN , and which can be deduced from the
Cauchy-Schwarz inequality. More on this, with some generalizations, in a moment.

Getting back now to the general case, we have the following result:

Proposition 9.2. Any normed vector space V is a metric space, with

d(x, y) = ||x− y||

as distance. If this metric space is complete, we say that V is a Banach space.

Proof. This follows from the definition of the metric spaces, as follows:

(1) The first distance axiom, d(x, y) ≥ 0, and d(x, y) = 0 precisely when x = y, follows
from the fact that the norm takes values in R+, and from ||x|| = 0 =⇒ x = 0.

(2) The second distance axiom, which is the symmetry one, d(x, y) = d(y, x), follows
from our condition ||λx|| = |λ| · ||x||, with λ = −1.

(3) As for the third distance axiom, which is the triangle inequality d(x, y) ≤ d(x, z)+
d(y, z), this follows from our third norm axiom, namely ||x+ y|| ≤ ||x||+ ||y||. □

Very nice all this, and it is possible to develop some general theory here, but before
everything, however, we need more examples, besides CN with its usual norm.

However, these further examples are actually quite tricky to construct, needing some
inequality know-how. Let us start with a very basic result, as follows:

Theorem 9.3 (Jensen). Given a convex function f : R → R, we have the following
inequality, for any x1, . . . , xN ∈ R, and any λ1, . . . , λN > 0 summing up to 1,

f(λ1x1 + . . .+ λNxN) ≤ λ1f(x1) + . . .+ λNxN

with equality when x1 = . . . = xN . In particular, by taking the weights λi to be all equal,
we obtain the following inequality, valid for any x1, . . . , xN ∈ R,

f

(
x1 + . . .+ xN

N

)
≤ f(x1) + . . .+ f(xN)

N

and once again with equality when x1 = . . . = xN . We have a similar statement holds for
the concave functions, with all the inequalities being reversed.
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Proof. This is indeed something quite routine, the idea being as follows:

(1) First, we can talk about convex functions in a usual, intuitive way, with this
meaning by definition that the following inequality must be satisfied:

f

(
x+ y

2

)
≤ f(x) + f(y)

2

(2) But this means, via a simple argument, by approximating numbers t ∈ [0, 1] by
sums of powers 2−k, that for any t ∈ [0, 1] we must have:

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

Alternatively, via yet another simple argument, this time by doing some geometry
with triangles, this means that we must have:

f

(
x1 + . . .+ xN

N

)
≤ f(x1) + . . .+ f(xN)

N

But then, again alternatively, by combining the above two simple arguments, the
following must happen, for any λ1, . . . , λN > 0 summing up to 1:

f(λ1x1 + . . .+ λNxN) ≤ λ1f(x1) + . . .+ λNxN

(3) Summarizing, all our Jensen inequalities, at N = 2 and at N ∈ N arbitrary, are
equivalent. The point now is that, if we look at what the first Jensen inequality, that we
took as definition for the convexity, means, this is simply equivalent to:

f ′′(x) ≥ 0

(4) Thus, we are led to the conclusions in the statement, regarding the convex func-
tions. As for the concave functions, the proof here is similar. Alternatively, we can say
that f is concave precisely when −f is convex, and get the results from what we have. □

As a basic application, that we actually already used in chapter 3, we have:

Theorem 9.4 (Young). We have the following inequality,

ab ≤ ap

p
+
bq

q

valid for any a, b ≥ 0, and any exponents p, q > 1 satisfying 1
p
+ 1

q
= 1.

Proof. We use the logarithm function, which is concave on (0,∞), due to:

(log x)′′ =

(
−1

x

)′

= − 1

x2
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Thus we can apply the Jensen inequality, and we obtain in this way:

log

(
ap

p
+
bq

q

)
≥ log(ap)

p
+

log(bq)

q

= log(a) + log(b)

= log(ab)

Now by exponentiating, we obtain the Young inequality. □

Moving forward now, as a consequence of the Young inequality, we have:

Theorem 9.5 (Hölder). Assuming that p, q ≥ 1 are conjugate, in the sense that

1

p
+

1

q
= 1

we have the following inequality, valid for any two vectors x, y ∈ CN ,

∑
i

|xiyi| ≤

(∑
i

|xi|p
)1/p(∑

i

|yi|q
)1/q

with the convention that an ∞ exponent produces a max |xi| quantity.

Proof. This is something very standard, the idea being as follows:

(1) Assume first that we are dealing with finite exponents, p, q ∈ (1,∞). By linearity
we can assume that x, y are normalized, in the following way:∑

i

|xi|p =
∑
i

|yi|q = 1

In this case, we want to prove that the following inequality holds:∑
i

|xiyi| ≤ 1

For this purpose, we use the Young inequality, which gives, for any i:

|xiyi| ≤
|xi|p

p
+

|yi|q

q

By summing now over i = 1, . . . , N , we obtain from this, as desired:∑
i

|xiyi| ≤
∑
i

|xi|p

p
+
∑
i

|yi|q

q

=
1

p
+

1

q
= 1
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(2) In the case p = 1 and q = ∞, or vice versa, the inequality holds too, trivially, with
the convention that an ∞ exponent produces a max quantity, according to:

lim
p→∞

(∑
i

|xi|p
)1/p

= max |xi|

Thus, we are led to the conclusion in the statement. □

As a consequence now of the Hölder inequality, we have:

Theorem 9.6 (Minkowski). Assuming p ∈ [1,∞], we have the inequality(∑
i

|xi + yi|p
)1/p

≤

(∑
i

|xi|p
)1/p

+

(∑
i

|yi|p
)1/p

for any two vectors x, y ∈ CN , with our usual conventions at p = ∞.

Proof. We have indeed the following estimate, using the Hölder inequality, and the
conjugate exponent q ∈ [1,∞], given by 1/p+ 1/q = 1:∑

i

|xi + yi|p =
∑
i

|xi + yi| · |xi + yi|p−1

≤
∑
i

|xi| · |xi + yi|p−1 +
∑
i

|yi| · |xi + yi|p−1

≤

(∑
i

|xi|p
)1/p(∑

i

|xi + yi|(p−1)q

)1/q

+

(∑
i

|yi|p
)1/p(∑

i

|xi + yi|(p−1)q

)1/q

=

(∑
i

|xi|p
)1/p

+

(∑
i

|yi|p
)1/p

(∑
i

|xi + yi|p
)1−1/p

Here we have used the following fact, at the end:

1

p
+

1

q
= 1 =⇒ 1

q
=
p− 1

p
=⇒ (p− 1)q = p

Now by dividing both sides by the last quantity at the end, we obtain:(∑
i

|xi + yi|p
)1/p

≤

(∑
i

|xi|p
)1/p

+

(∑
i

|yi|p
)1/p

Thus, we are led to the conclusion in the statement. □
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Good news, done with inequalities, and as a consequence of the above results, and
more specifically of the Minkowski inequality obtained above, we can formulate:

Theorem 9.7. Given an exponent p ∈ [1,∞], the formula

||x||p =

(∑
i

|xi|p
)1/p

with usual conventions at p = ∞, defines a norm on CN , making it a Banach space.

Proof. Here the normed space assertion follows from the Minkowski inequality, es-
tablished above, and the Banach space assertion is trivial, because our space being finite
dimensional, by standard linear algebra all the Cauchy sequences converge. □

Very nice all this, but you might wonder at this point, what is the relation of all this
with functions. In answer, Theorem 9.7 can be reformulated as follows:

Theorem 9.8. Given an exponent p ∈ [1,∞], the formula

||f ||p =
(∫

|f(x)|p
)1/p

with usual conventions at p = ∞, defines a norm on the space of functions

f : {1, . . . , N} → C
making it a Banach space.

Proof. This is a just fancy reformulation of Theorem 9.7, by using the fact that the
space formed by the functions f : {1, . . . , N} → C is canonically isomorphic to CN , in the
obvious way, and by replacing the sums from the CN context with integrals with respect
to the counting measure on {1, . . . , N}, in the function context. □

9b. Banach spaces

Moving now towards infinite dimensions and more standard analysis, the idea will be
that of extending Theorem 9.8 to the arbitrary measured spaces. Let us start with:

Theorem 9.9. Given an exponent p ∈ [1,∞], the formula

||x||p =

(∑
i

|xi|p
)1/p

with usual conventions at p = ∞, defines a norm on the space of sequences

lp =

{
(xi)i∈N

∣∣∣∑
i

|xi|p <∞

}
making it a Banach space.
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Proof. As before with the finite sequences, the normed space assertion follows from
the Minkowski inequality, established above, which extends without problems to the case
of the infinite sequences, and with the Banach space assertion being clear too. □

We can unify and generalize what we have, in the following way:

Theorem 9.10. Given a discrete measured space X, and an exponent p ∈ [1,∞],

||f ||p =
(∫

X

|f(x)|p
)1/p

with usual conventions at p = ∞, defines a norm on the space of functions

lp(X) =

{
f : X → C

∣∣∣ ∫
X

|f(x)|p <∞
}

making it a Banach space.

Proof. This is just a fancy reformulation of what we have:

(1) The case where X is finite corresponds to Theorem 9.8.

(2) The case where X is countable corresponds to Theorem 9.9.

(3) Finally, the case where X is uncountable is easy to deal with too, by using the
same arguments as in the countable case. □

In order to further extend the above result, to the case of the arbitrary measured
spaces X, which are not necessarily discrete, let us start with:

Theorem 9.11. Given two functions f, g : X → C and an exponent p ≥ 1, we have(∫
X

|f + g|p
)1/p

≤
(∫

X

|f |p
)1/p

+

(∫
X

|g|p
)1/p

called Minkowski inequality. Also, assuming that p, q ≥ 1 satisfy 1/p+ 1/q = 1, we have∫
X

|fg| ≤
(∫

X

|f |p
)1/p(∫

X

|g|q
)1/q

called Hölder inequality. These inequalities hold as well for ∞ values of the exponents.

Proof. This is very standard, exactly as in the case of sequences, finite or not, but
since the above inequalities are really very general and final, here are the details:

(1) Let us first prove Hölder, in the case of finite exponents, p, q ∈ (1,∞). By linearity
we can assume that f, g are normalized, in the following way:∫

X

|f |p =
∫
X

|g|q = 1
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In this case, we want to prove that the following inequality holds:∫
X

|fg| ≤ 1

For this purpose, we use the Young inequality, which gives, for any x ∈ X:

|f(x)g(x)| ≤ |f(x)|p

p
+

|g(x)|q

q

By integrating now over x ∈ X, we obtain from this, as desired:∫
X

|fg| ≤
∫
X

|f(x)|p

p
+

∫
X

|g(x)|q

q

=
1

p
+

1

q
= 1

(2) Let us prove now Minkowski, again in the finite exponent case, p ∈ (1,∞). We
have the following estimate, using the Hölder inequality, and the conjugate exponent:∫

X

|f + g|p =

∫
X

|f + g| · |f + g|p−1

≤
∫
X

|f | · |f + g|p−1 +

∫
X

|g| · |f + g|p−1

≤
(∫

X

|f |p
)1/p(∫

X

|f + g|(p−1)q

)1/q

+

(∫
X

|g|p
)1/p(∫

X

|f + g|(p−1)q

)1/q

=

[(∫
|f |p
)1/p

+

(∫
X

|g|p
)1/p

](∫
X

|f + g|p
)1−1/p

Thus, we are led to the Minkowski inequality in the statement.

(3) Finally, in the infinite exponent cases we have similar results, which are trivial this
time, with the convention that an∞ exponent produces an essential supremum, according
to the following formula, which follows from the measure theory that we know:

lim
p→∞

(∫
X

|f |p
)1/p

= ess sup|f |

Thus, we are led to the conclusion in the statement. □

We can now extend Theorem 9.10, into something very general, as follows:
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Theorem 9.12. Given a measured space X, and p ∈ [1,∞], the following space, with
the convention that functions are identified up to equality almost everywhere,

Lp(X) =

{
f : X → C

∣∣∣ ∫
I

|f(x)|pdx <∞
}

is a vector space, and the following quantity

||f ||p =
(∫

X

|f(x)|p
)1/p

is a norm on it, making it a Banach space.

Proof. This follows indeed from Theorem 9.11, with due attention to the null sets,
and this because of the first normed space axiom, namely:

||x|| = 0 =⇒ x = 0

To be more precise, in order for this axiom to hold, we must identify the functions up
to equality almost everywhere, as indicated in the statement. □

Very nice all this. So, we have our examples of Banach spaces, which look definitely
interesting, and related to analysis. In the remainder of this chapter we will develop some
general Banach space theory, and apply it to the above Lp spaces.

Getting now to work, as a first result about the abstract normed spaces, we would like
to talk about the linear maps T : V → W . We first have here:

Proposition 9.13. For a linear map T : V → W , the following conditions are
equivalent, and if they hold, we say that T is bounded:

(1) T is continuous.
(2) T is continuous at 0.
(3) T maps the unit ball of V into something bounded.
(4) T is bounded, in the sense that ||T || = sup||x||=1 ||Tx|| is finite.

Proof. Here the equivalences (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4) all follow from
definitions, by using the linearity of T , and performing various rescalings, and with the
number ||T || needed in (4) being the bound coming from (3). □

With the above result in hand, we can now formulate:

Theorem 9.14. Given two Banach spaces V,W , the bounded linear maps

T : V → W

form a linear space B(V,W ), on which the following quantity is a norm,

||T || = sup
||x||=1

||Tx||

making B(V,W ) a Banach space. When V = W , we obtain a Banach algebra.
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Proof. All this is very standard, and in the case V = W , for simplifying, which is
the one that matters the most, the proof goes as follows:

(1) The fact that we have indeed an algebra, satisfying the product condition in the
statement, follows from the following estimates, which are all elementary:

||S + T || ≤ ||S||+ ||T ||
||λT || = |λ| · ||T ||
||ST || ≤ ||S|| · ||T ||

(2) Regarding now the last assertion, if {Tn} ⊂ B(V ) is Cauchy then {Tnx} is Cauchy
for any x ∈ V , so we can define the limit T = limn→∞ Tn by setting:

Tx = lim
n→∞

Tnx

Let us first check that the application x→ Tx is linear. We have:

T (x+ y) = lim
n→∞

Tn(x+ y)

= lim
n→∞

Tn(x) + Tn(y)

= lim
n→∞

Tn(x) + lim
n→∞

Tn(y)

= T (x) + T (y)

Similarly, we have as well the following computation:

T (λx) = lim
n→∞

Tn(λx)

= λ lim
n→∞

Tn(x)

= λT (x)

Thus we have a linear map T : A→ A. Now observe that we have:

||Tn − Tm|| ≤ ε , ∀n,m ≥ N

=⇒ ||Tnx− Tmx|| ≤ ε , ∀||x|| = 1 , ∀n,m ≥ N

=⇒ ||Tnx− Tx|| ≤ ε , ∀||x|| = 1 , ∀n ≥ N

=⇒ ||TNx− Tx|| ≤ ε , ∀||x|| = 1

=⇒ ||TN − T || ≤ ε

As a first consequence, we obtain T ∈ B(V ), because we have:

||T || = ||TN + (T − TN)||
≤ ||TN ||+ ||T − TN ||
≤ ||TN ||+ ε

< ∞
As a second consequence, we obtain TN → T in norm, and we are done. □
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As a basic example for the above construction, in the case where both our spaces are
finite dimensional, V = CN and W = CM , with N,M <∞, we obtain a matrix space:

B(CN ,CM) =MM×N(C)

More on this later. On the other hand, of particular interest is as well the caseW = C
of the above construction, which leads to the following result:

Theorem 9.15. Given a Banach space V , its dual space, constructed as

V ∗ =
{
f : V → C, linear and bounded

}
is a Banach space too, with norm given by:

||f || = sup
||x||=1

|f(x)|

When V is finite dimensional, we have V ≃ V ∗.

Proof. This is clear indeed from Theorem 9.14, because we have:

V ∗ = B(V,C)

Thus, we are led to the conclusions in the statement. □

In order to better understand the linear forms, we will need:

Theorem 9.16 (Hahn-Banach). Given a Banach space V , the following happen:

(1) Given x ∈ V − {0}, there exists f ∈ V ∗ with f(x) ̸= 0.

(2) Given a subspace W ⊂ V , any f ∈ W ∗ extends into a f̃ ∈ V ∗, of same norm.

Proof. This is something quite tricky, the idea being as follows:

(1) As a first observation, (1) is weaker than (2).

(2) As a second observation, (2) can be proved in finite dimensions by using a direct

sum decomposition V = W ⊕ U , and setting f̃ ∈ V ∗ to be zero on U .

(3) In general, the proof is quite similar, by using the same ideas. To be more precise,
we can first prove (1), and then by using using this, prove (2) as well. □

We can now formulate a key result, as follows:

Theorem 9.17. Given a Banach space V , we have an embedding as follows,

V ⊂ V ∗∗

which is an isomorphism in finite dimensions, and for the lp and Lp spaces too.
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Proof. There are several things going on here, the idea being as follows:

(1) The fact that we have indeed a vector space embedding V ⊂ V ∗∗ is clear from
definitions, the formula of this embedding being as follows:

i(v)[f ] = f(v)

(2) However, the fact that this embedding V ⊂ V ∗∗ is isometric is something more
subtle, which requires the use of the Hahn-Banach result from Theorem 9.16.

(3) Next, the fact that we have V = V ∗∗ in finite dimensions is clear.

(4) Regarding now the formula V = V ∗∗ for the various lp and Lp spaces, this is
something quite tricky. Let us start with the simplest case, that of the space V = l2. We
know that this space is given by definition by the following formula:

l2 =

{
(xi)i∈N

∣∣∣∑
i

x2i <∞

}
Now let us look for linear forms f : l2 → C. By linearity such a linear form must

appear as follows, for certain scalars ai ∈ C, which must be such that f is well-defined:

f ((xi)i) =
∑
i

aixi

But, what does the fact that f is well-defined mean? In answer, this means that the
values of f must all converge, which in practice means that we must have:∑

i

x2i <∞ =⇒

∣∣∣∣∣∑
i

aixi

∣∣∣∣∣ <∞

Moreover, we would like our linear form f : l2 → C to be bounded, and by denoting
by A = ||f || <∞ the minimal bound, this means that we must have:∣∣∣∣∣∑

i

aixi

∣∣∣∣∣ ≤ A

√∑
i

x2i

Now recall that the Cauchy-Schwarz inequality tells us that we have:∣∣∣∣∣∑
i

aixi

∣∣∣∣∣ ≤
√∑

i

a2i ·
√∑

i

x2i

Thus, the linear form f : l2 → C associated to any a = (ai) ∈ l2 will do. Moreover,
conversely, by examining the proof of Cauchy-Schwarz, we conclude that this condition
a = (ai) ∈ l2 is in fact necessary. Thus, we have proved that we have:

(l2)∗ = l2
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But this gives the V = V ∗∗ result in the statement for our space V = l2, because by
dualizing one more time we obtain, as desired:

(l2)∗∗ = (l2)∗ = l2

(5) Getting now to more complicated spaces, let us look, more generally, at L2(X).
We know that this space is given by definition by the following formula:

L2(X) =

{
f : X → C

∣∣∣ ∫
X

f(x)2dx <∞
}

As before, when looking for linear forms φ : L2(X) → C, by linearity, and with some
mesure theory helping, our forms must appear via a formula as follows:

φ(f) =

∫
X

f(x)φ(x)dx

Now in order for this integral to converge, as for our map φ : L2(X) → C to be
well-defined, and with the additional requirement that φ must be actually bounded, we
must have an inequality as follows, for a certain positive constant A <∞:∣∣∣∣∫

X

f(x)φ(x)dx

∣∣∣∣ ≤ A

√∫
X

f(x)2dx

Now recall that the Cauchy-Schwarz inequality tells us that we have:∣∣∣∣∫
X

f(x)φ(x)dx

∣∣∣∣ ≤
√∫

X

φ(x)2dx ·

√∫
X

f(x)2dx

Thus, the linear form φ : L2(X) → C associated to any φ ∈ L2(X) will do. Moreover,
conversely, by examining the proof of Cauchy-Schwarz, we conclude that this condition
φ ∈ L2(X) is in fact necessary. Thus, we have proved that we have:

(L2)∗ = L2

But this gives the V = V ∗∗ result in the statement for our space V = L2, because by
dualizing one more time we obtain, as desired:

(L2)∗∗ = (L2)∗ = L2

(6) Before getting further, let us mention that, more generally with respect to our
l2, L2 computations, we have the following formula, valid for any Hilbert space H:

H∗ ≃ H̄

To be more precise, we can talk about Hilbert spaces, as being those Banach spaces
whose norm comes from a scalar product, via ||x|| = √

< x, x >, and we will discuss this
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in the next chapter. And, the point is that, as we will see in the next chapter, any such
Hilbert space has an orthogonal basis, which in practice means that we can write:

H = l2(I)

Thus, we are apparently led to H∗ = H, but this is not exactly true, because the
correspondence a → f that we constructed in (4), and that we would like to rely upon,
is antilinear, instead of being linear. Of course, this was not a problem in the context of
(4), and nor is this a problem, for the same reasons, for a Hilbert space H given with a
basis, and so with an explicit isomorphism H = l2(I), as above. However, when talking
about abstract Hilbert spaces H, coming without a basis, we must correct this, into:

H∗ ≃ H̄

But this gives the V = V ∗∗ result in the statement for our Hilbert space V = H,
because by dualizing one more time we obtain, as desired:

H∗∗ = (H̄)∗ = ¯̄H = H

So long for l2, L2 spaces, and more general Hilbert spaces H. We will be back to this
in the next chapter, when systematically discussing the Hilbert spaces.

(7) Moving ahead now, let us go back to the lp spaces, as in (4), but now with general
exponents p ∈ [1,∞], instead of p = 2. The space lp is by definition given by:

lp =

{
(xi)i∈N

∣∣∣∑
i

|xi|p <∞

}
Now by arguing as in (4), a linear form f : lp → C must come as follows:

f ((xi)i) =
∑
i

aixi

To be more precise, here ai ∈ C are certain scalars, which are subject to an inequality
as follows, for a certain constant A <∞, making f well-defined, and bounded:∣∣∣∣∣∑

i

aixi

∣∣∣∣∣ ≤ A

(∑
i

|xi|p
)1/p

Now recall that the Hölder inequality tells us that we have, with 1
p
+ 1

q
= 1:∣∣∣∣∣∑

i

aixi

∣∣∣∣∣ ≤
(∑

i

|xi|p
)1/p(∑

i

|ai|p
)1/q

Thus, the linear form f : l2 → C associated to any element a = (ai) ∈ lq will do.
Moreover, conversely, by examining the proof of Hölder, we conclude that this condition
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a = (ai) ∈ lq is in fact necessary. Thus, we have proved that we have:

(lp)∗ = lq

But this gives the V = V ∗∗ result in the statement for our space V = lp, because by
dualizing one more time we obtain, as desired:

(lp)∗∗ = (lq)∗ = lq

(8) All this is very nice, and time now to generalize everything that we know, by
looking at the general spaces Lp(X), with p ∈ [1,∞]. These spaces are given by:

Lp(X) =

{
f : X → C

∣∣∣ ∫
X

|f(x)|pdx <∞
}

As before in (5), when looking for linear forms φ : Lp(X) → C, by linearity, and with
some mesure theory helping, our forms must appear via a formula as follows:

φ(f) =

∫
X

f(x)φ(x)dx

Now in order for this integral to converge, as for our map φ : Lp(X) → C to be
well-defined, and with the additional requirement that φ must be actually bounded, we
must have an inequality as follows, for a certain positive constant A <∞:∣∣∣∣∫

X

f(x)φ(x)dx

∣∣∣∣ ≤ A

(∫
X

|f(x)|pdx
)1/p

Now recall that the Hölder inequality tells us that we have, with 1
p
+ 1

q
= 1:∣∣∣∣∫

X

f(x)φ(x)dx

∣∣∣∣ ≤ (∫
X

|f(x)|pdx
)1/p(∫

X

|φ(x)|qdx
)1/q

Thus, the linear form φ : Lp(X) → C associated to any function φ ∈ Lq(X) will do.
Moreover, conversely, by examining the proof of Hölder, we conclude that this condition
φ ∈ Lq(X) is in fact necessary. Thus, we have proved that we have:

(Lp)∗ = Lq

But this gives the V = V ∗∗ result in the statement for our space V = Lp, because by
dualizing one more time we obtain, as desired:

(Lp)∗∗ = (Lq)∗ = Lp

(9) Finally, let us mention that not all Banach spaces satisfy V = V ∗∗, with a basic
counterexample here being the space c0 of sequences xn ∈ C satisfying xn → 0, with the
sup norm. Indeed, computations show that we have the following formulae:

c∗0 = l1 , (l1)∗ = l∞

Thus, in this case V ⊂ V ∗∗ is the embedding c0 ⊂ l∞, which is not an isomorphism. □
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9c. Abstract results

Getting now to more advanced theory, we have many non-trivial things that can be
said, about the Banach spaces, with a quick list here being as follows:

(1) The Baire theorem.

(2) The Banach-Steinhaus theorem.

(3) The open mapping theorem.

(4) The closed graph theorem.

9d. Tensor products

There are many interesting questions, regarding the tensor products of Banach spaces.
On one hand we have the question of coming with a norm on a tensor product. On the
other hand we have a number of concrete questions, related to Fubini.

9e. Exercises

Exercises:

Exercise 9.18.

Exercise 9.19.

Exercise 9.20.

Exercise 9.21.

Exercise 9.22.

Exercise 9.23.

Exercise 9.24.

Exercise 9.25.

Bonus exercise.



CHAPTER 10

Compact operators

10a. Linear algebra

Let us start with some linear algebra. As a first construction, that we would like to
generalize to the matrix setting, we have the construction of the modulus, as follows:

|z| =
√
zz̄

The point now is that, as we already know from chapter 1, we can indeed generalize
this construction, by using the spectral theorem for the normal matrices, as follows:

Theorem 10.1. Given a matrix A ∈MN(C), we can construct a matrix |A| as follows,
by using the fact that A∗A is diagonalizable, with positive eigenvalues:

|A| =
√
A∗A

This matrix |A| is then positive, and its square is |A|2 = A. In the case N = 1, we obtain
in this way the usual absolute value of the complex numbers.

Proof. Consider indeed the matrix in the statement A∗A, which is normal. Accord-
ing to the spectral theorem for the normal matrices, that we know well from chapter 1,
we can diagonalize this matrix as follows, with U ∈ UN , and with D diagonal:

A = UDU∗

From A∗A ≥ 0 we obtain D ≥ 0. But this means that the entries of D are real, and
positive. Thus we can extract the square root

√
D, and then set:

√
A∗A = U

√
DU∗

Thus, we are basically done. Indeed, if we call this latter matrix |A|, then we are led to
the conclusions in the statement. Finally, the last assertion is clear from definitions. □

As a comment here, it is possible to talk as well about
√
AA∗, which is in general

different from
√
A∗A. Note that when A is normal, there is no issue, because we have:

AA∗ = A∗A =⇒
√
AA∗ =

√
A∗A

Regarding now the polar decomposition formula, let us start with a weak version of
this statement, regarding the invertible matrices, as follows:

141
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Theorem 10.2. We have the polar decomposition formula

A = U
√
A∗A

with U being a unitary, for any A ∈MN(C) invertible.

Proof. According to our definition of the modulus, |A| =
√
A∗A, we have:

< |A|x, |A|y > = < x, |A|2y >
= < x,A∗Ay >

= < Ax,Ay >

Thus we can define a unitary operator U ∈MN(C) by the following formula:

U(|A|x) = Ax

But this formula shows that we have A = U |A|, as desired. □

Observe that we have uniqueness in the above result, in what regards the choice of
the unitary U ∈MN(C), due to the fact that we can write this unitary as follows:

U = A(
√
A∗A)−1

More generally now, we have the following result:

Theorem 10.3. We have the polar decomposition formula

A = U
√
A∗A

with U being a partial isometry, for any A ∈MN(C).

Proof. As before, in the proof of Theorem 10.2, dealing with the invertible matrix
case, we have the following equality, for any two vectors x, y ∈ CN :

< |A|x, |A|y >=< Ax,Ay >

We conclude that the following linear application is well-defined, and isometric:

U : Im|A| → Im(A) , |A|x→ Ax

But now we can further extend this linear isometric map U into a partial isometry
U : CN → CN , in a straightforward way, by setting:

Ux = 0 , ∀x ∈ Im|A|⊥

And the point is that, with this convention, the result follows. □

Let us discuss now the singular value theorem, which is a key result in linear algebra,
valid for any matrix. This theorem can be formulated, a bit abstractly, as follows:
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Theorem 10.4. We can write the action of any matrix A ∈ MN(C) in the following
form, with {en}, {fn} being orthonormal families, and with λn ↘ 0:

A(x) =
∑
n

λn < x, en > fn

The numbers λn, called singular values of A, are the eigenvalues of the modulus |A|. In
fact, the polar decomposition of A is given by A = U |A|, with

|A|(x) =
∑
n

λn < x, en > en

and with U being given by Uen = fn, and U = 0 on the complement of span(ei).

Proof. This basically comes from what we already have, as follows:

(1) Given two orthonormal families {en}, {fn}, and a sequence of real numbers λn ↘ 0,
consider the linear map given by the formula in the statement, namely:

A(x) =
∑
n

λn < x, en > fn

The adjoint of this linear map is the given by the following formula:

A∗(x) =
∑
n

λn < x, fn > en

Thus, when composing A∗ with A, we obtain the following linear map:

A∗A(x) =
∑
n

λ2n < x, en > en

Now by extracting the square root, we obtain the formula in the statement, namely:

|A|(x) =
∑
n

λn < x, en > en

(2) Conversely, consider a matrix A ∈MN(C). Then A∗A is self-adjoint, so we have a
formula as follows, with {en} being a certain orthonormal family, and with λn ↘ 0:

A∗A(x) =
∑
n

λ2n < x, en > en

By extracting the square root we obtain the formula of |A| in the statement, namely:

|A|(x) =
∑
n

λn < x, en > en

Moreover, with U(en) = fn, we obtain a second orthonormal family, {fn}, such that:

A(x) = U |T | =
∑
n

λn < x, en > fn

Thus, our matrix A ∈MN(C) appears indeed as in the statement. □
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As a technical remark now, it is possible to slightly improve a part of the above
statement. Consider indeed a linear map of the following form, with {en}, {fn} being
orthonormal families as before, and with λn → 0 being now complex numbers:

A(x) =
∑
n

λn < x, en > fn

The adjoint of this linear map is the given by the following formula:

A∗(x) =
∑
n

λ̄n < x, fn > en

Thus, when composing A∗ with A, we obtain the following linear map:

A∗A(x) =
∑
n

|λn|2 < x, en > en

Now by extracting the square root, we conclude that the polar decomposition of A is
given by A = U |A|, with the modulus |A| being as follows:

|A|(x) =
∑
n

|λn| < x, en > en

As for the partial isometry U , this is given by Uen = wnfn, and U = 0 on the
complement of span(ei), where wn ∈ T are such that λn = |λn|wn.

As already mentioned in the above, there are many possible applications of the singular
value theorem. We will be back to this, on several occasions, in what follows.

10b. Finite rank operators

Back now to infinite dimensions, let us start with a basic definition, as follows:

Definition 10.5. An operator T ∈ B(H) is said to be of finite rank if its image

Im(T ) ⊂ H

is finite dimensional. The set of such operators is denoted F (H).

There are many interesting examples of finite rank operators, the most basic ones being
the finite rank projections, on the finite dimensional subspaces K ⊂ H. Observe also that
in the case where H is finite dimensional, any operator T ∈ B(H) is automatically of
finite rank. In general, this is of course wrong, but we have the following result:

Theorem 10.6. The set of finite rank operators

F (H) ⊂ B(H)

is a two-sided ∗-ideal.
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Proof. We have several assertions to be proved, the idea being as follows:

(1) It is clear from definitions that F (H) is indeed a vector space, with this due to
the following formulae, valid for any S, T ∈ B(H), which are both clear:

dim(Im(S + T )) ≤ dim(Im(S)) + dim(Im(T ))

dim(Im(λT )) = dim(Im(T ))

(2) Let us prove now that F (H) is stable under ∗. Given T ∈ F (H), we can regard it
as an invertible operator between finite dimensional Hilbert spaces, as follows:

T : (kerT )⊥ → Im(T )

We conclude from this that we have the following dimension equality:

dim((kerT )⊥) = dim(Im(T ))

Our claim now, in relation with our problem, is that we have equalities as follows:

dim(Im(T ∗)) = dim(Im(T ∗))

= dim((kerT )⊥)

= dim(Im(T ))

Indeed, the third equality is the one above, and the second equality is something that
we know too, from chapter 2. Now by combining these two equalities we deduce that
Im(T ∗) is finite dimensional, and so the first equality holds as well. Thus, our equalities
are proved, and this shows that we have T ∗ ∈ F (H), as desired.

(3) Finally, regarding the ideal property, this follows from the following two formulae,
valid for any S, T ∈ B(H), which are once again clear from definitions:

dim(Im(ST )) ≤ dim(Im(T ))

dim(Im(TS)) ≤ dim(Im(T ))

Thus, we are led to the conclusion in the statement. □

10c. Compact operators

Let us discuss now the compact operators, which will be the main topic of discussion,
for the present chapter. These are best introduced as follows:

Definition 10.7. An operator T ∈ B(H) is said to be compact if the closed set

T (B1) ⊂ H

is compact, where B1 ⊂ H is the unit ball. The set of such operators is denoted K(H).
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Equivalently, an operator T ∈ B(H) is compact when for any sequence {xn} ⊂ B1,
or more generally for any bounded sequence {xn} ⊂ H, the sequence {T (xn)} has a
convergence subsequence. We will see later some further criteria of compactness.

In finite dimensions any operator is compact. In general, as a first observation, any
finite rank operator is compact. We have in fact the following result:

Proposition 10.8. Any finite rank operator is compact,

F (H) ⊂ K(H)

and the finite rank operators are dense inside the compact operators.

Proof. The first assertion is clear, because if Im(T ) is finite dimensional, then the
following subset is closed and bounded, and so it is compact:

T (B1) ⊂ Im(T )

Regarding the second assertion, let us pick a compact operator T ∈ K(H), and a
number ε > 0. By compactness of T we can find a finite set S ⊂ B1 such that:

T (B1) ⊂
⋃
x∈S

Bε(Tx)

Consider now the orthogonal projection P onto the following finite dimensional space:

E = span
(
Tx
∣∣∣x ∈ S

)
Since the set S is finite, this space E is finite dimensional, and so P is of finite rank,

P ∈ F (H). Now observe that for any norm one y ∈ H and any x ∈ S we have:

||Ty − Tx||2 = ||Ty − PTx||2

= ||Ty − PTy + PTy − PTx||2

= ||Ty − PTy||2 + ||PTx− PTy||2

Now by picking x ∈ S such that the ball Bε(Tx) covers the point Ty, we conclude
from this that we have the following estimate:

||Ty − PTy|| ≤ ||Ty − Tx|| ≤ ε

Thus we have ||T − PT || ≤ ε, which gives the density result. □

Quite remarkably, the set of compact operators is closed, and we have:

Theorem 10.9. The set of compact operators

K(H) ⊂ B(H)

is a closed two-sided ∗-ideal.
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Proof. We have several assertions here, the idea being as follows:

(1) It is clear from definitions that K(H) is indeed a vector space, with this due to
the following formulae, valid for any S, T ∈ B(H), which are both clear:

(S + T )(B1) ⊂ S(B1) + T (B1)

(λT )(B1) = |λ| · T (B1)

(2) In order to prove now that K(H) is closed, assume that a sequence Tn ∈ K(H)
converges to T ∈ B(H). Given ε > 0, let us pick N ∈ N such that:

||T − TN || ≤ ε

By compactness of TN we can find a finite set S ⊂ B1 such that:

TN(B1) ⊂
⋃
x∈S

Bε(TNx)

We conclude that for any y ∈ B1 there exists x ∈ S such that:

||Ty − Tx|| ≤ ||Ty − TNy||+ ||TNy − TNx||+ ||TNx− Tx||
≤ ε+ ε+ ε

= 3ε

Thus, we have an inclusion as follows, with S ⊂ B1 being finite:

T (B1) ⊂
⋃
x∈S

B3ε(Tx)

But this shows that our limiting operator T is compact, as desired.

(3) Regarding now the fact that K(H) is stable under involution, this follows from
Theorem 10.6, Proposition 10.8 and (2). Indeed, by using Proposition 10.7, given T ∈
K(H) we can write it as a limit of finite rank operators, as follows:

T = lim
n→∞

Tn

Now by applying the adjoint, we obtain that we have as well:

T ∗ = lim
n→∞

T ∗
n

The point now is that we know, as a consequence of Theorem 10.6, that the operators
T ∗
n are of finite rank, and so are compact by Proposition 10.8. Thus, by using (2) we

obtain that their limit T ∗ is compact too, as desired.

(4) Finally, regarding the ideal property, this follows from the following two formulae,
valid for any S, T ∈ B(H), which are once again clear from definitions:

(ST )(B1) = S(T (B1))

(TS)(B1) ⊂ ||S|| · T (B1)

Thus, we are led to the conclusion in the statement. □
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Here is now a second key result regarding the compact operators:

Theorem 10.10. A bounded operator T ∈ B(H) is compact precisely when

Ten → 0

for any orthonormal system {en} ⊂ H.

Proof. We have two implications to be proved, the idea being as follows:

“ =⇒ ” Assume that T is compact. By contradiction, assume Ten ̸→ 0. This means
that there exists ε > 0 and a subsequence satisfying ||Tenk

|| > ε, and by replacing {en}
with this subsequence, we can assume that the following holds, with ε > 0:

||Ten|| > ε

Since T was assumed to be compact, and the sequence {en} is bounded, a certain sub-
sequence {Tenk

} must converge. Thus, by replacing once again {en} with a subsequence,
we can assume that the following holds, with x ̸= 0:

Ten → x

But this is a contradiction, because we obtain in this way:

< x, x > = lim
n→∞

< Ten, x >

= lim
n→∞

< en, T
∗x >

= 0

Thus our assumption Ten ̸→ 0 was wrong, and we obtain the result.

“⇐=” Assume Ten → 0, for any orthonormal system {en} ⊂ H. In order to prove
that T is compact, we use the various results established above, which show that this is
the same as proving that T is in the closure of the space of finite rank operators:

T ∈ F (H)

We do this by contradiction. So, assume that the above is wrong, and so that there
exists ε > 0 such that the following holds:

S ∈ F (H) =⇒ ||T − S|| > ε

As a first observation, by using S = 0 we obtain ||T || > ε. Thus, we can find a norm
one vector e1 ∈ H such that the following holds:

||Te1|| > ε

Our claim, which will bring the desired contradiction, is that we can construct by
recurrence vectors e1, . . . , en such that the following holds, for any i:

||Tei|| > ε
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Indeed, assume that we have constructed such vectors e1, . . . , en. Let E ⊂ H be the
linear space spanned by these vectors, and let us set:

P = Proj(E)

Since the operator TP has finite rank, our assumption above shows that we have:

||T − TP || > ε

Thus, we can find a vector x ∈ H such that the following holds:

||(T − TP )x|| > ε

We have then x ̸∈ E, and so we can consider the following nonzero vector:

y = (1− P )x

With this nonzero vector y constructed, in this way, now let us set:

en+1 =
y

||y||
This vector en+1 is then orthogonal to E, has norm one, and satisfies:

||Ten+1|| ≥ ||y||−1ε ≥ ε

Thus we are done with our construction by recurrence, and this contradicts our as-
sumption that Ten → 0, for any orthonormal system {en} ⊂ H, as desired. □

10d. Singular values

Let us discuss now the spectral theory of the compact operators, in analogy with the
known results from linear algebra. We first have the following result:

Proposition 10.11. Assuming that T ∈ B(H), with dimH = ∞, is compact and
self-adjoint, the following happen:

(1) The eigenvalues of T form a sequence λn → 0.
(2) All eigenvalues λn ̸= 0 have finite multiplicity.

Proof. We prove both the assertions at the same time. For this purpose, we fix
a number ε > 0, we consider all the eigenvalues satisfying |λ| ≥ ε, and for each such
eigenvalue we consider the corresponding eigenspace Eλ ⊂ H. Let us set:

E = span
(
Eλ

∣∣∣ |λ| ≥ ε
)

Our claim, which will prove both (1) and (2), is that this space E is finite dimensional.
In now to prove now this claim, we can proceed as follows:

(1) We know that we have E ⊂ Im(T ). Our claim is that we have:

Ē ⊂ Im(T )
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Indeed, assume that we have a sequence gn ∈ E which converges, gn → g ∈ Ē. Let us
write gn = Tfn, with fn ∈ H. By definition of E, the following condition is satisfied:

h ∈ E =⇒ ||Th|| ≥ ε||h||
Now since the sequence {gn} is Cauchy we obtain from this that the sequence {fn} is

Cauchy as well, and with fn → f we have Tfn → Tf , as desired.

(2) Consider now the projection P ∈ B(H) onto the closure Ē of the above vector
space E. The composition PT is then as follows, surjective on its target:

PT : H → Ē

On the other hand since T is compact so must be PT , and if follows from this that
the space Ē is finite dimensional. Thus E itself must be finite dimensional too, and as
explained in the beginning of the proof, this gives (1) and (2), as desired. □

In order to construct now eigenvalues, we will need:

Proposition 10.12. If T is compact and self-adjoint, one of the numbers

||T || , −||T ||
must be an eigenvalue of T .

Proof. We know from the spectral theory of the self-adjoint operators that the spec-
tral radius ||T || of our operator T is attained, and so one of the numbers ||T ||,−||T ||
must be in the spectrum. In order to prove now that one of these numbers must actually
appear as an eigenvalue, we must use the compactness of T , as follows:

(1) First, we can assume ||T || = 1. By functional calculus this implies ||T 3|| = 1 too,
and so we can find a sequence of norm one vectors xn ∈ H such that:

| < T 3xn, xn > | → 1

By using our assumption T = T ∗, we can rewrite this formula as follows:

| < T 2xn, Txn > | → 1

Now since T is compact, and {xn} is bounded, we can assume, up to changing the
sequence {xn} to one of its subsequences, that the sequence Txn converges:

Txn → y

Thus, the convergence formula found above reformulates as follows, with y ̸= 0:

| < Ty, y > | = 1

(2) Our claim now, which will finish the proof, is that this latter formula implies
Ty = ±y. Indeed, by using Cauchy-Schwarz and ||T || = 1, we have:

| < Ty, y > | ≤ ||Ty|| · ||y|| ≤ 1
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We know that this must be an equality, so Ty, y must be proportional. But since T is
self-adjoint the proportionality factor must be ±1, and so we obtain, as claimed:

Ty = ±y
Thus, we have constructed an eigenvector for λ = ±1, as desired. □

We can further build on the above results in the following way:

Proposition 10.13. If T is compact and self-adjoint, there is an orthogonal basis of
H made of eigenvectors of T .

Proof. We use Proposition 10.12. According to the results there, we can arrange the
nonzero eigenvalues of T , taken with multiplicities, into a sequence λn → 0. Let yn ∈ H
be the corresponding eigenvectors, and consider the following space:

E = span(yn)

The result follows then from the following observations:

(1) Since we have T = T ∗, both E and its orthogonal E⊥ are invariant under T .

(2) On the space E, our operator T is by definition diagonal.

(3) On the space E⊥, our claim is that we have T = 0. Indeed, assuming that the
restriction S = TE⊥ is nonzero, we can apply Proposition 10.12 to this restriction, and we
obtain an eigenvalue for S, and so for T , contradicting the maximality of E. □

With the above results in hand, we can now formulate a first spectral theory result
for compact operators, which closes the discussion in the self-adjoint case:

Theorem 10.14. Assuming that T ∈ B(H), with dimH = ∞, is compact and self-
adjoint, the following happen:

(1) The spectrum σ(T ) ⊂ R consists of a sequence λn → 0.
(2) All spectral values λ ∈ σ(T )− {0} are eigenvalues.
(3) All eigenvalues λ ∈ σ(T )− {0} have finite multiplicity.
(4) There is an orthogonal basis of H made of eigenvectors of T .

Proof. This follows from the various results established above:

(1) In view of Proposition 10.11 (1), this will follow from (2) below.

(2) Assume that λ ̸= 0 belongs to the spectrum σ(T ), but is not an eigenvalue.
By using Proposition 10.13, let us pick an orthonormal basis {en} of H consisting of
eigenvectors of T , and then consider the following operator:

Sx =
∑
n

< x, en >

λn − λ
en

Then S is an inverse for T − λ, and so we have λ /∈ σ(T ), as desired.
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(3) This is something that we know, from Proposition 10.11 (2).

(4) This is something that we know too, from Proposition 10.13. □

Finally, we have the following result, regarding the general case:

Theorem 10.15. The compact operators T ∈ B(H), with dimH = ∞, are the opera-
tors of the following form, with {en}, {fn} being orthonormal families, and with λn ↘ 0:

T (x) =
∑
n

λn < x, en > fn

The numbers λn, called singular values of T , are the eigenvalues of |T |. In fact, the polar
decomposition of T is given by T = U |T |, with

|T |(x) =
∑
n

λn < x, en > en

and with U being given by Uen = fn, and U = 0 on the complement of span(ei).

Proof. This basically follows from Theorem 10.14, as follows:

(1) Given two orthonormal families {en}, {fn}, and a sequence of real numbers λn ↘ 0,
consider the linear operator given by the formula in the statement, namely:

T (x) =
∑
n

λn < x, en > fn

Our first claim is that T is bounded. Indeed, when assuming |λn| ≤ ε for any n, which
is something that we can do if we want to prove that T is bounded, we have:

||T (x)||2 =

∣∣∣∣∣∑
n

λn < x, en > fn

∣∣∣∣∣
2

=
∑
n

|λn|2| < x, en > |2

≤ ε2
∑
n

| < x, en > |2

≤ ε2||x||2

(2) The next observation is that this operator is indeed compact, because it appears
as the norm limit, TN → T , of the following sequence of finite rank operators:

TN =
∑
n≤N

λn < x, en > fn
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(3) Regarding now the polar decomposition assertion, for the above operator, this
follows once again from definitions. Indeed, the adjoint is given by:

T ∗(x) =
∑
n

λn < x, fn > en

Thus, when composing T ∗ with T , we obtain the following operator:

T ∗T (x) =
∑
n

λ2n < x, en > en

Now by extracting the square root, we obtain the formula in the statement, namely:

|T |(x) =
∑
n

λn < x, en > en

(4) Conversely now, assume that T ∈ B(H) is compact. Then T ∗T , which is self-
adjoint, must be compact as well, and so by Theorem 10.14 we have a formula as follows,
with {en} being a certain orthonormal family, and with λn ↘ 0:

T ∗T (x) =
∑
n

λ2n < x, en > en

By extracting the square root we obtain the formula of |T | in the statement, and then
by setting U(en) = fn we obtain a second orthonormal family, {fn}, such that:

T (x) = U |T | =
∑
n

λn < x, en > fn

Thus, our compact operator T ∈ B(H) appears indeed as in the statement. □

As a technical remark here, it is possible to slightly improve a part of the above
statement. Consider indeed an operator of the following form, with {en}, {fn} being
orthonormal families as before, and with λn → 0 being now complex numbers:

T (x) =
∑
n

λn < x, en > fn

Then the same proof as before shows that T is compact, and that the polar decom-
position of T is given by T = U |T |, with the modulus |T | being as follows:

|T |(x) =
∑
n

|λn| < x, en > en

As for the partial isometry U , this is given by Uen = wnfn, and U = 0 on the
complement of span(ei), where wn ∈ T are such that λn = |λn|wn.
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10e. Exercises

Exercises:

Exercise 10.16.

Exercise 10.17.

Exercise 10.18.

Exercise 10.19.

Exercise 10.20.

Exercise 10.21.

Exercise 10.22.

Exercise 10.23.

Bonus exercise.



CHAPTER 11

Trace, determinant

11a. Trace class operators

We have not talked so far about the trace of operators T ∈ B(H), in analogy with
the trace of the usual matrices M ∈ MN(C). This is because the trace can be finite or
infinite, or even not well-defined, and we will discuss this now.

Let us start our discussion here with a standard result, as follows:

Proposition 11.1. Given a positive operator T ∈ B(H), the quantity

Tr(T ) =
∑
n

< Ten, en >∈ [0,∞]

is indpendent on the choice of an orthonormal basis {en}.

Proof. If {fn} is another orthonormal basis, we have:∑
n

< Tfn, fn > =
∑
n

<
√
Tfn,

√
Tfn >

=
∑
n

||
√
Tfn||2

=
∑
mn

| <
√
Tfn, em > |2

=
∑
mn

| < T 1/4fn, T
1/4em > |2

Since this quantity is symmetric in e, f , this gives the result. □

We can now introduce the trace class operators, as follows:

Definition 11.2. An operator T ∈ B(H) is said to be of trace class if:

Tr|T | <∞
The set of such operators, also called integrable, is denoted B1(H).

In finite dimensions, any operator is of course of trace class. In arbitrary dimension,
finite or not, we first have the following result, regarding such operators:
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Proposition 11.3. Any finite rank operator is of trace class, and any trace class
operator is compact, so that we have embeddings as follows:

F (H) ⊂ B1(H) ⊂ K(H)

Moreover, for any compact operator T ∈ K(H) we have the formula

Tr|T | =
∑
n

λn

where λn ≥ 0 are the singular values, and so T ∈ B1(H) precisely when
∑

n λn <∞.

Proof. We have several assertions here, the idea being as follows:

(1) If T is of finite rank, it is clearly of trace class.

(2) In order to prove now the second assertion, assume first that T > 0 is of trace
class. For any orthonormal basis {en} we have:∑

n

||
√
Ten||2 =

∑
n

< Ten, en >

≤ Tr(T )

< ∞

But this shows that we have a convergence as follows:
√
Ten → 0

Thus the operator
√
T is compact. Now observe that we have:

T =
√
T ·

√
T

Since we know from chapter 10 that the compact operators form an ideal, it follows
that this operator T =

√
T ·

√
T is compact as well, as desired.

(3) In order to prove now the second assertion in general, assume that T ∈ B(H) is
of trace class. Then |T | is also of trace class, and so compact by (2), and since we have
T = U |T | by polar decomposition, it follows that T is compact too.

(4) Finally, in order to prove the last assertion, assume that T is compact. The singular
value decomposition of |T |, from chapter 10, is then as follows:

|T |(x) =
∑
n

λn < x, en > en

But this gives the formula for Tr|T | in the statement, and proves the last assertion. □

Here is a useful reformulation of the above result, or rather of the above result coupled
with the singular value decomposition, without reference to compact operators:
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Theorem 11.4. The trace class operators are precisely the operators of the form

|T |(x) =
∑
n

λn < x, en > fn

with {en}, {fn} being orthonormal systems, and with λ↘ 0 being a sequence satisfying:∑
n

λn <∞

Moreover, for such an operator we have the following estimate:

|Tr(T )| ≤ Tr|T | =
∑
n

λn

Proof. This follows indeed from Proposition 11.3, or rather for step (4) in the proof
of Proposition 11.3, coupled with the singular value decomposition theorem. □

11b. Ideal property

Next, we have the following result, which comes as a continuation of Proposition 11.3,
and is our central result here, regarding the trace class operators:

Theorem 11.5. The space of trace class operators, which appears as an intermediate
space between the finite rank operators and the compact operators,

F (H) ⊂ B1(H) ⊂ K(H)

is a two-sided ∗-ideal of K(H). The following is a Banach space norm on B1(H),

||T ||1 = Tr|T |

satisfying ||T || ≤ ||T ||1, and for T ∈ B1(H) and S ∈ B(H) we have:

||ST ||1 ≤ ||S|| · ||T ||1

Also, the subspace F (H) is dense inside B1(H), with respect to this norm.

Proof. There are several assertions here, the idea being as follows:

(1) In order to prove that B1(H) is a linear space, and that ||T ||1 = Tr|T | is a norm
on it, the only non-trivial point is that of proving the following inequality:

Tr|S + T | ≤ Tr|S|+ Tr|T |

For this purpose, consider the polar decompositions of these operators:

S = U |S| , T = V |T | , S + T = W |S + T |
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Given an orthonormal basis {en}, we have the following formula:

Tr|S + T | =
∑
n

< |S + T |en, en >

=
∑
n

< W ∗(S + T )en, en >

=
∑
n

< W ∗U |S|en, en > +
∑
n

< W ∗V |T |en, en >

The point now is that the first sum can be estimated as follows:∑
n

< W ∗U |S|en, en >

=
∑
n

<
√

|S|en,
√

|S|U∗Wen >

≤
∑
n

∣∣∣∣∣∣√|S|en
∣∣∣∣∣∣ · ∣∣∣∣∣∣√|S|U∗Wen

∣∣∣∣∣∣
≤

√∑
n

∣∣∣∣∣∣√|S|en
∣∣∣∣∣∣2 ·√∑

n

∣∣∣∣∣∣√|S|U∗Wen

∣∣∣∣∣∣2
In order to estimate the terms on the right, we can proceed as follows:∑

n

∣∣∣∣∣∣√|S|U∗Wen

∣∣∣∣∣∣2 =
∑
n

< W ∗U |S|U∗Wen, en >

= Tr(W ∗U |S|U∗W )

≤ Tr(U |S|U∗)

≤ Tr(|S|)

The second sum in the above formula of Tr|S +T | can be estimated in the same way,
and in the end we obtain, as desired:

Tr|S + T | ≤ Tr|S|+ Tr|T |

(2) The estimate ||T || ≤ ||T ||1 can be established as follows:

||T || =
∣∣∣∣|T |∣∣∣∣

= sup
||x||=1

< |T |x, x >

≤ Tr|T |

(3) The fact that B1(H) is indeed a Banach space follows by constructing a limit for
any Cauchy sequence, by using the singular value decomposition.
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(4) The fact that B1(H) is indeed closed under the involution follows from:

Tr(T ∗) =
∑
n

< T ∗en, en >

=
∑
n

< en, T eN >

= Tr(T )

(5) In order to prove now the ideal property of B1(H), we use the standard fact, that
we know well from chapter 5, that any bounded operator T ∈ B(H) can be written as a
linear combination of 4 unitary operators, as follows:

T = λ1U1 + λ2U2 + λ3U3 + λ4U4

Indeed, by taking the real and imaginary part we can first write T as a linear combina-
tion of 2 self-adjoint operators, and then by functional calculus each of these 2 self-adjoint
operators can be written as a linear linear combination of 2 unitary operators.

(6) With this trick in hand, we can now prove the ideal property of B1(H). Indeed, it
is enough to prove that we have:

T ∈ B1(H), U ∈ U(H) =⇒ UT, TU ∈ B1(H)

But this latter result follows by using the polar decomposition theorem.

(7) With a bit more care, we obtain from this the estimate ||ST ||1 ≤ ||S|| · ||T ||1 from
the statement. As for the last assertion, this is clear as well. □

This was for the basic theory of the trace class operators. Much more can be said,
and we refer here to the literature, such as Lax [68]. In what concerns us, we will be back
to these operators later in this book, in Part IV, when discussing operator algebras.

11c. Hilbert-Schmidt

As a further topic for this chapter, let us discuss yet another important class of op-
erators, namely the Hilbert-Schmidt ones. These operators, that we will need on several
occasions in later on, when talking operator algebras, are introduced as follows:

Definition 11.6. An operator T ∈ B(H) is said to be Hilbert-Schmidt if:

Tr(T ∗T ) <∞

The set of such operators is denoted B2(H).

As before with other sets of operators, in finite dimensions we obtain in this way all
the operators. In general, we have the following result, regarding such operators:
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Theorem 11.7. The space B2(H) of Hilbert-Schmidt operators, which appears as an
intermediate space between the trace class operators and the compact operators,

F (H) ⊂ B1(H) ⊂ B2(H) ⊂ K(H)

is a two-sided ∗-ideal of K(H). This ideal has the property

S, T ∈ B2(H) =⇒ ST ∈ B1(H)

and conversely, each T ∈ B1(H) appears as product of two operators in B2(H). In terms
of the singular values (λn), the Hilbert-Schmidt operators are characterized by:∑

n

λ2n <∞

Also, the following formula, whose output is finite by Cauchy-Schwarz,

< S, T >= Tr(ST ∗)

defines a scalar product of B2(H), making it a Hilbert space.

Proof. All this is quite standard, from the results that we have already, and more
specifically from the singular value decomposition theorem, and its applications. To be
more precise, the proof of the various assertions goes as follows:

(1) First of all, the fact that the space of Hilbert-Schmidt operators B2(H) is stable
under taking sums, and so is a vector space, follows from:

(S + T )∗(S + T ) ≤ (S + T )∗(S + T ) + (S − T )∗(S − T )

= (S∗ + T ∗)(S + T ) + (S∗ − T ∗)(S − T )

= 2(S∗S + T ∗T )

Regarding now multiplicative properties, we can use here the following inequality:

(ST )∗(ST ) = T ∗S∗ST ≤ ||S||2T ∗T

Thus, the space B2(H) is a two-sided ∗-ideal of K(H), as claimed.

(2) In order to prove now that the product of any two Hilbert-Schmidt operators is a
trace class operator, we can use the following formula, which is elementary:

S∗T =
4∑

k=1

ik(S − iT )∗(S − iT )

Conversely, given an arbitrary trace class operator T ∈ B1(H), we have:

T ∈ B1(H) =⇒ |T | ∈ B1(H) =⇒
√

|T | ∈ B2(H)

Thus, by using the polar decomposition T = U |T |, we obtain the following decompo-
sition for T , with both components being Hilbert-Schmidt operators:

T = U |T | = U
√

|T | ·
√

|T |
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(3) The condition for the singular values is clear.

(4) The fact that we have a scalar product is clear as well.

(5) The proof of the completness property is routine as well. □

We have as well the following key result, regarding the Hilbert-Schmidt operators:

Theorem 11.8. We have the following formula,

Tr(ST ) = Tr(TS)

valied for any Hilbert-Schmidt operators S, T ∈ B2(H).

Proof. We can prove this in two steps, as follows:

(1) Assume first that |S| is trace class. Consider the polar decomposition S = U |S|,
and choose an orthonormal basis {xi} for the image of U , suitably extended to an or-
thonormal basis of H. We have then the following computation, as desired:

Tr(ST ) =
∑
i

< U |S|Txi, xi >

=
∑
i

< |S|TUU∗xi, U
∗xi >

= Tr(|S|TU)
= Tr(TU |S|)
= Tr(TS)

(2) Assume now that we are in the general case, where S is only assumed to be
Hilbert-Schmidt. For any finite rank operator S ′ we have then:

|Tr(ST )− Tr(TS)| = |Tr((S − S ′)T )− Tr(T (S − S ′))|
≤ 2||S − S ′||2 · ||T ||2

Thus by choosing S ′ with ||S − S ′||2 → 0, we obtain the result. □

This was for the basic theory of bounded operators on a Hilbert space, T ∈ B(H). In
the remainder of this book we will be interested in examples, and in the operator algebras
A ⊂ B(H) that these operators can form. This is of course related to operator theory,
because we can, at least in theory, take A =< T >, and then study T via the properties
of A. Actually, this is something that we already did a few times, when doing spectral
theory, and notably when talking about functional calculus for normal operators.

11d. Determinants

Determinants.
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11e. Exercises

Exercises:

Exercise 11.9.

Exercise 11.10.

Exercise 11.11.

Exercise 11.12.

Exercise 11.13.

Exercise 11.14.

Exercise 11.15.

Exercise 11.16.

Bonus exercise.
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Some geometry

12a.

12b.

12c.

12d.

12e. Exercises

Exercises:

Exercise 12.1.

Exercise 12.2.

Exercise 12.3.

Exercise 12.4.

Exercise 12.5.

Exercise 12.6.

Exercise 12.7.

Exercise 12.8.

Bonus exercise.
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Part IV

Operator algebras



There is no pain, you are receding
A distant ship, smoke on the horizon
You are only coming through in waves

Your lips move, but I can’t hear what you’re saying



CHAPTER 13

C*-algebras

13a. C*-algebras

We have seen that the study of the bounded operators T ∈ B(H) often leads to the
consideration of the algebras < T >⊂ B(H) generated by such operators, the idea being
that the study of A =< T > can lead to results about T itself. In the remainder of this
book we focus on the study of such algebras A ⊂ B(H). Let us start our discussion with
the following broad definition, obtained by imposing the “minimal” set of axioms:

Definition 13.1. An operator algebra is an algebra of bounded operators A ⊂ B(H)
which contains the unit, is closed under taking adjoints,

T ∈ A =⇒ T ∗ ∈ A

and is closed as well under the norm.

Here, as in the previous chapters, B(H) is the algebra of linear operators T : H → H
which are bounded, in the sense that the norm ||T || = sup||x||=1 ||Tx|| is finite. This
algebra has an involution T → T ∗, with the adjoint operator T ∗ ∈ B(H) being defined
by the formula < Tx, y >=< x, T ∗y >, and in the above definition, the assumption
T ∈ A =⇒ T ∗ ∈ A refers to this involution. Thus, A must be a ∗-algebra.

As a first result now regarding the operator algebras, in relation with the normal
operators, where most of the non-trivial results that we have so far are, we have:

Theorem 13.2. The operator algebra < T >⊂ B(H) generated by a normal operator
T ∈ B(H) appears as an algebra of continuous functions,

< T >= C(σ(T ))

where σ(T ) ⊂ C denotes as usual the spectrum of T .

Proof. This is an abstract reformulation of the continuous functional calculus theo-
rem for the normal operators, that we know since chapter 3. Indeed, that theorem tells
us that we have a continuous morphism of ∗-algebras, as follows:

C(σ(T )) → B(H) , f → f(T )

Moreover, by the general properties of the continuous calculus, also established in
chapter 3, this morphism is injective, and its image is the norm closed algebra < T >
generated by T, T ∗. Thus, we obtain the isomorphism in the statement. □

167
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The above result is very nice, and it is possible to further build on it, by using this
time the spectral theorem for families of normal operators, as follows:

Theorem 13.3. The operator algebra < Ti >⊂ B(H) generated by a family of normal
operators Ti ∈ B(H) appears as an algebra of continuous functions,

< T >= C(X)

where X ⊂ C is a certain compact space associated to the family {Ti}. Equivalently, any
commutative operator algebra A ⊂ B(H) is of the form A = C(X).

Proof. We have two assertions here, the idea being as follows:

(1) Regarding the first assertion, this follows exactly as in the proof of Theorem 13.2,
by using this time the spectral theorem for families of normal operators.

(2) As for the second assertion, this is clear from the first one, because any commuta-
tive algebra A ⊂ B(H) is generated by its elements T ∈ A, which are all normal. □

All this is good to know, but Theorem 13.2 and Theorem 13.3 remain something quite
heavy, based on the spectral theorem. We would like to present now an alternative proof
for these results, which is rather elementary, and has the advantage of reconstructing the
compact space X directly from the knowledge of the algebra A. Let us start with:

Definition 13.4. A C∗-algebra is an complex algebra A, given with:

(1) A norm a→ ||a||, making it into a Banach algebra.
(2) An involution a→ a∗, related to the norm by the formula ||aa∗|| = ||a||2.
Here by Banach algebra we mean a complex algebra with a norm satisfying all the

conditions for a vector space norm, along with ||ab|| ≤ ||a|| · ||b|| and ||1|| = 1, and which
is such that our algebra is complete, in the sense that the Cauchy sequences converge. As
for the involution, this must be antilinear, antimultiplicative, and satisfying a∗∗ = a.

As basic examples, we have the operator algebra B(H), for any Hilbert space H, and
more generally, the norm closed ∗-subalgebras A ⊂ B(H). It is possible to prove that
any C∗-algebra appears in this way, but this is a non-trivial result, called GNS theorem,
and more on this later. Note in passing that this result tells us that there is no need
to memorize the above axioms for the C∗-algebras, because these are simply the obvious
things that can be said about B(H), and its norm closed ∗-subalgebras A ⊂ B(H).

As a second class of basic examples, which are of particular interest, we have:

Proposition 13.5. If X is a compact space, the algebra C(X) of continuous functions
f : X → C is a C∗-algebra, with the usual norm and involution, namely:

||f || = sup
x∈X

|f(x)| , f ∗(x) = f(x)

This algebra is commutative, in the sense that fg = gf , for any f, g ∈ C(X).
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Proof. All this is clear from definitions. Observe that we have indeed:

||ff ∗|| = sup
x∈X

|f(x)|2 = ||f ||2

Thus, the axioms are satisfied, and finally fg = gf is clear. □

In general, the C∗-algebras can be thought of as being algebras of operators, over some
Hilbert space which is not present. By using this philosophy, one can emulate spectral
theory in this setting, with extensions of the various results from chapter 3:

Theorem 13.6. Given element a ∈ A of a C∗-algebra, define its spectrum as:

σ(a) =
{
λ ∈ C

∣∣∣a− λ /∈ A−1
}

The following spectral theory results hold, exactly as in the A = B(H) case:

(1) We have σ(ab) ∪ {0} = σ(ba) ∪ {0}.
(2) We have polynomial, rational and holomorphic calculus.
(3) As a consequence, the spectra are compact and non-empty.
(4) The spectra of unitaries (u∗ = u−1) and self-adjoints (a = a∗) are on T,R.
(5) The spectral radius of normal elements (aa∗ = a∗a) is given by ρ(a) = ||a||.

In addition, assuming a ∈ A ⊂ B, the spectra of a with respect to A and to B coincide.

Proof. This is something that we know well since chapter 3, in the case of the full
operator algebra A = B(H), and in general, the proof is similar, as follows:

(1) Regarding the assertions (1-5), which are of course formulated a bit informally,
the proofs here are perfectly similar to those for the full operator algebra A = B(H). All
this is standard material, and in fact, things in chapters 3 were written in such a way as
for their extension now, to the general C∗-algebra setting, to be obvious.

(2) Regarding the last assertion, the inclusion σB(a) ⊂ σA(a) is clear. For the converse,
assume a− λ ∈ B−1, and consider the following self-adjoint element:

b = (a− λ)∗(a− λ)

The difference between the two spectra of b ∈ A ⊂ B is then given by:

σA(b)− σB(b) =
{
µ ∈ C− σB(b)

∣∣∣(b− µ)−1 ∈ B − A
}

Thus this difference in an open subset of C. On the other hand b being self-adjoint,
its two spectra are both real, and so is their difference. Thus the two spectra of b are
equal, and in particular b is invertible in A, and so a− λ ∈ A−1, as desired. □

We can now get back to the commutative C∗-algebras, and we have the following
result, due to Gelfand, which will be of crucial importance for us:



170 13. C*-ALGEBRAS

Theorem 13.7. The commutative C∗-algebras are exactly the algebras of the form

A = C(X)

with the “spectrum” X of such an algebra being the space of characters χ : A → C, with
topology making continuous the evaluation maps eva : χ→ χ(a).

Proof. Given a commutative C∗-algebra A, we can define X as in the statement.
Then X is compact, and a→ eva is a morphism of algebras, as follows:

ev : A→ C(X)

(1) We first prove that ev is involutive. We use the following formula, which is similar
to the z = Re(z) + iIm(z) formula for the usual complex numbers:

a =
a+ a∗

2
+ i · a− a∗

2i

Thus it is enough to prove the equality eva∗ = ev∗a for self-adjoint elements a. But this
is the same as proving that a = a∗ implies that eva is a real function, which is in turn
true, because eva(χ) = χ(a) is an element of σ(a), contained in R.

(2) Since A is commutative, each element is normal, so ev is isometric:

||eva|| = ρ(a) = ||a||
(3) It remains to prove that ev is surjective. But this follows from the Stone-Weierstrass

theorem, because ev(A) is a closed subalgebra of C(X), which separates the points. □

In view of the Gelfand theorem, we can formulate the following key definition:

Definition 13.8. Given an arbitrary C∗-algebra A, we write

A = C(X)

and call X a compact quantum space.

This might look like something informal, but it is not. Indeed, we can define the
category of compact quantum spaces to be the category of the C∗-algebras, with the
arrows reversed. When A is commutative, the above space X exists indeed, as a Gelfand
spectrum, X = Spec(A). In general, X is something rather abstract, and our philosophy
here will be that of studying of course A, but formulating our results in terms of X. For
instance whenever we have a morphism Φ : A → B, we will write A = C(X), B = C(Y ),
and rather speak of the corresponding morphism ϕ : Y → X. And so on.

As a first concrete consequence of the Gelfand theorem, we have:

Theorem 13.9. Assume that a ∈ A is normal, and let f ∈ C(σ(a)).

(1) We can define f(a) ∈ A, with f → f(a) being a morphism of C∗-algebras.
(2) We have the “continuous functional calculus” formula σ(f(a)) = f(σ(a)).
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Proof. Since a is normal, the C∗-algebra < a > that is generates is commutative, so
if we denote by X the space formed by the characters χ :< a >→ C, we have:

< a >= C(X)

Now since the map X → σ(a) given by evaluation at a is bijective, we obtain:

< a >= C(σ(a))

Thus, we are dealing with usual functions, and this gives all the assertions. □

As another consequence of the Gelfand theorem, we have:

Theorem 13.10. For a normal element a ∈ A, the following are equivalent:

(1) a is positive, in the sense that σ(a) ⊂ [0,∞).
(2) a = b2, for some b ∈ A satisfying b = b∗.
(3) a = cc∗, for some c ∈ A.

Proof. This is very standard, exactly as in A = B(H) case, as follows:

(1) =⇒ (2) Since f(z) =
√
z is well-defined on σ(a) ⊂ [0,∞), we can set b =

√
a.

(2) =⇒ (3) This is trivial, because we can set c = b.

(3) =⇒ (1) We can proceed here by contradiction. Indeed, by multiplying c by a
suitable element of < cc∗ >, we are led to the existence of an element d ̸= 0 satisfying
−dd∗ ≥ 0. By writing now d = x+ iy with x = x∗, y = y∗ we have:

dd∗ + d∗d = 2(x2 + y2) ≥ 0

Thus d∗d ≥ 0, contradicting the fact that σ(dd∗), σ(d∗d) must coincide outside {0},
that we know well to hold for A = B(H), and whose proof in general is similar. □

13b. Basic results

In order to develop some general theory, let us start by investigating the finite dimen-
sional case. Here the ambient algebra is B(H) =MN(C), any linear subspace A ⊂ B(H)
is automatically closed, for the norm topology, and we have the following result:

Theorem 13.11. The ∗-algebras A ⊂MN(C) are exactly the algebras of the form

A =Mn1(C)⊕ . . .⊕Mnk
(C)

depending on parameters k ∈ N and n1, . . . , nk ∈ N satisfying

n1 + . . .+ nk = N

embedded into MN(C) via the obvious block embedding, twisted by a unitary U ∈ UN .
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Proof. We have two assertions to be proved, the idea being as follows:

(1) Given numbers n1, . . . , nk ∈ N satisfying n1 + . . . + nk = N , we have indeed an
obvious embedding of ∗-algebras, via matrix blocks, as follows:

Mn1(C)⊕ . . .⊕Mnk
(C) ⊂MN(C)

In addition, we can twist this embedding by a unitary U ∈ UN , as follows:

M → UMU∗

(2) In the other sense now, consider a ∗-algebra A ⊂MN(C). It is elementary to prove
that the center Z(A) = A ∩ A′, as an algebra, is of the following form:

Z(A) ≃ Ck

Consider now the standard basis e1, . . . , ek ∈ Ck, and let p1, . . . , pk ∈ Z(A) be the
images of these vectors via the above identification. In other words, these elements
p1, . . . , pk ∈ A are central minimal projections, summing up to 1:

p1 + . . .+ pk = 1

The idea is then that this partition of the unity will eventually lead to the block
decomposition of A, as in the statement. We prove this in 4 steps, as follows:

Step 1. We first construct the matrix blocks, our claim here being that each of the
following linear subspaces of A are non-unital ∗-subalgebras of A:

Ai = piApi

But this is clear, with the fact that each Ai is closed under the various non-unital
∗-subalgebra operations coming from the projection equations p2i = p∗i = pi.

Step 2. We prove now that the above algebras Ai ⊂ A are in a direct sum position,
in the sense that we have a non-unital ∗-algebra sum decomposition, as follows:

A = A1 ⊕ . . .⊕ Ak

As with any direct sum question, we have two things to be proved here. First, by
using the formula p1+ . . .+pk = 1 and the projection equations p2i = p∗i = pi, we conclude
that we have the needed generation property, namely:

A1 + . . .+ Ak = A

As for the fact that the sum is indeed direct, this follows as well from the formula
p1 + . . .+ pk = 1, and from the projection equations p2i = p∗i = pi.

Step 3. Our claim now, which will finish the proof, is that each of the ∗-subalgebras
Ai = piApi constructed above is a full matrix algebra. To be more precise here, with
ni = rank(pi), our claim is that we have isomorphisms, as follows:

Ai ≃Mni
(C)
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In order to prove this claim, recall that the projections pi ∈ A were chosen central
and minimal. Thus, the center of each of the algebras Ai reduces to the scalars:

Z(Ai) = C
But this shows, either via a direct computation, or via the bicommutant theorem, that

the each of the algebras Ai is a full matrix algebra, as claimed.

Step 4. We can now obtain the result, by putting together what we have. Indeed, by
using the results from Step 2 and Step 3, we obtain an isomorphism as follows:

A ≃Mn1(C)⊕ . . .⊕Mnk
(C)

Moreover, a more careful look at the isomorphisms established in Step 3 shows that
at the global level, that of the algebra A itself, the above isomorphism simply comes by
twisting the following standard multimatrix embedding, discussed in the beginning of the
proof, (1) above, by a certain unitary matrix U ∈ UN :

Mn1(C)⊕ . . .⊕Mnk
(C) ⊂MN(C)

Now by putting everything together, we obtain the result. □

In terms of our usual C∗-algebra formalism, the above result tells us that we have:

Theorem 13.12. The finite dimensional C∗-algebras are exactly the algebras

A =Mn1(C)⊕ . . .⊕Mnk
(C)

with norm ||(a1, . . . , ak)|| = supi ||ai||, and involution (a1, . . . , ak)
∗ = (a∗1, . . . , a

∗
k).

Proof. This is indeed a reformulation of what we know from Theorem 13.11, in terms
of our usual C∗-algebra formalism, from the beginning of this chapter. □

Let us record as well the quantum space formulation of our result:

Theorem 13.13. The finite quantum spaces are exactly the disjoint unions of type

X =Mn1 ⊔ . . . ⊔Mnk

where Mn is the finite quantum space given by C(Mn) =Mn(C).

Proof. This is a reformulation of Theorem 13.12, by using the quantum space phi-
losophy. Indeed, for a compact quantum space X, coming from a C∗-algebra A via the
formula A = C(X), being finite can only mean that the following number is finite:

|X| = dimCA <∞
Thus, by using Theorem 13.12, we are led to the conclusion that we must have:

C(X) =Mn1(C)⊕ . . .⊕Mnk
(C)

But since direct sums of algebras A correspond to disjoint unions of quantum spaces
X, via the correspondence A = C(X), this leads to the conclusion in the statement. □
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As a first application now of Theorem 13.12, we have the following result:

Theorem 13.14. Consider a ∗-algebra A ⊂MN(C), written as above:

A =Mn1(C)⊕ . . .⊕Mnk
(C)

The commutant of this algebra is then, with respect with the block decomposition used,

A′ = C⊕ . . .⊕ C

and by taking one more time the commutant we obtain A itself, A = A′′.

Proof. Let us decompose indeed our algebra A as in Theorem 13.12:

A =Mn1(C)⊕ . . .⊕Mnk
(C)

The center of each matrix algebra being reduced to the scalars, the commutant of this
algebra is then as follows, with each copy of C corresponding to a matrix block:

A′ = C⊕ . . .⊕ C

By taking once again the commutant we obtain A itself, and we are done. □

As another interesting application of Theorem 13.12, clarifying this time the relation
with operator theory, in finite dimensions, we have the following result:

Theorem 13.15. Given an operator T ∈ B(H) in finite dimensions, H = CN , the
operator algebra A =< T > that it generates inside B(H) =MN(C) is

A =Mn1(C)⊕ . . .⊕Mnk
(C)

with the sizes of the blocks n1, . . . , nk ∈ N coming from the spectral theory of the associated
matrix M ∈MN(C). In the normal case TT ∗ = T ∗T , this decomposition comes from

T = UDU∗

with D ∈MN(C) diagonal, and with U ∈ UN unitary.

Proof. This is something which is routine, by using basic linear algebra:

(1) The fact that A =< T > decomposes into a direct sum of matrix algebras is
something that we already know, coming from Theorem 13.12.

(2) By using standard linear algebra, we can compute the block sizes n1, . . . , nk ∈ N,
from the knowledge of the spectral theory of the associated matrix M ∈MN(C).

(3) In the normal case, TT ∗ = T ∗T , we can simply invoke the spectral theorem, and
by suitably changing the basis, we are led to the conclusion in the statement. □

Let us prove now a key result, called GNS representation theorem, stating that any
C∗-algebra appears as an operator algebra. As a first result, we have:
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Proposition 13.16. Let A be a commutative C∗-algebra, write A = C(X), with X
being a compact space, and let µ be a positive measure on X. We have then

A ⊂ B(H)

where H = L2(X), with f ∈ A corresponding to the operator g → fg.

Proof. Given a continuous function f ∈ C(X), consider the operator Tf (g) = fg,
on H = L2(X). Observe that Tf is indeed well-defined, and bounded as well, because:

||fg||2 =

√∫
X

|f(x)|2|g(x)|2dµ(x) ≤ ||f ||∞||g||2

The application f → Tf being linear, involutive, continuous, and injective as well, we
obtain in this way a C∗-algebra embedding A ⊂ B(H), as claimed. □

In order to prove the GNS representation theorem, we must extend the above con-
struction, to the case where A is not necessarily commutative. Let us start with:

Definition 13.17. Consider a C∗-algebra A.

(1) φ : A→ C is called positive when a ≥ 0 =⇒ φ(a) ≥ 0.
(2) φ : A→ C is called faithful and positive when a ≥ 0, a ̸= 0 =⇒ φ(a) > 0.

In the commutative case, A = C(X), the positive elements are the positive functions,
f : X → [0,∞). As for the positive linear forms φ : A→ C, these appear as follows, with
µ being positive, and strictly positive if we want φ to be faithful and positive:

φ(f) =

∫
X

f(x)dµ(x)

In general, the positive linear forms can be thought of as being integration functionals
with respect to some underlying “positive measures”. We can use them as follows:

Proposition 13.18. Let φ : A→ C be a positive linear form.

(1) < a, b >= φ(ab∗) defines a generalized scalar product on A.
(2) By separating and completing we obtain a Hilbert space H.
(3) π(a) : b→ ab defines a representation π : A→ B(H).
(4) If φ is faithful in the above sense, then π is faithful.

Proof. Almost everything here is straightforward, as follows:

(1) This is clear from definitions, and from the basic properties of the positive elements
a ≥ 0, which can be established exactly as in the A = B(H) case.

(2) This is a standard procedure, which works for any scalar product, the idea being
that of dividing by the vectors satisfying < x, x >= 0, then completing.

(3) All the verifications here are standard algebraic computations, in analogy with
what we have seen many times, for the multiplication operators.
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(4) Assuming that we have a ̸= 0, we have then π(aa∗) ̸= 0, which in turn implies by
faithfulness that we have π(a) ̸= 0, which gives the result. □

In order to establish the embedding theorem, it remains to prove that any C∗-algebra
has a faithful positive linear form φ : A→ C. This is something more technical:

Proposition 13.19. Let A be a C∗-algebra.

(1) Any positive linear form φ : A→ C is continuous.
(2) A linear form φ is positive iff there is a norm one h ∈ A+ such that ||φ|| = φ(h).
(3) For any a ∈ A there exists a positive norm one form φ such that φ(aa∗) = ||a||2.
(4) If A is separable there is a faithful positive form φ : A→ C.

Proof. The proof here is quite technical, inspired from the existence proof of the
probability measures on abstract compact spaces, the idea being as follows:

(1) This follows from Proposition 13.18, via the following estimate:

|φ(a)| ≤ ||π(a)||φ(1) ≤ ||a||φ(1)
(2) In one sense we can take h = 1. Conversely, let a ∈ A+, ||a|| ≤ 1. We have:

|φ(h)− φ(a)| ≤ ||φ|| · ||h− a|| ≤ φ(h)

Thus we have Re(φ(a)) ≥ 0, and with a = 1− h we obtain:

Re(φ(1− h)) ≥ 0

Thus Re(φ(1)) ≥ ||φ||, and so φ(1) = ||φ||, so we can assume h = 1. Now observe
that for any self-adjoint element a, and any t ∈ R we have, with φ(a) = x+ iy:

φ(1)2(1 + t2||a||2) ≥ φ(1)2||1 + t2a2||
= ||φ||2 · ||1 + ita||2

≥ |φ(1 + ita)|2

= |φ(1)− ty + itx|
≥ (φ(1)− ty)2

Thus we have y = 0, and this finishes the proof of our remaining claim.

(3) We can set φ(λaa∗) = λ||a||2 on the linear space spanned by aa∗, then extend this
functional by Hahn-Banach, to the whole A. The positivity follows from (2).

(4) This is standard, by starting with a dense sequence (an), and taking the Cesàro
limit of the functionals constructed in (3). We have φ(aa∗) > 0, and we are done. □

With these ingredients in hand, we can now state and prove:

Theorem 13.20. Any C∗-algebra appears as a norm closed ∗-algebra of operators

A ⊂ B(H)

over a certain Hilbert space H. When A is separable, H can be taken to be separable.
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Proof. This result, called called GNS representation theorem after Gelfand, Naimark
and Segal, follows indeed by combining Proposition 13.18 with Proposition 13.19. □

Many other things can be said, along these lines. We will be back to this later, when
talking von Neumann algebras, and their relation with the C∗-algebras.

13c. Group algebras

Let us discuss now some basic examples of C∗-algebras. We first have:

Theorem 13.21. Let Γ be a discrete group, and consider the complex group algebra
C[Γ], with involution given by the fact that all group elements are unitaries, g∗ = g−1.

(1) The maximal C∗-seminorm on C[Γ] is a C∗-norm, and the closure of C[Γ] with
respect to this norm is a C∗-algebra, denoted C∗(Γ).

(2) When Γ is abelian, we have an isomorphism C∗(Γ) ≃ C(G), where G = Γ̂ is its
Pontrjagin dual, formed by the characters χ : Γ → T.

Proof. All this is very standard, the idea being as follows:

(1) In order to prove the result, we must find a ∗-algebra embedding C[Γ] ⊂ B(H),
with H being a Hilbert space. For this purpose, consider the space H = l2(Γ), having
{h}h∈Γ as orthonormal basis. Our claim is that we have an embedding, as follows:

π : C[Γ] ⊂ B(H) , π(g)(h) = gh

Indeed, since π(g) maps the basis {h}h∈Γ into itself, this operator is well-defined,
bounded, and is an isometry. It is also clear from the formula π(g)(h) = gh that g →
π(g) is a morphism of algebras, and since this morphism maps the unitaries g ∈ Γ into
isometries, this is a morphism of ∗-algebras. Finally, the faithfulness of π is clear.

(2) Since Γ is abelian, the corresponding group algebra A = C∗(Γ) is commutative.
Thus, we can apply the Gelfand theorem, and we obtain A = C(X), with:

X = Spec(A)

But the spectrum X = Spec(A), consisting of the characters χ : C∗(Γ) → C, can be

identified with the Pontrjagin dual G = Γ̂, and this gives the result. □

The above result suggests the following definition:

Definition 13.22. Given a discrete group Γ, the compact quantum space G given by

C(G) = C∗(Γ)

is called abstract dual of Γ, and is denoted G = Γ̂.

With this, we can now talk about quantum tori, as follows:



178 13. C*-ALGEBRAS

Theorem 13.23. The basic tori are all group duals, as follows,

T+
N

// T+
N

TN //

OO

TN

OO

=

L̂N
// F̂N

ZN
2

//

OO

TN

OO

where FN = Z∗N is the free group on N generators, and LN = Z∗N
2 is its real version.

Proof. The basic tori appear indeed as group duals, and together with the Fourier
transform identifications from Theorem 13.21 (2), this gives the result. □

Moving ahead, now that we have our formalism, we can start developing free geometry.
As a first objective, we would like to better understand the relation between the classical
and free tori. In order to discuss this, let us introduce the following notion:

Definition 13.24. Given a compact quantum space X, its classical version is the
usual compact space Xclass ⊂ X obtained by dividing C(X) by its commutator ideal:

C(Xclass) = C(X)/I , I =< [a, b] >

In this situation, we also say that X appears as a “liberation” of X.

In other words, the space Xclass appears as the Gelfand spectrum of the commutative
C∗-algebra C(X)/I. Observe in particular that Xclass is indeed a classical space.

In relation now with our tori, we have the following result:

Theorem 13.25. We have inclusions between the various tori, as follows,

T+
N

// T+
N

TN //

OO

TN

OO

and the free tori on top appear as liberations of the tori on the bottom.

Proof. This is indeed clear from definitions, because commutativity of a group alge-
bra means precisely that the group in question is abelian. □

In order to extend now the free geometries that we have, real and complex, let us
begin with the spheres. We have the following notions:
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Definition 13.26. We have free real and complex spheres, defined via

C(SN−1
R,+ ) = C∗

(
x1, . . . , xN

∣∣∣xi = x∗i ,
∑
i

x2i = 1

)

C(SN−1
C,+ ) = C∗

(
x1, . . . , xN

∣∣∣∑
i

xix
∗
i =

∑
i

x∗ixi = 1

)
where the symbol C∗ stands for universal enveloping C∗-algebra.

Here the fact that these algebras are indeed well-defined comes from the following
estimate, which shows that the biggest C∗-norms on these ∗-algebras are bounded:

||xi||2 = ||xix∗i || ≤

∣∣∣∣∣
∣∣∣∣∣∑

i

xix
∗
i

∣∣∣∣∣
∣∣∣∣∣ = 1

As a first result now, regarding the above free spheres, we have:

Theorem 13.27. We have embeddings of compact quantum spaces, as follows,

SN−1
R,+

// SN−1
C,+

SN−1
R

//

OO

SN−1
C

OO

and the spaces on top appear as liberations of the spaces on the bottom.

Proof. The first assertion, regarding the inclusions, comes from the fact that at the
level of the associated C∗-algebras, we have surjective maps, as follows:

C(SN−1
R,+ )

��

C(SN−1
C,+ )

��

oo

C(SN−1
R ) C(SN−1

C )oo

For the second assertion, we must establish the following isomorphisms, where the
symbol C∗

comm stands for “universal commutative C∗-algebra generated by”:

C(SN−1
R ) = C∗

comm

(
x1, . . . , xN

∣∣∣xi = x∗i ,
∑
i

x2i = 1

)

C(SN−1
C ) = C∗

comm

(
x1, . . . , xN

∣∣∣∑
i

xix
∗
i =

∑
i

x∗ixi = 1

)
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It is enough to establish the second isomorphism. So, consider the second universal
commutative C∗-algebra A constructed above. Since the standard coordinates on SN−1

C
satisfy the defining relations for A, we have a quotient map of as follows:

A→ C(SN−1
C )

Conversely, let us write A = C(S), by using the Gelfand theorem. The variables
x1, . . . , xN become in this way true coordinates, providing us with an embedding S ⊂ CN .
Also, the quadratic relations become

∑
i |xi|2 = 1, so we have S ⊂ SN−1

C . Thus, we have
a quotient map C(SN−1

C ) → A, as desired, and this gives all the results. □

By using the free spheres constructed above, we can now formulate:

Definition 13.28. A real algebraic manifold X ⊂ SN−1
C,+ is a closed quantum subspace

defined, at the level of the corresponding C∗-algebra, by a formula of type

C(X) = C(SN−1
C,+ )

/〈
fi(x1, . . . , xN) = 0

〉
for certain family of noncommutative polynomials, as follows:

fi ∈ C < x1, . . . , xN >

We denote by C(X) the ∗-subalgebra of C(X) generated by the coordinates x1, . . . , xN .

As a basic example here, we have the free real sphere SN−1
R,+ . The classical spheres

SN−1
C , SN−1

R , and their real submanifolds, are covered as well by this formalism. At the
level of the general theory, we have the following version of the Gelfand theorem:

Theorem 13.29. If X ⊂ SN−1
C,+ is an algebraic manifold, as above, we have

Xclass =
{
x ∈ SN−1

C

∣∣∣fi(x1, . . . , xN) = 0
}

and X appears as a liberation of Xclass.

Proof. This is something that we already met, in the context of the free spheres. In
general, the proof is similar, by using the Gelfand theorem. Indeed, if we denote by X ′

class

the manifold constructed in the statement, then we have a quotient map of C∗-algebras
as follows, mapping standard coordinates to standard coordinates:

C(Xclass) → C(X ′
class)

Conversely now, from X ⊂ SN−1
C,+ we obtain Xclass ⊂ SN−1

C . Now since the relations
defining X ′

class are satisfied by Xclass, we obtain an inclusion Xclass ⊂ X ′
class. Thus, at

the level of algebras of continuous functions, we have a quotient map of C∗-algebras as
follows, mapping standard coordinates to standard coordinates:

C(X ′
class) → C(Xclass)

Thus, we have constructed a pair of inverse morphisms, and we are done. □
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Finally, once again at the level of the general theory, we have:

Definition 13.30. We agree to identify two real algebraic submanifolds X, Y ⊂ SN−1
C,+

when we have a ∗-algebra isomorphism between ∗-algebras of coordinates
f : C(Y ) → C(X)

mapping standard coordinates to standard coordinates.

We will see later the reasons for making this convention, coming from amenability.
Now back to the tori, as constructed before, we can see that these are examples of algebraic
manifolds, in the sense of Definition 13.28. In fact, we have the following result:

Theorem 13.31. The four main quantum spheres produce the main quantum tori

SN−1
R,+

// SN−1
C,+

SN−1
R

//

OO

SN−1
C

OO

→

T+
N

// T+
N

TN //

OO

TN

OO

via the formula T = S ∩ T+
N , with the intersection being taken inside SN−1

C,+ .

Proof. This comes from the above results, the situation being as follows:

(1) Free complex case. Here the formula in the statement reads T+
N = SN−1

C,+ ∩ T+
N .

But this is something trivial, because we have T+
N ⊂ SN−1

C,+ .

(2) Free real case. Here the formula in the statement reads T+
N = SN−1

R,+ ∩ T+
N . But

this is clear as well, the real version of T+
N being T+

N .

(3) Classical complex case. Here the formula in the statement reads TN = SN−1
C ∩T+

N .
But this is clear as well, the classical version of T+

N being TN .

(4) Classical real case. Here the formula in the statement reads TN = SN−1
R ∩T+

N . But
this follows by intersecting the formulae from the proof of (2) and (3). □

We will be back to free geometry, later in this book.

13d. Cuntz algebras

We would like to end this chapter with an interesting class of C∗-algebras, discovered
by Cuntz in [28], and heavily used since then, for various technical purposes:

Definition 13.32. The Cuntz algebra On is the C∗-algebra generated by isometries
S1, . . . , Sn satisfying the following condition:

S1S
∗
1 + . . .+ SnS

∗
n = 1

That is, On ⊂ B(H) is generated by n isometries whose ranges sum up to H.



182 13. C*-ALGEBRAS

Observe that H must be infinite dimensional, in order to have isometries as above. In
what follows we will prove that On is independent on the choice of such isometries, and
also that this algebra is simple. We will restrict the attention to the case n = 2, the proof
in general being similar. Let us start with some simple computations, as follows:

Proposition 13.33. Given a word i = i1 . . . ik with il ∈ {1, 2}, we associate to it the
element Si = Si1 . . . Sik of the algebra O2. Then Si are isometries, and we have

S∗
i Sj = δij1

for any two words i, j having the same lenght.

Proof. We use the relations defining the algebra O2, namely:

S∗
1S1 = S∗

2S2 = 1 , S1S
∗
1 + S2S

∗
2 = 1

The fact that Si are isometries is clear, here being the check for i = 12:

S∗
12S12 = (S1S2)

∗(S1S2)

= S∗
2S

∗
1S1S2

= S∗
2S2

= 1

Regarding the last assertion, by recurrence we just have to establish the formula there
for the words of length 1. That is, we want to prove the following formulae:

S∗
1S2 = S∗

2S1 = 0

But these two formulae follow from the fact that the projections Pi = SiS
∗
i satisfy by

definition P1 + P2 = 1. Indeed, we have the following computation:

P1 + P2 = 1 =⇒ P1P2 = 0

=⇒ S1S
∗
1S2S

∗
2 = 0

=⇒ S∗
1S2 = S∗

1S1S
∗
1S2S

∗
2S2 = 0

Thus, we have the first formula, and the proof of the second one is similar. □

We can use the formulae in Proposition 13.33 as follows:

Proposition 13.34. Consider words in O2, meaning products of S1, S
∗
1 , S2, S

∗
2 .

(1) Each word in O2 is of form 0 or SiS
∗
j for some words i, j.

(2) Words of type SiS
∗
j with l(i) = l(j) = k form a system of 2k × 2k matrix units.

(3) The algebra Ak generated by matrix units in (2) is a subalgebra of Ak+1.

Proof. Here the first two assertions follow from the formulae in Proposition 13.33,
and for the last assertion, we can use the following formula:

SiS
∗
j = Si1S

∗
j = Si(S1S

∗
1 + S2S

∗
2)S

∗
j

Thus, we obtain an embedding of algebras Ak, as in the statement. □
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Observe now that the embedding constructed in (3) above is compatible with the
matrix unit systems in (2). Consider indeed the following diagram:

Ak+1 ≃ M2k+1(C)

∪ ∪

Ak ≃ M2k(C)

With the notation eix,yj = eij ⊗ exy, the inclusion on the right is given by:

eij → ei1,1h + ei2,2j

= eij ⊗ e11 + eij ⊗ e22

= eij ⊗ 1

Thus, with standard tensor product notations, the inclusion on the right is the canon-
ical inclusion m→ m⊗ 1, and so the above diagram becomes:

Ak+1 ≃ M2(C)⊗k+1

∪ ∪

Ak ≃ M2(C)⊗k

The passage from the algebra A = ∪kAk ≃M2(C)⊗∞ coming from this observation to
the full the algebra O2 that we are interested in can be done by using:

Proposition 13.35. Each element X ∈< S1, S2 >⊂ O2 decomposes as a finite sum

X =
∑
i>0

S∗i
1 X−i +X0 +

∑
i>0

XiS
i
1

where each Xi is in the union A of algebras Ak.

Proof. By linearity and by using Proposition 13.34 we may assume that X is a
nonzero word, say X = SiS

∗
j . In the case l(i) = l(j) we can set X0 = X and we are

done. Otherwise, we just have to add at left or at right terms of the form 1 = S∗
1S1. For

instance X = S2 is equal to S2S
∗
1S1, and we can take X1 = S2S

∗
1 ∈ A1. □

We must show now that the decomposition X → (Xi) found above is unique, and
then prove that each application X → Xi has good continuity properties. The following
formulae show that in both problems we may restrict attention to the case i = 0:

Xi+1 = (XS∗
1)i X−i−1 = (S1X)i

In order to solve these questions, we use the following fact:
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Proposition 13.36. If P is a nonzero projection in O2 =< S1, S2 >⊂ O2, its k-th
average, given by the formula

Q =
∑
l(i)=k

SiPS
∗
i

is a nonzero projection in O2 having the property that the linear subspace QAkQ is iso-
morphic to a matrix algebra, and Y → QY Q is an isomorphism of Ak onto it.

Proof. We know that the words of form SiS
∗
j with l(i) = l(j) = k are a system of

matrix units in Ak. We apply to them the map Y → QY Q, and we obtain:

QSiS
∗
jQ =

∑
pq

SpPS
∗
pSiS

∗
jSqPS

∗
q

=
∑
pq

δipδjqSpP
2S∗

q

= SiPS
∗
j

The output being a system of matrix units, Y → QY Q is an isomorphism from the
algebra of matrices Ak to another algebra of matrices QAkQ, and this gives the result. □

Thus any map Y → QY Q behaves well on the i = 0 part of the decomposition on X.
It remains to find P such that Y → QY Q destroys all i ̸= 0 terms, and we have here:

Proposition 13.37. Assuming X0 ∈ Ak, there is a nonzero projection P ∈ A such
that QXQ = QX0Q, where Q is the k-th average of P .

Proof. We want Y → QY Q to map to zero all terms in the decomposition of X,
except for X0. Let us call M1, . . . ,Mt ∈ O2 − A the terms to be destroyed. We want the
following equalities to hold, with the sum over all pairs of length k indices:∑

ij

SiPS
∗
iMqSjPS

∗
j = 0

The simplest way is to look for P such that all terms of all sums are 0:

SiPS
∗
iMqSjPS

∗
j = 0

By multiplying to the left by S∗
i and to the right by Sj, we want to have:

PS∗
iMqSjP = 0

With Nz = S∗
iMqSj, where z belongs to some new index set, we want to have:

PNzP = 0

Since Nz ∈ O2 − A, we can write Nz = SmzS
∗
nz

with l(mz) ̸= l(nz), and we want:

PSmzS
∗
nz
P = 0
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In order to do this, we can the projections of form P = SrS
∗
r . We want:

SrS
∗
rSmzS

∗
nz
SrS

∗
r = 0

Let K be the biggest length of all mz, nz. Assume that we have fixed r, of length
bigger than K. If the above product is nonzero then both S∗

rSmz and S∗
nz
Sr must be

nonzero, which gives the following equalities of words:

r1 . . . rl(mz) = mz , r1 . . . rl(nz) = nz

Assuming that these equalities hold indeed, the above product reduces as follows:

SrS
∗
rl(r)

. . . S∗
rl(mz)+1

Srl(nz)+1
. . . Srl(r)S

∗
r

Now if this product is nonzero, the middle term must be nonzero:

S∗
rl(r)

. . . S∗
rl(mz)+1

Srl(nz)+1
. . . Srl(r) ̸= 0

In order for this for hold, the indices starting from the middle to the right must be equal
to the indices starting from the middle to the left. Thus r must be periodic, of period
|l(mz) − l(nz)| > 0. But this is certainly possible, because we can take any aperiodic
infinite word, and let r be the sequence of first M letters, with M big enough. □

We can now start solving our problems. We first have:

Proposition 13.38. The decomposition of X is unique, and we have

||Xi|| ≤ ||X||
for any i.

Proof. It is enough to do this for i = 0. But this follows from the previous result,
via the following sequence of equalities and inequalities:

||X0|| = ||QX0Q||
= ||QXQ||
≤ ||X||

Thus we got the inequality in the statement. As for the uniqueness part, this follows
from the fact that X0 → QX0Q = QXQ is an isomorphism. □

Remember now we want to prove that the Cuntz algebra O2 does not depend on the
choice of the isometries S1, S2. In order to do so, let O2 be the completion of the ∗-algebra
O2 =< S1, S2 >⊂ O2 with respect to the biggest C∗-norm. We have:

Proposition 13.39. We have the equivalence

X = 0 ⇐⇒ Xi = 0,∀i
valid for any element X ∈ O2.
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Proof. Assume Xi = 0 for any i, and choose a sequence Xk → X with Xk ∈ O2.
For λ ∈ T we define a representation ρλ in the following way:

ρλ : Si → λSi

We have then ρλ(Y ) = Y for any element Y ∈ A. We fix norm one vectors ξ, η and
we consider the following continuous functions f : T → C:

fk(λ) =< ρλ(X
k)ξ, η >

From Xk → X we get, with respect to the usual sup norm of C(T):
fk → f

Each Xk ∈ O2 can be decomposed, and fk is given by the following formula:

fk(λ) =
∑
i>0

λ−i < S∗i
1 X

k
−iξ, η > + < X0ξ, η > +

∑
i>0

λi < Xk
i S

i
1ξ, η >

This is a Fourier type expansion of fk, that can we write in the following way:

fk(λ) =
∞∑

j=−∞

akjλ
j

By using Proposition 13.38 we obtain that with k → ∞, we have:

|akj | ≤ ||Xk
j || → ||X∞

j || = 0

On the other hand we have akj → aj with k → ∞. Thus all Fourier coefficients aj of
f are zero, so f = 0. With λ = 1 this gives the following equality:

< Xξ, η >= 0

This is true for arbitrary norm one vectors ξ, η, so X = 0 and we are done. □

We can now formulate the Cuntz theorem, from [28], as follows:

Theorem 13.40 (Cuntz). Let S1, S2 be isometries satisfying S1S
∗
1 + S2S

∗
2 = 1.

(1) The C∗-algebra O2 generated by S1, S2 does not depend on the choice of S1, S2.
(2) For any nonzero X ∈ O2 there are A,B ∈ O2 with AXB = 1.
(3) In particular O2 is simple.

Proof. This basically follows from the various results established above:

(1) Consider the canonical projection map π : O2 → O2. We know that π is surjective,
and we will prove now that π is injective. Indeed, if π(X) = 0 then π(X)i = 0 for any i.
But π(X)i is in the dense ∗-algebra A, so it can be regarded as an element of O2, and with
this identification, we have π(X)i = Xi in O2. Thus Xi = 0 for any i, so X = 0. Thus π
is an isomorphism. On the other hand O2 depends only on O2, and the above formulae
in O2, for algebraic calculus and for decomposition of an arbitrary X ∈ O2, show that O2

does not depend on the choice of S1, S2. Thus, we obtain the result.
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(2) Choose a sequence Xk → X with Xk ∈ O2. We have the following formula:

(X∗X)0 = lim
k→∞

(∑
i>0

Xk∗
−iX

k
−i +Xk∗

0 X
k
0 +

∑
i>0

S∗i
1 X

k∗
i X

k
i S

i
1

)
Thus X ̸= 0 implies (X∗X)0 ̸= 0. By linearity we can assume that we have:

||(X∗X)0|| = 1

Now choose a positive element Y ∈ O2 which is close enough to X∗X:

||X∗X − Y || < ε

Since Z → Z0 is norm decreasing, we have the following estimate:

||Y0|| > 1− ε

We apply Proposition 13.37 to our positive element Y ∈ O2. We obtain in this way
a certain projection Q such that QY0Q = QY Q belongs to a certain matrix algebra. We
have QY Q > 0, so we can diagonalize this latter element, as follows:

QY Q =
∑

λiRi

Here λi are positive numbers and Ri are minimal projections in the matrix algebra.
Now since ||QY Q|| = ||Y0||, there must be an eigenvalue greater that 1− ε:

λ0 > 1− ε

By linear algebra, we can pass from a minimal projection to another:

U∗U = Ri , UU∗ = Sk
1S

∗k
1

The element B = QU∗Sk
1 has norm ≤ 1, and we get the following inequality:

||1−B∗X∗XB|| ≤ ||1−B∗Y B||+ ||B∗Y B −B∗X∗XB||
< ||1−B∗Y B||+ ε

The last term can be computed by using the diagonalization of QY Q, as follows:

B∗Y B = S∗k
1 UQY QU

∗Sk
1

= S∗k
1

(∑
λiURiU

∗
)
Sk
1

= λ0S
∗k
1 S

k
1S

∗k
1 S

k
1

= λ0

From λ0 > 1− ε we get ||1−B∗Y B|| < ε, and we obtain the following estimate:

||1−B∗X∗XB|| < 2ε

Thus B∗X∗XB is invertible, say with inverse C, and we have (B∗X∗)X(BC) = 1.

(3) This is clear from the formula AXB = 1 established in (2). □
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13e. Exercises

Exercises:

Exercise 13.41.

Exercise 13.42.

Exercise 13.43.

Exercise 13.44.

Exercise 13.45.

Exercise 13.46.

Exercise 13.47.

Exercise 13.48.

Bonus exercise.



CHAPTER 14

Von Neumann algebras

14a. Von Neumann algebras

Instead of further building on the above results, which are already quite non-trivial,
let us return to our modest status of apprentice operator algebraists, and declare ourselves
unsatisfied with the formalism from chapter 13, on the following intuitive grounds:

Thought 14.1. Our assumption that A ⊂ B(H) is norm closed is not satisfying,
because we would like A to be stable under polar decomposition, under taking spectral
projections, and more generally, under measurable functional calculus.

So, let us get now into this, topologies on B(H), and fine-tunings of our operator
algebra formalism, based on them. The result that we will need is as follows:

Proposition 14.2. For a subalgebra A ⊂ B(H), the following are equivalent:

(1) A is closed under the weak operator topology, making each of the linear maps
T →< Tx, y > continuous.

(2) A is closed under the strong operator topology, making each of the linear maps
T → Tx continuous.

In the case where these conditions are satisfied, A is closed under the norm topology.

Proof. There are several statements here, the proof being as follows:

(1) It is clear that the norm topology is stronger than the strong operator topology,
which is in turn stronger than the weak operator topology. At the level of the subsets
S ⊂ B(H) which are closed things get reversed, in the sense that weakly closed implies
strongly closed, which in turn implies norm closed. Thus, we are left with proving that
for any algebra A ⊂ B(H), strongly closed implies weakly closed.

(2) Consider the Hilbert space obtained by summing n times H with itself:

K = H ⊕ . . .⊕H

The operators over K can be regarded as being square matrices with entries in B(H),
and in particular, we have a representation π : B(H) → B(K), as follows:

π(T ) =

T . . .
T
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Assume now that we are given an operator T ∈ Ā, with the bar denoting the weak
closure. We have then, by using the Hahn-Banach theorem, for any x ∈ K:

T ∈ Ā =⇒ π(T ) ∈ π(A)

=⇒ π(T )x ∈ π(A)x

=⇒ π(T )x ∈ π(A)x
||.||

Now observe that the last formula tells us that for any x = (x1, . . . , xn), and any ε > 0,
we can find S ∈ A such that the following holds, for any i:

||Sxi − Txi|| < ε

Thus T belongs to the strong operator closure of A, as desired. □

Observe that in the above the terminology is a bit confusing, because the norm topol-
ogy is stronger than the strong operator topology. As a solution, we agree to call the
norm topology “strong”, and the weak and strong operator topologies “weak”, whenever
these two topologies coincide. With this convention made, the algebras A ⊂ B(H) in
Proposition 14.2 are those which are weakly closed. Thus, we can now formulate:

Definition 14.3. A von Neumann algebra is an operator algebra

A ⊂ B(H)

which is closed under the weak topology.

These algebras will be our main objects of study, in what follows. As basic examples,
we have the algebra B(H) itself, then the singly generated algebras, A =< T > with
T ∈ B(H), and then the multiply generated algebras, A =< Ti > with Ti ∈ B(H). But
for the moment, let us keep things simple, and build directly on Definition 14.3, by using
basic functional analysis methods. We will need the following key result:

Theorem 14.4. For an operator algebra A ⊂ B(H), we have

A′′ = Ā

with A′′ being the bicommutant inside B(H), and Ā being the weak closure.

Proof. We can prove this by double inclusion, as follows:

“⊃” Since any operator commutes with the operators that it commutes with, we have
a trivial inclusion S ⊂ S ′′, valid for any set S ⊂ B(H). In particular, we have:

A ⊂ A′′
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Our claim now is that the algebra A′′ is closed, with respect to the strong operator
topology. Indeed, assuming that we have Ti → T in this topology, we have:

Ti ∈ A′′ =⇒ STi = TiS, ∀S ∈ A′

=⇒ ST = TS, ∀S ∈ A′

=⇒ T ∈ A

Thus our claim is proved, and together with Proposition 14.2, which allows us to pass
from the strong to the weak operator topology, this gives Ā ⊂ A′′, as desired.

“⊂” Here we must prove that we have the following implication, valid for any T ∈
B(H), with the bar denoting as usual the weak operator closure:

T ∈ A′′ =⇒ T ∈ Ā

For this purpose, we use the same amplification trick as in the proof of Proposition
14.2. Consider the Hilbert space obtained by summing n times H with itself:

K = H ⊕ . . .⊕H

The operators over K can be regarded as being square matrices with entries in B(H),
and in particular, we have a representation π : B(H) → B(K), as follows:

π(T ) =

T . . .
T


The idea will be that of doing the computations in this representation. First, in this

representation, the image of our algebra A ⊂ B(H) is given by:

π(A) =


T . . .

T

∣∣∣T ∈ A


We can compute the commutant of this image, exactly as in the usual scalar matrix

case, and we obtain the following formula:

π(A)′ =


S11 . . . S1n

...
...

Sn1 . . . Snn

∣∣∣Sij ∈ A′


We conclude from this that, given an operator T ∈ A′′ as above, we have:T . . .

T

 ∈ π(A)′′
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In other words, the conclusion of all this is that we have:

T ∈ A′′ =⇒ π(T ) ∈ π(A)′′

Now given a vector x ∈ K, consider the orthogonal projection P ∈ B(K) on the norm
closure of the vector space π(A)x ⊂ K. Since the subspace π(A)x ⊂ K is invariant under
the action of π(A), so is its norm closure inside K, and we obtain from this:

P ∈ π(A)′

By combining this with what we found above, we conclude that we have:

T ∈ A′′ =⇒ π(T )P = Pπ(T )

Since this holds for any x ∈ K, we conclude that any operator T ∈ A′′ belongs to
the strong operator closure of A. By using now Proposition 14.2, which allows us to pass
from the strong to the weak operator closure, we conclude that we have:

A′′ ⊂ Ā

Thus, we have the desired reverse inclusion, and this finishes the proof. □

Now by getting back to the von Neumann algebras, from Definition 14.3, we have the
following result, which is a reformulation of Theorem 14.4, by using this notion:

Theorem 14.5. For an operator algebra A ⊂ B(H), the following are equivalent:

(1) A is weakly closed, so it is a von Neumann algebra.
(2) A equals its algebraic bicommutant A′′, taken inside B(H).

Proof. This follows from the formula A′′ = Ā from Theorem 14.4, along with the
trivial fact that the commutants are automatically weakly closed. □

The above statement, called bicommutant theorem, and due to von Neumann [91], is
quite interesting, philosophically speaking. Among others, it shows that the von Neumann
algebras are exactly the commutants of the self-adjoint sets of operators:

Proposition 14.6. Given a subset S ⊂ B(H) which is closed under ∗, the commutant

A = S ′

is a von Neumann algebra. Any von Neumann algebra appears in this way.

Proof. We have two assertions here, the idea being as follows:

(1) Given S ⊂ B(H) satisfying S = S∗, the commutant A = S ′ satisfies A = A∗, and
is also weakly closed. Thus, A is a von Neumann algebra. Note that this follows as well
from the following “tricommutant formula”, which follows from Theorem 14.5:

S ′′′ = S ′

(2) Given a von Neumann algebra A ⊂ B(H), we can take S = A′. Then S is closed
under the involution, and we have S ′ = A, as desired. □
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Observe that Proposition 14.6 can be regarded as yet another alternative definition
for the von Neumann algebras, and with this definition being probably the best one when
talking about quantum mechanics, where the self-adjoint operators T : H → H can be
though of as being “observables” of the system, and with the commutants A = S ′ of the
sets of such observables S = {Ti} being the algebras A ⊂ B(H) that we are interested
in. And with all this actually needing some discussion about self-adjointness, and about
boundedness too, but let us not get into this here, and stay mathematical, as before.

As another interesting consequence of Theorem 14.5, we have:

Proposition 14.7. Given a von Neumann algebra A ⊂ B(H), its center

Z(A) = A ∩ A′

regarded as an algebra Z(A) ⊂ B(H), is a von Neumann algebra too.

Proof. This follows from the fact that the commutants are weakly closed, that we
know from the above, which shows that A′ ⊂ B(H) is a von Neumann algebra. Thus, the
intersection Z(A) = A ∩ A′ must be a von Neumann algebra too, as claimed. □

In order to develop some general theory, let us start by investigating the finite dimen-
sional case. Here the ambient algebra is B(H) =MN(C), any linear subspace A ⊂ B(H)
is automatically closed, for all 3 topologies in Proposition 14.2, and we have:

Theorem 14.8. The ∗-algebras A ⊂MN(C) are exactly the algebras of the form

A =Mn1(C)⊕ . . .⊕Mnk
(C)

depending on parameters k ∈ N and n1, . . . , nk ∈ N satisfying

n1 + . . .+ nk = N

embedded into MN(C) via the obvious block embedding, twisted by a unitary U ∈ UN .

Proof. This is something algebraic, that we know from chapter 13, and which, ret-
rospectively thinking, is based on the “center philosophy” from Proposition 14.7. □

In relation with the bicommutant theorem, we have the following result, which fully
clarifies the situation, with a very explicit proof, in finite dimensions:

Proposition 14.9. Consider a ∗-algebra A ⊂MN(C), written as above:

A =Mn1(C)⊕ . . .⊕Mnk
(C)

The commutant of this algebra is then, with respect with the block decomposition used,

A′ = C⊕ . . .⊕ C

and by taking one more time the commutant we obtain A itself, A = A′′.
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Proof. Let us decompose indeed our algebra A as in Theorem 14.8:

A =Mn1(C)⊕ . . .⊕Mnk
(C)

The center of each matrix algebra being reduced to the scalars, the commutant of this
algebra is then as follows, with each copy of C corresponding to a matrix block:

A′ = C⊕ . . .⊕ C

By taking once again the commutant we obtain A itself, and we are done. □

As another interesting application of Theorem 14.8, clarifying this time the relation
with operator theory, in finite dimensions, we have the following result:

Theorem 14.10. Given an operator T ∈ B(H) in finite dimensions, H = CN , the
von Neumann algebra A =< T > that it generates inside B(H) =MN(C) is

A =Mn1(C)⊕ . . .⊕Mnk
(C)

with the sizes of the blocks n1, . . . , nk ∈ N coming from the spectral theory of the associated
matrix M ∈MN(C). In the normal case TT ∗ = T ∗T , this decomposition comes from

T = UDU∗

with D ∈MN(C) diagonal, and with U ∈ UN unitary.

Proof. This is something which is routine, by using the linear algebra and spectral
theory developed in chapter 1, for the matrices M ∈MN(C). To be more precise:

(1) The fact that A =< T > decomposes into a direct sum of matrix algebras is
something that we already know, coming from Theorem 14.8.

(2) By using standard linear algebra, we can compute the block sizes n1, . . . , nk ∈ N,
from the knowledge of the spectral theory of the associated matrix M ∈MN(C).

(3) In the normal case, TT ∗ = T ∗T , we can simply invoke the spectral theorem, and
by suitably changing the basis, we are led to the conclusion in the statement. □

Let us get now to infinite dimensions, with Theorem 14.10 as our main source of
inspiration. The same argument applies, provided that we are in the normal case, and we
have the following result, summarizing our basic knowledge here:

Theorem 14.11. Given a bounded operator T ∈ B(H) which is normal, TT ∗ = T ∗T ,
the von Neumann algebra A =< T > that it generates inside B(H) is

< T >= L∞(σ(T ))

with σ(T ) ⊂ C being as usual its spectrum.



14A. VON NEUMANN ALGEBRAS 195

Proof. The measurable functional calculus theorem for the normal operators tells us
that we have a weakly continuous morphism of ∗-algebras, as follows:

L∞(σ(T )) → B(H) , f → f(T )

Moreover, by the general properties of the measurable calculus, also established in
chapter 5, this morphism is injective, and its image is the weakly closed algebra < T >
generated by T, T ∗. Thus, we obtain the isomorphism in the statement. □

More generally now, along the same lines, we have the following result:

Theorem 14.12. Given operators Ti ∈ B(H) which are normal, and which commute,
the von Neumann algebra A =< Ti > that these operators generates inside B(H) is

< Ti >= L∞(X)

with X being a certain measured space, associated to the family {Ti}.

Proof. This is once again routine, by using the spectral theory for the families of
commuting normal operators Ti ∈ B(H) developed in chapter 5. □

As a fundamental consequence now of the above results, we have:

Theorem 14.13. The commutative von Neumann algebras are the algebras

A = L∞(X)

with X being a measured space.

Proof. We have two assertions to be proved, the idea being as follows:

(1) In one sense, we must prove that given a measured space X, we can realize the
A = L∞(X) as a von Neumann algebra, on a certain Hilbert space H. But this is
something that we know since chapter 1, the representation being as follows:

L∞(X) ⊂ B(L2(X)) , f → (g → fg)

(2) In the other sense, given a commutative von Neumann algebra A ⊂ B(H), we
must construct a certain measured space X, and an identification A = L∞(X). But this
follows from Theorem 14.12, because we can write our algebra as follows:

A =< Ti >

To be more precise, A being commutative, any element T ∈ A is normal, so we can
pick a basis {Ti} ⊂ A, and then we have A =< Ti > as above, with Ti ∈ B(H) being
commuting normal operators. Thus Theorem 14.12 applies, and gives the result.

(3) Alternatively, and more explicitly, we can deduce this from Theorem 14.11, applied
with T = T ∗. Indeed, by using T = Re(T )+ iIm(T ), we conclude that any von Neumann
algebra A ⊂ B(H) is generated by its self-adjoint elements T ∈ A. Moreover, by using
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measurable functional calculus, we conclude that A is linearly generated by its projections.
But then, assuming A = span{pi}, with pi being projections, we can set:

T =
∞∑
i=0

pi
3i

Then T = T ∗, and by functional calculus we have p0 ∈< T >, then p1 ∈< T >, and
so on. Thus A =< T >, and A = L∞(X) comes now via Theorem 14.11, as claimed. □

The above result is the foundation for all the advanced von Neumann algebra theory,
that we will discuss in the remainder of this book, and there are many things that can
be said about it. To start with, in relation with the general theory of the normed closed
algebras, that we developed in the beginning of this chapter, we have:

Warning 14.14. Although the von Neumann algebras are norm closed, the theory of
norm closed algebras does not always apply well to them. For instance for A = L∞(X)

Gelfand gives A = C(X̂), with X̂ being a certain technical compactification of X.

In short, this would be my advice, do not mess up the two theories that we will be
developing in this book, try finding different rooms for them, in your brain. At least at
this stage of things, because later, do not worry, we will be playing with both.

Now forgetting about Gelfand, and taking Theorem 14.13 as such, tentative foundation
for the theory that we want to develop, as a first consequence of this, we have:

Theorem 14.15. Given a von Neumann algebra A ⊂ B(H), we have

Z(A) = L∞(X)

with X being a certain measured space.

Proof. We know from Proposition 14.7 that the center Z(A) ⊂ B(H) is a von
Neumann algebra. Thus Theorem 14.13 applies, and gives the result. □

It is possible to further build on this, with a powerful decomposition result as follows,
over the measured space X constructed in Theorem 14.15:

A =

∫
X

Ax dx

But more on this later, after developing the appropriate tools for this program, which
is something non-trivial. Among others, before getting into such things, we will have to
study the von Neumann algebras A having trivial center, Z(A) = C, called factors, which
include the fibers Ax in the above decomposition result. More on this later.
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14b. Kaplansky density

Time now for some more advanced von Neumann algebra theory, and hang on, all this
will be quite technical. Let us begin our study with some generalities. We first have:

Proposition 14.16. The weak operator topology on B(H) is the topology having the
following equivalent properties:

(1) It makes T →< Tx, y > continuous, for any x, y ∈ H.
(2) It makes Tn → T when < Tnx, y >→< Tx, y >, for any x, y ∈ H.
(3) Has as subbase the sets UT (x, y, ε) = {S : | < (S − T )x, y > | < ε}.
(4) Has as base UT (x1, . . . , xn, y1, . . . , yn, ε) = {S : | < (S − T )xi, yi > | < ε,∀i}.

Proof. The equivalences (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4) all follow from definitions,
with of course (1,2) referring to the coarsest topology making that things happen. □

Similarly, in what regards the strong operator topology, we have:

Proposition 14.17. The strong operator topology on B(H) is the topology having the
following equivalent properties:

(1) It makes T → Tx continuous, for any x ∈ H.
(2) It makes Tn → T when Tnx→ Tx, for any x ∈ H.
(3) Has as subbase the sets VT (x, ε) = {S : ||(S − T )x|| < ε}.
(4) Has as base the sets VT (x1, . . . , xn, ε) = {S : ||(S − T )xi|| < ε,∀i}.

Proof. Again, the equivalences (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4) are all clear, and
with (1,2) referring to the coarsest topology making that things happen. □

We know from before that an operator algebra A ⊂ B(H) is weakly closed if and only
if it is strongly closed. Here is a useful generalization of this fact:

Theorem 14.18. Given a convex set of bounded operators

C ⊂ B(H)

its weak operator closure and strong operator closure coincide.

Proof. Since the weak operator topology on B(H) is weaker by definition than the
strong operator topology on B(H), we have, for any subset C ⊂ B(H):

C
strong ⊂ C

weak

Now by assuming that C ⊂ B(H) is convex, we must prove that:

T ∈ C
weak

=⇒ T ∈ C
strong

In order to do so, let us pick vectors x1, . . . , xn ∈ H and ε > 0. We let K = H⊕n, and
we consider the standard embedding i : B(H) ⊂ B(K), given by:

iT (y1, . . . , yn) = (Ty1, . . . , T yn)
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We have then the following implications, which are all trivial:

T ∈ C
weak

=⇒ iT ∈ iC
weak

=⇒ iT (x) ∈ iC(x)
weak

Now since the set C ⊂ B(H) was assumed to be convex, the set iC(x) ⊂ K is convex
too, and by the Hahn-Banach theorem, for compact sets, it follows that we have:

iT (x) ∈ iC(x)
||.||

Thus, there exists an operator S ∈ C such that we have, for any i:

||Sxi − Txi|| < ε

But this shows that we have S ∈ VT (x1, . . . , xn, ε), and since x1, . . . , xn ∈ H and ε > 0

were arbitrary, by Proposition 14.17 it follows that we have T ∈ C
strong

, as desired. □

We will need as well the following standard result:

Proposition 14.19. Given a vector space E ⊂ B(H), and a linear form f : E → C,
the following conditions are equivalent:

(1) f is weakly continuous.
(2) f is strongly continuous.
(3) f(T ) =

∑n
i=1 < Txi, yi >, for certain vectors xi, yi ∈ H.

Proof. This is something standard, using the same tools at those already used in
chapter 5, namely basic functional analysis, and amplification tricks:

(1) =⇒ (2) Since the weak operator topology on B(H) is weaker than the strong
operator topology on B(H), weakly continuous implies strongly continuous. To be more
precise, assume Tn → T strongly. Then Tn → T weakly, and since f was assumed to be
weakly continuous, we have f(Tn) → f(T ). Thus f is strongly continuous, as desired.

(2) =⇒ (3) Assume indeed that our linear form f : E → C is strongly continuous. In
particular f is strongly continuous at 0, and Proposition 14.17 provides us with vectors
x1, . . . , xn ∈ H and a number ε > 0 such that, with the notations there:

f(V0(x1, . . . , xn, ε)) ⊂ D0(1)

That is, we can find vectors x1, . . . , xn ∈ H and a number ε > 0 such that:

||Txi|| < ε,∀i =⇒ |f(T )| < 1

But this shows that we have the following estimate:

n∑
i=1

||Txi||2 < ε2 =⇒ |f(T )| < 1
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By linearity, it follows from this that we have the following estimate:

|f(T )| < 1

ε

√√√√ n∑
i=1

||Txi||2

Consider now the direct sum H⊕n, and inside it, the following vector:

x = (x1, . . . , xn) ∈ H⊕n

Consider also the following linear space, written in tensor product notation:

K = (E ⊗ 1)x ⊂ H⊕n

We can define a linear form f ′ : K → C by the following formula, and continuity:

f ′(Tx1, . . . , Txn) = f(T )

We conclude that there exists a vector y ∈ K such that the following happens:

f ′((T ⊗ 1)y
)
=< (T ⊗ 1)x, y >

But in terms of the original linear form f : E → C, this means that we have:

f(T ) =
n∑

i=1

< Txi, yi >

(3) =⇒ (1) This is clear, because we have, with respect to the weak topology:

Tn → T =⇒ < Tnxi, yi >→< Txi, yi >,∀i

=⇒
n∑

i=1

< Tnxi, yi >→
n∑

i=1

< Txi, yi >

=⇒ f(Tn) → f(T )

Thus, our linear form f is weakly continuous, as desired. □

Here is one more well-known result, that we will need as well:

Theorem 14.20. The unit ball of B(H) is weakly compact.

Proof. If we denote by B1 ⊂ B(H) the unit ball, and by D1 ⊂ C the unit disk, we
have a morphism as follows, which is continuous with respect to the weak topology on
B1, and with respect to the product topology on the set on the right:

B1 ⊂
∏

||x||,||y||≤1

D1 , T → (< Tx, y >)x,y

Since the set on the right is compact, by Tychonoff, it is enough to show that the
image of B1 is closed. So, let (cxy) ∈ B̄1. We can then find Ti ∈ B1 such that:

< Tix, y >→ cxy , ∀x, y
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But this shows that the following map is a bounded sesquilinear form:

H ×H → C , (x, y) → cxy

Thus, we can find an operator T ∈ B(H), and so T ∈ B1, such that < Tx, y >= cxy
for any x, y ∈ H, and this shows that we have (cxy) ∈ B1, as desired. □

Getting back to operator algebras, we have the following result, due to Kaplansky,
which is something very useful, and of independent interest as well:

Theorem 14.21. Given an operator algebra A ⊂ B(H), the following happen:

(1) The unit ball of A is strongly dense in the unit ball of A′′.
(2) The same happens for the self-adjoint parts of the above unit balls.

Proof. This is something quite tricky, the idea being as follows:

(1) Consider the self-adjoint part Asa ⊂ A. By taking real parts of operators, and
using the fact that T → T ∗ is weakly continuous, we have then:

Asa
w ⊂

(
A

w)
sa

Now since the set Asa is convex, and by Theorem 14.18 all weak operator topologies
coincide on the convex sets, we conclude that we have in fact equality:

Asa
w
=
(
A

w)
sa

(2) With this result in hand, let us prove now the second assertion of the theorem.
For this purpose, consider an element T ∈ A

w
, satisfying T = T ∗ and ||T || ≤ 1. Consider

as well the following function, going from the interval [−1, 1] to itself:

f(t) =
2t

1 + t2

By functional calculus we can find an element S ∈
(
A

w)
sa

such that:

f(S) = T

In other words, we can find an element S ∈
(
A

w)
sa

such that:

T =
2S

1 + S2

Now given arbitrary vectors x1, . . . , xn ∈ H and an arbitrary number ε > 0, let us
pick an element R ∈ Asa, subject to the following two inequalities:

||RTxi − STxi|| ≤ ε ,

∣∣∣∣∣∣∣∣ R

1 + S2
xi −

S

1 + S2
xi

∣∣∣∣∣∣∣∣ ≤ ε

Finally, consider the following element, which has norm ≤ 1:

L =
2R

1 +R2
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We have then the following computation, using the above formulae:

L− T =
2R

1 +R2
− 2S

1 + S2

= 2

(
1

1 +R2

(
R(1 + S2)− (1 + S2)R

) 1

1 + S2

)
= 2

(
1

1 +R2
(R− S)

1

1 + S2
+

R

1 +R2
(S −R)

S

1 + S2

)
=

2

1 +R2
(R− S)

1

1 + S2
+
L

2
(S −R)T

Thus, we have the following estimate, for any i ∈ {1, . . . , n}:

||(L− T )xi|| ≤ ε

But this gives the second assertion of the theorem, as desired.

(3) Let us prove now the first assertion of the theorem. Given an arbitrary element
T ∈ A

w
, satisfying ||T || ≤ 1, let us look at the following element:

T ′ =

(
0 T
T ∗ 0

)
∈M2(A

w
)

This element is then self-adjoint, and we can use what we proved in the above, and
we are led in this way to the first assertion in the statement, as desired. □

We can go back now to our original question, from the beginning of the present chapter,
namely that of abstractly characterizing the von Neumann algebras, and we have:

Theorem 14.22. A norm closed operator ∗-algebra

A ⊂ B(H)

is a von Neumann algebra precisely when its unit ball is weakly compact.

Proof. This is something which is now clear, coming from the Kaplansky density
results established in Theorem 14.21. To be more precise:

(1) In one sense, assuming that A ⊂ B(H) is a von Neumann algebra, this algebra
is weakly closed. But since the unit ball of B(H) is weakly compact, we are led to the
conclusion that the unit ball of A is weakly compact too.

(2) Conversely, assume that an operator algebra A ⊂ B(H) is such that its unit ball
is weakly compact. In particular, the unit ball of A is weakly closed. Now if T satisfying
||T || ≤ 1 belongs to the weak closure of A, by Kaplansky density we conclude that we
have T ∈ A. Thus our algebra A must be a von Neumann algebra, as claimed. □
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14c. Projections, order

In order to further investigate the von Neumann algebras, the key idea, coming from
our previous analysis of the finite dimensional algebras, will be that of looking at the
projections. Let us start with some generalities. In analogy with what happens in finite
dimensions, we have the following notions, over an arbitrary Hilbert space H:

Definition 14.23. Associated to any two projections P,Q ∈ B(H) are:

(1) The projection P ∧Q, projecting on the common range.
(2) The projection P ∨Q, projecting on the span of the ranges.

Abstractly speaking, these two operations can be thought of as being inf and sup type
operations, and all the known algebraic formulae for inf and sup hold in this setting. For
the moment we will not need all this, and we will be back to it later. Let us record
however the following basic formula, which is something very useful:

Proposition 14.24. We have the following formula,

P +Q = P ∧Q+ P ∨Q

valid for any two projections P,Q ∈ B(H).

Proof. This is clear from definitions, because when computing P +Q we obtain the
projection P ∨ Q on the span on the ranges, modulo the fact that the vectors in the
common range are obtained twice, which amounts in saying that we must add P ∧Q. □

With the above notions in hand, we have the following result:

Theorem 14.25. Consider two projections P,Q ∈ B(H).

(1) In finite dimensions, over H = CN , we have, in norm:

(PQ)n → P ∧Q

(2) In infinite dimensions, we have the following convergence, for any x ∈ H,

(PQ)nx→ (P ∧Q)x

but the operators (PQ)n do not necessarily converge in norm.

Proof. We have several assertions here, the proof being as follows:

(1) Assume that we are in the case P,Q ∈MN(C). By substracting P ∧Q from both
P,Q, we can assume P ∧Q = 0, and we must prove that we have:

P ∧Q = 0 =⇒ (PQ)n → 0

Our claim is that we have ||PQ|| < 1. Indeed, we know that we have:

||PQ|| ≤ ||P || · ||Q|| = 1



14C. PROJECTIONS, ORDER 203

Assuming now by contradiction that we have ||PQ|| = 1, since we are in finite dimen-
sions, we must have, for a certain norm one vector, ||x|| = 1:

||PQx|| = 1

Thus, we must have equalities in the following estimate:

||PQx|| ≤ ||Qx|| ≤ ||x||

But the second equality tells us that we must have x ∈ Im(Q), and with this in hand,
the first equality tells us that we must have x ∈ Im(P ). But this contradicts P ∧Q = 0,
so we have proved our claim, and the convergence (PQ)n → 0 follows.

(2) In infinite dimensions now, as before by substracting P ∧ Q from both P,Q, we
can assume P ∧Q = 0, and we must prove that we have, for any x ∈ H:

P ∧Q = 0 =⇒ (PQ)nx→ 0

For this purpose, we use a trick. Consider the following operator:

R = PQP

This operator is positive, because we have R = (PQ)(PQ)∗, and we have:

||R|| ≤ ||P || · ||Q|| · ||P || = 1

Our claim, which will finish the proof, is that for any x ∈ H we have:

Rnx→ 0

In order to prove this claim, let us diagonalize R, by using the spectral theorem for
self-adjoint operators, from chapter 1. If all the eigenvalues are < 1 then we are done. If
not, this means that we can find a nonzero vector x ∈ H such that:

||Rx|| = ||x||

But this condition means that we must have equalities in the following estimate:

||PQPx|| ≤ ||QPx|| ≤ ||Px|| ≤ ||x||

The point now is that this is impossible, due to our assumption P ∧ Q = 0. Indeed,
the last equality tells us that we must have x ∈ Im(P ), and with this in hand, the middle
equality tells us that we must have x ∈ Im(Q). But this contradicts P ∧ Q = 0, so we
have proved our claim, and the convergence (PQ)nx→ 0 follows.

(3) Finally, for a counterexample to (PQ)n → 0, in infinite dimensions, we can take
H = l2(N), and then find projections P,Q such that (PQ)nek → 0 for any k, but with
the convergence arbitrarily slowing down with k → ∞. Thus, (PQ)n ̸→ 0. □

As a consequence, in connection with the von Neumann algebras, we have:
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Theorem 14.26. Given two projections P,Q ∈ B(H), the projections

P ∧Q , P ∨Q
both belong to the von Neumann algebra generated by P,Q.

Proof. This comes from the above. Indeed, in what regards P ∧Q, this is something
that follows from Theorem 14.25. As for P ∨Q, here the result follows from the result for
P ∧Q, and from the formula P +Q = P ∧Q+ P ∨Q, from Proposition 14.24. □

The idea now will be that of studying the von Neumann algebras A ⊂ B(H) by using
their projections, p ∈ A. Let us start with the following result:

Theorem 14.27. Any von Neumann algebra is generated by its projections.

Proof. This is something that we know from before, coming from the measurable
functional calculus, which can cut any normal operator into projections. □

There are many other things that can be said about projections, in the general setting.
In what follows we will just discuss the most important and useful such results. A first
such result, providing us with some geometric intuition on projections, is as follows:

Theorem 14.28. Given a von Neumann algebra A ⊂ B(H), and a projection p ∈ A,
we have the following equalities, between von Neumann algebras on pH:

(1) pAp = (A′p)′.
(2) (pAp)′ = A′p.

Proof. This is not exactly obvious, but can be proved as follows:

(1) As a first observation, the von Neumann algebras pAp and A′p commute on pH.
Thus, we must prove that we have the following implication:

x ∈ (A′p)′ =⇒ x ∈ pAp

For this purpose, consider the element y = xp. Then for any z ∈ A′ we have:

zy = zxp

= zpxp

= xpzp

= xpz

= yz

But this shows that we have y ∈ A, and so we obtain, as desired:

x = pyp ∈ pAp

(2) As before, one of the inclusions being clear, we must prove that we have:

x ∈ (pAp)′ =⇒ x ∈ A′p
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By using the standard fact that any bounded operator appears as a linear combination
of 4 unitaries, that we know from the end of chapter 3, it is enough to prove this for a
unitary element, x = u. So, assume that we have a unitary as follows:

u ∈ (pAp)′

In order to prove our claim, consider the following vector space:

K = ApH

This space being invariant under both the algebras A,A′, we conclude that the pro-
jection q = Proj(K) onto it belongs to the center of our von Neumann algebra:

q ∈ Z(A)

Our claim now, which will quickly lead to the result that we want to prove, is that
we can extend the above unitary u ∈ (pAp)′ to the space K = ApH via the following
formula, valid for any elements xi ∈ A, and any vectors ξi ∈ pH:

v

(∑
i

xiξi

)
=
∑
i

xiuξi

In order to prove this latter claim, we can use the following computation:∣∣∣∣∣
∣∣∣∣∣v
(∑

i

xiξi

)∣∣∣∣∣
∣∣∣∣∣
2

=
∑
ij

< xiuξi, xjuξj >

=
∑
ij

< x∗jxiuξi, uξj >

=
∑
ij

< px∗jxipuξi, uξj >

=
∑
ij

< upx∗jxipξi, uξj >

=
∑
ij

< px∗jxipξi, ξj >

=
∑
ij

< x∗jxiξi, ξj >

=
∑
ij

< xiξi, xjξj >

=

∣∣∣∣∣
∣∣∣∣∣∑

i

xiξi

∣∣∣∣∣
∣∣∣∣∣
2
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Thus v is well-defined by the above formula, and is an isometry of K. Now observe
that this element v commutes with the algebra A on the space ApH, and so on K. Thus
vq ∈ A′, and so u = vqp, which proves that we have u ∈ A′p, as desired. □

As a second result now, once again in the general setting, we have:

Proposition 14.29. Given a von Neumann algebra A ⊂ B(H), the formula

p ≃ q ⇐⇒ ∃u,

{
uu∗ = p

u∗u = q

defines an equivalence relation for the projections p ∈ A.

Proof. This is something elementary, which follows from definitions, with the tran-
sitivity coming by composing the corresponding partial isometries. □

As a third result, once again in the general setting, which once again provides us with
some intuition, but this time of somewhat abstract type, we have:

Theorem 14.30. Given a von Neumann algebra A ⊂ B(H), we have a partial order
on the projections p ∈ A, constructed as follows, with u being a partial isometry,

p ⪯ q ⇐⇒ ∃u,

{
uu∗ = p

u∗u ≤ q

which is related to the equivalence relation ≃ constructed above by:

p ≃ q ⇐⇒ p ⪯ q, q ⪯ p

Thus, ⪯ is a partial order on the equivalence classes of projections p ∈ A.

Proof. We have several assertions here, the idea being as follows:

(1) The fact that we have indeed a partial order is clear, with the transitivity coming,
as before, by composing the corresponding partial isometries.

(2) Regarding now the relation with ≃, via the equivalence in the statement, the
implication =⇒ is clear. Thus, we are left with proving ⇐=, which reads:

p ⪯ q, q ⪯ p =⇒ p ≃ q

Our assumption is that we have partial isometries u, v such that:

uu∗ = p , u∗u ≤ q

v∗v ≤ p , vv∗ = q

We can construct then two sequences of decreasing projections, as follows:

p0 = p , pn+1 = v∗qnv

q0 = q , qn+1 = u∗pnu
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Consider now the limits of these two sequences of projections, namely:

p∞ =
∧
i

pi , q∞ =
∧
i

qi

In terms of all these projections that we constructed, we have the following decompo-
sition formulae for the original projections p, q:

p = (p− p1) + (p1 − p2) + . . .+ p∞

q = (q − q1) + (q1 − q2) + . . .+ q∞

Now observe that the summands are equivalent, with this being clear from the defini-
tion of pn, qn at the finite indices n <∞, and with p∞ ≃ q∞ coming from:

v∗q∞v = p∞ , q∞vv
∗q∞ = q∞

Thus we obtain that we have p ≃ q, as desired, by summing.

(3) Finally, the fact that the order relation ⪯ factorizes indeed to the equivalence
classes under ≃ follows from the equivalence established in (2). □

Summarizing, in view of Theorem 14.27, and of Theorem 14.30, we can formulate:

Conclusion 14.31. We can think of a von Neumann algebra A ⊂ B(H) as being
a kind of object belonging to “mathematical logic”, consisting of equivalence classes of
projections p ∈ A, ordered via the relation ⪯, and producing A itself via transport by
partial isometries, and then linear combinations, and weak limits.

Which is something quite remarkable, who on Earth could have guessed, when we
were struggling with the basics, that we will end up with something that luminous.

Well, that person on Earth who found this was von Neumann himself, back in the
1930s. And his Conclusion 14.31, called “von Neumann vision” of the operator algebras,
has been extremely useful ever since, and is still largely used nowadays.

14d. Reduction, factors

In order to further advance, the general idea, which is something quite natural, is that
among the von Neumann algebras A ⊂ B(H), of particular interest are the “free” ones,
having trivial center, Z(A) = C. These algebras are called factors:

Definition 14.32. A factor is a von Neumann algebra A ⊂ B(H) whose center

Z(A) = A ∩ A′

which is a commutative von Neumann algebra, reduces to the scalars, Z(A) = C.
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This notion is in fact something that we already met in the above, in the context of
various comments or exercises, and time now to clarify all this. The idea is that there
are two main motivations for the study of factors, with each of them being more than
enough, as to serve as a strong motivation. First, at the intuitive level, we have:

Principle 14.33 (Freeness). The following happen:

(1) The condition Z(A) = C defining the factors is, obviously, opposite to the condi-
tion Z(A) = A defining the commutative von Neumann algebras.

(2) Therefore, the factors are the von Neumann algebras which are “free”, meaning
as far as possible from the commutative ones.

(3) Equivalently, with A = L∞(X), the quantum spaces X coming from factors are
those which are “free”, meaning as far as possible from the classical spaces.

So, this was for our first principle, which is something reasonable, intuitive, and self-
explanatory, and which can surely serve as a strong motivation for the study of factors.
In fact, all that has being said above comes straight from the structure theorem for the
commutative von Neumann algebras, A = L∞(X), with X being a measured space, that
we know from before, and the above principle is just a corollary of that theorem.

At a more advanced level, another motivation for the study of factors, which among
others justifies the name “factors” for them, comes from the reduction theory of von
Neumann [92], which is something non-trivial, that can be summarized as follows:

Principle 14.34 (Reduction theory). Given a von Neumann algebra A ⊂ B(H), if
we write its center Z(A) ⊂ A, which is a commutative von Neumann algebra, as

Z(A) = L∞(X)

with X being a measured space, then the whole algebra decomposes as

A =

∫
X

Ax dx

with the fibers Ax being factors, that is, satisfying Z(Ax) = C.
As a first comment, we have already seen an instance of such decomposition results

in the above, when talking about finite dimensional algebras. Indeed, such algebras
decompose, in agreement with the above, as direct sums of matrix algebras, as follows:

A =
⊕
x

Mnx(C)

In general, however, things are more complicated than this, and technically speaking,
and as opposed to Principle 14.33, which was more of a triviality, Principle 14.34 is a
tough theorem, due to von Neumann [92]. More on this, later in this book.

Getting to work now, there are many things that can be said about factors. In order
to get started, let us first study their projections. We will need the following result:
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Proposition 14.35. Given two projections p, q ̸= 0 in a factor A, we have

puq ̸= 0

for a certain unitary u ∈ A.

Proof. Assume by contradiction puq = 0, for any unitary u ∈ A. This gives:

u∗puq = 0

By using this for all the unitaries u ∈ A, we obtain the following formula:( ∨
u∈UA

u∗pu

)
q = 0

On the other hand, from p ̸= 0 we obtain, by factoriality of A:∨
u∈UA

u∗pu = 1

Thus, our previous formula is in contradiction with q ̸= 0, as desired. □

Getteing back now to the order on projections from before, and to the whole von
Neumann projection philosophy, in the case of factors things simplify, as follows:

Theorem 14.36. Given two projections p, q ∈ A in a factor, we have

p ⪯ q or q ⪯ p

and so ⪯ is a total order on the equivalence classes of projections p ∈ A.

Proof. This basically follows from Proposition 14.35, and from the Zorn lemma, by
using some standard functional analysis arguments. To be more precise:

(1) Consider indeed the following set of partial isometries:

S =
{
u
∣∣∣uu∗ ≤ p, u∗u ≤ q

}
We can then order this set S by saying that we have u ≤ v when u∗u ≤ v∗v, and

when u = v holds on the initial domain u∗uH of u. With this convention made, the Zorn
lemma applies, and provides us with a maximal element u ∈ S.

(2) In the case where this maximal element u ∈ S satisfies uu∗ = p or u∗u = q, we are
led to one of the conditions p ⪯ q or q ⪯ p in the statement, and we are done.

(3) So, assume that we are in the case left, uu∗ ̸= p and u∗u ̸= q. By Proposition
14.35 we obtain a unitary v ̸= 0 satisfying the following conditions:

vv∗ ≤ p− uu∗

v∗v ≤ q − u∗u

But these conditions show that the element u + v ∈ S is strictly bigger than u ∈ S,
which is a contradiction, and we are done. □
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Moving ahead now, as explained time and again throughout this book, for a variety
of reasons, which can be elementary or advanced, and also mathematical or physical, we
are mainly interested in the case where our algebras have traces:

tr : A→ C
And in relation with the factors, by leaving aside the rather trivial case of the matrix

algebras A =MN(C), we are led in this way to the following key notion:

Definition 14.37. A II1 factor is a von Neumann algebra A ⊂ B(H) which:

(1) Is infinite dimensional, dimA = ∞.
(2) Has trivial center, Z(A) = C.
(3) Has a trace tr : A→ C.

This definition is motivated by some heavy classification work of Murray, von Neumann
and Connes, whose conclusion is more or less that everything in von Neumann algebras
reduces, via some quite complicated procedures, to the study of the II1 factors:

Fact 14.38. The II1 factors are the building blocks of the whole von Neumann algebra
theory.

To be more precise, this statement, that we will get to understand later, is something
widely agreed upon, at least among operator algebra experts who are familiar with von
Neumann algebras, and with this agreement being something great.

14e. Exercises

Exercises:

Exercise 14.39.

Exercise 14.40.

Exercise 14.41.

Exercise 14.42.

Exercise 14.43.

Exercise 14.44.

Exercise 14.45.

Exercise 14.46.

Bonus exercise.



CHAPTER 15

Integration theory

15a.

15b.

15c.

15d.

15e. Exercises

Exercises:

Exercise 15.1.

Exercise 15.2.

Exercise 15.3.

Exercise 15.4.

Exercise 15.5.

Exercise 15.6.

Exercise 15.7.

Exercise 15.8.

Bonus exercise.
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CHAPTER 16

Advanced aspects

16a.

16b.

16c.

16d.

16e. Exercises

Congratulations for having read this book, and no exercises for this final chapter.
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