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Tannaka

Theorem. We have a Tannakian duality correspondence
A— C
between Woronowicz algebras and tensor categories, given by
Ca = (Hom(u®* u®"))
in one sense, from algebras to categories, and by
Ac=C(Uy)/ < CcC Ca>

in the other sense, from categories to algebras.



Easiness

Theorem. Any category of partitions D = (D(k, /)) produces a
family of quantum groups G = (Gy) via the formula

Hom(u®*, u®") = span <T7r

© € D(k, /))

where the linear maps T, associated to partitions are given by

)
Tﬂ(e,'l®...®e,'k)—2(5ﬂ—<l k)ej1®...®ej,

L J1o-e- i
J1--Ji

with {e;} being the basis of CV, and 6, € {0,1} being Kronecker
symbols. These quantum groups Gy are called easy.



Plan

(1) Quantum permutation groups

(2) Easiness: algebra and analysis

(3) Quantum reflection groups

(4) Transitivity, planar algebras

— next lecture: tori, models



Quantum permutations

The coordinates of Sy C Op, permutation matrices, are:
uj = x (0’ € SN’a(j) = /')
A quick study of u suggests the following definition:
Definition. The quantum permutation group 57\7 is defined via
c(sp)=c ((u,-,-))u —NxN magic>
where "magic" = made of projections, sum 1 on rows/columns.

[the verification of the CQG axioms is routine: Wang 98]



Alternative definition

Theorem. S,t is the biggest quantum group acting on
X={1,...,N}
by keeping the counting measure invariant.
Proof. In order to have a quantum group action
GxX—=X , (o,i)—=0a(i)

we need a coaction map ¢ : C(X) — C(G) ® C(X). With

d(6;) = Z ujj ® 9
J

the matrix v = (uj;) must be magic. Thus Gpax = Sﬁ.



Basic properties 1/4

We have a quotient map C(Sy) — C(Sn). given by:
uj = x (0’ € SN‘J(j) = i)
Thus we have an embedding Sy C S,J\j. Study:
N = 2: We have S2Jr = S5, because the 2 x 2 magics are
1—
o (1 P p)
and their entries commute. Thus C(S,) is commutative.

N = 3: We have 53+ = S3, by similar arguments.



Basic properties 2/4

We know Sy C 5,*\,' isomorphism at N = 2, 3. Continuation:

N = 4: Here S, is non-classical and infinite, because

p 1—p 0 0
u 1—p p 0 0

0 0 q 1—gq

0 0 1—gq q

with p, g € B(H) shows that C(S;") is NC and ooD.

N > 5: Here S; stays non-classical and infinite (clear).



Basic properties 3/4

= Can we understand better why S,” # 5,7

Recall that given ' =< g1,..., gy > discrete group, A= C*(I') is
a Woronowicz algebra, written A= C(I'), with:

u= diag(gl, . ;gN)
Now observe that we have, trivially by Fourier transform:
Zo=1Tp=5= Sy

Thus our concatenation trick at N = 4 amounts in saying that:

—

Doo =7 % Zp C S}

Even better, we have Doy C G*(0). More on this later.



Basic properties 4/4

= Can we understand what this 54+ beast is?

Algebra C(SO;!), with orthogonal coordinates aj;, satisfying:
- ajax = *ayajj, with + if i # k,j # I, and — otherwise
— twisted determinant condition: ¥,cs,a15(1)220(2)230(3) = 1

The point is that the following matrix must be magic:

1 1 1 1 1 0 0 0 1 1 1 1
1 1 -1 -1 1 0 dil 412 ai3 1 -1 -1 1
41 -1 1 —1](0 ay aw an||l -1 1 -1
1 1 -1 -1 0 d31 4d32 as3 1 1 -1 -1

Thus Sj = 503_1, via the Fourier transform over K = Z» X Z».



Representations 1/4

Theorem. The Tannakian category of Sy is given by

Hom(u®*, u®") = span (Tn

wePMJD

where the linear maps associated to partitions are:

ik
Te(e, @...06e,)= > 5”<j1 J,l)ejl@...@ej,
j17“'7jl o

Regarding now S}, the situation is quite similar:

Hom(u®*, u®") = span (T7T

m e NC(k, /))

In other words, SN,S,JG are easy, coming from P, NC.




Representations 2/4

Proof for Sy. Consider the one-block partition i € P(2,1). We
have T, (e @ ej) = djje;, and a computation gives:

T, € Hom(u®? u) <= ujuy = dju;j, Vi, j, k
On the right we have the magic condition. We conclude that:
C(Sy) = C(ON)/<TH e Hom(u®2, u)>

Now since P is generated by p € P(2,1), we are done.

Proof for S;. Similar, by using the Brauer theorem for Oj).



Representations 3/4

Theorem. The fusion rules for S;; are the same as for SO;,
Tk @1 = Mg + Nk—gj41 + -+ Mkt
k+1
with dim(ry) = 9

qi:f*k’ where g2 — (N —2)g+1=0.

Proof. We know from easiness that we have:

Hom(u®*, u®") = span <T7r

7w e NC(k, /))

Thus, the main character x is squared-semicircular:

1 2p
P — NC(0,p)| = ——
[ e =i = 2 (%)

N

But this gives the result, using S3 ~ SU, — SOs.



Representations 4/4

Comment: the above proof is valid in fact only with N >> 0,
where the maps { T} are linearly independent.

However, things are in fact fine as long as N > 4.

Why 47 Because this is a "Jones index". We have indeed
NC(0, p) ~ NG,(0,2p) ~ NCy(p, p) = {basis of TL(p)}
and according to Jones, we must have N > 4 for things to work.

= note that all this is simpler than for Sy (!)




Analysis 1/4

Let S)y C Op as usual. The main character is then:
X(U) ZUH 260( i — #{i|0(i):i}

By using the inclusion-exclusion principle, we obtain:

1 v 1

(N —1)! DTN

P(XZO)zl——_+——...+(—1)’V—1 i

Thus, we have the following asymptotic formula:

lim P(x =0) = E

N—oo e

In fact, the character y becomes Poisson with N — oo.




Analysis 2/4

Theorem. If G is easy, coming from a category of partitions D,

/G Unjy - Ui = D 0n(1)36 () Wins(, o)

m,o€D(k)
where Wy = Gk_,\} is the inverse of Guy(m, o) = NITVal,
Proof. This is the Weingarten formula, coming from the fact that
the above integrals form the projection onto Fix(u®¥).

In the unitary case we must use colored integers.
Works too in the symplectic case, and other cases.



Analysis 3/4

Theorem. The main character x = ", u; for the quantum
groups Sy, Sﬁ follows with N — oo the laws

1 Ok

P1:e %l
k

1
m = 2—\/ 4x—1 — 1dx

™

called Poisson and Marchenko-Pastur (or free Poisson) of
parameter 1, and appearing via the PLT and FPLT.

Proof. Here we do not really need Weingarten, because:

/ ¥< =~ |D(K)|
G

By using standard calculus (e.g. cumulants) we can conclude.



Analysis 4/4

Theorem. The truncated characters y; = ZELNI] uj; for the quantum
groups Sy, Sy follow with N — oo the laws

pr=¢e" ﬁék

VAt — (x —1—t)?
21X

called Poisson and Marchenko-Pastur (or free Poisson) of
parameter t, and appearing via the PLT and FPLT.

e = max(1l — t,0)dp + dx

Proof. Here, by using the Weingarten formula, we have:

[at= ¥ o

weD(k)

By using standard calculus (e.g. cumulants) we can conclude.



Summary

(1) The analogy between Sy, Sj is best understood via easiness

57\; NC ¢

Sn P Pt
with N generic, for algebra, and with N — oo, for analysis.

(2) When N is fixed things collapse for both Sy, S,J\j, the collapsing
being worse for Sy in algebra, and worse for Sﬁ in analysis.

(3) All this is just the "tip of the iceberg". Many advanced results,
both algebra and analysis (planar algebras, Diaconis type).



Graphs 1/4

Let X be a finite graph, |X| = N < oo, with adjacency matrix
d € Mp(0,1). Its quantum symmetry group is given by:

GH(X) = C(S,Jg)/<du - ud>

We have then a diagram of inclusions, as follows:

GH(X) Sy
G(X) Sn

Trivial example: no edges (or complete graph) — get SE.



Graphs 2/4

Cycle graph Cp. Here generically we have, by algebra,
G (Cn) = G(Cn) = Du
unless at N = 4, where the following thing happens:
GH(C) =G (D) =G (1) > Z2*Z2 = Dx
= Question: what is G (0)?

Looking at hypercube graphs [Iy. Here we have:

G (On) = Oy

= In particular, we obtain G*(0) = 0, .



Graphs 3/4

This is still not ok, because Hy — O,gl cannot be a "true
liberation", for analytic reasons (same law as for Oy).

— Question: what is Hﬁ?

Answer. Consider the graph || ... || consisting of N segments (the
[—1, 1] segments on the N coordinate axes). Then:

G(H"'H):Z2ZSN:HNHPeven

We can therefore define H,J\; as follows, and we are done:

GH(||.-- 1) = Z2 0 Sy = Hyy <— NCeven



Graphs 4/4

More generally, for any s € {1,2,..., 00} we have:
G(As...Ns) =Zs Sy = Hy <— P°

We can liberate this reflection group as follows:

GH(As...Ns)=Zs 1 Sy = HF +— NC°
(the "s" at right mean #o0 = # e (), signed, in each block)

— at s = 1 we recover Sy, 57\7
— at s = 2 we recover Hy, Hﬁ

—at s = oo non-QPG, called Ky, K,\',F

Many other interesting results here.




Orbits 1/4

Recall that for G C Sy the coordinates via Sy C Oy are:
uj = x (a € G‘a(j) = i)

Definition. A quantum permutation group G C S, is called
transitive when uj; # 0, for any i, ;.

As basic examples, all QPG that we met so far:

— we have GT(X) with X transitive (i.e. with G(X) transitive)
— in particular we have H3), H,SV+, for any s € N

— also in particular, we have Oy' = G*(Oy)



Orbits 2/4

Orbits. Given a closed subgroup G C S,J\;, let us set:
i~j <= uj#0
This is an equivalence relation. Indeed (using positivity):
Alup) =Y uj@uye = [i~jj~k = i~k
J

€(U,',') =1 = [~
S(U,'j):uj',' — [iNj:>jNi]

In the classical case, G C Sy, we recover the usual orbits.

= what to do with this notion? (no examples so far)




Orbits 3/4

Consider a quotient group of type Zpy, * ... * Zy, — I, with
N = N; + ...+ N,. We have then, by Fourier:

I C ZNl*---*ZNk:ZNl’T‘ ';’:ZN;(
~ ZN1>T<...;I\<ZN,(C5N1>I|: .>I|\<5Nk
+ 2 act +
C Sy ¥ ... %5y, C Sy

Theorem. Any group dual subgroup rc 5,’\7 appears in this way, for
a certain partition N = Ny + ...+ N.

Proof. Orbit decomposition N = Ny + ...+ N,.



Orbits 4/4

Orbitals. Let G C Sy, and k € N. The relation
(/1,...,ik) ~ (jl,...,jk) < u,-ljl...u,-kjk 750
is then reflexive and symmetric (proof as before, at k = 1).

Transitivity holds at k = 1. Also at k = 2, the trick being:

(Ui1j1 ® Uj1/1)A(Ui1/1 Ui2l2)(“i2j2 ® ujzlz)

= E Uiyjy Uiysy Uipsy Uipjp & Ujy 1y Usy fy Usy [ Ujp
5152

= Ujj Upj @ Ujyj Ujly

At k > 3 this fails (but few things still hold), at k > 4 totally fails.




Algebra 1/4

What can be said about the arbitrary subgroups G C S,JV“?

(in addition to the orbit/orbital theory explained above)

Theorem. Quantum Cayley fails.

Recall indeed the Cayley theorem, stating that, for classical groups:
|G|=N = G C Sy

This does not work for quantum groups. There are finite quantum
groups which are not quantum permutation groups (!)



Algebra 2/4

What can be said (good) about the subgroups G C SE?
Theorem. The collection of vector spaces
Py = Fix(u®*)

is a planar algebra in the sense of Jones. More precisely, we have an
inclusion as follows, where Qp is the "spin" planar algebra,

P C Qy

and any planar subalgebra P C Qu appears in this way.

Proof. Tannakian duality, applied in this setting, "rotated".



Algebra 3/4

Planar algebras, more. The correspondence established above
GCSy«—PCQn

makes correspond the following objects and constructions,

{1} +— Qn

Sy < Tly

Hy, «— FCy
GT(X) «—<Ox >

where Oy is the Laplacian (adjacency matrix) viewed as 2-box.

= Bisch-Jones, “Laplacian in the box" philosophy



Algebra 4/4

A difficult conjecture states that Sy C Sy is maximal, in the sense
that there is no object in between. Status:

(1) Trivial: no groups, no group duals.

(2) Elementary: no easy solutions.

(3) Advanced: OK at N = 4, cf. ADE classification of the
subgroups G C S;” = 503_1.

(4) Difficult: OK at N =5, due to the classification of
index 5 subfactors. No known QPG proof.




Conclusion

We have a theory of quantum permutations, featuring:

(1) General theory, orbits, easiness.

(2) Sw, Sﬁ, Hy, Hw, Kn, K;,r as main examples.

(3) Many other examples, e.g. coming from graphs.

(4) Interesting connections with probability/free probability.

— next lecture: tori, models



