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Abstract. This is an elementary introduction to projective geometry. We first discuss
basic plane geometry, all good old results going back to the ancient Greeks, and the
various simplifications that the projective setting brings, and with a look into higher
dimensions too. Then we get into algebraic geometry, of projective flavor, with the
Bézout theorem proved, then with the standard algebraic theory developed, and with
a look into elliptic curves too. We then discuss the symmetry groups in the projective
world, finite or compact, with focus on representation theory, and related diagrams.
Finally, we discuss various analytic aspects, regarding projective groups, homogeneous
spaces and more general manifolds, notably with various integration techniques.



Preface

Do parallel lines cross? Good question for Humanities, with the answer here varying
depending on whom you ask, but with the generally agreed conclusion being that yes,
they do cross, say on the grounds that Love will end up uniting them.

So, parallel lines most likely cross, but can we have some understanding of this too,
we people in Science. And here, as a first experiment, scientific as they come, wake up
in the morning, have a good coffee, I mean just that coffee, and no other things taken by
artists and such, and have a look at some railroad tracks. Do that rails cross or not?

And good question this is. Indeed, while you certainly know that the rails won’t cross,
just imagine the disaster with a train running on that crossing lines, and with this fact
being deeply engraved in your brain, well, what you see, with your scientifically trained
eyes, rather seems to suggest that the rails will cross. Amazing, isn’t it.

In case you doubt, or run into confusion, simply take a picture of that railroad tracks,
with this picture being more or less the same thing that your eyes see, independently of
what the brain says. And the picture will certainly show that the rails cross.

So, very good, fact established, and the problem is now, can we make now some
mathematics, better than the usual mathematics, that we are used to, out of this?

In answer, yes, this is definitely possible, and is something very useful too, for math-
ematics, and for Science in general. The idea indeed is that the usual mathematics, with
usual coordinates and everything, is called “affine”, and based on the above observations,
with a bit of mathematical effort, we can make it “projective”. So, projective geometry
and mathematics is what we would like to learn, in order to get smarter.

This book is an elementary introduction to this, projective geometry, and projective
mathematics in general. The book is organized in four parts, as follows:

(1) We first discuss basic plane geometry, all good old results going back to the ancient
Greeks, and later to the Middle Ages and beyond, and the various simplifications that
the projective setting brings, and with a look into higher dimensions too.
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4 PREFACE

(2) Then we get more systematically into algebraic geometry, of projective flavor, that
is, study of the projective manifolds, with the Bézout theorem proved, then with the
standard algebraic theory developed, and with a look into elliptic curves too.

(3) We discuss then the various symmetry groups in the projective world, that we will
usually take to be finite, or even compact, with all sorts of basic theory and examples,
and then by focusing on representation theory, and related diagrams.

(4) Finally, we discuss various analytic aspects, regarding projective groups, projec-
tive homogeneous spaces, and more general projective manifolds, with some standard
differential geometry questions answered, and with various integration techniques.

Many thanks to my math school professors, from the communist Romania of the 1980s,
and later to the geometry teachers that I had as a freshman at Bucharest, and later to
further geometry teachers, and some teaching colleagues too in Paris, there used to be a
fair amount of projective geometry, in our math teaching, at all levels, at that time, and
good, pleasant and useful learning that was. Hope one day such things will be back.

Thanks as well to my cats, speaking scientists believing what their eyes see, and
drawing quick conclusions out of this, there is no one better than them.

Cergy, March 2025

Teo Banica
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Part I

Projective space



They’re really rockin’ in Boston
In Pittsburgh, PA

Deep in the heart of Texas
And round the Frisco Bay



CHAPTER 1

Geometry

1a. Parallel lines

Welcome to plane geometry. At the beginner level, which is ours for the moment,
this is a story of points and lines. Here is a basic observation, to start with, and we will
call this “axiom” instead of “theorem”, as the statements which are true and useful are
usually called, in mathematics, for reasons that will become clear in a moment:

Axiom 1.1. Any two distinct points P ̸= Q determine a line, denoted PQ.

Obviously, our axiom holds, and looks like something very useful. Need to draw
anything, for various engineering purposes, at your job, or in your garage? The rule will
be your main weapon, used exactly as in Axiom 1.1, that is, put the rule on the points
P ̸= Q that your line must unite, and then draw that line PQ. Actually, in relation with
this, we are rather used in practice to draw segments PQ. But in theory, meaning some
sort of idealized practice, will having that segment extended to infinity hurt? Certainly
not, so this is why our lines PQ in mathematics will be infinite, as above.

Getting now to point, as already announced, why is Axiom 1.1 an axiom, instead
of being a theorem? You would probably argue here that this theorem can be proved
by using a rule, as indicated above. However, and with my apologies for this, although
rock-solid as a scientific proof, this rule thing does not stand as a mathematical proof.
This is how things are, you will have to trust me here. And for further making my case,
let me mention that my theoretical physics friends agree with me, on the grounds that,
when looking with a good microscope at your rule, that rule is certainly bent.

Excuse me, but cat is here, meowing something. So, what is is, cat?

Cat 1.2. In fact, spacetime itself is bent.

Okay, thanks cat, so looks like we have multiple problems with the “rule proof” of
Axiom 1.1, so that definitely does not qualify as a proof. And so Axiom 1.1 will be indeed
an axiom, that is, a true and useful mathematical statement, coming without proof.

Getting now to more discussion, around Axiom 1.1, an interesting question appears in
connection with our assumption there P ̸= Q. Indeed, given a point Q in the plane, we
can come up with a sequence of points Pn → Q vertically, and in this case the lines PnQ
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12 1. GEOMETRY

will all coincide with the vertical at Q. But we can then formally say that the n → ∞
limit of these lines, which makes sense to be denoted QQ, is also the vertical at Q.

However, is this a good idea, or not. The point indeed is that, when doing exactly
the same trick with a series of points Pn → Q horizontally, we will obtain in this way, as
our limiting line QQ, the horizontal at Q. Which does not sound very good, but since we
seem however to have some sort of valuable idea here, let us formulate:

Job 1.3. Develop later some kind of analysis theory, generalizing plane geometry,
where lines of type QQ make sense too, say as some sort of tangents.

As a further comment now, still on Axiom 1.1, it is of course understood there that the
points P ̸= Q appearing there, and the line PQ uniting them, lie in the given plane that
we are interested in, in this Part I of the present book. However, Axiom 1.1 obviously
holds too in space, and most likely, in higher dimensional spaces too.

So, the question which appears now is, on which type of spaces does Axiom 1.1 hold?
And this is a quite interesting question, because if we take a sphere for instance, any two
points P ̸= Q can be certainly united by a segment, which is by definition the shortest
segment, on the sphere, uniting them. And, if we prolong this segment, in the obvious
way, what we get is a circle uniting P,Q, that we can call line, and denote P,Q.

However, not so quick. There is in fact a bug with this, because if we take P to be
the North Pole, and Q to be the South Pole, any meridian on the globe will do, as PQ.
So, as a conclusion, Axiom 1.1 does not really hold on a sphere, but not by much.

Anyway, as before, we seem to have an idea here, so let us formulate:

Job 1.4. Develop later some kind of advanced geometry theory, generalizing plane
geometry, where certain lines PQ can take multiple values.

And with this, done I guess with the discussion regarding Axiom 1.1, I can only
presume that you got as tired of reading this, as I got tired of writing it. Well, this is
how things are, geometry is no easy business, and there are certainly plenty of things to
be done, and what we will be doing here, based on Axiom 1.1, will be just a beginning.

Excuse me, but cat is meowing again. So, what is it cat, and for God’s sake, in the
hope that this is not in connection with Axiom 1.1. Please have mercy.

Cat 1.5. What about a formula of type

PQ = λP + (1− λ)Q

proving your axiom.
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Okay, thanks cat, but I was already having this in mind, for later in this chapter. So,
Axiom 1.1 remains an axiom, please everyone disagreeing with this get out of my math
class, and enjoy the sunshine outside. And well, we will see, later in this chapter, how
cats and physicists can prove Axiom 1.1, or at least, what their claims are.

Moving ahead now, here is an interesting observation about lines and points in the
plane, coming somehow as a complement to Axiom 1.1:

Observation 1.6. Any two distinct lines K ̸= L determine a point, P = K ∩ L,
unless these two lines are parallel, K||L.

So, what do we have here, axiom, theorem, or something else? Not very clear, but on
the bottom line, this is something which is certainly true, useful, and provable as before,
with a rule. Just carefully draw K,L, and you will certainly get upon P = K ∩ L.

However, in contrast to Axiom 1.1, there is a bit of a bug with our statement, because
we do not know yet, mathematically, what parallel lines means. So, let us formulate:

Definition 1.7. We say that two lines are parallel, K||L, when they do not cross,

K ∩ L = ∅

or when they coincide, K = L. Otherwise, we say that K,L cross, and write K ̸ ||L.

Here we have tricked a bit, by agreeing to call parallel the pairs of identical lines too,
and this for simplifying most of our mathematics, in what follows, trust me here.

As a first remark, with this definition in hand, Observation 1.6 makes now sense, as
a formal mathematical statement, and skipping some discussion here, or rather leaving it
as an exercise, for reasons which are somewhat clear, we will call this axiom:

Axiom 1.8. Any two crossing lines K ̸ ||L determine a point, P = K ∩ L.

Very good, and now with Axiom 1.1 and Axiom 1.8 in hand, we are potentially ready
for doing some geometry. However, this is not exactly true, and we will need as well:

Axiom 1.9. Given a point not lying on a line, P /∈ L, we can draw through P a unique
parallel to L. That is, we can find a line K satisfying P ∈ K, K||L.

As before, we will leave as an exercise further meditating on all this.

Ready for some math? Here we go, and many things can be said here, especially about
parallel lines, which are the main objects of basic geometry. We first have:
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Theorem 1.10 (Thales). Proportions are kept, along parallel lines. That is, given a
configuration as follows, consisting of two parallel lines, and of two extra lines,

S

A C

B D

the following equality holds:
SA

SB
=
SC

SD
Moreover, the converse holds too, in the sense that this implies AC||BD.

Proof. We have indeed the following computation, based on the usual area formula
for the triangles, that is, half of side times height, used multiple times:

SA

SB
=

area(CSA)

area(CSB)

=
area(CSA)

area(CSA) + area(CAB)

=
area(CSA)

area(CSA) + area(CAD)

=
area(ASC)

area(ASD)

=
SC

SD
As for the converse, we will leave the proof here as an instructive exercise. □

There are some other useful versions of the Thales theorem. First, we have:

Theorem 1.11 (Thales 2). In the context of the Thales theorem configuration,

S

A C

B D

the following equality, involving the same number, holds as well:

SA

SB
=
AC

BD
However, the converse of this does not necessarily hold.
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Proof. In order to prove the formula in the statement, instead of getting lost into
some new area computations, let us draw a tricky parallel, as follows:

S

A C

B E D

By using Theorem 1.10, we have then the following computation, as desired:

SA

SB
=
DE

DB
=
AC

DB

As for the converse, we will leave the proof here as an instructive exercise. □

As a third Thales theorem now, which is something beautiful too, we have:

Theorem 1.12 (Thales 3). Given a configuration as follows, consisting of three parallel
lines, and of two extra lines, which can cross or not,

A D

B E

C F

the following equality holds:
AB

BC
=
DE

EF
That is, once again, the proportions are kept, along parallel lines.

Proof. We have two cases here, as follows:

(1) When the two extra lines are parallel, the result is clear, because we have plenty
of parallelograms there, and the fractions in question are plainly equal.

(2) When the two lines cross, let us call S their intersection:

S

A D

B E

C F
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Now by using Theorem 1.10 several times, we obtain:

AB

BC
=

SB − SA
SC − SB

=
1− SA

SB
SC
SB
− 1

=
1− SD

SE
SF
SE
− 1

=
SE − SD
SF − SE

=
DE

EF

Thus, we are led to the formula in the statement. □

Importantly, many things can be done with the parallel lines, with a suitably drawn
such line hopefully solving, by some kind of miracle, your plane geometry problem.

We will see more illustrations for this general principle in the next section.

1b. Angles, triangles

Welcome to advanced plane geometry. It all started with triangles, drawn on sand. In
order to get started, with some basics, we first have the following key result:

Theorem 1.13. Given a triangle ABC, the following happen:

(1) The angle bisectors cross, at a point called incenter.
(2) The medians cross, at a point called barycenter.
(3) The perpendicular bisectors cross, at a point called circumcenter.
(4) The altitudes cross, at a point called orthocenter.

Proof. Let us first draw our triangle, with this being always the first thing to be
done in geometry, draw a picture, and then thinking and computations afterwards:

A

B C

Allowing us the freedom to play with some tricks, as advanced mathematicians, both
students and professors, are allowed to, here is how the proof goes:
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(1) Come with a small circle, inside ABC, and then inflate it, as to touch all 3 edges.
The center of the circle will be then at equal distance from all 3 edges, so it will lie on all
3 angle bisectors. Thus, we have constructed the incenter, as required.

(2) This requires different techniques. Let us call A,B,C ∈ C the coordinates of
A,B,C, and consider the average P = (A+B + C)/3. We have then:

P =
1

3
· A+

2

3
· B + C

2

Thus P lies on the median emanating from A, and a similar argument shows that P
lies as well on the medians emanating from B,C. Thus, we have our barycenter.

(3) Time to draw a new triangle, for clarity, since we are now on a new page:

A

B C

Regarding our problem, we can use the same method as for (1). Indeed, come with
a big circle, containing ABC, and then deflate it, as for it to pass through A,B,C. The
center of the circle will be then at equal distance from all 3 vertices, so it will lie on all 3
perpendicular bisectors. Thus, we have constructed the circumcenter, as required.

(4) This is tougher, and I must admit that, when writing this book, I first struggled
a bit with this, then ended looking it up on the internet. So, here is the trick. Draw a
parallel to BC at A, and similarly, parallels to AB and AC at C and B. You will get in
this way a bigger triangle, upside-down, A′B′C ′. But then, the circumcenter of A′B′C ′,
that we know to exist from (3), will be the orthocenter of ABC:

C ′ A B′

B C

A′

Thus, we are led to the conclusions in the statement. □

Many other things can be said about triangles, and we will be back to this. Impor-
tantly, we can now talk about angles, in the obvious way, by using triangles:
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Fact 1.14. We can talk about the angle between two crossing lines, and have some
basic theory for the angles going, by using triangles, and Thales, in the obvious way.

To be more precise here, let us go back to the configuration from the Thales theorem,
which was as follows, with two parallel lines, and two other lines:

S

A C

B D

In this situation, we can say that the two triangles SAC and SBD are similar, and
witn an equivalent formulation of similarity being the fact that the angles are equal:

Definition 1.15. We say that two triangles are similar, and we write

SAC ∼ SBD

when their respective angles are equal.

The point now is that, in this situation, we can have some mathematics going, for the
lengths, coming from the following formula, which is the Thales theorem:

SA

SB
=
SC

SD
=
AC

BD

At the philosophical level now, you might wonder of course what the values of these
angles, that we have been heavily using in the above, should be, say as real numbers. But
this is something quite tricky, that will take us some time to understand. In the lack of
something bright, for the moment, let us formulate the following definition:

Definition 1.16. We can talk about the numeric value of angles, as follows:

(1) The right angle has value 90◦.
(2) We can double angles, in the obvious way.
(3) Thus, the half right angle has value 45◦, and the flat angle has value 180◦.
(4) We can also triple, quadruple and so on, again in the obvious way.
(5) Thus, we can talk about arbitrary rational multiples of 90◦.
(6) And, with a bit of analysis helping, we can in fact measure any angle.

So, this will be our starting definition for the numeric values of the angles. Of course,
all this might seem a bit improvized, but do not worry, we will come back later to this,
with a better, more advanced definition for these numeric values of the angles.

Getting back to work now, theorems and proofs, in relation with the above, here is a
key result, which will be our main tool for the study of the angles:
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Theorem 1.17. In an arbitrary triangle

A

B C

the sum of all three angles is 180◦.

Proof. This does not seem obvious to prove, with bare hands, but as usual, in such
situations, some tricky parallels can come to the rescue. Let us prolong indeed the segment
BC a bit, on the C side, and then draw a parallel at C, to the line AB, as follows:

A

B C

But now, we can see that the three angles around C, summing up to the flat angle
180◦, are in fact the 3 angles of our triangle. Thus, theorem proved, just like that. □

Going ahead now with our study of angles, as a continuation of the above, let us first
talk about the simplest angle of them all, which is the right angle, denoted 90◦. In relation
with it, let us formulate the following definition, making the link with triangles:

Definition 1.18. We call right triangle a triangle of type

A

B C

having one of the angles equal to 90◦.

Many things can be said about right triangles, in particular with:

Theorem 1.19 (Pythagoras). In a right triangle ABC,

A

B C

we have AB2 +BC2 = AC2.
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Proof. This comes from the following picture, consisting of two squares, and four
triangles which are identical to ABC, as indicated:

◦ ◦ ◦

◦

◦A

◦B ◦C ◦

Indeed, let us compute the area S of the outer square. This can be done in two ways.
First, since the side of this square is AB +BC, we obtain:

S = (AB +BC)2

= AB2 +BC2 + 2× AB ×BC

On the other hand, the outer square is made of the smaller square, having side AC,
and of four identical right triangles, having sizes AB,BC. Thus:

S = AC2 + 4× AB ×BC
2

= AC2 + 2× AB ×BC

Thus, we are led to the conclusion in the statement. □

As a second important angle, we have the 60◦ angle, which usually appears via:

Theorem 1.20. In an equilateral triangle, having all sides equal,

A

B C

all angles equal 60◦.

Proof. This is clear indeed from the fact that the sum is 180◦. □

Another interesting angle is the 30◦ one. About it, we have:
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Theorem 1.21. In a right triangle having small angles 30◦, 60◦,

A

B C

we have AB = AC/2.

Proof. This is clear by drawing an equilateral triangle, as follows:

A

E

B C

Thus, we are led to the conclusion in the statement. □

We will be back to such things later, when doing trigonometry.

1c. Advanced results

Moving ahead now, many other things can be said about points and lines, and some-
times parallel lines, as a continuation of the Thales theorem. We first have:

Theorem 1.22 (Desargues). Two triangles are in perspective axially if and only if
they are in perspective centrally.

Proof. This is indeed clear in 3D, and the 2D case follows from this. Importantly,
as in many other of the results above, there are many cases here, depending on whether
various lines cross or not. We will see later how projective geometry simplifies this. □

We have as well the following result, going back in time, to Pappus:

Theorem 1.23 (Pappus). Given a hexagon with both the odd and the even vertices
being colinear, the pairs of opposite sides cross into three colinear points.

Proof. This is related to Desargues, and can be proved via several methods. As
before with Desargues and other results, there are many cases, depending on whether
various lines cross or not. We will see later how projective geometry simplifies this. □

Many other things can be said, about points and lines. We will be back to this.
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Let us go back now to basic triangle geometry and centers, as developed before in this
chapter. In order to further build on that material, and systematically look at triangle
centers, we would like to have general crossing results, of the following type:

A

F E

B D C

We will discusss this slowly, with several results on this subject, and on related topics.
First on our list we have the following key result, due to Menelaus:

Theorem 1.24 (Menelaus). In a configuration of the following type, with a triangle
ABC cut by a line FED,

A

F

E

B C D

we have the following formula, with all segments being taken oriented:

AF

FB
· BD
DC
· CE
EA

= −1

Moreover, the converse holds, with this formula guaranteeing that F,E,D are colinear.

Proof. This is indeed something very standard, by drawing some altitudes. As for
the converse, this follows from the main result, in the obvious way. □

We can now answer our original question about crossing lines inside a triangle, drawn
from the vertices, with the following remarkable result, due to Ceva:
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Theorem 1.25 (Ceva). In a configuration of the following type, with a triangle ABC
containing inner lines AD,BE,CF which cross,

A

F E

B D C

we have the following formula:

AF

FB
· BD
DC
· CE
EA

= 1

Moreover, the converse holds, with this formula guaranteeing that AD,BE,CF cross.

Proof. This is indeed something very standard again, which is obviously related to
the previous theorem of Menelaus, and which is best seen by computing some areas. As
for the converse, this follows from the main result, in the obvious way. □

As a basic application of the Ceva theorem, we have now a new point of view on the
barycenter. Indeed, the fact that the medians of a triangle cross can be seen as coming
from the Ceva theorem, via the following trivial computation:

AF

FB
· BD
DC
· CE
EA

= 1× 1× 1 = 1

Which is very nice, but needless to say, there is still a lot of work to be done, on the
barycenter, in order to understand what cats and physicists know about it, in relation
with what was said in the beginning of this chapter. More on this later in this book.

At a more advanced level now, we have the following key result:

Theorem 1.26. Besides the 4 main centers of a triangle, discussed in the above, many
more remarkable points can be associated to a triangle ABC,

A

B C

and most of these lie on a line, called Euler line of ABC.
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Proof. This is something more technical, which can be proved as well, via some
work, the idea with this being as follows:

(1) To start with, it is possible to prove, via some tricks and computations, that the
barycenter, the circumcenter and the orthocenter of a triangle are colinear. With this
being a key result, among others providing a definition for the Euler line.

(2) Needless to say, in order for that Euler line to exist, as defined above, the triangle
ABC must be assumed to be not equilateral. As for the basic example, for this, for an
isosceles triangle, not equilateral, the Euler line is of course the symmetry axis.

(3) At a more advanced level now, as indicated in the statement, it is possible to
construct other interesting centers of a triangle, which usually lie on the Euler line. We
will be back to this in the next theorem, when discussing the nine-point circle.

(4) Finally, again at the level of more advanced results, we have the question of
understanding how these various points lie on the Euler line, meaning understanding the
ratios between the distances between them. Again, many things can be said here. □

Along the same lines, we have as well the following result:

Theorem 1.27. Associated to a triangle ABC,

A

B C

we have as well a nine-point circle, whose center lies on the Euler line.

Proof. Again, this is something more technical, which can be proved as well. □

So long for triangles and their centers. This was a very fashionable business long ago,
but in more modern times the goals of mathematicians have slightly deviated towards
arithmetic, with the must-do thing, instead of constructing a new triangle center, being
that of joining the list of generalizators of the Legendre symbol.

As for the truly modern times, here the story is more complicated, with the ultimate
goal being that of having your own version of quantum field theory.

For the rest, as already mentioned on several occasions, the above classical geometry
material has a number of weaknesses. We will fix this, gradually, in what follows.
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1d. Coordinates

At a more advanced level now, many things from plane geometry can be understood
by using coordinates, with each point x ∈ R2 being written as a vector, as follows:

x =

(
a

b

)
Of particular interest is the summing operation for such vectors, which, according to

the usual calculus rules for the vectors, is given by the following formula:

x =

(
a

b

)
, y =

(
c

d

)
=⇒ x+ y =

(
a+ c

b+ d

)
Indeed, as you surely know well from calculus, geometrically, the idea here is simply

that the vectors add by forming a parallelogram, as follows:

b+ d •x+y

d •y

b •x

• //

OO

c a a+ c

In practice, the summing operation is usefully complemented by the multiplication by
scalars operation, which is given by the following very intuitive formula:

x =

(
a

b

)
=⇒ λx =

(
λa

λb

)
Finally, of particular interest too, in relation with the computation of the lengths, is

the following formula, allowing us to compute the length of any vector:

x =

(
a

b

)
=⇒ ||x|| =

√
a2 + b2

Very good, and time now to see how our coordinate technology works, if that is worth
something, or not. We will review here all the triangle and basic geometry material from
before, with new proofs for everything, using coordinates, no less than that.

So, God bless, and let us get started. As a first good surprise, in what regards the
axiomatics from the beginning of this chapter, that is literally nuked by coordinates.
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We first have, indeed, regarding the first axiom of geometry, that we started this book
with, the following theorem, coming along with a trivial proof:

Theorem 1.28. Any two distinct points P ̸= Q determine a line, denoted PQ.

Proof. This is clear indeed, with coordinates, because we have:

PQ = λP + (1− λ)Q
So, very good news, axiom becoming theorem, what more can we wish for. □

Same situation for the second axiom, which becomes a theorem too:

Theorem 1.29. Given a point not lying on a line, P /∈ L, we can draw through P a
unique parallel to L. That is, we can find a line K satisfying P ∈ K, K||L.

Proof. This is again clear with coordinates. □

Getting now to the next thing that we did before, namely the Thales theorem, and as
further good news, that drastically simplifies with coordinates, as follows:

Theorem 1.30 (Thales). Proportions are kept, along parallel lines. That is, given a
configuration as follows, consisting of two parallel lines, and of two extra lines,

S

A C

B D

the following equality holds:
SA

SB
=
SC

SD
Moreover, the converse of this holds too, in the sense that, in the context of a picture as
above, if this equality is satisfied, then the lines AC and BD must be parallel.

Proof. Again, this is clear with coordinates, and in fact the other formulations of
the Thales theorem, also from Part I, are clear as well too, again with coordinates. To be
more precise, for the above configuration, the conclusion is as follows:

SA

SB
=
SC

SD
=
AC

BD

In addition, we can prove Thales 3 as well, again using coordinates. □

Next, we have the Desargues theorem:
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Theorem 1.31 (Desargues). Two triangles are in perspective axially if and only if
they are in perspective centrally.

Proof. Again, this is clear with coordinates. □

Next, we have the Pappus theorem:

Theorem 1.32 (Pappus). Given a hexagon with both the odd and the even vertices
being colinear, the pairs of opposite sides cross into three colinear points.

Proof. Again, this is clear with coordinates. □

Getting now to the barycenter theorem, this drastically simplifies, as follows:

Theorem 1.33 (Barycenter). Given a triangle ABC, its medians cross,

A

F E

B D C

at a point called barycenter, lying at 1/3− 2/3 on each median.

Proof. Let us call A,B,C ∈ R2 the coordinates of the vertices A,B,C, and consider
the average P = (A+B + C)/3. We have then:

P =
1

3
· A+

2

3
· B + C

2

Thus P lies on the median emanating from A, and a similar argument shows that P
lies as well on the medians emanating from B,C. Thus, we have our barycenter. □

We can prove now as well some other things claimed before, as follows:

Theorem 1.34. The gravity center of a triangle ABC is as follows:

(1) In the 0-dimensional case, that is, when putting equal weigths at the vertices
A,B,C, and computing the center, this is the barycenter.

(2) In the 1-dimensional case, that is, with the sides AB,BC,AC have weigths pro-
portional with their length, this is, in general, different from the barycenter.

(3) In the 2-dimensional case, that is, with the triangle ABC itself, as an area, having
a weight, uniformly distributed, this is again the barycenter.

Proof. Again, this is clear with coordinates. Indeed, (1) is something which follows
from the proof of Theorem 1.33, then (2) follows from an easy computation, and (3) is
something which is elementary too, with a bit of analysis know-how. □
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Getting now to the other centers of a triangle, we have here:

Theorem 1.35. Given a triangle ABC, the following happen:

(1) The angle bisectors cross, at a point called incenter.
(2) The perpendicular bisectors cross, at a point called circumcenter.
(3) The altitudes cross, at a point called orthocenter.

Proof. Again, such things can be proved with coordinates, and patience. We will
actually leave some of the calculations here as an instructive exercise for you, reader. □

Coming next, we have the theorem of Pythagoras:

Theorem 1.36 (Pythagoras). In a right triangle ABC,

A

B C

we have AB2 +BC2 = AC2.

Proof. Again, this is clear with coordinates. □

Next, we have the following key result, due to Menelaus:

Theorem 1.37 (Menelaus). In a configuration of the following type, with a triangle
ABC cut by a line FED,

A

F

E

B C D

we have the following formula, with all segments being taken oriented:

AF

FB
· BD
DC
· CE
EA

= −1

Moreover, the converse holds, with this formula guaranteeing that F,E,D are colinear.

Proof. Again, this is clear with coordinates. □
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Next, we have the following remarkable result, due to Ceva:

Theorem 1.38 (Ceva). In a configuration of the following type, with a triangle ABC
containing inner lines AD,BE,CF which cross,

A

F E

B D C

we have the following formula:

AF

FB
· BD
DC
· CE
EA

= 1

Moreover, the converse holds, with this formula guaranteeing that AD,BE,CF cross.

Proof. Again, this is clear with coordinates. □

At a more advanced level now, we have the following key result:

Theorem 1.39. Besides the 4 main centers of a triangle, discussed in the above, many
more remarkable points can be associated to a triangle ABC,

A

B C

and most of these lie on a line, called Euler line of ABC.

Proof. Proving this with coordinates is a good exercise for you, reader. □

Along the same lines, we have as well the following result:

Theorem 1.40. Associated to a triangle ABC,

A

B C

we have as well a nine-point circle, whose center lies on the Euler line.
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Proof. Again, proving this with coordinates is a good exercise for you, reader. □

As a conclusion to all this, coordinates seem to perfom quite well, and you might
probably have this question right now, why not having started the present book with
coordinates. In answer, modesty and patience, this is how math is best learned. We will
actually see right next that our present R2 coordinates can be beaten themselves by some
better coordinates, namely the C ones. So, long story still to go, and ho hurry.

So, let us talk now about complex coordinates. As a starting point, we have:

Theorem 1.41. The complex numbers, z = a + ib with a, b ∈ R and with i being a
formal number satisying i2 = −1, form a field C. Moreover:

(1) We have a field embedding R ⊂ C, given by a→ a+ 0 · i.
(2) Additively, we have C ≃ R2, with z = a+ ib corresponding to (a, b).
(3) The length of vectors r = |z|, with z = a+ ib, is given by r =

√
a2 + b2.

(4) With z = r(cos t+ i sin t), the products z = z′z′′ are given by r = r′r′′, t = t′+ t′′.
(5) We have eit = cos t+ i sin t, so we can write z = reit.
(6) There are N solutions to the equation zN = 1, called N-th roots of unity.
(7) Any degree 2 equation with complex coefficients has both roots in C.

Proof. We have a field, with z−1 = (a− ib)/(a2 + b2), and regarding the rest:

(1) This is clear.

(2) Again, this is clear.

(3) Again, this is clear. Observe also that we have r2 = zz̄, with z̄ = a− ib.

(4) We need here the formulae for the sines and cosines of sums, which are as follows,
coming from some trigonometry, done the old way, with triangles in the plane:

cos(s+ t) = cos s cos t− sin s sin t

sin(s+ t) = sin s cos t+ cos s sin t

Indeed, with these formulae in hand, we have the following computation, as desired:

(cos s+ i sin s)(cos t+ i sin t)

= (cos s cos t+ i2 sin s sin t) + i(sin s cos t+ cos s sin t)

= (cos s cos t− sin s sin t) + i(sin s cos t+ cos s sin t)

= cos(s+ t) + i sin(s+ t)
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(5) This follows from some heavy calculus, namely Taylor formula for exp, sin, cos:

eit =
∞∑
k=0

(it)k

k!

=
∞∑
l=0

(it)2l

(2l)!
+

∞∑
l=0

(it)2l+1

(2l + 1)!

=
∞∑
l=0

(−1)l t
2l

(2l)!
+ i

∞∑
l=0

(−1)l t2l+1

(2l + 1)!

= cos t+ i sin t

(6) This is clear from (5), with z = wk, with w = e2πi/N and k = 0, 1, . . . , N − 1.

(7) This follows in the usual way, with
√
reit = ±

√
reit/2 at the end, using (5). □

Getting now to geometry, using complex numbers, many things can be said here, and
as a sample result, we have a better point of view on the barycenter, as follows:

Theorem 1.42 (Barycenter). Given a triangle ABC, its medians cross,

A

F E

B D C

at a point called barycenter, lying at 1/3− 2/3 on each median.

Proof. Let us call A,B,C ∈ C the coordinates of the vertices A,B,C, and consider
the average P = (A+B + C)/3. We have then:

P =
1

3
· A+

2

3
· B + C

2

Thus P lies on the median emanating from A, and a similar argument shows that P
lies as well on the medians emanating from B,C. Thus, we have our barycenter. □

At a more advanced level, many interesting things can be done in relation with or-
thogonality, which in complex coordinates reads:

x ⊥ y ⇐⇒ x

y
∈ iR

Also, the equations of circles are now something simpler, as follows:

|x− c| = r
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As an application of this technology, we have the following result:

Theorem 1.43. Given a triangle ABC, the following happen:

(1) The angle bisectors cross, at a point called incenter.
(2) The perpendicular bisectors cross, at a point called circumcenter.
(3) The altitudes cross, at a point called orthocenter.

Proof. Again, such things can be proved with complex coordinates. We will actually
leave some of the calculations here as an instructive exercise for you, reader. □

1e. Exercises

Exercises:

Exercise 1.44.

Exercise 1.45.

Exercise 1.46.

Exercise 1.47.

Exercise 1.48.

Exercise 1.49.

Exercise 1.50.

Exercise 1.51.

Bonus exercise.



CHAPTER 2

Projective plane

2a. Projective plane

Welcome to projective geometry. In order to have the parallel lines crossing, which is
something that would be desirable, here are some axioms, to start with:

Definition 2.1. A projective space is a space consisting of points and lines, subject
to the following conditions:

(1) Each 2 points determine a line.
(2) Each 2 lines cross, on a point.

Obviously, this is something quite general, because a line itself is a projective space,
in the above sense. Note that a circle is a projective space too, in the above sense. We
will be back to such trivial examples later, when talking further axiomatization.

The main example that we will be interested in, in this chapter, is as follows:

Definition 2.2. The projective plane, denoted P 2
R, is the space of lines in R3 passing

through the origin. To be more precise:

(1) We call each of the lines in R3 passing through the origin a point of P 2
R.

(2) We also call each plane in R3 passing through the origin a line of P 2
R.

And in the hope that you will not find this too confusing, but no worries, we will get
used to this, which is something quite clever, as we will soon discover.

Getting started with our study, in relation with Definition 2.1, observe that the fol-
lowing happen, in relation with the points and lines of P 2

R, as constructed above:

(1) Each 2 points determine a line. Indeed, 2 points in our sense means 2 lines in R3

passing through the origin, and these 2 lines obviously determine a plane in R3 passing
through the origin, namely the plane they belong to, which is a line in our sense.

(2) Each 2 lines cross, on a point. Indeed, 2 lines in our sense means 2 planes in R3

passing through the origin, and these 2 planes obviously determine a line in R3 passing
through the origin, namely their intersection, which is a point in our sense.

As a conclusion to this, what we have is a projective space in the sense of Definition
2.1. Let us record this finding as a theorem, as follows:

33
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Theorem 2.3. The projective plane P 2
R is a projective space, in the sense that:

(1) Each 2 points determine a line.
(2) Each 2 lines cross, on a point.

Proof. This follows indeed form the above discussion. □

In order to concretely deal now with P 2
R, say by using coordinates, as we would prefer,

several methods are available. We first have the following result:

Theorem 2.4. The projective plane P 2
R appears, alternatively, as the quotient

P 2
R = R3 − {0}/ ∼

with ∼ being the proportionality of vectors, given by x ∼ y when x = λy, with λ ̸= 0.

Proof. We know that the projective plane P 2
R appears by definition as the space of

lines in R3 passing through the origin, and this gives the result. □

As a continuation of this, we can restrict if we want the attention to the vectors on
the unit sphere S2

R ⊂ R3, and this because any line in R3 passing through the origin will
certainly cross this sphere. We are led in this way to the following result:

Theorem 2.5. The projective plane P 2
R appears also as the quotient

P 2
R = S2

R/ ∼

with ∼ being the proportionality of vectors on the sphere, given by x ∼ y when x = ±y.

Proof. According to the discussion above, we can restrict the attention to the vectors
on the sphere S2

R ⊂ R3, and this gives the following formula, with ∼ standing as before
for the proportionality of vectors in space, given by x ∼ y when x = λy, with λ ̸= 0:

P 2
R = S2

R/ ∼

But, it is clear that our line will cross the sphere in exactly two points ±x, and we
conclude that we have the formula in the statement. □

Many other things can be said, as a continuation of the above, and notably in relation
with the picture for P 2

R coming from Theorem 2.5. We will be back to this.

2b. Projective geometry

Time now to do some projective geometry. Following the material in chapter 1, let us
start with the following key result, due to Menelaus:
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Theorem 2.6 (Menelaus). In a configuration of the following type, with a triangle
ABC cut by a line FED,

A

F

E

B C D

we have the following formula, with all segments being taken oriented:

AF

FB
· BD
DC
· CE
EA

= −1

Moreover, the converse holds, with this formula guaranteeing that F,E,D are colinear.

Proof. This is indeed best viewed in the projective geometry setting. □

Next, we have the following remarkable result, due to Ceva:

Theorem 2.7 (Ceva). In a configuration of the following type, with a triangle ABC
containing inner lines AD,BE,CF which cross,

A

F E

B D C

we have the following formula:

AF

FB
· BD
DC
· CE
EA

= 1

Moreover, the converse holds, with this formula guaranteeing that AD,BE,CF cross.

Proof. Again, this is best viewed in the projective geometry setting. □

Many other things can be said, as a continuation of the above, for instance with some
theory for the curves in the projective plane. We will be back to this.
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2c. Shape, embeddings

Back now to the projective plane itself, this remains a quite mysterious object. Re-
garding its shape, we have the following result, formulated of course quite informally:

Theorem 2.8. The projective plane P 2
R is some sort of twisted sphere.

Proof. All this is of course a bit informal, the idea being as follows:

(1) We know that P 2
R corresponds to the upper hemisphere of the sphere S2

R ⊂ R3,
with the points on the equator identified via x = −x. Topologically speaking, we can
deform if we want the hemisphere into a square, with the equator becoming the boundary
of this square, and in this picture, the x = −x identification corresponds to a “identify
opposite edges, with opposite orientations” folding method for the square:

◦ // ◦

��
◦

OO

◦oo

(2) Thus, we have our space. In order to understand now what this beast is, let us
look first at the other 3 possible methods of folding the square, which are as follows:

◦ // ◦

◦

OO

// ◦

OO ◦ // ◦

��
◦ //

OO

◦

◦ // ◦

◦

OO

◦oo

OO

Regarding the first space, the one on the left, things here are quite simple. Indeed,
when identifying the solid edges we get a cylinder, and then when further identifying the
dotted edges, what we get is some sort of closed cylinder, which is a torus.

(3) Regarding the second space, the one in the middle, things here are more tricky.
Indeed, when identifying the solid edges we get again a cylinder, but then when further
identifying the dotted edges, we obtain some sort of “impossible” closed cylinder, called
Klein bottle. This Klein bottle obviously cannot be drawn in 3 dimensions, but with a
bit of imagination, you can see it, in its full splendor, in 4 dimensions.

(4) Finally, regarding the third space, the one on the right, we know by symmetry that
this must be the Klein bottle too. But we can see this as well via our standard folding
method, namely identifying solid edges first, and dotted edges afterwards. Indeed, we
first obtain in this way a Möbius strip, and then, well, the Klein bottle.



2C. SHAPE, EMBEDDINGS 37

(5) With these preliminaries made, and getting back now to the projective space P 2
R,

we can see that this is something more complicated, of the same type, reminding the torus
and the Klein bottle. So, we will call it “sort of twisted sphere”, as in the statement, and
exercise for you to imagine how this beast looks like, in 4 dimensions. □

All this is quite exciting, and reminds childhood and primary school, but is however a
bit tiring for our neurons, guess that is pure mathematics. It is possible to come up with
some explicit formulae for the embedding P 2

R ⊂ R4, which are useful in practice, allowing
us to do some analysis over P 2

R, and we will leave this as an instructive exercise.

There is some linear algebra to be done here too, by identifying the lines in R3 with
the corresponding rank 1 projections, along with many other things, and we have:

Theorem 2.9. The projective space P 2
R can be thought of as being the space of rank 1

projections in the matrix algebra M3(R), given by

Px =
1

||x||2
(xixj)ij

by identifying the lines in R3 passing through the origin with the corresponding rank 1
projections in M3(R), in the obvious way.

Proof. There are several things going on here, the idea being as follows:

(1) The main assertion is more or less clear from definitions, the point being that the
lines in R3 passing through the origin are obviously in bijection with the corresponding
rank 1 projections. Thus, we obtain the interpretation of P 2

R in the statement.

(2) Regarding now the formula of the rank 1 projections, which is a must-know, for
this, and in everyday life, consider a vector y ∈ R3. Its projection on Rx must be a certain
multiple of x, and we are led in this way to the following formula:

Pxy =
< y, x >

< x, x >
x =

1

||x||2
< y, x > x

(3) But with this in hand, we can now compute the entries of Px, as follows:

(Px)ij = < Pxej, ei >

=
1

||x||2
< ej, x >< x, ei >

=
xjxi
||x||2

Thus, we are led to the formula in the statement. □

Regarding now embeddings of P 2
R into Euclidean spaces Rn, many things can be said,

with a straightforward construction here being as follows:
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Theorem 2.10. The projective space P 2
R is a smooth manifold, with charts

(x1, x2, x3)→
(
x1
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

x3
xi

)
where xi ̸= 0. This manifold is compact, and of dimension 2.

Proof. We know that P 2
R appears as the space of lines in R3 passing through the

origin, so we have the following formula, with ∼ being the proportionality of vectors,
given as usual by x ∼ y when x = λy, for some scalar λ ̸= 0:

P 2
R = R3 − {0}/ ∼

With this discussion made, let us get now to what is to be proved. Obviously, once
we fix an index i ∈ {1, . . . , 3}, the condition xi ̸= 0 on the vectors x ∈ R3 − {0} defines
an open subset Ui ⊂ P 2

R, and the open subsets that we get in this way cover P 2
R:

P 2
R = U1 ∪ . . . ∪ U3

Moreover, the map in the statement is injective Ui → R2, and it is clear too that the
changes of charts are C∞. Thus, we have our smooth manifold, as claimed. □

Many other things can be said about P 2
R, and we will be back to this.

2d. Curves and more

Curves and more.

2e. Exercises

Exercises:

Exercise 2.11.

Exercise 2.12.

Exercise 2.13.

Exercise 2.14.

Exercise 2.15.

Exercise 2.16.

Exercise 2.17.

Exercise 2.18.

Bonus exercise.



CHAPTER 3

Projective space

3a. Projective space

Welcome to projective geometry, this time in 3 or more dimensions. In order to have
the parallel lines crossing, we use the same axioms as before, namely:

Definition 3.1. A projective space is a space consisting of points and lines, subject
to the following conditions:

(1) Each 2 points determine a line.
(2) Each 2 lines cross, on a point.

As noted before in chapter 2, this formalism is something quite general, because a line
itself is a projective space, in the above sense. Note that a circle is a projective space too,
in the above sense. More on these trivial examples in a moment.

The main example that we will be interested in, in this chapter, is as follows:

Definition 3.2. The real projective space, denoted PN−1
R , is the space of lines in RN

passing through the origin. To be more precise:

(1) We call each of the lines in RN passing through the origin a point of PN−1
R .

(2) We also call each plane in RN passing through the origin a line of PN−1
R .

Getting started with this, in relation with Definition 3.1, observe that the following
happen, in relation with the points and lines of PN−1

R , as constructed above:

(1) Each 2 points determine a line. Indeed, 2 points in our sense means 2 lines in RN

passing through the origin, and these 2 lines obviously determine a plane in RN passing
through the origin, namely the plane they belong to, which is a line in our sense.

(2) Each 2 lines cross, on a point. Indeed, 2 lines in our sense means 2 planes in RN

passing through the origin, and these 2 planes obviously determine a line in RN passing
through the origin, namely their intersection, which is a point in our sense.

Let us record this finding as a theorem, as follows:

Theorem 3.3. The space PN−1
R is indeed a projective space, in the sense that each 2

points determine a line, and each 2 lines cross, on a point.

39
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Proof. This follows indeed form the above discussion. □

In order to concretely deal now with PN−1
R , say by using coordinates, as we would

prefer, several methods are available. We first have the following result:

Theorem 3.4. The projective plane PN−1
R appears, alternatively, as the quotient

PN−1
R = RN − {0}/ ∼

with ∼ being the proportionality of vectors, given by x ∼ y when x = λy, with λ ̸= 0.

Proof. We know that the projective plane PN−1
R appears by definition as the space

of lines in RN passing through the origin, and this gives the result. □

As a continuation of this, we can restrict if we want the attention to the vectors on
the unit sphere SN−1

R ⊂ RN , and this because any line in RN passing through the origin
will certainly cross this sphere. We are led in this way to the following result:

Theorem 3.5. The projective plane PN−1
R appears also as the quotient

PN−1
R = SN−1

R / ∼

with ∼ being the proportionality of vectors on the sphere, given by x ∼ y when x = ±y.

Proof. According to the discussion above, we can restrict the attention to the vectors
on the sphere SN−1

R ⊂ RN , and this gives the following formula, with ∼ standing as before
for the proportionality of vectors in space, given by x ∼ y when x = λy, with λ ̸= 0:

P 2
R = S2

R/ ∼

But, it is clear that our line will cross the sphere in exactly two points ±x, and we
conclude that we have the formula in the statement. □

Many other things can be said, as a continuation of the above, and notably in relation
with the picture for PN−1

R coming from Theorem 3.5. To be more precise, we have:

Theorem 3.6. In small dimensions, the projective space PN−1
R is as follows:

(1) P 1
R is the usual circle.

(2) P 2
R is some sort of twisted sphere.

Proof. We have several assertions here, with all this being of course a bit informal,
and self-explanatory, the idea and some further details being as follows:
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(1) At N = 2, a line in R2 passing through the origin corresponds to 2 opposite points
on the unit circle T ⊂ R2, according to the following scheme:

•

||

• •

<<

•

Thus, P 1
R corresponds to the upper semicircle of T, with the endpoints identified, and

so we obtain a circle, P 1
R = T, according to the following scheme:

•

• // •oo

(2) At N = 3, this is something that we already know, from chapter 2. □

There is some linear algebra to be done here too, by identifying the lines in RN with
the corresponding rank 1 projections, along with many other things, and we have:

Theorem 3.7. The projective space PN−1
R can be thought of as being the space of rank

1 projections in the matrix algebra MN(R), given by

Px =
1

||x||2
(xixj)ij

by identifying the lines in RN passing through the origin with the corresponding rank 1
projections in MN(R), in the obvious way.

Proof. There are several things going on here, the idea being as follows:

(1) The main assertion is more or less clear from definitions, the point being that the
lines in RN passing through the origin are obviously in bijection with the corresponding
rank 1 projections. Thus, we obtain the interpretation of PN−1

R in the statement.
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(2) Regarding now the formula of the rank 1 projections, which is a must-know, for
this, and in everyday life, consider a vector y ∈ RN . Its projection on Rx must be a
certain multiple of x, and we are led in this way to the following formula:

Pxy =
< y, x >

< x, x >
x =

1

||x||2
< y, x > x

(3) But with this in hand, we can now compute the entries of Px, as follows:

(Px)ij = < Pxej, ei >

=
1

||x||2
< ej, x >< x, ei >

=
xjxi
||x||2

Thus, we are led to the formula in the statement. □

Regarding now embeddings of PN−1
R into Euclidean spaces Rn, many things can be

said, with a straightforward construction here being as follows:

Theorem 3.8. The projective space PN−1
R is a smooth manifold, with charts

(x1, . . . , xN)→
(
x1
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xN
xi

)
where xi ̸= 0. This manifold is compact, and of dimension N − 1.

Proof. We know that PN−1
R appears as the space of lines in RN passing through

the origin, so we have the following formula, with ∼ being the proportionality of vectors,
given as usual by x ∼ y when x = λy, for some scalar λ ̸= 0:

PN−1
R = RN − {0}/ ∼

Alternatively, we can restrict if we want the attention to the vectors on the unit sphere
SN−1
R ⊂ RN , and this because any line in RN passing through the origin will certainly

cross this sphere. Moreover, it is clear that our line will cross the sphere in exactly two
points ±x, and we conclude that we have the following formula, with ∼ being now the
proportionality of vectors on the sphere, given by x ∼ y when x = ±y:

PN−1
R = SN−1

R / ∼
With this discussion made, let us get now to what is to be proved. Obviously, once

we fix an index i ∈ {1, . . . , N}, the condition xi ̸= 0 on the vectors x ∈ RN − {0} defines
an open subset Ui ⊂ PN−1

R , and the open subsets that we get in this way cover PN−1
R :

PN−1
R = U1 ∪ . . . ∪ UN

Moreover, the map in the statement is injective Ui → RN−1, and it is clear too that
the changes of charts are C∞. Thus, we have our smooth manifold, as claimed. □
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3b. Three dimensions

Let us restrict now the attention to the 3D case. We have here:

Definition 3.9. The real projective space, denoted P 3
R, is the space of lines in R4

passing through the origin. To be more precise:

(1) We call each of the lines in R4 passing through the origin a point of P 3
R.

(2) We also call each plane in R4 passing through the origin a line of P 3
R.

In order to concretely deal now with P 3
R, say by using coordinates, as we would prefer,

several methods are available. We first have the following result:

Theorem 3.10. The projective space P 3
R appears, alternatively, as the quotient

P 3
R = R4 − {0}/ ∼

with ∼ being the proportionality of vectors, given by x ∼ y when x = λy, with λ ̸= 0.

Proof. We know that the projective space P 3
R appears by definition as the space of

lines in R4 passing through the origin, and this gives the result. □

As a continuation of this, we can restrict if we want the attention to the vectors on
the unit sphere S3

R ⊂ R4, and this because any line in R4 passing through the origin will
certainly cross this sphere. We are led in this way to the following result:

Theorem 3.11. The projective space P 3
R appears also as the quotient

P 3
R = S3

R/ ∼
with ∼ being the proportionality of vectors on the sphere, given by x ∼ y when x = ±y.

Proof. According to the discussion above, we can restrict the attention to the vectors
on the sphere S3

R ⊂ R4, and this gives the following formula, with ∼ standing as before
for the proportionality of vectors in space, given by x ∼ y when x = λy, with λ ̸= 0:

P 3
R = S3

R/ ∼
But, it is clear that our line will cross the sphere in exactly two points ±x, and we

conclude that we have the formula in the statement. □

There is some linear algebra to be done here too, and we have:

Theorem 3.12. The projective space P 3
R can be thought of as being the space of rank

1 projections in the matrix algebra M4(R), given by

Px =
1

||x||2
(xixj)ij

by identifying the lines in R4 passing through the origin with the corresponding rank 1
projections in M4(R), in the obvious way.

Proof. This is indeed something quite self-explanatory. □
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Many other things can be said about P 3
R, as a continuation of this.

3c. Curves, surfaces

Curves, surfaces.

3d. Higher dimensions

Higher dimensions.

3e. Exercises

Exercises:

Exercise 3.13.

Exercise 3.14.

Exercise 3.15.

Exercise 3.16.

Exercise 3.17.

Exercise 3.18.

Exercise 3.19.

Exercise 3.20.

Bonus exercise.



CHAPTER 4

Generalizations

4a. Arbitrary fields

We discuss here some generalizations of the theory that we have, the idea being that
we can talk about projective spaces over arbitrary fields, in the obvious way.

Let us start with some field theory preliminaries. We first have:

Definition 4.1. A field is a set F with a sum operation + and a product operation
×, subject to the following conditions:

(1) a + b = b + a, a + (b + c) = (a + b) + c, there exists 0 ∈ F such that a + 0 = 0,
and any a ∈ F has an inverse −a ∈ F , satisfying a+ (−a) = 0.

(2) ab = ba, a(bc) = (ab)c, there exists 1 ∈ F such that a1 = a, and any a ̸= 0 has a
multiplicative inverse a−1 ∈ F , satisfying aa−1 = 1.

(3) The sum and product are compatible via a(b+ c) = ab+ ac.

Apparently, the simplest possible field is Q. However, this is not exactly true, because,
by a strange twist of fate, the numbers 0, 1, whose presence in a field is mandatory,
0, 1 ∈ F , can form themselves a field, with addition as follows:

1 + 1 = 0

To be more precise, according to our field axioms, we certainly must have:

0 + 0 = 0× 0 = 0× 1 = 1× 0 = 0

0 + 1 = 1 + 0 = 1× 1 = 1

Thus, everything regarding the addition and multiplication of 0, 1 is uniquely deter-
mined, except for the value of 1 + 1. And here, you would say that we should normally
set 1 + 1 = 2, with 2 ̸= 0 being a new field element, but the point is that 1 + 1 = 0 is
something natural too, this being the addition modulo 2:

1 + 1 = 0(2)

And, what we get in this way is a field, denoted as follows:

F2 = {0, 1}
Let us summarize this finding, along with a bit more, obtained by suitably replacing

our 2, used for addition, with an arbitrary prime number p, as follows:

45
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Theorem 4.2. The following happen:

(1) Q is the simplest field having the property 1 + . . .+ 1 ̸= 0, in the sense that any
field F having this property must contain it, Q ⊂ F .

(2) The property 1 + . . .+ 1 ̸= 0 can hold or not, and if not, the smallest number of
terms needed for having 1 + . . .+ 1 = 0 is a certain prime number p.

(3) Fp = {0, 1, . . . , p − 1}, with p prime, is the simplest field having the property
1 + . . .+ 1 = 0, with p terms, in the sense that this implies Fp ⊂ F .

Proof. All this is basic number theory, the idea being as follows:

(1) This is clear, because 1 + . . .+ 1 ̸= 0 tells us that we have an embedding N ⊂ F ,
and then by taking inverses with respect to + and × we obtain Q ⊂ F .

(2) Again, this is clear, because assuming 1 + . . . + 1 = 0, with p = ab terms, chosen
minimal, we would have a formula as follows, which is a contradiction:

(1 + . . .+ 1︸ ︷︷ ︸
a terms

)(1 + . . .+ 1︸ ︷︷ ︸
b terms

) = 0

(3) This follows a bit as in (1), with the copy Fp ⊂ F consisting by definition of the
various sums of type 1 + . . .+ 1, which must cycle modulo p, as shown by (2). □

Getting back now to our philosophical discussion regarding numbers, what we have in
Theorem 4.2 is not exactly good news, suggesting that, on purely mathematical grounds,
there is a certain rivalry between Q and Fp, as being the simplest field.

So, which of these two fields shall we study here, say as having been created first? Not
an easy question, and as an answer to this, we have:

Answer 4.3. Ignoring what pure mathematics might say, and trusting instead physics
and chemistry, we will choose to trust in Q, as being the simplest field.

In short, welcome to science, and with this being something quite natural for us,
mathematics and science being the topic of the present book.

Moving ahead with some more arithmetic, inside Q and perhaps other fields too, let
us start with the following key theorem of Fermat, for the usual integers:

Theorem 4.4. We have the following congruence, for any prime p,

ap = a(p)

called Fermat’s little theorem.
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Proof. The simplest way is to do this by recurrence on a ∈ N, as follows:

(a+ 1)p =

p∑
k=0

(
p

k

)
ak

= ap + 1(p)

= a+ 1(p)

Here we have used the fact that all non-trivial binomial coefficients
(
p
k

)
are multiples

of p, as shown by a close inspection of these binomial coeffients, given by:(
p

k

)
=
p(p− 1) . . . (p− k + 1)

k!

Thus, we have the result for any a ∈ N, and with the case p = 2 being trivial, we can
assume p ≥ 3, and here by using a→ −a we get it for any a ∈ Z, as desired. □

The Fermat theorem is particularly interesting when extended from the integers to
the arbitrary field case. In order to discuss this question, let us start with:

Theorem 4.5. Given a field F , define its characteristic p = char(F ) as being the
smallest p ∈ N such that the following happens, and as p = 0, if this never happens:

1 + . . .+ 1︸ ︷︷ ︸
p times

= 0

Then, assuming p > 0, this characteristic p must be a prime number, we have a field
embedding Fp ⊂ F , and q = |F | must be of the form q = pk, with k ∈ N.

Proof. Very crowded statement that we have here, the idea being as follows:

(1) The fact that p > 0 must be prime comes by contradiction, by using:

(1 + . . .+ 1︸ ︷︷ ︸
a times

)× (1 + . . .+ 1︸ ︷︷ ︸
b times

) = 1 + . . .+ 1︸ ︷︷ ︸
ab times

Indeed, assuming that we have p = ab with a, b > 1, the above formula corresponds
to an equality of type AB = 0 with A,B ̸= 0 inside F , which is impossible.

(2) Back to the general case, F has a smallest subfield E ⊂ F , called prime field,
consisting of the various sums 1 + . . . + 1, and their quotients. In the case p = 0 we
obviously have E = Q. In the case p > 0 now, the multiplication formula in (1) shows
that the set S = {1 + . . .+ 1} is stable under taking quotients, and so E = S.

(3) Now with E = S in hand, we obviously have (E,+) = Zp, and since the multipli-
cation is given by the formula in (1), we conclude that we have E = Fp, as a field. Thus,
in the case p > 0, we have constructed an embedding Fp ⊂ F , as claimed.

(4) In the context of the above embedding Fp ⊂ F , we can say that F is a vector space
over Fp, and so we have |F | = pk, with k ∈ N being the dimension of this space. □
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In relation with Fermat, we can extend the trick in the proof there, as follows:

Proposition 4.6. In a field F of characteristic p > 0 we have

(a+ b)p = ap + bp

for any two elements a, b ∈ F .

Proof. We have indeed the computation, exactly as in the proof of Fermat, by using
the fact that the non-trivial binomial coefficients are all multiples of p:

(a+ b)p =

p∑
k=0

(
p

k

)
akbp−k = ap + bp

Thus, we are led to the conclusion in the statement. □

Observe that we can iterate the Fermat formula, and we obtain (a+ b)r = ar + br for
any power r = ps. In particular we have, with q = |F |, the following formula:

(a+ b)q = aq + bq

But this is something quite interesting, showing that the following subset of F , which
is closed under multiplication, is closed under addition too, and so is a subfield:

E =
{
a ∈ F

∣∣∣aq = a
}

So, what is this subfield E ⊂ F? In the lack of examples, or general theory for subfields
E ⊂ F , we are a bit in the dark here, but it seems quite reasonable to conjecture that we
have E = F . Thus, our conjecture would be that we have the following formula, for any
a ∈ F , and with this being the field extension of the Fermat theorem itself:

aq = a

Now that we have our conjecture, let us think at a potential proof. And here, by
looking at the proof of the Fermat theorem, the recurrence method from there, based on
a→ a+ 1, cannot work as such, and must be suitably fine-tuned.

Thinking a bit, the recurrence from the proof of Fermat somehow rests on the fact
that the additive group Z is singly generated, by 1 ∈ Z. Thus, we need some sort of field
extension of this single generation result, and in the lack of something additive here, the
following theorem, which is something multiplicative, comes to the rescue:

Theorem 4.7. Given a field F , any finite subgroup of its multiplicative group

G ⊂ F − {0}

must be cyclic.
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Proof. This can be done via some standard arithmetics, as follows:

(1) Let us pick an element g ∈ G of highest order, n = ord(g). Our claim, which will
easily prove the result, is that the order m = ord(h) of any h ∈ G satisfies m|n.

(2) In order to prove this claim, let d = (m,n), write d = am+ bn with a, b ∈ Z, and
set k = gahb. We have then the following computations:

km = gamhbm = gam = gd−bn = gd

kn = ganhbn = hbn = hd−am = hd

By using either of these formulae, say the first one, we obtain:

k[m,n] = kmn/d = (km)n/d = (gd)n/d = gn = 1

Thus ord(k)|[m,n], and our claim is that we have in fact ord(k) = [m,n].

(3) In order to prove this latter claim, assume first that we are in the case d = 1.
But here the result is clear, because the formulae in (2) read g = km, h = gn, and since
n = ord(g),m = ord(g) are prime to each other, we conclude that we have ord(k) = mn,
as desired. As for the general case, where d is arbitrary, this follows from this.

(4) Summarizing, we have proved our claim in (2). Now since the order n = ord(g)
was assumed to be maximal, we must have [m,n]|n, and so m|n. Thus, we have proved
our claim in (1), namely that the order m = ord(h) of any h ∈ G satisfies m|n.

(5) But with this claim in hand, the result follows. Indeed, since the polynomial xn−1
has all the elements h ∈ G as roots, its degree must satisfy n ≥ |G|. On the other hand,
from n = ord(g) with g ∈ G, we have n||G|. We therefore conclude that we have n = |G|,
which shows that G is indeed cyclic, generated by the element g ∈ G. □

We can now extend the Fermat theorem to the finite fields, as follows:

Theorem 4.8. Given a finite field F , with q = |F | we have

aq = a

for any a ∈ F .

Proof. According to Theorem 4.7 the multiplicative group F −{0} is cyclic, of order
q − 1. Thus, the following formula is satisfied, for any a ∈ F − {0}:

aq−1 = 1

Now by multiplying by a, we are led to the conclusion in the statement, with of course
the remark that the formula there trivially holds for a = 0. □

The Fermat polynomial Xp −X is something very useful, and its field generalization
Xq−X, with q = pk prime power, can be used in order to elucidate the structure of finite
fields. In order to discuss this question, let us start with a basic fact, as follows:
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Proposition 4.9. Given a finite field F , we have

Xq −X =
∏
a∈F

(X − a)

with q = |F |.

Proof. We know from the Fermat theorem above that we have aq = a, for any a ∈ F .
We conclude from this that all the elements a ∈ F are roots of the polynomial Xq −X,
and so this polynomial must factorize as in the statement. □

The continuation of the story is more complicated, as follows:

Theorem 4.10. For any prime power q = pk there is a unique field Fq having q
elements. At k = 1 this is the usual Fp, and in general, this is the field making

Xq −X =
∏
a∈F

(X − a)

happen, in some abstract algebraic sense.

Proof. We are punching here a bit above our weight, the idea being as follows:

(1) At k = 1 there is nothing much to be said, because the prime field embedding
Fp ⊂ F found in Theorem 4.2 must be an isomorphism. Thus, done with this.

(2) At k ≥ 2 however, both the construction and uniqueness of Fq are non-trivial.
However, the idea is not that complicated. Indeed, instead of struggling first with finding
a model for Fq, and then struggling some more with proving the uniqueness, the point is
that we can solve both these problems, at the same time, by looking at Xq −X.

(3) To be more precise, this polynomial Xq − X must have some sort of abstract,
minimal “splitting field”, and this is how Fq comes, both existence and uniqueness. We
will be back to this, which is something non-trivial, later in this book, with details. □

4b. Discrete geometry

Getting now to geometry over finite fields, we have here the following result:

Theorem 4.11. Given a field F , we can talk about the projective plane P 2
F , as being

the space of lines in F 3 passing through the origin, having cardinality

|P 2
F | = q2 + q + 1

where q = |F |, in the case where our field F is finite.

Proof. This is indeed clear from definitions, with the cardinality coming from:

|P 2
F | =

|F 3 − {0}|
|F − {0}|

=
q3 − 1

q − 1
= q2 + q + 1

Thus, we are led to the conclusions in the statement. □
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As an example, let us see what happens for the simplest finite field that we know,
namely F = F2. Here our projective plane, having 4 + 2 + 1 = 7 points, and 7 lines, is a
famous combinatorial object, called Fano plane, which is depicted as follows:

•

• •
•

• • •

Here the circle in the middle is by definition a line, and with this convention, the basic
axioms for projective geometry are satisfied, in the sense that any two points determine
a line, and any two lines determine a point. And isn’t this beautiful.

4c. Complex numbers

Getting now the complex setting, we have here, exactly as in the real case:

Definition 4.12. We can define the complex projective space PN−1
C as being the space

of complex lines in CN passing through the origin.

As an alternative definition, based this time on linear algebra, we have:

Theorem 4.13. The complex projective space PN−1
C is the space of rank 1 projections

in the matrix algebra MN(C), given by

Px =
1

||x||2
(xix̄j)ij

by identifying the lines in CN passing through the origin with the corresponding rank 1
projections in MN(C), in the obvious way.

Proof. All this follows indeed via the same arguments as in the real case. □

Talking now differential geometry, the complex projective space PN−1
C is a smooth

compact manifold, having complex dimension N − 1.

4d. Complex geometry

Complex geometry.
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4e. Exercises

Exercises:

Exercise 4.14.

Exercise 4.15.

Exercise 4.16.

Exercise 4.17.

Exercise 4.18.

Exercise 4.19.

Exercise 4.20.

Exercise 4.21.

Bonus exercise.



Part II

Projective manifolds



That’s why I go for that rock and roll music
Any old way you choose it

It’s got a back beat, you can’t lose it
Any old time you use it



CHAPTER 5

Bézout theorem

5a. Plane curves

Plane curves.

5b. Intersections

Intersections.

5c. Bézout theorem

Bézout theorem.

5d. Some applications

Some applications.

5e. Exercises

Exercises:

Exercise 5.1.

Exercise 5.2.

Exercise 5.3.

Exercise 5.4.

Exercise 5.5.

Exercise 5.6.

Exercise 5.7.

Exercise 5.8.

Bonus exercise.
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CHAPTER 6

Abstract algebra

6a. Abstract algebra

Let us get now to R3. Here we are right away into a dillema, because the plane curves
have two possible generalizations. First we have the algebraic curves in R3:

Definition 6.1. An algebraic curve in R3 is a curve as follows,

C =
{
(x, y, z) ∈ R3

∣∣∣P (x, y, z) = 0, Q(x, y, z) = 0
}

appearing as the joint zeroes of two polynomials P,Q.

These curves look of course like the usual plane curves, and at the level of the phe-
nomena that can appear, these are similar to those in the plane, involving singularities
and so on, but also knotting, which is a new phenomenon. However, it is hard to say
something with bare hands about knots. We will be back to this, later in this book.

On the other hand, as another natural generalization of the plane curves, and this
might sound a bit surprising, we have the surfaces in R3, constructed as follows:

Definition 6.2. An algebraic surface in R3 is a surface as follows,

S =
{
(x, y, z) ∈ R3

∣∣∣P (x, y, z) = 0
}

appearing as the zeroes of a polynomial P .

The point indeed is that, as it was the case with the plane curves, what we have here
is something defined by a single equation. And with respect to many questions, having a
single equation matters a lot, and this is why surfaces in R3 are “simpler” than curves in
R3. In fact, believe me, they are even the correct generalization of the curves in R2.

As an example of what can be done with surfaces, which is very similar to what we
did with the conics C ⊂ R2 before, we have the following result:

Theorem 6.3. The degree 2 surfaces S ⊂ R3, called quadrics, are the ellipsoid(x
a

)2
+
(y
b

)2
+
(z
c

)2
= 1

which is the only compact one, plus 16 more, which can be explicitly listed.
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Proof. We will be quite brief here, because we intend to rediscuss all this in a
moment, with full details, in arbitrary N dimensions, the idea being as follows:

(1) The equations for a quadric S ⊂ R2 are best written as follows, with A ∈ M3(R)
being a matrix, B ∈M1×3(R) being a row vector, and C ∈ R being a constant:

< Au, u > +Bu+ C = 0

(2) By doing now the linear algebra, and we will come back to this in a moment, with
details, or by invoking the theorem of Sylvester on quadratic forms, we are left, modulo
degeneracy and linear transformations, with signed sums of squares, as follows:

±x2 ± y2 ± z2 = 0, 1

(3) Thus the sphere is the only compact quadric, up to linear transformations, and by
applying now linear transformations to it, we are led to the ellipsoids in the statement.

(4) As for the other quadrics, there are many of them, a bit similar to the parabolas
and hyperbolas in 2 dimensions, and some work here leads to a 16 item list. □

With this done, instead of further insisting on the surfaces S ⊂ R3, or getting into
their rivals, the curves C ⊂ R3, which appear as intersections of such surfaces, C = S∩S ′,
let us get instead to arbitrary N dimensions, see what the axiomatics looks like there,
with the hope that this will clarify our dimensionality dillema, curves vs surfaces.

So, moving to N dimensions, we have here the following definition, to start with:

Definition 6.4. An algebraic hypersurface in RN is a space of the form

S =
{
(x1, . . . , xN) ∈ RN

∣∣∣P (x1, . . . , xN) = 0,∀i
}

appearing as the zeroes of a polynomial P ∈ R[x1, . . . , xN ].

Again, this is a quite general definition, covering both the plane curves C ⊂ R and
the surfaces S ⊂ R2, which is certainly worth a systematic exploration. But, no hurry
with this, for the moment we are here for talking definitons and axiomatics.

In order to have now a full collection of beasts, in all possible dimensions N ∈ N, and
of all possible dimensions k ∈ N, we must intersect such algebraic hypersurfaces. We are
led in this way to the zeroes of families of polynomials, as follows:

Definition 6.5. An algebraic manifold in RN is a space of the form

X =
{
(x1, . . . , xN) ∈ RN

∣∣∣Pi(x1, . . . , xN) = 0,∀i
}

with Pi ∈ R[x1, . . . , xN ] being a family of polynomials.
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As a first observation, as already mentioned, such a manifold appears as an intersection
of hypersurfaces Si, those associated to the various polynomials Pi:

X = S1 ∩ . . . ∩ Sr
There is actually a bit of a discussion needed here, regarding the parameter r ∈ N,

shall we allow this parameter to be r = ∞ too, or not. We will discuss this later, with
some algebra helping, the idea being that allowing r =∞ forces in fact r <∞.

As an announcement now, good news, what we have in Definition 6.5 is the good
and final notion of algebraic manifold, very general, and with the branch of mathematics
studying such manifolds being called algebraic geometry. In what follows we will discuss
a bit what can be done with this, as a continuation of our previous work on the plane
curves, at the elementary level. All this will lead us into the conclusion that we must first
develop commutative algebra, and come back to algebraic geometry afterwards.

Let us first look more in detail at the hypersurfaces. We have here:

Theorem 6.6. The degree 2 hypersurfaces S ⊂ RN , called quadrics, are up to degen-
eracy and to linear transformations the hypersurfaces of the following form,

±x21 ± . . .± x2N = 0, 1

and with the sphere being the only compact one.

Proof. We have two statements here, the idea being as follows:

(1) The equations for a quadric S ⊂ RN are best written as follows, with A ∈MN(R)
being a matrix, B ∈M1×N(R) being a row vector, and C ∈ R being a constant:

< Ax, x > +Bx+ C = 0

(2) By doing the linear algebra, or by invoking the theorem of Sylvester on quadratic
forms, we are left, modulo linear transformations, with signed sums of squares:

±x21 ± . . .± x2N = 0, 1

(3) To be more precise, with linear algebra, by evenly distributing the terms xixj
above and below the diagonal, we can assume that our matrix A ∈MN(R) is symmetric.
Thus A must be diagonalizable, and by changing the basis of RN , as to have it diagonal,
our equation becomes as follows, with D ∈MN(R) being now diagonal:

< Dx, x > +Ex+ F = 0

(4) But now, by making squares in the obvious way, which amounts in applying yet
another linear transformation to our quadric, the equation takes the following form, with
G ∈MN(−1, 0, 1) being diagonal, and with H ∈ {0, 1} being a constant:

< Gx, x >= H
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(5) Now barring the degenerate cases, we can further assume G ∈MN(−1, 1), and we
are led in this way to the equation claimed in (2) above, namely:

±x21 ± . . .± x2N = 0, 1

(6) In particular we see that, up to some degenerate cases, namely emptyset and point,
the only compact quadric, up to linear transformations, is the one given by:

x21 + . . .+ x2N = 1

(7) But this is the unit sphere, so are led to the conclusions in the statement. □

Regarding now the examples of hypersurfaces S ⊂ RN , or of more general algebraic
manifolds X ⊂ RN , there are countless of them, and it is impossible to have some discus-
sion started here, without being subjective. The unit sphere SN−1

R ⊂ RN gets of course
the crown from everyone, as being the most important manifold after RN itself. But
then, passed this sphere, things ramify, depending on what exact applications of algebraic
geometry you have in mind. In what concerns me, here is my next favorite example:

Theorem 6.7. The invertible matrices A ∈MN(R) lie outside the hypersurface

detA = 0

and are therefore dense, in the space of all matrices MN(R).

Proof. This is something self-explanatory, but with this result being some key in
linear algebra, all this is worth a detailed discussion, as follows:

(1) We certainly know from basic linear algebra that a matrix A ∈MN(R) is invertible
precisely when it has nonzero determinant, detA ̸= 0. Thus, the invertible matrices
A ∈MN(R) are located precisely in the complement of the following space:

S =
{
A ∈MN(R)

∣∣∣ detA = 0
}

(2) We also know from basic linear algebra, or perhaps not so basic linear algebra,
that the determinant detA is a certain polynomial in the entries of A, of degree N :

det ∈ R[X11, . . . , XNN ]

(3) We conclude from this that the above set S is a degree N algebraic hypersurface
in our sense, in the Euclidean space MN(R) ≃ Rn, with n = N2.

(4) Now since the complements of non-trivial hypersurfaces S ⊂ Rn are obviously
dense, and if needing a formal proof here, for our above hypersurface S this is clear,
simply by suitably perturbing the matrix, and in general do not worry, we will be back
to this, with full details, we are led to the conclusions in the statement. □

As an illustration for the power of our density result, we have:
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Theorem 6.8. Given two matrices A,B ∈MN(R), their products

AB,BA ∈MN(R)

have the same characteristic polynomial, PAB = PBA.

Proof. This is something quite hard to prove with bare hands, but we can trick by
using Theorem 6.7. Indeed, it follows from definitions that the characteristic polynomial
of a matrix is invariant under conjugation, in the sense that we have:

PC = PACA−1

Now observe that, when assuming that A is invertible, we have:

AB = A(BA)A−1

Thus, we obtain the following formula, in the case where A is invertible:

PAB = PBA

Now by using the density result from Theorem 6.7, we conclude that this formula
holds in fact for any matrix A, by continuity, as desired. □

Summarizing, we have some algebraic geometry theory going on, with applications, at
least to questions in linear algebra, and presumably in calculus too. Getting back now to
the basics, it is in fact possible to do even more generally, as follows:

Definition 6.9. An algebraic manifold over a field F is a space of the form

X =
{
(x1, . . . , xN) ∈ FN

∣∣∣Pi(x1, . . . , xN) = 0,∀i
}

with Pi ∈ F [x1, . . . , xN ] being a family of polynomials.

This might seem a bit abstract, but as a first observation, recall that F = C is a field
too, on par with F = R, and even better than it, in certain contexts. For instance quantum
mechanics naturally lives over F = C, instead of our usual F = R. Also, in relation
with questions in linear algebra, a matrix A ∈ MN(R) is much better viewed as matrix
A ∈MN(C), because here it has all N eigenvalues, when counted with multiplicities.

In fact, based on this linear algebra observation, and as our first result in complex
algebraic geometry, we can improve Theorem 6.8, as follows:

Theorem 6.10. Given two matrices A,B ∈MN(C), their products

AB,BA ∈MN(C)

have the same eigenvalues, with the same multiplicities.
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Proof. To start with, Theorem 6.7 holds over C too, with the invertible matrices
A ∈MN(C) being dense, as being complementary to the following hypersurface:

detA = 0

But with this in hand, the trick from the proof of Theorem 6.8 applies, and gives:

PAB = PBA

But this gives the result, because in the complex matrix setting the characteristic
polynomial P encodes the eigenvalues, with multiplicities. □

This was for a first result in complex algebraic geometry, perhaps a bit advanced. At
the level of more elementary things, the first thought goes to the plane algebraic curves,
in a complex sense. But, surprise here, these are the spaces as follows:

C =
{
(x, y) ∈ C2

∣∣∣P (x, y) = 0
}

Now when looking at this formula, we realize that our curve C ⊂ C2 is in fact some-
thing quite complicated, corresponding to a 2-dimensional surface X ⊂ R4. But, no
worries, we will come back to this regularly. In fact, in what follows, we will be jointly
developing our theory over both F = R and F = C, with such questions in mind.

Getting back now to Definition 6.9 as stated, what about other fields F? Good
question, and in answer, I would have a quick exercise for you, as follows:

Exercise 6.11. Prove that for n ≥ 3 the following curve,

xn + yn = 1

has no non-trivial points, x, y ̸= 0, over F = Q.

Such ideas are very old, going back to the ancient Greeks, and there are many things
that can be said about algebraic geometry in its “arithmetic” version, over arbitrary fields
F as above. In fact, this is a point where algebraic geometry really shines, with many
known advanced results in number theory having been obtained in this way. But more
on this later, once we will get more familiar with algebraic geometry over F = R,C.

6b. Rings and modules

As explained above, in order to better understand our algebraic manifolds, and go
beyond what can be done at the elementary level, we are in need of a crash course in
abstract algebra in general, and in commutative algebra in particular, with focus on
ideals of polynomials. Hang on, many abstract things to follow. But this will be a good
investment, useful for topology and for differential geometry too, later in this book.

Let us start with something that we know well, but is worth reminding, namely:
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Definition 6.12. A field is a set F with a sum operation + and a product operation
×, subject to the following conditions:

(1) a + b = b + a, a + (b + c) = (a + b) + c, there exists 0 ∈ F such that a + 0 = 0,
and any a ∈ F has an inverse −a ∈ F , satisfying a+ (−a) = 0.

(2) ab = ba, a(bc) = (ab)c, there exists 1 ∈ F such that a1 = a, and any a ̸= 0 has
an inverse a−1 ∈ F , satisfying aa−1 = 1.

(3) The sum and product are compatible via a(b+ c) = ab+ ac.

In other words, a field satisfies what we can normally expect from “numbers”, and
as basic examples, we have of course Q,R,C. There are many other examples of fields,
along the same lines. We can talk for instance about fields like Q[

√
2], as follows:

Proposition 6.13. The following is an intermediate field Q ⊂ F ⊂ R,

Q[
√
2] =

{
a+ b

√
2
∣∣∣a, b ∈ Q

}
and the same happens for any Q[

√
n], with n ̸= m2 being not a square.

Proof. All the field axioms are clearly satisfied, except perhaps for the inversion
axiom. But this axiom is satisfied too, due to the following formula:

1

a+ b
√
2
=
a− b

√
2

a2 − 2b2

Observe that the denominator is indeed nonzero, due to a2 ̸= 2b2, which follows by
reasoning modulo 2. As for the case of Q[

√
n] with n ̸= m2, this is similar. □

As another observation now, complementary to this, with our field theory we are not
at all away from geometry, quite the opposite. Indeed, while the usual spaces of functions
are obviously not fields, geometry and analysis remain around the corner, due to:

Proposition 6.14. The quotients of complex polynomials, called rational funtions,
when written in reduced form, as follows, with P,Q prime to each other,

f =
P

Q

are well-defined and continuous outside the zeroes Pf ⊂ C of Q, called poles of f :

f : C− Pf → C

Also, these functions are stable under summing, making products and taking inverses,

P

Q
+
R

S
=
PS +QR

QS
,

P

Q
· R
S

=
PR

QS
,

(
P

Q

)−1

=
Q

P

so they form a field C(X), called field of rational functions.
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Proof. Almost everything here is clear from definitions, and with the comment that,
in what regards the term “pole”, this does not come from the Poles who invented this,
but rather from the fact that, when trying to draw the graph of f , or rather imagine that
graph, which takes place in 2+2 = 4 real dimensions, we are faced with some sort of tent,
which is suspended by infinite poles, which lie, guess where, at the poles of f . □

Getting back now to generalities, the simplest example of field appears to be Q.
However, this is not exactly true, because the numbers 0, 1, whose presence in a field is
mandatory, 0, 1 ∈ F , can form themselves a field, with structure as follows:

1 + 1 = 0

To be more precise, according to our field axioms, all operations of type a ∗ b with
a, b = 0, 1 are uniquely determined, except for 1+1. You would say that we must normally
set 1 + 1 = 2, with 2 ̸= 0 being a new field element, but the point is that 1 + 1 = 0 is
something natural too, this being the addition modulo 2. And, what we get is a field:

F2 = {0, 1}

Let us summarize this finding, along with a bit more, as follows:

Proposition 6.15. Q is the simplest field having the property 1 + . . .+ 1 ̸= 0, in the
sense that any field F satisfying this condition must contain Q:

Q ⊂ F

However, in general this fails, for instance for the field F2 = {0, 1}, with addition 1+1 = 0,
and more generally for the field Fp formed by the integers modulo p, with p prime.

Proof. Here the first assertion is clear, because 1 + . . .+ 1 ̸= 0 tells us that we have
an embedding N ⊂ F , and then by taking inverses with respect to + and × we obtain
Q ⊂ F . As for the second assertion, this follows from the above discussion. □

As a conclusion, we have now a taste of field theory, with the various examples in
Propositions 6.13, 6.14, 6.15 giving us an indication, on what field theory looks like.

Getting back to general theory, now that we have scalars, λ ∈ F , let us do some
geometry with them. We have here the following straightforward definition:

Definition 6.16. A vector space V over a field F is a set with a sum operation +
and a multiplication by scalars operation ×, subject to the following conditions:

(1) a + b = b + a, a + (b + c) = (a + b) + c, there exists 0 ∈ V such that a + 0 = 0,
and any a ∈ V has an inverse −a ∈ V , satisfying a+ (−a) = 0.

(2) The multiplication by scalars satisfies (λµ)a = λ(µa) and 1a = a, and is compat-
ible with the vector sum via λ(a+ b) = λa+ λb.
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Obviously, this is something very familiar, and in practice you can deal with abstract
vector spaces as above a bit in the same way as you deal with RN or CN , provided of
course that you take some care, in case the field F has the property 1 + . . . + 1 = 0.
Among others, we have the following result, which helps a lot with everything:

Theorem 6.17. Any finite dimensional vector space V has a basis, and we have

V = FN

with N being the cardinality of the basis, called dimension of V .

Proof. This is something self-explanatory, that you certainly know well in the cases
F = R,C, and exercise for you to remember how all that theory was working, and adapt
it to the case of arbitrary fields F , with the adaptation being straightforward. □

As an application of this, further building on Proposition 6.15, we have:

Theorem 6.18. Given a field F , define its characteristic p = char(F ) as being the
smallest p ∈ N such that the following happens, and as p = 0, if this never happens:

1 + . . .+ 1︸ ︷︷ ︸
p times

= 0

Then, assuming p > 0, this characteristic p must be a prime number, we have a field
embedding Fp ⊂ F , and q = |F | must be of the form q = pk, with k ∈ N.

Proof. Quite crowded statement that we have here, the idea being as follows:

(1) The fact that p > 0 must be prime comes by contradiction, by using:

(1 + . . .+ 1︸ ︷︷ ︸
a times

)× (1 + . . .+ 1︸ ︷︷ ︸
b times

) = 1 + . . .+ 1︸ ︷︷ ︸
ab times

Indeed, assuming that we have p = ab with a, b > 1, the above formula corresponds
to an equality of type AB = 0 with A,B ̸= 0 inside F , which is impossible.

(2) Back to the general case, F has a smallest subfield E ⊂ F , called prime field,
consisting of the various sums 1 + . . . + 1, and their quotients. In the case p = 0 we
obviously have E = Q. In the case p > 0 now, the multiplication formula in (1) shows
that the set S = {1 + . . .+ 1} is stable under taking quotients, and so E = S.

(3) Now with E = S in hand, we obviously have (E,+) = Zp, and since the multipli-
cation is given by the formula in (1), we conclude that we have E = Fp, as a field. Thus,
in the case p > 0, we have constructed an embedding Fp ⊂ F , as claimed.

(4) In the context of the above embedding Fp ⊂ F , we can say that F is a vector space
over Fp, and so we have |F | = pk, with k ∈ N being the dimension of this space. □
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Many other things can be said about fields, and we will be back to this later, when
discussing more in detail, following Galois and others, the various characteristic 0 fields
that “numbers” can form, and notably the intermediate fields as follows:

Q ⊂ F ⊂ C
Moving ahead with more general theory and notions, next in abstract algebra came

the rings and ideals, which are more technical objects, defined as follows:

Definition 6.19. We have notions of rings, modules and ideals, as follows:

(1) A ring R is a set with operations + and ×, satisfying the usual conditions for
such operations, except for ab = ba, and for a ̸= 0 =⇒ ∃a−1.

(2) A module V over a ring R is a vector space, but we will call it ring, and keep the
name vector spaces for the modules over fields, R = F .

(3) An ideal I ⊂ R is a subgroup with the left ideal property i ∈ I, r ∈ R =⇒ ir ∈ I,
or the right ideal property i ∈ I, r ∈ R =⇒ ri ∈ I, or both.

This was a quite crowded statement, but you get the point, with (1) and (2) we are sort
of trying to do field and vector space mathematics, over things which are not necessarily
fields and vector spaces over them, and (3) is something technical, non-field specific. At
the level of examples, these abound, and we have two important ones, as follows:

(1) The integers form a ring, R = Z, which in addition is commutative, ab = ba. As
obvious module over Z, we have the lattice V = ZN . Finally, since R = Z is commutative,
the 3 notions of ideals coincide, and these are the subsets I = aZ, with a ∈ Z.

(2) The matrices over the integers form a ring, R =MN(Z), which is noncommutative
at N ≥ 1. As obvious module overMN(Z), we have the lattice V = ZN . As for the ideals,
things here are a bit more complicated, but since at N = 2 the matrices of type (a0

b
0) form

a left ideal which is not a right ideal, and the matrices of type (ab
0
0) form a right ideal

which is not a left ideal, at least we know that our 3 types of ideals make sense.

The question that you surely have in mind is, what are ideals good for? Answer:

Proposition 6.20. For a subgroup I ⊂ R, the following are equivalent:

(1) I is a two-sided ideal.
(2) R/I is a ring.

Proof. This is something which requires some thinking, as follows:

(1) Since the additive group (R,+) is abelian, given an additive subgroup I ⊂ R we
can form the quotient group R/I, which is abelian too, with addition as follows:

(a+ I) + (b+ I) = (a+ b+ I)

Observe that the unit is (0 + I) = I, and that inverses are given by (−a+ I).
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(2) The question is now, can we turn this abelian group R/I into a ring? Normally
the multiplication can only be as follows, and with this clarifying our statement, with the
condition “R/I is a ring” there meaning, with respect to this precise multiplication:

(a+ I)(b+ I) = (ab+ I)

(3) But, will this work. As a first observation, there is a bit of analogy here with group
theory, where H ⊂ G must be normal in order for G/H to be a group. Thus, our claim
is that the ideal condition is somehow the “analogue of normality, in the ring setting”.

(4) In practice now, it is quite clear, exactly as in the group theory setting, that
everything will be fine, provided that our multiplication is well-defined. And for this
multiplication to be well-defined, the following condition must be satisfied:

(a+ I) = (a′ + I) , (b+ I) = (b′ + I) =⇒ (ab+ I) = (a′b′ + I)

But this amounts in the following condition to be satisfied:

a− a′ ∈ I , b− b′ ∈ I =⇒ ab− a′b′ ∈ I
(5) Now comes the math. We have the following identity, which shows that if I ⊂ R

is a two-sided ideal, then the above condition is satisfied, and so done:

ab− a′b′ = a(b− b′) + (a− a′)b′

(6) Conversely now, if the condition in (4) is satisfied, we have in particular:

i− 0 ∈ I , r − r ∈ I =⇒ ir − 0r ∈ I
r − r ∈ I , i− 0 ∈ I =⇒ ri− r0 ∈ I

Thus I ⊂ R must be a two-sided ideal, and this finishes the proof. □

Many things can be said about rings, modules and ideals, and we will be back to this
soon. For formulating however a theorem on the subject, we have:

Theorem 6.21. Assuming that R is commutative and I ⊂ R is a maximal ideal, in
the sense that it is a proper ideal, I ̸= R, and there is no bigger proper ideal

I ⊂ J ⊂ R

the quotient ring F = R/I is a field.

Proof. This is something very standard, the idea being as follows:

(1) Before starting, a quick example. We know that over R = Z, the ideals are the
subsets I = pZ with p ∈ N. But such an ideal is maximal precisely when p is prime, and
this is the same as asking for the quotient ring R/I = Zp to be a field.

(2) In general now, assume first that R/I is a field. This means that any nonzero
element of R/I is invertible, and with our usual conventions for R/I, this reads:

∀a /∈ I , ∃b ∈ R , (ab+ I) = (1 + I)
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Now assume by contradiction that I ⊂ R is not maximal, so that we have a bigger
ideal I ⊂ J ⊂ R. If we pick a ∈ J − I, we obtain, by the above, the following:

a ∈ J − I , b ∈ R , ab = 1 + i , i ∈ I
But this is contradictory, because since J is an ideal, containing I, we must have

ab, i ∈ J , so we conclude that we have 1 ∈ J , and so J = R, contradiction.

(3) Conversely, assume now that I is maximal, and assume too, by contradiction, that
R/I is not a field. Then we can find a zero divisor in R/I, which reads:

(a+ I)(b+ I) = (I) , a, b /∈ I
In other words, we can find ab ∈ I with a, b /∈ I. But then, let us look at:

I ⊂ I + aR ⊂ R

(4) What we have in the middle is an ideal, and it is also clear, from a /∈ I, that the
inclusion on the left is proper. As for the inclusion on the right, our claim is that this is
proper too. Indeed, assuming otherwise, we would have a formula as follows:

i+ ac = 1 , i ∈ I
Now by multiplying everything by b, we obtain from this:

ib+ acb = b , i ∈ I
But this is contradictory, because on the left we have ib ∈ I and acb = (ab)c ∈ I,

which gives b ∈ I, contradicting the condition b /∈ I. Thus, our claim is proved.

(5) But this is the end of the story, because what we just proved is that what we have
in (3) is indeed a proper ideal, contradicting the maximality of I, as desired. □

As an interesting application of this, in relation with Theorem 6.18, we have:

Theorem 6.22. For any prime power q = pk, we can construct a field Fq having q
elements, as being the quotient field

Fq = Fp[X]/(Q)

of the ring of polynomials Fp[X] over the integers modulo p, by the ideal generated by an
irreducible polynomial Q ∈ Fp[X], of degree k.

Proof. There are several things going on here, the idea being as follows:

(1) To start with, given an arbitrary field F , it follows from definitions that the
polynomials over it form a ring, R = F [X]. Now if we pick any irreducible polynomial
Q ∈ F [X], and denote by (Q) ⊂ F [X] the ideal generated by this polynomial, this ideal
will be maximal, and by Theorem 6.21 the following quotient will be a field:

E = F [X]/(Q)
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(2) Now if we denote by k ∈ N the degree of our polynomial Q, it follows from the
basic theory of polynomials that we have an isomorphism of vector spaces, as follows:

E ≃ F k

(3) Thus, with F = Fp as field input, we are led to the conclusion in the statement.
Of course, there are still a few details to be checked here, with for instance the fact that
we have indeed available irreducible polynomials Q ∈ Fp[X] of any degree, needing a
proof. We will leave this as an exercise, and we will come back to this, with full details,
in chapter 3 below. Among others, we will prove there that Fq does not depend on the
choice of Q ∈ Fp[X], and in fact is the unique field having q = pk elements.

(4) Regarding now the best choice of the irreducible polynomial Q ∈ Fp[X], providing
us with a good model for the finite field Fq, that we can use in practice, this question
depends on the value of q = pk, and many things can be said here. All in all, our models
are quite similar to C = R[i], with i being a formal number satisfying i2 = −1.

(5) To be more precise, at the simplest exponent, q = 4, to start with, we can use
Q = X2 + X + 1, with this being actually the unique possible choice of a degree 2
irreducible polynomial Q ∈ F2[X], and this leads to a model as follows:

F4 =
{
0, 1, a, a+ 1

∣∣∣ a2 = a+ 1
}

(6) Next, at exponents of type q = p2 with p ≥ 3 prime, we can use Q = X2− r, with
r being a non-square modulo p, and with (p− 1)/2 choices here. We are led to:

Fp2 =
{
a+ bγ

∣∣∣ γ2 = r
}

Here, as before with F4, our formula is something self-explanatory. Observe the anal-
ogy with C = R[i], with i being a formal number satisfying i2 = −1. Finally, at q = pk

with k ≥ 3 things become more complicated, but the main idea remains the same. □

The above result is quite interesting, among others bringing us back to polynomials,
and algebraic geometry. In fact, the ring R = F [X] that we used is a particular case of
the following types of rings, that we precisely need in algebraic geometry:

R = F [X1, . . . , XN ]

In view of this, I am sure that you have the following question in mind, why having
not talked about such polynomial rings right after Definition 6.19, as being the main
examples of rings, at least from our algebraic geometry perspective.

Good point, and in answer, we have kept the best for the end. In abstract algebra we
have as well a notion of “algebra”, and no wonder here, in view of the name, this must
be something important. And this notion, generalizing the polynomials, is as follows:
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Definition 6.23. An algebra A over a field F is a ring which is at the same time a
vector space, or perhaps vice versa. That is, we have operations +,× as follows:

(1) a + b = b + a, a + (b + c) = (a + b) + c, there exists 0 ∈ A such that a + 0 = 0,
and any a ∈ A has an inverse −a ∈ A, satisfying a+ (−a) = 0.

(2) a(bc) = (ab)c, a(b + c) = ab + ac, (a + b)c = ac + bc for any a, b, c ∈ A, and
(λµ)a = λ(µa) for any λ, µ ∈ F and a ∈ A, and also 1a = a1 = a.

Quite complicated, you would say, but putting all the axioms for the rings and vector
spaces together can only lead to such a crowded definition. In practice, however, this
turns to be something quite simple, because all the above axioms are meant to help with
our mathematics, by being a sort of “best of” the possible abstract algebra axioms.

But, let us discuss the examples first. And here, we have many of them, with all being
related to geometry or analysis of some sort, as follows:

(1) First we have algebra of polynomials A = F [X]. This is a very basic algebra,
important to us, and with the extra feature that it is commutative, PQ = QP .

(2) More generally, we have the algebra of polynomials A = F [X1, . . . , XN ]. Again,
this algebra is very important to us, and is commutative, PQ = QP .

(3) Still talking commutative algebras, we have many of them coming from analysis,
the general principle being that “functions form algebras”. More on this in a moment.

(4) We have as well the algebra of matrices A = MN(F ). Again this is a very basic
example, that we know well, which this time is not commutative, ST ̸= TS.

Obviously, all this is very interesting, and it looks like we hit a big win, with our
Definition 2.23. But, no wonder here, algebra can only be about algebras.

Getting now to the algebras of functions, mentioned in (3), we have here the following
key result, bringing among others some further light on Theorem 6.21 too:

Theorem 6.24. Given a compact space X, the following happen:

(1) The continuous functions f : X → C form a complex algebra C(X).
(2) Given x ∈ X, the functions satisfying f(x) = 0, form an ideal I ⊂ C(X).
(3) This ideal is maximal, and any maximal ideal I ⊂ C(X) appears in this way.
(4) In this picture, the fact that the quotient is a field, C(X)/I = C, is clear.

Proof. All this is self-explanatory, the idea being as follows:

(1) This is clear. Observe that our algebra is commutative, fg = gf .

(2) This is again clear, because f(x) = 0 implies (fg)(x) = 0.
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(3) This follows from some basic topology, via a suitable open cover for X, and we
will leave the clarification of all this as an instructive exercise.

(4) This is clear, because C(X)→ C(X)/I maps f → f(x) ∈ C. □

There are many other examples of algebras of functions, along these lines. In fact, we
can even trick, and view certain algebras, which are certainly not algebras of functions,
as algebras of functions too. As an example, here is a wild physics speculation:

Speculation 6.25. We can view the matrix algebra M2(C) as being the algebra of
functions on some sort of quantum space M2, according to the following formula:

M2(C) = C(M2)

This quantum space M2 formally has |M2| = 4 points, and appears as a sort of twist of
{1, 2, 3, 4}. Moreover, we can integrate over M2, according to the formula∫

M2

T =
T11 + T22

2

with the underlying measure being positive and of mass 1.

To be more precise here, let us be crazy, and define M2 according to the formula
C(M2) =M2(C), without really knowing what we are doing. Then, we have:

|M2| = dimCC(M2) = dimCM2(C) = 4

Next, since we have M2(C) ≃ C4 as vector spaces, which reads C(M2) ≃ C(1, 2, 3, 4),
this suggests that we should have M2 ∼ {1, 2, 3, 4}, as some sort of twisting operation.
But this can be given a mathematical formulation too, the idea being that at the level of
standard bases of C(M2) ≃ C(1, 2, 3, 4), the multiplication gets twisted as follows:

eijekl = δjkeil ←→ ejek = δjkej

Finally, in what regards the last assertion, this expresses the standard fact that the
normalized trace of 2× 2 matrices tr = Tr/2 is unital and positive, in the sense that:

tr(1) = 1 , T ≥ 0 =⇒ tr(T ) ≥ 0

Excited about this? Such things come from quantum mechanics, as developed by
Heisenberg, and the above space M2 can be given a precise mathematical sense, and is
the entry point to “noncommutative algebraic geometry”. But more on this later, for the
moment, we still have work to do on usual, “commutative” algebraic geometry.

6c. The basis theorem

Let us go back now to our general notion of algebraic manifold, from Definition 6.9.
There is an interesting link there with the notion of ideal, coming from:
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Proposition 6.26. Given an arbitrary algebraic manifold, appearing as

X =
{
(x1, . . . , xN) ∈ FN

∣∣∣Pi(x1, . . . , xN) = 0,∀i
}

with Pi ∈ F [x1, . . . , xN ] being a family of polynomials, the following happen:

(1) Any linear combination P =
∑
λiPi vanishes on X.

(2) More generally, any combination P =
∑
PiQi vanishes on X.

(3) Thus, any element P ∈ (Pi), ideal generated by the Pi, vanishes on X.

Proof. Here (1), and then (2) too, are both clear from definitions, with the conven-
tion in both cases that the sums are finite, and (3) is just an abstract reformulation of
(2), because the ideal generated by the polynomials Pi is given by:

(Pi) =
{∑

PiQi

∣∣∣Qi ∈ F [x1, . . . , xN ]
}

Thus, we are led to the conclusions in the statement. □

In view of the above result, we can reformulate our notion of algebraic manifold, in
commutative algebra terms, as follows:

Proposition 6.27. The algebraic manifolds are precisely the sets of the form

X =
{
x ∈ FN

∣∣∣P (x) = 0,∀P ∈ I
}

with I ⊂ F [x1, . . . , xN ] being a certain ideal.

Proof. In one sense, this comes from Proposition 6.26, and in the other sense this is
trivial, because any ideal I can be written as I = {Pi|i ∈ I}, with Pi = i. □

The above result is quite interesting, and raises a lot of questions about the ideals
I ⊂ F [x1, . . . , xN ], and the manifolds X ⊂ FN that they produce. What exactly are the
ideals I ⊂ F [x1, . . . , xN ]? Is the correspondence I → X bijective? If not, can we make it
bijective, by restricting the attention to a suitable class of ideals I? And so on.

We will answer all these questions in due time. Let us start with something very basic,
which can obviously be of great use in algebraic geometry, namely:

Theorem 6.28 (Hilbert basis theorem). Any ideal of polynomials

I ⊂ F [x1, . . . , xN ]

is finitely generated, I = (P1, . . . , Pk), for some Pi ∈ F [x1, . . . , xN ].

Proof. This is something quite tricky, the idea being as follows:

(1) Following Emmy Noether, let us call a ring R Noetherian when any ideal I ⊂ R
is finitely generated. Equivalently, any increasing sequence of ideals I1 ⊂ I2 ⊂ . . . must
stabilize, in the sense that we must have In = In+1 = . . . , for some n ∈ N.
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(2) We want to prove that F [x1, . . . , xN ] is Noetherian, and we will do this by recur-
rence on N . Since R = F is clearly Noetherian, as being a field, we are left with proving
the recurrence step. And, for this purpose, we will prove something which is a bit more
general, namely that if a ring R is Noetherian, then so is the ring R[X].

(3) We do this by contradiction. So, assume that R is Noetherian, and that R[X] is
not Noetherian, so that we have an ideal I ⊂ R[X] which is not finitely generated.

(4) In order to find a contradiction, let us pick P1 ∈ I of minimial degree d1 ∈ N,
then P2 ∈ I/(P1) of minimal degree d2 ∈ N, then P3 ∈ I/(P1, P2) of minimal degree
d3 ∈ N, and so on. Since our ideal I ⊂ R[X] was assumed to be not finitely generated,
this procedure will not stop, and we obtain an increasing sequence, as follows:

d1 ≤ d2 ≤ d3 ≤ . . .

(5) Now let ai ∈ R be the leading coefficient of each Pi, and set:

J = (a1, a2, . . .) ⊂ R

Since R was assumed to be Noetherian, we can find n ∈ N such that:

J = (a1, . . . , an)

Thus, we have a formula as follows, for certain scalars λi ∈ R:

an+1 =
n∑
i=1

λiai

(6) With this done, consider the following polynomial:

Q =
n∑
i=1

λiX
dn+1−diPi

This polyomial satisfies then Q ∈ (P1, . . . , Pn), and has the same leading coefficient as
Pn+1 /∈ (P1, . . . , Pn). Thus, the following polynomial has degree < dn+1:

Pn+1 −Q ∈ I/(P1, . . . , Pn)

But this is a contradiction, so our assumption in (3) was wrong, which finishes the
proof of our theorem, as explained in the steps (1-3). □

Getting back now to algebraic manifolds, Theorem 6.28 tells us that in our original
Definition 6.9 we can always assume that the family of polynomials {Pi} there is finite.
Equivalently, in our reformulation from Proposition 6.27, we can say there at the end that
I ⊂ F [x1, . . . , xN ] is finitely generated, with this being true by Theorem 6.28.

However, Theorem 6.28 is best remembered geometrically, as follows:
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Theorem 6.29. Any algebraic manifold X ⊂ FN appears as a finite intersection of
hypersurfaces

X =
⋂
i

Xi

with this intersection being obtained by considering the ideal producing X,

I ⊂ F [x1, . . . , xn]

writing I = (P1, . . . , Pn), and setting Xi ⊂ FN to be the set of zeroes of each Pi.

Proof. This is indeed something self-explanatory, coming from Theorem 6.28. □

Moving ahead now, let us investigate more in detail the correspondence I → X be-
tween ideals I ⊂ F [x1, . . . , xN ] and algebraic manifolds X ⊂ FN . As a first observation,
we have in fact correspondences in both senses, constructed as follows:

Proposition 6.30. Consider the correspondence I → XI given by

XI =
{
x ∈ FN

∣∣∣P (x) = 0,∀P ∈ I
}

and consider as well the correspondence X → IX given by:

IX =
{
P ∈ F [x1, . . . , xn]

∣∣∣P (x) = 0,∀x ∈ X
}

We have then XIX = X, but in the other sense, IXI
= I fails in general.

Proof. Here the first assertion, namely XIX = X, is clear, and the simplest coun-
terexample to IXI

= I comes from the ideal I = (x2), in N = 1 dimensions. Indeed:

I = (x2) =⇒ XI = {0} =⇒ IXI
= (x) ̸= I

Thus, we are led to the conclusions in the statement. □

Let us have now a closer look at IXI
̸= I, based on the above study. We have:

Proposition 6.31. Given an ideal I ⊂ R, define its radical as being:
√
I =

{
r ∈ R

∣∣∣∃n ∈ N, rn ∈ I
}

Then this radical is an ideal, having the following properties:

(1) I = π−1(N), with N ⊂ R being the ideal of nilpotent elements, rn = 0 for some
n ∈ N, and with π : R→ I/R being the quotient map.

(2) I ⊂
√
I,
√√

I =
√
I.

(3) If
√
I is finitely generated, then

√
I
n ⊂ I, for some n ∈ N.

(4) If I, J ⊂ R, with R assumed Noetherian, then
√
I =
√
J precisely when Im ⊂ J

and Jn ⊂ I for some m,n ∈ N.
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Proof. This is something elementary, and self-explanatory, as follows:

(1) Here everything, including the fact that N ⊂ R is indeed an ideal, is clear from
definitions. Observe that our formula I = π−1(N) proves that I is indeed an ideal.

(2) The assertions there are both clear from definitions.

(3) Again, this is something which is clear from definitions.

(4) This assertion, which makes use of the notion of Noetherian ring, that we met in
the proof of Theorem 6.28, follows indeed from (3). □

We can now go back to the correspondences in Proposition 6.30, with the following
key addition to the material there:

Theorem 6.32. Given an algebraic manifold X ⊂ FN , its ideal, given by

IX =
{
P ∈ F [x1, . . . , xn]

∣∣∣P (x) = 0,∀x ∈ X
}

is a radical ideal, in the sense that it satisfies the following condition:

IX =
√
IX

However, even when restricting the attention to the radical ideals, the correspondence
I → X is still not bijective, in general.

Proof. This is something elementary, the idea being as follows:

(1) The first assertion is clear from definitions, and we have in fact, more generally,
the following formula, which is clear as well from definitions:

√
I ⊂ IXI

(2) As for the second assertion, a first counterexemple here comes by assuming that
our field F is finite. Indeed, while there are finitely many sets, and so finitely many
algebraic manifolds X ⊂ FN , there are infinitely many radical ideals I ⊂ F [X1, . . . , xN ],
for instance one for each irreducible polynomial P ∈ F [x1, . . . , xN ].

(3) As an important observation, the second assertion fails for F = R too, in N = 1
dimensions, the simplest counterexample here being as follows:

I = (x2 + 1) =⇒ XI = ∅ =⇒ IXI
= R[X] ̸=

√
I

In any case, we are led to the conclusions in the statement. □

The problem is now, what to do? We would certainly love to have I → X bijective,
but this does not look very feasible, at least when F is arbitrary. However, we will see in
the next section that when assuming that F is algebrically closed, as is for instance the
field of the complex numbers F = C, things drastically change, with I → X becoming
bijective, and with this allowing us to develop a lot of non-trivial algebraic geometry.
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6d. Nullstellensatz

Let us first recall that C is algebrically closed, the result being as follows:

Theorem 6.33. Any polynomial P ∈ C[X] decomposes as

P = c(X − a1) . . . (X − aN)
with c ∈ C and with a1, . . . , aN ∈ C.

Proof. The problem is that of proving that our polynomial has at least one root,
because afterwards we can proceed by recurrence. We prove this by contradiction. So,
assume that P has no roots, and pick a number z ∈ C where |P | attains its minimum:

|P (z)| = min
x∈C
|P (x)| > 0

Since Q(t) = P (z+ t)−P (z) is a polynomial which vanishes at t = 0, this polynomial
must be of the form ctk + higher terms, with c ̸= 0, and with k ≥ 1 being an integer. We
obtain from this that, with t ∈ C small, we have the following estimate:

P (z + t) ≃ P (z) + ctk

Now let us write t = rw, with r > 0 small, and with |w| = 1. Our estimate becomes:

P (z + rw) ≃ P (z) + crkwk

Now recall that we have assumed P (z) ̸= 0. We can therefore choose w ∈ T such that
cwk points in the opposite direction to that of P (z), and we obtain in this way:

|P (z + rw)| ≃ |P (z) + crkwk| = |P (z)|(1− |c|rk)
Now by choosing r > 0 small enough, as for the error in the first estimate to be small,

and overcame by the negative quantity −|c|rk, we obtain from this:

|P (z + rw)| < |P (z)|
But this contradicts our definition of z ∈ C, as a point where |P | attains its minimum.

Thus P has a root, and by recurrence it has N roots, as stated. □

Our aim now will be that of developing algebraic geometry over an arbitrary algebri-
cally closed field F , with the main example in mind being the field of complex numbers
F = C. We will see that far more things can be said in this case about the algebra of poly-
nomials A = F [x1, . . . , xN ], with respect to what we knew before, when F was arbitrary,
and with this in hand, we will develop some basic theory for the algebraic manifolds.

Getting back to the discussion from the previous section, we recall from there that
the fundamental question of establishing a bijection between ideals I ⊂ F [x1, . . . , xN ] and
algebraic manifolds X ⊂ FN basically reduces to the question of deciding whether, for an
ideal I ⊂ F [x1, . . . , xN ], the following inclusion is an equality or not:

√
I ⊂ IXI
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We will see that when F is algebrically closed, this inclusion is indeed an equality,
with the result being called Hilbert’s Nullstellensatz theorem. Getting started now, let
us first establish a weak version of the Nullstellensatz, as follows:

Theorem 6.34 (Weak Nullstellensatz). If F is algebrically closed, we have

XI ̸= ∅
for any proper ideal I ⊂ F [x1, . . . , xN ].

Proof. This is something quite tricky, the idea being as follows:

(1) As a first observation, we have indeed here a Weak Nullstellensatz, because when
assuming that the above-mentioned Nullstellensatz holds, we have:

XI = ∅ =⇒ IXI
= F [x1, . . . , xN ]

=⇒
√
I = F [x1, . . . , xN ]

=⇒ I = F [x1, . . . , xN ]

(2) As a second observation, the assumption that F is algebrically closed is really
needed, because otherwise we can come with polynomials of type P = X2 + 1, say when
F = R, having no zeroes, and so with ideals of type I = (P ) ∈ F [X], with XI = ∅.

(3) As a third and last observation, our assumption that F is algebrically closed
tells us that any P ∈ F [X] has zeroes, and based on this, we want to prove that any
I ⊂ F [x1, . . . , xN ] has zeroes, XI ̸= ∅. Which sounds like a quite plausible claim.

(4) Getting to work now, our precise claim, which will prove our theorem, simply by
replacing I ⊂ F [x1, . . . , xN ] with a maximal ideal containing it, is that the maximal ideals
I ⊂ F [x1, . . . , xN ] are precisely those of the following form, with a1, . . . , aN ∈ F :

I = (x1 − a1, . . . , xN − aN)
(5) In order to prove this latter claim, let us pick a maximal ideal I ⊂ F [x1, . . . , xN ],

and consider the following quotient, that we know to be a field:

K = F [x1, . . . , xN ]/I

Our claim in (4), namely I = (x1 − a1, . . . , xN − aN), is then equivalent to:

K ≃ F

Now since F was assumed to be algebrically closed, proving this amounts in proving
that K is algebraic over F . And this is what we will prove, by contradiction.

(6) So, asssume that K is purely transcedental over F . By reordering the variables
x1, . . . , xN , we can assume that x1, . . . , xk ∈ K are algebrically independent over F , and
that xk+1, . . . , xN ∈ K are algebraic over the following subfield:

L = K(x1, . . . , xk) ⊂ K
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Observe now that K is finitely generated as a L-module. Our claim, based on this,
and which will easily prove the theorem, is that L is finitely generated, as a F -algebra.

(7) In short, we are in need here of some commutative algebra input. Inspired by the
above, consider a Noetherian ring R, and an intermediate ring as follows:

R ⊂ S ⊂ R[x1, . . . , xN ]

Our claim is that if R[x1, . . . , xN ] is finitely generated as S-module, then S is finitely
generated as S-algebra. Observe that this will prove indeed our claim in (6).

(8) So, let us prove this. For this purpose, let us pick a family of S-module generators
y1, . . . , ym ∈ R[x1, . . . , xN ], and write formulae as follows, with aij, bijk ∈ S:

xi =
∑
j

aijyj , yiyj =
∑
k

bijkyk

Now if we set T =< aij, bijk >, this ring being finitely generated over R, it is Noe-
therian, and since a submodule of a finitely generated module over a Noetherian ring is
finitely generated, with this being something general, and elementary, it follows that S is
a finitely generated T -module, and so is a finitely generated R-algebra, as claimed.

(9) With this in hand, let us get back to our proof of the Weak Nullstellensatz. Our
claim at the end of (6) is now proved, so let us pick algebra generators z1, . . . , zl ∈ K,
and write these generators as quotients of polynomials, as follows:

zi =
Pi
Qi

(10) Now observe that given any irreducible polynomial P ∈ F [x1, . . . , xk], the quotient
1/P must be a polynomial in the rational functions zi, and so P must divide at least one
Qi. Thus, we can only have finitely many irreducible polynomials P ∈ F [x1, . . . , xk], and
with this being wrong at k ≥ 1, we have reached to a contradiction, as desired. □

Still with me I hope, after all this algebra. We can now formulate a main result,
namely the Hilbert Nullstellensatz, in its general form, as follows:

Theorem 6.35 (Nullstellensatz). If F is algebrically closed, we have

IXI
=
√
I

for any ideal I ⊂ F [x1, . . . , xN ].

Proof. This follows from the Weak Nullstellensatz, as follows:

(1) To start with, let us first recall that we trivially have
√
I ⊂ IXI

, and also that
what we want to prove is stronger than the Weak Nullstellensatz. For more on this, and
other comments, we refer to the beginning of the proof of the Weak Nullstellensatz.

(2) In practice, we want to prove that given an ideal I ⊂ F [x1, . . . , xN ], any polynomial
P ∈ F [x1, . . . , xN ] vanishing on XI has the property Pm ∈ I, for some m ∈ N.
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(3) For this purpose, we add 1 dimension, and we consider the following ideal:

J =< I, xN+1P (x1, . . . , xN)− 1 >

Since we have XJ = ∅, the Weak Nullstellensatz applies, and shows that J is trivial.

(4) In order to best interpret this finding, consider the following algebra:

F [x1, . . . , xN ][P
−1] = F [x1, . . . , xN+1]/(xN+1P − 1)

The triviality of J gives then a formula of the following type, with fi ∈ I:
1 = f0 + f1xN+1 + . . .+ fmx

m
N+1

(5) Now by multiplying by Pm, we obtain from this the following formula:

Pm = Pmf0 + Pm−1f1 + . . .+ fm

Thus we have Pm ∈ I, as desired. □

With the Nullstellensatz in hand, we can do many things. Assuming as before that F
is algebrically closed, for the remainder of this chapter, let us start with:

Definition 6.36. Given an algebraic manifold X ⊂ FN , we define the Zariski topology
on it by one of the following equivalent conditions:

(1) The closed sets are the algebraic submanifolds Y ⊂ X.
(2) Uf = {x ∈ X|f(x) ̸= 0} with f ∈ F [x1, . . . , xN ] is a base of open sets.

Observe that the Zariski topology is not separated, because any two open sets intersect.
Observe also that any descreasing sequence of closed subsets Y1 ⊃ Y2 ⊃ . . . must stablilize,
with this coming from the fact that F [x1, . . . , xN ] is Noetherian. Many other things can
be said here, and we will be back to all this in chapter 7.

Also by using algebra and the Nulstellensatz, we can now investigate the functions on
our algebraic manifolds, with a key notion of regularity, as follows:

Definition 6.37. Let X ⊂ FN be an algebraic manifold.

(1) A function f : X → F is called regular at x ∈ X if we can write f = g/h, with
g, h ∈ F [x1, . . . , xN ], in a neighborhood of x.

(2) More generally, a function f : X → FM is called regular if all its components
fi : X → F are regular, in the above sense.

(3) A function f : X → Y , with Y ⊂ FM algebraic, is called regular when it appears
as the restriction of a regular function f : X → FM as above.

Summarizing, we have a good notion of morphisms for the algebraic manifolds, and
by using this, we can say that two manifolds are isomorphic, X ≃ Y , when we have a
regular bijection between them, in both senses. Many things can be said here, and as a
key result on the subject, coming from the Nullstellensatz, we have:
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Theorem 6.38. The algebra of regular functions on a manifold X ⊂ FN is

A(X) = F [x1, . . . , xN ]/IX

with IX being as usual the ideal of polynomials P ∈ F [x1, . . . , xN ] vanishing on X.

Proof. This follows indeed from the Nullstellensatz. □

Again, many things can be said here, and we will be back to this in chapter 7.
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CHAPTER 8

Elliptic curves

8a. Elliptic curves

We will be interested here in the elliptic curves, which are the smooth, projective
algebraic curves of genus 1. Under the assumption char(F ) ̸= 2, 3, that we will make in
this chapter, the corresponding affine curves are as follows, with a, b ∈ F :

y2 = x3 + ax+ b

To be more precise, the above equation defines indeed an elliptic curve, provided that
the curve is non-singular, which amounts in saying that the discriminant of the polynomial
on the right is nonzero, with this latter condition being as follows:

∆ = −16(4a3 + 27b2) ̸= 0

Observe that, when assuming that we are over F = R, in the case ∆ > 0 the affine
curve has two components, and in the case ∆ < 0 it has one component.

In general, in terms of projective coordinates, the above equation reads:

y2z = x3 + axz2 + bz3

Observe that z = 0 implies x = 0, and then any choice of y will do. The projective
point (0, y, 0) is called distinguished point of our elliptic curve, and is denoted 0.

As a last general remark, it follows from the initial definition of the elliptic curves, as
being the smooth, projective algebraic curves of genus 1, that when we are over F = C,
these curves correspond to certain embeddings of the torus into the complex projective
plane. We will be back to this key fact, later on, with full details.

As a first key result about the elliptic curves, we have:

Theorem 8.1. Given an elliptic curve X, its points form an abelian group, with
operation given generically by

p+ q + r = 0

whenever p, q, r ∈ X are colinear. That is, in the generic case we set p + q = −r, where
r is the intersection of the line pq with our curve X.

83
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Proof. This statement is something quite compact, the idea being as follows:

(1) Consider an elliptic curve X, coming from an equation y2 = x3 + ax+ b as above.
Since the curve is symmetric with respect to the x-axis, we can define indeed, generically,
a sum operation p+ q = −r as above, and the unit for it is 0 = −0.

(2) The above construction works in the generic case, but in order to have the group
law defined all over X, we must take care of the various special situations that can appear,
too. And here, in the case p = q we can use the tangent there, in the obvious way, and in
the other possible special situations, the formula of p+ q is straightforward too.

(3) Thus, we obtain indeed an abelian group, and we will use the same notation, X, for
this group and for the elliptic curve itself, with the convention from now on that elliptic
curve means elliptic curve as before, given with a distinguished point 0.

(4) In the case there is a subfield E ⊂ F involved, we denote by XE the elliptic curve
over E, which is a group too. In fact, we have a group embedding XE ⊂ XF .

(5) Let us do some computations too, in the generic case. In order to sum two points
p = (xp, yp) and q = (xq, yq), we must intersect X with the line pq, and take the opposite
r of that point −r. But the line pq is of the form y = sx+ c, with the slope being:

s =
yp − yq
xp − xq

Now intersecting this line with the curve leads to the following equation:

(sx+ c)2 = x3 + ax+ b

On the other hand, since xp, xq, xr must be solutions of this equation, this latter
equation must coincide with the following degree 3 equation:

(x− xp)(x− xq)(x− xr) = 0

Now by looking at the coefficient of x2, we obtain the following formula:

s2 = xp + xq + xr

Thus, with the slope s being as before, we obtain the following formulae:

xr = s2 − xp − xq

yr = yp − s(xp − xq)

(6) Summarizing, we have the abelian group law on X constructed in two possible
ways, and with the group embedding XE ⊂ XF from (4) being fully justified too. □
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8b. Rational points

In practice now, we are mostly interested in computing the rational points of the
elliptic curves, which amounts in studying the following subgroups:

XQ ⊂ XR

As a key result, regarding these subgroups, we have:

Theorem 8.2 (Mordell-Weil). Given an elliptic curve X, its subgroup of rational
points XQ ⊂ XR is finitely generated. Thus, we have a decomposition of type

XQ = Z⊕ . . .⊕ Z⊕ ZN1 ⊕ . . .⊕ ZNk

with finitely many summands, and with N1, . . . , Nk <∞.

Proof. This is something quite tricky, the idea being as follows:

(1) The first step, called weak Mordell-Weil theorem, is that of proving that the
quotient abelian group XQ/mXQ is finite, for any m ≥ 2:∣∣XQ/mXQ

∣∣ <∞
(2) The second step involves the notion of height of a point r = (x, y) ∈ X, which is

defined as follows, by writing x = p/q, with p, q prime to each other:

h(r) = logmax(|p|, |q|)

The point indeed is that one can prove that there are finitely many rational points of
height h(r) ≤ K, for any K > 0, and this leads to the result. □

The above result is quite interesting, because it splits the study of rational points into
two parts, depending on whether these are free points, or torsion points:

(1) First we have the free rational points of our elliptic curve, corresponding to the
torsion-free subgroup of the group XQ from Theorem 8.2, namely:

Z⊕ . . .⊕ Z ⊂ XQ

Many things can be said here, notably with the Birch and Swinnerton-Dyer conjecture,
asking for the computation of the number of Z summands, called rank of X.

(2) Then we have the torsion rational points of our elliptic curve, corresponding to
the torsion subgroup of the group XQ from Theorem 8.2, namely:

ZN1 ⊕ . . .⊕ ZNk
⊂ XQ

Here, by a theorem of Mazur, the group on the left can take in fact only 15 possible
values, namely ZN with N = 1, . . . , 10 and N = 12, and Z2 × Z2N with N = 1, 2, 3, 4.
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8c. Hasse principle

We discuss now some wild arithmetic tricks, for dealing with equations over the ratio-
nals, and with the rational numbers themselves, based on the notion of p-adic number.
The idea is very simple, namely that of completing Q with respect to a different norm,
which privileges the prime number p that we have chosen in advance.

Before that, some motivational talk. The dream in arithmetics, usually concerned
with solving equations f = 0 over the rationals, is something very simple, namely:

Dream 8.3. I checked that my equation f = 0 has solutions modulo p, for any prime
p, so my equation must have solutions over Q.

As a first observation, the dream holds when f is constant, f = c. Indeed, ignoring a
bit the differences between integers and rationals, c = 0(p) for any prime p means c = 0,
so our equation is c = 0, having any rational number x ∈ Q as solution.

Along the same lines, there are some other examples of very simple equations f = 0
for which the dream holds. However, such equations are usually so simple, that we can
solve them right away, and so our dream for them is not useful. In general, for more
complicated equations, our dream remains wrong, and must be fine-tuned.

As a second piece of motivation, let us talk some analysis too. Everything in analytic
number theory comes from the Euler formula for the Riemann series, namely:

∞∑
n=1

1

n
=
∏
p∈P

(
1− 1

p

)−1

But this is again something of “local-global” type, with on the left the global quantity,
that is, a usual number, which actually happens to be ∞, in our case, and on the right
the “local” versions of this number, with respect to the various primes p.

Summarizing, our dream is something important, both from the algebraic and analytic
perspective, and is definitely worth a second look, with the aim of fixing it. We are led
in this way to the following update to it, which is a bit more modest:

Hope 8.4. I checked that my equation f = 0 has solutions with respect to any prime
p, in a suitable sense, so my equation must have solutions over Q.

So, this will be our plan for this chapter, doing some mathematics, as for this hope
come true. We will see that this can indeed be done, with our vague wording above “with
respect to any prime p, in a suitable sense” being replaced by something very precise and
mathematical, namely “over the p-adics, for any prime p”, and with the statement itself
being a deep principle in number theory, called Hasse local-global principle.

Getting to work now, let us further reformulate our dreams and hopes, as follows:
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Question 8.5. What are the p-adic numbers, defined with respect to a chosen prime
number p, making the local-global principle work?

In answer, let us temporarily forget about equations, and the local-global principle,
and simply pick a prime number p, and look at the world from the perspective of p. So,
imagining that we are p, both me and you, what we see is something as follows:

(1) First, we see all sorts of integers a ∈ Z. Some appear friendly, namely those of the
form a ∈ pZ, while the others, of the form a /∈ pZ, appear bizarre and distant.

(2) Moreover, between friends a ∈ pZ, those of the form a ∈ p2Z appear particularly
close. And among them, a ∈ p3Z are truly very close friends. And so on.

(3) Then, we see all sorts of rationals, r = a/b, and again, some are close, some are
distant, depending on the exact pk factor, with k ∈ Z, appearing inside r.

(4) In particular, the rationals of the form r = 1/pk with k >> 0 appear really
frightening. Fortunately they are very far away from us, we can barely see them.

(5) And finally, we can see some irrationals x /∈ Q too, but these being uncountable,
it is quite hard to figure out how they look like, and are distributed in space.

Very good, so getting back to Earth now, let us write down a definition, based on
what we saw in our Prime Number Experience. By focusing on the integers, and more
generally the rationals, and leaving the irrationals for later, we have:

Definition 8.6. Given p prime, we define the p-adic norm of r ∈ Q as being:

|r| = p−k , r = pk
a

b
, a, b ̸= 0(p)

Also, we call the integer k ∈ Z the p-adic valuation of r, and denote it k = v(r).

Going ahead now with math, the question is, is our Definition 8.6 correct? That is, is
|r| indeed a norm? And here, is depends a bit on your background, with mathematicians
being a bit dissapointed, to the point of even choosing to stop calling |r| a norm, but
physicists and others being fully happy with it, the result being as follows:

Theorem 8.7. The p-adic norm |r| = p−k is not exactly a norm, but satisfies the
following conditions, which are even better:

(1) First axiom: |x| ≥ 0, with |x| = 0 when x = 0.
(2) Modified second axiom: |xy| = |x| · |y|.
(3) Strong triangle inequality: |x+ y| ≤ max(|x|, |y|).
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Proof. All this follows indeed from some simple arithmetics modulo p:

(1) That axiom clearly holds, with the remark that we forgot to say in Definition 8.6
that v(0) =∞, by definition, because any pk, no matter how big k ∈ N is, divides 0.

(2) As a first observation, the usual second norm axiom, namely |λx| = ||λ|| · |x|, with
||.|| standing here for the usual absolute value of the numbers, definitely fails, and this
because all the p-adic norms |r| are by definition integer powers of p, and an arbitrary
λ ∈ Q will mess up this. However, we have instead |xy| = |x| · |y|, coming from:

v(xy) = v(x)v(y)

And is this good news or not. After some thinking, this modified second axiom is just
as good as the failed usual second axiom, because who cares about arbitrary numbers
λ ∈ Q, not viewed from the perspective of p, I mean. More on this in a moment.

(3) Finally, let us look at sums x + y. Over the integers pk|x, y implies pk|x + y, and
with a bit of fractions arithmetic, that we will leave here as an easy exercise, the same
holds for rationals, in the sense that we have, in terms of the p-adic valuation:

v(x+ y) ≥ min(v(x), v(y))

Thus the p-adic norm itself, |r| = p−v(r), satisfies the following inequality:

|x+ y| ≤ max(|x|, |y|)

Now, what does this inequality mean, geometrically? Good question, and as a first re-
mark, since this is obviously something stronger than the usual triangle inequality satisfied
by the norms, |x+ y| ≤ |x|+ |y|, we will call it strong triangle inequality. □

Before going ahead, let us further examine the strong triangle inequality found in the
above. This is something new to us, and as a further result on it, we have:

Proposition 8.8. The strong triangle inequality implies

|x| ≠ |y| =⇒ |x+ y| = max(|x|, |y|)

and with this being valid for any modified norm, in the sense of Theorem 8.7.

Proof. This is again something elementary, the idea being as follows:

(1) In what regards the p-adic norm, going back to (3) in the proof of Theorem 8.7, we
can add there the observation that, trivially over the integers, and then over the rationals
too, with a bit of fraction work, the p-adic valuation satisfies:

v(x) ̸= v(y) =⇒ v(x+ y) = min(v(x), v(y))

Thus the p-adic norm itself satisfies the condition in the statement.
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(2) More generally now, and with this being something quite interesting, our claim
is that this phenomenon is valid for any generalized norm in the sense of Theorem 8.7.
Indeed, assume that |x| ≥ 0, with |x| = 0 when x = 0, as usual, and that:

|xy| = |x| · |y| , |x+ y| ≤ max(|x|, |y|)
In order to prove our result, assume |x| > |y|. We then have, trivially:

|x+ y| ≤ max(|x|, |y|) = |x|
(3) In the other sense now, we have to work a bit. We have the following computation,

with at the end the observation that the max cannot be |y|, because if that would be the
case, the inequality that we would obtain would be |x| ≤ |y|, contradicting |x| > |y|:

|x| = |(x+ y)− y|
≤ max(|x+ y|, |y|)
= |x+ y|

Thus, we have equality in the estimate in (2), as desired. □

Very nice all this, and getting back now to what we have in Theorem 8.7, namely the
modified norm axioms there, we can formulate, as a simple consequence:

Proposition 8.9. The p-adic norm |r| = p−k is not exactly a norm, but

d(x, y) = |x− y|
is a distance. Thus, the rationals Q become in this way a metric space.

Proof. With the conditions satisfied by the p-norm |r| in hand, it follows, trivially,
that d(x, y) = |x− y| is indeed a distance, making Q a metric space. □

Now let us turn to irrationals. The quite blurry picture that we saw during our Prime
Number Experience, and with the blame at that time being on the uncountability of these
beasts, in the lack of something better, can be now explained. Indeed, what we saw were
not the “usual” irrationals x ∈ R − Q, but rather some irrationals x ∈ Qp − Q viewed
from the perspective of p, constructed according to the following result:

Theorem 8.10. By completing Q with respect to the p-adic distance

d(x, y) = |x− y|
we obtain a certain field Qp, called field of p-adic numbers.

Proof. This is something very standard, with the passage Q→ Qp being very similar
to the passageQ→ R, that we are very familiar with. In fact, some things get even simpler
for p-adics, due to the strong triangle inequality satisfied by the norm. □

What is next? Many things, especially in relation with understanding what the p-adic
irrationals x ∈ Qp − Q really are, concretely speaking. But before that, inspired by the
theory of usual numbers, Z ⊂ Q, we can introduce the p-adic integers, as follows:
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Theorem 8.11. We can introduce the p-adic integers Zp ⊂ Qp as being

Zp =
{
x ∈ Qp

∣∣∣ |x| ≤ 1
}

not to be confused with Zp, and this is a ring, appearing as completion of Z ⊂ Zp.

Proof. There are several things going on here, the idea being as follows:

(1) We can certainly introduce a set Zp ⊂ Qp by the condition in the statement, and
the ring axioms are all clear from the modified norm conditions, from Theorem 8.7, the
verifications of the fact that Zp is stable under sums and products being as follows:

|x|, |y| ≤ 1 =⇒ |x+ y| ≤ max(|x|, |y|) ≤ 1

|x|, |y| ≤ 1 =⇒ |xy| = |x| · |y| ≤ 1

(2) Next, since the valuation of a usual integer x ∈ Z satisfies v(x) ≥ 0, the norm
satisfies |x| ≤ 1, and so we have an inclusion Z ⊂ Zp, as in the statement.

(3) With a bit more work, we can see that Zp is closed with respect to the p-adic
norm, and also, that is appears as the completion of its subring Z ⊂ Zp. □

With this understood, let us get now to the irrationals, and non-integers, and the
p-adic numbers in general, viewed as a whole. Obviously, in order to understand them,
we must understand well the Cauchy sequences and convergence in Qp. But here, many
surprises are waiting for us, as for instance the following notorious formula:

Proposition 8.12. We have the following formula,
∞∑
k=0

pk =
1

1− p

with respect to the p-adic norm.

Proof. By using pn → 0, with respect to the p-adic norm, we have:

n−1∑
k=0

pk =
1− pn

1− p

=
1

1− p
− pn

1− p

≃ 1

1− p
− 0

1− p

=
1

1− p
Thus, we are led to the conclusion in the statement. □
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Quite nice the above formula, we are learning new things here, aren’t we, and even
more spectacular is its p = 2 particular case, which reads:

∞∑
k=0

2k = −1

As a matter of doublecheking, this latter formula can be proved as follows:

n−1∑
k=0

2k = 2n − 1

≃ 0− 1

= −1

But we will not get scared by this. Moving ahead now with our general program, of
understanding the Cauchy sequences and convergence in Qp, we have:

Theorem 8.13. Convergence in Qp, and corresponding picture of Qp.

Proof. This follows, as usual, from some elementary arithmetic modulo p, with the
conclusion being that the arbitrary p-adic numbers x ∈ Qp have, after all, a quite intuitive
interpretation, when it comes to their decimal, or rather p-adic, expansion. □

Finally, again in the analogy with what we know about numbers, we have:

Theorem 8.14. The field of p-adic numbers Qp can be further enlarged,

Qp ⊂ Q̄p

into an algebrically closed field Q̄p, having many interesting properties.

Proof. This follows indeed by using the general F → F̄ technology coming from
Galois theory, and with this being quite similar to the construction R→ C. □

Getting back now to our original motivations, namely equations for the integers and
rationals, and the local-global principle for them, that we are dreaming of, we have:

Theorem 8.15. Hasse local-global principle, and Hasse-Minkowski theorem.

Proof. Many things can be said here, especially in continuation of our previous study
of elliptic curves. The proofs, however, use a lot of non-trivial algebra. We will present
here the main ideas, behind these proofs, with some details missing. □

8d. Further results

Further results.
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8e. Exercises

Exercises:

Exercise 8.16.

Exercise 8.17.

Exercise 8.18.

Exercise 8.19.

Exercise 8.20.

Exercise 8.21.

Exercise 8.22.

Exercise 8.23.

Bonus exercise.
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Well, it’s one for the money
Two for the show
Three to get ready
Now go cat go



CHAPTER 9

Projective rotations

9a. Rotation groups

We discuss in this present Part III of this book the various symmetry groups, contin-
uous or discrete, in the projective geometry setting. To start with, in the present chapter
we will discuss the projective rotation groups. Let us start with a very basic result,
regarding the usual, affine rotation groups, that you surely know well, namely:

Theorem 9.1. We have the following results:

(1) The rotations of RN form the orthogonal group ON , which is given by:

ON =
{
U ∈MN(R)

∣∣∣U t = U−1
}

(2) The rotations of CN form the unitary group UN , which is given by:

UN =
{
U ∈MN(C)

∣∣∣U∗ = U−1
}

In addition, we can restrict the attention to the rotations of the corresponding spheres.

Proof. This is something that you surely know, the idea being as follows:

(1) We know from linear algebra that a linear map T : RN → RN , written as T (x) =
Ux with U ∈ MN(R), is a rotation, in the sense that it preserves the distances and the
angles, precisely when the associated matrix U is orthogonal, in the following sense:

U t = U−1

Thus, we obtain the result. As for the last assertion, this is clear as well, because an
isometry of RN is the same as an isometry of the unit sphere SN−1

R ⊂ RN .

(2) We know from linear algebra that a linear map T : CN → CN , written as T (x) =
Ux with U ∈ MN(C), is a rotation, in the sense that it preserves the distances and the
scalar products, precisely when the associated matrix U is unitary, in the following sense:

U∗ = U−1

Thus, we obtain the result. As for the last assertion, this is clear as well, because an
isometry of CN is the same as an isometry of the unit sphere SN−1

C ⊂ CN . □

In order to introduce now some further examples of continuous groups G ⊂ UN , we
will need the following standard fact, that you surely know well too:

95
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Proposition 9.2. We have the following results:

(1) For an orthogonal matrix U ∈ ON we have detU ∈ {±1}.
(2) For a unitary matrix U ∈ UN we have detU ∈ T.

Proof. This is clear from the equations defining ON , UN , as follows:

(1) We have indeed the following implications:

U ∈ ON =⇒ U t = U−1

=⇒ detU t = detU−1

=⇒ detU = (detU)−1

=⇒ detU ∈ {±1}

(2) We have indeed the following implications:

U ∈ UN =⇒ U∗ = U−1

=⇒ detU∗ = detU−1

=⇒ detU = (detU)−1

=⇒ detU ∈ T

Here we have used the fact that z̄ = z−1 means zz̄ = 1, and so z ∈ T. □

We can now introduce the subgroups SON ⊂ ON and SUN ⊂ UN , as being the
subgroups consisting of the rotations which preserve the orientation, as follows:

Theorem 9.3. The following are groups of matrices,

SON =
{
U ∈ ON

∣∣∣ detU = 1
}

, SUN =
{
U ∈ UN

∣∣∣ detU = 1
}

consisting of the rotations which preserve the orientation.

Proof. The fact that we have indeed groups follows from the properties of the de-
terminant, of from the property of preserving the orientation, which is clear as well. □

Summarizing, we have constructed so far 4 continuous groups of matrices, consisting
of various rotations, with inclusions between them, as follows:

SUN // UN

SON

OO

// ON

OO

At N = 1 the situation is trivial, and we obtain very simple groups, as follows:



9A. ROTATION GROUPS 97

Proposition 9.4. The basic continuous groups at N = 1 are

{1} // T

{1}

OO

// {±1}

OO

or, equivalently, are the following cyclic groups,

Z1
// Z∞

Z1

OO

// Z2

OO

with the convention that Zs is the group of s-th roots of unity.

Proof. This is clear from definitions, because for a 1×1 matrix the unitarity condition
reads Ū = U−1, and so U ∈ T, and this gives all the results. □

At N = 2 now, let us first discuss the real case. The result here is as follows:

Theorem 9.5. We have the following results:

(1) SO2 is the group of usual rotations in the plane, which are given by:

Rt =

(
cos t − sin t
sin t cos t

)
(2) O2 consists in addition of the usual symmetries in the plane, given by:

St =

(
cos t sin t
sin t − cos t

)
(3) Abstractly speaking, we have isomorphisms as follows:

SO2 ≃ T , O2 = T ⋊ Z2

(4) When discretizing all this, by replacing the 2-dimensional unit sphere T by the
regular N-gon, the latter isomorphism discretizes as DN = ZN ⋊ Z2.

Proof. This follows from some elementary computations, as follows:

(1) The first assertion is clear, because only the rotations of the plane in the usual
sense preserve the orientation. As for the formula of Rt, this is something that we know
well from linear algebra, obtained by computing Rt

(
1
0

)
and Rt

(
0
1

)
.
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(2) The first assertion is clear, because rotations left aside, we are left with the sym-
metries of the plane, in the usual sense. As for formula of St, this is something that we
know well too, obtained by computing St

(
1
0

)
and St

(
0
1

)
.

(3) The first assertion is clear, because the angles t ∈ R, taken as usual modulo 2π,
form the group T. As for the second assertion, the proof here is similar to the proof of
the crossed product decomposition DN = ZN ⋊ Z2 for the dihedral groups.

(4) This is something more speculative, the idea here being that the isomorphism
O2 = T ⋊ Z2 appears from DN = ZN ⋊ Z2 by taking the N →∞ limit. □

9b. Pauli matrices

Moving forward, let us keep working out what happens at N = 2, but this time with
a study in the complex case. We first have here the following key result:

Theorem 9.6. We have the following formula,

SU2 =

{(
a b
−b̄ ā

) ∣∣∣ |a|2 + |b|2 = 1

}
which makes SU2 isomorphic to the unit sphere S1

C ⊂ C2.

Proof. Consider indeed an arbitrary 2× 2 matrix, written as follows:

U =

(
a b
c d

)
Assuming that we have detU = 1, the inverse must be given by:

U−1 =

(
d −b
−c a

)
On the other hand, assuming U ∈ U2, the inverse must be the adjoint:

U−1 =

(
ā c̄
b̄ d̄

)
We are therefore led to the following equations, for the matrix entries:

d = ā , c = −b̄

Thus our matrix must be of the following special form:

U =

(
a b
−b̄ ā

)
Moreover, since the determinant is 1, we must have, as stated:

|a|2 + |b|2 = 1
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Thus, we are done with one inclusion. As for the converse, this is clear, the matrices
in the statement being unitaries, and of determinant 1, and so being elements of SU2.
Finally, regarding the last assertion, recall that the unit sphere S1

C ⊂ C2 is given by:

S1
C =

{
(a, b)

∣∣∣ |a|2 + |b|2 = 1
}

Thus, we have an isomorphism of compact spaces, as follows:

SU2 ≃ S1
C ,

(
a b
−b̄ ā

)
→ (a, b)

We have therefore proved our theorem. □

Regarding now the unitary group U2, the result here is similar, as follows:

Theorem 9.7. We have the following formula,

U2 =

{
d

(
a b
−b̄ ā

) ∣∣∣ |a|2 + |b|2 = 1, |d| = 1

}
which makes U2 be a quotient compact space, as follows,

S1
C × T→ U2

but with this parametrization being no longer bijective.

Proof. In one sense, this is clear from Theorem 9.6, because we have:

|d| = 1 =⇒ dSU2 ⊂ U2

In the other sense, let us pick an arbitrary matrix U ∈ U2. We have then:

| det(U)|2 = det(U)det(U)

= det(U) det(U∗)

= det(UU∗)

= det(1)

= 1

Consider now the following complex number, defined up to a sign choice:

d =
√
detU

We know from Proposition 9.2 that we have |d| = 1. Thus the rescaled matrix V = U/d
is unitary, V ∈ U2. As for the determinant of this matrix, this is given by:

det(V ) = det(U/d)

= det(U)/d2

= det(U)/ det(U)

= 1
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Thus we have V ∈ SU2, and so we can write, with |a|2 + |b|2 = 1:

V =

(
a b
−b̄ ā

)
Thus the matrix U = dV appears as in the statement. Finally, observe that the result

that we have just proved provides us with a quotient map as follows:

S1
C × T→ U2 , ((a, b), d)→ d

(
a b
−b̄ ā

)
However, the parametrization is no longer bijective, because when we globally switch

signs, the element ((−a,−b),−d) produces the same element of U2. □

Here is now a useful reformulation of our main result so far regarding SU2, obtained
by further building on the parametrization found above:

Theorem 9.8. We have the formula

SU2 =

{(
x+ iy z + it
−z + it x− iy

) ∣∣∣ x2 + y2 + z2 + t2 = 1

}
which makes SU2 isomorphic to the unit real sphere S3

R ⊂ R3.

Proof. We recall from Theorem 9.6 that we have the following formula:

SU2 =

{(
a b
−b̄ ā

) ∣∣∣ |a|2 + |b|2 = 1

}
Now let us write our parameters a, b ∈ C, which belong to the complex unit sphere

S1
C ⊂ C2, in terms of their real and imaginary parts, as follows:

a = x+ iy , b = z + it

In terms of x, y, z, t ∈ R, our formula for a generic matrix U ∈ SU2 becomes the one
in the statement. As for the condition to be satisfied by the parameters x, y, z, t ∈ R, this
comes the condition |a|2 + |b|2 = 1 to be satisfied by a, b ∈ C, which reads:

x2 + y2 + z2 + t2 = 1

Thus, we are led to the conclusion in the statement. Regarding now the last assertion,
recall that the unit sphere S3

R ⊂ R4 is given by:

S3
R =

{
(x, y, z, t)

∣∣∣ x2 + y2 + z2 + t2 = 1
}

Thus, we have an isomorphism of compact spaces, as follows:

SU2 ≃ S3
R ,

(
x+ iy z + it
−z + it x− iy

)
→ (x, y, z, t)

We have therefore proved our theorem. □
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As a philosophical comment here, the above parametrization of SU2 is something very
nice, because the parameters (x, y, z, t) range now over the sphere of space-time. Thus,
we are probably doing some kind of physics here. More on this later.

Regarding now the group U2, we have here a similar result, as follows:

Theorem 9.9. We have the following formula,

U2 =

{
(p+ iq)

(
x+ iy z + it
−z + it x− iy

) ∣∣∣ x2 + y2 + z2 + t2 = 1, p2 + q2 = 1

}
which makes U2 be a quotient compact space, as follows,

S3
R × S1

R → U2

but with this parametrization being no longer bijective.

Proof. We recall from Theorem 9.7 that we have the following formula:

U2 =

{
d

(
a b
−b̄ ā

) ∣∣∣ |a|2 + |b|2 = 1, |d| = 1

}
Now let us write our parameters a, b ∈ C, which belong to the complex unit sphere

S1
C ⊂ C2, and d ∈ T, in terms of their real and imaginary parts, as follows:

a = x+ iy , b = z + it , d = p+ iq

In terms of these new parameters x, y, z, t, p, q ∈ R, our formula for a generic matrix
U ∈ SU2, that we established before, reads:

U = (p+ iq)

(
x+ iy z + it
−z + it x− iy

)
As for the condition to be satisfied by the parameters x, y, z, t, p, q ∈ R, this comes

the conditions |a|2 + |b|2 = 1 and |d| = 1 to be satisfied by a, b, d ∈ C, which read:

x2 + y2 + z2 + t2 = 1 , p2 + q2 = 1

Thus, we are led to the conclusion in the statement. Regarding now the last assertion,
recall that the unit spheres S3

R ⊂ R4 and S1
R ⊂ R2 are given by:

S3
R =

{
(x, y, z, t)

∣∣∣ x2 + y2 + z2 + t2 = 1
}

S1
R =

{
(p, q)

∣∣∣ p2 + q2 = 1
}

Thus, we have quotient map of compact spaces, as follows:

S3
R × S1

R → U2 , ((x, y, z, t), (p, q))→ (p+ iq)

(
x+ iy z + it
−z + it x− iy

)
However, the parametrization is no longer bijective, because when we globally switch

signs, the element ((−x,−y,−z,−t), (−p,−q)) produces the same element of U2. □
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Here is now another reformulation of our main result so far, regarding SU2, obtained
by further building on the parametrization from Theorem 9.8:

Theorem 9.10. We have the following formula,

SU2 =
{
xc1 + yc2 + zc3 + tc4

∣∣∣ x2 + y2 + z2 + t2 = 1
}

where c1, c2, c3, c4 are matrices given by

c1 =

(
1 0
0 1

)
, c2 =

(
i 0
0 −i

)
c3 =

(
0 1
−1 0

)
, c4 =

(
0 i
i 0

)
called Pauli spin matrices.

Proof. We recall from Theorem 9.8 that the group SU2 can be parametrized by the
real sphere S3

R ⊂ R4, in the following way:

SU2 =

{(
x+ iy z + it
−z + it x− iy

) ∣∣∣ x2 + y2 + z2 + t2 = 1

}
Thus, the elements U ∈ SU2 are precisely the matrices as follows, depending on

parameters x, y, z, t ∈ R satisfying x2 + y2 + z2 + t2 = 1:

U = x

(
1 0
0 1

)
+ y

(
i 0
0 −i

)
+ z

(
0 1
−1 0

)
+ t

(
0 i
i 0

)
But this gives the formula for SU2 in the statement. □

The above result is often the most convenient one, when dealing with SU2. This is
because the Pauli matrices have a number of remarkable properties, which are very useful
when doing computations. These properties can be summarized as follows:

Theorem 9.11. The Pauli matrices multiply according to the formulae

c22 = c23 = c24 = −1
c2c3 = −c3c2 = c4

c3c4 = −c4c3 = c2

c4c2 = −c2c4 = c3

they conjugate according to the following rules,

c∗1 = c1 , c
∗
2 = −c2 , c∗3 = −c3 , c∗4 = −c4

and they form an orthonormal basis of M2(C), with respect to the scalar product

< a, b >= tr(ab∗)

with tr :M2(C)→ C being the normalized trace of 2× 2 matrices, tr = Tr/2.
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Proof. The first two assertions, regarding the multiplication and conjugation rules
for the Pauli matrices, follow from some elementary computations. As for the last as-
sertion, this follows by using these rules. Indeed, the fact that the Pauli matrices are
pairwise orthogonal follows from computations of the following type, for i ̸= j:

< ci, cj >= tr(cic
∗
j) = tr(±cicj) = tr(±ck) = 0

As for the fact that the Pauli matrices have norm 1, this follows from:

< ci, ci >= tr(cic
∗
i ) = tr(±c2i ) = tr(c1) = 1

Thus, we are led to the conclusion in the statement. □

We should mention here that the Pauli matrices are cult objects in physics, due to the
fact that they describe the spin of the electron. Indeed, a bit like our Earth spins around
its axis, the electrons spin too. And it took scientists a lot of skill in order to understand
the physics and mathematics of the spin, the conclusion being that the Schrödinger wave
function space for the electron H = L2(R3) has to be enlarged with a copy of the space
K = C2, via a direct sum, as to take into account the spin, and with this spin being
described by the Pauli matrices, in some appropriate, quantum mechanical sense.

As usual, we refer to Feynman [32], Griffiths [42] or Weinberg [95] for more on all
this. And with the remark that the Pauli matrices are actually subject to several possible
normalizations, depending on formalism, but let us not get into all this here.

9c. Euler-Rodrigues

Back to mathematics, let us discuss now the basic unitary groups in 3 or more di-
mensions. The situation here becomes fairly complicated, but it is possible however to
explicitly compute the rotation groups SO3 and O3, and explaining this result, due to
Euler-Rodrigues, which is something non-trivial and very useful, will be our next goal.

The proof of the Euler-Rodrigues formula is something quite tricky. Let us start with
the following construction, whose usefulness will become clear in a moment:

Proposition 9.12. The adjoint action SU2 ↷M2(C), given by

TU(M) = UMU∗

leaves invariant the following real vector subspace of M2(C),

E = spanR(c1, c2, c3, c4)

and we obtain in this way a group morphism SU2 → GL4(R).
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Proof. We have two assertions to be proved, as follows:

(1) We must first prove that, with E ⊂ M2(C) being the real vector space in the
statement, we have the following implication:

U ∈ SU2,M ∈ E =⇒ UMU∗ ∈ E

But this is clear from the multiplication rules for the Pauli matrices, from Theorem
9.11. Indeed, let us write our matrices U,M as follows:

U = xc1 + yc2 + zc3 + tc4

M = ac1 + bc2 + cc3 + dc4

We know that the coefficients x, y, z, t and a, b, c, d are real, due to U ∈ SU2 and
M ∈ E. The point now is that when computing UMU∗, by using the various rules from
Theorem 9.11, we obtain a matrix of the same type, namely a combination of c1, c2, c3, c4,
with real coefficients. Thus, we have UMU∗ ∈ E, as desired.

(2) In order to conclude, let us identify E ≃ R4, by using the basis c1, c2, c3, c4. The
result found in (1) shows that we have a correspondence as follows:

SU2 →M4(R) , U → (TU)|E

Now observe that for any U ∈ SU2 and any M ∈M2(C) we have:

TU∗TU(M) = U∗UMU∗U =M

Thus TU∗ = T−1
U , and so the correspondence that we found can be written as:

SU2 → GL4(R) , U → (TU)|E

But this a group morphism, due to the following computation:

TUTV (M) = UVMV ∗U∗ = TUV (M)

Thus, we are led to the conclusion in the statement. □

The point now, which makes the link with SO3, and which will ultimately elucidate
the structure of SO3, is that Proposition 9.12 can be improved as follows:

Theorem 9.13. The adjoint action SU2 ↷M2(C), given by

TU(M) = UMU∗

leaves invariant the following real vector subspace of M2(C),

F = spanR(c2, c3, c4)

and we obtain in this way a group morphism SU2 → SO3.
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Proof. We can do this in several steps, as follows:

(1) Our first claim is that the group morphism SU2 → GL4(R) constructed in Propo-
sition 9.12 is in fact a morphism SU2 → O4. In order to prove this, recall the following
formula, valid for any U ∈ SU2, from the proof of Proposition 9.12:

TU∗ = T−1
U

We want to prove that the matrices TU ∈ GL4(R) are orthogonal, and in view of the
above formula, it is enough to prove that we have:

T ∗
U = (TU)

t

So, let us prove this. For any two matrices M,N ∈ E, we have:

< TU∗(M), N > = < U∗MU,N >

= tr(U∗MUN)

= tr(MUNU∗)

On the other hand, we have as well the following formula:

< (TU)
t(M), N > = < M,TU(N) >

= < M,UNU∗ >

= tr(MUNU∗)

Thus we have indeed T ∗
U = (TU)

t, which proves our SU2 → O4 claim.

(2) In order now to finish, recall that we have by definition c1 = 1, as a matrix. Thus,
the action of SU2 on the vector c1 ∈ E is given by:

TU(c1) = Uc1U
∗ = UU∗ = 1 = c1

We conclude that c1 ∈ E is invariant under SU2, and by orthogonality the following
subspace of E must be invariant as well under the action of SU2:

e⊥1 = spanR(c2, c3, c4)

Now if we call this subspace F , and we identify F ≃ R3 by using the basis c2, c3, c4,
we obtain by restriction to F a morphism of groups as follows:

SU2 → O3

But since this morphism is continuous and SU2 is connected, its image must be con-
nected too. Now since the target group decomposes as O3 = SO3 ⊔ (−SO3), and 1 ∈ SU2

gets mapped to 1 ∈ SO3, the whole image must lie inside SO3, and we are done. □

The above result is quite interesting, because we will see in a moment that the mor-
phism SU2 → SO3 constructed there is surjective. Thus, we will have a way of parametriz-
ing the elements V ∈ SO3 by elements U ∈ SO2, and so ultimately by parameters
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(x, y, z, t) ∈ S3
R. In order to work out all this, let us start with the following result,

coming as a continuation of Proposition 9.12, independently of Theorem 9.13:

Theorem 9.14. With respect to the standard basis c1, c2, c3, c4 of the vector space
R4 = span(c1, c2, c3, c4), the morphism T : SU2 → GL4(R) is given by:

TU =


1 0 0 0
0 x2 + y2 − z2 − t2 2(yz − xt) 2(xz + yt)
0 2(xt+ yz) x2 + z2 − y2 − t2 2(zt− xy)
0 2(yt− xz) 2(xy + zt) x2 + t2 − y2 − z2


Thus, when looking at T as a group morphism SU2 → O4, what we have in fact is a group
morphism SU2 → O3, and even SU2 → SO3.

Proof. With notations from Proposition 9.12 and its proof, let us first look at the
action L : SU2 ↷ R4 by left multiplication, which is by definition given by:

LU(M) = UM

In order to compute the matrix of this action, let us write, as usual:

U = xc1 + yc2 + zc3 + tc4

M = ac1 + bc2 + cc3 + dc4

By using the multiplication formulae in Theorem 9.11, we obtain:

UM = (xc1 + yc2 + zc3 + tc4)(ac1 + bc2 + cc3 + dc4)

= (xa− yb− zc− td)c1
+ (xb+ ya+ zd− tc)c2
+ (xc− yd+ za+ tb)c3

+ (xd+ yc− zb+ ta)c4

We conclude that the matrix of the left action considered above is:

LU =


x −y −z −t
y x −t z
z t x −y
t −z y x


Similarly, let us look now at the action R : SU2 ↷ R4 by right multiplication, which

is by definition given by the following formula:

RU(M) =MU∗

In order to compute the matrix of this action, let us write, as before:

U = xc1 + yc2 + zc3 + tc4

M = ac1 + bc2 + cc3 + dc4
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By using the multiplication formulae in Theorem 9.11, we obtain:

MU∗ = (ac1 + bc2 + cc3 + dc4)(xc1 − yc2 − zc3 − tc4)
= (ax+ by + cz + dt)c1

+ (−ay + bx− ct+ dz)c2

+ (−az + bt+ cx− dy)c3
+ (−at− bz + cy + dx)c4

We conclude that the matrix of the right action considered above is:

RU =


x y z t
−y x −t z
−z t x −y
−t −z y x


Now by composing, the matrix of the adjoint matrix in the statement is:

TU = RULU

=


x y z t
−y x −t z
−z t x −y
−t −z y x



x −y −z −t
y x −t z
z t x −y
t −z y x



=


1 0 0 0
0 x2 + y2 − z2 − t2 2(yz − xt) 2(xz + yt)
0 2(xt+ yz) x2 + z2 − y2 − t2 2(zt− xy)
0 2(yt− xz) 2(xy + zt) x2 + t2 − y2 − z2


Thus, we have indeed the formula in the statement. As for the remaining assertions,

these are all clear either from this formula, or from Theorem 9.13. □

We can now formulate the Euler-Rodrigues result, as follows:

Theorem 9.15. We have a double cover map, obtained via the adjoint representation,

SU2 → SO3

and this map produces the Euler-Rodrigues formula

U =

x2 + y2 − z2 − t2 2(yz − xt) 2(xz + yt)
2(xt+ yz) x2 + z2 − y2 − t2 2(zt− xy)
2(yt− xz) 2(xy + zt) x2 + t2 − y2 − z2


for the generic elements of SO3.

Proof. We know from the above that we have a group morphism SU2 → SO3, given
by the formula in the statement, and the problem now is that of proving that this is a
double cover map, in the sense that it is surjective, and with kernel {±1}.
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(1) Regarding the kernel, this is elementary to compute, as follows:

ker(SU2 → SO3) =
{
U ∈ SU2

∣∣∣TU(M) =M,∀M ∈ E
}

=
{
U ∈ SU2

∣∣∣UM =MU, ∀M ∈ E
}

=
{
U ∈ SU2

∣∣∣Uci = ciU,∀i
}

= {±1}
(2) Thus, we are done with this, and as a side remark here, this result shows that our

morphism SU2 → SO3 is ultimately a morphism as follows:

PU2 ⊂ SO3 , PU2 = SU2/{±1}
Here P stands for “projective”, and it is possible to say more about the construction

G → PG, which can be performed for any subgroup G ⊂ UN . But we will not get here
into this, our next goal being anyway that of proving that we have PU2 = SO3.

(3) We must prove now that the morphism SU2 → SO3 is surjective. This is something
non-trivial, and there are several advanced proofs for this, as follows:

– A first proof is by using Lie theory. To be more precise, the tangent spaces at 1
of both SU2 and SO3 can be explicitly computed, by doing some linear algebra, and the
morphism SU2 → SO3 follows to be surjective around 1, and then globally.

– Another proof is via representation theory, as developed following Peter-Weyl. In-
deed, the representations of SU2 and SO3 are subject to very similar formulae, called
Clebsch-Gordan rules, and this shows that SU2 → SO3 is surjective.

– Yet another advanced proof, which is actually quite bordeline for what can be called
“proof”, is by using the ADE/McKay classification of the subgroups G ⊂ SO3, which
shows that there is no room strictly inside SO3 for something as big as PU2.

(4) In short, with some good knowledge of group theory, we are done. However, this
is not our case, and we will present in what follows a more pedestrian proof, which was
actually the original proof, based on the fact that any rotation U ∈ SO3 has an axis.

(5) As a first computation, let us prove that any rotation U ∈ Im(SU2 → SO3) has
an axis. We must look for fixed points of such rotations, and by linearity it is enough to
look for fixed points belonging to the sphere S2

R ⊂ R3. Now recall that in our picture for
the quotient map SU2 → SO3, the space R3 appears as F = spanR(c2, c3, c4), naturally
embedded into the space R4 appearing as E = spanR(c1, c2, c3, c4). Thus, we must look
for fixed points belonging to the sphere S3

R ⊂ R4 whose first coordinate vanishes. But, in
our R4 = E picture, this sphere S3

R is the group SU2. Thus, we must look for fixed points
V ∈ SU2 whose first coordinate with respect to c1, c2, c3, c4 vanishes, which amounts in
saying that the diagonal entries of V must be purely imaginary numbers.
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(6) Long story short, via our various identifications, we are led into solving the equation
UV = V U with U, V ∈ SU2, and with V having a purely imaginary diagonal. So, with
standard notations for SU2, we must solve the following equation, with p ∈ iR:(

a b
−b̄ ā

)(
p q
−q̄ p̄

)
=

(
p q
−q̄ p̄

)(
a b
−b̄ ā

)
(7) But this is something which is routine. Indeed, by identifying coefficients we obtain

the following equations, each appearing twice:

bq̄ = b̄q , b(p− p̄) = (a− ā)q
In the case b = 0 the only equation which is left is q = 0, and reminding that we must

have p ∈ iR, we do have solutions, namely two of them, as follows:

V = ±
(
i 0
0 i

)
(8) In the remaining case b ̸= 0, the first equation reads bq̄ ∈ R, so we must have q = λb

with λ ∈ R. Now with this substitution made, the second equation reads p− p̄ = λ(a− ā),
and since we must have p ∈ iR, this gives 2p = λ(a− ā). Thus, our equations are:

q = λb , p = λ · a− ā
2

Getting back now to our problem about finding fixed points, assuming |a|2 + |b|2 = 1
we must find λ ∈ R such that the above numbers p, q satisfy |p|2 + |q|2 = 1. But:

|p|2 + |q|2 = |λb|2 +
∣∣∣∣λ · a− ā2

∣∣∣∣2
= λ2(|b|2 + Im(a)2)

= λ2(1−Re(a)2)
Thus, we have again two solutions to our fixed point problem, given by:

λ = ± 1√
1−Re(a)2

(9) Summarizing, we have proved that any rotation U ∈ Im(SU2 → SO3) has an
axis, and with the direction of this axis, corresponding to a pair of opposite points on the
sphere S2

R ⊂ R3, being given by the above formulae, via S2
R ⊂ S3

R = SU2.

(10) In order to finish, we must argue that any rotation U ∈ SO3 has an axis. But
this follows for instance from some topology, by using the induced map S2

R → S2
R. Now

since U ∈ SO3 is uniquely determined by its rotation axis, which can be regarded as a
point of S2

R/{±1}, plus its rotation angle t ∈ [0, 2π), by using S2
R ⊂ S3

R = SU2 as in (9)
we are led to the conclusion that U is uniquely determined by an element of SU2/{±1},
and so appears indeed via the Euler-Rodrigues formula, as desired. □
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So long for the Euler-Rodrigues formula. As already mentioned, all the above is just
the tip of the iceberg, and there are many more things that can be said, which are all
interesting, and worth learning. We will be back to this.

Regarding now O3, the extension from SO3 is very simple, as follows:

Theorem 9.16. We have the Euler-Rodrigues formula

U = ±

x2 + y2 − z2 − t2 2(yz − xt) 2(xz + yt)
2(xt+ yz) x2 + z2 − y2 − t2 2(zt− xy)
2(yt− xz) 2(xy + zt) x2 + t2 − y2 − z2


for the generic elements of O3.

Proof. This follows from Theorem 9.15, because the determinant of an orthogonal
matrix U ∈ O3 must satisfy detU = ±1, and in the case detU = −1, we have:

det(−U) = (−1)3 detU = − detU = 1

Thus, assuming detU = −1, we can therefore rescale U into an element −U ∈ SO3,
and this leads to the conclusion in the statement. □

9d. Higher dimensions

Back to arbitrary dimensions, in the real case, we have the following result:

Proposition 9.17. We have a decomposition as follows, with SO−1
N consisting by

definition of the orthogonal matrices having determinant −1:
ON = SON ∪ SO−1

N

Moreover, when N is odd the set SO−1
N is simply given by SO−1

N = −SON .

Proof. The first assertion is clear from definitions, because the determinant of an
orthogonal matrix must be ±1. The second assertion is clear too. Finally, when N is
even the situation is a bit more complicated, and requires complex numbers. □

In the complex case now, the result is simpler, as follows:

Proposition 9.18. We have a decomposition as follows, with SUd
N consisting by def-

inition of the unitary matrices having determinant d ∈ T:

ON =
⋃
d∈T

SUd
N

Moreover, the components are SUd
N = f · SUN , where f ∈ T is such that fN = d.

Proof. This is clear from definitions, and from the fact that the determinant of a
unitary matrix belongs to T, by extracting a suitable square root of the determinant. □
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It is possible to use the decomposition in Proposition 9.18 in order to say more about
what happens in the real case, in the context of Proposition 9.17, but we will not get
into this. We will basically stop here with our study of ON , UN , and of their versions
SON , SUN . As a last result on the subject, however, let us record:

Theorem 9.19. We have subgroups of ON , UN constructed via the condition

(detU)d = 1

with d ∈ N ∪ {∞}, which generalize both ON , UN and SON , SUN .

Proof. This is indeed from definitions, and from the multiplicativity property of the
determinant. We will be back to these groups, which are quite specialized, later on. □

Finally, a word about complexification. The passage ON → UN cannot be understood
directly, and we must pass here through the corresponding Lie algebras, as follows:

Theorem 9.20. The passage ON → UN appears via a Lie algebra complexification,

ON → oN → un → UN

with the Lie algebra uN being a complexification of the Lie algebra oN .

Proof. This is something rather philosophical, the idea being as follows:

(1) The orthogonal and unitary groups ON , NN are both Lie groups, and the corre-
sponding Lie algebras oN , uN can be computed by differentiating the equations defining
ON , UN , with the conclusion being as follows:

oN =
{
A ∈MN(R)

∣∣∣At = −A}
uN =

{
B ∈MN(C)

∣∣∣B∗ = −B
}

(2) This was for the correspondences ON → oN and UN → uN . In the other sense,
the correspondences oN → ON and uN → UN appear by exponentiation, the result here
stating that, around 1, the orthogonal matrices can be written as U = eA, with A ∈ oN ,
and the unitary matrices can be written as U = eB, with B ∈ uN .

(3) In view of all this, in order to understand the passage ON → UN it is enough to
understand the passage oN → uN . But, in view of the above explicit formulae for oN , uN ,
this is basically an elementary linear algebra problem. Indeed, let us pick an arbitrary
matrix B ∈MN(C), and write it as follows, with A,C ∈MN(R):

B = A+ iC

In terms of A,C, the equation B∗ = −B defining the Lie algebra uN reads:

At = −A , Ct = C
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(4) As a first observation, we must have A ∈ oN . Regarding now C, let us decompose
it as follows, with D being its diagonal, and C ′ being the remainder:

C = D + C ′

The remainder C ′ being symmetric with 0 on the diagonal, by switching all the signs
below the main diagonal we obtain a certain matrix C ′

− ∈ oN . Thus, we have decomposed
B ∈ uN as follows, with A,C ′ ∈ oN , and with D ∈MN(R) being diagonal:

B = A+ iD + iC ′
−

(5) As a conclusion now, we have shown that we have a direct sum decomposition of
real linear spaces as follows, with ∆ ⊂MN(R) being the diagonal matrices:

uN ≃ oN ⊕∆⊕ oN

Thus, we can stop our study here, and say that we have reached the conclusion in the
statement, namely that uN appears as a “complexification” of oN . □

9e. Exercises

Exercises:

Exercise 9.21.

Exercise 9.22.

Exercise 9.23.

Exercise 9.24.

Exercise 9.25.

Exercise 9.26.

Exercise 9.27.

Exercise 9.28.

Bonus exercise.



CHAPTER 10

Projective symmetries

10a. Product operations

We discuss in this chapter more complicated symmetry groups. As a starting point
here, we have the following result regarding the dihedral group DN :

Theorem 10.1. The dihedral group DN is the group having 2N elements, R1, . . . , RN

and S1, . . . , SN , called rotations and symmetries, which multiply as follows,

RkRl = Rk+l

RkSl = Sk+l
SkRl = Sk−l
SkSl = Rk−l

with all the indices being taken modulo N .

Proof. This is something which is self-explanatory, with R1, . . . , RN standing for the
rotations of the N -gon, and with S1, . . . , SN standing for the symmetries. □

Observe now that DN has the same cardinality as EN = ZN ×Z2. We obviously don’t
have DN ≃ EN , because DN is not abelian, while EN is. So, our next goal will be that of
proving that DN appears by “twisting” EN . In order to do this, let us start with:

Proposition 10.2. The group EN = ZN × Z2 is the group having 2N elements,
r1, . . . , rN and s1, . . . , sN , which multiply according to the following rules,

rkrl = rk+l

rksl = sk+l
skrl = sk+l
sksl = rk+l

with all the indices being taken modulo N .

Proof. With the notation Z2 = {1, τ}, the elements of the product group EN =
ZN × Z2 can be labeled r1, . . . , rN and s1, . . . , sN , as follows:

rk = (k, 1) , sk = (k, τ)

These elements multiply then according to the formulae in the statement. Now since
a group is uniquely determined by its multiplication rules, this gives the result. □
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Let us compare now Theorem 10.1 and Proposition 10.2. In order to formally obtain
DN from EN , we must twist some of the multiplication rules of EN , namely:

skrl = sk+l → sk−l

sksl = rk+l → rk−l
Informally, this amounts in following the rule “τ switches the sign of what comes

afterwards”, and we are led in this way to the following definition:

Definition 10.3. Given two groups A,G, with an action A↷ G, the crossed product

P = G⋊ A

is the set G× A, with multiplication (g, a)(h, b) = (gha, ab).

It is routine to check that P is indeed a group. Observe that when the action is trivial,
ha = h for any a ∈ A and h ∈ H, we obtain the usual product G× A.

Now with this technology in hand, by getting back to the dihedral group DN , we can
improve Theorem 10.1, into a final result on the subject, as follows:

Theorem 10.4. We have a crossed product decomposition as follows,

DN = ZN ⋊ Z2

with Z2 = {1, τ} acting on ZN via switching signs, kτ = −k.

Proof. We have an action Z2 ↷ ZN given by the formula in the statement, namely
kτ = −k, so we can consider the corresponding crossed product group:

PN = ZN ⋊ Z2

In order to understand the structure of PN , we follow Proposition 10.2. The elements
of PN can indeed be labeled ρ1, . . . , ρN and σ1, . . . , σN , as follows:

ρk = (k, 1) , σk = (k, τ)

Now when computing the products of such elements, we basically obtain the formulae
in Proposition 10.2, perturbed as in Definition 10.3. To be more precise, we have:

ρkρl = ρk+l

ρkσl = σk+l
σkρl = σk+l
σkσl = ρk+l

But these are exactly the multiplication formulae for DN , from Theorem 10.1. Thus,
we have an isomorphism DN ≃ PN given by Rk → ρk and Sk → σk, as desired. □

More generally now, for the transitive graphs, that we are mostly interested in, the
point is that at very small values of the order, N = 2, . . . , 9, these always decompose as
products, via three main types of graph products, constructed as follows:
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Definition 10.5. Given two finite graphs X, Y , we can construct:

(1) The direct product X × Y has vertex set X × Y , and edges:

(i, α)− (j, β)⇐⇒ i− j, α− β

(2) The Cartesian product X □Y has vertex set X × Y , and edges:

(i, α)− (j, β)⇐⇒ i = j, α− β or i− j, α = β

(3) The lexicographic product X ◦ Y has vertex set X × Y , and edges:

(i, α)− (j, β)⇐⇒ α− β or α = β, i− j

We call these three products the standard products of graphs.

Several comments can be made here. First, the direct product X ×Y is the usual one
in a categorical sense, and we will leave clarifying this observation as an exercise. The
Cartesian product X □Y is quite natural too from a geometric perspective, for instance
because a product by a segment gives a prism. As for the lexicographic product X ◦ Y ,
this is something interesting too, obtained by putting a copy of X at each vertex of Y .

At the level of symmetry groups, several things can be said, and we first have:

Theorem 10.6. We have group embeddings as follows, for any graphs X, Y ,

G(X)×G(Y ) ⊂ G(X × Y )

G(X)×G(Y ) ⊂ G(X □Y )

G(X) ≀G(Y ) ⊂ G(X ◦ Y )

but these embeddings are not always isomorphisms.

Proof. The fact that we have indeed embeddings as above is clear from definitions.
As for the counterexamples, in each case, these are easy to construct as well, provided by
our study of small graphs, at N = 2, . . . , 11, and we will leave this as an exercise. □

The problem now is that of deciding when the embeddings in Theorem 10.6 are iso-
morphisms. In order to discusss this, we first have the following basic fact:

Theorem 10.7. Given a subgroup G ⊂ SN , regarded as matrix group via

G ⊂ SN ⊂ ON

the standard coordinates of the group elements, uij(g) = gij, are given by:

uij = χ
(
σ ∈ G

∣∣∣σ(j) = i
)

Moreover, these functions uij : G→ C generate the algebra C(G).
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Proof. Here the first assertion comes from the fact that the entries of the permutation
matrices σ ∈ SN ⊂ ON , acting as σ(ei) = eσ(i), are given by the following formula:

σij =

{
1 if σ(j) = i

0 otherwise

As for the second assertion, this comes from the Stone-Weierstrass theorem, because
the coordinate functions uij : G→ C obviously separate the group elements σ ∈ G. □

We are led in this way to the following definition:

Definition 10.8. The magic matrix associated to a permutation group G ⊂ SN is the
N ×N matrix of characteristic functions

uij = χ
(
σ ∈ G

∣∣∣σ(j) = i
)

with the name “magic” coming from the fact that, on each row and each column, these
characteristic functions sum up to 1.

The interest in this notion comes from the fact, that we know from Theorem 10.7,
that the entries of the magic matrix generate the algebra of functions on our group:

C(G) =< uij >

We will talk more in detail later about such matrices, and their correspondence with
the subgroups G ⊂ SN , and what can be done with it, in the general framework of
representation theory. However, for making our point, here is the general principle:

Principle 10.9. Everything that you can do with your group G ⊂ SN can be expressed
in terms of the magic matrix u = (uij), quite often with good results.

This principle comes from the above Stone-Weierstrass result, C(G) =< uij >. Indeed,
when coupled with some basic spectral theory, and more specifically with the Gelfand
theorem from operator algebras, this result tells us that our group G appears as the
spectrum of the algebra < uij >, therefore leading to the above principle.

As an illustration for all this, in relation with the graphs, we have:

Theorem 10.10. Given a subgroup G ⊂ SN , the transpose of its action map X×G→
X on the set X = {1, . . . , N}, given by (i, σ)→ σ(i), is given by:

Φ(ei) =
∑
j

ej ⊗ uji

Also, in the case where we have a graph with N vertices, the action of G on the vertex
set X leaves invariant the edges precisely when we have

du = ud

with d being as usual the adjacency matrix of the graph.
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Proof. There are several things going on here, the idea being as follows:

(1) Given a subgroup G ⊂ SN , if we set X = {1, . . . , N}, we have indeed an action
map as follows, and with the reasons of using X×G instead of the perhaps more familiar
G×X being dictated by some quantum algebra, that we will do later in this book:

a : X ×G→ X , a(i, σ) = σ(i)

(2) Now by transposing this map, we obtain a morphism of algebras, as follows:

Φ : C(X)→ C(X)⊗ C(G) , Φ(f)(i, σ) = f(σ(i))

When evaluated on the Dirac masses, this map Φ is then given by:

Φ(ei)(j, σ) = ei(σ(j)) = δσ(j)i

Thus, in tensor product notation, we have the following formula, as desired:

Φ(ei)(j, σ) =

(∑
j

ej ⊗ uji

)
(j, σ)

(3) Regarding now the second assertion, observe first that we have:

(du)ij(σ) =
∑
k

dikukj(σ) =
∑
k

dikδσ(j)k = diσ(j)

On the other hand, we have as well the following formula:

(ud)ij(σ) =
∑
k

uik(σ)dkj =
∑
k

δσ(k)idkj = dσ−1(i)j

Thus du = ud reformulates as dij = dσ(i)σ(j), which gives the result. □

Back to graphs, we want to know when the embeddings in Theorem 10.6 are isomor-
phisms. In what regards the first two products, we have here the following result:

Theorem 10.11. Let X and Y be finite connected regular graphs. If their spectra {λ}
and {µ} do not contain 0 and satisfy{

λi/λj
}
∩
{
µk/µl

}
= {1}

then G(X × Y ) = G(X)×G(Y ). Also, if their spectra satisfy{
λi − λj

}
∩
{
µk − µl

}
= {0}

then G(X □Y ) = G(X)×G(Y ).

Proof. This is something quite standard, the idea being as follows:

(1) First, we know from Theorem 10.6 that we have embeddings as follows, valid for
any two graphs X, Y , and coming from definitions:

G(X)×G(Y ) ⊂ G(X × Y )

G(X)×G(Y ) ⊂ G(X □Y )



118 10. PROJECTIVE SYMMETRIES

(2) Now let λ1 be the valence of X. Since X is regular we have λ1 ∈ Sp(X), with 1 as
eigenvector, and since X is connected λ1 has multiplicity 1. Thus if P1 is the orthogonal
projection onto C1, the spectral decomposition of dX is of the following form:

dX = λ1P1 +
∑
i ̸=1

λiPi

We have a similar formula for the adjacency matrix dY , namely:

dY = µ1Q1 +
∑
j ̸=1

µjQj

(3) But this gives the following formulae for the graph products:

dX×Y =
∑
ij

(λiµj)Pi ⊗Qj

dX □Y =
∑
ij

(λi + µi)Pi ⊗Qj

Here the projections form partitions of unity, and the scalar are distinct, so these are
spectral decompositions. The coactions will commute with any of the spectral projections,
and so with both P1 ⊗ 1, 1 ⊗ Q1. In both cases the universal coaction v is the tensor
product of its restrictions to the images of P1 ⊗ 1, 1⊗Q1, which gives the result. □

Regarding now the lexicographic product, things here are more tricky. Let us first
recall that the lexicographic product of two graphs X ◦ Y is obtained by putting a copy
of X at each vertex of Y , the formula for the edges being as follows:

(i, α)− (j, β)⇐⇒ α− β or α = β, i− j

In what regards now the computation of the symmetry group, as before we must do
here some spectral theory, and we are led in this way to the following result:

Theorem 10.12. Let X, Y be regular graphs, with X connected. If their spectra {λi}
and {µj} satisfy the condition{

λ1 − λi
∣∣i ̸= 1

}
∩
{
− nµj

}
= ∅

where n and λ1 are the order and valence of X, then G(X ◦ Y ) = G(X) ≀G(Y ).

Proof. This is something quite tricky, the idea being as follows:

(1) First, we know from Theorem 10.6 that we have an embedding as follows, valid
for any two graphs X, Y , and coming from definitions:

G(X) ≀G(Y ) ⊂ G(X ◦ Y )
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(2) We denote by Pi, Qj the spectral projections corresponding to λi, µj. Since X is
connected we have P1 = I/n, and we obtain:

dX◦Y = dX ⊗ 1 + I⊗ dY

=

(∑
i

λiPi

)
⊗

(∑
j

Qj

)
+ (nP1)⊗

(∑
i

µjQj

)
=

∑
j

(λ1 + nµj)(P1 ⊗Qj) +
∑
i ̸=1

λi(Pi ⊗ 1)

In this formula the projections form a partition of unity and the scalars are distinct,
so this is the spectral decomposition of dX◦Y .

(3) Now let W be the universal magic matrix for X ◦Y . Then W must commute with
all spectral projections, and in particular:

[W,P1 ⊗Qj] = 0

Summing over j gives [W,P1 ⊗ 1] = 0, so 1 ⊗ C(Y ) is invariant under the coaction.
So, consider the restriction of W , which gives a coaction of G(X ◦ Y ) on 1⊗ C(Y ), that
we can denote as follows, with y being a certain magic unitary:

W (1⊗ ea) =
∑
b

1⊗ eb ⊗ yba

(4) On the other hand, according to our definition of W , we can write:

W (ei ⊗ 1) =
∑
jb

ej ⊗ eb ⊗ xbji

By multiplying by the previous relation, found in (3), we obtain:

W (ei ⊗ ea) =
∑
jb

ej ⊗ eb ⊗ ybaxbji

=
∑
jb

ej ⊗ eb ⊗ xbjiyba

But this shows that the coefficients of W are of the following form:

Wjb,ia = ybax
b
ji = xbjiyba

(5) In order to advance, consider now the following matrix:

xb = (xbij)
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Since the map W above is a morphism of algebras, each row of xb is a partition of
unity. Also, by using the antipode map S, which is transpose to g → g−1, we have:

S

(∑
j

xbji

)
= S

(∑
ja

xbjiyba

)

= S

(∑
ja

Wjb,ia

)
=

∑
ja

Wia,jb

=
∑
ja

xaijyab

=
∑
a

yab

= 1

(6) We check now that both xa, y commute with dX , dY . We have:

(dX◦Y )ia,jb = (dX)ijδab + (dY )ab

Thus the two products between W and dX◦Y are given by:

(WdX◦Y )ia,kc =
∑
j

Wia,jc(dX)jk +
∑
jb

Wia,jb(dY )bc

(dX◦YW )ia,kc =
∑
j

(dX)ijWja,kc +
∑
jb

(dY )abWjb,kc

(7) Now since the magic matrix W commutes by definition with dX◦Y , the terms on
the right in the above equations are equal, and by summing over c we get:∑

j

xaij(dX)jk +
∑
cb

yab(dY )bc =
∑
j

(dX)ijx
a
jk +

∑
cb

(dY )abybc

The second sums in both terms are equal to the valence of Y , so we get [xa, dX ] = 0.
Now once again from the formula coming from [W,dX◦Y ] = 0, we get:

[y, dY ] = 0

(8) Summing up, the coefficients of W are of the following form, where xb are magic
unitaries commuting with dX , and y is a magic unitary commuting with dY :

Wjb,ia = xbjiyba

But this gives a morphism C(G(X) ≀ G(Y )) → G(X ◦ Y ) mapping u
(b)
ji → xbji and

vba → yba, which is inverse to the morphism in (1), as desired. □
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10b. Hyperoctahedral groups

At a more advanced level now, we first have the hyperoctahedral group HN . This
group is something quite tricky, which appears as follows:

Definition 10.13. The hyperoctahedral group HN is the group of symmetries of the
unit cube in RN ,

• •

• •

• •

• •
viewed as a graph, or equivalently, as a metric space.

Here the equivalence at the end is clear from definitions, because any symmetry of the
cube graph must preserve the lengths of the edges, and so we have:

G(□graph) = G(□metric)

The hyperoctahedral group is a quite interesting group, whose definition, as a sym-
metry group, reminds that of the dihedral group DN . So, let us start our study in the
same way as we did for DN , with a discussion at small values of N ∈ N:

N = 1. Here the 1-cube is the segment, whose symmetries are the identity id, plus
the symmetry τ with respect to the middle of the segment:

• •

Thus, we obtain the group with 2 elements, which is a very familiar object:

H1 = D2 = S2 = Z2

N = 2. Here the 2-cube is the square, whose symmetries are the 4 rotations, of angles
0◦, 90◦, 180◦, 270◦, and the 4 symmetries with respect to the 4 symmetry axes, which are
the 2 diagonals, and the 2 segments joining the midpoints of opposite sides:

• •

• •
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Thus, we obtain a group with 8 elements, which again is a very familiar object:

H2 = D4 = Z4 ⋊ Z2

N = 3. Here the 3-cube is the usual cube in R3, pictured as follows:

• •

• •

• •

• •
However, in relation with the symmetries, the situation now is considerably more

complicated, because, thinking well, this cube has no less than 48 symmetries. Precisely
identifying and counting these symmetries is actually an excellent exercise.

All this looks quite complicated, but fortunately we can count HN , at N = 3, and at
higher N as well, by using some tricks, the result being as follows:

Theorem 10.14. We have the cardinality formula

|HN | = 2NN !

coming from the fact that HN is the symmetry group of the coordinate axes of RN .

Proof. This follows from some geometric thinking, as follows:

(1) Consider the standard cube in RN , centered at 0, and having as vertices the points
having coordinates ±1. With this picture in hand, it is clear that the symmetries of the
cube coincide with the symmetries of the N coordinate axes of RN .

(2) In order to count now these latter symmetries, a bit as we did for the dihedral
group, observe first that we have N ! permutations of these N coordinate axes.

(3) But each of these permutations of the coordinate axes σ ∈ SN can be further
“decorated” by a sign vector e ∈ {±1}N , consisting of the possible ±1 flips which can be
applied to each coordinate axis, at the arrival.

(4) And the point is that, obviously, we obtain in this way all the elements of HN .
Thus, we have the following formula, for the cardinality of HN :

|HN | = |SN | · |ZN2 | = N ! · 2N

Thus, we are led to the conclusions in the statement. □

As in the dihedral group case, it is possible to go beyond this, with a crossed product
decomposition, of quite special type, called wreath product decomposition:
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Theorem 10.15. We have a wreath product decomposition as follows,

HN = Z2 ≀ SN
which means by definition that we have a crossed product decomposition

HN = ZN2 ⋊ SN

with the permutations σ ∈ SN acting on the elements e ∈ ZN2 as follows:

σ(e1, . . . , ek) = (eσ(1), . . . , eσ(k))

In particular we have, as found before, the cardinality formula |HN | = 2NN !.

Proof. As explained in the proof of Theorem 10.14, the elements of HN can be
identified with the pairs g = (e, σ) consisting of a permutation σ ∈ SN , and a sign vector
e ∈ ZN2 , so that at the level of the cardinalities, we have the following formula:

|HN | = |ZN2 × SN |
To be more precise, given an element g ∈ HN , the element σ ∈ SN is the corresponding

permutation of the N coordinate axes, regarded as unoriented lines in RN , and e ∈ ZN2
is the vector collecting the possible flips of these coordinate axes, at the arrival. Now
observe that the product formula for two such pairs g = (e, σ) is as follows, with the
permutations σ ∈ SN acting on the elements f ∈ ZN2 as in the statement:

(e, σ)(f, τ) = (efσ, στ)

Thus, we are precisely in the framework of the crossed products, as constructed in
chapter 1, and we conclude that we have a crossed product decomposition, as follows:

HN = ZN2 ⋊ SN

Thus, we are led to the conclusion in the statement, with the formula HN = Z2 ≀ SN
being just a shorthand for the decomposition HN = ZN2 ⋊ SN that we found. □

We will be back to the hyperoctahedral groups later on, on several occasions, with
further results about them, both of algebraic and of analytic type.

10c. Complex reflections

The groups that we studied so far are all groups of orthogonal matrices. When looking
into general unitary matrices, we led to the following interesting class of groups:

Definition 10.16. The complex reflection group Hs
N ⊂ UN , depending on parameters

N ∈ N , s ∈ N ∪ {∞}
is the group of permutation-type matrices with s-th roots of unity as entries,

Hs
N =MN(Zs ∪ {0}) ∩ UN

with the convention Z∞ = T, at s =∞.
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This construction is something quite tricky, that will keep as busy, for the remainder
of this section. As a first observation, at s = 1, 2 we obtain the following groups:

H1
N = SN , H2

N = HN

Another important particular case of the above construction is s = ∞, where we
obtain a group which is actually not finite, but is still compact, denoted as follows:

KN ⊂ UN

This latter group KN is called full complex reflection group, and will appear many
times, in what follows. Let us summarize now these observations, as follows:

Proposition 10.17. The complex reflection groups Hs
N ⊂ UN are as follows:

(1) At s = 1 we have H1
N = SN , having cardinality |SN | = N !.

(2) At s = 2 we have H2
N = HN , having cardinality |HN | = 2NN !.

(3) At s =∞ we have H∞
N = KN , having cardinality |KN | =∞.

Proof. This is clear indeed from the above discussion, and with the cardinality results
at s = 1 and s = 2 being something that we know well. □

Let us record as well the following result, which is elementary too:

Proposition 10.18. We have inclusions as follows, for any r, s:

r|s =⇒ Hr ⊂ Hs

In particular, we have inclusions SN ⊂ Hs
N ⊂ KN , for any s.

Proof. With the cyclic group Zs being viewed as group of the s-th roots of unity, in
the complex plane, as in Definition 10.16, we have inclusions as follows:

r|s =⇒ Zr ⊂ Zs
Thu, with the group Hs

N constructed as in Definition 10.16, for r|s we have:

Hr
N = MN(Zr ∪ {0}) ∩ UN
⊂ MN(Zs ∪ {0}) ∩ UN
= Hs

N

Finally, the last assertion is clear, and comes as well from this, since for any s:

1|s|∞
Thus, we are led to the conclusions in the statement. □

In general, in analogy with what we know about SN , HN , we first have:

Proposition 10.19. The number of elements of Hs
N with s ∈ N is:

|Hs
N | = sNN !

At s =∞, the group KN = H∞
N that we obtain is infinite.
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Proof. This is indeed clear from our definition of Hs
N , as a matrix group as above,

because there are N ! choices for a permutation-type matrix, and then sN choices for the
corresponding s-roots of unity, which must decorate the N nonzero entries. □

Once again in analogy with what we know at s = 1, 2, we have as well:

Theorem 10.20. We have a wreath product decomposition

Hs
N = ZNs ⋊ SN = Zs ≀ SN

with the permutations σ ∈ SN acting on the elements e ∈ ZNs as follows:

σ(e1, . . . , ek) = (eσ(1), . . . , eσ(k))

In particular we have, as found before, the cardinality formula |Hs
N | = sNN !.

Proof. As explained in the proof of Proposition 10.19, the elements of Hs
N can be

identified with the pairs g = (e, σ) consisting of a permutation σ ∈ SN , and a decorating
vector e ∈ ZNs , so that at the level of the cardinalities, we have:

|HN | = |ZNs × SN |
Now observe that the product formula for two such pairs g = (e, σ) is as follows, with

the permutations σ ∈ SN acting on the elements f ∈ ZNs as in the statement:

(e, σ)(f, τ) = (efσ, στ)

Thus, we are in the framework of the crossed products, and we obtain Hs
N = ZNs ⋊SN .

But this can be written, by definition, as Hs
N = Zs ≀ SN , and we are done. □

Finally, in relation with graph symmetries, the above groups appear as follows:

Theorem 10.21. The complex reflection group Hs
N appears as symmetry group,

Hs
N = G(NCs)

with NCs consisting of N disjoint copies of the oriented cycle Cs.

Proof. This is something elementary, the idea being as follows:

(1) Consider first the oriented cycle Cs, which looks as follows:

• // •
��

•

??

•
��

•

OO

•
��

•

__

•oo

It is then clear that the symmetry group of this graph is the cyclic group Zs.
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(2) In the general case now, where we have N ∈ N disjoint copies of the above cycle
Cs, we must suitably combine the corresponding N copies of the cyclic group Zs. But
this leads to the wreath product group Hs

N = Zs ≀ SN , as stated. □

10d. Reflection groups

Back to the rotation groups, in the real case, we have the following result:

Proposition 10.22. We have a decomposition as follows, with SO−1
N consisting by

definition of the orthogonal matrices having determinant −1:

ON = SON ∪ SO−1
N

Moreover, when N is odd the set SO−1
N is simply given by SO−1

N = −SON .

Proof. The first assertion is clear from definitions, because the determinant of an
orthogonal matrix must be ±1. The second assertion is clear too. Finally, when N is
even the situation is a bit more complicated, and requires complex numbers. □

In the complex case now, the result is simpler, as follows:

Proposition 10.23. We have a decomposition as follows, with SUd
N consisting by

definition of the unitary matrices having determinant d ∈ T:

ON =
⋃
d∈T

SUd
N

Moreover, the components are SUd
N = f · SUN , where f ∈ T is such that fN = d.

Proof. This is clear from definitions, and from the fact that the determinant of a
unitary matrix belongs to T, by extracting a suitable square root of the determinant. □

It is possible to use the decomposition in Proposition 10.23 in order to say more about
what happens in the real case, in the context of Proposition 10.22, but we will not get
into this. We will basically stop here with our study of ON , UN , and of their versions
SON , SUN . As a last result on the subject, however, let us record:

Theorem 10.24. We have subgroups of ON , UN constructed via the condition

(detU)d = 1

with d ∈ N ∪ {∞}, which generalize both ON , UN and SON , SUN .

Proof. This is indeed from definitions, and from the multiplicativity property of the
determinant. We will be back to these groups, which are quite specialized, later on. □

With this discussed, let us go back now to the complex reflection groups from the
previous section, and make a link with the material there. We first have:
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Theorem 10.25. The full complex reflection group KN ⊂ UN , given by

KN =MN(T ∪ {0}) ∩ UN
has a wreath product decomposition as follows,

KN = T ≀ SN
with SN acting on TN in the standard way, by permuting the factors.

Proof. This is something that we know from before, appearing as the s =∞ partic-
ular case of the results established there for the complex reflection groups Hs

N . □

By using the above full complex reflection group KN , we can talk in fact about the
reflection subgroup of any compact group G ⊂ UN , as follows:

Definition 10.26. Given G ⊂ UN , we define its reflection subgroup to be

K = G ∩KN

with the intersection taken inside UN .

This notion is something quite interesting, leading us into the question of understand-
ing what the subgroups of KN are. We have here the following construction:

Theorem 10.27. We have subgroups of the basic complex reflection groups,

Hsd
N ⊂ Hs

N

constructed via the following condition, with d ∈ N ∪ {∞},
(detU)d = 1

which generalize all the complex reflection groups that we have so far.

Proof. Here the first assertion is clear from definitions, and from the multiplicativity
of the determinant. As for the second assertion, this is rather a remark, coming from the
fact that the alternating group AN , which is the only finite group so far not fitting into
the series {Hs

N}, is indeed of this type, obtained from H1
N = SN by using d = 1. □

The point now is that, by a well-known and deep result in group theory, the com-
plex reflection groups consist of the series {Hsd

N } constructed above, and of a number of
exceptional groups, which can be fully classified. To be more precise, we have:

Theorem 10.28. The irreducible complex reflection groups are

Hsd
N =

{
U ∈ Hs

N

∣∣∣(detU)d = 1
}

along with 34 exceptional examples.

Proof. This is something quite advanced, and we refer here to the paper of Shephard
and Todd, and to the subsequent literature on the subject. □
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10e. Exercises

Exercises:

Exercise 10.29.

Exercise 10.30.

Exercise 10.31.

Exercise 10.32.

Exercise 10.33.

Exercise 10.34.

Exercise 10.35.

Exercise 10.36.

Bonus exercise.



CHAPTER 11

Representation theory

11a. Representations

Time now for some more advanced mathematics. Following Weyl, we have:

Definition 11.1. A unitary representation of a compact group G is a continuous
group morphism into a unitary group

v : G→ UN , g → vg

which can be faithful or not. The character of such a representation is the function

χ : G→ C , g → Tr(vg)

where Tr is the usual, unnormalized trace of the N ×N matrices.

At the level of examples, most of the compact groups that we met so far, finite or
continuous, naturally appear as closed subgroups G ⊂ UN . In this case, the embedding
G ⊂ UN is of course a representation, called fundamental representation. In general now,
let us first discuss the various operations on the representations. We have here:

Proposition 11.2. The representations of a compact group G are subject to:

(1) Making sums. Given representations v, w, of dimensions N,M , their sum is the
N +M-dimensional representation v + w = diag(v, w).

(2) Making products. Given representations v, w, of dimensions N,M , their product
is the NM-dimensional representation (v ⊗ w)ia,jb = vijwab.

(3) Taking conjugates. Given a N-dimensional representation v, its conjugate is the
N-dimensional representation (v̄)ij = v̄ij.

(4) Spinning by unitaries. Given a N-dimensional representation v, and a unitary
U ∈ UN , we can spin v by this unitary, v → UvU∗.

Proof. The fact that the operations in the statement are indeed well-defined, among
morphisms from G to unitary groups, is indeed clear from definitions. □

In relation now with characters, we have the following result:

Proposition 11.3. We have the following formulae, regarding characters

χv+w = χv + χw , χv⊗w = χvχw , χv̄ = χ̄v , χUvU∗ = χv

in relation with the basic operations for the representations.

129
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Proof. All these assertions are elementary, by using the following well-known trace
formulae, valid for any square matrices V,W , and any unitary U :

Tr(diag(V,W )) = Tr(V ) + Tr(W ) , T r(V ⊗W ) = Tr(V )Tr(W )

Tr(V̄ ) = Tr(V ) , T r(UV U∗) = Tr(V )

Thus, we are led to the formulae in the statement. □

Assume now that we are given a closed subgroup G ⊂ UN . By using the above
operations, we can construct a whole family of representations of G, as follows:

Definition 11.4. Given a closed subgroup G ⊂ UN , its Peter-Weyl representations
are the various tensor products between the fundamental representation and its conjugate:

v : G ⊂ UN , v̄ : G ⊂ UN

We denote these tensor products v⊗k, with k = ◦ • • ◦ . . . being a colored integer, with the
colored tensor powers being defined according to the rules

v⊗◦ = v , v⊗• = v̄ , v⊗kl = v⊗k ⊗ v⊗l

and with the convention that v⊗∅ is the trivial representation 1 : G→ U1.

Here are a few examples of such representations, namely those coming from the colored
integers of length 2, which will often appear in what follows:

v⊗◦◦ = v ⊗ v , v⊗◦• = v ⊗ v̄

v⊗•◦ = v̄ ⊗ v , v⊗•• = v̄ ⊗ v̄
In relation now with characters, we have the following result:

Proposition 11.5. The characters of the Peter-Weyl representations are given by

χv⊗k = (χv)
k

with the colored powers being given by χ◦ = χ, χ• = χ̄ and multiplicativity.

Proof. This follows indeed from the additivity, multiplicativity and conjugation for-
mulae from Proposition 11.3, via the conventions in Definition 11.4. □

Getting back now to our motivations, we can see the interest in the above construc-
tions. Indeed, the joint moments of the main character χ = χv and its adjoint χ̄ = χv̄ are
the expectations of the characters of various Peter-Weyl representations:∫

G

χk =

∫
G

χv⊗k

In order to advance, we must develop some general theory. Let us start with:



11A. REPRESENTATIONS 131

Definition 11.6. Given a compact group G, and two of its representations,

v : G→ UN , w : G→ UM

we define the space of intertwiners between these representations as being

Hom(v, w) =
{
T ∈MM×N(C)

∣∣∣Tvg = wgT,∀g ∈ G
}

and we use the following conventions:

(1) We use the notations Fix(v) = Hom(1, v), and End(v) = Hom(v, v).
(2) We write v ∼ w when Hom(v, w) contains an invertible element.
(3) We say that v is irreducible, and write v ∈ Irr(G), when End(v) = C1.

Here the terminology is something very standard, with Fix, Hom, End standing re-
spectively for the fixed points, homomorphisms and endomorphisms. We will see later
that irreducible means indecomposable, in a suitable sense.

Here are now a few basic results, regarding the above spaces:

Theorem 11.7. The spaces of intertwiners have the following properties:

(1) T ∈ Hom(v, w), S ∈ Hom(w, z) =⇒ ST ∈ Hom(v, z).
(2) S ∈ Hom(v, w), T ∈ Hom(z, t) =⇒ S ⊗ T ∈ Hom(v ⊗ z, w ⊗ t).
(3) T ∈ Hom(v, w) =⇒ T ∗ ∈ Hom(w, v).

In abstract terms, we say that the Hom spaces form a tensor ∗-category.

Proof. All the formulae in the statement are indeed clear from definitions, via ele-
mentary computations. As for the last assertion, this is something coming from (1,2,3).
We will be back to tensor categories later on, with more details on this latter fact. □

As a main consequence of the above result, we have:

Theorem 11.8. Given a representation v : G→ UN , the linear space

End(v) ⊂MN(C)

is a ∗-algebra, with respect to the usual involution of the matrices.

Proof. By definition, End(v) is a linear subspace of MN(C). We know from Propo-
sition 11.7 (1) that this subspace End(v) is a subalgebra of MN(C), and then we know
as well from Proposition 11.7 (3) that this subalgebra is stable under the involution ∗.
Thus, what we have here is a ∗-subalgebra of MN(C), as claimed. □
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11b. Peter-Weyl

In order to exploit Theorem 11.8, we will need a basic result from linear algebra,
stating that any ∗-algebra A ⊂MN(C) decomposes as a direct sum, as follows:

A ≃MN1(C)⊕ . . .⊕MNk
(C)

Indeed, let us write the unit 1 ∈ A as 1 = p1 + . . . + pk, with pi ∈ A being central
minimal projections. Then each of the spaces Ai = piApi is a subalgebra of A, and we
have a decomposition A = A1 ⊕ . . . ⊕ Ak. But since each central projection pi ∈ A was
chosen minimal, we have Ai ≃MNi

(C), with Ni = rank(pi), as desired.

We can now formulate our first Peter-Weyl type theorem, as follows:

Theorem 11.9 (Peter-Weyl 1). Let v : G → UN be a representation, consider the
algebra A = End(v), and write its unit 1 = p1 + . . .+ pk as above. We have then

v = v1 + . . .+ vk

with each vi being an irreducible representation, obtained by restricting v to Im(pi).

Proof. This basically follows from Theorem 11.8, as follows:

(1) We first associate to our representation v : G→ UN the corresponding action map
on CN . If a linear subspace W ⊂ CN is invariant, the restriction of the action map to W
is an action map too, which must come from a subrepresentation w ⊂ v.

(2) Consider now a projection p ∈ End(v). From pv = vp we obtain that the linear
space W = Im(p) is invariant under v, and so this space must come from a subrepresen-
tation w ⊂ v. It is routine to check that the operation p → w maps subprojections to
subrepresentations, and minimal projections to irreducible representations.

(3) With these preliminaries in hand, let us decompose the algebra End(v) as above,
by using the decomposition 1 = p1 + . . . + pk into central minimal projections. If we
denote by vi ⊂ v the subrepresentation coming from the vector space Vi = Im(pi), then
we obtain in this way a decomposition v = v1 + . . .+ vk, as in the statement. □

Here is now our second Peter-Weyl theorem, complementing Theorem 11.9:

Theorem 11.10 (Peter-Weyl 2). Given a closed subgroup G ⊂v UN , any of its irre-
ducible smooth representations

w : G→ UM

appears inside a tensor product of the fundamental representation v and its adjoint v̄.

Proof. Given a representation w : G → UM , we define the space of coefficients
Cw ⊂ C(G) of this representation as being the following linear space:

Cw = span
[
g → w(g)ij

]
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With this notion in hand, the result can be deduced as follows:

(1) The construction w → Cw is functorial, in the sense that it maps subrepresentations
into linear subspaces. This is indeed something which is routine to check.

(2) A closed subgroup G ⊂v UN is a Lie group, and a representation w : G → UM is
smooth when we have an inclusion Cw ⊂< Cv >. This is indeed well-known.

(3) By definition of the Peter-Weyl representations, as arbitrary tensor products be-
tween the fundamental representation v and its conjugate v̄, we have:

< Cv >=
∑
k

Cv⊗k

(4) Now by putting together the above observations (2,3) we conclude that we must
have an inclusion as follows, for certain exponents k1, . . . , kp:

Cw ⊂ Cv⊗k1⊕...⊕v⊗kp

(5) By using now (1), we deduce that we have an inclusion w ⊂ v⊗k1 ⊕ . . .⊕ v⊗kp , and
by applying Theorem 14.10, this leads to the conclusion in the statement. □

In order to further advance with Peter-Weyl theory, we need to talk about integration
over G. In the finite group case the situation is trivial, as follows:

Proposition 11.11. Any finite group G has a unique probability measure which is
invariant under left and right translations,

µ(E) = µ(gE) = µ(Eg)

and this is the normalized counting measure on G, given by µ(E) = |E|/|G|.

Proof. This is indeed something trivial, which follows from definitions. □

In the general, continuous case, let us begin with the following key result:

Proposition 11.12. Given a unital positive linear form ψ : C(G)→ C, the limit∫
φ

f = lim
n→∞

1

n

n∑
k=1

ψ∗k(f)

exists, and for a coefficient of a representation f = (τ ⊗ id)w we have∫
φ

f = τ(P )

where P is the orthogonal projection onto the 1-eigenspace of (id⊗ ψ)w.
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Proof. By linearity it is enough to prove the first assertion for functions of the
following type, where w is a Peter-Weyl representation, and τ is a linear form:

f = (τ ⊗ id)w
Thus we are led into the second assertion, and more precisely we can have the whole

result proved if we can establish the following formula, with f = (τ ⊗ id)w:

lim
n→∞

1

n

n∑
k=1

ψ∗k(f) = τ(P )

In order to prove this latter formula, observe that we have:

ψ∗k(f) = (τ ⊗ ψ∗k)w = τ((id⊗ ψ∗k)w)

Let us set M = (id⊗ ψ)w. In terms of this matrix, we have:

((id⊗ ψ∗k)w)i0ik+1
=
∑
i1...ik

Mi0i1 . . .Mikik+1
= (Mk)i0ik+1

Thus we have the following formula, valid for any k ∈ N:
(id⊗ ψ∗k)w =Mk

It follows that our Cesàro limit is given by the following formula:

lim
n→∞

1

n

n∑
k=1

ψ∗k(f) = lim
n→∞

1

n

n∑
k=1

τ(Mk) = τ

(
lim
n→∞

1

n

n∑
k=1

Mk

)
Now since w is unitary we have ||w|| = 1, and so ||M || ≤ 1. Thus the last Cesàro limit

converges, and equals the orthogonal projection onto the 1-eigenspace of M :

lim
n→∞

1

n

n∑
k=1

Mk = P

Thus our initial Cesàro limit converges as well, to τ(P ), as desired. □

When the linear form ψ ∈ C(G)∗ is faithful, we have the following finer result:

Proposition 11.13. Given a faithful unital linear form ψ ∈ C(G)∗, the limit∫
ψ

f = lim
n→∞

1

n

n∑
k=1

ψ∗k(f)

exists, and is independent of ψ, given on coefficients of representations by(
id⊗

∫
ψ

)
w = P

where P is the orthogonal projection onto the space Fix(w) =
{
ξ ∈ Cn

∣∣wξ = ξ
}
.
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Proof. In view of Proposition 11.12, it remains to prove that when ψ is faithful, the
1-eigenspace of the matrix M = (id⊗ ψ)w equals the space Fix(w).

“⊃” This is clear, and for any ψ, because we have the following implication:

wξ = ξ =⇒ Mξ = ξ

“⊂” Here we must prove that, when ψ is faithful, we have:

Mξ = ξ =⇒ wξ = ξ

For this purpose, assume that we have Mξ = ξ, and consider the following function:

f =
∑
i

(∑
j

wijξj − ξi

)(∑
k

wikξk − ξi

)∗

We must prove that we have f = 0. Since v is unitary, we have:

f =
∑
ijk

wijw
∗
ikξj ξ̄k −

1

N
wijξj ξ̄i −

1

N
w∗
ikξiξ̄k +

1

N2
ξiξ̄i

=
∑
j

|ξj|2 −
∑
ij

wijξj ξ̄i −
∑
ik

w∗
ikξiξ̄k +

∑
i

|ξi|2

= ||ξ||2− < wξ, ξ > −< wξ, ξ >+ ||ξ||2

= 2(||ξ||2 −Re(< wξ, ξ >))

By using now our assumption Mξ = ξ, we obtain from this:

ψ(f) = 2ψ(||ξ||2 −Re(< wξ, ξ >))

= 2(||ξ||2 −Re(< Mξ, ξ >))

= 2(||ξ||2 − ||ξ||2)
= 0

Now since ψ is faithful, this gives f = 0, and so wξ = ξ, as claimed. □

We can now formulate a main result, as follows:

Theorem 11.14. Any compact group G has a unique Haar integration, which can be
constructed by starting with any faithful positive unital form ψ ∈ C(G)∗, and setting:∫

G

= lim
n→∞

1

n

n∑
k=1

ψ∗k

Moreover, for any representation w we have the formula(
id⊗

∫
G

)
w = P

where P is the orthogonal projection onto Fix(w) =
{
ξ ∈ Cn

∣∣wξ = ξ
}
.



136 11. REPRESENTATION THEORY

Proof. Let us first go back to the general context of Proposition 11.12. Since convolv-
ing one more time with ψ will not change the Cesàro limit appearing there, the functional∫
ψ
∈ C(G)∗ constructed there has the following invariance property:∫

ψ

∗ψ = ψ ∗
∫
ψ

=

∫
ψ

In the case where ψ is assumed to be faithful, as in Proposition 11.13, our claim is
that we have the following formula, valid this time for any φ ∈ C(G)∗:∫

ψ

∗φ = φ ∗
∫
ψ

= φ(1)

∫
ψ

Indeed, it is enough to prove this formula on a coefficient of a corepresentation:

f = (τ ⊗ id)w

In order to do so, consider the following two matrices:

P =

(
id⊗

∫
ψ

)
w , Q = (id⊗ φ)w

We have then the following formulae, which all follow from definitions:(∫
ψ

∗φ
)
f = τ(PQ) ,

(
φ ∗

∫
ψ

)
f = τ(QP ) , φ(1)

∫
ψ

f = φ(1)τ(P )

Thus, in order to prove our claim, it is enough to establish the following formula:

PQ = QP = ψ(1)P

But this follows from the fact, from Proposition 11.13, that P = (id ⊗
∫
ψ
)w is the

orthogonal projection onto Fix(w). Thus, we proved our claim. Now observe that, with
∆f(g ⊗ h) = f(gh), this formula that we proved can be written as follows:

φ

(∫
ψ

⊗ id
)
∆ = φ

(
id⊗

∫
ψ

)
∆ = φ

∫
ψ

(.)1

This formula being true for any φ ∈ C(G)∗, we can simply delete φ, and we conclude
that

∫
G
=
∫
ψ
has the required left and right invariance property, namely:(∫

G

⊗ id
)
∆ =

(
id⊗

∫
G

)
∆ =

∫
G

(.)1

Finally, the uniqueness is clear as well, because if we have two invariant integrals∫
G
,
∫ ′
G
, then their convolution equals on one hand

∫
G
, and on the other hand,

∫ ′
G
. □

Summarizing, we know how to integrate over G. Before getting into probabilistic
applications, let us develop however more Peter-Weyl theory. We will need:
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Proposition 11.15. We have a Frobenius type isomorphism

Hom(v, w) ≃ Fix(v ⊗ w̄)

valid for any two representations v, w.

Proof. According to definitions, we have the following equivalences:

T ∈ Hom(v, w) ⇐⇒ Tv = wT

⇐⇒
∑
i

Taivij =
∑
b

wabTbj, ∀a, j

On the other hand, we have as well the following equivalences:

T ∈ Fix(v ⊗ w̄) ⇐⇒ (v ⊗ w̄)T = ξ

⇐⇒
∑
bi

vjiw̄abTbi = Taj∀a, j

With these formulae in hand, both inclusions follow from the unitarity of v, w. □

We can now formulate a third Peter-Weyl theorem, as follows:

Theorem 11.16 (Peter-Weyl 3). The dense subalgebra C(G) ⊂ C(G) generated by the
coefficients of the fundamental representation decomposes as a direct sum

C(G) =
⊕

w∈Irr(G)

Mdim(w)(C)

with the summands being pairwise orthogonal with respect to the scalar product

< f, g >=

∫
G

fḡ

where
∫
G
is the Haar integration over G.

Proof. By combining the previous two Peter-Weyl results, Theorems 11.9 and 11.10,
we deduce that we have a linear space decomposition as follows:

C(G) =
∑

w∈Irr(G)

Cw =
∑

w∈Irr(G)

Mdim(w)(C)

Thus, in order to conclude, it is enough to prove that for any two irreducible repre-
sentations v, w ∈ Irr(G), the corresponding spaces of coefficients are orthogonal:

v ̸∼ w =⇒ Cv ⊥ Cw

But this follows from Theorem 11.14, via Proposition 11.15. Let us set indeed:

Pia,jb =

∫
G

vijw̄ab
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Then P is the orthogonal projection onto the following vector space:

Fix(v ⊗ w̄) ≃ Hom(v, w) = {0}
Thus we have P = 0, and this gives the result. □

Finally, we have the following result, completing the Peter-Weyl theory:

Theorem 11.17 (Peter-Weyl 4). The characters of irreducible representations belong
to the algebra

C(G)central =
{
f ∈ C(G)

∣∣∣f(gh) = f(hg),∀g, h ∈ G
}

called algebra of central functions on G, and form an orthonormal basis of it.

Proof. Observe first that C(G)central is indeed an algebra, which contains all the
characters. Conversely, consider a function f ∈ C(G), written as follows:

f =
∑

w∈Irr(G)

fw

The condition f ∈ C(G)central states then that for any w ∈ Irr(G), we must have:

fw ∈ C(G)central
But this means that fw must be a scalar multiple of χw, so the characters form a basis

of C(G)central, as stated. Also, the fact that we have an orthogonal basis follows from
Theorem 11.16. As for the fact that the characters have norm 1, this follows from:∫

G

χwχ̄w =
∑
ij

∫
G

wiiw̄jj =
∑
i

1

M
= 1

Here we have used the fact, coming from Theorem 11.14 and Proposition 11.15, that
the integrals

∫
G
wijw̄kl form the orthogonal projection onto the following vector space:

Fix(w ⊗ w̄) ≃ End(w) = C1

Thus, the proof of our theorem is now complete. □

As a key observation here, complementing Theorem 11.17, observe that a function
f : G → C is central, in the sense that it satisfies f(gh) = f(hg), precisely when it
satisfies the following condition, saying that it must be constant on conjugacy classes:

f(ghg−1) = f(h), ∀g, h ∈ G
Thus, in the finite group case for instance, the algebra of central functions is something

which is very easy to compute, and this gives useful information about Rep(G). We will
not get into this here, but some of our exercises will be about this.

As a basic illustration now for all this, we have the following result:
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Theorem 11.18. For a compact abelian group G the irreducible representations are

all 1-dimensional, and form the dual discrete abelian group Ĝ.

Proof. This is clear from the Peter-Weyl theory, because when G is abelian any
function f : G → C is central, and so the algebra of central functions is C(G) itself, and
so the irreducible representations u ∈ Irr(G) coincide with their characters χu ∈ Ĝ. □

Many other things can be said, along these lines.

11c. Clebsch-Gordan

As a last piece of Lie group theory, we are now in position of dealing, in a quite
conceptual way, with SU2 and SO3. Regarding SU2, the result here is as follows:

Theorem 11.19. The irreducible representations of SU2 are all self-adjoint, and can
be labelled by positive integers, with their fusion rules being as follows,

rk ⊗ rl = r|k−l| + r|k−l|+2 + . . .+ rk+l

called Clebsch-Gordan rules. The corresponding dimensions are dim rk = k + 1.

Proof. There are several proofs for this fact, the simplest one, with the knowledge
that we have, being via purely algebraic methods, as follows:

(1) Our first claim is that we have the following estimate, telling us that the even
moments of the main character are smaller than the Catalan numbers:∫

SU2

χ2k ≤ Ck

But this is something which is elementary, obtained by using SU2 ≃ S3
R and standard

spherical integrals, and with the stronger statement that we have in fact equality =.
However, for the purposes of what follows, the above ≤ estimate will do.

(2) Alternatively, the above estimate can be deduced with purely algebraic methods,
by using an easiness type argument for SU2, as follows:∫

SU2

χ2k = dim(Fix(u⊗2k))

= dim
(
span

(
T ′
π

∣∣∣π ∈ NC2(2k)
))

≤ |NC2(2k)|
= Ck

To be more precise, SU2 is not exactly easy, but rather “super-easy”, coming from
a different implementation π → T ′

π of the pairings, involving some signs. And with this
being proved exactly as the Brauer theorem for ON , with modifications where needed.
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(3) Long story short, we have our estimate in (1), and this is all that we need. Our
claim is that we can construct, by recurrence on k ∈ N, a sequence rk of irreducible,
self-adjoint and distinct representations of SU2, satisfying:

r0 = 1 , r1 = u , rk + rk−2 = rk−1 ⊗ r1
Indeed, assume that r0, . . . , rk−1 are constructed, and let us construct rk. We have:

rk−1 + rk−3 = rk−2 ⊗ r1
Thus rk−1 ⊂ rk−2 ⊗ r1, and since rk−2 is irreducible, by Frobenius we have:

rk−2 ⊂ rk−1 ⊗ r1
We conclude there exists a certain representation rk such that:

rk + rk−2 = rk−1 ⊗ r1
(4) By recurrence, rk is self-adjoint. Now observe that according to our recurrence

formula, we can split u⊗k as a sum of the following type, with positive coefficients:

u⊗k = ckrk + ck−2rk−2 + . . .

We conclude by Peter-Weyl that we have an inequality as follows, with equality pre-
cisely when rk is irreducible, and non-equivalent to the other summands ri:∑

i

c2i ≤ dim(End(u⊗k))

(5) But by (1) the number on the right is ≤ Ck, and some straightforward combina-
torics, based on the fusion rules, shows that the number on the left is Ck as well:

Ck =
∑
i

c2i ≤ dim(End(u⊗k)) =

∫
SU2

χ2k ≤ Ck

Thus we have equality in our estimate, so our representation rk is irreducible, and
non-equivalent to rk−2, rk−4, . . . Moreover, this representation rk is not equivalent to
rk−1, rk−3, . . . either, with this coming from rp ⊂ u⊗p for any p, and from:

dim(Fix(u⊗2s+1)) =

∫
SU2

χ2s+1 = 0

(6) Thus, we proved our claim. Now since each irreducible representation of SU2

appears into some u⊗k, and we know how to decompose each u⊗k into sums of represen-
tations rk, these representations rk are all the irreducible representations of SU2, and we
are done with the main assertion. As for the dimension formula, this is clear. □

Regarding now SO3, we have here a similar result, as follows:
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Theorem 11.20. The irreducible representations of SO3 are all self-adjoint, and can
be labelled by positive integers, with their fusion rules being as follows,

rk ⊗ rl = r|k−l| + r|k−l|+1 + . . .+ rk+l

also called Clebsch-Gordan rules. The corresponding dimensions are dim rk = 2k + 1.

Proof. As before with SU2, there are many possible proofs here, which are all in-
structive. Here is our take on the subject, in the spirit of our proof for SU2:

(1) Our first claim is that we have the following formula, telling us that the moments
of the main character equal the Catalan numbers:∫

SO3

χk = Ck

But this is something that we know from before, coming from Euler-Rodrigues. Al-
ternatively, this can be deduced as well from Tannakian duality, a bit as for SU2.

(2) Our claim now is that we can construct, by recurrence on k ∈ N, a sequence rk of
irreducible, self-adjoint and distinct representations of SO3, satisfying:

r0 = 1 , r1 = u− 1 , rk + rk−1 + rk−2 = rk−1 ⊗ r1
Indeed, assume that r0, . . . , rk−1 are constructed, and let us construct rk. The Frobe-

nius trick from the proof for SU2 will no longer work, due to some technical reasons, so
we have to invoke (1). To be more precise, by integrating characters we obtain:

rk−1, rk−2 ⊂ rk−1 ⊗ r1
Thus there exists a representation rk such that:

rk−1 ⊗ r1 = rk + rk−1 + rk−2

(3) Once again by integrating characters, we conclude that rk is irreducible, and
non-equivalent to r1, . . . , rk−1, and this proves our claim. Also, since any irreducible
representation of SO3 must appear in some tensor power of u, and we can decompose
each u⊗k into sums of representations rp, we conclude that these representations rp are
all the irreducible representations of SO3. Finally, the dimension formula is clear. □

There are of course many other things that can be said about SU2 and SO3. For
instance, with the proof of Theorem 11.19 and Theorem 11.20 done in a purely algebraic
fashion, by using the super-easiness property of SU2 and SO3, the Euler-Rodrigues formula
can be deduced afterwards from this, without any single computation, the argument being
that by Peter-Weyl the embedding PU2 ⊂ SO3 must be indeed an equality.

11d. McKay subgroups

McKay subgroups.
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11e. Exercises

Exercises:

Exercise 11.21.

Exercise 11.22.

Exercise 11.23.

Exercise 11.24.

Exercise 11.25.

Exercise 11.26.

Exercise 11.27.

Exercise 11.28.

Bonus exercise.



CHAPTER 12

Easiness, diagrams

12a. Easy groups

Let us formulate the following key definition, extending to the case of arbitrary par-
titions what we already know from chapter 11 about pairings:

Definition 12.1. Given a partition π ∈ P (k, l) and an integer N ∈ N, we define

Tπ : (CN)⊗k → (CN)⊗l

by the following formula, with e1, . . . , eN being the standard basis of CN ,

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

and with the coefficients on the right being Kronecker type symbols.

To be more precise here, in order to compute the Kronecker type symbols δπ(
i
j) ∈

{0, 1}, we proceed exactly as in the pairing case, namely by putting the multi-indices
i = (i1, . . . , ik) and j = (j1, . . . , jl) on the legs of π, in the obvious way. In case all the
blocks of π contain equal indices of i, j, we set δπ(

i
j) = 1. Otherwise, we set δπ(

i
j) = 0.

With the above notion in hand, we can now formulate the following key definition,
motivated by the Brauer theorems for ON , UN , as indicated before:

Definition 12.2. A closed subgroup G ⊂ UN is called easy when

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

for any two colored integers k, l = ◦ • ◦ • . . . , for certain sets of partitions

D(k, l) ⊂ P (k, l)

where π → Tπ is the standard implementation of the partitions, as linear maps.

In other words, we call a group G easy when its Tannakian category appears in the
simplest possible way: from the linear maps associated to partitions. The terminology is
quite natural, because Tannakian duality is basically our only serious tool.

143
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As basic examples, the orthogonal and unitary groups ON , UN are both easy, coming
respectively from the following collections of sets of partitions:

P2 =
⊔
k,l

P2(k, l) , P2 =
⊔
k,l

P2(k, l)

In the general case now, as an important theoretical remark, in the context of Defini-
tion 12.2, consider the following collection of sets of partitions:

D =
⊔
k,l

D(k, l)

This collection of sets D obviously determines G, but the converse is not true. Indeed,
at N = 1 for instance, both the choices D = P2,P2 produce the same easy group, namely
G = {1}. We will be back to this issue on several occasions, with results about it.

In order to advance, our first goal will be that of establishing a duality between easy
groups and certain special classes of collections of sets as above, namely:

D =
⊔
k,l

D(k, l)

Let us begin with a general definition, as follows:

Definition 12.3. Let P (k, l) be the set of partitions between an upper colored integer
k, and a lower colored integer l. A collection of subsets

D =
⊔
k,l

D(k, l)

with D(k, l) ⊂ P (k, l) is called a category of partitions when it has the following properties:

(1) Stability under the horizontal concatenation, (π, σ)→ [πσ].
(2) Stability under vertical concatenation (π, σ)→ [σπ], with matching middle symbols.
(3) Stability under the upside-down turning ∗, with switching of colors, ◦ ↔ •.
(4) Each set P (k, k) contains the identity partition || . . . ||.
(5) The sets P (∅, ◦•) and P (∅, •◦) both contain the semicircle ∩.
(6) The sets P (k, k̄) with |k| = 2 contain the crossing partition /\.

As before, this is something that we already met in chapter 11, but for the pairings
only. Observe the similarity with the axioms for Tannakian categories, also from chapter
11. We will see in a moment that this similarity can be turned into something very precise,
the idea being that such a category produces a family of easy quantum groups (GN)N∈N,
one for each N ∈ N, via the formula in Definition 12.1, and Tannakian duality.

As basic examples, that we have already met in chapter 6, in connection with the
representation theory ofON , UN , we have the categories P2,P2 of pairings, and of matching
pairings. Further basic examples include the categories P, Peven of all partitions, and of
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all partitions whose blocks have even size. We will see in a moment that these latter
categories are related to the symmetric and hyperoctahedral groups SN , HN .

The relation with the Tannakian categories comes from the following result:

Proposition 12.4. The assignement π → Tπ is categorical, in the sense that

Tπ ⊗ Tσ = T[πσ] , TπTσ = N c(π,σ)T[σπ ] , T ∗
π = Tπ∗

where c(π, σ) are certain integers, coming from the erased components in the middle.

Proof. The concatenation axiom follows from the following computation:

(Tπ ⊗ Tσ)(ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

=
∑
j1...jq

∑
l1...ls

δπ

(
i1 . . . ip
j1 . . . jq

)
δσ

(
k1 . . . kr
l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

=
∑
j1...jq

∑
l1...ls

δ[πσ]

(
i1 . . . ip k1 . . . kr
j1 . . . jq l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

= T[πσ](ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)
The composition axiom follows from the following computation:

TπTσ(ei1 ⊗ . . .⊗ eip)

=
∑
j1...jq

δσ

(
i1 . . . ip
j1 . . . jq

) ∑
k1...kr

δπ

(
j1 . . . jq
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

=
∑
k1...kr

N c(π,σ)δ[σπ ]

(
i1 . . . ip
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

= N c(π,σ)T[σπ ](ei1 ⊗ . . .⊗ eip)
Finally, the involution axiom follows from the following computation:

T ∗
π (ej1 ⊗ . . .⊗ ejq)

=
∑
i1...ip

< T ∗
π (ej1 ⊗ . . .⊗ ejq), ei1 ⊗ . . .⊗ eip > ei1 ⊗ . . .⊗ eip

=
∑
i1...ip

δπ

(
i1 . . . ip
j1 . . . jq

)
ei1 ⊗ . . .⊗ eip

= Tπ∗(ej1 ⊗ . . .⊗ ejq)
Summarizing, our correspondence is indeed categorical. □

Time now to put everyting together. All the above was pure combinatorics, and in
relation with the compact groups, we have the following result:
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Theorem 12.5. Each category of partitions D = (D(k, l)) produces a family of com-
pact groups G = (GN), one for each N ∈ N, via the formula

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

and the Tannakian duality correspondence.

Proof. Given an integer N ∈ N, consider the correspondence π → Tπ constructed in
Definition 12.1, and then the collection of linear spaces in the statement, namely:

Ckl = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

According to the formulae in Proposition 12.4, and to our axioms for the categories
of partitions, from Definition 12.3, this collection of spaces C = (Ckl) satisfies the axioms
for the Tannakian categories, from chapter 11. Thus the Tannakian duality result there
applies, and provides us with a closed subgroup GN ⊂ UN such that:

Ckl = Hom(u⊗k, u⊗l)

Thus, we are led to the conclusion in the statement. □

In relation with the easiness property, we can now formulate a key result, which can
serve as an alternative definition for the easy groups, as follows:

Theorem 12.6. A closed subgroup G ⊂ UN is easy precisely when

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

for any colored integers k, l, for a certain category of partitions D ⊂ P .

Proof. This basically follows from Theorem 12.5, as follows:

(1) In one sense, we know from Theorem 12.5 that any category of partitions D ⊂ P
produces a family of closed groups G ⊂ UN , one for each N ∈ N, according to Tannakian
duality and to the Hom space formula there, namely:

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

But these groups G ⊂ UN are indeed easy, in the sense of Definition 12.2.

(2) In the other sense now, assume that G ⊂ UN is easy, in the sense of Definition
12.2, coming via the above Hom space formula, from a collection of sets as follows:

D =
⊔
k,l

D(k, l)

Consider now the category of partitions D̃ =< D > generated by this family. This is
by definition the smallest category of partitions containing D, whose existence follows by
starting with D, and performing the various categorical operations, namely horizontal and
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vertical concatenation, and upside-down turning. It follows then, via another application
of Tannakian duality, that we have the following formula, for any k, l:

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D̃(k, l)
)

Thus, our group G ⊂ UN can be viewed as well as coming from D̃, and so appearing
as particular case of the construction in Theorem 12.5, and this gives the result. □

As already mentioned above, Theorem 12.6 can be regarded as an alternative definition
for easiness, with the assumption that D ⊂ P must be a category of partitions being
added. In what follows we will rather use this new definition, which is more precise.

Generally speaking, the same comments as before apply. First, G is easy when its
Tannakian category appears in the simplest possible way: from a category of partitions.
The terminology is quite natural, because Tannakian duality is our only serious tool.

Also, the category of partitions D is not unique, for instance because at N = 1 all the
categories of partitions produce the same easy group, namely G = {1}. We will be back
to this issue on several occasions, with various results about it.

We will see in what follows that many interesting examples of compact quantum
groups are easy. Moreover, most of the known series of “basic” compact quantum groups,
G = (GN) with N ∈ N, can be in principle made fit into some suitable extensions of the
easy quantum group formalism. We will discuss this too, in what follows.

The notion of easiness goes back to the results of Brauer regarding the orthogonal
group ON , and the unitary group UN , which reformulate as follows:

Theorem 12.7. We have the following results:

(1) The unitary group UN is easy, coming from the category P2.
(2) The orthogonal group ON is easy as well, coming from the category P2.

Proof. This is something that we already know, from chapter 11, based on Tannakian
duality, the idea of the proof being as follows:

(1) The group UN being defined via the relations u∗ = u−1, ut = ū−1, the associated
Tannakian category is C = span(Tπ|π ∈ D), with:

D =< ∩
◦• ,

∩
•◦ >= P2

(2) The group ON ⊂ UN being defined by imposing the relations uij = ūij, the
associated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< P2, |◦•, |•◦ >= P2

Thus, we are led to the conclusion in the statement. □
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There are many other examples of easy groups, and we will gradually explore this. To
start with, we have the following interesting result, still in the continuous case:

Theorem 12.8. We have the following results:

(1) The unitary bistochastic group CN is easy, coming from the category P12 of match-
ing singletons and pairings.

(2) The orthogonal bistochastic group BN is easy, coming from the category P12 of
singletons and pairings.

Proof. The proof here is similar to the proof of Theorem 12.7. To be more precise,
we can use the results there, and the proof goes as follows:

(1) The group CN ⊂ UN is defined by imposing the following relations, with ξ being
the all-one vector, which correspond to the bistochasticity condition:

uξ = ξ , ūξ = ξ

But these relations tell us precisely that the following two operators, with the partitions
on the right being singletons, must be in the associated Tannakian category C:

Tπ : π = |◦ , |•

Thus the associated Tannakian category is C = span(Tπ|π ∈ D), with:

D =< P2, |◦, |• >= P12

Thus, we are led to the conclusion in the statement.

(2) In order to deal now with the real bistochastic group BN , we can either use a
similar argument, or simply use the following intersection formula:

BN = CN ∩ON

Indeed, at the categorical level, this intersection formula tells us that the associated
Tannakian category is given by C = span(Tπ|π ∈ D), with:

D =< P12, P2 >= P12

Thus, we are led to the conclusion in the statement. □

As a comment here, we have used in the above the fact, which is something quite
trivial, that the category of partitions associated to an intersection of easy quantum
groups is generated by the corresponding categories of partitions. We will be back to this,
and to some other product operations as well, with similar results, later on.

We can put now the results that we have together, as follows:
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Theorem 12.9. The basic unitary and bistochastic groups,

CN // UN

BN

OO

// ON

OO

are all easy, coming from the various categories of singletons and pairings.

Proof. We know from the above that the groups in the statement are indeed easy,
the corresponding diagram of categories of partitions being as follows:

P12

��

P2
oo

��
P12 P2

oo

Thus, we are led to the conclusion in the statement. □

Summarizing, what we have so far is a general notion of “easiness”, coming from the
Brauer theorems for ON , UN , and their straightforward extensions to BN , CN .

12b. Reflection groups

In view of the above, the notion of easiness is a quite interesting one, deserving a full,
systematic investigation. As a first natural question that we would like to solve, we would
like to compute the easy group associated to the category of all partitions P itself.

And here, no surprise, we are led to the most basic, but non-trivial, classical group
that we know, namely the symmetric group SN . To be more precise, we have the following
Brauer type theorem for SN , which answers our question formulated above:

Theorem 12.10. The symmetric group SN , regarded as group of unitary matrices,

SN ⊂ ON ⊂ UN

via the permutation matrices, is easy, coming from the category of all partitions P .

Proof. Consider indeed the group SN , regarded as a group of unitary matrices, with
each permutation σ ∈ SN corresponding to the associated permutation matrix:

σ(ei) = eσ(i)
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Consider as well the easy group G ⊂ ON coming from the category of all partitions
P . Since P is generated by the one-block “fork” partition Y ∈ P (2, 1), we have:

C(G) = C(ON)
/〈

TY ∈ Hom(u⊗2, u)
〉

The linear map associated to Y is given by the following formula:

TY (ei ⊗ ej) = δijei

In order to do the computations, we use the following formulae:

u = (uij)ij , u⊗2 = (uijukl)ik,jl , TY = (δijk)i,jk

We therefore obtain the following formula:

(TY u
⊗2)i,jk =

∑
lm

(TY )i,lm(u
⊗2)lm,jk = uijuik

On the other hand, we have as well the following formula:

(uTY )i,jk =
∑
l

uil(TY )l,jk = δjkuij

Thus, the relation defining G ⊂ ON reformulates as follows:

TY ∈ Hom(u⊗2, u) ⇐⇒ uijuik = δjkuij,∀i, j, k

In other words, the elements uij must be projections, which must be pairwise orthog-
onal on the rows of u = (uij). We conclude that G ⊂ ON is the subgroup of matrices
g ∈ ON having the property gij ∈ {0, 1}. Thus we have G = SN , as desired. □

As a continuation of this, let us discuss now the hyperoctahedral group HN . The
result here is quite similar to the one for the symmetric groups, as follows:

Theorem 12.11. The hyperoctahedral group HN , regarded as a group of matrices,

SN ⊂ HN ⊂ ON

is easy, coming from the category of partitions with even blocks Peven.

Proof. This follows as usual from Tannakian duality. To be more precise, consider
the following one-block partition, which, as the name indicates, looks like a H letter:

H ∈ P (2, 2)

The linear map associated to this partition is then given by:

TH(ei ⊗ ej) = δijei ⊗ ei
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By using this formula, we have the following computation:

(TH ⊗ id)u⊗2(ea ⊗ eb) = (TH ⊗ id)

(∑
ijkl

eij ⊗ ekl ⊗ uijukl

)
(ea ⊗ eb)

= (TH ⊗ id)

(∑
ik

ei ⊗ ek ⊗ uiaukb

)
=

∑
i

ei ⊗ ei ⊗ uiauib

On the other hand, we have as well the following computation:

u⊗2(TH ⊗ id)(ea ⊗ eb) = δab

(∑
ijkl

eij ⊗ ekl ⊗ uijukl

)
(ea ⊗ ea)

= δab
∑
ij

ei ⊗ ek ⊗ uiauka

We conclude from this that we have the following equivalence:

TH ∈ End(u⊗2) ⇐⇒ δikuiauib = δabuiauka,∀i, k, a, b

But the relations on the right tell us that the entries of the matrix u = (uij) must
satisfy the following condition, on each row and column of u:

αβ = 0

We conclude that that the corresponding closed subgroup G ⊂ ON consists of the
matrices g ∈ ON which are permutation-like, with ±1 nonzero entries. Thus, the corre-
sponding group is G = HN , and as a conclusion to this, we have:

C(HN) = C(ON)
/〈

TH ∈ End(u⊗2)
〉

According now to our conventions for easiness, this means that the hyperoctahedral
group HN is easy, coming from the following category of partitions:

D =< H >

But the category on the right can be computed by drawing pictures, and we have:

< H >= Peven

Thus, we are led to the conclusion in the statement. □

More generally now, we have in fact the following grand result, regarding the series of
complex reflection groups Hs

N , which covers both the groups SN , HN :
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Theorem 12.12. The complex reflection group Hs
N = Zs≀SN is easy, the corresponding

category P s consisting of the partitions satisfying the condition

#◦ = # • (s)

as a weighted sum, in each block. In particular, we have the following results:

(1) SN is easy, coming from the category P .
(2) HN = Z2 ≀ SN is easy, coming from the category Peven.
(3) KN = T ≀ SN is easy, coming from the category Peven.

Proof. This is something that we already know at s = 1, 2, from Theorems 12.10 and
12.11. In general, the proof is similar, based on Tannakian duality. To be more precise, in
what regards the main assertion, the idea here is that the one-block partition π ∈ P (s),
which generates the category of partitions P s in the statement, implements the relations
producing the subgroup Hs

N ⊂ SN . As for the last assertions, these are all elementary:

(1) At s = 1 we know that we have H1
N = SN . Regarding now the corresponding

category, here the condition #◦ = # • (1) is automatic, and so P 1 = P .

(2) At s = 2 we know that we have H2
N = HN . Regarding now the corresponding

category, here the condition #◦ = # • (2) reformulates as follows:

# ◦+#• = 0(2)

Thus each block must have even size, and we obtain, as claimed, P 2 = Peven.

(3) At s = ∞ we know that we have H∞
N = KN . Regarding now the corresponding

category, here the condition #◦ = # • (∞) reads:

#◦ = #•

But this is the condition defining Peven, and so P∞ = Peven, as claimed. □

Summarizing, we have many examples. In fact, our list of easy groups has currently
become quite big, and here is a selection of the main results that we have so far:

Theorem 12.13. We have a diagram of compact groups as follows,

KN
// UN

HN

OO

// ON

OO

where HN = Z2 ≀ SN and KN = T ≀ SN , and all these groups are easy.
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Proof. This follows from the above results. To be more precise, we know that the
above groups are all easy, the corresponding categories of partitions being as follows:

Peven

��

P2
oo

��
Peven P2

oo

Thus, we are led to the conclusion in the statement. □

Summarizing, most of the groups that we investigated so far in this book are covered
by the easy group formalism. Which is something very nice, and good to know.

As a comment here, one notable exception is the symplectic group SpN . But this
group is covered in fact as well, by a suitable extension of the easy group formalism.

12c. Basic operations

Let us discuss now some basic composition operations, in general, and for the easy
groups. We will be mainly interested in the following operations:

Definition 12.14. The closed subgroups of UN are subject to intersection and gener-
ation operations, constructed as follows:

(1) Intersection: H ∩K is the usual intersection of H,K.
(2) Generation: < H,K > is the closed subgroup generated by H,K.

Alternatively, we can define these operations at the function algebra level, by perform-
ing certain operations on the associated ideals, as follows:

Proposition 12.15. Assuming that we have presentation results as follows,

C(H) = C(UN)/I , C(K) = C(UN)/J

the groups H ∩K and < H,K > are given by the following formulae,

C(H ∩K) = C(UN)/ < I, J >

C(< H,K >) = C(UN)/(I ∩ J)
at the level of the associated algebras of functions.

Proof. This is indeed clear from the definition of the operations ∩ and < , >, as
formulated above, and from the Stone-Weierstrass theorem. □

In what follows we will need Tannakian formulations of the above two operations. The
result here, that we have already used a couple of times in the above, is as follows:
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Theorem 12.16. The intersection and generation operations ∩ and < ,> can be con-
structed via the Tannakian correspondence G→ CG, as follows:

(1) Intersection: defined via CG∩H =< CG, CH >.
(2) Generation: defined via C<G,H> = CG ∩ CH .

Proof. This follows from Proposition 12.15, and from Tannakian duality. Indeed, it
follows from Tannakian duality that given a closed subgroup G ⊂ UN , with fundamental
representation v, the algebra of functions C(G) has the following presentation:

C(G) = C(UN)
/〈

T ∈ Hom(u⊗k, u⊗l)
∣∣∣∀k,∀l,∀T ∈ Hom(v⊗k, v⊗l)

〉
In other words, given a closed subgroup G ⊂ UN , we have a presentation of the

following type, with IG being the ideal coming from the Tannakian category of G:

C(G) = C(UN)/IG

But this leads to the conclusion in the statement. □

In relation now with our easiness questions, we first have the following result:

Proposition 12.17. Assuming that H,K are easy, then so is H ∩K, and we have

DH∩K =< DH , DK >

at the level of the corresponding categories of partitions.

Proof. We have indeed the following computation:

CH∩K = < CH , CK >

= < span(DH), span(DK) >

= span(< DH , DK >)

Thus, by Tannakian duality we obtain the result. □

Regarding now the generation operation, the situation here is more complicated, due
to a number of technical reasons, and we only have the following statement:

Proposition 12.18. Assuming that H,K are easy, we have an inclusion

< H,K >⊂ {H,K}

coming from an inclusion of Tannakian categories as follows,

CH ∩ CK ⊃ span(DH ∩DK)

where {H,K} is the easy group having as category of partitions DH ∩DK.
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Proof. This follows from the definition and properties of the generation operation,
explained above, and from the following computation:

C<H,K> = CH ∩ CK
= span(DH) ∩ span(DK)

⊃ span(DH ∩DK)

Indeed, by Tannakian duality we obtain from this all the assertions. □

It is not clear if the inclusions in Proposition 12.18 are isomorphisms or not, and this
even under a supplementary N >> 0 assumption. Technically speaking, the problem
comes from the fact that the operation π → Tπ does not produce linearly independent
maps, and so all that we are doing is sensitive to the value of N ∈ N. The subject here is
quite technical, to be further developed in Part IV below, with probabilistic motivations
in mind, without however solving the present algebraic questions.

Summarizing, we have some problems here, and we must proceed as follows:

Theorem 12.19. The intersection and easy generation operations ∩ and { , } can be
constructed via the Tannakian correspondence G→ DG, as follows:

(1) Intersection: defined via DG∩H =< DG, DH >.
(2) Easy generation: defined via D{G,H} = DG ∩DH .

Proof. Here the situation is as follows:

(1) This is a true and honest result, coming from Proposition 12.17.

(2) This is more of an empty statement, coming from Proposition 12.18. □

As already mentioned, there is some interesting mathematics still to be worked out,
in relation with all this, and we will be back to this later, with further details. With the
above notions in hand, however, even if not fully satisfactory, we can formulate a nice
result, which improves our main result so far, namely Theorem 12.13, as follows:

Theorem 12.20. The basic unitary and reflection groups, namely

KN
// UN

HN

OO

// ON

OO

are all easy, and they form an intersection and easy generation diagram, in the sense that
the above square diagram satisfies UN = {KN , ON}, and HN = KN ∩ON .
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Proof. We know from Theorem 12.13 that the groups in the statement are easy, the
corresponding categories of partitions being as follows:

Peven

��

P2
oo

��
Peven P2

oo

Now observe that this latter diagram is an intersection and generation diagram. By
using Theorem 12.19, this reformulates into the fact that the diagram of quantum groups
is an intersection and easy generation diagram, as claimed. □

It is possible to further improve the above result, by proving that the diagram there
is actually a plain generation diagram. However, this is something more technical, and
for a discussion here, you can check for instance my quantum group book [11].

Moving forward, as a continuation of the above, it is possible to develop some more
general theory, along the above lines. Given a closed subgroup G ⊂ UN , we can talk

about its “easy envelope”, which is the smallest easy group G̃ containing G. This easy
envelope appears by definition as an intermediate closed subgroup, as follows:

G ⊂ G̃ ⊂ UN

With this notion in hand, Proposition 12.18 can be refined into a result stating that
given two easy groups H,K, we have inclusions as follows:

< H,K >⊂ ˜< H,K > ⊂ {H,K}
In order to discuss all this, let us start with the following definition:

Definition 12.21. A closed subgroup G ⊂ UN is called homogeneous when

SN ⊂ G ⊂ UN

with SN ⊂ UN being the standard embedding, via permutation matrices.

We will be interested in such groups, which cover for instance all the easy groups, and
many more. At the Tannakian level, we have the following result:

Theorem 12.22. The homogeneous groups SN ⊂ G ⊂ UN are in one-to-one corre-
spondence with the intermediate tensor categories

span
(
Tπ

∣∣∣π ∈ P2

)
⊂ C ⊂ span

(
Tπ

∣∣∣π ∈ P)
where P is the category of all partitions, P2 is the category of the matching pairings, and
π → Tπ is the standard implementation of partitions, as linear maps.
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Proof. This follows from Tannakian duality, and from the Brauer type results for
SN , UN . To be more precise, we know from Tannakian duality that each closed subgroup
G ⊂ UN can be reconstructed from its Tannakian category C = (C(k, l)), as follows:

C(G) = C(UN)
/〈

T ∈ Hom(u⊗k, u⊗l)
∣∣∣∀k, l, ∀T ∈ C(k, l)〉

Thus we have a one-to-one correspondence G ↔ C, given by Tannakian duality,
and since the endpoints G = SN , UN are both easy, corresponding to the categories
C = span(Tπ|π ∈ D) with D = P,P2, this gives the result. □

Our purpose now will be that of using the Tannakian result in Theorem 12.22, in
order to introduce and study a combinatorial notion of “easiness level”, for the arbitrary
intermediate groups SN ⊂ G ⊂ UN . Let us begin with the following simple fact:

Proposition 12.23. Given a homogeneous group SN ⊂ G ⊂ UN , with associated
Tannakian category C = (C(k, l)), the sets

D1(k, l) =
{
π ∈ P (k, l)

∣∣∣Tπ ∈ C(k, l)}
form a category of partitions, in the sense of Definition 12.3.

Proof. We use the basic categorical properties of the correspondence π → Tπ between
partitions and linear maps, that we established in the above, namely:

T[πσ] = Tπ ⊗ Tσ , T[σπ ] ∼ TπTσ , Tπ∗ = T ∗
π

Together with the fact that C is a tensor category, we deduce from these formulae
that we have the following implication:

π, σ ∈ D1 =⇒ Tπ, Tσ ∈ C
=⇒ Tπ ⊗ Tσ ∈ C
=⇒ T[πσ] ∈ C
=⇒ [πσ] ∈ D1

On the other hand, we have as well the following implication:

π, σ ∈ D1 =⇒ Tπ, Tσ ∈ C
=⇒ TπTσ ∈ C
=⇒ T[σπ ] ∈ C
=⇒ [σπ] ∈ D1
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Finally, we have as well the following implication:

π ∈ D1 =⇒ Tπ ∈ C
=⇒ T ∗

π ∈ C
=⇒ Tπ∗ ∈ C
=⇒ π∗ ∈ D1

Thus D1 is indeed a category of partitions, as claimed. □

We can further refine the above observation, in the following way:

Proposition 12.24. Given a compact group SN ⊂ G ⊂ UN , construct D
1 ⊂ P as

above, and let SN ⊂ G1 ⊂ UN be the easy group associated to D1. Then:

(1) We have G ⊂ G1, as subgroups of UN .
(2) G1 is the smallest easy group containing G.
(3) G is easy precisely when G ⊂ G1 is an isomorphism.

Proof. All this is elementary, the proofs being as follows:

(1) We know that the Tannakian category of G1 is given by:

C1
kl = span

(
Tπ

∣∣∣π ∈ D1(k, l)
)

Thus we have C1 ⊂ C, and so G ⊂ G1, as subgroups of UN .

(2) Assuming that we have G ⊂ G′, with G′ easy, coming from a Tannakian category
C ′ = span(D′), we must have C ′ ⊂ C, and so D′ ⊂ D1. Thus, G1 ⊂ G′, as desired.

(3) This is a trivial consequence of (2). □

Summarizing, we have now a notion of “easy envelope”, as follows:

Definition 12.25. The easy envelope of a homogeneous group SN ⊂ G ⊂ UN is the
easy group SN ⊂ G1 ⊂ UN associated to the category of partitions

D1(k, l) =
{
π ∈ P (k, l)

∣∣∣Tπ ∈ C(k, l)}
where C = (C(k, l)) is the Tannakian category of G.

At the level of examples, most of the known homogeneous groups SN ⊂ G ⊂ UN are
in fact easy. However, there are non-easy interesting examples as well, such as the generic
reflection groups Hsd

N from chapter 10, and we will certainly have an exercise at the end
of this chapter, regarding the computation of the corresponding easy envelopes.

As a technical observation now, we can in fact generalize the above construction to
any closed subgroup G ⊂ UN , and we have the following result:
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Proposition 12.26. Given a closed subgroup G ⊂ UN , construct D
1 ⊂ P as above,

and let SN ⊂ G1 ⊂ UN be the easy group associated to D1. We have then

G1 = (< G,SN >)1

where < G,SN >⊂ UN is the smallest closed subgroup containing G,SN .

Proof. According to our Tannakian results, the subgroup < G,SN >⊂ UN in the
statement exists indeed, and can be obtained by intersecting categories, as follows:

C<G,SN> = CG ∩ CSN

We conclude from this that for any π ∈ P (k, l) we have:

Tπ ∈ C<G,SN>(k, l) ⇐⇒ Tπ ∈ CG(k, l)

It follows that the D1 categories for the groups < G,SN > and G coincide, and so the
easy envelopes (< G,SN >)1 and G1 coincide as well, as stated. □

In order now to fine-tune all this, by using an arbitrary parameter p ∈ N, which can
be thought of as being an “easiness level”, we can proceed as follows:

Definition 12.27. Given a compact group SN ⊂ G ⊂ UN , and an integer p ∈ N, we
construct the family of linear spaces

Ep(k, l) =
{
α1Tπ1 + . . .+ αpTπp ∈ C(k, l)

∣∣∣αi ∈ C, πi ∈ P (k, l)
}

and we denote by Cp the smallest tensor category containing Ep = (Ep(k, l)), and by
SN ⊂ Gp ⊂ UN the compact group corresponding to this category Cp.

As a first observation, at p = 1 we have C1 = E1 = span(D1), where D1 is the
category of partitions constructed in Proposition 12.24. Thus the group G1 constructed
above coincides with the “easy envelope” of G, from Definition 12.25.

In the general case, p ∈ N, the family Ep = (Ep(k, l)) constructed above is not neces-
sarily a tensor category, but we can of course consider the tensor category Cp generated
by it, as indicated. Finally, in the above definition we have used of course the Tannakian
duality results, in order to perform the operation Cp → Gp.

In practice, the construction in Definition 12.27 is often something quite complicated,
and it is convenient to use the following observation:

Proposition 12.28. The category Cp constructed above is generated by the spaces

Ep(l) =
{
α1Tπ1 + . . .+ αpTπp ∈ C(l)

∣∣∣αi ∈ C, πi ∈ P (l)
}

where C(l) = C(0, l), P (l) = P (0, l), with l ranging over the colored integers.
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Proof. We use the well-known fact, that we know from chapter 11, that given a
closed subgroup G ⊂ UN , we have a Frobenius type isomorphism, as follows:

Hom(u⊗k, u⊗l) ≃ Fix(u⊗k̄l)

If we apply this to the group Gp, we obtain an isomorphism as follows:

C(k, l) ≃ C(k̄l)

On the other hand, we have as well an isomorphism P (k, l) ≃ P (k̄l), obtained by
performing a counterclockwise rotation to the partitions π ∈ P (k, l). According to the
above definition of the spaces Ep(k, l), this induces an isomorphism as follows:

Ep(k, l) ≃ Ep(k̄l)

We deduce from this that for any partitions π1, . . . , πp ∈ C(k, l), having rotated ver-
sions ρ1, . . . , ρp ∈ C(k̄l), and for any scalars α1, . . . , αp ∈ C, we have:

α1Tπ1 + . . .+ αpTπp ∈ C(k, l) ⇐⇒ α1Tρ1 + . . .+ αpTρp ∈ C(k̄l)
But this gives the conclusion in the statement, and we are done. □

The main properties of the construction G→ Gp can be summarized as follows:

Theorem 12.29. Given a compact group SN ⊂ G ⊂ UN , the compact groups Gp

constructed above form a decreasing family, whose intersection is G:

G =
⋂
p∈N

Gp

Moreover, G is easy when this decreasing limit is stationary, G = G1.

Proof. By definition of Ep(k, l), and by using Proposition 12.28, these linear spaces
form an increasing filtration of C(k, l). The same remains true when completing into
tensor categories, and so we have an increasing filtration, as follows:

C =
⋃
p∈N

Cp

At the compact group level now, we obtain the decreasing intersection in the statement.
Finally, the last assertion is clear from Proposition 12.28. □

As a main consequence of the above results, we can now formulate:

Definition 12.30. We say that a homogeneous compact group

SN ⊂ G ⊂ UN

is easy at order p when G = Gp, with p being chosen minimal with this property.

Observe that the order 1 notion corresponds to the usual easiness. In general, all this
is quite abstract, but there are several explicit examples, that can be worked out. For
more on all this, you can check my quantum group book [11].
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12d. Classification results

Let us go back now to plain easiness, and discuss some classification results, following
the old papers, and then the more recent paper of Tarrago-Weber. In order to cut from
the complexity, we must impose an extra axiom, and we will use here:

Theorem 12.31. For an easy group G = (GN), coming from a category of partitions
D ⊂ P , the following conditions are equivalent:

(1) GN−1 = GN ∩ UN−1, via the embedding UN−1 ⊂ UN given by u→ diag(u, 1).
(2) GN−1 = GN ∩ UN−1, via the N possible diagonal embeddings UN−1 ⊂ UN .
(3) D is stable under the operation which consists in removing blocks.

If these conditions are satisfied, we say that G = (GN) is uniform.

Proof. We use the general easiness theory explained above, as follows:

(1) ⇐⇒ (2) This is something standard, coming from the inclusion SN ⊂ GN , which
makes everything SN -invariant. The result follows as well from the proof of (1) ⇐⇒ (3)
below, which can be converted into a proof of (2) ⇐⇒ (3), in the obvious way.

(1) ⇐⇒ (3) Given a subgroup K ⊂ UN−1, with fundamental representation u,
consider the N ×N matrix v = diag(u, 1). Our claim is that for any π ∈ P (k) we have:

ξπ ∈ Fix(v⊗k) ⇐⇒ ξπ′ ∈ Fix(v⊗k′), ∀π′ ∈ P (k′), π′ ⊂ π

In order to prove this, we must study the condition on the left. We have:

ξπ ∈ Fix(v⊗k) ⇐⇒ (v⊗kξπ)i1...ik = (ξπ)i1...ik ,∀i
⇐⇒

∑
j

(v⊗k)i1...ik,j1...jk(ξπ)j1...jk = (ξπ)i1...ik ,∀i

⇐⇒
∑
j

δπ(j1, . . . , jk)vi1j1 . . . vikjk = δπ(i1, . . . , ik),∀i

Now let us recall that our representation has the special form v = diag(u, 1). We
conclude from this that for any index a ∈ {1, . . . , k}, we must have:

ia = N =⇒ ja = N

With this observation in hand, if we denote by i′, j′ the multi-indices obtained from
i, j obtained by erasing all the above ia = ja = N values, and by k′ ≤ k the common
length of these new multi-indices, our condition becomes:∑

j′

δπ(j1, . . . , jk)(v
⊗k′)i′j′ = δπ(i1, . . . , ik),∀i

Here the index j is by definition obtained from j′ by filling with N values. In order
to finish now, we have two cases, depending on i, as follows:
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Case 1. Assume that the index set {a|ia = N} corresponds to a certain subpartition
π′ ⊂ π. In this case, the N values will not matter, and our formula becomes:∑

j′

δπ(j
′
1, . . . , j

′
k′)(v

⊗k′)i′j′ = δπ(i
′
1, . . . , i

′
k′)

Case 2. Assume now the opposite, namely that the set {a|ia = N} does not correspond
to a subpartition π′ ⊂ π. In this case the indices mix, and our formula reads:

0 = 0

Thus, we are led to ξπ′ ∈ Fix(v⊗k′), for any subpartition π′ ⊂ π, as claimed.

Now with this claim in hand, the result follows from Tannakian duality. □

We can now formulate a first classification result, as follows:

Theorem 12.32. The uniform orthogonal easy groups are as follows,

BN
// ON

SN

OO

// HN

OO

and this diagram is an intersection and easy generation diagram.

Proof. We know that the quantum groups in the statement are indeed easy and
uniform, the corresponding categories of partitions being as follows:

P12

��

P2

��

oo

P Pevenoo

Since this latter diagram is an intersection and generation diagram, we conclude that
we have an intersection and easy generation diagram of quantum groups, as stated. Re-
garding now the classification, consider an arbitrary easy group, as follows:

SN ⊂ GN ⊂ ON

This group must then come from a category of partitions, as follows:

P2 ⊂ D ⊂ P

Now if we assume G = (GN) to be uniform, this category of partitions D is uniquely
determined by the subset L ⊂ N consisting of the sizes of the blocks of the partitions in
D. Our claim now is that the admissible sets are as follows:
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(1) L = {2}, producing ON .

(2) L = {1, 2}, producing BN .

(3) L = {2, 4, 6, . . .}, producing HN .

(4) L = {1, 2, 3, . . .}, producing SN .

Indeed, in one sense, this follows from our easiness results for ON , BN , HN , SN . In the
other sense now, assume that L ⊂ N is such that the set PL consisting of partitions whose
sizes of the blocks belong to L is a category of partitions. We know from the axioms
of the categories of partitions that the semicircle ∩ must be in the category, so we have
2 ∈ L. Our claim is that the following conditions must be satisfied as well:

k, l ∈ L, k > l =⇒ k − l ∈ L
k ∈ L, k ≥ 2 =⇒ 2k − 2 ∈ L

Indeed, we will prove that both conditions follow from the axioms of the categories of
partitions. Let us denote by bk ∈ P (0, k) the one-block partition, as follows:

bk =

{
⊓⊓ . . . ⊓
1 2 . . . k

}
For k > l, we can write bk−l in the following way:

bk−l =


⊓⊓ . . . . . . . . . . . . ⊓
1 2 . . . l l + 1 . . . k
⊔⊔ . . . ⊔ | . . . |

1 . . . k − l


In other words, we have the following formula:

bk−l = (b∗l ⊗ |⊗k−l)bk
Since all the terms of this composition are in PL, we have bk−l ∈ PL, and this proves

our first formula. As for the second formula, this can be proved in a similar way, by
capping two adjacent k-blocks with a 2-block, in the middle.

With the above two formulae in hand, we can conclude in the following way:

Case 1. Assume 1 ∈ L. By using the first formula with l = 1 we get:

k ∈ L =⇒ k − 1 ∈ L
This condition shows that we must have L = {1, 2, . . . ,m}, for a certain number

m ∈ {1, 2, . . . ,∞}. On the other hand, by using the second formula we get:

m ∈ L =⇒ 2m− 2 ∈ L
=⇒ 2m− 2 ≤ m

=⇒ m ∈ {1, 2,∞}
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The case m = 1 being excluded by the condition 2 ∈ L, we reach to one of the two
sets producing the groups SN , BN .

Case 2. Assume 1 /∈ L. By using the first formula with l = 2 we get:

k ∈ L =⇒ k − 2 ∈ L

This condition shows that we must have L = {2, 4, . . . , 2p}, for a certain number
p ∈ {1, 2, . . . ,∞}. On the other hand, by using the second formula we get:

2p ∈ L =⇒ 4p− 2 ∈ L
=⇒ 4p− 2 ≤ 2p

=⇒ p ∈ {1,∞}

Thus L must be one of the two sets producing ON , HN , and we are done. □

All the above is very nice, but the continuation of the story is more complicated. When
lifting the uniformity assumption, the final classification results become more technical,
due to the presence of various copies of Z2, that can be added, while keeping the easiness
property still true. To be more precise, in the real case it is known that we have exactly
6 solutions, which are as follows, with the convention G′

N = GN × Z2:

BN
// B′

N
// ON

SN

OO

// S ′
N

OO

// HN

OO

In the unitary case now, the classification is quite similar, but more complicated. In
particular the uniform easy groups which are purely unitary are as follows:

CN // UN

SN

OO

// KN

OO

We refer here to the literature on the subject. Switching topics now, in the projective
case, that we are mainly interested in, let us formulate the following definition:

Definition 12.33. A projective category of pairings is a collection of subsets

NC2(2k, 2l) ⊂ E(k, l) ⊂ P2(2k, 2l)

stable under the usual categorical operations, and satisfying σ ∈ E =⇒ |σ| ∈ E.
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As basic examples, going beyond our crossing category setting, we have the following
projective categories of pairings, where P ∗

2 is the category of matching pairings:

NC2 ⊂ P ∗
2 ⊂ P2

This follows indeed from definitions. Now with the above notion in hand, we can
formulate the following projective analogue of the notion of easiness:

Definition 12.34. An intermediate compact group

PON ⊂ H ⊂ PUN

is called projectively easy when its Tannakian category

span(NC2(2k, 2l)) ⊂ Hom(v⊗k, v⊗l) ⊂ span(P2(2k, 2l))

comes via via the following formula, using the standard π → Tπ construction,

Hom(v⊗k, v⊗l) = span(E(k, l))

for a certain projective category of pairings E = (E(k, l)).

Thus, we have a projective notion of easiness, and as examples, the projective versions
of easy groups are projectively easy. We have in fact the following general result:

Theorem 12.35. We have a bijective correspondence between the affine and projective
categories of partitions, given by the operation

G→ PG

at the level of the corresponding affine and projective easy quantum groups.

Proof. The construction of correspondence D → E is clear, simply by setting:

E(k, l) = D(2k, 2l)

Indeed, due to the axioms in Definition 12.33, the conditions for categories of partitions
are satisfied. Conversely, given E = (E(k, l)) as in Definition 12.33, we can set:

D(k, l) =

{
E(k, l) (k, l even)

{σ : |σ ∈ E(k + 1, l + 1)} (k, l odd)

Our claim is that D = (D(k, l)) is a category of partitions. Indeed:

(1) The composition action is clear. Indeed, when looking at the numbers of legs
involved, in the even case this is clear, and in the odd case, this follows from:

|σ, |σ′ ∈ E =⇒ |στ ∈ E
=⇒ σ

τ ∈ D
(2) For the tensor product axiom, we have 4 cases to be investigated, depending on

the parity of the number of legs of σ, τ , as follows:

– The even/even case is clear.
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– The odd/even case follows from the following computation:

|σ, τ ∈ E =⇒ |στ ∈ E
=⇒ στ ∈ D

– Regarding now the even/odd case, this can be solved as follows:

σ, |τ ∈ E =⇒ |σ|, |τ ∈ E
=⇒ |σ||τ ∈ E
=⇒ |στ ∈ E
=⇒ στ ∈ D

– As for the remaining odd/odd case, here the computation is as follows:

|σ, |τ ∈ E =⇒ ||σ|, |τ ∈ E
=⇒ ||σ||τ ∈ E
=⇒ στ ∈ E
=⇒ στ ∈ D

(3) Finally, the conjugation axiom is clear from definitions. It is also clear that both
compositions D → E → D and E → D → E are the identities, as claimed. As for the
quantum group assertion, this is clear as well from definitions. □

12e. Exercises

Exercises:

Exercise 12.36.

Exercise 12.37.

Exercise 12.38.

Exercise 12.39.

Exercise 12.40.

Exercise 12.41.

Exercise 12.42.

Exercise 12.43.

Bonus exercise.
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Smooth structure

13a. Differential geometry

Differential geometry.

13b. Smooth structure

Smooth structure.

13c. Standard calculus

Standard calculus.

13d. The complex case

The complex case.

13e. Exercises

Exercises:

Exercise 13.1.

Exercise 13.2.

Exercise 13.3.

Exercise 13.4.

Exercise 13.5.

Exercise 13.6.

Exercise 13.7.

Exercise 13.8.

Bonus exercise.
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Metric aspects

14a. Distances, metric

Distances, metric.

14b. Exponential maps

Exponential maps.

14c. Advanced calculus

Advanced calculus.

14d. Complex manifolds

Complex manifolds.

14e. Exercises

Exercises:

Exercise 14.1.

Exercise 14.2.

Exercise 14.3.

Exercise 14.4.

Exercise 14.5.

Exercise 14.6.

Exercise 14.7.

Exercise 14.8.

Bonus exercise.
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CHAPTER 15

Integration theory

15a. Uniform integration

Uniform integration.

15b. Weingarten formula

In order to integrate over projective spaces, and other manifolds, let us first investigate
the group case. Let us start with the following result, coming from Peter-Weyl:

Theorem 15.1. For an easy group G = (GN), coming from a category of partitions
D = (D(k, l)), the asymptotic moments of the main character are given by

lim
N→∞

∫
GN

χk = #D(k)

where D(k) = D(∅, k), with the limiting sequence on the left consisting of certain integers,
and being stationary at least starting from the k-th term.

Proof. This follows indeed from the Peter-Weyl theory, by using the linear indepen-
dence result for the vectors ξπ, coming from the Lindstöm determinant formula. □

With these preliminaries in hand, we can now state and prove:

Theorem 15.2. In the N → ∞ limit, the laws of the main character for the main
easy groups, real and complex, and discrete and continuous, are as follows,

KN
// UN

HN

OO

// ON

OO

:

B1
// G1

b1

OO

// g1

OO

with these laws, namely the real and complex Gaussian and Bessel laws, being the main
limiting laws in real and complex, and discrete and continuous probability.
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Proof. This follows from the above results. To be more precise, we know that the
above groups are all easy, the corresponding categories of partitions being as follows:

Peven

��

P2
oo

��
Peven P2

oo

Thus, we can use Theorem 15.1, are we are led into counting partitions, and then
recovering the measures via their moments, and this leads to the result. □

Next, we have the following general formula, also coming from Peter-Weyl:

Theorem 15.3. The Haar integration over a closed subgroup G ⊂v UN is given on
the dense subalgebra of smooth functions by the Weingarten type formula∫

G

ge1i1j1 . . . g
ek
ikjk

dg =
∑

π,ν∈D(k)

δπ(i)δσ(j)Wk(π, ν)

valid for any colored integer k = e1 . . . ek and any multi-indices i, j, where D(k) is a linear
basis of Fix(v⊗k), the associated generalized Kronecker symbols are given by

δπ(i) =< π, ei1 ⊗ . . .⊗ eik >

and Wk = G−1
k is the inverse of the Gram matrix, Gk(π, ν) =< π, ν >.

Proof. This is something very standard, coming from the fact that the above inte-
grals form altogether the orthogonal projection P k onto the following space:

Fix(v⊗k) = span(D(k))

Consider now the following linear map, with D(k) = {ξk} being as in the statement:

E(x) =
∑

π∈D(k)

< x, ξπ > ξπ

By a standard linear algebra computation, it follows that we have P = WE, where
W is the inverse of the restriction of E to the following space:

K = span
(
Tπ

∣∣∣π ∈ D(k)
)

But this restriction is the linear map given by the matrix Gk, and so W is the linear
map given by the inverse matrix Wk = G−1

k , and this gives the result. □

In the easy case, we have the following more concrete result:
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Theorem 15.4. For an easy group G ⊂ UN , coming from a category of partitions
D = (D(k, l)), we have the Weingarten formula∫

G

ge1i1j1 . . . g
ek
ikjk

dg =
∑

π,ν∈D(k)

δπ(i)δν(j)WkN(π, ν)

for any k = e1 . . . ek and any i, j, where D(k) = D(∅, k), δ are usual Kronecker type
symbols, checking whether the indices match, and WkN = G−1

kN , with

GkN(π, ν) = N |π∨ν|

where |.| is the number of blocks.

Proof. We use the abstract Weingarten formula, from Theorem 15.3. Indeed, the
Kronecker type symbols there are then the usual ones, as shown by:

δξπ(i) = < ξπ, ei1 ⊗ . . .⊗ eik >

=

〈∑
j

δπ(j1, . . . , jk)ej1 ⊗ . . .⊗ ejk , ei1 ⊗ . . .⊗ eik

〉
= δπ(i1, . . . , ik)

The Gram matrix being as well the correct one, we obtain the result. □

Let us go back now to the general easy groups G ⊂ UN , with the idea in mind of
computing the laws of truncated characters. First, we have the following formula:

Proposition 15.5. The moments of truncated characters are given by the formula∫
G

(g11 + . . .+ gss)
kdg = Tr(WkNGks)

where GkN and WkN = G−1
kN are the associated Gram and Weingarten matrices.

Proof. We have indeed the following computation:∫
G

(g11 + . . .+ gss)
kdg =

s∑
i1=1

. . .

s∑
ik=1

∫
G

gi1i1 . . . gikik dg

=
∑

π,ν∈D(k)

WkN(π, ν)
s∑

i1=1

. . .
s∑

ik=1

δπ(i)δν(i)

=
∑

π,ν∈D(k)

WkN(π, ν)Gks(ν, π)

= Tr(WkNGks)

Thus, we have reached to the formula in the statement. □
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In order to process now the above formula, and reach to concrete results, we must
impose on our group a uniformity condition. Let us start with:

Proposition 15.6. For an easy group G = (GN), coming from a category of partitions
D ⊂ P , the following conditions are equivalent:

(1) GN−1 = GN ∩ UN−1, via the embedding UN−1 ⊂ UN given by u→ diag(u, 1).
(2) GN−1 = GN ∩ UN−1, via the N possible diagonal embeddings UN−1 ⊂ UN .
(3) D is stable under the operation which consists in removing blocks.

If these conditions are satisfied, we say that G = (GN) is uniform.

Proof. The equivalence (1) ⇐⇒ (2) comes from the inclusion SN ⊂ GN , which
makes everything SN -invariant. Regarding (1) ⇐⇒ (3), given a subgroup K ⊂v UN−1,
consider the matrix u = diag(v, 1). Our claim is that for any π ∈ P (k) we have:

ξπ ∈ Fix(u⊗k) ⇐⇒ ξπ′ ∈ Fix(u⊗k′), ∀π′ ∈ P (k′), π′ ⊂ π

In order to prove this claim, we must study the condition on the left. We have:

ξπ ∈ Fix(v⊗k) ⇐⇒ (u⊗kξπ)i1...ik = (ξπ)i1...ik , ∀i
⇐⇒

∑
j

(u⊗k)i1...ik,j1...jk(ξπ)j1...jk = (ξπ)i1...ik ,∀i

⇐⇒
∑
j

δπ(j1, . . . , jk)ui1j1 . . . uikjk = δπ(i1, . . . , ik),∀i

Now let us recall that our representation has the special form u = diag(v, 1). We
conclude from this that for any index a ∈ {1, . . . , k}, we have:

ia = N =⇒ ja = N

With this observation in hand, if we denote by i′, j′ the multi-indices obtained from
i, j obtained by erasing all the above ia = ja = N values, and by k′ ≤ k the common
length of these new multi-indices, our condition becomes:∑

j′

δπ(j1, . . . , jk)(u
⊗k′)i′j′ = δπ(i1, . . . , ik),∀i

Here the index j is by definition obtained from the index j′ by filling with N values.
In order to finish now, we have two cases, depending on i, as follows:

Case 1. Assume that the index set {a|ia = N} corresponds to a certain subpartition
π′ ⊂ π. In this case, the N values will not matter, and our formula becomes:∑

j′

δπ(j
′
1, . . . , j

′
k′)(u

⊗k′)i′j′ = δπ(i
′
1, . . . , i

′
k′)

Case 2. Assume now the opposite, namely that the set {a|ia = N} does not correspond
to a subpartition π′ ⊂ π. In this case the indices mix, and our formula reads 0 = 0. Thus
we have ξπ′ ∈ Fix(u⊗k′) in both cases, for any subpartition π′ ⊂ π, as desired. □
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Now back to the laws of truncated characters, we have the following result:

Theorem 15.7. For a uniform easy group G = (GN), we have the formula

lim
N→∞

∫
GN

χkt =
∑

π∈D(k)

t|π|

with D ⊂ P being the associated category of partitions.

Proof. We use Proposition 15.5. With s = [tN ], the formula there becomes:∫
GN

χkt = Tr(WkNGk[tN ])

The point now is that in the uniform case the Gram matrix, and so the Weingarten
matrix too, is asymptotically diagonal. Thus, we obtain the following estimate:∫

GN

χkt ≃
∑

π∈D(k)

WkN(π, π)Gk[tN ](π, π)

≃
∑

π∈D(k)

N−|π|(tN)|π|

=
∑

π∈D(k)

t|π|

Thus, we are led to the formula in the statement. □

We can now enlarge our collection of truncated character results, and we have:

Theorem 15.8. With N →∞, the laws of truncated characters are as follows:

(1) For ON we obtain the Gaussian law gt.
(2) For UN we obtain the complex Gaussian law Gt.
(3) For SN we obtain the Poisson law pt.
(4) For HN we obtain the Bessel law bt.
(5) For Hs

N we obtain the generalized Bessel law bst .
(6) For KN we obtain the complex Bessel law Bt.

Proof. We already know these results at t = 1. In the general case, t > 0, these
follow via some standard combinatorics, from the formula in Theorem 15.7. □

15c. Projective integrals

Projective integrals.

15d. Quotient spaces

Quotient spaces.
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15e. Exercises

Exercises:

Exercise 15.9.

Exercise 15.10.

Exercise 15.11.

Exercise 15.12.

Exercise 15.13.

Exercise 15.14.

Exercise 15.15.

Exercise 15.16.

Bonus exercise.



CHAPTER 16

Free geometry

16a. Free tori

Welcome to freeness. We will be interested here in developing free geometry and
analysis, with the hope that all this might be related to physics, at very small scales,
quarks and below. The idea being very simple, based on old findings of Heisenberg
and others, if it is true indeed that the more you zoom down, the more commutativity
dissapears, then, logically, if you zoom hard enough, things will become free.

So, what is free? The simplest free object in mathematics is the free group FN :

Definition 16.1. The free group FN is the infinite group

FN =
〈
g1, . . . , gN

∣∣∣ ∅〉
generated by N variables g1, . . . , gN , with no relations between them.

This might look a bit abstract, but no worries, FN has some interesting mathematics,
coming right away, if you have some knowledge in discrete groups, and know how to look
for interesting questions. For instance if you want to draw the Cayley graph of FN , whose
vertices are the elements of FN , with edges h − k drawn when h = g±1

i k for some i, you
will end up with an interesting picture, which at N = 2 looks like this:

•

• • •

• •

• • • • •

• •

• • •

•
And this type of graph certainly has interesting mathematics. One good question

for instance is that of computing the number of length 2k loops based at the root. An-
other question, which is in fact equivalent, via moments, is that of computing the Kesten
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measure of FN , which is that of the following variable in the group algebra of FN :

χ = g1 + . . .+ gN

All this looks very good, we most likely have here our first object of free geometry. In
order now to formally understand this, let us recall the following formula, with TN = TN
being the usual torus, and with ZN being the free abelian group:

TN = ẐN

Thus, getting back now to our free group FN , which is the free analogue of ZN , it is in
fact its dual F̂N which is a free manifold, and more specifically the free analogue of TN .
Which is a nice finding, so let us formulate our conclusions as follows:

Definition 16.2. The free torus T+
N is the dual of the free group FN ,

T+
N = F̂N

in analogy with the fact that the usual torus TN = TN appears as

TN = ẐN

with on the right the group ZN being the free abelian group.

It is of course possible to formulate things more precisely, and we will be back to
this in a moment, but before that, isn’t this a bit too abstract? But the point here is
that no, at the level of questions to be solved, these remain the same, as for instance the
computation of the Kesten measure, which is now a “function” on the free torus:

χ ∈ C(T+
N)

In fact, this function is the main character of T+
N , regarded as a compact quantum

group, and so our Kesten problem suddenly becomes something very conceptual, namely
the computation of the law of the main character of T+

N . Which is very nice.

Before getting into details regarding all this, recall that RN is as interesting as CN .
So, let us formulate as well the real version of Definition 16.2, as follows:

Definition 16.3. The free real torus, or free cube, T+
N is the dual

T+
N = L̂N

of the group LN = FN/ < g2i = 1 >, in analogy with the fact that the usual cube is

TN = ẐN2
with on the right the group ZN2 being the free real abelian group.
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Here the “real” at the end stands for the fact that the generators must satisfy the
real reflection condition g2 = 1. As for the fact that “real torus = cube”, as stated, this
needs some thinking, and in the hope that, after such thinking, you will agree with me
that there is indeed a standard torus inside RN , and that is the unit cube.

Summarizing, all this sounds good, we have a beginning of free geometry, both real
and complex, worth developing, by knowing at least what the torus of each theory is. In

practice now, at the level of details, in order to talk about T+
N = F̂N and T+

N = L̂N we
need an extension of the usual Pontrjagin duality theory for the abelian groups, and this
is best done via operator algebras, and the related notion of compact quantum group.

In order to understand all this, let us start with operator algebras. We have:

Definition 16.4. A C∗-algebra is a complex algebra A, having:

(1) A norm a→ ||a||, making it a Banach algebra.
(2) An involution a→ a∗, satisfying ||aa∗|| = ||a||2.

As basic examples, we have B(H) itself, as well as any norm closed ∗-subalgebra
A ⊂ B(H). It is possible to prove that any C∗-algebra appears in this way, but we will
not need in what follows this deep result, called GNS theorem after Gelfand, Naimark,
Segal. So, let us simply agree that, by definition, the C∗-algebras A are some sort of
“generalized operator algebras”, and their elements a ∈ A can be thought of as being
some kind of “generalized operators”, on some Hilbert space which is not present.

In practice, this vague idea is all that we need. Indeed, by taking some inspiration
from linear algebra, we can emulate spectral theory in our setting, as follows:

Proposition 16.5. Given a ∈ A, define its spectrum as being the set

σ(a) =
{
λ ∈ C

∣∣∣a− λ ̸∈ A−1
}

and its spectral radius ρ(a) as the radius of the smallest centered disk containing σ(a).

(1) The spectrum of a norm one element is in the unit disk.
(2) The spectrum of a unitary element (a∗ = a−1) is on the unit circle.
(3) The spectrum of a self-adjoint element (a = a∗) consists of real numbers.
(4) The spectral radius of a normal element (aa∗ = a∗a) is equal to its norm.

Proof. The first claim is that for any polynomial f ∈ C[X], and more generally for
any rational function f ∈ C(X) having poles outside σ(a), we have:

σ(f(a)) = f(σ(a))

This indeed something well-known for the usual matrices, and in general, the proof is
similar. Regarding now the assertions in the statement, these all follow from this:
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(1) This comes from the following formula, valid when ||a|| < 1:

1

1− a
= 1 + a+ a2 + . . .

(2) Assuming a∗ = a−1, if we denote by D the unit disk, we have, by using (1):

||a|| = 1 =⇒ σ(a) ⊂ D

||a−1|| = 1 =⇒ σ(a−1) ⊂ D

On the other hand, by using the rational function f(z) = z−1, we have:

σ(a−1) ⊂ D =⇒ σ(a) ⊂ D−1

Now by putting everything together we obtain, as desired:

σ(a) ⊂ D ∩D−1 = T

(3) This follows from (2), by using the rational function f(z) = (z + it)/(z − it).
Indeed, for t >> 0 we have the following computation:(

a+ it

a− it

)∗

=
a− it
a+ it

=

(
a+ it

a− it

)−1

Thus the element f(a) is a unitary, and by using (2) its spectrum is contained in T.
We conclude from this that we have:

f(σ(a)) = σ(f(a)) ⊂ T

But this shows that we have σ(a) ⊂ f−1(T) = R, as desired.

(4) We already know that we have ρ(a) ≤ ||a||, for any a ∈ A. For the reverse
inequality, when a is normal, we fix a number ρ > ρ(a). We have then:∫

|z|=ρ

zn

z − a
dz =

∫
|z|=ρ

∞∑
k=0

zn−k−1ak dz

=
∞∑
k=0

(∫
|z|=ρ

zn−k−1dz

)
ak

= an−1

By applying the norm and taking n-th roots we obtain from this formula:

ρ ≥ lim
n→∞

||an||1/n

When a = a∗ we have ||an|| = ||a||n for any exponent of type n = 2k, by using the
C∗-algebra condition ||aa∗|| = ||a||2, and by taking n-th roots we get, as desired:

ρ(a) ≥ ||a||
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In the general normal case now, aa∗ = a∗a, we have an(an)∗ = (aa∗)n, and by using
this, along with the result for self-adjoints, applied to aa∗, we obtain:

ρ(a) ≥ lim
n→∞

||an||1/n

=
√

lim
n→∞

||an(an)∗||1/n

=
√

lim
n→∞

||(aa∗)n||1/n

=
√
ρ(aa∗)

= ||a||

Thus, we are led to the conclusion in the statement. □

Generally speaking, Proposition 16.5 is all you need for doing further operator algebras,
only military grade weapons there. As a main application, we have:

Theorem 16.6 (Gelfand). If X is a compact space, the algebra C(X) of continuous
functions f : X → C is a commutative C∗-algebra, with structure as follows:

(1) The norm is the usual sup norm, ||f || = supx∈X |f(x)|.
(2) The involution is the usual involution, f ∗(x) = f(x).

Conversely, any commutative C∗-algebra is of the form C(X), with its “spectrum” X =
Spec(A) appearing as the space of characters χ : A→ C.

Proof. Given a commutative C∗-algebra A, we can define indeed X to be the set
of characters χ : A → C, with the topology making continuous all the evaluation maps
eva : χ→ χ(a). Then X is a compact space, and a→ eva is a morphism of algebras:

ev : A→ C(X)

We first prove that ev is involutive. We use the following formula:

a =
a+ a∗

2
− i · i(a− a

∗)

2

Thus it is enough to prove the equality eva∗ = ev∗a for self-adjoint elements a. But
this is the same as proving that a = a∗ implies that eva is a real function, which is in
turn true, because eva(χ) = χ(a) is an element of σ(a), contained in R. So, claim proved.
Also, since A is commutative, each element is normal, so ev is isometric:

||eva|| = ρ(a) = ||a||

It remains to prove that ev is surjective. But this follows from the Stone-Weierstrass
theorem, because ev(A) is a closed subalgebra of C(X), which separates the points. □

The Gelfand theorem suggests formulating the following definition:
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Definition 16.7. Given a C∗-algebra A, not necessarily commutative, we write

A = C(X)

and call the abstract object X a “compact quantum space”.

This might look quite revolutionary, but in practice, this definition changes nothing
to what we have been doing so far, namely studying the C∗-algebras. So, we will keep
studying the C∗-algebras, but by using the above fancy quantum space terminology. For
instance whenever we have a morphism Φ : A→ B, we will write A = C(X), B = C(Y ),
and rather speak of the corresponding morphism ϕ : Y → X. And so on.

Now that we have our notion of quantum spaces, good time to get back towards
Definitions 16.2 and 16.3. In order to understand what that free tori are, we will need:

Theorem 16.8. Let Γ be a discrete group, and consider the complex group algebra
C[Γ], with involution given by the fact that all group elements are unitaries, g∗ = g−1.

(1) The maximal C∗-seminorm on C[Γ] is a C∗-norm, and the closure of C[Γ] with
respect to this norm is a C∗-algebra, denoted C∗(Γ).

(2) When Γ is abelian, we have an isomorphism C∗(Γ) ≃ C(G), where G = Γ̂ is its
Pontrjagin dual, formed by the characters χ : Γ→ T.

Proof. All this is very standard, the idea being as follows:

(1) In order to prove the result, we must find a ∗-algebra embedding C[Γ] ⊂ B(H),
with H being a Hilbert space. For this purpose, consider the space H = l2(Γ), having
{h}h∈Γ as orthonormal basis. Our claim is that we have an embedding, as follows:

π : C[Γ] ⊂ B(H) , π(g)(h) = gh

Indeed, since π(g) maps the basis {h}h∈Γ into itself, this operator is well-defined,
bounded, and is an isometry. It is also clear from the formula π(g)(h) = gh that g →
π(g) is a morphism of algebras, and since this morphism maps the unitaries g ∈ Γ into
isometries, this is a morphism of ∗-algebras. Finally, the faithfulness of π is clear.

(2) Since Γ is abelian, the corresponding group algebra A = C∗(Γ) is commutative.
Thus, we can apply the Gelfand theorem, and we obtain A = C(X), with:

X = Spec(A)

But the spectrum X = Spec(A), consisting of the characters χ : C∗(Γ) → C, can be

identified with the Pontrjagin dual G = Γ̂, and this gives the result. □

The above result suggests the following definition:

Definition 16.9. Given a discrete group Γ, the compact quantum space G given by

C(G) = C∗(Γ)

is called abstract dual of Γ, and is denoted G = Γ̂.
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Good news, this definition is exactly what we need, in order to understand the meaning
of Definitions 16.2 and 16.3. To be more precise, we have the following result:

Proposition 16.10. The basic tori are all group duals, as follows,

T+
N

// T+
N

TN //

OO

TN

OO

=

L̂N // F̂N

ZN2 //

OO

TN

OO

where FN = Z∗N is the free group on N generators, and LN = Z∗N
2 is its real version.

Proof. The basic tori appear indeed as group duals, and together with the Fourier
transform identifications from Theorem 16.8 (2), this gives the result. □

Moving ahead, now that we have our formalism, we can start developing free geometry.
As a first objective, we would like to better understand the relation between the classical
and free tori. In order to discuss this, let us introduce the following notion:

Definition 16.11. Given a compact quantum space X, its classical version is the
usual compact space Xclass ⊂ X obtained by dividing C(X) by its commutator ideal:

C(Xclass) = C(X)/I , I =< [a, b] >

In this situation, we also say that X appears as a “liberation” of X.

In other words, the space Xclass appears as the Gelfand spectrum of the commutative
C∗-algebra C(X)/I. Observe in particular that Xclass is indeed a classical space.

In relation now with our tori, we have the following result:

Theorem 16.12. We have inclusions between the various tori, as follows,

T+
N

// T+
N

TN //

OO

TN

OO

and the free tori on top appear as liberations of the tori on the bottom.

Proof. This is indeed clear from definitions, because commutativity of a group alge-
bra means precisely that the group in question is abelian. □
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16b. Free spheres

In order to extend now the free geometries that we have, real and complex, let us
begin with the spheres. We have the following notions:

Definition 16.13. We have free real and complex spheres, defined via

C(SN−1
R,+ ) = C∗

(
x1, . . . , xN

∣∣∣xi = x∗i ,
∑
i

x2i = 1

)

C(SN−1
C,+ ) = C∗

(
x1, . . . , xN

∣∣∣∑
i

xix
∗
i =

∑
i

x∗ixi = 1

)
where the symbol C∗ stands for universal enveloping C∗-algebra.

Here the fact that these algebras are indeed well-defined comes from the following
estimate, which shows that the biggest C∗-norms on these ∗-algebras are bounded:

||xi||2 = ||xix∗i || ≤

∣∣∣∣∣
∣∣∣∣∣∑

i

xix
∗
i

∣∣∣∣∣
∣∣∣∣∣ = 1

As a first result now, regarding the above free spheres, we have:

Theorem 16.14. We have embeddings of compact quantum spaces, as follows,

SN−1
R,+

// SN−1
C,+

SN−1
R

//

OO

SN−1
C

OO

and the spaces on top appear as liberations of the spaces on the bottom.

Proof. The first assertion, regarding the inclusions, comes from the fact that at the
level of the associated C∗-algebras, we have surjective maps, as follows:

C(SN−1
R,+ )

��

C(SN−1
C,+ )

��

oo

C(SN−1
R ) C(SN−1

C )oo
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For the second assertion, we must establish the following isomorphisms, where the
symbol C∗

comm stands for “universal commutative C∗-algebra generated by”:

C(SN−1
R ) = C∗

comm

(
x1, . . . , xN

∣∣∣xi = x∗i ,
∑
i

x2i = 1

)

C(SN−1
C ) = C∗

comm

(
x1, . . . , xN

∣∣∣∑
i

xix
∗
i =

∑
i

x∗ixi = 1

)
It is enough to establish the second isomorphism. So, consider the second universal

commutative C∗-algebra A constructed above. Since the standard coordinates on SN−1
C

satisfy the defining relations for A, we have a quotient map of as follows:

A→ C(SN−1
C )

Conversely, let us write A = C(S), by using the Gelfand theorem. Then x1, . . . , xN
become in this way true coordinates, providing us with an embedding as follows:

S ⊂ CN

Also, the quadratic relations become
∑

i |xi|2 = 1, so we have S ⊂ SN−1
C . Thus, we

have a quotient map C(SN−1
C )→ A, as desired, and this gives all the results. □

By using the free spheres constructed above, we can now formulate:

Definition 16.15. A real algebraic manifold X ⊂ SN−1
C,+ is a closed quantum subspace

defined, at the level of the corresponding C∗-algebra, by a formula of type

C(X) = C(SN−1
C,+ )

/〈
fi(x1, . . . , xN) = 0

〉
for certain family of noncommutative polynomials, as follows:

fi ∈ C < x1, . . . , xN >

We denote by C(X) the ∗-subalgebra of C(X) generated by the coordinates x1, . . . , xN .

As a basic example here, we have the free real sphere SN−1
R,+ . The classical spheres

SN−1
C , SN−1

R , and their real submanifolds, are covered as well by this formalism. At the
level of the general theory, we have the following version of the Gelfand theorem:

Theorem 16.16. If X ⊂ SN−1
C,+ is an algebraic manifold, as above, we have

Xclass =
{
x ∈ SN−1

C

∣∣∣fi(x1, . . . , xN) = 0
}

and X appears as a liberation of Xclass.
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Proof. This is something that we already met, in the context of the free spheres. In
general, the proof is similar, by using the Gelfand theorem. Indeed, if we denote by X ′

class

the manifold constructed in the statement, then we have a quotient map of C∗-algebras
as follows, mapping standard coordinates to standard coordinates:

C(Xclass)→ C(X ′
class)

Conversely now, from X ⊂ SN−1
C,+ we obtain Xclass ⊂ SN−1

C . Now since the relations
defining X ′

class are satisfied by Xclass, we obtain an inclusion Xclass ⊂ X ′
class. Thus, at

the level of algebras of continuous functions, we have a quotient map of C∗-algebras as
follows, mapping standard coordinates to standard coordinates:

C(X ′
class)→ C(Xclass)

Thus, we have constructed a pair of inverse morphisms, and we are done. □

Finally, once again at the level of the general theory, we have:

Definition 16.17. We agree to identify two real algebraic submanifolds X, Y ⊂ SN−1
C,+

when we have a ∗-algebra isomorphism between ∗-algebras of coordinates
f : C(Y )→ C(X)

mapping standard coordinates to standard coordinates.

We will see later the reasons for making this convention, coming from amenability.
Now back to the tori, as constructed before, we can see that these are examples of algebraic
manifolds, in the sense of Definition 16.15. In fact, we have the following result:

Theorem 16.18. The four main quantum spheres produce the main quantum tori

SN−1
R,+

// SN−1
C,+

SN−1
R

//

OO

SN−1
C

OO

→

T+
N

// T+
N

TN //

OO

TN

OO

via the formula T = S ∩ T+
N , with the intersection being taken inside SN−1

C,+ .

Proof. This comes from the above results, the situation being as follows:

(1) Free complex case. Here the formula in the statement reads:

T+
N = SN−1

C,+ ∩ T+
N

But this is something trivial, because we have T+
N ⊂ SN−1

C,+ .

(2) Free real case. Here the formula in the statement reads:

T+
N = SN−1

R,+ ∩ T+
N
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But this is clear as well, the real version of T+
N being T+

N .

(3) Classical complex case. Here the formula in the statement reads:

TN = SN−1
C ∩ T+

N

But this is clear as well, the classical version of T+
N being TN .

(4) Classical real case. Here the formula in the statement reads:

TN = SN−1
R ∩ T+

N

But this follows by intersecting the formulae from the proof of (2) and (3). □

In order to better understand the structure of the free spheres SN−1
R,+ , SN−1

C,+ , we need
to talk about free rotations. Following Woronowicz, let us start with:

Definition 16.19. A Woronowicz algebra is a C∗-algebra A, given with a unitary
matrix u ∈MN(A) whose coefficients generate A, such that the formulae

∆(uij) =
∑
k

uik ⊗ ukj , ε(uij) = δij , S(uij) = u∗ji

define morphisms of C∗-algebras ∆ : A→ A⊗ A, ε : A→ C, S : A→ Aopp.

We say that A is cocommutative when Σ∆ = ∆, where Σ(a ⊗ b) = b ⊗ a is the flip.
We have the following result, which justifies the terminology and axioms:

Theorem 16.20. The following are Woronowicz algebras:

(1) C(G), with G ⊂ UN compact Lie group. Here the structural maps are:

∆(φ) = (g, h)→ φ(gh) , ε(φ) = φ(1) , S(φ) = g → φ(g−1)

(2) C∗(Γ), with FN → Γ finitely generated group. Here the structural maps are:

∆(g) = g ⊗ g , ε(g) = 1 , S(g) = g−1

Moreover, we obtain in this way all the commutative/cocommutative algebras.

Proof. This is something very standard, the idea being as follows:

(1) Given G ⊂ UN , we can set A = C(G), which is a Woronowicz algebra, together
with the matrix u = (uij) formed by coordinates of G, given by:

g =

u11(g) . . . u1N(g)
...

...
uN1(g) . . . uNN(g)


Conversely, if (A, u) is a commutative Woronowicz algebra, by using the Gelfand

theorem we can write A = C(X), with X being a certain compact space. The coordinates
uij give then an embedding X ⊂ MN(C), and since the matrix u = (uij) is unitary we
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actually obtain an embedding X ⊂ UN , and finally by using the maps ∆, ε, S we conclude
that our compact subspace X ⊂ UN is in fact a compact Lie group, as desired.

(2) Consider a finitely generated group FN → Γ. We can set A = C∗(Γ), which is
by definition the completion of the complex group algebra C[Γ], with involution given by
g∗ = g−1, for any g ∈ Γ, with respect to the biggest C∗-norm, and we obtain a Woronowicz
algebra, together with the diagonal matrix formed by the generators of Γ:

u =

g1 0
. . .

0 gN


Conversely, if (A, u) is a cocommutative Woronowicz algebra, the Peter-Weyl theory

of Woronowicz, to be explained below, shows that the irreducible corepresentations of A
are all 1-dimensional, and form a group Γ, and so we have A = C∗(Γ), as desired. □

The above result makes it quite clear that what we have in Definition 16.19 is some
sort of joint definition for the compact and discrete quantum groups. In order to further
comment on this, let us go back to the formulae in Definition 16.19, namely:

∆(uij) =
∑
k

uik ⊗ ukj , ε(uij) = δij , S(uij) = u∗ji

The morphisms ∆, ε, S are called comultiplication, counit and antipode, and they have
the following properties, which are something very familiar in abstract algebra:

Theorem 16.21. Let (A, u) be a Woronowicz algebra.

(1) ∆, ε satisfy the usual axioms for a comultiplication and a counit, namely:

(∆⊗ id)∆ = (id⊗∆)∆

(ε⊗ id)∆ = (id⊗ ε)∆ = id

(2) S satisfies the antipode axiom, on the ∗-subalgebra generated by entries of u:

m(S ⊗ id)∆ = m(id⊗ S)∆ = ε(.)1

(3) In addition, the square of the antipode is the identity, S2 = id.

Proof. The two comultiplication axioms can be established as follows:

(∆⊗ id)∆(uij) = (id⊗∆)∆(uij) =
∑
kl

uik ⊗ ukl ⊗ ulj

(ε⊗ id)∆(uij) = (id⊗ ε)∆(uij) = uij

As for the two antipode formulae, their verification is similar. □

Summarizing, the Woronowicz algebras appear to have nice properties. In view of
Theorem 16.20 and Theorem 16.21, we can formulate the following definition:
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Definition 16.22. Given a Woronowicz algebra A, we formally write

A = C(G) = C∗(Γ)

and call G compact quantum group, and Γ discrete quantum group.

In relation with this, there are actually some analytic subtleties, coming from amenabil-
ity, so our objects must be divided by a certain equivalence relation, for everything to
work fine. To be more precise, we agree to write (A, u) = (B, v) when there is a ∗-algebra
isomorphism as follows, mapping standard coordinates to standard coordinates:

< uij >≃< vij > , uij → vij

Moving ahead now, let us call now corepresentation of A any unitary matrix v ∈Mn(A)
satisfying the same conditions as those satisfied by u, namely:

∆(vij) =
∑
k

vik ⊗ vkj , ε(vij) = δij , S(vij) = v∗ji

These corepresentations can be thought of as corresponding representations of the
underlying compact quantum group G. Following Woronowicz, we have:

Theorem 16.23. Any Woronowicz algebra has a unique Haar integration functional,(∫
G

⊗id
)
∆ =

(
id⊗

∫
G

)
∆ =

∫
G

(.)1

which can be constructed by starting with any faithful positive form φ ∈ A∗, and setting∫
G

= lim
n→∞

1

n

n∑
k=1

φ∗k

where ϕ ∗ ψ = (ϕ⊗ ψ)∆. Moreover, for any corepresentation v ∈Mn(C)⊗ A we have(
id⊗

∫
G

)
v = P

where P is the orthogonal projection onto Fix(v) = {ξ ∈ Cn|vξ = ξ}.
Proof. This can be done in 3 steps, as follows:

(1) Given φ ∈ A∗, our claim is that the following limit converges, for any a ∈ A:∫
φ

a = lim
n→∞

1

n

n∑
k=1

φ∗k(a)

Indeed, by linearity we can assume that a is the coefficient of corepresentation, a =
(τ ⊗ id)v. But in this case, an elementary computation shows that we have the following
formula, where Pφ is the orthogonal projection onto the 1-eigenspace of (id⊗ φ)v:(

id⊗
∫
φ

)
v = Pφ
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(2) Since vξ = ξ implies [(id⊗ φ)v]ξ = ξ, we have Pφ ≥ P , where P is the orthogonal
projection onto the space Fix(v) = {ξ ∈ Cn|vξ = ξ}. The point now is that when φ ∈ A∗

is faithful, by using a positivity trick, one can prove that we have Pφ = P . Thus our
linear form

∫
φ
is independent of φ, and is given on coefficients a = (τ ⊗ id)v by:(

id⊗
∫
φ

)
v = P

(3) With the above formula in hand, the left and right invariance of
∫
G
=
∫
φ
is clear

on coefficients, and so in general, and this gives all the assertions. □

Consider the dense ∗-subalgebra A ⊂ A generated by the coefficients of u, and endow
it with the scalar product < a, b >=

∫
G
ab∗. Still following Woronowicz, we have:

Theorem 16.24. We have the following Peter-Weyl type results:

(1) Any corepresentation decomposes as a sum of irreducible corepresentations.
(2) Each irreducible corepresentation appears inside a certain u⊗k.
(3) A =

⊕
v∈Irr(A)Mdim(v)(C), the summands being pairwise orthogonal.

(4) The characters of irreducible corepresentations form an orthonormal system.

Proof. All these results are very standard, the idea being as follows:

(1) Given v ∈ Mn(A), its intertwiner algebra End(v) = {T ∈ Mn(C)|Tv = vT} is a
finite dimensional C∗-algebra, and so decomposes as End(v) = Mn1(C) ⊕ . . . ⊕Mnr(C).
But this gives a decomposition of type v = v1 + . . .+ vr, as desired.

(2) Consider indeed the Peter-Weyl corepresentations, u⊗k with k colored integer,
defined by u⊗∅ = 1, u⊗◦ = u, u⊗• = ū and multiplicativity. The coefficients of these
corepresentations span the dense algebra A, and by using (1), this gives the result.

(3) Here the direct sum decomposition, which is technically a ∗-coalgebra isomorphism,
follows from (2). As for the second assertion, this follows from the fact that (id⊗

∫
G
)v is

the orthogonal projection Pv onto the space Fix(v), for any corepresentation v.

(4) Let us define indeed the character of v ∈Mn(A) to be the matrix trace, χv = Tr(v).
Since this character is a coefficient of v, the orthogonality assertion follows from (3). As
for the norm 1 claim, this follows once again from (id⊗

∫
G
)v = Pv. □

Good news, we can now talk about free rotations. Following Wang, we have:

Theorem 16.25. The following universal algebras are Woronowicz algebras,

C(O+
N) = C∗

(
(uij)i,j=1,...,N

∣∣∣u = ū, ut = u−1
)

C(U+
N ) = C∗

(
(uij)i,j=1,...,N

∣∣∣u∗ = u−1, ut = ū−1
)

so the underlying spaces O+
N , U

+
N are compact quantum groups.
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Proof. This follows from the elementary fact that if a matrix u = (uij) is orthogonal
or biunitary, then so must be the following matrices:

u∆ij =
∑
k

uik ⊗ ukj , uεij = δij , uSij = u∗ji

Thus, we can indeed define morphisms ∆, ε, S as in Definition 16.19, by using the
universal properties of C(O+

N), C(U
+
N ), and this gives the result. □

Let us discuss now the correspondence U → S. In the classical case the situation is
very simple, because the sphere S = SN−1 appears by rotating the point x = (1, 0, . . . , 0)
by the isometries in U = UN . Moreover, the stabilizer of this action is the subgroup
UN−1 ⊂ UN acting on the last N − 1 coordinates, and so the sphere S = SN−1 appears
from the corresponding rotation group U = UN as an homogeneous space, as follows:

SN−1 = UN/UN−1

In functional analytic terms, all this becomes even simpler, the correspondence U → S
being obtained, at the level of algebras of functions, as follows:

C(SN−1) ⊂ C(UN) , xi → u1i

In general now, the straightforward homogeneous space interpretation of S as above
fails. However, we can have some theory going by using the functional analytic viewpoint,
with an embedding xi → u1i as above. Let us start with the following result:

Proposition 16.26. For the basic spheres, we have a diagram as follows,

C(S)
Φ //

α

��

C(S)⊗ C(U)

α⊗id

��
C(U)

∆ // C(U)⊗ C(U)

where on top Φ(xi) =
∑

j xj ⊗ uji, and on the left α(xi) = u1i.

Proof. The diagram in the statement commutes indeed on the standard coordinates,
the corresponding arrows being as follows, on these coordinates:

xi //

��

∑
j xj ⊗ uji

��
u1i //

∑
j u1j ⊗ uji

Thus by linearity and multiplicativity, the whole the diagram commutes. □
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As a consequence of the above result, we can now formulate:

Proposition 16.27. We have a quotient map and an inclusion as follows,

U → SU ⊂ S

with SU being the first row space of U , given by

C(SU) =< u1i >⊂ C(U)

at the level of the corresponding algebras of functions.

Proof. At the algebra level, we have an inclusion and a quotient map as follows:

C(S)→ C(SU) ⊂ C(U)

Thus, we obtain the result, by transposing. □

In order to advance, we will use the uniform integration over S, which can be intro-
duced, in analogy with what happens in the classical case, in the following way:

Definition 16.28. We endow each of the algebras C(S) with its integration functional∫
S

: C(S)→ C(U)→ C

obtained by composing the morphism xi → u1i with the Haar integration of C(U).

With this in hand, we can now integrate over the spheres S, as follows:

Theorem 16.29. The integration over the basic spheres is given by∫
S

xe1i1 . . . x
ek
ik

=
∑
π

∑
σ≤ker i

WkN(π, σ)

with π, σ ∈ D(k), where WkN = G−1
kN is the inverse of GkN(π, σ) = N |π∨σ|.

Proof. According to our conventions, the integration over S is a particular case of
the integration over U , via xi = u1i. By using the Weingarten formula, we obtain:∫

S

xe1i1 . . . x
ek
ik

=

∫
U

ue11i1 . . . u
ek
1ik

=
∑

π,σ∈D(k)

δπ(1)δσ(i)WkN(π, σ)

=
∑

π,σ∈D(k)

δσ(i)WkN(π, σ)

Thus, we are led to the formula in the statement. □
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16c. Projective spaces

Getting back now to our projective business, our starting point will be the following
functional analytic description of the real and complex projective spaces PN−1

R , PN−1
C :

Theorem 16.30. We have presentation results as follows,

C(PN−1
R ) = C∗

comm

(
(pij)i,j=1,...,N

∣∣∣p = p̄ = pt = p2, T r(p) = 1
)

C(PN−1
C ) = C∗

comm

(
(pij)i,j=1,...,N

∣∣∣p = p∗ = p2, T r(p) = 1
)

for the algebras of continuous functions on the real and complex projective spaces.

Proof. We use the fact that the projective spaces PN−1
R , PN−1

C can be respectively
identified with the spaces of rank one projections in MN(R),MN(C). With this picture
in mind, it is clear that we have arrows←. In order to construct now arrows→, consider
the universal algebras on the right, AR, AC . These algebras being both commutative, by
the Gelfand theorem we can write, with XR, XC being certain compact spaces:

AR = C(XR) , AC = C(XC)

Now by using the coordinate functions pij, we conclude that XR, XC are certain spaces
of rank one projections in MN(R),MN(C). In other words, we have embeddings:

XR ⊂ PN−1
R , XC ⊂ PN−1

C

By transposing we obtain arrows →, as desired. □

The point now is that the above result suggests the following definition:

Definition 16.31. Associated to any N ∈ N is the following universal algebra,

C(PN−1
+ ) = C∗

(
(pij)i,j=1,...,N

∣∣∣p = p∗ = p2, T r(p) = 1
)

whose abstract spectrum is called “free projective space”.

Observe that, according to our presentation results for the real and complex projective
spaces PN−1

R and PN−1
C , we have embeddings of compact quantum spaces, as follows:

PN−1
R ⊂ PN−1

C ⊂ PN−1
+

Let us first discuss the relation with the spheres. Given a closed subset X ⊂ SN−1
R,+ ,

its projective version is by definition the quotient space X → PX determined by the fact
that C(PX) ⊂ C(X) is the subalgebra generated by the following variables:

pij = xixj

In order to discuss the relation with the spheres, let us start with:
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Theorem 16.32. The projective versions of the 3 real spheres are as follows,

SN−1
R

//

��

SN−1
R,∗

//

��

SN−1
R,+

��

PN−1
R

// PN−1
C

// PN−1
+

modulo the standard equivalence relation for the quantum algebraic manifolds.

Proof. The assertion at left is true by definition. For the assertion at right, we
have to prove that the variables pij = zizj over the free sphere SN−1

R,+ satisfy the defining

relations for C(PN−1
+ ), from Definition 16.31, namely:

p = p∗ = p2 , T r(p) = 1

We first have the following computation:

(p∗)ij = p∗ji = (zjzi)
∗ = zizj = pij

We have as well the following computation:

(p2)ij =
∑
k

pikpkj =
∑
k

ziz
2
kzj = zizj = pij

Finally, we have as well the following computation:

Tr(p) =
∑
k

pkk =
∑
k

z2k = 1

Regarding now PSN−1
R,∗ = PN−1

C , the inclusion “⊂” follows from abcd = cbad = cbda.
In the other sense now, the point is that we have a matrix model, as follows:

π : C(SN−1
R,∗ )→M2(C(S

N−1
C )) , xi →

(
0 zi
z̄i 0

)
But this gives the missing inclusion “⊃”, and we are done. □

16d. Threefold way

Looking back at the definition of the spheres that we have, and at the precise relations
between the coordinates, we are led into the following notion:

Definition 16.33. A monomial sphere is a subset S ⊂ SN−1
C,+ obtained via relations

xe1i1 . . . x
ek
ik

= xf1iσ(1)
. . . xfkiσ(k)

, ∀(i1, . . . , ik) ∈ {1, . . . , N}k

with σ ∈ Sk being certain permutations, and with er, fr ∈ {1, ∗} being certain exponents.
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This definition is quite broad, and we have for instance as example the sphere SN−1
C,×

coming from the relations ab∗c = cb∗a, corresponding to the following diagram:

◦ • ◦

◦ • ◦
In view of these difficulties, we will restrict now the attention to the real case. Let us

first recall that we have the following fundamental result, dealing with the real case:

Theorem 16.34. There are exactly 3 real easy geometries, namely

RN ⊂ RN
∗ ⊂ RN

+

coming from P2 ⊃ P ∗
2 ⊃ NC2, whose associated spheres are

SN−1
R ⊂ SN−1

R,∗ ⊂ SN−1
R,+

and whose tori, unitary and reflection groups are given by similar formulae.

Proof. This is something that we know well, coming from the fact that G = O∗
N is

the unique intermediate easy quantum group ON ⊂ G ⊂ O+
N . □

Let us focus now on the spheres, and try to better understand their “easiness” property,
with results getting beyond what has been done above, in the general easy context. That
is, our objects of interest in what follows will be the 3 real spheres, namely:

SN−1
R ⊂ SN−1

R,∗ ⊂ SN−1
R,+

Our purpose in what follows we will be that of proving that these spheres are the only
monomial ones. In order to best talk about monomiality, in the present real case, it is
convenient to introduce the following group:

S∞ =
⋃
k≥0

Sk

To be more precise, this group appears by definition as an inductive limit, with the
inclusions Sk ⊂ Sk+1 that we use being given by:

σ ∈ Sk =⇒ σ(k + 1) = k + 1

In terms of S∞, the definition of the monomial spheres reformulates as follows:

Proposition 16.35. The monomial spheres are the algebraic manifolds S ⊂ SN−1
R,+

obtained via relations of type

xi1 . . . xik = xiσ(1)
. . . xiσ(k)

, ∀(i1, . . . , ik) ∈ {1, . . . , N}k

associated to certain elements σ ∈ S∞, where k ∈ N is such that σ ∈ Sk.
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Proof. We must prove that the relations xi1 . . . xik = xiσ(1)
. . . xiσ(k)

are left un-

changed when replacing k → k + 1. But this follows from
∑

i x
2
i = 1, because:

xi1 . . . xikxik+1
= xiσ(1)

. . . xiσ(k)
xik+1

=⇒ xi1 . . . xikx
2
ik+1

= xiσ(1)
. . . xiσ(k)

x2ik+1

=⇒
∑
ik+1

xi1 . . . xikx
2
ik+1

=
∑
ik+1

xiσ(1)
. . . xiσ(k)

x2ik+1

=⇒ xi1 . . . xik = xiσ(1)
. . . xiσ(k)

Thus we can indeed “simplify at right”, and this gives the result. □

As already mentioned, our goal in what follows will be that of proving that the 3 main
spheres are the only monomial ones. In order to prove this result, we will use group theory
methods. We call a subgroup G ⊂ S∞ filtered when it is stable under concatenation, in
the sense that when writing G = (Gk) with Gk ⊂ Sk, we have:

σ ∈ Gk, π ∈ Gl =⇒ σπ ∈ Gk+l

With this convention, we have the following result:

Theorem 16.36. The monomial spheres are the subsets SG ⊂ SN−1
R,+ given by

C(SG) = C(SN−1
R,+ )

/〈
xi1 . . . xik = xiσ(1)

. . . xiσ(k)
,∀(i1, . . . , ik) ∈ {1, . . . , N}k, ∀σ ∈ Gk

〉
where G = (Gk) is a filtered subgroup of S∞ = (Sk).

Proof. We know from Proposition 16.35 that the construction in the statement pro-
duces a monomial sphere. Conversely, given a monomial sphere S ⊂ SN−1

R,+ , let us set:

Gk =
{
σ ∈ Sk

∣∣∣xi1 . . . xik = xiσ(1)
. . . xiσ(k)

,∀(i1, . . . , ik) ∈ {1, . . . , N}k
}

With G = (Gk) we have then S = SG. Thus, it remains to prove that G is a filtered
group. But since the relations xi1 . . . xik = xiσ(1)

. . . xiσ(k)
can be composed and reversed,

each Gk follows to be stable under composition and inversion, and is therefore a group.
Also, since the relations xi1 . . . xik = xiσ(1)

. . . xiσ(k)
can be concatenated as well, our group

G = (Gk) is stable under concatenation, and we are done. □

At the level of examples, according to our definitions, the simplest filtered groups,
namely {1} ⊂ S∞, produce the simplest real spheres, namely:

SN−1
R,+ ⊃ SN−1

R

In order to discuss now the half-classical case, we need to introduce and study a certain
privileged intermediate filtered group {1} ⊂ S∗

∞ ⊂ S∞, which will eventually produce the
intermediate sphere SN−1

R,+ ⊃ SN−1
R,∗ ⊃ SN−1

R . This can be done as follows:
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Proposition 16.37. Let S∗
∞ ⊂ S∞ be the set of permutations having the property that

when labelling cyclically the legs as follows

• ◦ • ◦ . . .
each string joins a black leg to a white leg.

(1) S∗
∞ is a filtered subgroup of S∞, generated by the half-classical crossing.

(2) We have S∗
2k ≃ Sk × Sk, and S∗

2k+1 ≃ Sk × Sk+1, for any k ∈ N.

Proof. The fact that S∗
∞ is indeed a subgroup of S∞, which is filtered, is clear.

Observe now that the half-classical crossing has the “black-to-white” joining property:

◦ • ◦

• ◦ •
Thus this crossing belongs to S∗

3 , and it is routine to check that the filtered subgroup
of S∞ generated by it is the whole S∗

∞. Regarding now the last assertion, observe first
that the filtered subgroups S∗

3 , S
∗
4 consist of the following permutations:

◦ • ◦

• ◦ •

◦ • ◦

• ◦ •

◦ • ◦ •

• ◦ • ◦
◦ • ◦ •

• ◦ • ◦

◦ • ◦ •

• ◦ • ◦

◦ • ◦ •

• ◦ • ◦
Thus we have S∗

3 = S1 × S2 and S∗
4 = S2 × S2, with the first component coming

from dotted permutations, and with the second component coming from the solid line
permutations. The same argument works in general, and gives the last assertion. □

Now back to the main 3 real spheres, the result is as follows:

Proposition 16.38. The basic monomial real spheres, namely

SN−1
R ⊂ SN−1

R,∗ ⊂ SN−1
R,+

come respectively from the filtered groups S∞ ⊃ S∗
∞ ⊃ {1}.

Proof. This is clear by definition in the classical and in the free cases. In the half-
liberated case, the result follows from Proposition 16.37 (1). □

Now back to the general case, with the idea in mind of proving the uniqueness of the
above spheres, consider a monomial sphere SG ⊂ SN−1

R,+ , with the filtered group G ⊂ S∞
taken to be maximal, as in the proof of Theorem 16.36. We have the following result:
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Proposition 16.39. The filtered group G ⊂ S∞ associated to a monomial sphere
S ⊂ SN−1

R,+ is stable under the following operations, on the corresponding diagrams:

(1) Removing outer strings.
(2) Removing neighboring strings.

Proof. Both these results follow by using the quadratic condition:

(1) Regarding the outer strings, by summing over a, we have:

Xa = Y a =⇒ Xa2 = Y a2

=⇒ X = Y

We have as well the following computation:

aX = aY =⇒ a2X = a2Y

=⇒ X = Y

(2) Regarding the neighboring strings, once again by summing over a, we have:

XabY = ZabT =⇒ Xa2Y = Za2T

=⇒ XY = ZT

We have as well the following computation:

XabY = ZbaT =⇒ Xa2Y = Za2T

=⇒ XY = ZT

Thus G = (Gk) has both the properties in the statement. □

We can now state and prove a main result, as follows:

Theorem 16.40. There is only one intermediate monomial sphere

SN−1
R ⊂ S ⊂ SN−1

R,+

namely the half-classical real sphere SN−1
R,∗ .

Proof. We will prove that the only filtered groups G ⊂ S∞ satisfying the conditions
in Proposition 16.39 are those correspoding to our 3 spheres, namely:

{1} ⊂ S∗
∞ ⊂ S∞

In order to do so, consider such a filtered group G ⊂ S∞. We assume this group to be
non-trivial, G ̸= {1}, and we want to prove that we have G = S∗

∞ or G = S∞.

Step 1. Our first claim is that G contains a 3-cycle. Assume indeed that two permu-
tations π, σ ∈ S∞ have support overlapping on exactly one point, say:

supp(π) ∩ supp(σ) = {i}
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The point is then that the commutator σ−1π−1σπ is a 3-cycle, namely:

(i, σ−1(i), π−1(i))

Indeed the computation of the commutator goes as follows:

π

σ

π−1

σ−1

=

◦ ◦ ◦ • ◦ ◦ ◦

◦ ◦ ◦ • ◦ ◦ ◦

◦ ◦ ◦ • ◦ ◦ ◦

◦ ◦ ◦ • ◦ ◦ ◦

◦ ◦ ◦ • ◦ ◦ ◦
Now let us pick a non-trivial element τ ∈ G. By removing outer strings at right

and at left we obtain permutations τ ′ ∈ Gk, τ
′′ ∈ Gs having a non-trivial action on their

right/left leg, and the trick applies, with:

π = τ ′ ⊗ ids−1 , σ = idk−1 ⊗ τ ′′

Thus, G contains a 3-cycle, as claimed.

Step 2. Our second claim is G must contain one of the following permutations:

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦
Indeed, consider the 3-cycle that we just constructed. By removing all outer strings,

and then all pairs of adjacent vertical strings, we are left with these permutations.

Step 3. Our claim now is that we must have S∗
∞ ⊂ G. Indeed, let us pick one of the

permutations that we just constructed, and apply to it our various diagrammatic rules.
From the first permutation we can obtain the basic crossing, as follows:

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

→

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

→

◦ ◦

◦ ◦
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Also, by removing a suitable /\ shaped configuration, which is represented by dotted
lines in the diagrams below, we can obtain the basic crossing from the second and third
permutation, and the half-liberated crossing from the fourth permutation:

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦
Thus, in all cases we have a basic or half-liberated crossing, and so, as desired:

S∗
∞ ⊂ G

Step 4. Our last claim, which will finish the proof, is that there is no proper interme-
diate subgroup as follows:

S∗
∞ ⊂ G ⊂ S∞

In order to prove this, observe that S∗
∞ ⊂ S∞ is the subgroup of parity-preserving

permutations, in the sense that “i even =⇒ σ(i) even”.

Now let us pick an element σ ∈ Sk − S∗
k , with k ∈ N. We must prove that the group

G =< S∗
∞, σ > equals the whole S∞. In order to do so, we use the fact that σ is not parity

preserving. Thus, we can find i even such that σ(i) is odd. In addition, up to passing to
σ|, we can assume that σ(k) = k, and then, up to passing one more time to σ|, we can
further assume that k is even. Since both i, k are even we have:

(i, k) ∈ S∗
k

We conclude that the following element belongs to G:

σ(i, k)σ−1 = (σ(i), k)

But, since σ(i) is odd, by deleting an appropriate number of vertical strings, (σ(i), k)
reduces to the basic crossing (1, 2). Thus G = S∞, and we are done. □

We have a similar result in the projective setting, as follows:

Theorem 16.41 (Threefold way). The basic projective spaces, namely

PN−1
R ⊂ PN−1

C ⊂ PN−1
+

are the only monomial ones.

Proof. This follows indeed by using the same arguments as for the spheres. □

16e. Exercises

Congratulations for having read this book, and no exercises for this final chapter.
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[52] L. Hörmander, The analysis of linear partial differential operators, Springer (1983).

[53] R.A. Horn and C.R. Johnson, Matrix analysis, Cambridge Univ. Press (1985).

[54] K. Huang, Introduction to statistical physics, CRC Press (2001).

[55] J.E. Humphreys, Introduction to Lie algebras and representation theory, Springer (1972).



BIBLIOGRAPHY 205

[56] J.E. Humphreys, Linear algebraic groups, Springer (1975).

[57] K. Ireland and M. Rosen, A classical introduction to modern number theory, Springer (1982).

[58] N. Jacobson, Basic algebra, Dover (1974).

[59] V.F.R. Jones, Index for subfactors, Invent. Math. 72 (1983), 1–25.

[60] V.F.R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc.

12 (1985), 103–111.

[61] V.F.R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math.

126 (1987), 335–388.

[62] V.F.R. Jones, On knot invariants related to some statistical mechanical models, Pacific J. Math.

137 (1989), 311–334.

[63] V.F.R. Jones, Planar algebras I (1999).

[64] M. Karoubi, K-theory: an introduction, Springer (1978).

[65] T. Kibble and F.H. Berkshire, Classical mechanics, Imperial College Press (1966).

[66] T. Lancaster and K.M. Blundell, Quantum field theory for the gifted amateur, Oxford Univ. Press

(2014).

[67] L.D. Landau and E.M. Lifshitz, Course of theoretical physics, Pergamon Press (1960).

[68] S. Lang, Algebra, Addison-Wesley (1993).

[69] S. Lang, Abelian varieties, Dover (1959).

[70] P. Lax, Linear algebra and its applications, Wiley (2007).

[71] P. Lax, Functional analysis, Wiley (2002).

[72] J.M. Lee, Introduction to topological manifolds, Springer (2011).

[73] J.M. Lee, Introduction to smooth manifolds, Springer (2012).

[74] J.M. Lee, Introduction to Riemannian manifolds, Springer (2019).

[75] D. McDuff and D. Salamon, Introduction to symplectic topology, Oxford Univ. Press (2017).

[76] P. Petersen, Linear algebra, Springer (2012).

[77] P. Petersen, Riemannian geometry, Springer (2006).

[78] W. Rudin, Principles of mathematical analysis, McGraw-Hill (1964).

[79] W. Rudin, Real and complex analysis, McGraw-Hill (1966).

[80] W. Rudin, Fourier analysis on groups, Dover (1974).

[81] B. Ryden, Introduction to cosmology, Cambridge Univ. Press (2002).

[82] B. Ryden and B.M. Peterson, Foundations of astrophysics, Cambridge Univ. Press (2010).

[83] W. Schlag, A course in complex analysis and Riemann surfaces, AMS (2014).



206 BIBLIOGRAPHY

[84] D.V. Schroeder, An introduction to thermal physics, Oxford Univ. Press (1999).

[85] J.P. Serre, A course in arithmetic, Springer (1973).

[86] J.P. Serre, Linear representations of finite groups, Springer (1977).

[87] I.R. Shafarevich, Basic algebraic geometry, Springer (1974).

[88] J.H. Silverman, The arithmetic of elliptic curves, Springer (1986).

[89] J.H. Silverman and J.T. Tate, Rational points on elliptic curves, Springer (2015).

[90] B. Singh, Basic commutative algebra, World Scientific (2011).

[91] C.H. Taubes, Differential geometry, Oxford Univ. Press (2011).

[92] J.R. Taylor, Classical mechanics, Univ. Science Books (2003).

[93] J. von Neumann, Mathematical foundations of quantum mechanics, Princeton Univ. Press (1955).

[94] S. Weinberg, Foundations of modern physics, Cambridge Univ. Press (2011).

[95] S. Weinberg, Lectures on quantum mechanics, Cambridge Univ. Press (2012).

[96] S. Weinberg, Lectures on astrophysics, Cambridge Univ. Press (2019).

[97] H. Weyl, The theory of groups and quantum mechanics, Princeton Univ. Press (1931).

[98] H. Weyl, The classical groups: their invariants and representations, Princeton Univ. Press (1939).

[99] H. Weyl, Space, time, matter, Princeton Univ. Press (1918).

[100] B. Zwiebach, A first course in string theory, Cambridge Univ. Press (2004).



Index

abelian group, 138
abstract dual, 184
abstract spectrum, 183
action map, 116
adjacency matrix, 116
adjoint action, 103
algebra, 69
algebra of functions, 70
algebraic curve, 57
algebraic geometry, 62
algebraic hypersurface, 58
algebraic manifold, 58, 61
algebraic surface, 57
altitudes, 16, 28, 32
angle, 17
angle between lines, 17
angle bisectors, 16, 28, 32
antipode, 189
arbitrary field, 62
arithmetic manifold, 61
associativity, 45
asymptotic characters, 173
axioms, 11
axis of rotation, 107

Banach algebra, 181
barycenter, 16, 27, 31
Bessel law, 173, 177
bilinear form, 57, 59
binomial coefficient, 46, 48
bistochastic group, 148
Brauer theorem, 147–151

C*-algebra, 181
Cartesian product, 114
Catalan numbers, 140

category of partitions, 144, 149
central functions, 138
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