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Tannaka

Theorem. We have a Tannakian duality correspondence

A←→ C

between Woronowicz algebras and tensor categories, given by

CA = (Hom(u⊗k , u⊗l))kl

in one sense, from algebras to categories, and by

AC = C (U+
N )/ < C ⊂ CA >

in the other sense, from categories to algebras.



Easiness

Theorem. Any category of partitions D = (D(k, l)) produces a
family of quantum groups G = (GN) via the formula

Hom(u⊗k , u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k , l)
)

where the linear maps Tπ associated to partitions are given by

Tπ(ei1 ⊗ . . .⊗ eik ) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

with {ei} being the basis of CN , and δπ ∈ {0, 1} being Kronecker
symbols. These quantum groups GN are called easy.



Plan

(1) Quantum permutation groups

(2) Easiness: algebra and analysis

(3) Quantum reflection groups

(4) Transitivity, planar algebras

=⇒ next lecture: tori, models



Quantum permutations

The coordinates of SN ⊂ ON , permutation matrices, are:

uij = χ
(
σ ∈ SN

∣∣∣σ(j) = i
)

A quick study of u suggests the following definition:

Definition. The quantum permutation group S+
N is defined via

C (S+
N ) = C ∗

(
(uij)

∣∣∣u = N × N magic
)

where "magic" = made of projections, sum 1 on rows/columns.

[the verification of the CQG axioms is routine: Wang 98]



Alternative definition

Theorem. S+
N is the biggest quantum group acting on

X = {1, . . . ,N}

by keeping the counting measure invariant.

Proof. In order to have a quantum group action

G × X → X , (σ, i)→ σ(i)

we need a coaction map Φ : C (X )→ C (G )⊗ C (X ). With

Φ(δi ) =
∑
j

uij ⊗ δj

the matrix u = (uij) must be magic. Thus Gmax = S+
N .



Basic properties 1/4

We have a quotient map C (S+
N )→ C (SN), given by:

uij → χ
(
σ ∈ SN

∣∣∣σ(j) = i
)

Thus we have an embedding SN ⊂ S+
N . Study:

N = 2: We have S+
2 = S2, because the 2× 2 magics are

u =

(
p 1− p

1− p p

)
and their entries commute. Thus C (S+

2 ) is commutative.

N = 3: We have S+
3 = S3, by similar arguments.



Basic properties 2/4

We know SN ⊂ S+
N isomorphism at N = 2, 3. Continuation:

N = 4: Here S+
4 is non-classical and infinite, because

u =


p 1− p 0 0

1− p p 0 0
0 0 q 1− q
0 0 1− q q


with p, q ∈ B(H) shows that C (S+

4 ) is NC and ∞D.

N ≥ 5: Here S+
N stays non-classical and infinite (clear).



Basic properties 3/4

=⇒ Can we understand better why S+
4 6= S4?

Recall that given Γ =< g1, . . . , gN > discrete group, A = C ∗(Γ) is
a Woronowicz algebra, written A = C (Γ̂), with:

u = diag(g1, . . . , gN)

Now observe that we have, trivially by Fourier transform:

Ẑ2 = Z2 = S2 = S+
2

Thus our concatenation trick at N = 4 amounts in saying that:

D̂∞ = Ẑ2 ∗ Z2 ⊂ S+
4

Even better, we have D̂∞ ⊂ G+(�). More on this later.



Basic properties 4/4

=⇒ Can we understand what this S+
4 beast is?

Algebra C (SO−1
3 ), with orthogonal coordinates aij , satisfying:

– aijakl = ±aklaij , with + if i 6= k , j 6= l , and − otherwise
– twisted determinant condition: Σσ∈S3a1σ(1)a2σ(2)a3σ(3) = 1

The point is that the following matrix must be magic:

1
4


1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1



1 0 0 0
0 a11 a12 a13
0 a21 a22 a23
0 a31 a32 a33



1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1


Thus S+

4 = SO−1
3 , via the Fourier transform over K = Z2 × Z2.



Representations 1/4

Theorem. The Tannakian category of SN is given by

Hom(u⊗k , u⊗l) = span
(
Tπ

∣∣∣π ∈ P(k , l)
)

where the linear maps associated to partitions are:

Tπ(ei1 ⊗ . . .⊗ eik ) =
∑
j1,...,jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

Regarding now S+
N , the situation is quite similar:

Hom(u⊗k , u⊗l) = span
(
Tπ

∣∣∣π ∈ NC (k , l)
)

In other words, SN , S+
N are easy, coming from P,NC .



Representations 2/4

Proof for SN . Consider the one-block partition µ ∈ P(2, 1). We
have Tµ(ei ⊗ ej) = δijei , and a computation gives:

Tµ ∈ Hom(u⊗2, u) ⇐⇒ uijuik = δjkuij ,∀i , j , k

On the right we have the magic condition. We conclude that:

C (SN) = C (ON)
/〈

Tµ ∈ Hom(u⊗2, u)
〉

Now since P is generated by µ ∈ P(2, 1), we are done.

Proof for S+
N . Similar, by using the Brauer theorem for O+

N .



Representations 3/4

Theorem. The fusion rules for S+
N are the same as for SO3,

rk ⊗ rl = r|k−l | + r|k−l |+1 + . . .+ rk+l

with dim(rk) = qk+1−q−k

q−1 , where q2 − (N − 2)q + 1 = 0.

Proof. We know from easiness that we have:

Hom(u⊗k , u⊗l) = span
(
Tπ

∣∣∣π ∈ NC (k , l)
)

Thus, the main character χ is squared-semicircular:∫
S+
N

χp = |NC (0, p)| =
1

p + 1

(
2p
p

)
But this gives the result, using S3

R ' SU2 → SO3.



Representations 4/4

Comment: the above proof is valid in fact only with N >> 0,
where the maps {Tπ} are linearly independent.

However, things are in fact fine as long as N ≥ 4.

Why 4? Because this is a "Jones index". We have indeed

NC (0, p) ' NC2(0, 2p) ' NC2(p, p) = {basis of TL(p)}

and according to Jones, we must have N ≥ 4 for things to work.

=⇒ note that all this is simpler than for SN (!)



Analysis 1/4

Let SN ⊂ ON as usual. The main character is then:

χ(σ) =
∑
i

uii (σ) =
∑
i

δσ(i)i = #
{
i
∣∣σ(i) = i

}
By using the inclusion-exclusion principle, we obtain:

P(χ = 0) = 1− 1
1!

+
1
2!
− . . .+ (−1)N−1 1

(N − 1)!
+ (−1)N

1
N!

Thus, we have the following asymptotic formula:

lim
N→∞

P(χ = 0) =
1
e

In fact, the character χ becomes Poisson with N →∞.



Analysis 2/4

Theorem. If G is easy, coming from a category of partitions D,∫
G
ui1j1 . . . uik jk =

∑
π,σ∈D(k)

δπ(i)δσ(j)WkN(π, σ)

where WkN = G−1
kN is the inverse of GkN(π, σ) = N |π∨σ|.

Proof. This is the Weingarten formula, coming from the fact that
the above integrals form the projection onto Fix(u⊗k).

In the unitary case we must use colored integers.
Works too in the symplectic case, and other cases.



Analysis 3/4

Theorem. The main character χ =
∑N

i=1 uii for the quantum
groups SN ,S+

N follows with N →∞ the laws

p1 =
1
e

∑
k

δk
k!

π1 =
1
2π

√
4x−1 − 1dx

called Poisson and Marchenko-Pastur (or free Poisson) of
parameter 1, and appearing via the PLT and FPLT.

Proof. Here we do not really need Weingarten, because:∫
G
χk ' |D(k)|

By using standard calculus (e.g. cumulants) we can conclude.



Analysis 4/4
Theorem. The truncated characters χt =

∑[tN]
i=1 uii for the quantum

groups SN ,S+
N follow with N →∞ the laws

pt = e−t
∑
k

tk

k!
δk

πt = max(1− t, 0)δ0 +

√
4t − (x − 1− t)2

2πx
dx

called Poisson and Marchenko-Pastur (or free Poisson) of
parameter t, and appearing via the PLT and FPLT.

Proof. Here, by using the Weingarten formula, we have:∫
G
χk
t '

∑
π∈D(k)

t |π|

By using standard calculus (e.g. cumulants) we can conclude.



Summary

(1) The analogy between SN , S+
N is best understood via easiness

S+
N

��

NC

��

πt

��
SN

OO

P

OO

pt

OO

with N generic, for algebra, and with N →∞, for analysis.

(2) When N is fixed things collapse for both SN , S
+
N , the collapsing

being worse for SN in algebra, and worse for S+
N in analysis.

(3) All this is just the "tip of the iceberg". Many advanced results,
both algebra and analysis (planar algebras, Diaconis type).



Graphs 1/4

Let X be a finite graph, |X | = N <∞, with adjacency matrix
d ∈ MN(0, 1). Its quantum symmetry group is given by:

G+(X ) = C (S+
N )
/〈

du = ud
〉

We have then a diagram of inclusions, as follows:

G+(X ) // S+
N

G (X )

OO

// SN

OO

Trivial example: no edges (or complete graph) =⇒ get S+
N .



Graphs 2/4

Cycle graph CN . Here generically we have, by algebra,

G+(CN) = G (CN) = DN

unless at N = 4, where the following thing happens:

G+(C4) = G+(�) = G+(| |) ⊃ Ẑ2 ∗ Z2 = D̂∞

=⇒ Question: what is G+(�)?

Looking at hypercube graphs �N . Here we have:

G+(�N) = O−1
N

=⇒ In particular, we obtain G+(�) = O−1
2 .



Graphs 3/4

This is still not ok, because HN → O−1
N cannot be a "true

liberation", for analytic reasons (same law as for ON).

=⇒ Question: what is H+
N ?

Answer. Consider the graph || . . . || consisting of N segments (the
[−1, 1] segments on the N coordinate axes). Then:

G (|| . . . ||) = Z2 o SN = HN ←→ Peven

We can therefore define H+
N as follows, and we are done:

G+(|| . . . ||) = Z2 o∗ S+
N = H+

N ←→ NCeven



Graphs 4/4

More generally, for any s ∈ {1, 2, . . . ,∞} we have:

G (4s . . .4s) = Zs o SN = Hs
N ←→ Ps

We can liberate this reflection group as follows:

G+(4s . . .4s) = Zs o∗ S+
N = Hs+

N ←→ NC s

(the "s" at right mean #◦ = # • (s), signed, in each block)

– at s = 1 we recover SN , S+
N

– at s = 2 we recover HN ,H
+
N

...
– at s =∞ non-QPG, called KN ,K

+
N

Many other interesting results here.



Orbits 1/4

Recall that for G ⊂ SN the coordinates via SN ⊂ ON are:

uij = χ
(
σ ∈ G

∣∣∣σ(j) = i
)

Definition. A quantum permutation group G ⊂ S+
N is called

transitive when uij 6= 0, for any i , j .

As basic examples, all QPG that we met so far:

– we have G+(X ) with X transitive (i.e. with G (X ) transitive)
– in particular we have Hs

N ,H
s+
N , for any s ∈ N

– also in particular, we have O−1
N = G+(�N)



Orbits 2/4

Orbits. Given a closed subgroup G ⊂ S+
N , let us set:

i ∼ j ⇐⇒ uij 6= 0

This is an equivalence relation. Indeed (using positivity):

∆(uik) =
∑
j

uij ⊗ ujk =⇒ [i ∼ j , j ∼ k =⇒ i ∼ k]

ε(uii ) = 1 =⇒ i ∼ i

S(uij) = uji =⇒ [i ∼ j =⇒ j ∼ i ]

In the classical case, G ⊂ SN , we recover the usual orbits.

=⇒ what to do with this notion? (no examples so far)



Orbits 3/4

Consider a quotient group of type ZN1 ∗ . . . ∗ ZNk
→ Γ, with

N = N1 + . . .+ Nk . We have then, by Fourier:

Γ̂ ⊂ ̂ZN1 ∗ . . . ∗ ZNk
= ẐN1 ∗̂ . . . ∗̂ ẐNk

' ZN1 ∗̂ . . . ∗̂ZNk
⊂ SN1 ∗̂ . . . ∗̂ SNk

⊂ S+
N1
∗̂ . . . ∗̂S+

Nk
⊂ S+

N

Theorem. Any group dual subgroup Γ̂ ⊂ S+
N appears in this way, for

a certain partition N = N1 + . . .+ Nk .

Proof. Orbit decomposition N = N1 + . . .+ Nk .



Orbits 4/4

Orbitals. Let G ⊂ S+
N , and k ∈ N. The relation

(i1, . . . , ik) ∼ (j1, . . . , jk) ⇐⇒ ui1j1 . . . uik jk 6= 0

is then reflexive and symmetric (proof as before, at k = 1).

Transitivity holds at k = 1. Also at k = 2, the trick being:

(ui1j1 ⊗ uj1l1)∆(ui1l1ui2l2)(ui2j2 ⊗ uj2l2)

=
∑
s1s2

ui1j1ui1s1ui2s2ui2j2 ⊗ uj1l1us1l1us2l2uj2l2

= ui1j1ui2j2 ⊗ uj1l1uj2l2

At k ≥ 3 this fails (but few things still hold), at k ≥ 4 totally fails.



Algebra 1/4

What can be said about the arbitrary subgroups G ⊂ S+
N ?

(in addition to the orbit/orbital theory explained above)

Theorem. Quantum Cayley fails.

Recall indeed the Cayley theorem, stating that, for classical groups:

|G | = N =⇒ G ⊂ SN

This does not work for quantum groups. There are finite quantum
groups which are not quantum permutation groups (!)



Algebra 2/4

What can be said (good) about the subgroups G ⊂ S+
N ?

Theorem. The collection of vector spaces

Pk = Fix(u⊗k)

is a planar algebra in the sense of Jones. More precisely, we have an
inclusion as follows, where QN is the "spin" planar algebra,

P ⊂ QN

and any planar subalgebra P ⊂ QN appears in this way.

Proof. Tannakian duality, applied in this setting, "rotated".



Algebra 3/4

Planar algebras, more. The correspondence established above

G ⊂ S+
N ←→ P ⊂ QN

makes correspond the following objects and constructions,

{1} ←→ QN

S+
N ←→ TLN

H+
N ←→ FCN

G+(X )←→< �X >

where �X is the Laplacian (adjacency matrix) viewed as 2-box.

=⇒ Bisch-Jones, “Laplacian in the box" philosophy



Algebra 4/4

A difficult conjecture states that SN ⊂ S+
N is maximal, in the sense

that there is no object in between. Status:

(1) Trivial: no groups, no group duals.

(2) Elementary: no easy solutions.

(3) Advanced: OK at N = 4, cf. ADE classification of the
subgroups G ⊂ S+

4 = SO−1
3 .

(4) Difficult: OK at N = 5, due to the classification of
index 5 subfactors. No known QPG proof.



Conclusion

We have a theory of quantum permutations, featuring:

(1) General theory, orbits, easiness.

(2) SN ,S+
N ,HN ,H

+
N ,KN ,K

+
N as main examples.

(3) Many other examples, e.g. coming from graphs.

(4) Interesting connections with probability/free probability.

=⇒ next lecture: tori, models


