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Abstract. This is an introduction to classical and modern quantum mechanics, guided
by the main object of the theory, which is the hydrogen atom. We first discuss the early
atomic theory of Bohr, and the successful work of Heisenberg, Schrödinger and others,
in order to prove the claims regarding hydrogen. Then we discuss the fine structure of
hydrogen, first with the corrections coming from the electron spin, and then with the
higher corrections, coming from quantum electrodynamics. Afterwards, we embark on a
discussion regarding more complicated particle systems, featuring bosons, fermions, and
their statistics. Finally, we go back to atoms, with a detailed presentation of the periodic
table, ions, isotopes, and an introduction to molecules and quantum chemistry.



Preface

Quantum mechanics is a relatively new physics discipline, dating back to the 1920s,
that is, just one century ago. Expect of course not to understand much. And also, with the
whole theory lacking solid foundations. I’m saying this in view of what happened to other
branches of physics, such as classical mechanics, fluid mechanics, optics, electromagnetism,
or thermodynamics, whose development took a long long time, and certainly much more
than a century, in each case. This is how science goes, we humans are kind of slow,
and often unwilling, as individuals, to change our mind, and it always takes quite a few
generations of scientists, in order to properly understand something.

Nevermind. You are certainly here for learning quantum mechanics, and this is what
we will do, learning quantum mechanics. With the comment, however, that what we
will be learning here will be not “the” quantum mechanics, that is, the true quantum
mechanics, that of this real world, but rather some sort of blurred version of the theory,
which is the one available to us, humans, as of now, beginning of the 21st century.

In practice now, the first question is of course, why quantum mechanics? Is there
anything wrong with the traditional branches of physics, that is, classical mechanics,
electromagnetism and so on? What are the phenomena that these cannot explain?

In answer, nothing much is wrong, because as long as you look at this world with a
relaxed eye, and even under a good microscope, or start doing some basic engineering
work, things just fine with traditional physics, you won’t need more than that.

However, and here comes the point, while with our usual human lives, and terrestrial
environment, and senses, and occupations, we are basically fine with traditional physics,
there might be some other interesting things to be known, going beyond this. Is matter
made of some sort of atoms? Can we explain chemistry? What about electricity, and
magnetism? What exactly is light, and what is its precise relation with matter? What
about the relation between light and heat? What about stars? And so on.

Quantum mechanics attempts to answer all these questions, which are all a bit philo-
sophical. And of course, with the idea in mind that all this new knowledge, once worked
out, can lead to some applications, that is, to some new, useful technologies too.
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4 PREFACE

The idea of quantum mechanics is very simple: solve the hydrogen atom, and every-
thing else, answers to the above questions, will come naturally, afterwards.

To be more precise, following various theoretical and experimental findings, it became
more and more obvious, in the years after 1900, that hydrogen should consist of molecules,
themselves made of atoms, and with each atom formed by a negative charge, called
electron, spinning around a positive charge, called proton. So, all in all, something which
looks quite simple, corresponding to a 2-body problem in electrodynamics.

However, and comes here the surprise, the Maxwell equations for electrodynamics,
while certainly true and very useful at our usual scales, are wrong at that small scales,
and cannot properly explain the movement of the electron around the proton. And, in
order to fix these equations, something terribly complicated must be invented, and then
fine-tuned, and fine-tuned again, and so on, to the point that no one really understands
anything, and with all this amounting in some sort of big earthquake on all the physics that
we knew, since Newton, and providing too answers to the above philosophical questions,
and finally, not to forget this, having some applications too, namely nuclear energy and
weapons. Welcome to Hell, you would say. Well, welcome to quantum mechanics.

The present book will be an introduction to this. We will first discuss the early
atomic theory of Bohr, and the successful work of Heisenberg, Schrödinger and others,
in order to prove the claims regarding hydrogen. Then we will discuss the fine structure
of hydrogen, first with the corrections coming from the electron spin, and then with the
higher corrections, coming from quantum electrodynamics. Afterwards, we will embark
on a discussion regarding more complicated particle systems, featuring bosons, fermions,
and their statistics. Finally, we will go back to atoms, with a detailed presentation of the
periodic table, and an introduction to molecules and quantum chemistry.

Many thanks to the book of Griffiths [43], from where I personally learned all these
things. Thanks as well to my cats, although having been in theoretical quantum physics
for a while, I only started to learn the fundamentals quite late, with the main aim of
understanding the cat intelligence, speed, and appearing and disappearing tricks. And,
still working on that, this quantum mechanics seems damn difficult, for us humans.

Cergy, January 2025

Teo Banica
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Part I

Hydrogen atom



There is no going back
I can’t stop feeling now

I am not the same
I’m growing up again



CHAPTER 1

Atomic theory

1a. Space and time

The key to all modern physics, including the quantum mechanics, that we would like
to understand in this book, is light. Light is in fact something quite complicated, and
more on this later, but as a starting point for our considerations, which is something
well-known, and quite intuitive, we have the obvious fact that its speed c is huge.

And, good news, this simple fact, namely that the speed of light c is huge, when
compared with all the other speeds that we know, is all we need, for having something
started. Indeed, based on experiments by Fizeau, then Michelson-Morley and others, and
some physics by Maxwell and Lorentz too, Einstein came upon the following principles:

Fact 1.1 (Einstein principles). The following happen:

(1) Light travels in vacuum at finite speed, c <∞.
(2) This speed c is the same for all inertial observers.
(3) In non-vacuum, the light speed is lower, v < c.
(4) Nothing can travel faster than light, v ̸> c.

The point now is that, obviously, something is wrong here. Indeed, assuming for
instance that we have a train, running in vacuum at speed v > 0, and someone on board
lights a flashlight ∗ towards the locomotive, then an observer ◦ on the ground will see the
light traveling at speed c+ v > c, which is a contradiction:

∗ c
//

v
//

⃝ ⃝ ⃝ ⃝ ⃝ ⃝
◦

c+v
//

Equivalently, with the same train running, in vacuum at speed v > 0, if the observer
on the ground lights a flashlight ∗ towards the back of the train, then viewed from the
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12 1. ATOMIC THEORY

train, that light will travel at speed c+ v > c, which is a contradiction again:

◦
c+v

oo
v
//

⃝ ⃝ ⃝ ⃝ ⃝ ⃝
∗c

oo

Summarizing, Fact 1.1 implies c + v = c, so contradicts classical mechanics, which
therefore needs a fix. But the fix in 1D is straightforward, as follows:

Proposition 1.2. If we sum the speeds according to the Einstein formula

u+e v =
u+ v

1 + uv

in c = 1 units, then the Galileo formula still holds, approximately, for low speeds

u+e v ≃ u+ v

and if we have u = 1 or v = 1, the resulting sum is u+e v = 1.

Proof. All this is self-explanatory, and clear from definitions, and with the Einstein
formula of u +e v itself being just the obvious solution to our c + v = c puzzle. To be
more precise, if we plug in u = 1 in the above summation formula, we obtain as result:

1 +e v =
1 + v

1 + v
= 1

And the same happens with v = 1. Thus, we are led to the above conclusions. □

Let us attempt now to construct u+e v in arbitrary dimensions. When u, v ∈ RN are
proportional, we are basically in 1D, so our addition formula must satisfy:

u ∼ v =⇒ u+e v =
u+ v

1+ < u, v >

However, the formula on the right will not work as such in general, for arbitrary speeds
u, v ∈ RN , and this because we have, as main requirement for our operation, in analogy
with the 1 +e v = 1 formula from 1D, the following condition:

||u|| = 1 =⇒ u+e v = u

Equivalently, in analogy with u+e 1 = 1 from 1D, we would like to have:

||v|| = 1 =⇒ u+e v = v

Summarizing, our u ∼ v formula above is not bad, as a start, but we must add a
correction term to it, for the above requirements to be satisfied, and of course with the
correction term vanishing when u ∼ v. So, we are led to a math puzzle, as follows:
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Puzzle 1.3. What vanishes when u ∼ v, and then how to correctly define

u+e v =
u+ v + γuv
1+ < u, v >

as for the correction term γuv to vanish when u ∼ v?

But the solution to the first question is well-known in 3D. Indeed, here we can use the
vector product u× v, that we met before, which notoriously satisfies:

u ∼ v =⇒ u× v = 0

Thus, our correction term γuv must be something containing w = u×v, which vanishes
when this vector w vanishes, and in addition arranged such that ||u|| = 1 produces a
simplification, with u+e v = u as end result, and with ||v|| = 1 producing a simplification
too, with u+e v = v as end result. Thus, our vector calculus puzzle becomes:

Puzzle 1.4. How to correctly define the Einstein summation in 3 dimensions,

u+e v =
u+ v + γuvw
1+ < u, v >

with w = u× v, in such a way as for the correction term γuvw to satisfy

w = 0 =⇒ γuvw = 0

and also such that ||u|| = 1 =⇒ u+e v = u, and ||v|| =⇒ u+e v = v?

In order to solve this latter puzzle, the first observation is that γuvw = w will not do,
and this for several reasons. First, this vector points in the wrong direction, orthogonal
to the plane spanned by u, v, and we certainly don’t want to leave this plane, with our
correction. Also, as a technical remark to be put on top of this, the choice γuvw = w will
not bring any simplifications, as required above, in the cases ||u|| = 1 or ||v|| = 1. Thus,
certainly wrong choice, and we must invent something more complicated.

Moving ahead now, as obvious task, we must “transport” the vector w to the plane
spanned by u, v. But this is simplest done by taking the vector product with any vector
in this plane, and we are led in this way to an update of our puzzle, as follows:

Puzzle 1.5. How to define the Einstein summation in 3 dimensions,

u+e v =
u+ v + γuvw
1+ < u, v >

with the correction term being of the following form, with w = u× v, and α, β ∈ R,

γuvw = (αu+ βv)× w

in such a way as to have ||u|| = 1 =⇒ u+e v = u, and ||v|| =⇒ u+e v = v?
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In order to investigate what happens when ||u|| = 1 or ||v|| = 1, we must compute the
vector products u × w and v × w. So, pausing now our study for consulting the vector
calculus database, and then coming back, here is the formula that we need:

u× (u× v) =< u, v > u− < u, u > v

As for the formula of v × w, that I forgot to record, we can recover it from the one
above of u× w, by using the basic properties of the vector products, as follows:

v × (u× v) = −v × (v × u)
= −(< v, u > v− < v, v > u)

= < v, v > u− < u, v > v

With these formulae in hand, we can now compute the correction term, with the result
here, that we will need several times in what comes next, being as follows:

Proposition 1.6. The correction term γuvw = (αu+ βv)× w is given by

γuvw = (α < u, v > +β < v, v >)u− (α < u, u > +β < u, v >)v

for any values of the scalars α, β ∈ R.

Proof. According to our vector product formulae above, we have:

γuvw = (αu+ βv)× w
= α(< u, v > u− < u, u > v) + β(< v, v > u− < u, v > v)

= (α < u, v > +β < v, v >)u− (α < u, u > +β < u, v >)v

Thus, we are led to the conclusion in the statement. □

Time now to see what happens when ||u|| = 1 and ||v|| = 1, if we can get indeed
u+e v = u and u+e v = v. But this is not really possible, so time to breathe, decide that
we did enough work for the day, and formulate our conclusions as follows:

Proposition 1.7. When defining the Einstein speed summation in 3D as

u+e v =
u+ v + u× (u× v)

1+ < u, v >

in c = 1 units, the following happen:

(1) When u ∼ v, we recover the previous 1D formula.
(2) When ||u|| = 1, speed of light, we have u+e v = u.
(3) However, ||v|| = 1 does not imply u+e v = v.
(4) Also, the formula u+e v = v +e u fails.

Proof. This follows indeed from the above discussion, with the following choice for
the correction term, by favoring the ||u|| = 1 problem over the ||v|| = 1 one:

γuvw = u× w
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In fact, with this choice made, the computation is very simple, as follows:

||u|| = 1 =⇒ γuvw =< u, v > u− v
=⇒ u+ v + γuvw = u+ < u, v > u

=⇒ u+ v + γuvw
1+ < u, v >

= u

Thus, we are led to the conclusions in the statement. □

With this done, shall we give up? We can in fact do even better, as follows:

Theorem 1.8. When defining the Einstein speed summation in 3D as

u+e v =
1

1+ < u, v >

(
u+ v +

u× (u× v)
1 +

√
1− ||u||2

)
in c = 1 units, the following happen:

(1) When u ∼ v, we recover the previous 1D formula.
(2) We have ||u||, ||v|| < 1 =⇒ ||u+e v|| < 1.
(3) When ||u|| = 1, we have u+e v = u.
(4) When ||v|| = 1, we have ||u+e v|| = 1.
(5) However, ||v|| = 1 does not imply u+e v = v.
(6) Also, the formula u+e v = v +e u fails.

Proof. This follows from the above discussion, with a bit more work, as follows:

(1) This is something that we know from Proposition 1.7.

(2) In order to simplify notation, let us set δ =
√

1− ||u||2, which is the inverse of the

quantity γ = 1/
√

1− ||u||2. With this convention, we have:

u+e v =
1

1+ < u, v >

(
u+ v +

< u, v > u− ||u||2v
1 + δ

)
=

(1 + δ+ < u, v >)u+ (1 + δ − ||u||2)v
(1+ < u, v >)(1 + δ)

Taking now the squared norm and computing gives the following formula:

||u+e v||2 =
(1 + δ)2||u+ v||2 + (||u||2 − 2(1 + δ))(||u||2||v||2− < u, v >2)

(1+ < u, v >)2(1 + δ)2

But this formula can be further processed by using δ =
√
1− ||u||2, and by navigating

through the various quantities which appear, we obtain, as a final product:

||u+e v||2 =
||u+ v||2 − ||u||2||v||2+ < u, v >2

(1+ < u, v >)2
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But this type of formula is exactly what we need, for what we want to do. Indeed, by
assuming ||u||, ||v|| < 1, we have the following estimate:

||u+e v||2 < 1 ⇐⇒ ||u+ v||2 − ||u||2||v||2+ < u, v >2< (1+ < u, v >)2

⇐⇒ ||u+ v||2 − ||u||2||v||2 < 1 + 2 < u, v >

⇐⇒ ||u||2 + ||v||2 − ||u||2||v||2 < 1

⇐⇒ (1− ||u||2)(1− ||v||2) > 0

Thus, we are led to the conclusion in the statement.

(3) This is something that we know from Proposition 1.7.

(4) This comes from the squared norm formula established in the proof of (2) above,
because when assuming ||v|| = 1, we obtain:

||u+e v||2 =
||u+ v||2 − ||u||2+ < u, v >2

(1+ < u, v >)2

=
||u||2 + 1 + 2 < u, v > −||u||2+ < u, v >2

(1+ < u, v >)2

=
1 + 2 < u, v > + < u, v >2

(1+ < u, v >)2

= 1

(5) This is clear, from the obvious lack of symmetry of our formula.

(6) This is again clear, from the obvious lack of symmetry of our formula. □

That was nice, all this mathematics, and hope you’re still with me. And good news,
the formula in Theorem 1.8 is the good one, confirmed by experimental physics.

We can further build on the above, with the following surprising conclusions:

Theorem 1.9. Time and length are subject to Lorentz dilation and contraction

t→ γt , L→ L/γ

where the number γ ≥ 1, called Lorentz factor, is given by the formula

γ =
1√

1− v2/c2

with v being the moving speed, at which time is measured.

Proof. We use our favorite train. In order to compute the height h of the train, the
passenger switches on the ceiling light bulb, measures the time t that the light needs to
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hit the floor, by traveling at speed c, and concludes that the train height is h = ct:

∗

h=ct

��

v
//

⃝ ⃝ ⃝ ⃝ ⃝ ⃝

On the other hand, an observer on the ground will see here something different, namely
a right triangle, with on the vertical the height of the train h, on the horizontal the
distance vT that the train has traveled, and on the hypotenuse the distance cT that light
has travelled, with T being the duration of the event, according to his watch:

∗

h
cT

%%vT

But this gives, via Pythagoras and some calculus, the time dilation formula:

T = γt

Regarding now length, imagine that the passenger wants to measure the length L of
the car. For this purpose he switches on the light bulb, now at the rear of the car, and
measures the time t needed for the light to reach the front of the car, and get reflected
back by a mirror installed there, according to the following scheme:

∗
L=ct/2

// ♢oo
v
//

⃝ ⃝ ⃝ ⃝ ⃝ ⃝

Now viewed from the ground, the duration of the event is T = T1+T2, where T1 > T2
are respectively the time needed for the light to travel forward, among others for beating
v, and the time for the light to travel back, helped this time by v. More precisely, if l
denotes the length of the train car viewed from the ground, the formula of T is:

T =
l

c− v
+

l

c+ v
=

2lc

c2 − v2
With this data, the formula T = γt of time dilation established before reads:

l =
L

γ

Thus, we are led to the conclusions in the statement. □
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As a main consequence of the above, beautiful as they come, we have:

Theorem 1.10. In the context of a relativistic object moving with speed v along the x
axis, the frame change is given by the Lorentz transformation

x′ = γ(x− vt)

y′ = y

z′ = z

t′ = γ(t− vx/c2)

with γ = 1/
√

1− v2/c2 being as usual the Lorentz factor.

Proof. We know that, with respect to the non-relativistic formulae, x is subject to
the Lorentz dilation by γ, and so we obtain, as desired:

x′ = γ(x− vt)

Regarding y, z, these are obviously unchanged, so done with these too. Finally, re-
garding time t, we can use here the reverse Lorentz transformation, given by:

x = γ(x′ + vt′)

y = y′

z = z′

By using the formula of x′ we can compute t′, and we obtain the following formula:

t′ =
x− γx′

γv
=
x− γ2(x− vt)

γv
= γ

(
t− vx

c2

)
We are therefore led to the conclusion in the statement. □

1b. Maxwell equations

Getting now towards quantum mechanics, this was born in the early 20th century, from
the study of the hydrogen atom, namely a negative charge, the electron, spinning around
a positive charge, a proton. Which looks, at a first glance, like basic electrodynamics, and
so it is with the Maxwell equations that we should start our study.

So, let us first talk about electrodynamics, and the Maxwell equations. We will see in
a moment that these equations are indeed useful for getting started with hydrogen and
quantum mechanics, but, and here comes the surprise, in a totally different way from the
intuitive way one would expect. So, wait for it. Getting started now, we have:
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Theorem 1.11. Electrodynamics is governed by the formulae

< ∇, E >=
ρ

ε0
, < ∇, B >= 0

∇× E = −Ḃ , ∇×B = µ0J + µ0ε0Ė

called Maxwell equations.

Proof. This is something fundamental, appearing as a tricky mixture of physics facts
and mathematical results, the idea being as follows:

(1) To start with, electrodynamics is the science of moving electrical charges. And
this is something quite complicated, because unlike in classical mechanics, where the
Newton law is good for both the static and the dynamic setting, the Coulomb law, which
is actually very similar to the Newton law, does the job when the charges are static, but
no longer describes well the situation when the charges are moving.

(2) The problem comes from the fact that moving charges produce magnetism, and
with this being visible when putting together two electric wires, which will attract or repel,
depending on orientation. Thus, in contrast with classical mechanics, where static or dy-
namic problems are described by a unique field, the gravitational one, in electrodynamics
we have two fields, namely the electric field E, and the magnetic field B.

(3) Fortunately, there is a full set of equations relating the electric field E and the
magnetic field B, those above. Regarding the math, the dots denote derivatives with
respect to time, and ∇ is the gradient operator, or space derivative, given by:

∇ =

 d
dx
d
dy
d
dz


(4) Regarding the physics, the first formula is the Gauss law, ρ being the charge, and

ε0 being a constant, and with this Gauss law more or less replacing the Coulomb law
from electrostatics. The second formula is something basic, and anonymous. The third
formula is the Faraday law. As for the fourth formula, this is the Ampère law, as modified
by Maxwell, with J being the volume current density, and µ0 being a constant. □

Quite surprisingly, the constants µ0, ε0 appearing above are related as follows:

Fact 1.12. The constants µ0, ε0 are related by the Biot-Savart formula

µ0ε0 =
1

c2

with c = 299, 792, 458 being as usual the speed of light in vacuum.

We will be back to this in a moment, with more about it. In the meantime, back to
abstract electromagnetism, we have here the following key result, due to Lorentz:
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Theorem 1.13. The Maxwell equations found before, namely

< ∇, E >=
ρ

ε0
, < ∇, B >= 0

∇× E = −Ḃ , ∇×B = µ0J + µ0ε0Ė

are invariant under Lorentz transformations.

Proof. Consider an electromagnetic field (E,B). This is altered by a Lorentz trans-
formation into a field (E ′, B′), the equations for E ′ being as follows:

E ′
x = Ex

E ′
y = γ(Ey − vBz)

E ′
z = γ(Ez + vBy)

As for the equations of B′, these are quite similar, as follows:

B′
x = Bx

B′
y = γ

(
By +

v

c2
Ez

)
B′

z = γ
(
Bz −

v

c2
Ey

)
In order to do the math, consider the following matrices, with β = v/c as usual:

D =

1 0 0
0 γ 0
0 0 γ

 , M =

0 0 0
0 0 −βγ
0 βγ 0


In terms of these matrices, the formulae for the new field (E ′, B′) read:

E ′ = DE + cMB , B′ = DB − M

c
E

But this is already not that bad, and starting from these formulae, it is possible to
prove that (E ′, B′) satisfies as well the Maxwell equations, as desired. □

1c. Light, color, optics

Let us go back now to light. We first have the following basic result:

Theorem 1.14. The wave equation in RN is

φ̈ = v2∆φ

where ∆ is the Laplace operator, given by

∆φ =
N∑
i=1

d2φ

dx2i

and v > 0 is the propagation speed.
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Proof. As a first disclaimer, the equation in the statement is what comes out of
experiments. However, allowing us a bit of imagination, and trust in this imagination, we
can mathematically “prove” this equation, by discretizing, as follows:

(1) Let us first consider the 1D case. In order to understand the propagation of waves,
we will model R as a network of balls, with springs between them, as follows:

· · · ××× • ××× • ××× • ××× • ××× • ××× · · ·
Now let us send an impulse, and see how the balls will be moving. For this purpose,

we zoom on one ball. The situation here is as follows, l being the spring length:

· · · · · · •φ(x−l) ××× •φ(x) ××× •φ(x+l) · · · · · ·
We have two forces acting at x. First is the Newton motion force, mass times accel-

eration, which is as follows, with m being the mass of each ball:

Fn = m · φ̈(x)
And second is the Hooke force, displacement of the spring, times spring constant.

Since we have two springs at x, this is as follows, k being the spring constant:

Fh = F r
h − F l

h

= k(φ(x+ l)− φ(x))− k(φ(x)− φ(x− l))
= k(φ(x+ l)− 2φ(x) + φ(x− l))

We conclude that the equation of motion, in our model, is as follows:

m · φ̈(x) = k(φ(x+ l)− 2φ(x) + φ(x− l))
(2) Now let us take the limit of our model, as to reach to continuum. For this purpose

we will assume that our system consists of N >> 0 balls, having a total mass M , and
spanning a total distance L. Thus, our previous infinitesimal parameters are as follows,
with K being the spring constant of the total system, which is of course lower than k:

m =
M

N
, k = KN , l =

L

N

With these changes, our equation of motion found in (1) reads:

φ̈(x) =
KN2

M
(φ(x+ l)− 2φ(x) + φ(x− l))

Now observe that this equation can be written, more conveniently, as follows:

φ̈(x) =
KL2

M
· φ(x+ l)− 2φ(x) + φ(x− l)

l2

With N →∞, and therefore l→ 0, we obtain in this way:

φ̈(x) =
KL2

M
· d

2φ

dx2
(x)
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We are therefore led to the wave equation in the statement, which is φ̈ = v2φ′′ in our
present N = 1 dimensional case, the propagation speed being v =

√
K/M · L.

(3) In 2 dimensions now, the same argument carries on. Indeed, we can use here a
lattice model as follows, with all the edges standing for small springs:

• • • •

• • • •

• • • •

As before in one dimension, we send an impulse, and we zoom on one ball. The
situation here is as follows, with l being the spring length:

•φ(x,y+l)

•φ(x−l,y) •φ(x,y) •φ(x+l,y)

•φ(x,y−l)

By doing the math, as before in 1D, we are led to the following equation:

φ̈(x, y) =
KL2

M
× φ(x+ l, y)− 2φ(x, y) + φ(x− l, y)

l2

+
KL2

M
× φ(x, y + l)− 2φ(x, y) + φ(x, y − l)

l2

With N →∞, and therefore l→ 0, we obtain in this way:

φ̈(x, y) =
KL2

M

(
d2φ

dx2
+
d2φ

dy2

)
(x, y)

Thus, we are led in this way to the wave equation in two dimensions, as in the state-
ment, with v =

√
K/M · L being the propagation speed of our wave.

(4) In 3 dimensions now, which is the case of the main interest, corresponding to our
real-life world, the same argument carries over, and the wave equation is as follows:

φ̈(x, y, z) = v2
(
d2φ

dx2
+
d2φ

dy2
+
d2φ

dz2

)
(x, y, z)

Finally, the same argument carries on in arbitrary N dimensions. □

The point now is that, in relation with the Maxwell equations, we have:
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Theorem 1.15. In regions of space where there is no charge or current present the
Maxwell equations for electrodynamics read

< ∇, E >=< ∇, B >= 0

∇× E = −Ḃ , ∇×B = Ė/c2

and both the electric field E and magnetic field B are subject to the wave equation

φ̈ = c2∆φ

where ∆ =
∑

i d
2/dx2i is the Laplace operator, and c is the speed of light.

Proof. Under the circumstances in the statement, namely no charge or current
present, the Maxwell equations in Theorem 1.11 simply read:

< ∇, E >=< ∇, B >= 0

∇× E = −Ḃ , ∇×B = Ė/c2

Now by applying the curl operator to the last two equations, we obtain:

∇× (∇× E) = −∇× Ḃ = −(∇×B)′ = −Ë/c2

∇× (∇×B) = ∇× Ė/c2 = (∇× E)′/c2 = −B̈/c2

But the double curl operator is subject to the following formula:

∇× (∇× φ) = ∇ < ∇, φ > −∆φ

Now by using the first two equations, we are led to the conclusion in the statement. □

So, what is light? Light is the wave predicted by Theorem 1.15, traveling in vacuum
at the maximum possible speed, c, and with an important extra property being that it de-
pends on a real positive parameter, that can be called, upon taste, frequency, wavelength,
or color. And in what regards the creation of light, the mechanism here is as follows:

Fact 1.16. An accelerating or decelerating charge produces electromagnetic radiation,
called light, whose frequency and wavelength can be explicitly computed.

This phenomenon can be observed is a variety of situations, such as the usual light
bulbs, where electrons get decelerated by the filament, acting as a resistor, or in usual fire,
which is a chemical reaction, with the electrons moving around, as they do in any chemical
reaction, or in more complicated machinery like nuclear plants, particle accelerators, and
so on, leading there to all sorts of eerie glows, of various colors.

Moving ahead, let us go back to the wave equation φ̈ = v2∆φ from Theorem 1.14,
and try to understand its simplest solutions. In 1D, the situation is as follows:
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Theorem 1.17. The 1D wave equation has as basic solutions the functions

φ(x) = A cos(kx− wt+ δ)

with A being called amplitude, kx−wt+δ being called the phase, k being the wave number,
w being the angular frequency, and δ being the phase constant. We have

λ =
2π

k
, T =

2π

kv
, ν =

1

T
, w = 2πν

relating the wavelength λ, period T , frequency ν, and angular frequency w. Moreover, any
solution of the wave equation appears as a linear combination of such basic solutions.

Proof. There are several things going on here, the idea being as follows:

(1) Our first claim is that the function φ in the statement satisfies indeed the wave
equation, with speed v = w/k. For this purpose, observe that we have:

φ̈ = −w2φ ,
d2φ

dx2
= −k2φ

Thus, the wave equation is indeed satisfied, with speed v = w/k:

φ̈ =
(w
k

)2 d2φ
dx2

= v2
d2φ

dx2

(2) Regarding now the other things in the statement, all this is basically terminology,
which is very natural, when thinking how φ(x) = A cos(kx− wt + δ) propagates. As for
the last assertion, this is something standard, coming from Fourier analysis. □

As a first observation, the above result invites the use of complex numbers. Indeed,
we can write the solutions that we found in a more convenient way, as follows:

φ(x) = Re
[
Aei(kx−wt+δ)

]
And we can in fact do even better, by absorbing the quantity eiδ into the amplitude

A, which becomes now a complex number, and writing our formula as:

φ = Re(φ̃) , φ̃ = Ãei(kx−wt)

Moving ahead now towards electromagnetism and 3D, let us formulate:

Definition 1.18. A monochromatic plane wave is a solution of the 3D wave equation
which moves in only 1 direction, making it in practice a solution of the 1D wave equation,
and which is of the special from found in Theorem 1.17, with no frequencies mixed.

In other words, we are making here two assumptions on our wave. First is the 1-
dimensionality assumption, which gets us into the framework of Theorem 1.17. And
second is the assumption, in connection with the Fourier decomposition result from the
end of Theorem 1.17, that our solution is of “pure” type, meaning a wave having a well-
defined wavelenght and frequency, instead of being a “packet” of such pure waves.
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All this is still mathematics, and making now the connection with physics and elec-
tromagnetism, and more specifically with Theorem 1.15 and Fact 1.16, we have:

Fact 1.19. Physically speaking, a monochromatic plane wave is the electromagnetic
radiation appearing as in Theorem 1.15 and Fact 1.16, via equations of type

E = Re(Ẽ) : Ẽ = Ẽ0 e
i(<k,x>−wt)

B = Re(B̃) : B̃ = B̃0 e
i(<k,x>−wt)

with the wave number being now a vector, k ∈ R3. Moreover, it is possible to add to this
an extra parameter, accounting for the possible polarization of the wave.

To be more precise, what we are doing here is to import the conclusions of our math-
ematical discussion so far, from Theorem 1.17 and Definition 1.18, into the context of our
original physics discussion, from Fact 1.16. And also to add an extra twist coming from
physics, and more specifically from the notion of polarization. More on this later.

In any case, we have now a decent intuition about what light is, and more on this
later, and let us discuss now the examples. The idea is that we have various types
of light, depending on frequency and wavelength. These are normally referred to as
“electromagnetic waves”, but for keeping things simple and luminous, we will keep using
the familiar term “light”. The classification, in a rough form, is as follows:

Frequency Type Wavelength
−

1018 − 1020 γ rays 10−12 − 10−10

1016 − 1018 X− rays 10−10 − 10−8

1015 − 1016 UV 10−8 − 10−7

−
1014 − 1015 blue 10−7 − 10−6

1014 − 1015 yellow 10−7 − 10−6

1014 − 1015 red 10−7 − 10−6

−
1011 − 1014 IR 10−6 − 10−3

109 − 1011 microwave 10−3 − 10−1

1− 109 radio 10−1 − 108

Observe the tiny space occupied by the visible light, all colors there, and the many
more missing, being squeezed under the 1014− 1015 frequency banner. Here is a zoom on
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that part, with of course the remark that all this, colors, is something subjective:

Frequency THz = 1012 Hz Color Wavelength nm = 10−9 m
−

670− 790 violet 380− 450
620− 670 blue 450− 485
600− 620 cyan 485− 500
530− 600 green 500− 565
510− 530 yellow 565− 590
480− 510 orange 590− 625
400− 480 red 625− 750

Back now to our business, with the above theory of light in hand, we can do some
optics. Light usually comes in “bundles”, with waves of several wavelenghts coming at
the same time, from the same source, and the first challenge is that of separating these
wavelenghts. In order to discuss this, let us start with the following fact:

Fact 1.20. Inside a linear, homogeneous medium, where there is no free charge or
current present, the Maxwell equations for electrodynamics read

< ∇, E >=< ∇, B >= 0

∇× E = −Ḃ , ∇×B = εµĖ

with E,B being as before the electric and the magnetic field, and with ε > ε0 and µ > µ0

being the electric permittivity and magnetic permeability of the medium.

Observe that this statement is precisely the first part of Theorem 1.15, with the
vacuum constants ε0, µ0 being now replaced by their versions ε, µ, concerning the medium
in question. In what regards now the second part of Theorem 1.15, we have:

Theorem 1.21. Inside a linear, homogeneous medium, where there is no free charge
or free current present, both E and B are subject to the wave equation

φ̈ = v2∆φ

with v being the speed of light inside the medium, given by

v =
c

n
: n =

√
εµ

ε0µ0

with the quantity on the right n > 1 being called refraction index of the medium.

Proof. This is something that we know well in vacuum, from the above, and the
proof in general is identical, with the resulting speed being:

v =
1
√
εµ

But this formula can be written is a more familiar from, as above. □
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Next in line, and of interest for us, as we will soon discover, we have:

Fact 1.22. When traveling through a material, and hitting a new material, some of
the light gets reflected, at the same angle, and some of it gets refracted, at a different
angle, depending both on the old and the new material, and on the wavelength.

Again, this is something deep, and very old as well, and there are many things that
can be said here, ranging from various computations based on the Maxwell equations, to
all sorts of considerations belonging to advanced materials theory.

As a basic formula here, we have the famous Snell law, which relates the incidence
angle θ1 to the refraction angle θ2, via the following simple formula:

sin θ2
sin θ1

=
n1(λ)

n2(λ)

Here ni(λ) are the refraction indices of the two materials, adjusted for the wavelength,
and with this adjustment for wavelength being the whole point, which is something quite
complicated. For an introduction to all this, we refer for instance to Griffiths [42].

As a simple consequence of the above, of great practical interest, we have:

Theorem 1.23. Light can be decomposed, by using a prism.

Proof. This follows from Fact 1.22. Indeed, when hitting a piece of glass, provided
that the hitting angle is not 90◦, the light will decompose over the wavelenghts present,
with the corresponding refraction angles depending on these wavelengths. And we can
capture these split components at the exit from the piece of glass, again deviated a bit,
provided that the exit surface is not parallel to the entry surface. And the simplest device
doing the job, that is, having two non-parallel faces, is a prism. □

With this in hand, we can now talk about spectroscopy:

Fact 1.24. We can study events via spectroscopy, by capturing the light the event
has produced, decomposing it with a prism, carefully recording its “spectral signature”,
consisting of the wavelenghts present, and their density, and then doing some reverse
engineering, consisting in reconstructing the event out of its spectral signature.

This is the main principle of spectroscopy, and applications of it, of all kinds, abound.
In practice, the mathematical tool needed for doing the “reverse engineering” mentioned
above is the Fourier transform, which allows the decomposition of packets of waves, into
monochromatic components. Finally, let us mention too that, needless to say, the event
can be reconstructed only partially out of its spectral signature.
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1d. Atoms, Bohr model

Getting now to some truly exciting applications of light and spectroscopy, let us dis-
cuss the beginnings of the atomic theory. There is a long story here, involving many
discoveries, around 1890-1900, focusing on hydrogen H. We will present here things a bit
retrospectively. First on our list is the following discovery, by Lyman in 1906:

Fact 1.25 (Lyman). The hydrogen atom has spectral lines given by the formula

1

λ
= R

(
1− 1

n2

)
where R ≃ 1.097× 107 and n ≥ 2, which are as follows,

n Name Wavelength Color
− −

2 α 121.567 UV
3 β 102.572 UV
4 γ 97.254 UV
...

...
...

...
∞ limit 91.175 UV

called Lyman series of the hydrogen atom.

Observe that all the Lyman series lies in UV, which is invisible to the naked eye. Due
to this fact, this series, while theoretically being the most important, was discovered only
second. The first discovery, which was the big one, and the breakthrough, was by Balmer,
the founding father of all this, back in 1885, in the visible range, as follows:

Fact 1.26 (Balmer). The hydrogen atom has spectral lines given by the formula

1

λ
= R

(
1

4
− 1

n2

)
where R ≃ 1.097× 107 and n ≥ 3, which are as follows,

n Name Wavelength Color
− −

3 α 656.279 red
4 β 486.135 aqua
5 γ 434.047 blue
6 δ 410.173 violet
7 ε 397.007 UV
...

...
...

...
∞ limit 346.600 UV

called Balmer series of the hydrogen atom.
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So, this was Balmer’s original result, which started everything. As a third main result
now, this time in IR, due to Paschen in 1908, we have:

Fact 1.27 (Paschen). The hydrogen atom has spectral lines given by the formula

1

λ
= R

(
1

9
− 1

n2

)
where R ≃ 1.097× 107 and n ≥ 4, which are as follows,

n Name Wavelength Color
− −

4 α 1875 IR
5 β 1282 IR
6 γ 1094 IR
...

...
...

...
∞ limit 820.4 IR

called Paschen series of the hydrogen atom.

Observe the striking similarity between the above three results. In fact, we have here
the following fundamental, grand result, due to Rydberg in 1888, based on the Balmer
series, and with later contributions by Ritz in 1908, using the Lyman series as well:

Conclusion 1.28 (Rydberg, Ritz). The spectral lines of the hydrogen atom are given
by the Rydberg formula, depending on integer parameters n1 < n2,

1

λn1n2

= R

(
1

n2
1

− 1

n2
2

)
with R being the Rydberg constant for hydrogen, which is as follows:

R ≃ 1.096 775 83× 107

These spectral lines combine according to the Ritz-Rydberg principle, as follows:

1

λn1n2

+
1

λn2n3

=
1

λn1n3

Similar formulae hold for other atoms, with suitable fine-tunings of R.

Here the first part, the Rydberg formula, generalizes the results of Lyman, Balmer,
Paschen, which appear at n1 = 1, 2, 3, at least retrospectively. The Rydberg formula
predicts further spectral lines, appearing at n1 = 4, 5, 6, . . . , and these were discovered
later, by Brackett in 1922, Pfund in 1924, Humphreys in 1953, and others aftwerwards,
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with all these extra lines being in far IR. The simplified complete table is as follows:

n1 n2 Series name Wavelength n2 =∞ Color n2 =∞
− −

1 2−∞ Lyman 91.13 nm UV
2 3−∞ Balmer 364.51 nm UV
3 4−∞ Paschen 820.14 nm IR

− −
4 5−∞ Brackett 1458.03 nm far IR
5 6−∞ Pfund 2278.17 nm far IR
6 7−∞ Humphreys 3280.56 nm far IR
...

...
...

...
...

Regarding the last assertion, concerning other elements, this is something conjectured
and partly verified by Ritz, and fully verified and clarified later, via many experiments,
the fine-tuning of R being basically R→ RZ2, where Z is the atomic number.

From a theoretical physics viewpoint, the main result remains the middle assertion,
called Ritz-Rydberg combination principle, which is something quite puzzling. But this
combination principle reminds the formula en1n2en2n3 = en1n3 for the usual matrix units
eij : ej → ei. Thus, we are in familiar territory here, and we can start dreaming of:

Thought 1.29. Observables in quantum mechanics should be some sort of infinite
matrices, generalizing the Lyman, Balmer, Paschen lines of the hydrogen atom, and mul-
tiplying between them as the matrices do, as to produce further observables.

Now back to more concrete things, as a main problem that we would like to solve, we
have the understanding the intimate structure of matter, at the atomic level. There is of
course a long story here, regarding the intimate structure of matter, going back centuries
and even millennia ago, and our presentation here will be quite simplified. As a starting
point, since we need a starting point for all this, let us agree on:

Claim 1.30. Ordinary matter is made of small particles called atoms, with each atom
appearing as a mix of even smaller particles, namely protons +, neutrons 0 and electrons
−, with the same number of protons + and electrons −.

As a first observation, this is something which does not look obvious at all, with
probably lots of work, by many people, being involved, as to lead to this claim. And so it
is. The story goes back to the discovery of charges and electricity, which were attributed
to a small particle, the electron −. Now since matter is by default neutral, this naturally
leads to the consideration to the proton +, having the same charge as the electron.

But, as a natural question, why should be these electrons − and protons + that small?
And also, what about the neutron 0? These are not easy questions, and the fact that it
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is so came from several clever experiments. Let us first recall that careful experiments
with tiny particles are practically impossible. However, all sorts of brutal experiments,
such as bombarding matter with other pieces of matter, accelerated to the extremes,
or submitting it to huge electric and magnetic fields, do work. And it is such kind of
experiments, due to Thomson, Rutherford and others, “peeling off” protons +, neutrons
0 and electrons − from matter, and observing them, that led to the conclusion that these
small beasts +, 0,− exist indeed, in agreement with Claim 1.30.

Of particular importance here was as well the radioactivity theory of Becquerel and
Pierre and Marie Curie, involving this time such small beasts, or perhaps some related
radiation, peeling off by themselves, in heavy elements such as uranium 92U, polonium

84Po and radium 88Ra. And there was also Einstein’s work on the photoelectric effect,
light interacting with matter, suggesting that even light itself might have associated to
it some kind of particle, called photon. All this goes of course beyond Claim 1.30, with
further particles involved, and more on this later, but as a general idea, all this deluge of
small particle findings, all coming around 1900-1910, further solidified Claim 1.30.

So, taking now Claim 1.30 for granted, how are then the atoms organized, as mixtures
of protons +, neutrons 0 and electrons −? The answer here lies again in the above-
mentioned “brutal” experiments of Thomson, Rutherford and others, which not only
proved Claim 1.30, but led to an improved version of it, as follows:

Claim 1.31. The atoms are formed by a core of protons + and neutrons 0, surrounded
by a cloud of electrons −, gravitating around the core.

This is a considerable advance, because we are now into familiar territory, namely
some kind of mechanics. And with this in mind, all the pieces of our puzzle start fitting
together, and we are led to the following grand conclusion:

Claim 1.32 (Bohr and others). The atoms are formed by a core of protons and neu-
trons, surrounded by a cloud of electrons, basically obeying to a modified version of elec-
tromagnetism. And with a fine mechanism involved, as follows:

(1) The electrons are free to move only on certain specified elliptic orbits, labelled
1, 2, 3, . . . , situated at certain specific heights.

(2) The electrons can jump or fall between orbits n1 < n2, absorbing or emitting light
and heat, that is, electromagnetic waves, as accelerating charges.

(3) The energy of such a wave, coming from n1 → n2 or n2 → n1, is given, via the
Planck viewpoint, by the Rydberg formula, applied with n1 < n2.

(4) The simplest such jumps are those observed by Lyman, Balmer, Paschen. And
multiple jumps explain the Ritz-Rydberg formula.

And isn’t this beautiful. Moreover, some further claims, also by Bohr and others,
are that the theory can be further extended and fine-tuned as to explain many other
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phenomena, such as the above-mentioned findings of Einstein, and of Becquerel and Pierre
and Marie Curie, and generally speaking, all the physics and chemistry known.

And the story is not over here. Following now Heisenberg, the next claim is that
the underlying mathematics in all the above can lead to a beautiful axiomatization of
quantum mechanics, as a “matrix mechanics”, along the lines of Thought 1.29.

1e. Exercises

Exercises:

Exercise 1.33.

Exercise 1.34.

Exercise 1.35.

Exercise 1.36.

Exercise 1.37.

Exercise 1.38.

Exercise 1.39.

Exercise 1.40.

Bonus exercise.



CHAPTER 2

Schrödinger equation

2a. Schrödinger equation

We have seen in the previous chapter that the spectral data of the hydrogen atom, as
recorded by Lyman, Balmer and Paschen, led to the Ritz-Rydberg combination principle,
whose mathematics reminds the matrix multiplication, and which leads to the conclusion
that quantum mechanics should be some sort of “matrix mechanics”.

We will see in a moment, following Heisenberg, that this is indeed true. However,
before getting into this, let us hear as well the point of view of Schrödinger, which came
a few years later. The idea of Schrödinger was to forget about exact things, and try to
investigate the hydrogen atom statistically. We have here the following question:

Question 2.1. In the context of the hydrogen atom, assuming that the proton is fixed,
what is the probability density φt(x) of the position of the electron e, at time t,

Pt(e ∈ V ) =

∫
V

φt(x)dx

as function of an intial probability density φ0(x)? Moreover, can the corresponding equa-
tion be solved, and will this prove the Bohr claims for hydrogen, statistically?

In order to get familiar with this question, let us first look at examples coming from
classical mechanics. In the context of linear motion, with speed v, we have:

φt(x) = φ0(x) + vt

More generally, assuming that we have a particle whose position at time t is given by
x0 + γ(t), the evolution of the probability density will be given by:

φt(x) = φ0(x) + γ(t)

These examples are somewhat trivial, of course not in relation with the computation
of γ, usually a difficult question, but in relation with our questions, and do not apply to
the electron. The point indeed is that, in what regards the electron, we have:

Fact 2.2. In respect with various simple interference experiments:

(1) The electron is definitely not a particle in the usual sense.
(2) But in most situations it behaves exactly like a wave.
(3) But in other situations it behaves like a particle.

33
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So, here we go again with puzzles. These experiments are nicely described, with
extensive comments, in Feynman’s book [35]. In what follows, we will present them
quickly. We will just need, for our purposes here, the first 4 experiments in the series,
which are the most important. These are performed with a machinery as follows:

◦
◦
◦
◦

⋆ //

44

**

%%

::

◦
◦
◦
◦
◦

To be more precise, on the left we have a multi-purpose gun ⋆, which can shoot bullets,
water waves, or electrons. On the middle we have a wall with two holes in it. On the
right we have a solid wall, with sensors ◦, adapted to the matter that we are shooting.

The first experiment, performed with 22 cal ammo, assumed to be idealized, as to be
indestructible, and we refer again to Feynman [35] for full details, goes as follows:

Experiment 2.3. When shooting bullets, the density function on the right wall, stop-
ping them, as recorded by our sensors there, is given by

φ = φ1 + φ2

where φ1 is the same density, but measured with the lower hole closed, and φ2 is also the
same density, but measured with the upper hole closed.

Nothing surprising so far. Now let us shoot water waves, or rather assume that our
gun ⋆ is a wave source. For this experiment, the sensors at right are set to measure the
energy of the incoming wave, which is proportional to the square of the height.

The experiment, best performed with our favorite drinkable, tap water, gives:

Experiment 2.4. When shooting waves, the energy density functions at right, mea-
sured with one or the other hole open, or both holes open, are related by

φ1 = |ψ1|2 , φ2 = |ψ1|2 , φ = |ψ1 + ψ2|2

where ψ1, ψ2 ∈ C are the amplitudes of the waves passing through one hole, with the other
hole closed. This phenomenon and formula of φ are due to interference.
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This is again, something not surprising, that we know, coming from the fact that two
colliding waves can add up in various ways, depending on their phases.

Now let us shoot electrons. At first sight, these behave like particles, because our
sensors beep for them one at the time. However, when examining the results regarding
probability distributions, these don’t add up as for bullets, the conclusions being:

Experiment 2.5. When shooting electrons, these come up one at the time, exactly as
bullets. However, in what regards the density functions, these don’t add up:

φ ̸= φ1 + φ2

Thus, we have some interference, and most likely the correct formula is

φ1 = |ψ1|2 , φ2 = |ψ1|2 , φ = |ψ1 + ψ2|2

with ψ1, ψ2 ∈ C being certain amplitudes, exactly as for the waves.

This is a bit surprising, showing that the electrons have a mix of particle and wave
behavior, at least with respect to this experiment. Let us also mention too that, contrary
to the previous two experiments which are simple and real, this is rather a Gedankenex-
periment, and so the wave formulae are to be taken with care. See Feynman [35].

Finally, as a last experiment, again with electrons, we have:

Experiment 2.6. When shooting electrons as before, but by putting a light bulb behind
one hole, whose light is scattered by electrons passing through that hole:

φ = φ1 + φ2

That is, observing the electrons passing through one hole, via them scattering light, has
killed the interference process, and we have now usual particles, like bullets.

And this is probably the most surprising experiment of them all. Indeed, the fact that
in Experiment 2.5 we have particles when counting and waves when looking at densities
might seem odd, but after all, why not. So these are our beasts, electrons, and this is
how their properties are, a bit odd, but at least we know one thing.

However, what happens now seems to defy any logic. Observing the electrons has
changed their properties, and that’s how things are. Welcome to quantum mechanics.

Getting back now to the Schrödinger question, all this suggests to use, as for the
waves, an amplitude function ψt(x) ∈ C, related to the density φt(x) > 0 by the formula
φt(x) = |ψt(x)|2. So, let us reformulate Question 2.1, in the following way:
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Question 2.7. In the context of the hydrogen atom, assuming that the proton is fixed,
what is the amplitude function ψt(x) of the position of the electron e, at time t,

Pt(e ∈ V ) =

∫
V

|ψt(x)|2dx

as function of an intial amplitude function ψ0(x)? Moreover, can the corresponding equa-
tion be solved, and will this prove the Bohr claims for hydrogen, statistically?

Mathematically, what we did here is to replace the density φt(x) > 0 by the amplitude
function ψt(x) ∈ C. Not that a big deal, you would say, because the two are related by
simple formulae as follows, with θt(x) being an arbitrary phase function:

φt(x) = |ψt(x)|2 , ψt(x) = eiθt(x)
√
φt(x)

However, experience with math shows that such manipulations can be crucial, raising
for instance the possibility that the amplitude function satisfies some simple equation,
while the density itself, maybe not. So, let us hope for this to happen.

And this is what happens indeed. Schrödinger was led in this way to:

Claim 2.8 (Schrödinger). In the context of the hydrogen atom, the amplitude function
of the electron ψ = ψt(x) is subject to the Schrödinger equation

ihψ̇ = − h2

2m
∆ψ + V ψ

m being the mass, h the modified Planck constant, and V the Coulomb potential of the
proton. The same holds for movements of the electron under an arbitrary potential V .

Observe the similarity with the wave equation φ̈ = v2∆φ, and with the heat equation
φ̇ = α∆φ too. There might be of course some speculations to be made here, but passed
that, this is certainly not your easy to decipher equation. So, where does this equation
come from? Is there a way of deducing it from simpler principles? And so on.

Generally speaking, however, any axiomatic explanation for the Schrödinger equation
can only introduce some possible mistakes in our theory. And so we are led by precaution
to the following preliminary answer, to such questions, that you might have:

Comment 2.9. The Schrödinger equation comes from Schrödinger.

And please do not take this as a joke. We are mainly interested in solving the hydrogen
atom, and the Schrödinger equation can only solve it, via some calculus. So why not
enjoying this, solving the hydrogen atom by using this equation, and see later what
further things, beyond Schrödinger, can be said about quantum mechanics.

This being said, before getting into computations, let us discuss however, a bit in
advance, some possible ways of getting into the Schrödinger equation. We first have:
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Comment 2.10. The Schrödinger equation appears naturally from an abstract claim
of de Broglie, regarding the precise wave properties of the electron.

To be more precise here, the above-mentioned abstract claim of de Broglie leads to
the following equations for the wave function of a free electron:

ψt = e−iEt/hψ0 , Eψ0 = −
h2

2m
∆ψ0

Now in the context of movement under a time-independent potential V , as is the
potential coming from the proton, these equations can be naturally modified into:

ψt = e−iEt/hψ0 , Eψ0 = −
h2

2m
∆ψ0 + V ψ0

But this is exactly the simplified form of the general Schrödinger equation from Claim
2.8, in the case of a time-independent potential, as we will soon see.

We have as well a second method for getting into the Schrödinger equation, a bit more
powerful, but based on more powerful assumptions too, as follows:

Comment 2.11. The Schrödinger equation appears naturally by invoking a bit of ma-
trix mechanics of Heisenberg type, and the Hamiltonian.

To be more precise here, according to the viewpoint of Heisenberg, the total energy,
or Hamiltonian, H = T + V is represented by the following “operator”:

Ĥ = −h
2∆

2m
+ V

And in terms of this operator, the Schrödinger equation simply appears as:

ihψ̇ = Ĥψ

This is actually the explanation offered by Schrödinger himself in his paper, and we
will comment on this a bit later, when having a better knowledge of the subject. We refer
also to Feynman [35], Griffiths [43], Weinberg [93] for more on all this.

2b. Basic properties

With the above discussed, and more on this, general theory, on several occasions, in
what follows, and with the promise here of course to come back soon to Heisenberg too,
let us go back to the Schrödinger equation from Claim 2.8, and try to solve it.

Let us start with some computations. As a first question, we would like to see how
the probability density φ = |ψ|2 evolves in time, and we have here:
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Proposition 2.12. In the context of the general Schrödinger equation,

ihψ̇ = − h2

2m
∆ψ + V ψ

we have the following formula,

φ̇ =
ih

2m

(
∆ψ · ψ̄ −∆ψ̄ · ψ

)
for the time derivative of the probability density function φ = |ψ|2.

Proof. According to the Leibnitz product rule for the derivatives, we have the fol-
lowing formula, for the time derivative of the probability density function:

φ̇ =
d

dt
|ψ|2 = d

dt
(ψψ̄) = ψ̇ψ̄ + ψ ˙̄ψ

On the other hand, the Schrödinger equation and its conjugate read:

ψ̇ =
ih

2m

(
∆ψ − 2m

h2
V ψ

)
˙̄ψ = − ih

2m

(
∆ψ̄ − 2m

h2
V ψ̄

)
By plugging this data, we obtain the following formula:

φ̇ =
ih

2m

[(
∆ψ − 2m

h2
V ψ

)
ψ̄ −

(
∆ψ̄ − 2m

h2
V ψ̄

)
ψ

]
But this gives, after simplifying, the following formula:

φ̇ =
ih

2m

(
∆ψ · ψ̄ −∆ψ̄ · ψ

)
Thus, we are led to the conclusion in the statement. □

As an important application now of Proposition 2.12, which is of main theoretical
interest, we have the following key result:

Theorem 2.13. The general Schrödinger equation, namely

ihψ̇ = − h2

2m
∆ψ + V ψ

conserves probability amplitudes, in the sense that we have∫
R3

|ψ0|2 = 1 =⇒
∫
R3

|ψt|2 = 1

in agreement with the basic probabilistic requirement, P = 1 overall.
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Proof. According to the formula in Proposition 2.12, we have the following compu-
tation, for the time derivative of the quantity that we are interested in:

d

dt

∫
R3

|ψ|2 dx =

∫
R3

d

dt
|ψ|2 dx

=

∫
R3

φ̇ dx

=
ih

2m

∫
R3

(
∆ψ · ψ̄ −∆ψ̄ · ψ

)
dx

Now by remembering the definition of the Laplace operator, we have:

d

dt

∫
R3

|ψ|2 dx =
ih

2m

∫
R3

∑
i

(
d2ψ

dx2i
· ψ̄ − d2ψ̄

dx2i
· ψ
)
dx

=
ih

2m

∑
i

∫
R3

d

dxi

(
dψ

dxi
· ψ̄ − dψ̄

dxi
· ψ
)
dx

=
ih

2m

∑
i

∫
R2

[
dψ

dx
· ψ̄ − dψ̄

dx
· ψ
]∞
−∞

dx

dxi

=
ih

2m

∑
i

∫
R2

0
dx

dxi

= 0

Here we have used at the end the assumption, which is physically speaking, something
reasonable, that the wave function and its derivatives vanish at ∞. Now with this in
hand, since the quantity under consideration is constant, we obtain the result. □

2c. Position, momentum

Let us do now some computations, in order to get some insight into the quantum
mechanics of the particle, as dictated by the Schrödinger equation. We first have:

Theorem 2.14. The average position and momentum of the particle are

< x >=

∫
R3

x|ψ|2 dx

< p >= −ih
∫
R3

∇ψ · ψ̄ dx

with the convention that the average speed is the derivative of the average position.

Proof. This follows again by doing some math, as follows:
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(1) The formula for the average position < x > is clear from definitions. Regarding
now the average speed < v >, we have here the following computation:

< v > =
d < x >

dt

=

∫
R3

x · d
dt
|ψ|2 dx

=

∫
R3

x φ̇ dx

=
ih

2m

∫
R3

x
(
∆ψ · ψ̄ −∆ψ̄ · ψ

)
dx

(2) But each of the components can be computed as follows, by taking into account
the vanishing formula found in the proof of Theorem 2.13:

< v >i =
ih

2m

∫
R3

xi
(
∆ψ · ψ̄ −∆ψ̄ · ψ

)
dx

=
ih

2m

∫
R3

xi
∑
j

(
d2ψ

dx2j
· ψ̄ − d2ψ̄

dx2j
· ψ
)
dx

=
ih

2m

∑
j

∫
R3

xi

(
d2ψ

dx2j
· ψ̄ − d2ψ̄

dx2j
· ψ
)
dx

=
ih

2m

∫
R3

xi

(
d2ψ

dx2i
· ψ̄ − d2ψ̄

dx2i
· ψ
)
dx

(3) We can now finish the computation by doing two partial integrations, as follows:

< v >i =
ih

2m

∫
R3

xi ·
d

dxi

(
dψ

dxi
· ψ̄ − dψ̄

dxi
· ψ
)
dx

= − ih

2m

∫
R3

(
dψ

dxi
· ψ̄ − dψ̄

dxi
· ψ
)
dx

= −ih
m

∫
R3

dψ

dxi
· ψ̄ dx

(4) We conclude that the average speed is given by the following formula:

< v >= −ih
m

∫
R3

∇ψ · ψ̄ dx

By multiplying by the mass, we obtain the formula for < p > in the statement. □

As an interesting speculation now, based on the above two formulae, and inspired from
Heisenberg’s idea of matrix mechanics, we have:
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Speculation 2.15. The average position and momentum formulae, written as

< x >=

∫
R3

ψ̄ · x · ψ dx

< p >=

∫
R3

ψ̄ · (−ih∇) · ψ dx

suggest that x represents position, and −ih∇ represents momentum.

To be more precise, here we don’t quite know what the quantities x and −ih∇ really
are, mathematically speaking, so let us call them for the moment “operators”, and we
will see later for axioms. We will discuss this, axioms, in chapter 3 below.

The point now is that, with this convention, the above speculation tells us that for
computing the average value of the position and momentum x, p, we must “sandwich”
the corresponding operator between ψ̄, ψ, and then integrate.

Which is something quite remarkable, and we are now very tempted to formulate
something extremely general, and of course still a bit vague, as follows:

Speculation 2.16. The average value of an observable O should appear as

< O >=

∫
R3

ψ̄ · Ô · ψ dx

“sandwich between ψ̄, ψ and integrate”, where Ô is the operator associated to O.

As an illustration, let us see if this sandwiching method works for the kinetic energy
of the particle. The kinetic energy is given by the following formula:

T =
m||v||2

2
=
< p, p >

2m

Thus, the operator associated to the energy should be given by:

T̂ =
< −ih∇,−ih∇ >

2m
= −h

2∆

2m

We obtain in this way something which looks quite reasonable, as follows:

< T >= − h2

2m

∫
R3

∆ψ · ψ̄ dx

We will see later, in chapter 3 below, more explanations on all this.

More generally now, we can incorporate into our method the potential energy too,
and we are led in this way to the following interesting, conceptual conclusion:
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Conclusion 2.17. According to the above speculations, the operator associated to the
total energy, or Hamiltonian, H = T + V is given by

Ĥ = −h
2∆

2m
+ V

and so the Schrödinger equation itself appears as

ihψ̇ = Ĥψ

in terms of this operator, as claimed in Comment 2.11.

To be more precise, according to the above, Ĥ appears indeed via the formula in the
statement. But now, let us look back at the Schrödinger equation, namely:

ihψ̇ = − h2

2m
∆ψ + V ψ

We recognize on the right the operator Ĥ acting on ψ, and we are led to the conclusion
in the statement. But probably enough for now on this topic, and more later.

Finally, still at the level of generalities, if there is one classical equation which reminds
the Schrödinger one, that is the heat equation, which appears as follows:

Theorem 2.18. Heat diffusion in RN is described by the heat equation

φ̇ = α∆φ

where α > 0 is the thermal diffusivity of the medium, and ∆ is the Laplace operator.

Proof. The study here is quite similar to the study of waves, as follows:

(1) To start with, as an intuitive explanation for the equation, since the second de-
rivative φ′′ in one dimension, or the quantity ∆φ in general, computes the average value
of a function φ around a point, minus the value of φ at that point, the heat equation as
formulated above tells us that the rate of change φ̇ of the temperature of the material at
any given point must be proportional, with proportionality factor α > 0, to the average
difference of temperature between that given point and the surrounding material.

(2) The heat equation as formulated above is of course something approximative, and
several improvements can be made to it, first by incorporating a term accounting for heat
radiation, and then doing several fine-tunings, depending on the material involved. But
more on this later, for the moment let us focus on the heat equation above.

(3) The idea is that we can recover this equation a bit as we did for the wave equation
in chapter 1, by using a basic lattice model. Indeed, let us first assume that we are in the
case N = 1. Here our model looks as follows, with distance l > 0 between neighbors:

◦x−l
l ◦x

l ◦x+l
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In order to model heat diffusion, we have to implement the intuitive mechanism ex-
plained above, namely “the rate of change of the temperature of the material at any given
point must be proportional, with proportionality factor α > 0, to the average difference
of temperature between that given point and the surrounding material”.

(4) In practice, this leads to a condition as follows, expressing the change of the
temperature φ, over a small period of time δ > 0:

φ(x, t+ δ) = φ(x, t) +
αδ

l2

∑
x∼y

[φ(y, t)− φ(x, t)]

To be more precise, we have made several assumptions here, as follows:

– General heat diffusion assumption: the change of temperature at any given point x
is proportional to the average over neighbors, y ∼ x, of the differences φ(y, t) − φ(x, t)
between the temperatures at x, and at these neighbors y.

– Infinitesimal time and length conditions: in our model, the change of temperature
at a given point x is proportional to small period of time involved, δ > 0, and is inverse
proportional to the square of the distance between neighbors, l2.

(5) Regarding these latter assumptions, the one regarding the proportionality with the
time elapsed δ > 0 is something quite natural, physically speaking, and mathematically
speaking too, because we can rewrite our equation as follows, making it clear that we
have here an equation regarding the rate of change of temperature at x:

φ(x, t+ δ)− φ(x, t)
δ

=
α

l2

∑
x∼y

[φ(y, t)− φ(x, t)]

As for the second assumption that we made above, namely inverse proportionality
with l2, this can be justified on physical grounds too, but again, perhaps the best is to do
the math, which will show right away where this proportionality comes from.

(6) So, let us do the math. In the context of our 1D model the neighbors of x are the
points x± l, and so the equation that we wrote above takes the following form:

φ(x, t+ δ)− φ(x, t)
δ

=
α

l2

[
(φ(x+ l, t)− φ(x, t)) + (φ(x− l, t)− φ(x, t))

]
Now observe that we can write this equation as follows:

φ(x, t+ δ)− φ(x, t)
δ

= α · φ(x+ l, t)− 2φ(x, t) + φ(x− l, t)
l2

(7) As it was the case with the wave equation in chapter 1, we recognize on the right
the usual approximation of the second derivative, coming from calculus. Thus, when
taking the continuous limit of our model, l→ 0, we obtain the following equation:

φ(x, t+ δ)− φ(x, t)
δ

= α · φ′′(x, t)
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Now with t→ 0, we are led in this way to the 1D heat equation, namely:

φ̇(x, t) = α · φ′′(x, t)

(8) In practice now, there are of course still a few details to be discussed, in relation
with all this, for instance at the end, in relation with the precise order of the limiting
operations l → 0 and δ → 0 to be performed, but these remain minor aspects, because
our equation makes it clear, right from the beginning, that time and space are separated,
and so that there is no serious issue with all this. And so, fully done with 1D.

(9) With this done, let us discuss now 2 dimensions. Here, as before for the waves, we
can use a lattice model as follows, with all lengths being l > 0, for simplifying:

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

(10) We have to implement now the physical heat diffusion mechanism, namely “the
rate of change of the temperature of the material at any given point must be proportional,
with proportionality factor α > 0, to the average difference of temperature between that
given point and the surrounding material”. In practice, this leads to a condition as follows,
expressing the change of the temperature φ, over a small period of time δ > 0:

φ(x, y, t+ δ) = φ(x, y, t) +
αδ

l2

∑
(x,y)∼(u,v)

[φ(u, v, t)− φ(x, y, t)]

In fact, we can rewrite our equation as follows, making it clear that we have here an
equation regarding the rate of change of temperature at x:

φ(x, y, t+ δ)− φ(x, y, t)
δ

=
α

l2

∑
(x,y)∼(u,v)

[φ(u, v, t)− φ(x, y, t)]

(11) So, let us do the math. In the context of our 2D model the neighbors of x are
the points (x± l, y ± l), so the equation above takes the following form:

φ(x, y, t+ δ)− φ(x, y, t)
δ

=
α

l2

[
(φ(x+ l, y, t)− φ(x, y, t)) + (φ(x− l, y, t)− φ(x, y, t))

]
+

α

l2

[
(φ(x, y + l, t)− φ(x, y, t)) + (φ(x, y − l, t)− φ(x, y, t))

]
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Now observe that we can write this equation as follows:

φ(x, y, t+ δ)− φ(x, y, t)
δ

= α · φ(x+ l, y, t)− 2φ(x, y, t) + φ(x− l, y, t)
l2

+ α · φ(x, y + l, t)− 2φ(x, y, t) + φ(x, y − l, t)
l2

(12) As it was the case when modelling the wave equation in chapter 1, we recognize on
the right the usual approximation of the second derivative, coming from calculus. Thus,
when taking the continuous limit of our model, l→ 0, we obtain the following equation:

φ(x, y, t+ δ)− φ(x, y, t)
δ

= α

(
d2φ

dx2
+
d2φ

dy2

)
(x, y, t)

Now with t→ 0, we are led in this way to the heat equation, namely:

φ̇(x, y, t) = α ·∆φ(x, y, t)
Finally, in arbitrary N dimensions the same argument carries over, namely a straight-

forward lattice model, and gives the heat equation, as formulated in the statement. □

2d. Separation of variables

Back to computations now, and to the Schrödinger equation as it is, simple and clear
equation, let us investigate the case of time-independent potentials, as is the case of the
Coulomb potential of the proton, that we are mostly interested in. We have here:

Theorem 2.19. In the case of time-independent potentials V , which include the
Coulomb potential of the proton, the solutions of the Schrödinger equation

ihψ̇ = − h2

2m
∆ψ + V ψ

which are of the following special form, with the time and space variables separated,

ψt(x) = wtϕ(x)

are given by the following formulae, with E being a certain constant,

w = e−iEt/hw0 , Eϕ = − h2

2m
∆ϕ+ V ϕ

with the equation for ϕ being called time-independent Schrödinger equation.

Proof. This follows indeed by doing some math, as follows:

(1) Assuming that we have ψ = wϕ as in the statement, we obtain:

ψ̇ = ẇϕ , ∆ψ = w∆ϕ

Thus, the Schrödinger equation reformulates as follows:

ihẇϕ = − h2

2m
w∆ϕ+ V wϕ
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By dividing now everything by wϕ, our equation becomes:

ih · ẇ
w

= − h2

2m
· ∆ϕ
ϕ

+ V

(2) Now observe that the left-hand side depends only on time, and the right-hand side
depends only on space. Thus, we must have, for a certain constant E:

ih · ẇ
w

= − h2

2m
· ∆ϕ
ϕ

+ V = E

(3) Let us first examine the first equation, involving time, namely:

ih · ẇ
w

= E

This equation can be written more conveniently as follows:

d

dt
logw = −iE

h

Thus we have w = e−iEt/hw0, as claimed in the statement.

(4) Regarding now the second equation, involving space, this is:

− h2

2m
· ∆ϕ
ϕ

+ V = E

But by multiplying by ϕ, this gives the second equation in the statement. □

As a first remark, the above makes the link with the speculations from Comment 2.10,
and we can now formulate, as a complement to Conclusion 2.17:

Conclusion 2.20. The Schrödinger equation naturally appears from the de Broglie
claim on the wave properties of the electron, as claimed in Comment 2.10.

This is something very nice, and together with Conclusion 2.17, it brings a more
conceptual point of view on the Schrödinger equation. We will be back to all this in a
moment, when talking axiomatization, based on these facts.

As a second comment, the above results, when coupled with some extra computations,
show that the electron is not a particle in the classical sense, the reason being that a
classical particle wave function cannot satisfy the time-independent Schrödinger equation.
Thus, to put it squarely, in connection with the considerations from the previous section,
the harm to Newton is there, in the Schrödinger approach, but hidden well under the
carpet. More on this later, when talking about axiomatization.

Moving ahead with theory, we can further build on Theorem 2.19, with a number of
key observations on the time-independent Schrödinger equation, as follows:
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Theorem 2.21. In the case of time-independent potentials V , the Schrödinger equa-
tion and its time-independent version have the following properties:

(1) For solutions of type ψ = wtϕ(x), the density φ = |ψ| is time-independent, and
more generally, all quantities of type < T > are time-independent.

(2) The time-independent Schrödinger equation can be written as Ĥϕ = Eϕ, with
H = T + V being the total energy, of Hamiltonian.

(3) For solutions of type ψ = wtϕ(x) we have < Hk >= Ek for any k. In particular
we have < H >= E, and the variance is < H2 > − < H >2= 0.

Proof. All the formulae are clear indeed from the fact that, when using the sand-
wiching formula for computing averages, the phases will cancel:

< T >=

∫
R3

ψ̄ · T · ψ dx =

∫
R3

ϕ̄ · T · ϕ dx

Thus, we are led to the various conclusions in the statement. □

All the above is quite interesting, physically speaking, and for a discussion here, we
refer to Griffiths [43]. We will be back as well to this, a bit later.

We have as well the following result, mathematical this time:

Theorem 2.22. The solutions of the Schrödinger equation with time-independent po-
tential V appear as linear combinations of separated solutions

ψ =
∑
n

cne
−iEnt/hϕh

with the absolute values of the coefficients being given by

< H >=
∑
n

|cn|2En

|cn| being the probability for a measurement to return the energy value En.

Proof. This is something standard, which follows from Fourier analysis, which allows
the decomposition of ψ as in the statement, and that we will not really need, in what
follows next. As before, for a physical discussion here, we refer to Griffiths [43]. □

Finally, a word about time-dependent potentials too, that we will ignore in this chap-
ter. These are very important, due to the following:

Remark 2.23. For more complicated situations, like the helium atom, or heavier, the
potential V in the Schrödinger equation is time-dependent, because the electron is subject
here to the repulsions from the other electrons, which move in time.
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More on such potentials later, when taking helium and other atoms. In what follows
we will be exclusively obsessed by hydrogen, where the math is simpler, and that we
want to solve, above everything, anyway. By the way our obsession reminds that of the
astrophysicists, who often call anything different from hydrogen “metals”.

2e. Exercises

Exercises:

Exercise 2.24.

Exercise 2.25.

Exercise 2.26.

Exercise 2.27.

Exercise 2.28.

Exercise 2.29.

Exercise 2.30.

Exercise 2.31.

Bonus exercise.



CHAPTER 3

Quantum mechanics

3a. Hilbert spaces

We discuss here the axiomatization of quantum mechanics, following Heisenberg and
Schrödinger, and then Dirac and others. Hang on, tough material to come.

We already talked in chapter 1 about the main idea of Heisenberg, namely using
infinite matrices in order to axiomatize quantum mechanics, based on the following key
fact, coming from the discoveries of Balmer, and then Lyman, Paschen and others:

Fact 3.1 (Rydberg, Ritz). The spectral lines of the hydrogen atom are given by the
Rydberg formula, as follows, depending on integer parameters n1 < n2:

1

λn1n2

= R

(
1

n2
1

− 1

n2
2

)
These spectral lines combine according to the Ritz-Rydberg principle, as follows:

1

λn1n2

+
1

λn2n3

=
1

λn1n3

Similar formulae hold for other atoms, with suitable fine-tunings of the constant R.

We refer to chapter 1 for the full story with all this, which is theory based on some
key observations of Lyman, Balmer, Paschen, around 1890-1900. The point now is that
the above combination principle reminds the multiplication formula en1n2en2n3 = en1n3 for
the elementary matrices eij : ej → ei, which leads to the following principle:

Principle 3.2 (Heisenberg). Observables in quantum mechanics should be some sort
of infinite matrices, generalizing the Lyman, Balmer, Paschen lines of the hydrogen atom,
and multiplying between them as the matrices do, as to produce further observables.

All this is quite deep, and needs a number of comments, as follows:

(1) First of all, our matrices must be indeed infinite, because so are the series observed
by Lyman, Balmer, Paschen, corresponding to n1 = 1, 2, 3 in the Rydberg formula, and
making it clear that the range of the second parameter n2 > n1 is up to ∞.

49
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(2) Although this was not known to Ritz-Rydberg and Heisenberg, let us mention too
that some later results of Brackett, Pfund, Humphreys and others, at n1 = 4, 5, 6, . . . ,
confirmed the fact that the range of the first parameter n1 is up to ∞ too.

(3) As a more tricky comment now, going beyond what Principle 3.2 says, our infinite
matrices must be in fact complex. This was something known to Heisenberg, and later
Schrödinger came with proof that quantum mechanics naturally lives over C.

(4) But all this leads us into some tricky mathematics, because the infinite matrices
A ∈ M∞(C) do not act on the vectors v ∈ C∞ just like that. For instance the all-one
matrix Aij = 1 does not act on the all-one vector vi = 1, for obvious reasons.

Summarizing, in order to get to some mathematical theory going, out of Principle 3.2,
we must assume that our matrices A ∈ M∞(C) must be “bounded” in some sense. Or
perhaps the vectors v ∈ C∞ must be bounded. Or perhaps, both.

In order to fix all this, let us start with the questions regarding the space C∞. In view
of the above, we would like to replace it with its subspace H = l2(N) consisting of vectors
having finite norm, as for our various computations to converge.

This being said, taking a look at what Schrödinger was saying too, a bit later, why
not including right away in our theory spaces like H = L2(R3) too, which are perhaps a
bit more relevant than Heisenberg’s l2(N). We are led in this way into:

Definition 3.3. A Hilbert space is a complex vector space H with a scalar product
< x, y >, which will be linear at left and antilinear at right,

< λx, y >= λ < x, y > , < x, λy >= λ̄ < x, y >

and which is complete with respect to corresponding norm

||x|| =
√
< x, x >

in the sense that any sequence {xn} which is a Cauchy sequence, having the property
||xn − xm|| → 0 with n,m→∞, has a limit, xn → x.

Observe that we are using here the mathematicians’ notation < . , . > and convention
for the scalar products, with these being linear at left. There are several reasons for
preferring this notation, and more on this later, trust me in the meantime.

Getting now to work, there is some mathematics encapsulated in the above definition,
certainly needing some discussion. First, we have the following result:
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Theorem 3.4. Given an index set I, which can be finite or not, the space of square-
summable vectors having indices in I, namely

l2(I) =

{
(xi)i∈I

∣∣∣∑
i

|xi|2 <∞

}
is a Hilbert space, with scalar product as follows:

< x, y >=
∑
i

xiȳi

When I is finite, I = {1, . . . , N}, we obtain in this way the usual space H = CN .

Proof. This can be done in several steps, as follows:

(1) Given a vector x ∈ CI , let us define its norm by the following formula:

||x|| =
√∑

i

|xi|2

We know that l2(I) ⊂ CI is the space of vectors satisfying ||x|| < ∞. We want to
prove that l2(I) is a vector space, that < x, y > is a scalar product on it, that l2(I) is
complete with respect to ||.||, and finally that for |I| <∞ we have l2(I) = C|I|.

(2) The last assertion, l2(I) = C|I| for |I| <∞, is clear, because in this case the sums
are finite, so the condition ||x|| <∞ is automatic. So, we know at least one thing.

(3) Regarding the rest, our claim here, which will more or less prove everything, is
that for any two vectors x, y ∈ l2(I) we have the Cauchy-Schwarz inequality:

| < x, y > | ≤ ||x|| · ||y||
(4) In order to prove this inequality, consider the following quantity, depending on a

real variable t ∈ R, and on a variable on the unit circle, w ∈ T:
f(t) = ||twx+ y||2

By developing f , we see that this is a degree 2 polynomial in t:

f(t) = < twx+ y, twx+ y >

= t2 < x, x > +tw < x, y > +tw̄ < y, x > + < y, y >

= t2||x||2 + 2tRe(w < x, y >) + ||y||2

Since f is obviously positive, its discriminant must be negative:

4Re(w < x, y >)2 − 4||x||2 · ||y||2 ≤ 0

But this is equivalent to the following condition:

|Re(w < x, y >)| ≤ ||x|| · ||y||
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Now the point is that we can arrange for the number w ∈ T to be such that the
quantity w < x, y > is real. Thus, we obtain, as desired:

| < x, y > | ≤ ||x|| · ||y||
(5) As a side remark here, observe that the equality case happens precisely when the

discriminant of f vanishes, so when f has a root, and so when x, y are proportional.

(6) Now with Cauchy-Schwarz proved, everything is straightforward. We first obtain,
by raising to the square and expanding, that for any x, y ∈ l2(I) we have:

||x+ y|| ≤ ||x||+ ||y||
Thus l2(I) is indeed a vector space, the other vector space conditions being trivial.

(7) Also, < x, y > is surely a scalar product on this vector space, because all the
conditions for a scalar product, which are as follows, are satisfied:

∗ < x, y > is linear in x, and antilinear in y.

∗ < x, y > =< y, x >, for any x, y.

∗ < x, x >> 0, for any x ̸= 0.

(8) Finally, the fact that our space l2(I) is indeed complete with respect to its norm
||.|| follows in the obvious way, the limit of a Cauchy sequence {xn} being the vector
y = (yi) given by yi = limn→∞ xni, with all the verifications here being trivial. □

Going now a bit abstract, we have, more generally, the following result, which shows
that our formalism covers as well the Schrödinger spaces of type L2(R3):

Theorem 3.5. Given an arbitrary space X with a positive measure µ on it, the space
of square-summable complex functions on it, namely

L2(X) =

{
f : X → C

∣∣∣ ∫
X

|f(x)|2 dµ(x) <∞
}

is a Hilbert space, with scalar product as follows:

< f, g >=

∫
X

f(x)g(x) dµ(x)

When X = I is discrete, meaning that the measure µ on it is the counting measure,
µ({x}) = 1 for any x ∈ X, we obtain in this way the previous spaces l2(I).

Proof. This is something routine, remake of Theorem 3.5, as follows:

(1) The proof of the first, and main assertion is something perfectly similar to the
proof of Theorem 3.5, by replacing everywhere the sums by integrals.

(2) With the remark that we forgot to say in the statement that the L2 functions are
by definition taken up to equality almost everywhere, f = g when ||f − g|| = 0.
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(2) As for the last assertion, when µ is the counting measure all our integrals here
become usual sums, and so we recover in this way Theorem 3.5. □

As a third and last theorem about Hilbert spaces, that we will need, we have:

Theorem 3.6. Any Hilbert space H has an orthonormal basis {ei}i∈I , which is by
definition a set of vectors whose span is dense in H, and which satisfy

< ei, ej >= δij

with δ being a Kronecker symbol. The cardinality |I| of the index set, which can be finite,
countable, or worse, depends only on H, and is called dimension of H. We have

H ≃ l2(I)

in the obvious way, mapping
∑
λiei → (λi). The Hilbert spaces with dimH = |I| being

countable, including l2(N) and L2(R), are all isomorphic, and are called separable.

Proof. We have many assertions here, the idea being as follows:

(1) In finite dimensions an orthonormal basis {ei}i∈I can be constructed by starting
with any vector space basis {xi}i∈I , and using the Gram-Schmidt procedure. As for the
other assertions, these are all clear, from basic linear algebra.

(2) In general, the same method works, namely Gram-Schmidt, with one subtlety
coming from the fact that the basis {ei}i∈I will not span in general the whole H, but just
a dense subspace of it, as it is in fact obvious by looking for instance at the standard basis
of l2(N). And there is a second subtlety as well, coming from the fact that the recur-
rence procedure needed for Gram-Schmidt must be replaced by some sort of “transfinite
recurrence”, using scary tools from logic, and more specifically the Zorn lemma.

(3) Finally, everything at the end is clear from definitions, except perhaps for the fact
that L2(R) is separable. But here we can argue that, since functions can be approxi-
mated by polynomials, we have a countable algebraic basis, namely {xn}n∈N, called the
Weierstrass basis, that we can orthogonalize afterwards by using Gram-Schmidt. □

Observe that, in contrast to Theorem 3.5 and Theorem 3.6, there are several non-trivial
things going on with Theorem 3.7. First we have the full proof of the basis existence,
based on the Zorn lemma, which normally takes 1-2 pages, but which can easily take 5-6
pages, if you really want that Zorn lemma proved too, that we have of course avoided.
But then, we have also some subtleties at the end, with the space L2(R) being in theory
separable, but in practice not really, because the orthogonalization of the Weierstrass
basis {xn}n∈N is something quite complicated. More on this later.
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3b. Linear operators

Moving ahead, now that we know what our vector spaces are, we can talk about
infinite matrices with respect to them. Again, this will take some time.

Let us start with something elementary, as follows:

Theorem 3.7. For a linear operator T : H → H, the following are equivalent:

(1) T is continuous.
(2) T is continuous at 0.
(3) T maps the unit ball of H into something bounded.
(4) T is bounded, in the sense that ||T || = sup||x||=1 ||Tx|| is finite.

Proof. Here the equivalences (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4) all follow from
definitions, by using the linearity of T , and performing various rescalings, and with the
number ||T || needed in (4) being the bound coming from (3). □

With the above result in hand, we can now formulate:

Theorem 3.8. Given a Hilbert space H, consider the linear operators T : H → H,
and for each such operator define its norm by the following formula:

||T || = sup
||x||=1

||Tx||

The operators which are bounded, ||T || < ∞, form then a complex algebra B(H), which
is complete with respect to ||.||. When H comes with a basis {ei}i∈I , we have

B(H) ⊂ L(H) ⊂MI(C)
where L(H) is the algebra of all linear operators T : H → H, and L(H) ⊂ MI(C) is the
correspondence T →M obtained via the usual linear algebra formulae, namely:

T (x) =Mx , Mij =< Tej, ei >

In infinite dimensions, none of the above two inclusions is an equality.

Proof. This is something straightforward, the idea being as follows:

(1) The fact that we have indeed an algebra, satisfying the product condition in the
statement, follows from the following estimates, which are all elementary:

||S + T || ≤ ||S||+ ||T ||
||λT || = |λ| · ||T ||
||ST || ≤ ||S|| · ||T ||

(2) Regarding now the completness assertion, if {Tn} ⊂ B(H) is Cauchy then {Tnx}
is Cauchy for any x ∈ H, so we can define the limit T = limn→∞ Tn by setting:

Tx = lim
n→∞

Tnx
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Let us first check that the application x→ Tx is linear. We have:

T (x+ y) = lim
n→∞

Tn(x+ y)

= lim
n→∞

Tn(x) + Tn(y)

= lim
n→∞

Tn(x) + lim
n→∞

Tn(y)

= T (x) + T (y)

Similarly, we have T (λx) = λT (x), and we conclude that T ∈ L(H).

(3) With this done, it remains to prove now that we have T ∈ B(H), and that Tn → T
in norm. For this purpose, observe that we have:

||Tn − Tm|| ≤ ε , ∀n,m ≥ N =⇒ ||Tnx− Tmx|| ≤ ε , ∀||x|| = 1 , ∀n,m ≥ N

=⇒ ||Tnx− Tx|| ≤ ε , ∀||x|| = 1 , ∀n ≥ N

=⇒ ||TNx− Tx|| ≤ ε , ∀||x|| = 1

=⇒ ||TN − T || ≤ ε

But this gives both T ∈ B(H), and TN → T in norm, and we are done.

(4) Regarding the embeddings, the correspondence T →M in the statement is indeed
linear, and its kernel is {0}, so we have indeed an embedding as follows, as claimed:

L(H) ⊂MI(C)

In finite dimensions we have an isomorphism, because any M ∈ MN(C) determines
an operator T : CN → CN , given by < Tej, ei >= Mij. However, in infinite dimensions,
we have matrices not producing operators, as for instance the all-one matrix.

(5) As for the examples of linear operators which are not bounded, these are more
complicated, coming from logic, and we will not need them in what follows. □

Finally, as a third and last basic result regarding the operators, we will need:

Theorem 3.9. Each operator T ∈ B(H) has an adjoint T ∗ ∈ B(H), given by:

< Tx, y >=< x, T ∗y >

The operation T → T ∗ is antilinear, antimultiplicative, involutive, and satisfies:

||T || = ||T ∗|| , ||TT ∗|| = ||T ||2

When H comes with a basis {ei}i∈I , the operation T → T ∗ corresponds to

(M∗)ij =M ji

at the level of the associated matrices M ∈MI(C).
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Proof. This is standard too, and can be proved in 3 steps, as follows:

(1) The existence of the adjoint operator T ∗, given by the formula in the statement,
comes from the fact that the function φ(x) =< Tx, y > being a linear map H → C, we
must have a formula as follows, for a certain vector T ∗y ∈ H:

φ(x) =< x, T ∗y >

Moreover, since this vector is unique, T ∗ is unique too, and we have as well:

(S + T )∗ = S∗ + T ∗

(λT )∗ = λ̄T ∗

(ST )∗ = T ∗S∗

(T ∗)∗ = T

Observe also that we have indeed T ∗ ∈ B(H), because:

||T || = sup
||x||=1

sup
||y||=1

< Tx, y >

= sup
||y||=1

sup
||x||=1

< x, T ∗y >

= ||T ∗||
(2) Regarding now ||TT ∗|| = ||T ||2, which is a key formula, observe that we have:

||TT ∗|| ≤ ||T || · ||T ∗|| = ||T ||2

On the other hand, we have as well the following estimate:

||T ||2 = sup
||x||=1

| < Tx, Tx > |

= sup
||x||=1

| < x, T ∗Tx > |

≤ ||T ∗T ||
By replacing T → T ∗ we obtain from this ||T ||2 ≤ ||TT ∗||, as desired.
(3) Finally, when H comes with a basis, the formula < Tx, y >=< x, T ∗y > applied

with x = ei, y = ej gives the formula (M∗)ij =M ji in the statement. □

Let us discuss now the diagonalization problem for the operators T ∈ B(H), in analogy
with the diagonalization problem for the usual matrices A ∈MN(C). We first have:

Definition 3.10. The spectrum of an operator T ∈ B(H) is the set

σ(T ) =
{
λ ∈ C

∣∣∣T − λ ̸∈ B(H)−1
}

where B(H)−1 ⊂ B(H) is the set of invertible operators.
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As a basic example, in the finite dimensional case, H = CN , the spectrum of a usual
matrix A ∈ MN(C) is the collection of its eigenvalues, taken without multiplicities. We
will see many other examples. In general, the spectrum has the following properties:

Proposition 3.11. The spectrum of T ∈ B(H) contains the eigenvalue set

ε(T ) =
{
λ ∈ C

∣∣∣ ker(T − λ) ̸= {0}}
and ε(T ) ⊂ σ(T ) is an equality in finite dimensions, but not in infinite dimensions.

Proof. We have several assertions here, the idea being as follows:

(1) First of all, the eigenvalue set is indeed the one in the statement, because Tx = λx
tells us precisely that T − λ must be not injective. The fact that we have ε(T ) ⊂ σ(T ) is
clear as well, because if T − λ is not injective, it is not bijective.

(2) In finite dimensions we have ε(T ) = σ(T ), because T − λ is injective if and only if
it is bijective, with the boundedness of the inverse being automatic.

(3) In infinite dimensions we can assumeH = l2(N), and the shift operator S(ei) = ei+1

is injective but not surjective. Thus 0 ∈ σ(T )− ε(T ). □

Philosophically, the best way of thinking at this is as follows: the numbers λ /∈ σ(T )
are good, because we can invert T − λ, the numbers λ ∈ σ(T )− ε(T ) are bad, because so
they are, and the eigenvalues λ ∈ ε(T ) are evil. Welcome to operator theory.

Let us develop now some general theory. Here is a first basic result regarding the
spectra, inspired from what happens in finite dimensions, and which shows that things
do not necessarily extend without troubles to the infinite dimensional setting:

Theorem 3.12. We have the following formula, valid for any operators S, T :

σ(ST ) ∪ {0} = σ(TS) ∪ {0}
In finite dimensions we have σ(ST ) = σ(TS), but this fails in infinite dimensions.

Proof. There are several assertions here, the idea being as follows:

(1) Let us first prove the main assertion, stating that σ(ST ), σ(TS) coincide outside
0. We first prove that we have the following implication:

1 /∈ σ(ST ) =⇒ 1 /∈ σ(TS)
Assume indeed that 1− ST is invertible, with inverse denoted R:

R = (1− ST )−1

We have then the following formulae, relating our variables R, S, T :

RST = STR = R− 1
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By using RST = R− 1, we have the following computation:

(1 + TRS)(1− TS) = 1 + TRS − TS − TRSTS
= 1 + TRS − TS − TRS + TS

= 1

A similar computation, using STR = R− 1, shows that we have:

(1− TS)(1 + TRS) = 1

Thus 1 − TS is invertible, with inverse 1 + TRS, which proves our claim. Now by
multiplying by scalars, we deduce that for any λ ∈ C− {0} we have, as desired:

λ /∈ σ(ST ) =⇒ λ /∈ σ(TS)
(2) Regarding now the counterexample to the formula σ(ST ) = σ(TS), in general, let

us take S to be the shift on H = L2(N), given by the following formula:

S(ei) = ei+1

As for T , we can take it to be the adjoint of S, which is the following operator:

S∗(ei) =

{
ei−1 if i > 0

0 if i = 0

Let us compose now these two operators. In one sense, we have:

S∗S = 1 =⇒ 0 /∈ σ(SS∗)

In the other sense, however, the situation is different, as follows:

SS∗ = Proj(e⊥0 ) =⇒ 0 ∈ σ(SS∗)

Thus, the spectra do not match on 0, and we have our counterexample, as desired. □

Let us develop now some systematic theory for the computation of the spectra, based
on what we know about the eigenvalues of the usual complex matrices. As a first result,
which is well-known for the usual matrices, and extends well, we have:

Theorem 3.13. We have the “rational functional calculus” formula

σ(f(T )) = f(σ(T ))

valid for any rational function f ∈ C(X) having poles outside σ(T ).

Proof. This can be proved in two steps, as follows:

(1) Assume first that our rational function f ∈ C(X) is a usual polynomial P ∈ C[X].
We pick a scalar λ ∈ C, and we decompose the polynomial P − λ, as follows:

P (X)− λ = c(X − r1) . . . (X − rn)
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We have then the following equivalences, which give the result:

λ /∈ σ(P (T )) ⇐⇒ P (T )− λ ∈ B(H)−1

⇐⇒ c(T − r1) . . . (T − rn) ∈ B(H)−1

⇐⇒ T − r1, . . . , T − rn ∈ B(H)−1

⇐⇒ r1, . . . , rn /∈ σ(T )
⇐⇒ λ /∈ P (σ(T ))

(2) In general now, we pick a scalar λ ∈ C, we write f = P/Q, and we set F = P−λQ.
By using what we found in (1), for this polynomial F ∈ C[X], we obtain:

λ ∈ σ(f(T )) ⇐⇒ F (T ) /∈ B(H)−1

⇐⇒ 0 ∈ σ(F (T ))
⇐⇒ 0 ∈ F (σ(T ))
⇐⇒ ∃µ ∈ σ(T ), F (µ) = 0

⇐⇒ λ ∈ f(σ(T ))
Thus, we are led to the formula in the statement. □

As a first application of the above methods, we have the following key result:

Theorem 3.14. The following happen:

(1) For a unitary operator, U∗ = U−1, we have σ(U) ⊂ T.
(2) For a self-adjoint operator, T = T ∗, we have σ(T ) ⊂ R.

Proof. This is something quite tricky, based on Theorem 3.13, as follows:

(1) Assuming U∗ = U−1, we have the following norm computation:

||U || =
√
||UU∗|| =

√
1 = 1

Now if we denote by D the unit disk, we obtain from this:

σ(U) ⊂ D

On the other hand, once again by using U∗ = U−1, we have as well:

||U−1|| = ||U∗|| = ||U || = 1

Thus, as before with D being the unit disk in the complex plane, we have:

σ(U−1) ⊂ D

Now by using Theorem 3.13, we obtain σ(U) ⊂ D ∩D−1 = T, as desired.
(2) Consider the following rational function, depending on a parameter r ∈ R:

f(z) =
z + ir

z − ir
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Then for r >> 0 the operator f(T ) is well-defined, and we have:(
T + ir

T − ir

)∗

=
T − ir
T + ir

=

(
T + ir

T − ir

)−1

Thus f(T ) is unitary, and by (1) we have σ(T ) ⊂ f−1(T) = R, as desired. □

In order to formulate our next result, we will need the following notion:

Definition 3.15. Given an operator T ∈ B(H), its spectral radius

ρ(T ) ∈
[
0, ||T ||

]
is the radius of the smallest disk centered at 0 containing σ(T ).

Now with this notion in hand, we have the following key result:

Theorem 3.16. The spectral radius of an operator T ∈ B(H) is given by

ρ(T ) = lim
n→∞

||T n||1/n

and in this formula, we can replace the limit by an inf.

Proof. We have several things to be proved, the idea being as follows:

(1) Our first claim is that the numbers un = ||T n||1/n satisfy:

(n+m)un+m ≤ nun +mum

Indeed, we have the following estimate, using the Young inequality ab ≤ ap/p+ bq/q,
with exponents p = (n+m)/n and q = (n+m)/m:

un+m = ||T n+m||1/(n+m)

≤ ||T n||1/(n+m)||Tm||1/(n+m)

≤ ||T n||1/n · n

n+m
+ ||Tm||1/m · m

n+m

=
nun +mum
n+m

(2) Our second claim is that the second assertion holds, namely:

lim
n→∞

||T n||1/n = inf
n
||T n||1/n

For this purpose, we just need the inequality found in (1). Indeed, fix m ≥ 1, let
n ≥ 1, and write n = lm+ r with 0 ≤ r ≤ m− 1. By using twice uab ≤ ub, we get:

un ≤
1

n
(lmulm + rur) ≤ um +

r

n
u1

It follows that we have lim supn un ≤ um, which proves our claim.
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(3) Summarizing, we are left with proving the main formula, which is as follows, and
with the remark that we already know that the sequence on the right converges:

ρ(T ) = lim
n→∞

||T n||1/n

In one sense, we can use the polynomial calculus formula σ(T n) = σ(T )n. Indeed, this
gives the following estimate, valid for any n, as desired:

ρ(T ) = sup
λ∈σ(T )

|λ|

= sup
ρ∈σ(T )n

|ρ|1/n

= sup
ρ∈σ(Tn)

|ρ|1/n

= ρ(T n)1/n

≤ ||T n||1/n

(4) For the reverse inequality, we fix a number ρ > ρ(T ), and we want to prove that
we have ρ ≥ limn→∞ ||T n||1/n. By using the Cauchy formula, we have:

1

2πi

∫
|z|=ρ

zn

z − T
dz =

1

2πi

∫
|z|=ρ

∞∑
k=0

zn−k−1T k dz

=
∞∑
k=0

1

2πi

(∫
|z|=ρ

zn−k−1dz

)
T k

=
∞∑
k=0

δn,k+1T
k

= T n−1

By applying the norm we obtain from this formula:

||T n−1|| ≤ 1

2π

∫
|z|=ρ

∣∣∣∣∣∣∣∣ zn

z − T

∣∣∣∣∣∣∣∣ dz
≤ ρn · sup

|z|=ρ

∣∣∣∣∣∣∣∣ 1

z − T

∣∣∣∣∣∣∣∣
Since the sup does not depend on n, by taking n-th roots, we obtain in the limit:

ρ ≥ lim
n→∞

||T n||1/n

Now recall that ρ was by definition an arbitrary number satisfying ρ > ρ(T ). Thus, we
have proved the reverse inequality, and we are led to the conclusion in the statement. □

In the case of the normal elements, we have the following finer result:
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Theorem 3.17. The spectral radius of a normal element,

TT ∗ = T ∗T

is equal to its norm.

Proof. We can proceed in two steps, as follows:

Step 1. In the case T = T ∗ we have ||T n|| = ||T ||n for any exponent of the form

n = 2k, by using the formula ||TT ∗|| = ||T ||2, and by taking n-th roots we get:

ρ(T ) ≥ ||T ||

Thus, we are done with the self-adjoint case, with the result ρ(T ) = ||T ||.

Step 2. In the general normal case TT ∗ = T ∗T we have T n(T n)∗ = (TT ∗)n, and by
using this, along with the result from Step 1, applied to TT ∗, we obtain:

ρ(T ) = lim
n→∞

||T n||1/n

=
√

lim
n→∞

||T n(T n)∗||1/n

=
√

lim
n→∞

||(TT ∗)n||1/n

=
√
ρ(TT ∗)

=
√
||T ||2

= ||T ||

Thus, we are led to the conclusion in the statement. □

It is possible to further build on the above, in a quite straightforward, but long and
technical way, as to have in the end a spectral theorem for the normal operators:

Theorem 3.18. The following happen:

(1) Any self-adjoint operator, T = T ∗, is diagonalizable.
(2) More generally, any normal operator, TT ∗ = T ∗T , is diagonalizable.
(3) In fact, any family {Ti} of commuting normal operators is diagonalizable.

Proof. This is certainly a tough theorem, with (1,2,3) coming by generalizing the
Spectral Theorem, in its various incarnations, for the usual matrices M ∈MN(C). □

So, this was for the basics of operator theory, extending the basics of linear algebra.
For more on all this, including full proofs for certain things in the above, you can check
any book labeled functional analysis, or operator theory, or operator algebras, with a
good reference here being the functional analysis book by Lax [66].
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3c. Quantum mechanics

We are now ready for axiomatizing quantum mechanics. Following Heisenberg and
Schrödinger, and then especially Dirac, who did the axiomatization work, we have:

Axioms 3.19. In quantum mechanics the states of the system are vectors of a Hilbert
space H, and the observables of the system are linear operators

T : H → H

which can be densely defined, and are taken self-adjoint, T = T ∗. The average value of
such an observable T , evaluated on a state ξ ∈ H, is given by:

< T >=< Tξ, ξ >

In the context of the Schrödinger mechanics of the hydrogen atom, the Hilbert space is the
space H = L2(R3) where the wave function ψ lives, and we have

< T >=

∫
R3

T (ψ) · ψ̄ dx

which is our previous “sandwiching” formula, with the operators

x , −ih
m
∇ , −ih∇ , −h

2∆

2m
, −h

2∆

2m
+ V

representing the position, speed, momentum, kinetic energy, and total energy.

In other words, we are doing here two things. First, we are declaring by axiom that our
previous “sandwiching” formula holds true, and with this having all sorts of interesting
consequences, already discussed before. And second, we are raising the possibility for
other quantum mechanical systems, more complicated, to be described as well by the
mathematics of the operators on a certain Hilbert space H, as above.

3d. Uncertainty principle

As a first result of our new theory, we have:

Theorem 3.20 (Heisenberg). We have the following uncertainty principle,

σS · σT ≥
∣∣∣∣< [S, T ] >

2

∣∣∣∣
regarding the variances of any two observables S, T . In particular, we have

σx · σp ≥
h

2
implying that you cannot measure position and momentum at the same time.

Proof. This follows indeed by doing some mathematics with operators and their
commutators, and for details here, we refer for instance to Griffiths [43]. □



64 3. QUANTUM MECHANICS

The above uncertainty principle, which is as old as quantum mechanics, is something
quite surprising, that you can love or not. There are two schools of thought here, of Bohr
and Einstein, and for more on all this, you can check the book by Kumar [59].

3e. Exercises

Exercises:

Exercise 3.21.

Exercise 3.22.

Exercise 3.23.

Exercise 3.24.

Exercise 3.25.

Exercise 3.26.

Exercise 3.27.

Exercise 3.28.

Bonus exercise.



CHAPTER 4

Hydrogen atom

4a. Spherical coordinates

Moving ahead towards hydrogen, let us assume that V is the usual quadratic Coulomb
potential of the proton. This potential is rotationally invariant, and it is convenient to
use spherical coordinates, which are as follows, with s ∈ [0, π] and t ∈ [0, 2π]:


x = r cos s

y = r sin s cos t

z = r sin s sin t

We first must reformulate the Schrödinger equation in spherical coordinates. And for
this purpose, we will need a well-known, scary computation, as follows:

Theorem 4.1. The Laplace operator in spherical coordinates is:

∆ =
1

r2
· d
dr

(
r2 · d

dr

)
+

1

r2 sin s
· d
ds

(
sin s · d

ds

)
+

1

r2 sin2 s
· d

2

dt2

Proof. There are several proofs here, a short, elementary one being as follows:

(1) Let us first see how ∆ behaves under a change of coordinates {xi} → {yi}, in
arbitrary N dimensions. Our starting point is the chain rule for derivatives:

d

dxi
=
∑
j

d

dyj
· dyj
dxi

65
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By using this rule, then Leibnitz for products, then again this rule, we obtain:

d2f

dx2i
=

∑
j

d

dxi

(
df

dyj
· dyj
dxi

)
=

∑
j

d

dxi

(
df

dyj

)
· dyj
dxi

+
df

dyj
· d
dxi

(
dyj
dxi

)

=
∑
j

(∑
k

d

dyk
· dyk
dxi

)(
df

dyj

)
· dyj
dxi

+
df

dyj
· d

2yj
dx2i

=
∑
jk

d2f

dykdyj
· dyk
dxi
· dyj
dxi

+
∑
j

df

dyj
· d

2yj
dx2i

(2) Now by summing over i, we obtain the following formula, with A being the deriv-
ative of x→ y, that is to say, the matrix of partial derivatives dyi/dxj:

∆f =
∑
ijk

d2f

dykdyj
· dyk
dxi
· dyj
dxi

+
∑
ij

df

dyj
· d

2yj
dx2i

=
∑
ijk

AkiAji
d2f

dykdyj
+
∑
ij

d2yj
dx2i
· df
dyj

=
∑
jk

(AAt)jk
d2f

dykdyj
+
∑
j

∆(yj)
df

dyj

(3) So, this will be the formula that we will need. Observe that this formula can be
further compacted as follows, with all the notations being self-explanatory:

∆f = Tr(AAtHy(f))+ < ∆(y),∇y(f) >

(4) Getting now to spherical coordinates, (x, y, z) → (r, s, t), the derivative of the
inverse, obtained by differentiating x, y, z with respect to r, s, t, is given by:

A−1 =

 cos s −r sin s 0
sin s cos t r cos s cos t −r sin s sin t
sin s sin t r cos s sin t r sin s cos t


The product (A−1)tA−1 of the transpose of this matrix with itself is then: cos s sin s cos t sin s sin t
−r sin s r cos s cos t r cos s sin t

0 −r sin s sin t r sin s cos t

 cos s −r sin s 0
sin s cos t r cos s cos t −r sin s sin t
sin s sin t r cos s sin t r sin s cos t


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But everything simplifies here, and we have the following remarkable formula, which
by the way is something very useful, worth to be memorized:

(A−1)tA−1 =

1 0 0
0 r2 0
0 0 r2 sin2 s


Now by inverting, we obtain the following formula, in relation with the above:

AAt =

1 0 0
0 1/r2 0
0 0 1/(r2 sin2 s)


(5) Let us compute now the Laplacian of r, s, t. We first have the following formula,

that we will use many times in what follows, and is worth to be memorized:

dr

dx
=

d

dx

√
x2 + y2 + z2

=
1

2
· 2x√

x2 + y2 + z2

=
x

r

Of course the same computation works for y, z too, and we therefore have:

dr

dx
=
x

r
,

dr

dy
=
y

r
,

dr

dz
=
z

r

(6) By using the above formulae, twice, we can compute the Laplacian of r:

∆(r) = ∆
(√

x2 + y2 + z2
)

=
d

dx

(x
r

)
+

d

dy

(y
r

)
+

d

dz

(z
r

)
=

r2 − x2

r3
+
r2 − y2

r3
+
r2 − z2

r3

=
2

r
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(7) In what regards now s, the computation here goes as follows:

∆(s) = ∆
(
arccos

(x
r

))
=

d

dx

(
−
√
r2 − x2
r2

)
+

d

dy

(
xy

r2
√
r2 − x2

)
+

d

dz

(
xz

r2
√
r2 − x2

)
=

2x
√
r2 − x2
r4

+
r2(z2 − 2y2) + 2x2y2

r4
√
r2 − x2

+
r2(y2 − 2z2) + 2x2z2

r4
√
r2 − x2

=
2x
√
r2 − x2
r4

+
x(2x2 − r2)
r4
√
r2 − x2

=
x

r2
√
r2 − x2

=
cos s

r2 sin s

(8) Finally, in what regards t, the computation here goes as follows:

∆(t) = ∆

(
arctan

(
z

y

))
=

d

dx
(0) +

d

dy

(
− z

y2 + z2

)
+

d

dz

(
y

y2 + z2

)
= 0− 2yz

(y2 + z2)2
+

2yz

(y2 + z2)2

= 0

(9) We can now plug the data from (4) and (6,7,8) in the general formula that we
found in (2) above, and we obtain in this way:

∆f =
d2f

dr2
+

1

r2
· d

2f

ds2
+

1

r2 sin2 s
· d

2f

dt2
+

2

r
· df
dr

+
cos s

r2 sin s
· df
ds

=
2

r
· df
dr

+
d2f

dr2
+

cos s

r2 sin s
· df
ds

+
1

r2
· d

2f

ds2
+

1

r2 sin2 s
· d

2f

dt2

=
1

r2
· d
dr

(
r2 · df

dr

)
+

1

r2 sin s
· d
ds

(
sin s · df

ds

)
+

1

r2 sin2 s
· d

2f

dt2

Thus, we are led to the formula in the statement. □

We can now reformulate the Schrödinger equation in spherical coordinates, and then
separate the variables, which leads to a radial and angular equation, as follows:
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Theorem 4.2. The time-independent Schrödinger equation in spherical coordinates
separates, for solutions of type ϕ = ρ(r)α(s, t), into two equations, as follows,

d

dr

(
r2 · dρ

dr

)
− 2mr2

h2
(V − E)ρ = Kρ

sin s · d
ds

(
sin s · dα

ds

)
+
d2α

dt2
= −K sin2 s · α

with K being a constant, called radial equation, and angular equation.

Proof. By using the formula in Theorem 4.1, the time-independent Schrödinger equa-
tion reformulates in spherical coordinates as follows:

(V − E)ϕ =
h2

2m

[
1

r2
· d
dr

(
r2 · dϕ

dr

)
+

1

r2 sin s
· d
ds

(
sin s · dϕ

ds

)
+

1

r2 sin2 s
· d

2ϕ

dt2

]
Let us look now for separable solutions for this latter equation, consisting of a radial

part and an angular part, as in the statement, namely:

ϕ(r, s, t) = ρ(r)α(s, t)

By plugging this function into our equation, we obtain:

(V − E)ρα =
h2

2m

[
α

r2
· d
dr

(
r2 · dρ

dr

)
+

ρ

r2 sin s
· d
ds

(
sin s · dα

ds

)
+

ρ

r2 sin2 s
· d

2α

dt2

]
In order to solve this equation, we will do two manipulations. First, by multiplying

everything by 2mr2/(h2ρα), this equation takes the following more convenient form:

2mr2

h2
(V − E) = 1

ρ
· d
dr

(
r2 · dρ

dr

)
+

1

α sin s
· d
ds

(
sin s · dα

ds

)
+

1

α sin2 s
· d

2α

dt2

Now observe that by moving the radial terms to the left, and the angular terms to the
right, this latter equation can be written as follows:

2mr2

h2
(V − E)− 1

ρ
· d
dr

(
r2 · dρ

dr

)
=

1

α sin2 s

[
sin s · d

ds

(
sin s · dα

ds

)
+
d2α

dt2

]
Since this latter equation is now separated between radial and angular variables, both

sides must be equal to a certain constant −K, as follows:

2mr2

h2
(V − E)− 1

ρ
· d
dr

(
r2 · dρ

dr

)
= −K

1

α sin2 s

[
sin s · d

ds

(
sin s · dα

ds

)
+
d2α

dt2

]
= −K

But this leads to the conclusion in the statement. □
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4b. Angular equation

Let us first study the angular equation, and this for reasons that will become clear
later, the idea being that this equation forces the constantK to be of the formK = l(l+1)
with l ∈ N, which can be used afterwards in the study of the radial equation.

The study will be quite long. We first have the following result:

Proposition 4.3. The angular equation that we found before, namely

sin s · d
ds

(
sin s · dα

ds

)
+
d2α

dt2
= −K sin2 s · α

separates, for solutions of type α = σ(s)θ(t), into two equations, as follows,

1

θ
· d

2θ

dt2
= −m2

sin s

σ
· d
ds

(
sin s · dσ

ds

)
+K sin2 s = m2

with m being a constant, called azimuthal equation, and polar equation.

Proof. This is something elementary, the idea being as follows:

(1) Before anything, for such questions, we need to have a better understanding of the
angles s, t, and the differences between them. So, recall that these angles come from:

x = r cos s

y = r sin s cos t

z = r sin s sin t

To be more precise, here r ∈ [0,∞) is the radius, s ∈ [0, π] is the polar angle, and
t ∈ [0, 2π] is the azimuthal angle. Be said in passing, there are several conventions and
notations here, and the above ones, that we use here, come from the general ones in N
dimensions, because further coordinates can be easily added, in the obvious way.

(2) Getting back now to our question, by plugging α = σ(s)θ(t) into the angular
equation, we obtain:

sin s · θ · d
ds

(
sin s · dσ

ds

)
+ σ · d

2θ

dt2
= −K sin2 s · σθ

By dividing everything by σθ, this equation can be written as follows:

−1

θ
· d

2θ

dt2
=

sin s

σ
· d
ds

(
sin s · dσ

ds

)
+K sin2 s
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Since the variables are separated, we must have, for a certain constant m:

1

θ
· d

2θ

dt2
= −m2

sin s

σ
· d
ds

(
sin s · dσ

ds

)
+K sin2 s = m2

Thus, we are led to the conclusion in the statement. □

Regarding the azimuthal equation, things here are quickly settled, as follows:

Proposition 4.4. The solutions of the azimuthal equation, namely

1

θ
· d

2θ

dt2
= −m2

are the functions as follows, with a, b ∈ C being parameters,

θ(t) = aeimt + be−imt

and with only the case m ∈ Z being acceptable, on physical grounds.

Proof. The first assertion is clear, because we have a second order equation, and
two obvious solutions for it, e±imt, and then their linear combinations, and that’s all.
Regarding the last assertion, the point here is that by using θ(t) = θ(t + 2π), which is a
natural physical assumption on the wave function, we are led to m ∈ Z, as stated. □

We are now about to solve the angular equation, with only the polar equation remain-
ing to be studied. However, in practice, this polar equation is 10 times more difficult that
everything what we did so far, and so please be patient. We first have:

Proposition 4.5. The polar equation that we found before, namely

sin s

σ
· d
ds

(
sin s · dσ

ds

)
+K sin2 s = m2

with m ∈ Z, translates via σ(s) = f(cos s) into the following equation,

(1− x2)f ′′(x)− 2xf ′(x) =

(
m2

1− x2
−K

)
f(x)

where x = cos s, called Legendre equation.

Proof. Let us first do a number of manipulations on our equation, before making
the change of variables. By multiplying by σ, our equation becomes:

sin s · d
ds

(
sin s · dσ

ds

)
=
(
m2 −K sin2 s

)
σ

By differentiating at left, this equation becomes:

sin s (cos s · σ′ + sin s · σ′′) =
(
m2 −K sin2 s

)
σ
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Finally, by dividing everything by sin2 s, our equation becomes:

σ′′ +
cos s

sin s
· σ′ =

(
m2

sin2 s
−K

)
σ

Now let us set σ(s) = f(cos s). With this change of variables, we have:

σ = f(cos s)

σ′ = − sin s · f ′(cos s)

σ′′ = − cos s · f ′(cos s) + sin2 s · f ′′(cos s)

By plugging this data, our radial equation becomes:

sin2 s · f ′′(cos s)− 2 cos s · f ′(cos s) =

(
m2

sin2 s
−K

)
f(cos s)

Now with x = cos s, which is our new variable, this equation reads:

(1− x2)f ′′(x)− 2xf ′(x) =

(
m2

1− x2
−K

)
f(x)

But this is the Legendre equation, as stated. □

Here comes now the difficult point. We have the following non-trivial result:

Theorem 4.6. The solutions of the Legendre equation, namely

(1− x2)f ′′(x)− 2xf ′(x) =

(
m2

1− x2
−K

)
f(x)

can be explicitely computed, via complicated math, and only the case

K = l(l + 1) : l ∈ N

is acceptable, on physical grounds.

Proof. The first part is something quite complicated, involving the hypergeometric
functions 2F1, that you don’t want to hear about, believe me. As for the second part,
analysis and physical speculations, this is something not trivial either. □

So, what to do? We will not fight with such extreme questions, and instead we will
go very slowly, constructing from scratch the solutions which are “acceptable”, with full
details. And in what regards their uniqueness, well, we will refer to Theorem 4.6, whose
proof can be certainly found somewhere, if you are really interested in that.

In order to construct the solutions, let us start with an extremely basic and fundamen-
tal problem. We have seen in chapter 3 that all Hilbert spaces of type L2(X) with X ⊂ R
are separable, the reason behind this being the fact that we can start with the Weier-
strass basis {xl}, and then orthogonalize by Gram-Schmidt. However, as also mentioned
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in chapter 3, the Gram-Schmidt orthogonalization, while certainly being something that
works in theory, is something quite complicated, if you want to do it explicitly.

Time now to understand this. For the simplest compact space X ⊂ R, or unit ball of
R if you prefer, which is the interval [−1, 1], this problem can be solved as follows:

Theorem 4.7. The orthonormal basis of L2[−1, 1] obtained by starting with the Weier-
strass basis {xl}, and doing Gram-Schmidt, is the family of polynomials {Pl}, with each
Pl being of degree l, and with positive leading coefficient, subject to:∫ 1

−1

Pk(x)Pl(x) dx = δkl

These polynomials, called Legendre polynomials, satisfy the equation

(1− x2)P ′′
l (x)− 2xP ′

l (x) + l(l + 1)Pl(x) = 0

which is the Legendre equation at m = 0, and with K = l(l + 1). Moreover,

Pl(x) =
1

2ll!

(
d

dx

)l

(x2 − 1)l

which is called the Rodrigues formula for Legendre polynomials.

Proof. As a first observation, we are not lost somewhere in abstract math, because
of the occurrence of the Legendre equation. As for the proof, this goes as follows:

(1) The first assertion is clear, because the Gram-Schmidt procedure applied to the
Weierstrass basis {xl} can only lead to a certain family of polynomials {Pl}, with each Pl

being of degree l, and also unique, if we assume that it has positive leading coefficient,
with this ± choice being needed, as usual, at each step of Gram-Schmidt.

(2) In order to have now an idea about these beasts, here are the first few of them,
which can be obtained say via a straightforward application of Gram-Schmidt:

P0 = 1

P1 = x

P2 = (3x2 − 1)/2

P3 = (5x3 − 3x)/2

P4 = (35x4 − 30x2 + 3)/8

P5 = (63x5 − 70x3 + 15x)/8

(3) Now thinking about what Gram-Schmidt does, this is certainly something by
recurrence. And examining the recurrence leads to the Legendre equation, as stated.

(4) As for the Rodrigues formula, by uniqueness no need to try to understand where
this formula comes from, and we have two choices here, either by verifying that {Pl} is
orthonormal, or by verifying the Legendre equation. And both methods work. □
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Going ahead now, we can solve in fact the Legendre equation at any m, as follows:

Proposition 4.8. The general Legendre equation, with parameters m ∈ N and K =
l(l + 1) with l ∈ N, namely

(1− x2)f ′′(x)− 2xf ′(x) =

(
m2

1− x2
− l(l + 1)

)
f(x)

is solved by the following functions, called Legendre functions,

Pm
l (x) = (−1)m(1− x2)m/2

(
d

dx

)m

Pl(x)

where Pl are as before the Legendre polynomials. Also, we have

Pm
l (x) = (−1)m (1− x2)m/2

2ll!

(
d

dx

)l+m

(x2 − 1)l

called Rodrigues formula for Legendre functions.

Proof. The first assertion is something elementary, coming by differentiatingm times
the Legendre equation, which leads to the general Legendre equation. As for the second
assertion, this follows from the Rodrigues formula for Legendre polynomials. □

And this is the end of our study. Eventually. By putting together all the above results,
the last 6 of them to be more precise, we are led to the following conclusion:

Theorem 4.9. The separated solutions α = σ(s)θ(t) of the angular equation,

sin s · d
ds

(
sin s · dα

ds

)
+
d2α

dt2
= −K sin2 s · α

are given by the following formulae, where l ∈ N is such that K = l(l + 1),

σ(s) = Pm
l (cos s) , θ(t) = eimt

and where m ∈ Z is a constant, and with Pm
l being the Legendre function,

Pm
l (x) = (−1)m(1− x2)m/2

(
d

dx

)m

Pl(x)

where Pl are the Legendre polynomials, given by the following formula:

Pl(x) =
1

2ll!

(
d

dx

)l

(x2 − 1)l

These solutions α = σ(s)θ(t) are called spherical harmonics.

Proof. This follows indeed from all the above, and with the comment that everything
is taken up to linear combinations. We will normalize the wave function later. □
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4c. Hydrogen atom

In order now to finish our study, and eventually get to conclusions about hydrogen, it
remains to solve the radial equation, for the Coulomb potential V of the proton.

Let us begin with some generalities, valid for any time-independent potential V . As
a first manipulation on the radial equation, we have:

Proposition 4.10. The radial equation, written with K = l(l + 1),

(r2ρ′)′ − 2mr2

h2
(V − E)ρ = l(l + 1)ρ

takes with ρ = u/r the following form, called modified radial equation,

Eu = − h2

2m
· u′′ +

(
V +

h2l(l + 1)

2mr2

)
u

which is a time-independent 1D Schrödinger equation.

Proof. With ρ = u/r as in the statement, we have:

ρ =
u

r
, ρ′ =

u′r − u
r2

, (r2ρ′)′ = u′′r

By plugging this data into the radial equation, this becomes:

u′′r − 2mr

h2
(V − E)u =

l(l + 1)

r
· u

By multiplying everything by h2/(2mr), this latter equation becomes:

h2

2m
· u′′ − (V − E)u =

h2l(l + 1)

2mr2
· u

But this gives the formula in the statement. As for the interpretation, as time-
independent 1D Schrödinger equation, this is clear as well, and with the comment here
that the term added to the potential V is some sort of centrifugal term. □

Let us now, eventually, get to hydrogen. Here V is the usual quadratic Coulomb
potential of the proton, given by the following formula, with e being as usual the charge
of the electron, and ε0 being the electric permittivity of free space:

V = − e2

4πε0
· 1
r

However, before getting into math, we must first discuss units. Remember from elec-
trodynamics the story of the Coulomb constant K, which eventually gets replaced by
ε0 = 1/(4πK), due to the Gauss law, and the Maxwell equations? Well, the Maxwell
equations being now obsolete, not to say wrong, in quantum mechanics, time to welcome
back the Coulomb constant K. Our new conventions will be as follows:
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Conventions 4.11. We welcome back the Coulomb constant K, given by:

K = 8.987 551 7923(14)× 109

Also, we welcome as new quantity for energy the electron volt eV,

1eV = e = 1.602 176 634× 10−19

with this being regarded, as per our SI philosophy, as a constant, not a unit.

As usual, lots of fun here with units. In what regards the Coulomb constant K and
minus the charge of the electron e, these are given by the formulae in the statement, with
the formula of e being exact, as per latest SI regulations. As for the electron volt eV, this
is by definition the amount of kinetic energy gained by an electron accelerating from rest
through an electric potential difference of 1 volt in vacuum.

Getting back now to the Coulomb potential of the proton, we have here:

Fact 4.12. The Coulomb potential of the hydrogen atom proton, acting on the electron
by attraction, is given according to the Coulomb law by

V = −Kep
r

where p is the charge of the proton, and K is the Coulomb constant. In practice however
we have p ≃ e up to order 10−7, and so our formula can be written as

V ≃ −Ke
2

r
and we will use this latter formula, and with = sign, for simplifying.

Getting back now to math, it remains to solve the modified radial equation, for the
above potential V . And we have here the following result, which does not exactly solve
this radial equation, but provides us instead with something far better, namely the proof
of the original claim by Bohr, which was at the origin of everything:

Theorem 4.13 (Schrödinger). In the case of the hydrogen atom, where V is the
Coulomb potential of the proton, the modified radial equation, which reads

Eu = − h2

2m
· u′′ +

(
−Ke

2

r
+
h2l(l + 1)

2mr2

)
u

leads to the Bohr formula for allowed energies,

En = −m
2

(
Ke2

h

)2

· 1
n2

with n ∈ N, the binding energy being

E1 ≃ −2.177× 10−18

with means E1 ≃ −13.591 eV.
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Proof. This is again something non-trivial, and we will be following Griffiths [43],
with some details missing. The idea is as follows:

(1) By dividing our modified radial equation by E, this becomes:

− h2

2mE
· u′′ =

(
1 +

Ke2

Er
− h2l(l + 1)

2mEr2

)
u

In terms of α =
√
−2mE/h, this equation takes the following form:

u′′

α2
=

(
1 +

Ke2

Er
+
l(l + 1)

(αr)2

)
u

In terms of the new variable p = αr, this latter equation reads:

u′′ =

(
1 +

αKe2

Ep
+
l(l + 1)

p2

)
u

Now let us introduce a new constant S for our problem, as follows:

S = −αKe
2

E

In terms of this new constant, our equation reads:

u′′ =

(
1− S

p
+
l(l + 1)

p2

)
u

(2) The idea will be that of looking for a solution written as a power series, but before
that, we must “peel off” the asymptotic behavior. Which is something that can be done,
of course, heuristically. With p → ∞ we are led to u′′ = u, and ignoring the solution
u = ep which blows up, our approximate asymptotic solution is:

u ∼ e−p

Similarly, with p→ 0 we are led to u′′ = l(l+1)u/p2, and ignoring the solution u = p−l

which blows up, our approximate asymptotic solution is:

u ∼ pl+1

(3) The above heuristic considerations suggest writing our function u as follows:

u = pl+1e−pv

So, let us do this. In terms of v, we have the following formula:

u′ = ple−p [(l + 1− p)v + pv′]

Differentiating a second time gives the following formula:

u′′ = ple−p

[(
l(l + 1)

p
− 2l − 2 + p

)
v + 2(l + 1− p)v′ + pv′′

]
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Thus the radial equation, as modified in (1) above, reads:

pv′′ + 2(l + 1− p)v′ + (S − 2(l + 1))v = 0

(4) We will be looking for a solution v appearing as a power series:

v =
∞∑
j=0

cjp
j

But our equation leads to the following recurrence formula for the coefficients:

cj+1 =
2(j + l + 1)− S

(j + 1)(j + 2l + 2)
· cj

(5) We are in principle done, but we still must check that, with this choice for the
coefficients cj, our solution v, or rather our solution u, does not blow up. And the whole
point is here. Indeed, at j >> 0 our recurrence formula reads, approximately:

cj+1 ≃
2cj
j

But, surprisingly, this leads to v ≃ c0e
2p, and so to u ≃ c0p

l+1ep, which blows up.

(6) As a conclusion, the only possibility for u not to blow up is that where the series
defining v terminates at some point. Thus, we must have for a certain index j:

2(j + l + 1) = S

In other words, we must have, for a certain integer n > l:

S = 2n

(7) We are almost there. Recall from (1) above that S was defined as follows:

S = −αKe
2

E
: α =

√
−2mE
h

Thus, we have the following formula for the square of S:

S2 =
α2K2e4

E2
= −2mE

h2
· K

2e4

E2
= −2mK2e4

h2E

Now by using the formula S = 2n from (6), the energy E must be of the form:

E = −2mK2e4

h2S2
= −mK

2e4

2h2n2

Calling this energy En, depending on n ∈ N, we have, as claimed:

En = −m
2

(
Ke2

h

)2

· 1
n2
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(8) Thus, we proved the Bohr formula. Regarding now the numerics, the data is as
follows, with all formulae being of course approximative:

K = 8.988× 109 , e = 1.602× 10−19

h = 1.055× 10−34 , m = 9.109× 10−31

We obtain succesively that we have the following formulae:

Ke2

h
=

8.988× 1.6022

1.055
× 109 × 10−38

10−34
= 2.186× 106(

Ke2

h

)2

= 2.1862 × 1012 = 4.779× 1012

m

2

(
Ke2

h

)2

=
9.109× 4.779

2
× 1012−31 = 2.177× 10−18

Thus E1 is as in the statement. In electron volts now, the figure is:

E1

e
=

2.177× 10−18

1.602× 10−19
= 13.591

Thus, we are led to the conclusion in the statement. □

As a first remark, all this agrees with the Rydberg formula, due to:

Theorem 4.14. The Rydberg constant for hydrogen is given by

R = − E1

h0c

where E1 is the Bohr binding energy, and the Rydberg formula itself, namely

1

λn1n2

= R

(
1

n2
1

− 1

n2
2

)
simply reads, via the energy formula in Theorem 4.13,

1

λn1n2

=
En2 − En1

h0c

which is in agreement with the Planck formula E = h0c/λ.

Proof. Here the first assertion is something numeric, coming from the fact that the
formula in the statement gives, when evaluated, the Rydberg constant:

R =
−E1

h0c
=

2.177× 10−18

6.626× 10−34 × 2.998× 108
= 1.096× 107

As a consequence, and passed now what the experiments exactly say, we can define
the Rydberg constant of hydrogen abstractly, by the following formula:

R =
m

2h0c

(
Ke2

h

)2
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Regarding now the second assertion, by dividing R = −E1/(h0c) by any number of
type n2 we obtain, according to the energy convention in Theorem 4.13:

R

n2
= −En

h0c

But these are exactly the numbers which are subject to substraction in the Rydberg
formula, and so we are led to the conclusion in the statement. □

4d. Wave functions

With the above spectacular applications explained, let us go back now to our study
of the Schrödinger equation, done throughout this chapter. Our conclusions are:

Theorem 4.15. The wave functions of the hydrogen atom are the following functions,
labelled by three quantum numbers, n, l,m,

ϕnlm(r, s, t) = ρnl(r)α
m
l (s, t)

where ρnl(r) = pl+1e−pv(p)/r with p = αr as before, with the coefficients of v subject to

cj+1 =
2(j + l + 1− n)

(j + 1)(j + 2l + 2)
· cj

and αm
l (s, t) being the spherical harmonics found before.

Proof. This follows indeed by putting together all the results obtained so far, and
with the remark that everything is up to the normalization of the wave function. □

In what regards the main wave function, that of the ground state, we have:

Theorem 4.16. With the hydrogen atom in its ground state, the wave function is

ϕ100(r, s, t) =
1√
πa3

e−r/a

where a = 1/α is the inverse of the parameter appearing in our computations above,

α =

√
−2mE
h

called Bohr radius of the hydrogen atom. This Bohr radius is the mean distance between
the electron and the proton, in the ground state, and is given by the formula

a =
h2

mKe2

which numerically means a ≃ 5.291× 10−11.
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Proof. There are several things going on here, as follows:

(1) According to the various formulae in the proof of Theorem 4.13, taken at n = 1,
the parameter α appearing in the computations there is given by:

α =

√
−2mE
h

=
1

h
·m · Ke

2

h
=
mKe2

h2

Thus, the inverse α = 1/a is indeed given by the formula in the statement.

(2) Regarding the wave function, according to Theorem 4.15 this consists of:

ρ10(r) =
2e−r/a

√
a3

, α0
0(s, t) =

1

2
√
π

By making the product, we obtain the formula of ϕ100 in the statement.

(3) But this formula of ϕ100 shows in particular that the Bohr radius a is indeed the
mean distance between the electron and the proton, in the ground state.

(4) Finally, in what regards the numerics, these are as follows:

a =
1.0552 × 10−68

9.109× 10−31 × 8.988× 109 × 1.6022 × 10−38
= 5.297× 10−11

Thus, we are led to the conclusions in the statement. □

Getting back now to the general setting of Theorem 4.15, the point is that the poly-
nomials v(p) appearing there are well-known objects in mathematics, as follows:

Proposition 4.17. The polynomials v(p) are given by the formula

v(p) = L2l+1
n−l−1(p)

where the polynomials on the right, called associated Laguerre polynomials, are given by

Lp
q(x) = (−1)p

(
d

dx

)p

Lp+q(x)

with Lp+q being the Laguerre polynomials, given by the following formula:

Lq(x) =
ex

q!

(
d

dx

)q

(e−xxq)

Proof. The story here is very similar to that of the Legendre polynomials. Consider
the Hilbert space H = L2[0,∞), with the following scalar product on it:

< f, g >=

∫ ∞

0

f(x)g(x)e−x dx

(1) The orthogonal basis obtained by applying Gram-Schmidt to the Weierstrass basis
{xq} is then the basis formed by the Laguerre polynomials {Lq}.
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(2) We have the explicit formula for Lq in the statement, which is analogous to the
Rodrigues formula for the Legendre polynomials.

(3) The first assertion follows from the fact that the coefficients of the associated
Laguerre polynomials satisfy the equation for the coefficients of v(p).

(4) Alternatively, the first assertion follows as well by using an equation for the La-
guerre polynomials, which is very similar to the Legendre equation. □

With the above result in hand, we can now improve Theorem 4.15, as follows:

Theorem 4.18. The wave functions of the hydrogen atom are given by

ϕnlm(r, s, t) =

√(
2

na

)3
(n− l − 1)!

2n(n+ l)!
e−r/na

(
2r

na

)l

L2l+1
n−l−1

(
2r

na

)
αm
l (s, t)

with αm
l (s, t) being the spherical harmonics found before.

Proof. This follows indeed by putting together what we have, namely Theorem 4.15
and Proposition 4.17, and then doing some remaining work, concerning the normalization
of the wave function, which leads to the normalization factor appearing above. □

And isn’t this beautiful. If you want to impress your nerdy friends, or even a random
customer in a pub, this is surely the formula that you want to show to them.

4e. Exercises

Exercises:

Exercise 4.19.

Exercise 4.20.

Exercise 4.21.

Exercise 4.22.

Exercise 4.23.

Exercise 4.24.

Exercise 4.25.

Exercise 4.26.

Bonus exercise.



Part II

Fine structure



When it all comes caving in
And you can’t be brave again
When ever you need a friend

Need a friend, call me



CHAPTER 5

Electron spin

5a. Discussion

We have seen that a theory of quantum mechanics can be developed, as to solve the
hydrogen atom, at least approximately, along the lines suggested by Bohr. Our goal now
will be to fine-tune these results, with a number of corrections that are needed, and also
extend them to the case of heavier atoms, fully realizing Bohr’s program.

We will of course need, learn and develop a lot of further quantum mechanics, of quite
general type, in order to achieve this goal, following Pauli and Dirac, then Bose and Fermi,
and many others. This further quantum mechanics can be of course used for doing all
sorts of other things as well, and more on this later in this book.

In order to get started, the idea is that we have two basic corrections to our solution
of the hydrogen atom. First we have a relativistic correction, which looks like something
within our range, that can only be understood and computed. But then we have as well
a spin-related correction, involving the notion of spin, which is totally new to us.

So, as a first question that we would like to solve, we have:

Question 5.1. What is the electron spin? That is, what experiments prove that the
electron spins? And then, importantly, what is the mathematics of the spin?

Talking mathematics first, the spin, if that beast exists indeed, is certainly not visible
on the wave function ψ, because this wave function deals with position only. Thus, at
least we know one thing, once the spin observed, we will most likely have to incorporate
it into our theory by using the matrix mechanics formalism of Heisenberg.

Talking physics now, the main experiment leading to spin is as follows:

85
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Fact 5.2 (Stern-Gerlach experiment). When passing a beam of electrons through an
inhomogeneous magnetic field, these electrons get deflected 50− 50 up or down,

spin up

⋆

22

,,
spin down

with the only possible explanation being that the electrons have a spin, which is 50 − 50
up or down. The same happens with a beam of neutral atoms, and a magnetic field strong
enough, to be put at blame being the statistics of the spins of the constituents.

So, this was the experiment, and what we call here “up” and “down” is of course the
binary choice of the spin orientation, a bit as for usual, round objects in R3. That is, our
Earth turns to the right, and in physics we would say that is has “spin up”. Was the
Earth turning to the left, we would say in physics that is has “spin down”.

Of course, our presentation above is over-simplified. The original experiment was with
neutral particles, namely silver atoms, and this in order to avoid the Lorentz force, which
will curve the trajectory of any charged particle, to a much greater extent than the spin
up/down deviation to be observed. Later experiments, with charged particles, used some
extra apparatus, namely a suitable electric field, positioned after the electromagnet in the
above diagram, designed to cancel the effects of the Lorentz force.

As an important observation, the Stern-Gerlach experiment does not observe the ab-
solute, 3D spin up/down feature of the particles, but just a 1D component of it. However,
it is possible to cascade experiments, by sending each of the output beams into separate
Stern-Gerlach devices, and with these devices having various 3D orientations, and deduce
some further conclusions from this. We refer here to Feynman [35].

So long for the Stern-Gerlach experiment. Getting back now to theory and specula-
tions, as a first, innocent observation based on the above, we have:

Observation 5.3. A single electron has an interesting life even when fixed, because
it spins. Thus, no need for Heisenberg or Schrödinger for getting introduced to quantum
mechanics, you can just try to understand the mathematics of a fixed electron.

Moreover, as a cherry on the cake, as we will soon discover, the above-mentioned
mathematics is that of the 2× 2 complex matrices, which is at the same time something
elementary, and fascinating. Which, getting us now into philosophy, leads us into the
temptation of burying the physics, and talking right away about 2× 2 matrices.
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And shall we do this or not. Looking at the physics literature, there is a fair mess
in the treatment of spin. At one end, you have spin-centered books, taking Observation
5.3 literally, and starting the book with a long, not to say never-ending, discussion about
spin. Then you have quantum information related books, such as Bengtsson-Życzkowski
[15], Nielsen-Chuang [67], Peres [70], which by a certain desire of brevity and efficiency,
rapidly bury the physics of spin, and talk instead about 2 × 2 matrices. And then you
have well-known and loved books such as Feynman [35], Griffiths [43], Weinberg [93],
presenting all sorts of rather incomprehensible explanations regarding the spin, which
vary with authors’ taste, for eventually ending, of course, with 2× 2 matrices.

And so again, what shall we do, talk about 2× 2 matrices or not. Not clear. But, as
usual in such difficult situations, we can always ask the cat. And cat says:

Cat 5.4. Be honest, and say what you have to say. And don’t worry about your young
readers, they will survive.

This sounds wise as usual, thanks cat. So, we will follow this advice. But let me
get first a huge mug of coffee, or rather huge mug of expresso, because fighting with the
physics of the spin with bare hands is something which is reputed impossible.

To start with, and as a matter of reframing our discussion, and having something fresh
to rely upon, let us demolish Observation 5.3 with:

Fact 5.5. Observation 5.3 is something toxic. You can’t really measure spin, and
build a serious theory on that alone. What you need to do is to observe spin in context,
via its tiny corrections to quantum mechanics. More specifically, spin is an order

α2 ≃ 1

10, 000

correction to quantum mechanics, and more precisely to the Bohr energy formula, with
the spin correction there appearing as a complement to the relativistic correction. And
with this being the correct, healthy and constructive definition of spin.

In short, we are getting here back to the beginning, general quantum mechanics, with
the main conclusion of the Stern-Gerlach experiment, namely “spin exists”, recorded. Of
course it is possible to say a bit more from Stern-Gerlach, namely recording the scattering
angle, and doing some math there, but this basically does not advance us much. So better
forget about Stern-Gerlach, and get back to general quantum mechanics.

The point now is that, with the above fact in hand, not only we are into truth, as
we should be, but also we start getting an idea on how to reach to the mathematics of
the spin. To be more precise, we should just think relativity, in the context of quantum
mechanics, and with a bit of luck, all this thinking will lead us into spin.
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In practice now, all this is doable, but a bit complicated, and was done by Klein,
Gordon, Dirac a few years after Uhlenbeck, Goudsmit, Pauli came up with their theory
of spin. So, let us briefly explain this idea, which is very beautiful, and we’ll come later
to Uhlenbeck, Goudsmit, Pauli. Consider the Schrödinger equation for a free electron:

ihψ̇ = − h

2m
∆ψ

Relativity theory dictates that the 3 space coordinates and the 1 time coordinate
should be on the same footing, and so that we should replace ψ̇ by something of type ψ̈.
But this can be done by replacing the kinetic energy operator T = ∆/2m by its relativistic
analogue, and also by invoking the invariance under Lorentz transformations, and we are
led in this way to the following equation, called Klein-Gordon equation:(

∆− 1

c2
· d

2

dt2

)
ψ =

m2c2

h2
ψ

The point now, which is the key one, discovered by Dirac short after Klein and Gordon,
is that it is possible to extract the square root of the Klein-Gordon operator:

∆− 1

c2
· d

2

dt2
=

(
Pd

dx
+
Qd

dy
+
Rd

dz
+
i

c
· Sd
dt

)2

Indeed, we need for this purpose matrices P,Q,R, S which anticommute, AB = −BA,
and whose squares equal one, A2 = 1. But such beasts can be found in M4(C), and then
we can take the formal square root of the Klein-Gordon equation:(

Pd

dx
+
Qd

dy
+
Rd

dz
+
i

c
· Sd
dt

)
ψ =

mc

h
ψ

And the thing now, which is truly remarkable, is that this latter equation, called Dirac
equation, does work indeed, in the sense that it is a true equation of physics, improving
the Schrödinger equation. And a closer look at all this reveals afterwards that the fine
structure of hydrogen, comprising the relativistic correction and the spin correction, can
be understood in this way, leading to a clear mathematics of the spin.

All this is very beautiful, and leads us into:

Thought 5.6. Our criticism from Fact 5.5 was probably too harsh, relativity and spin
alike being probably more than a mere

α2 ≃ 1

10, 000

order correction to quantum mechanics. And this is because the Dirac equation, which is
of first order, is something simpler than the Schrödinger equation.
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In fact, we are now again into Observation 5.3, and this time armed with some solid
math, and more specifically with a first-grade weapon, the Dirac equation. Which starts
to be a bit tiring, yes I know, looks like we’re changing our opinion about spin faster than
Madonna is changing her shoes. But blame the cat, he came with his advice Cat 5.4.

Moving ahead now, and still following Cat 5.4, after some more thinking, the Dirac
equation remains however something a bit speculative, or perhaps something too ad-
vanced, and it would be much better, at least to start with, to forget about relativity and
abstractions, and have something more solid, regarding the spin.

And fortunately, there is a second way of viewing things, very elementary, inspired
from our study of classical mechanics, or even from the movement of our good old Earth,
which rotates and spins at the same time, which is as follows:

Philosophy 5.7. In analogy with classical mechanics, spin should be something of
same nature as angular momentum, coming on top of it.

And good news, this will be our final, stable philosophy. Eventually.

To be more precise, following Uhlenbeck, Goudsmit, Pauli, we will first talk angular
momentum, then we will axiomatize spin as being the quantity which naturally “comple-
ments” the angular momentum. Then we will talk about 2× 2 matrices, and review the
fine structure corrections to hydrogen as well. And finally, regarding the Klein-Gordon
and Dirac equations, we will be back to them in chapter 7 below.

5b. Rotating objects

Getting started now, let us first talk about rotating objects in the context of classical
mechanics. We will need the following notion, that we well know from before:

Definition 5.8. The vector product of two vectors in R3 is given by

x× y = ||x|| · ||y|| · sin θ · n
where n ∈ R3 with n ⊥ x, y and ||n|| = 1 is constructed using the right-hand rule:

↑x×y

←x

↙y

Alternatively, in usual vertical linear algebra notation for all vectors,x1x2
x3

×
y1y2
y3

 =

x2y3 − x3y2x3y1 − x1y3
x1y2 − x2y1


the rule being that of computing 2× 2 determinants, and adding a middle sign.
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Obviously, this definition is something quite subtle, and also something very annoying,
because you always need this, and always forget the formula. Here are my personal
methods. With the first definition, what I always remember is that:

||x× y|| ∼ ||x||, ||y|| , x× x = 0 , e1 × e2 = e3

So, here’s how it works. We are looking for a vector x×y whose length is proportional
to those of x, y. But the second formula tells us that the angle θ between x, y must be
involved via 0 → 0, and so the factor can only be sin θ. And with this we are almost
there, it’s just a matter of choosing the orientation, and this comes from e1 × e2 = e3.

As with the second definition, that I like the most, what I remember here is simply:∣∣∣∣∣∣
1 x1 y1
1 x2 y2
1 x3 y3

∣∣∣∣∣∣ =?

Indeed, when trying to compute this determinant, by developing over the first column,
what you get as coefficients are the entries of x× y. And with the good middle sign.

In practice now, in order to get familiar with the vector products, nothing better than
doing some classical mechanics. We have here the following key result:

Theorem 5.9. In the gravitational 2-body problem, the angular momentum

J = x× p
with p = mv being the usual momentum, is conserved.

Proof. There are several things to be said here, the idea being as follows:

(1) First of all the usual momentum, p = mv, is not conserved, because the simplest
solution is the circular motion, where the moment gets turned around. But this suggests
precisely that, in order to fix the lack of conservation of the momentum p, what we have
to do is to make a vector product with the position x. Leading to J , as above.

(2) Regarding now the proof, consider indeed a particle m moving under the gravita-
tional force of a particle M , assumed, as usual, to be fixed at 0. By using the fact that
for two proportional vectors, p ∼ q, we have p× q = 0, we obtain:

J̇ = ẋ× p+ x× ṗ
= v ×mv + x×ma
= m(v × v + x× a)
= m(0 + 0)

= 0

Now since the derivative of J vanishes, this quantity is constant, as stated. □
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While the above principle looks like something quite trivial, the mathematics behind
it is quite interesting, and has several notable consequences, as follows:

Theorem 5.10. In the context of a 2-body problem, the following happen:

(1) The fact that the direction of J is fixed tells us that the trajectory of one body
with respect to the other lies in a plane.

(2) The fact that the magnitude of J is fixed tells us that the Kepler 2 law holds,
namely that we have same areas sweeped by Ox over the same times.

Proof. This follows indeed from Theorem 5.9, as follows:

(1) We have by definition J = m(x× v), and since a vector product is orthogonal on
both the vectors it comes from, we deduce from this that we have:

J ⊥ x, v

But this can be written as follows, with J⊥ standing for the plane orthogonal to J :

x, v ∈ J⊥

Now since J is fixed by Theorem 5.9, we conclude that both x, v, and in particular
the position x, and so the whole trajectory, lie in this fixed plane J⊥, as claimed.

(2) Conversely now, forget about Theorem 5.9, and assume that the trajectory lies in
a certain plane E. Thus x ∈ E, and by differentiating we have v ∈ E too, and so x, v ∈ E.
Thus E = J⊥, and so J = E⊥, so the direction of J is fixed, as claimed.

(3) Regarding now the last assertion, we know from standard classical mechanics, as
formulated by Newton, that the Kepler 2 law is more or less equivalent to the formula
θ̇ = λ/r2. However, the derivation of θ̇ = λ/r2 was something tricky, and what we want
to prove now is that this appears as a simple consequence of ||J || = constant.

(4) In order to to so, let us compute J , according to its definition J = x × p, but in
polar coordinates, which will change everything. Since p = mẋ, we have:

J = r

cos θ
sin θ
0

×m
ṙ cos θ − r sin θ · θ̇ṙ sin θ + r cos θ · θ̇

0


Now recall from the definition of the vector product that we have:ab

0

×
cd
0

 =

 0
0

ad− bc


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Thus J is a vector of the above form, with its last component being:

Jz = rm

∣∣∣∣cos θ ṙ cos θ − r sin θ · θ̇
sin θ ṙ sin θ + r cos θ · θ̇

∣∣∣∣
= rm · r(cos2 θ + sin2 θ)θ̇

= r2m · θ̇
(5) Now with the above formula in hand, our claim is that the magnitude ||J || is

constant precisely when θ̇ = λ/r2, for some λ ∈ R. Indeed, up to the obvious fact that
the orientation of J is a binary parameter, who cannot just switch like that, let us just
agree on this, knowing J is the same as knowing Jz, and is also the same as knowing ||J ||.
Thus, our claim is proved, and this leads to the conclusion in the statement. □

As another basic application of the vector products, still staying with classical me-
chanics, we have all sorts of useful formulae regarding rotating frames. We first have:

Theorem 5.11. Assume that a 3D body rotates along an axis, with angular speed w.
For a fixed point of the body, with position vector x, the usual 3D speed is

v = ω × x
where ω = wn, with n unit vector pointing North. When the point moves on the body

V = ẋ+ ω × x
is its speed computed by an inertial observer O on the rotation axis.

Proof. We have two assertions here, both requiring some 3D thinking, as follows:

(1) Assuming that the point is fixed, the magnitude of ω × x is the good one, due to
the following computation, with r being the distance from the point to the axis:

||ω × x|| = w||x|| sin t = wr = ||v||
As for the orientation of ω × x, this is the good one as well, because the North pole

rule used above amounts in applying the right-hand rule for finding n, and so ω, and this
right-hand rule was precisely the one used in defining the vector products ×.

(2) Next, when the point moves on the body, the inertial observer O can compute its
speed by using a frame (u1, u2, u3) which rotates with the body, as follows:

V = ẋ1u1 + ẋ2u2 + ẋ3u3 + x1u̇1 + x2u̇2 + x3u̇3

= ẋ+ (x1 · ω × u1 + x2 · ω × u2 + x3 · ω × u3)
= ẋ+ w × (x1u1 + x2u2 + x3u3)

= ẋ+ ω × x
Thus, we are led to the conclusions in the statement. □

In what regards now the acceleration, the result, which is famous, is as follows:
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Theorem 5.12. Assuming as before that a 3D body rotates along an axis, the accel-
eration of a moving point on the body, computed by O as before, is given by

A = a+ 2ω × v + ω × (ω × x)

with ω = wn being as before. In this formula the second term is called Coriolis accelera-
tion, and the third term is called centripetal acceleration.

Proof. This comes by using twice the formulae in Theorem 5.11, as follows:

A = V̇ + ω × V
= (ẍ+ ω̇ × x+ ω × ẋ) + (ω × ẋ+ ω × (ω × x))
= ẍ+ ω × ẋ+ ω × ẋ+ ω × (ω × x)
= a+ 2ω × v + ω × (ω × x)

Thus, we are led to the conclusion in the statement. □

The truly famous result is actually the one regarding forces, obtained by multiplying
everything by a mass m, and writing things the other way around, as follows:

ma = mA− 2mω × v −mω × (ω × x)

Here the second term is called Coriolis force, and the third term is called centrifugal
force. These forces are both called apparent, or fictious, because they do not exist in the
inertial frame, but they exist however in the non-inertial frame of reference, as explained
above. And with of course the terms centrifugal and centripetal not to be messed up.

In fact, even more famous is the terrestrial application of all this, as follows:

Theorem 5.13. The acceleration of an object m subject to a force F is given by

ma = F −mg − 2mω × v −mω × (ω × x)

with g pointing upwards, and with the last terms being the Coriolis and centrifugal forces.

Proof. This follows indeed from the above discussion, by assuming that the acceler-
ation A there comes from the combined effect of a force F , and of the usual g. □

We refer to any standard undergraduate mechanics book, such as Feynman [33], Kibble
[57] or Taylor [90] for more on the above, including various numerics on what happens
here on Earth, the Foucault pendulum, history of all this, and many other things. Let
us just mention here, as a basic illustration for all this, that a rock dropped from 100m
deviates about 1cm from its intended target, due to the formula in Theorem 5.13.
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5c. Angular momentum

Back now to our quantum physics business, let us first talk about angular momentum,
and we will get to spin later. We will need the following basic result:

Proposition 5.14. The components of the position operator x = (x1, x2, x3) and
momentum operator p = −ih∇ satisfy the following relations,

[xi, xj] = [pi, pj] = 0

[xi, pj] = ihδij

where [a, b] = ab− ba, called canonical commutation relations.

Proof. All the above formulae are elementary, as follows:

(1) The components of the position operator x = (x1, x2, x3) obviously commute with
each other, xixj = xjxi, which makes their commutators vanish, [xi, xj] = 0.

(2) Regarding the momentum operator p = −ih∇, its components are as follows:

p1 = −ih ·
d

dx1
, p2 = −ih ·

d

dx2
, p3 = −ih ·

d

dx3

Since partial derivatives commute with each other, we obtain [pi, pj] = 0.

(3) It remains to prove the last formula, and we have here:

[xi, pj]f = (xipj − pjxi)f

= −ih
(
xi ·

df

dxj
− d

dxj
(xif)

)
= −ih

(
xi ·

df

dxj
− dxi
dxj
· f − xi ·

df

dxj

)
= ih · dxi

dxj
· f

= ihδij · f

Thus, we are led to the conclusion in the statement. □

The above might look a bit complicated, and the simplest way to remember it is
that “everyhing commutes”, that is, ab = ba, except for the coordinates and momenta
coordinates taken in the same direction, which are subject to the following rule:

xipi = pixi + ih

Getting now to angular momentum, it is convenient to change notation, with (x, y, z)
instead of (x1, x2, x3), due to the vector product involved, which will break the symmetry
between coordinates. We have the following result, to start with:
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Theorem 5.15. The components of the angular momentum operator

L = x× (−ih∇)
satisfy the following equations,

[Lx, Ly] = ihLz

[Ly, Lz] = ihLx

[Lz, Lx] = ihLy

called commutation relations for the angular momentum.

Proof. With the more familiar notation p = −ih∇ for momentum, or rather for the
associated operator, the components of the angular momentum operator are:

Lx = ypz − zpy
Ly = zpx − xpz
Lz = xpy − ypx

Let us prove the first commutation relation. We have:

[Lx, Ly] = [ypz − zpy, zpx − xpz]
= [ypz, zpx]− [ypz, xpz]− [zpy, zpx] + [zpy, xpz]

By heavily using the commutation relations from Proposition 5.14, we have:

[ypz, zpx] = ypzzpx − zpxypz = y(zpz − ih)px − zypxpz = −ihypx
[ypz, xpz] = ypzxpz − xpzypz = 0

[zpy, zpx] = zpyzpx − zpxzpy = 0

[zpy, xpz] = zpyxpz − xpzzpy = zxpypz − x(zpz − ih)py = ihxpy

We conclude that the commutator that we were computing is given by the following
formula, which is precisely the one in the statement:

[Lx, Ly] = −ihypx + ihxpy

= ih(xpy − ypx)
= ihLz

The proof of the other two commutation relations is similar, or can be simply obtained
by invoking the cyclic invariance x→ y → z → x of our problem, which cyclic invariance
is not broken by the vector product × used, and so can indeed be invoked. □

As an interesting consequence of Theorem 5.15, we have:

Proposition 5.16. The following operator, called square of angular momentum

L2 = L2
x + L2

y + L2
z

commutes with all 3 operators Lx, Ly, Lz.
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Proof. We have the following computation, to start with:

[L2, Lx] = (L2
x + L2

y + L2
z)Lx − Lx(L

2
x + L2

y + L2
z)

= L2
yLx + L2

zLx − LxL
2
y − LxL

2
z

= [L2
y, Lx] + [L2

z, Lx]

The first commutator can be computed with a trick, as follows:

[L2
y, Lx] = LyLyLx − LxLyLy

= LyLyLx − LyLxLy + LyLxLy − LxLyLy

= Ly[Ly, Lx] + [Ly, Lx]Ly

= Ly(−ihLz) + (−ihLz)Ly

= −ih(LyLz + LzLy)

The second commutator can be computed with the same trick, as follows:

[L2
z, Lx] = LzLzLx − LxLzLz

= LzLzLx − LzLxLz + LzLxLz − LxLzLz

= Lz[Lz, Lx] + [Lz, Lx]Lz

= Lz(ihLy) + (ihLy)Lz

= ih(LzLy + LyLz)

Now by summing we obtain the following commutation relation, as desired:

[L2, Lx] = 0

The proof of the other two commutation relations is similar, or we can simply invoke
here the cyclic symmetry argument from the end of the proof of Theorem 5.15. □

Let us discuss now the diagonalization of the momentum operators Lx, Ly, Lz. Since
these operators do not commute, we cannot hope for a joint diagonalization for them.
Thus, we must choose one of them, and for reasons that will become clear later, when
writing things in spherical coordinates, we will choose Lx.

In view of Proposition 5.16, this operator Lx does commute with L2, and so we can
hope for a joint diagonalization of L2, Lx. And, so is what happens:

Theorem 5.17. The operators L2, Lx diagonalize as

L2fm
l = h2l(l + 1)fm

l

Lxf
m
l = hmfm

l

where l ∈ N/2 and m = −l,−l + 1, . . . , l − 1, l.
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Proof. This is something quite long, the idea being as follows:

(1) For reasons that will become clear later on, let us introduce two operators as
follows, called raising and lowering operators:

L+ = Ly + iLz

L− = Ly − iLz

We will often deal with these operators at the same time, using the following notation:

L± = Ly ± iLz

(2) We have the following computation:

[Lx, L±] = [Lx, Ly]± i[Lx, Lz]

= ihLz ± i(−ihLy)

= h(iLz ± Ly)

= ±h(±iLz + Ly)

= ±hL±

(3) Our claim now is that L2f = λf , Lxf = µf imply:

L2(L±f) = λ(L±f)

Lx(L±f) = (µ± h)(L±f)

Indeed, the first formula follows from:

L2(L±f) = L±(L
2f)

= L±(λf)

= λ(L±f)

As for the second formula, this follows from:

Lx(L±f) = LxL±f

= (LxL± − L±Lx)f + L±Lxf

= ±hL±f + L±(µf)

= (µ± h)(L±f)

(4) Now in view of the formulae found in (3), the raising and lowering operators act on
the joint eigenfunctions of L2, Lx, by leaving the L2 eigenvalue unchanged, and by raising
and lowering the eigenvalue of Lx. But both this raising process and lowering process for
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the eigenvalue of Lx cannot go on forever, because of the following estimate:

λ = < L2 >

= < L2
x > + < L2

y > + < L2
z >

= µ2+ < L2
y > + < L2

z >

≥ µ2

(5) In order to see exactly how the raising and lowering processes terminate, we will
need some more computations. We have:

L±L∓ = (Ly ± iLz)(Ly ∓ iLz)

= L2
y + L2

z ∓ i(LyLz − LzLy)

= L2
y + L2

z ∓ i(ihLx)

= L2
y + L2

z ± hLx

= L2 − L2
x ± hLx

Thus, we have the following formula:

L2 = L±L∓ + L2
x ∓ hLx

Now assuming Lxf = hlf , at termination of the raising process, we have:

L2(f) = (L−L+ + L2
x + hLx)f

= (0 + h2l2 + h2l)f

= h2l(l + 1)f

Similarly, assuming Lxf = hl′f , at termination of the lowering process, we have:

L2(f) = (L+ − L− + L2
x − hLx)f

= (0 + h2l′2 − h2l′)f
= h2l′(l′ − 1)f

Thus l(l+ 1) = l′(l′− 1), and since l′ = l+ 1 is impossible, due to raising vs lowering,
we must have l′ = −l, and this leads to the conclusion in the statement.

(6) Finally, for being complete, the full and conceptual understanding of all the above
imperatively requires a certain cat climbing a certain ladder, and for full details here, and
for other things missing from the above proof, we refer to Griffiths [43]. □

Summarizing, we have a good theoretical understanding of the angular momentum.

Moving ahead now, still a lot of work left to be done. Our idea will be to write
everything in spherical coordinates, and find the eigenfunctions. We have here:
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Theorem 5.18. In spherical coordinates r, s, t we have

Lx = −ih
dt

Ly = ih

(
sin t

ds
+

cos s cos t

sin s
· 1
dt

)

Lz = −ih
(
cos t

ds
− cos s sin t

sin s
· 1
dt

)
and the spherical harmonics are joint eigenfunctions of L2, Lx.

Proof. We recall that, according to our usual, N -dimensional looking conventions,
the spherical coordinates are as follows, with r ∈ [0,∞) being the radius, s ∈ [0, π] being
the polar angle, and t ∈ [0, 2π] being the azimuthal angle:

x = r cos s

y = r sin s cos t

z = r sin s sin t

(1) We know that we have L = −ihx × ∇, so let us first compute ∇ in spherical
coordinates. We have here, according to the chain rule for derivatives:

∇ =

dr/dx ds/dx dt/dx
dr/dy ds/dy dt/dy
dr/dz ds/dz dt/dz

d/drd/ds
d/dt


=

dx/dr dy/dr dz/dr
dx/ds dy/ds dz/ds
dx/dt dy/dt dz/dt

−1d/drd/ds
d/dt


(2) On the other hand, we know from chapter 4 that we have:dx/dr dx/ds dx/dt

dy/dr dy/ds dy/dt
dz/dr dz/ds dz/dt

 =

 cos s −r sin s 0
sin s cos t r cos s cos t −r sin s sin t
sin s sin t r cos s sin t r sin s cos t


We also know from chapter 4 that this latter matrix, say A, satisfies:

AtA =

1 0 0
0 r2 0
0 0 r2 sin2 s


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Now if we call D the diagonal matrix on the right, we conclude that the matrix, say
B, appearing in the above formula of ∇ is given by:

B = (At)−1

= AD−1

=

 cos s −r sin s 0
sin s cos t r cos s cos t −r sin s sin t
sin s sin t r cos s sin t r sin s cos t

1 0 0
0 1/r2 0
0 0 1/(r2 sin2 s)


=

 cos s − sin s/r 0
sin s cos t cos s cos t/r − sin t/(r sin s)
sin s sin t cos s sin t/r cos t/(r sin s)


(3) Thus, the angular momentum operator that we are looking for, L = −ihx × ∇,

written more conveniently as L = −ihx/r × r∇, is given by:

L = −ih

 cos s
sin s cos t
sin s sin t

×
 r cos s − sin s 0
r sin s cos t cos s cos t − sin t/ sin s
r sin s sin t cos s sin t cos t/ sin s

d/drd/ds
d/dt


And computing now the vector product gives the formula for L in the statement.

(4) Now with our explicit formula for L in hand, we next find that the raising and
lowering operators are given by:

L± = ±he±it

(
d

ds
± i cos s

sin s
· 1
dt

)
Next, we find that these two operators satisfy the following formula:

L+L− = −h2
(
d2

ds2
+

cos s

sin s
· d
ds

+
cos2 s

sin2 s
· d

2

dt2
+ i

d

dt

)
And finally, by using this latter formula, we find that L2 is given by:

L2 = −h2
(

1

sin s
· d
ds

(
sin s · d

ds

)
+

1

sin2 s
· d

2

dt2

)
(5) With all these formulae in hand, we can now finish. The eigenfunction equation

for the above operator L2, with eigenvalue h2l(l + 1), is as follows:

−h2
(

1

sin s
· d
ds

(
sin s · d

ds

)
+

1

sin2 s
· d

2

dt2

)
f = h2l(l + 1)f

But this is precisely the angular equation from chapter 4. As for the eigenfunction
equation for the operator Lx, with eigenvalue hm, this is as follows:

−ih
dt
f = hmf
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But this latter equation is equivalent to the azimuthal equation, also from chapter 4.
Thus, we are dealing here with equations that we already know, and the solutions are the
spherical harmonics that we found in chapter 4, as claimed. □

So long for angular momentum. And even more magic in a moment, when talking
about spin. For more on all the above, we refer to Griffiths [43] or Weinberg [93].

5d. Electron spin

In order to talk now about spin, we will regard, a bit as in the classical mechanics
case, the spin and the angular momentum as being similar quantities. Thus, in analogy
with the basic equations for angular momentum, we should have:

Definition 5.19. The components of the spin operator are subject to

[Sx, Sy] = ihSz

[Sy, Sz] = ihSx

[Sz, Sx] = ihSy

called commutation relations for the spin operator.

What we did here, with these axioms, is of course a bit heuristic. But this is quite
reasonable, and for a more detailed version of the story, invoking rotational invariance
as for getting to the above equations, for the angular momentum, spin, or any kind
of “generalized angular momentum”, in some reasonable sense, we refer for instance to
Weinberg [93]. In what follows we will take Definition 5.19 as it is, and do some rotational
invariance work later, in chapter 7 below, directly in the relativistic framework.

The point now is that, with the above relations in hand, which are identical to the
commutation relations for the angular momentum, all the general results from the previous
section, based on that commutation relations, extend to our present setting, simply by
changing L into S everywhere. And in particular, we are led in this way to:

Theorem 5.20. We have the following diagonalization formulae

S2fm
s = h2s(s+ 1)fm

s

Sxf
m
s = hmfm

s

S±f
m
s = h

√
s(s+ 1)−m(m± 1) fm±1

s

involving the operators S2 = S2
x + S2

y + S2
z , Sx and S± = Sy ± iSz.

Proof. Here the first two formulae are something that we already know, from the
previous section, with L, j being replaced by S, s. As for the last formula, this is something
that we did not need, in the L, j context, but that we will need now. We want to compute
the constants Cm

s,± making work the raising and lowering formula, namely:

S±f
m
s = Cm

s,±f
m±1
s
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But this can be done by using S2 = S±S∓ + S2
x ∓ hSx and S∗

± = S∓, and we get:

Cm
s,+ = h

√
s(s+ 1)−m(m+ 1)

Cm
s,− = h

√
s(s+ 1)−m(m− 1)

Thus, we are led to the last formula in the statement, and we are done. □

In practice now, let us look for the simplest mathematical realization of spin. We
know from the Stern-Gerlach experiment that the spin is something binary, that can be
either up, or down. Thus, we are led, for fixed particles, to a quantum mechanics over
H = C2, with spin up and down being represented by the following two vectors:

e1 =

(
1

0

)
, e2 =

(
0

1

)
It remains now to see how the equations in Theorem 5.20 reformulate, in this H = C2

setting. But here, not many choices, and we are led to:

Definition 5.21. In the quantum mechanics of the spin, over H = C2, with

e1 =

(
1

0

)
, e2 =

(
0

1

)
being spin up and down, the spin is subject to the following equations, for f = e1, e2,

S2f = h2s(s+ 1)f

Sxf = hmff

S±f = h
√
s(s+ 1)−mf (mf ± 1) f̌

with parameters s = 1/2, me1 = 1/2, me2 = −1/2, and with {e1, e2} = {f, f̌}.

Here all the choices, and notably s = 1/2, are very natural in view of Theorem
5.20, because these are the choices providing a “minimal” realization of the equations in
Theorem 5.20, in the smallest possible number of dimensions, namely N = 2.

The point now is that the above questions can be solved, the result being:

Theorem 5.22. In the above H = C2 context, of the mechanics of a single, fixed
electron, the components of the normalized spin σ = 2S/h are as follows,

σx =

(
1 0
0 −1

)
, σy =

(
0 1
1 0

)
, σz =

(
0 −i
i 0

)
called Pauli matrices. In the general, dynamic context, where we already have a Hilbert
space H for the wave function, spin can be introduced by using the space

H ′ = H ⊗ C2

and using the above Pauli matrices for it, acting on the C2 part.
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Proof. The equations in Definition 5.21, written in full detail, are as follows:

S2

(
1

0

)
=

3h2

4

(
1

0

)
, S2

(
0

1

)
=

3h2

4

(
0

1

)
Sx

(
1

0

)
=
h

2

(
1

0

)
, Sx

(
0

1

)
= −h

2

(
0

1

)
S+

(
1

0

)
=

(
0

0

)
, S+

(
0

1

)
= h

(
1

0

)
S−

(
1

0

)
= h

(
0

1

)
, S−

(
0

1

)
=

(
0

0

)
Thus, we have the following formulae, for the various matrices involved:

S2 =
3h2

4

(
1 0
0 1

)
, Sx =

h

2

(
1 0
0 −1

)
S+ = h

(
0 1
0 0

)
, S− = h

(
0 0
1 0

)
In relation with what we want to prove, we have obtained the formula of Sx. Regarding

now the formulae of Sy, Sz, these follow by solving the following system:

S+ = Sy + iSz

S− = Sy − iSz

To be more precise, the computation for Sy goes as follows:

Sy =
S+ + S−

2
=
h

2

(
0 1
1 0

)
As for the computation for Sz, this goes as follows:

Sz =
S+ − S−

2i
=
h

2i

(
0 1
−1 0

)
=
h

2

(
0 −i
i 0

)
Thus, we are led to the conclusions in the statement. □

As a first consequence of the above, looking quite good, we have:

Fact 5.23. Electrons have spin 1/2.

This is motivated of course by the formula s = 1/2 in Definition 5.21, but this being
said, at least from the perspective of what we know so far about electrons, this does not
make much sense, logically speaking. Remember indeed that we’re still living under the
sword of Heisenberg’s uncertainty principle, and so the electrons themselves, and therefore
their spin too, remain rather mathematical objects, far away from concrete things like,
say planets in the Solar system, turning around the Sun and spinning. And also, there is
some unclarity with 1/2 vs ±1/2, because the spin can be up or down.
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This being said, some speculations are certainly possible. For instance the Pauli
matrices all square up to one, σ2

i = 1, and a well-known interpretation of this is that “it
takes 720◦ instead of the usual 360◦ to turn an electron back in place”, leading to the
conclusion that the spin of the electron is 360/720 = 1/2.

In any case, s = 1/2 for the electron is good to know, and we will heavily use this
formula in what follows, for all sorts of purposes. And we will talk about spin ̸= 1/2 too,
in Part III, with a general particle discussion, invloving bosons and fermions.

5e. Exercises

Exercises:

Exercise 5.24.

Exercise 5.25.

Exercise 5.26.

Exercise 5.27.

Exercise 5.28.

Exercise 5.29.

Exercise 5.30.

Exercise 5.31.

Bonus exercise.



CHAPTER 6

Fine structure

6a. Fine structure

What is next? All sorts of corrections to the Bohr formula that we found in chapter
4, due to various phenomena that we neglected in our computations, or rather in our
modeling of the problem, which can be both of electric and relativistic nature.

But before getting into that, which is something quite technical, let us first enjoy
what we found before in chapter 4, say by taking it as a final, exact result regarding the
hydrogen atom. As a first conclusion, of quite philosophical nature, we have:

Conclusion 6.1. The phenomenon of quantization appears, mathematically speak-
ing, from certain equations which generically blow up, and force the various separation
constants C ∈ R which appear to be integers, C ∈ N.

To be more precise, the phenomenon of quantization that we are talking about is of
course the Bohr energy one, allowing discrete energies only, En with n ∈ N, which is
the mother of everything, in quantum mechanics. Looking back at the proof of this fact,
separation constants C ∈ R which mysteriously became integers, C ∈ N, was indeed the
mathematical phenomenon behind this. Which appeared no less than 3 times:

(1) First when the azimuthal/polar separation parameter, denoted m2, turned to be
the square of an integer, m ∈ Z.

(2) Then when the radial/angular separation constant K turned to be of a similar
form, K = l(l + 1) with l ∈ N.

(3) And finally in the context of the radial equation, where the parameter S there
turned to be of the form S = 2n, with n ∈ N.

This is very nice, we have now a clear mathematical idea about why things are quan-
tized, in quantum mechanics. The 3 space coordinates and the 1 time coordinate, who
usually live in peace, get into fights when it comes to differential equations.

As another comment now, in our study we dismissed several times all sorts of solutions,
on various physical grounds, usually unacceptable blow up. But, at a more advanced level,
some of these solutions make sense of course, due to the following fact:
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Fact 6.2. The hydrogen atom is not the general 2-body problem in quantum mechan-
ics, but rather the case of confined, stable orbits. Some of the solutions which blow up
correspond to scattering, in the context of an electron/proton meeting.

Again, this is something a bit philosophical. In analogy with classical mechanics, what
we did is to solve the planetary motion problem. But things like comets and asteroids still
need to be investigated, for having a full theory. And which is something quite technical,
called “scattering theory”, that we will not get into here, in this book.

Back to work now, let us explain the series of corrections to the Schrödinger solution
to the hydrogen atom. We will focus on energy only, so let us start by recalling:

Theorem 6.3 (Schrödinger). The energy of the ϕnlm state of the hydrogen atom is
independent on the quantum numbers l,m, given by the Bohr formula

En = −α
2

n2
· mc

2

2
where α is a dimensionless constant, called fine structure constant, given by

α =
Ke2

hc
which in practice means α ≃ 1/137.

Proof. This is the Bohr energy formula that we know, proved by Schrödinger, and
reformulated in terms of Sommerfeld’s fine structure constant:

(1) We know from chapter 4 that we have the following formula, which can be written
as in the statement, by using the fine structure constant α:

En = −m
2

(
Ke2

h

)2

· 1
n2

(2) Observe now that our modified Bohr formula can be further reformulated as follows,
with Tc being the kinetic energy of the electron travelling at speed c:

En = −α
2

n2
· Tc

Thus α2, and so α too, is dimensionless, as being a quotient of energies.

(3) Let us doublecheck however this latter fact, the check being instructive. With
respect to the SI system that we use, the units for K, e, h, c are:

UK =
m3 · kg
s2 · C2

, Ue = C , Uh =
m2 · kg

s
, Uc =

m

s
Thus the units for the fine structure constant α are, as claimed:

Uα = UC · U2
e · U−1

h · U
−1
c =

m3 · kg
s2 · C2

· C2 · s

m2 · kg
· s
m

= 1
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(4) In what regards now the numerics, these are as follows:

α =
Ke2/h

c
≃ 2.186× 106

2.998× 108
= 7.291× 10−3 ≃ 1

137

Here we have used a standard estimate for Ke2/h, as in chapter 4. □

The fine structure constant α is a remarkable quantity, as obvious from the above,
and more on it in a moment. Among its other magic features, it manages well 2π factors.
Indeed, by using K = 1/(4πε0) and h = h0/2π, we can write this constant as:

α =
e2

2ε0h0c

Finally, let us record the complete official data for α and its inverse α−1:

α = 0.007 297 352 5693(11)

α−1 = 137.035 999 084(21)

As a final comment here, all this lengthy discussion about α might sound a bit like
mania, or mysticism. But wait for it. Sometimes soon α will be part of your life.

6b. Relativistic correction

Moving ahead now with corrections to Theorem 6.3, as a first goal, we would like to
perform a relativistic correction. And for this purpose, we must go back to relativity
theory, as discussed in the beginning of this book. So, as a continuation of the material
there, let us discuss what happens to momentum, mass and energy. We would like to fix
the momentum conservation equations for the plastic collisions, namely:

m = m1 +m2

mv = m1v1 +m2v2

However, this cannot really be done with bare hands, and by this meaning with math-
ematics only. But with some help from experiments, the conclusion is as follows:

Fact 6.4. When defining the relativistic mass of an object of rest mass m > 0, moving
at speed v, by the formula

M = γm : γ =
1√

1− v2/c2

this relativistic mass M , and the corresponding relativistic momentum P =Mv, are both
conserved during collisions.
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In other words, the situation here is a bit similar to that of the Galileo addition vs
Einstein addition for speeds. The collision equations given above are in fact low-speed
approximations of the correct, relativistic equations, which are as follows:

M =M1 +M2

Mv =M1v1 +M2v2

It remains now to discuss kinetic energy. You have certainly heard of the formula
E = mc2, which might actually well be on your T-shirt, now as you read this book, and
in this case here is the explanation for it, in relation with the above:

Theorem 6.5. The relativistic energy of an object of rest mass m > 0,

E =Mc2 : M = γm

which is conserved, as being a multiple of M , can be written as E = E + T , with

E = mc2

being its v = 0 component, called rest energy of m, and with

T = (1− γ)mc2 ≃ mv2

2

being called relativistic kinetic energy of m.

Proof. All this is a bit abstract, coming from Fact 6.4, as follows:

(1) Given an object of rest mass m > 0, consider its relativistic mass M = γm, as
appearing in Fact 6.4, and then consider the following quantity:

E =Mc2

We know from Fact 6.4 that the relativistic mass M is conserved, so E = Mc2 is
conserved too. In view of this, is makes somehow sense to call E energy. There is of
course no clear reason for doing that, but let’s just do it, and we’ll understand later.

(2) Let us compute E . This quantity is by definition given by:

E =Mc2 = γmc2 =
mc2√

1− v2/c2

Since 1/
√
1− x ≃ 1 + x/2 for x small, by calculus, we obtain, for v small:

E ≃ mc2
(
1 +

v2

2c2

)
= mc2 +

mv2

2

And, good news here, we recognize at right the kinetic energy of m.

(3) But this leads to the conclusions in the statement. Indeed, we are certainly dealing
with some sort of energies here, and so calling the above quantity E relativistic energy
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is legitimate, and calling E = mc2 rest energy is legitimate too. Finally, the difference
between these two energies T = E − E follows to be given by:

T = (1− γ)mc2 ≃ mv2

2

Thus, calling T relativistic kinetic energy is legitimate too, and we are done. □

Now back to our business, hydrogen atom and quantum mechanics, inspired by the
above, we have the following result, which is something non-trivial:

Theorem 6.6. There is a relativistic correction to be made to the Bohr energy En of
the state ϕnlm, depending on the quantum number l, given by

Enl =
α2En

n2

(
n

l + 1/2
− 3

4

)
coming by replacing the kinetic energy by the relativistic kinetic energy.

Proof. According to the Einstein considerations above, coming from relativity, the
relativistic kinetic energy is given by the following formula:

T =
p2

2m
− p4

8m3c2
+ . . .

The Schrödinger equation, based on T = p2/2m, must be therefore corrected with a
T = −p4/(8m3c2) term, and this leads to the above correction term Enl. □

6c. Magnetic moment

Equally non-trivial is the following correction, independent from the above one:

Theorem 6.7. There is a spin-related correction to be made to the Bohr energy En

of the state ϕnlm, depending on the number j = l ± 1/2, given by

Enj = −
α2En

n2
· n(j − l)
(l + 1/2)(j + 1/2)

coming from the torque of the proton on the magnetic moment of the electron.

Proof. As explained in chapter 5, the electron has a spin ±1/2, which is naturally
associated to the quantum number l, leading to the parameter j = l± 1/2. But, knowing
now that the electron has a spin, the proton which moves around it certainly acts on its
magnetic moment, and this leads to the above correction term Enj. □

So, these are the first two corrections to be made, and again, we refer to Feynman
[35], Griffiths [43], Weinberg [93] for details. Obviously we don’t quite know what we’re
doing here, but let us add now the above corrections to En, and see what we get. We
obtain in this way one of the most famous formulae in quantum mechanics, namely:
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Theorem 6.8. The energy levels of the hydrogen atom, taking into account the fine
structure coming from the relativistic and spin-related correction, are given by

Enj = En

[
1 +

α2

n2

(
n

j + 1/2
− 3

4

)]
with j = l ± 1/2 being as above, and with α being the fine structure constant.

Proof. We have the following computation, based on the above formulae:

Enl + Enj =
α2En

n2

(
n

l + 1/2
− 3

4
− n(j − l)

(l + 1/2)(j + 1/2)

)
=

α2En

n2

(
n

l + 1/2

(
1− j − l

j + 1/2

)
− 3

4

)
=

α2En

n2

(
n

j + 1/2
− 3

4

)
Thus the corrected formula of the energy is as follows:

Enj = En + Enl + Enj

= En +
α2En

n2

(
n

j + 1/2
− 3

4

)
We are therefore led to the conclusion in the statement. □

Summarizing, quantum mechanics is more complicated than what originally appears
from Schrödinger’s solution of the hydrogen atom. Which was something quite compli-
cated too, we must admit that. And the story is not over here, because on top of the
above fine structure correction, which is of order α2, we have afterwards the Lamb shift,
which is an order α3 correction, then the hyperfine splitting, and more.

As usual, we refer to Feynman [35], Griffiths [43], Weinberg [93] for more on all this.
In what concerns us, we will be back to such questions in chapters 7-8 below, directly at
the advanced level, following Feynman and others, who managed to find a global way of
viewing all the phenomena that can appear, corresponding to an infinite series in α.

To be more precise, that theory, called quantum electrodynamics (QED), is an ad-
vanced version of quantum mechanics, still used nowadays for any delicate computation.
Ironically, while providing an exact answer for the hydrogen atom, QED messes up things
too, because that exact answer is not exactly computable. More on this later.

More in detail now, and getting to technicalities, let us review the fine structure of
the hydrogen atom, with a proof for the following result, already announced above:
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Theorem 6.9. The energy levels of the hydrogen atom, taking into account the fine
structure coming from the relativistic and spin-related correction, are given by

Enj = En

[
1 +

α2

n2

(
n

j + 1/2
− 3

4

)]
with j = l ± 1/2 being as before, and with α being the fine structure constant.

Proof. We will be doing here something far more precise than what we did before,
but still with considerable gaps, namely the usage without proof of some methods from
perturbation theory, for which we refer to Griffiths [43], and then some silence of a deep
topic, namely the formula of the magnetic dipole of the electron, for which we refer to
Griffiths [43] and Weinberg [93]. Anyway, here is what we have, for what’s worth:

(1) We will use a general principle from perturbation theory, stating that the perturbed
energy appears as expectation of the added Hamiltonian operator:

E =< H >

(2) Let us compute first the relativistic correction. According to the Einstein energy
formula, from special relativity, the relativistic kinetic energy is given by:

T =
p2

2m
− p4

8m3c2
+ . . .

The Schrödinger equation, which is based on the non-relativistic formula for kinetic
energy T = p2/2m, must be therefore corrected with a term as follows:

T = − p4

8m3c2

But this leads to the following correction term Enl, with the computation using the
Schrödinger equation p2ψ = 2m(E − V )ψ at the end:

Enl = < T >

= − 1

8m3c2
< p4ψ, ψ >

= − 1

8m3c2
< p2ψ, p2ψ >

= − 1

2mc2
< (En − V )2 >
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(3) Now by expanding and using some standard expectation computations, for which
we refer as before to Griffiths [43], all in terms of the Bohr radius a, we obtain:

Enl = − 1

2mc2
(
E2

n − 2En < V > + < V 2 >
)

= − 1

2mc2

(
E2

n + 2EnKe
2

〈
1

r

〉
+ (Ke2)2

〈
1

r2

〉)
= − 1

2mc2

(
E2

n +
2EnKe

2

n2a
+

(Ke2)2

(l + 1/2)n3a2

)
= − En

2mc2

(
4n

l + 1/2
− 3

)
=

α2En

n2

(
n

l + 1/2
− 3

4

)
(4) Regarding now the spin correction, the reasons for it are very intuitive. The

electron, as any spinning charge, has a magnetic field, and the proton, which moves
around the electron, will extert some torque on this magnetic field, which must be taken
into account, and so which will modify the Hamiltonian, and also the energy En.

(5) In practice now, in order to compute the correction we will use the same method
as before, namely perturbation theory, but the data will be more delicate to gather.

(6) To start with, when regarding the electron as being fixed, the proton turns around
it, and formes an electric loop. The intensity of the corresponding magnetic field can be
computed by using the Biot-Savart law, the formula being as follows, with I = e/T being
the intensity of the current, and T being the loop time:

||B|| =
µ0I

2r

=
µ0e

2rT

=
2Kπe

c2rT

On the other hand, recall that the angular momentum of the electron satisfies:

||L|| = rm||v|| = 2πmr2

T

Since both B and L point in the same direction, we conclude that we have:

B =
Ke

mc2r3
L
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(7) The thing now is that B acts on the magnetic dipole of the electron, which is
formally given, for our computation, by the following formula:

M = − e

2m
· S

And there is a long story with this formula, because this is what comes out from a
classical electrodynamics computation, so things looking fine. But there is a correction
to be made to it, consisting of a rather standard 1/2 factor called Thomas precession,
and on the other hand there is another correction to it, found by Dirac via a non-trivial
relativistic computation, consisting of a 2 factor. And these 1/2 and 2 factors kill each
other. For more on the story here, we refer to Griffiths [43] or Weinberg [93].

(8) Moving ahead, based on the formulae of B,M found above, we can compute the
correction to the Hamiltonian operator to be made, which is given by:

H =< B,M >=
Ke2

2
· 1

m2c2r3
< L, S >

Thus, we are now in familiar territory, and we can use perturbation theory. By skipping
some details here, the correction to the energy formula is as follows, with J = L+ S:

Enj = < H >

=
Ke2

4
· 1

m2c2r3
< J2 − L2 − S2 >

=
Ke2

4
· 1

m2c2r3
· h

2

2
(j(j + 1)− l(l + 1)− s(s+ 1))

〈
1

r3

〉
=

Ke2

4
· 1

m2c2r3
· h

2

2

(
j(j + 1)− l(l + 1)− 3

4

)
· 1

l(l + 1/2)(l + 1)n3a3

=
E2

n

mc2
· n (j(j + 1)− l(l + 1)− 3/4)

l(l + 1/2)(l + 1)

= −α
2En

n2
· n(j − l)
(l + 1/2)(j + 1/2)

(9) Finally, as computed before, the revised energy Enj = En + Enl + Enj, using the
formulae in (3,8), is given by the formula in the statement. □

6d. Further corrections

As mentioned before, the story is not over with the above result, because there are
several other corrections, which are smaller, coming of top of the fine structure correction,
such as the Lamb shift, the hyperfine splitting, and more. In fact, there is an infinite series
of corrections, with α as parameter, and the theory designed for solving this problem is
quantum electrodynamics (QED), that we will discuss in chapters 7-8 below.
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6e. Exercises

Exercises:

Exercise 6.10.

Exercise 6.11.

Exercise 6.12.

Exercise 6.13.

Exercise 6.14.

Exercise 6.15.

Exercise 6.16.

Exercise 6.17.

Bonus exercise.



CHAPTER 7

Dirac equation

7a. Klein-Gordon

We have seen in previous chapters that quantum mechanics provides explanations and
equations for all the basic phenomena appearing at the atomic level. Among others, we
have reached to a quite decent level of understanding of the hydrogen atom.

In the remainder of this Part II of the present book we will be interested in rather
abstract aspects, and more specifically in “fixing quantum mechanics”. And by this we
mean not that quantum mechanics is wrong, but that there are certainly a few things
that we came upon, which are not very clear, and need to be fixed, as follows:

(1) We would like our theory to be relativistic. Among others, for getting rid of the
“relativistic correction” to the hydrogen atom, a correction never being a good thing.

(2) In fact, we would like to have a conceptual understanding of the spin correction
too, as to get rid of the whole “fine structure correction” to the hydrogen atom.

(3) We would like our electrons to be joined by more particles, with the minimum here
including the protons, the neutrons, and also the photons, representing light.

(4) And then, why not looking too into phenomena that we have not investigated yet,
such as radioactivity. Or splitting protons and neutrons into smaller particles.

We will discuss here all these questions. Quite remarkably, there is a common math-
ematical framework for investigating all these questions, called quantum field theory
(QFT). So, we will develop QFT, and then we will turn to questions (1,2) above, and
present an amazing answer to them, involving a QFT called quantum electrodynamics
(QED). Then we will turn also to questions (3,4), and discuss a bit the status here, no-
tably with a few words on quantum chromodynamics (QCD), which is the quantum field
theory obtained by splitting protons and neutrons into smaller particles.

Before starting, let us mention that things won’t be easy. Our present level in quantum
mechanics, now at this page 150 of the present book, corresponds more or less to things
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known since the 1920s. We will of course make big efforts for understanding what hap-
pened in the 1930s, then 1940s, then 1950s and so on, but so many things that happened,
and the remainder to this Part II will be just a modest introduction to all this.

Getting started, let us formulate a clear objective:

Objective 7.1. We would like to have a relativistic version of quantum mechanics,
and with the electron being joined by the photon, representing light. If possible, we would
like our theory to cover as well the proton, and the neutron.

Here the relativistic requirement is very natural in regards with all that has been said
above, this being certainly the gate towards a better quantum mechanics.

Regarding the other particles, intuition and common sense would dictate to go first
towards the proton and neutron, because aren’t these, along with the electron, the con-
stituents of normal matter, that we are normally interested in. However, and here comes
our point, mathematically speaking, the electron can certainly live without protons and
neutrons, because in order to move, it just needs a positive charge attracting it, and this
positive charge can be well something abstract, as per general field theory philosophy.

In contrast, however, the electron cannot live without the photon. The point is that
in the context of the basic physics of atoms, electrons can jump between energy levels,
emitting or absorbing photons, and with this being known to happen even in the absence
of external stimuli. Thus, and for concluding, the true “brother” of the electron is not the
proton or the neutron, but rather the photon. And so, the minimal extension of quantum
mechanics that we are trying to build should deal with electrons and photons.

Let us first look into the photon, try to understand how to make it fit into our theory,
and leave the electron for later. As a starting point, we have:

Fact 7.2. The master equation for free electromagnetic radiation, that is, for free
photons, is the wave equation at speed v = c, namely:

φ̈ = c2∆φ

This equation can be reformulated in the more symmetric form(
1

c2
· d

2

dt2
−∆

)
φ = 0

with the operator on the left being called the d’Alembertian.

To be more precise here, these are things that we know well, from chapter 5, or even
from chapter 2, when first talking about the wave equation, and radiation. In addition,
and importantly, we also know from there that the wave equation, at any speed v, is
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relativistic, in the sense that it is invariant under Lorentz transformations, which are as
follows, with γ = 1/

√
1− v2/c2 being as usual the Lorentz factor:

x′ = γ(x− vt)
y′ = y

z′ = z

t′ = γ(t− vx/c2)
So far, so good. In relation now with the electron, there is an obvious similarity here

with the free Schrödinger equation, without potential V , which reads:(
i
d

dt
+

h

2m
∆

)
ψ = 0

This similarity suggests looking for a relativistic version of the Schrödinger equation,
which is compatible with the wave equation at v = c. And coming up with such an
equation is not very complicated, the straightforward answer being as follows:

Definition 7.3. The following abstract mathematical equation,(
− 1

c2
· d

2

dt2
+∆

)
ψ =

m2c2

h2
ψ

on a function ψ = ψt(x), is called the Klein-Gordon equation.

To be more precise, what we have here is some sort of a speculatory equation, formally
obtained from the Schrödinger equation, via a few simple manipulations, as to make it
relativistic. And with the relation with photons being something very simple, the thing
being that at zero mass, m = 0, we obtain precisely the wave equation at v = c.

All this is very nice, looks like we have a beginning of theory here, both making the
electrons relativistic, and unifying them with photons. And isn’t this too beautiful to be
true. Going ahead now with physics, the following question appears:

Question 7.4. What does the Klein-Gordon equation really describe?

And here, unfortunately, bad news all the way. A closer look at the Klein-Gordon
equation reveals all sorts of bugs, making it unusable for anything reasonable. And with
the main bug, which is enough for disqualifying it, being that, unlike the Schrödinger
equation which preserves probability amplitudes |ψ|2, the Klein-Gordon equation does
not have this property. Thus, even before trying to understand what the Klein-Gordon
equation really describes, we are left with the conclusion that this equation cannot really
describe anything reasonable, due to the formal nature of the function ψ involved.

So, this was for the story of the Klein-Gordon equation. Actually this equation
was first discovered by Schrödinger himself, in the context of his original work on the
Schrödinger equation. But noticing the above bugs with it, Schrödinger dismissed it right
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way, and then downgraded his objectives, looking for something non-relativistic instead,
and then found the Schrödinger equation, leading to the story that we know.

This being said, the Klein-Gordon equation found later a number of interesting appli-
cations, the continuation of the story being as follows:

(1) Dirac found a clever way of extracting the “square root” of the Klein-Gordon
equation. And this square root equation, called Dirac equation, turned out to be the
correct one, making exactly what the Klein-Gordon equation was supposed to do.

(2) Technically speaking, the Klein-Gordon equation is very useful for investigating
the Dirac equation, because the components of the solutions of the Dirac equation satisfy
the Klein-Gordon equation. More on this later, when discussing the Dirac equation.

(3) Finally, the Klein-Gordon equation was later recognized to describe well the spin
0 particles. But with these particles being something specialized, including the unstable
and sowewhat fringe “pions”, and the Higgs boson, which is something complicated.

We will discuss all this, in what follows. In any case, we have here a beginning of good
discussion, with our cocktail of thoughts and ideas including electrons, photons, relativity
and spin, which are exactly the things that we wanted to include in our discussion. So,
all that is left is to clarify all this, and we will do so, following Dirac.

7b. Dirac equation

Getting to work now, following Dirac, the idea will be that of extracting the square
root of the Klein-Gordon operator, as follows:

Proposition 7.5. We can extract the square root of the Klein-Gordon operator, via
a formula as follows,

− 1

c2
· d

2

dt2
+∆ =

(
i

c
· Pd
dt

+
Qd

dx
+
Rd

dy
+
Sd

dz

)2

by using matrices P,Q,R, S which anticommute, AB = −BA, and whose squares equal
one, A2 = 1.
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Proof. We have the following computation, valid for any matrices P,Q,R, S, with
the notation {A,B} = AB +BA:(

i

c
· Pd
dt

+
Qd

dx
+
Rd

dy
+
Sd

dz

)2

= − 1

c2
· P

2d2

dt2
+
Q2d2

dx2
+
R2d2

dy2
+
S2d2

dz2

+
i

c

(
{P,Q}d2

dtdx
+
{P,R}d2

dtdy
+
{P, S}d2

dtdz

)
+
{Q,R}d2

dxdy
+
{Q,S}d2

dxdz
+
{R, S}d2

dydz

Thus, in order to obtain in this way the Klein-Gordon operator, the conditions in the
statement must be satisfied. □

As a technical comment here, normally when extracting a square root, we should look
for a hermitian operator. In view of this, observe that we have:(

i

c
· Pd
dt

+
Qd

dx
+
Rd

dy
+
Sd

dz

)∗

= − i
c
· P

∗d

dt
+
Q∗d

dx
+
R∗d

dy
+
S∗d

dz

Thus, we should normally add the conditions P ∗ = −P and Q∗ = Q, R∗ = R, S∗ = S
to those above. But, the thing is that due to some subtle reasons, the natural square root
of the Klein-Gordon operator is not hermitian. More on this later.

Looking for matrices P,Q,R, S as above is not exactly trivial, and the simplest solu-
tions appear in M4(C), in connection with the Pauli matrices, as follows:

Proposition 7.6. The simplest matrices P,Q,R, S as above appear as

P = γ0 , Q = iγ1 , R = iγ2 , S = iγ3

with γ0, γ1, γ2, γ3 being the Dirac matrices, given by

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi
−σi 0

)
where σ1, σ2, σ3 are the Pauli spin matrices, given by:

σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
0 −i
i 0

)
Proof. We have γ20 = 1, and by using σ2

i = 1 for any i = 1, 2, 3, we have as well the
following formula, which shows that we have (iγi)

2 = 1, as needed:

γ2i =

(
0 σi
−σi 0

)(
0 σi
−σi 0

)
=

(
−1 0
0 −1

)
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As in what regards the commutators, we first have, for any i = 1, 2, 3, the following
equalities, which show that γ0 anticommutes indeed with γi:

γ0γi =

(
1 0
0 −1

)(
0 σi
−σi 0

)
=

(
0 σi
σi 0

)
γiγ0 =

(
0 σi
−σi 0

)(
1 0
0 −1

)
=

(
0 −σi
−σi 0

)
Regarding now the remaining commutators, observe here that we have:

γiγj =

(
0 σi
−σi 0

)(
0 σj
−σj 0

)
=

(
−σiσj 0

0 −σiσj

)
Now since the Pauli matrices anticommute, we obtain γiγj = −γjγi, as desired. □

We can now put everything together, and we obtain:

Theorem 7.7. The following operator, called Dirac operator,

D = i

(
γ0d

cdt
+
γ1d

dx
+
γ2d

dy
+
γ3d

dz

)
has the property that its square is the Klein-Gordon operator.

Proof. With notations from Proposition 7.5 and Proposition 7.6, and by making the
choices in Proposition 7.6, we have:

i

c
· Pd
dt

+
Qd

dx
+
Rd

dy
+
Sd

dz
=

i

c
· γ0d
dt

+
iγ1d

dx
+
iγ2d

dy
+
iγ3d

dz

= i

(
γ0d

cdt
+
γ1d

dx
+
γ2d

dy
+
γ3d

dz

)
Thus, we have here a square root of the Klein-Gordon operator, as desired. □

We can now extract the square root of the Klein-Gordon equation, as follows:

Definition 7.8. We have the following equation, called Dirac equation,

ih

(
γ0d

cdt
+
γ1d

dx
+
γ2d

dy
+
γ3d

dz

)
ψ = mcψ

obtained by extracting the square root of the Klein-Gordon equation.

As usual with such theoretical physics equations, extreme caution is recommended, at
least to start with. We will slowly examine this equation, in what follows, and the good
news will be that, passed a few difficulties, this will turn to be a true, magic equation.

As a first observation, all this is very related to spin. In fact, as we will see later, the
Dirac equation is the correct relativistic equation describing the spin 1/2 particles.
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The Dirac equation comes with a price to pay, which is that of opening Pandora’s box
of particles. To be more precise, once we adopt this equation, we must surely adopt all its
free solutions. And bad news here, the solution which is complementary to the electron is
not the proton, but rather a weird new particle, called the positron. In order to explain
all this, which is something quite tricky, let us start with the following observation:

Proposition 7.9. For a particle at rest, meaning under the assumption

dψ

dx
=
dψ

dy
=
dψ

dz
= 0

the Dirac equation takes the form

ih

c
· γ0 ·

dψ

dt
= mcψ

with γ0 =

(
1 0
0 −1

)
being as usual the first Dirac matrix.

Proof. Consider indeed the Dirac equation, as formulated in Definition 7.8:

ih

(
γ0d

cdt
+
γ1d

dx
+
γ2d

dy
+
γ3d

dz

)
ψ = mcψ

With the above rest assumption, we are led to the equation in the statement. □

The above equation at rest is very easy to solve, the result being as follows:

Theorem 7.10. The solutions of the Dirac equation for particles at rest are

ψ =

(
e−imc2t/hξ

eimc2t/hη

)
with ξ, η ∈ R2 being arbitrary vectors.

Proof. In order to solve the Dirac equation in Proposition 7.9, let us write:

ψ =

(
φ
ϕ

)
With this notation, the Dirac equation at rest takes the following form:(

1 0
0 −1

)(
dφ/dt
dϕ/dt

)
= −imc

2

h

(
φ
ϕ

)
Now by looking at the components, the equations are as follows:

dφ

dt
= −imc

2

h
φ ,

dϕ

dt
=
imc2

h
ϕ

But the solutions of these latter equations are as follows, with ξ, η ∈ R2:

φ = e−imc2t/hξ , ϕ = eimc2t/hη
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Thus, we are led to the conclusion in the statement. □

The question is now, is the above result good news or not? Not really, because in
view of what we know from quantum mechanics, an e−iEt/h factor should correspond to
the time dependence of a quantum state with energy E, which at rest is E = mc2. And
from this perspective, while the above φ functions look very good, the other components,
the ϕ functions, look bad, seemingly coming from particles having “negative energy”.

So, what to do? In order to avoid particles with negative energy, which is something
that definitely looks very bad, the solution is that of talking about antiparticles with
positive energy, and to formulate, as a continuation of Theorem 7.10:

Theorem 7.11. The basic solutions of the Dirac equation for particles at rest are

ψ1 = e−imc2t/h


1
0
0
0

 , ψ2 = e−imc2t/h


0
1
0
0


corresponding to the electron with spin up, and spin down, plus

ψ3 = eimc2t/h


0
0
1
0

 , ψ4 = eimc2t/h


0
0
0
1


corresponding to a new particle, the positron, with spin up, and spin down.

Proof. Here the mathematics comes from what we found in Theorem 7.10, and the
terminology and philosophy comes from the above discussion. With the remark that the
newly introduced positron is rather an antiparticle, but more on this later. □

Not very good, all this. Dirac himself could not believe it, and it took some joint
effort of Weyl, Pauli, Oppenheimer and others to convince him that yes, unfortunately
the positrons predicted by his equation are not the usual protons. And so that goodbye
reasonable physics, goodbye common sense, and welcome positrons.

In what concerns us, we have been extremely reluctant, throughout this book, to talk
about new particles, but no choice now, we will have to back up, and adopt the positrons.
But, passed this, we will slam down the cover of Pandora’s box, right away. We definitely
don’t want all sorts of fringe, short-lived particles to invade our theory, and multiply like
mushrooms, and transform our carefully built theory into something apocalyptic.
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7c. Plane waves

Moving now forward, let us attempt to solve the following question:

Question 7.12. What are the plane wave solutions

ψ(s) = ae−i<k,s>u

of the Dirac equation?

To be more precise, we are using here, as argument of the function ψ, the standard
relativistic space-time position s ∈ R4 of our particle, namely:

s =

(
ct
r

)
, r =

xy
z


Next, we have in the above a constant a ∈ R, which will be quite irrelevant to our

computations, the Dirac equation being linear. Regarding now k, it is convenient to write
this vector split over components, as we did in the above with s, as follows:

k =

(
f
g

)
, g =

g1g2
g3


With these conventions, along with the standard relativistic convention that the space

coordinates contribute with − signs, the scalar product in Question 7.12 is given by:

< k, s >= cft− < g, r >

Now observe that the real part of the exponential in Question 7.12 is given by:

Re(e−i<k,s>) = cos
(
cft− < g, r >

)
Thus, what we have here, justifying the terminology, is a sinusoidal wave propagating

in the direction g, with angular frequency and wavelenght as follows:

ω = cf , λ = 2π/||g||

In order to answer Question 7.12, we must first plug into the Dirac equation our special
function ψ. We are led in this way to a quite simple equation, as follows:

Proposition 7.13. The Dirac equation for plane wave functions

ψ(s) = ae−i<k,s>u

takes the following special form, no longer involving derivatives,

h
(
γ0f − γ1g1 − γ2g2 − γ3g3

)
u = mcu

with the above conventions for indices and vectors.
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Proof. Consider indeed the Dirac equation, as formulated in Definition 7.8:

ih

(
γ0d

cdt
+
γ1d

dx
+
γ2d

dy
+
γ3d

dz

)
ψ = mcψ

For the function ψ in the statement, the derivatives are given by:

dψ

dsi
= −ikiψ

Thus, with our above conventions for indices and vectors, we have:

dψ

cdt
= −ifψ ,

dψ

dri
= igiψ

By plugging these quantities in the Dirac equation, this equation becomes:

h
(
γ0f − γ1g1 − γ2g2 − γ3g3

)
ψ = mcψ

Now by using again ψ = ae−i<k,s>u, this equation takes the following form:

h
(
γ0f − γ1g1 − γ2g2 − γ3g3

)
ae−i<k,s>u = mcae−i<k,s>u

Thus, by simplifying, we are led to the equation in the statement. □

Let us study now the equation that we found. As a first observation, we can further
fine-tune the equation in Proposition 7.13, via some simple manipulations, as follows:

Proposition 7.14. In the context of Proposition 7.13, with the notation

u =

(
v
w

)
the Dirac equation takes the following form, in terms of the components v, w,

v =
< g, σ >

f −mc/h
w , w =

< g, σ >

f +mc/h
v

where σ1, σ2, σ3 stand as usual for the Pauli spin matrices.

Proof. According to the definition of the Dirac matrices, in terms of the Pauli ones,
we have the following computation, for the operator appearing in Proposition 7.13:

γ0f − γ1g1 − γ2g2 − γ3g3 =

(
1 0
0 −1

)
f −

3∑
i=1

(
0 σi
−σi 0

)
gi

=

(
f 0
0 −f

)
−
(

0 < g, σ >
− < g, σ > 0

)
=

(
f − < g, σ >

< g, σ > −f

)
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Thus, the quantity which must vanish in Proposition 7.13 is given by:(
h
(
γ0f − γ1g1 − γ2g2 − γ3g3

)
−mc

)
u

=

(
hf −mc −h < g, σ >
h < g, σ > −hf −mc

)(
v
w

)
=

(
(hf −mc)v − h < g, σ > w
h < g, σ > v − (hf +mc)w

)
We therefore conclude that, in our case, the Dirac equation reads:

(hf −mc)v = h < g, σ > w

h < g, σ > v = (hf +mc)w

Thus, we are led to the conclusion in the statement. □

In order to solve now our equation, let us make the following observation:

Proposition 7.15. In the context of Proposition 7.14 we must have

||g||2 = f 2 −
(mc
h

)2
under the assumption that the solution is nonzero, u ̸= 0.

Proof. Consider the equations found in Proposition 7.14, namely:

v =
< g, σ >

f −mc/h
w , w =

< g, σ >

f +mc/h
v

By substituting, we are led to the following formulae:

v =
< g, σ >2

f 2 − (mc/h)2
v , w =

< g, σ >2

f 2 − (mc/h)2
w

Thus, assuming that the solution is nonzero, u ̸= 0, we must have:

< g, σ >2

f 2 − (mc/h)2
=

(
1 0
0 1

)
Now, let us compute the left term. According to our various conventions above, and

to the formulae for the Pauli matrices, we have the following formula:

< g, σ > = g1

(
0 1
1 0

)
+ g2

(
0 −i
i 0

)
+ g3

(
1 0
0 −1

)
=

(
g3 g1 − ig2

g1 + ig2 −g3

)
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By raising this quantity to the square, we obtain:

< g, σ >2 =

(
g3 g1 − ig2

g1 + ig2 −g3

)(
g3 g1 − ig2

g1 + ig2 −g3

)
=

(
g23 + (g1 − ig2)(g1 + ig2) g3(g1 − ig2)− (g1 − ig2)g3
(g1 + ig2)g3 − g3(g1 + ig2) (g1 + ig2)(g1 − ig2) + g23

)
=

(
g21 + g22 + g23 0

0 g21 + g22 + g23

)
= ||g||2

(
1 0
0 1

)
Thus, the condition that we found above, coming from u ̸= 0, reads:

||g||2

f 2 − (mc/h)2

(
1 0
0 1

)
=

(
1 0
0 1

)
We conclude that we must have the following equality:

||g||2 = f 2 −
(mc
h

)2
Thus, we are led to the conclusion in the statement. □

The point now is that the above result invites us to use the rescaled energy-momentum
four-vector as variable, k = ±p/h, and we are led in this way to the following result:

Theorem 7.16. The basic plane wave solutions, of type

ψ(s) = ae−i<k,s>u

of the Dirac equation, come from the functions

u1 =
1

E +mc2


E +mc2

0
cpz

cpx + icpy

 , u2 =
1

E +mc2


0

E +mc2

cpx − icpy
−cpz


corresponding to particle solutions, plus from the functions

u3 =
1

E +mc2


cpz

cpx + icpy
E +mc2

0

 , u4 =
1

E +mc2


cpx − icpy
−cpz
0

E +mc2


corresponding to antiparticle solutions.



7C. PLANE WAVES 127

Proof. This comes by putting together all the above. Indeed, with k = ±p/h, as
suggested above, we have four choices, which are as follows:

v =

(
1
0

)
, w =

c

E +mc2

(
pz

px + ipy

)
v =

(
0
1

)
, w =

c

E +mc2

(
px − ipy
−pz

)
w =

(
1
0

)
, v =

c

E +mc2

(
pz

px + ipy

)
w =

(
0
1

)
, v =

c

E +mc2

(
px − ipy
−pz

)
Thus, we are led to the solutions in the statement. □

Regarding the exact physical interpretation of the above plane wave solutions that we
found, this is something quite tricky, and we will discuss this later.

In any case, we have now in our theory the electron accompanied by the positron and
the photon. There are in fact many other particles which satisfy the Dirac equation, with
this equation being in fact the one which describes the spin 1/2 particles. More on this
later, when we will know more about the various particles that can appear.

As a last topic, from this preliminary discussion on the Dirac equation, let us discuss
now the normalization of the solutions that we found above. We will need:

Proposition 7.17. For the basic plane wave solutions found above, we have

||u||2 = 2E

E +mc2

with the norm being computed with respect to the usual complex scalar product.

Proof. According to our formulae above, for u = u1, u2, u3, u4 we have:

||u||2 =
1

(E +mc2)2
(
(E +mc2)2 + c2(p2x + p2y + p2z)

)
=

1

(E +mc2)2
(
(E +mc2)2 + c2||p||2

)
Now recall that for the energy-momentum vector p̃ = (E/c, p) we have ||p̃|| = mc.

Thus, the norm of the momentum vector component is given by:

||p||2 =
(
E

c

)2

− ||p̃||2 = E2

c2
−m2c2
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With this formula in hand, we can finish our computation, as follows:

||u||2 =
1

(E +mc2)2

(
(E +mc2)2 + c2

(
E2

c2
−m2c2

))
=

1

(E +mc2)2
(
E2 +m2c4 + 2Emc2 + E2 −m2c4

)
=

1

(E +mc2)2
(
2E2 + 2Emc2

)
=

2E

E +mc2

Thus, we are led to the conclusion in the statement. □

In what regards now the normalization of the solutions u found in Theorem 7.16, there
are several possible useful conventions here, as follows:

||Nu||2 = 2E

c
, ||Nu||2 = E

mc2
, ||Nu||2 = 1

The corresponding normalizations constants N can be computed by using Proposition
7.17, and are respectively given by the following formulae:

N =

√
E +mc2

c
, N =

√
E +mc2

2mc2
, N =

√
E +mc2

2E

As before with the exact physical interpretation of the plane wave solutions that we
found, their normalization is also something quite tricky, and we will discuss this later.

7d. Invariance questions

Let us discuss now invariance questions for the solutions of the Dirac equation. As
already mentioned in the above, this equation was meant to be a relativistic version of
the Schrödinger equation, but the fact that this equation is indeed relativistic, from the
point of view of the invariance of solutions, is still something that we must establish.

We recall that the relativistic frame change, with respect to moving with speed v along
Ox, is given by the following formulae, where β = v/c and γ = 1/

√
1− β2:

ct′ = γ(ct− βx)

x′ = γ(x− βct)

y′ = y

z′ = z
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Equivalently, in matrix form, we have the following formula:
ct′

x′

y′

z′

 =


γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1



ct
x
y
z


Regarding the reverse frame change, this is obtained via v → −v, which gives the

following formulae, with β = v/c and γ = 1/
√

1− β2 as before:

ct = γ(ct′ + βx′)

x = γ(x′ + βct′)

y = y′

z = z′

Equivalently, in matrix form, we have the following formula:
ct
x
y
z

 =


γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1



ct′

x′

y′

z′


We refer to the above for more on these formulae, and also for a proof of the fact that

the Maxwell equations are indeed invariant under these transformations.

In what regards now the Dirac equation, we have the following result:

Theorem 7.18. A solution ψ of the Dirac equation leads, infinitesimally, to the fol-
lowing solution of the same equation, with respect to a frame change as above,

ψ′ = Aψ

with the matrix A being given by the following formula,

A =


a 0 0 b
0 a b 0
0 b a 0
b 0 0 a


where the parameters are given by the following formulae,

a =

√
γ + 1

2
, b = −

√
γ − 1

2

with γ = 1/
√

1− v2/c2 being the Lorentz factor.
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Proof. This is something quite tricky, the idea being as follows:

(1) Consider indeed the Dirac equation, as formulated in Definition 7.8:

ih

(
γ0d

cdt
+
γ1d

dx
+
γ2d

dy
+
γ3d

dz

)
ψ = mcψ

It is convenient to use the relativistic space-time position vector, given by:

s =


ct
x
y
z


With this convention, the Dirac equation, as formulated above, becomes:

ih
3∑

i=0

γi
dψ

dsi
= mcψ

(2) Now let us write as well this equation in the new frame, as follows:

ih
3∑

i=0

γi
dψ′

ds′i
= mcψ′

We can compute the derivation operators d/ds′i in terms of the original derivation
operators d/dsi by using the chain rule, starting from:


ct
x
y
z

 =


γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1



ct′

x′

y′

z′


Indeed, if we denote by L−1 the 4 × 4 matrix appearing above, that of the reverse

frame change, then the above formula reads, in terms of space-time position vectors:

s = L−1s′
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Now by using the chain rule, we obtain from this the following formula:

d

ds′i
=

∑
j

dsj
ds′i
· d
dsj

=
∑
j

d(L−1s′)j
ds′i

· d
dsj

=
∑
jk

d((L−1)jks
′
k)

ds′i
· d
dsj

=
∑
jk

(L−1)jk
ds′k
ds′i
· d
dsj

=
∑
j

(L−1)ji
d

dsj

=
∑
j

(L−1)ij
d

dsj

Here we have used at the end the fact that L−1 is symmetric. In vector notation now,
the conclusion is that we have the following formula:

d

ds′
= L−1 d

ds

(3) With this formula in hand, let us go back to the Dirac equation in the new frame,
and try to find a solution of type ψ′ = Aψ for it. Our equation reads:

ih
3∑

i=0

γi
dAψ

ds′i
= mcAψ

By using the linearity of the derivatives, and then the formula found in (2), the left
term of this new Dirac equation is given by the following formula:

ih

3∑
i=0

γi
dAψ

ds′i
= ih

3∑
i=0

γiA
dψ

ds′i

= ih

3∑
i=0

γiAL
−1 dψ

dsi

Summarizing, with ψ′ = Aψ, our equation takes the following form:

ih
3∑

i=0

γiAL
−1 dψ

dsi
= mcAψ
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Equivalently, by multiplying everything by A−1, our equation becomes:

ih
3∑

i=0

A−1γiAL
−1 dψ

dsi
= mcψ

(4) Now let us compare this new equation that we found with the original Dirac
equation, from (1), which was as follows:

ih

3∑
i=0

γi
dψ

dsi
= mcψ

In order to have solutions ψ′ = Aψ as above, in a plain, non-infinitesimal sense, the
obvious possibility is that when we have the following formulae, for any i:

A−1γiAL
−1 = γi

Thus, as a conclusion to this discussion, in order to prove our theorem, in a plain
formulation, it would be enough to establish the following formulae, for any i:

A−1γiA = γiL

(5) With this done, let us have a look at the matrix A in the statement. That matrix
is constructed by using two numbers a, b, which are given by:

a =

√
γ + 1

2
, b = −

√
γ − 1

2

Our first claim is that we have the following useful formulae, relating a, b:

a2 − b2 = 1

a2 + b2 = γ

2ab = −γβ
Indeed, the first two formulae are clear, and the third formula comes from:

2ab = −
√
γ2 − 1

= −
√

1

1− β2
− 1

= −

√
β2

1− β2

= − β√
1− β2

= −γβ
Observe also that the above formula a2 − b2 = 1 suggests using a notation of type

a = cosh p, b = sinh p, but we will not need this here.
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(6) Before getting to the matrix A in the statement, let us further study the above
numbers a, b. With the help of the formulae connecting them, from (5), we obtain:(

a b
b a

)(
a b
b a

)
=

(
a2 + b2 2ab
2ab a2 + b2

)
=

(
γ −γβ
−γβ γ

)
We recognize here the upper left block of L, and so we have:

L =


a b 0 0
b a 0 0
0 0 1 0
0 0 0 1


2

A similar discussion goes for the inverse Lorentz matrix. Indeed, we have:(
a b
b a

)(
a −b
−b a

)
=

(
a2 − b2 0

0 a2 − b2
)

=

(
1 0
0 1

)
Thus, we have the following matrix inversion formula:(

a b
b a

)−1

=

(
a −b
−b a

)
We conclude that the inverse of the Lorentz matrix is given by:

L−1 =


a −b 0 0
−b a 0 0
0 0 1 0
0 0 0 1


2

(7) Now let us look at the matrix in the statement, namely:

A =


a 0 0 b
0 a b 0
0 b a 0
b 0 0 a


This matrix, and its inverse, are then given by the following formulae:

A = a+ bγ0γ2

A−1 = a− bγ0γ2
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Indeed, in what regards the formula of A, this comes from:

γ0γ2 =

(
1 0
0 −1

)(
0 σ2
−σ2 0

)
=

(
0 σ2
σ2 0

)

=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


As for the formula of A−1, this comes from the following computation, with J = γ0γ2,

which satisfies J2 = 1, by using the formula a2 − b2 = 1 from (5):

(a+ bJ)(a− bJ) = a2 + abJ − abJ − b2J2

= a2 − b2

= 1

(8) In relation now with the formulae needed in (4), our first claim is that:

Aγ0A = γ0

A−1γ1A = γ1

Aγ2A = γ2

A−1γ3A = γ3

(9) Indeed, the first formula comes from the following computation:

Aγ0A = (a+ bγ0γ2)γ0(a+ bγ0γ2)

= a2γ0 + abγ0γ0γ2 + abγ0γ2γ0 + b2γ0γ2γ0γ0γ2

= a2γ0 − b2γ0
= γ0

The second formula comes from a similar computation, as follows:

A−1γ1A = (a+ bγ0γ2)γ1(a− bγ0γ2)
= a2γ1 − abγ1γ0γ2 + abγ0γ2γ1 − b2γ0γ2γ1γ0γ2
= a2γ1 − b2γ1
= γ1
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The third formula again comes from a similar computation, as follows:

Aγ2A = (a+ bγ0γ2)γ2(a+ bγ0γ2)

= a2γ2 + abγ2γ0γ2 + abγ0γ2γ2 + b2γ0γ2γ2γ0γ2

= a2γ2 − b2γ2
= γ2

As for the fourth formula, this comes again from a similar computation, namely:

A−1γ3A = (a+ bγ0γ2)γ3(a− bγ0γ2)
= a2γ3 − abγ3γ0γ2 + abγ0γ2γ3 − b2γ0γ2γ3γ0γ2
= a2γ3 − b2γ3
= γ3

(10) Now observe that, with respect to the formulae needed in (4), the second and the
fourth formulae found in (8) are what we need. As for the first and third formulae, these
are not exactly what we need, and we must fine-tune them. We first have:

A−1γ0A = (a− bγ0γ2)γ0(a+ bγ0γ2)

= a2γ0 + abγ0γ0γ2 − abγ0γ2γ0 − b2γ0γ2γ0γ0γ2
= (a2 + b2)γ0 + 2abγ2

= γ · γ0 − γβ · γ2
Similarly, we have the following computation:

A−1γ2A = (a− bγ0γ2)γ2(a+ bγ0γ2)

= a2γ2 + abγ2γ0γ2 − abγ0γ2γ2 − b2γ0γ2γ2γ0γ2
= (a2 + b2)γ2 − 2abγ0

= γ · γ2 + γβ · γ0
(11) Time now to review the conditions found in (4). These conditions, corresponding

to the plain Lorentz invariance of the solutions of the Dirac equation, were A−1γiA = γiL.
But because of γ2i = 1, we can reformulate them in the following way:

L = γiA
−1γiA

Now in view of the above, it makes sense to introduce the following matrices:

Li = γiA
−1γiA

According to the computations in (9), we have the following formulae:

L1 = L3 = 1

On the other hand, according to the computations in (10), we have as well:

L0 = γ0(γ · γ0 − γβ · γ2) = γ − γβ · γ0γ2
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L2 = γ2(γ · γ2 + γβ · γ0) = γ − γβ · γ0γ2
Thus, in usual matrix form, we have the following formulae:

L0 = L2 =


γ 0 0 −γβ
0 γ −γβ 0
0 −γβ γ 0
−γβ 0 0 γ


(12) The point now is that, based on what we found above, we can say that ψ′ = Aψ

satisfies the Dirac equation in the new frame, in an infinitesimal sense, as claimed. □

7e. Exercises

Exercises:

Exercise 7.19.

Exercise 7.20.

Exercise 7.21.

Exercise 7.22.

Exercise 7.23.

Exercise 7.24.

Exercise 7.25.

Exercise 7.26.

Bonus exercise.



CHAPTER 8

Feynman diagrams

8a. Decay, scattering

We have seen in the previous chapter that, with Dirac and others helping, it is rela-
tively easy to escape from the electron/photon world we’ve been living in, so far in this
book, with the introduction of other particles, appearing from equations inspired from
the Schrödinger equation for the electron, and the wave equation for the photon.

In order to further advance, as to be ready to come back to hydrogen, we need to
talk about interactions between our particles. But here, we already have some experience
from classical mechanics, with the typical picture of what can happen being as follows:

◦ma ◦mb

↘va ↙vb

⋆

◦m1 ◦m2 ◦m3

↙v1 ↓v2 ↘v3

To be more precise, this diagram describes a collision between two particles, but we
can of course allow further particles entering the collision, and then the several particles
emerging from this collision. The data of each particle, which in classical mechanics means
mass m and speed v, is carefully recorded, with of course the aim of recovering the output
data from the input data. Finally, all this can take place in arbitrary dimensions, and
also, importantly, the collision can be elastic, or plastic, or any mixture of these.

This was for basic interactions in classical mechanics. In our present setting, particle
physics, things are a bit more complicated than this, due to a variety of reasons, and
experimental physics suggests looking at two main types of interactions, as follows:

Fact 8.1. In particle physics, we have two main types of interactions, namely:

(1) Decay. This is when a particle decomposes, as a result of whatever internal
mechanism, into a sum of other particles, ∗0 → ∗1 + . . .+ ∗n.

(2) Scattering. This is when two particles meet, by colliding, or almost, and combine
and decompose into a sum of other particles, ∗a + ∗b → ∗1 + . . .+ ∗n.

137
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Obviously, all this departs a bit from our classical mechanics knowledge, as explained
above, and several comments are in order here, as follows:

(1) In what regards decay, something that we talked a lot about, when doing thermo-
dynamics, and then quantum mechanics, is an electron of an atom changing its energy
level, and emitting a photon. But this can be regarded as being decay.

(2) As for scattering, the simplest example here appears again from an electron of an
atom, changing its energy level, but this time by absorbing a photon. Of course, there
are many other possible examples, such as the electron-positron annihilation.

(3) Regarding now the mechanisms at work, for decay we certainly have some intuition
from classical mechanics, and we can label that process as being some sort of “explosion”.
With of course the comment that usual explosions are rather something chemical.

(4) As for scattering, this normally stands for some sort of “collision”, a bit as in
classical mechanics, but with the comment that we are really talking here about general
scattering, not only collisions. More on this, which is something quite subtle, later.

Getting to work for good now, let us first gather some knowledge and data about
decay. However, this is no easy business, in view of the physics that we know, and it is
helpful at this point to take off, and get into our popular physics knowledge, regarding
radioactivity. Or at least that is easy for me, during Chernobyl 1986 I used to be a
teenager in the nearby Romania, and we all duly learned, in a hurry, all that theory. But
you surely know a bit about this too, say from Fukushima 2011, don’t you.

So, decay and its mathematics. Ignoring the physics, this is basically a matter of
probability and statistics, and the basics here can be summarized as follows:

Theorem 8.2. In the context of decay, the quantity to look at is the decay rate λ,
which is the probability per unit time that the particle will disintegrate. With this:

(1) The number of particles remaining at time t > 0 is Nt = e−λtN0.
(2) The mean lifetime of a particle is τ = 1/λ.
(3) The half-life of the substance is t1/2 = (log 2)/λ.

Proof. As said above, this is basic probability, as follows:

(1) In mathematical terms, our definition of the decay rate reads:

dN

dt
= −λN

By integrating, we are led to the formula in the statement, namely:

Nt = e−λtN0
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(2) Let us first convert what we have into a probability law. We have:∫ ∞

0

Ntdt =

∫ ∞

0

N0e
−λtdt =

N0

λ

Thus, the density of the probability decay function is given by:

f(t) =
λ

N0

·N0e
−λt = λe−λt

We can now compute the mean lifetime, by integrating by parts, as follows:

τ = < t >

=

∫ ∞

0

tf(t)dt

=

∫ ∞

0

λte−λtdt

=

∫ ∞

0

t(−e−λt)′dt

=

∫ ∞

0

e−λtdt

=
1

λ

(3) Finally, regarding the half-life, this is by definition the time t1/2 required for the
decaying quantity to fall to one-half of its initial value. Mathematically, this means:

Nt = 2
− t

t1/2N0

Now by comparing with Nt = e−λtN0, this gives t1/2 = (log 2)/λ, as stated. □

Getting now to scattering, this is something far more familiar, because we can fully
use here our experience from classical mechanics. Let us start with:

Definition 8.3. The generic picture of scattering is as follows,

•

66

a

��

θ
OO

⋆

with a ≥ 0 being the impact parameter, and θ ∈ [0, π] being the scattering angle.



140 8. FEYNMAN DIAGRAMS

In other words, we assume here that the particle misses its target by a ≥ 0, with
the limiting case a = 0 corresponding of course to exactly hitting the target, and we are
interested in computing the scattering angle θ ∈ [0, π] as a function θ = θ(a).

As an important comment now, we are interested in a > 0, because this is what
happens in particle physics, there is no need for exactly hitting the target for having a
collision-type interaction. By the case, the limiting case a = 0 is rather unwanted in the
context of our scaterring question, because by symmetry this would normally force the
scattering angle to be θ = 0 or θ = π, which does not look very interesting.

But probably too much talking, let us do a computation. We have here:

Proposition 8.4. In the context of classical particle colliding elastically with a hard
sphere of radius R > 0, we have the formula

a = R cos
θ

2
and so the scattering angle is given by θ = 2arccos(a/R).

Proof. In the context from the statement, which is all classical mechanics, and more
specifically is a basic elastic collision, between a point particle and a hard sphere, if the
impact factor is a > R, nothing happens. In the case a ≤ R we do have an impact, and
a bounce of our particle on the hard sphere, the picture of the event being as follows:

•

88

a

��

θ
OO

⋆

R
σ

Here the sphere is missing, due to budget cuts, with only its center ⋆ being pictured,
but you get the point. Now with σ being the angle in the statement, we have the following
two formulae, with the first one being clear on the above picture, and with the second
one coming from the fact that, at the rebound, the various angles must sum up to π:

a = R sinσ , 2σ + θ = π

We deduce that the impact factor is given by the following formula:

a = R sin

(
π

2
− θ

2

)
= R cos

θ

2

Thus, we are led to the conclusions in the statement. □
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With this understood, let us try to make something more 3D, and statistical, out of
this. We can indeed further build on Definition 8.3, as follows:

Definition 8.5. In the general context of scattering, we can:

(1) Extend our length/angle correspondence a → θ into an infinitesimal area/solid
angle correspondence dσ → dΩ.

(2) Talk about the inverse derivative D(θ) of this correspondence, called differential
cross section, according to the formula dσ = D(θ)dΩ.

(3) And finally, define the total cross section of the scattering event as being the
quantity σ =

∫
dσ =

∫
D(θ)dΩ.

And good news, the notion of total cross section σ, as constructed above, is the one
that we will need, in what follows, with this being to scattering something a bit similar
to what the decay rate λ was to decay, that is, the main quantity to look at.

In order to understand how the cross section works, we have:

Proposition 8.6. Assuming that the incoming beam comes as follows,

ϕ

subtending a certain angle ϕ, the differential cross section is given by

D(θ) =

∣∣∣∣ a

sin θ
· da
dθ

∣∣∣∣
and the total cross section is given by σ =

∫
D(θ)dΩ.

Proof. Assume indeed that we have a uniform beam as the one pictured in the
statement, enclosed by the double lines appearing there, and with the need for a beam
instead of a single particle coming from what we do in Definition 8.5, which is rather of
continuous nature. Our claim is that we have the following formulae:

dσ = |a · da · dϕ| , dΩ = | sin θ · dθ · dϕ|

Indeed, the first formula, at departure, is clear from the picture above, and the second
formula is clear from a similar picture at the arrival. Now with these formulae in hand,
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by dividing them, we obtain the following formula for the differential cross section:

D(θ) =
dσ

dΩ

=

∣∣∣∣ a · da · dϕ
sin θ · dθ · dϕ

∣∣∣∣
=

∣∣∣∣ a

sin θ
· da
dθ

∣∣∣∣
As for the total cross section, this is given as usual by σ =

∫
D(θ)dΩ. □

As an illustration for this, in the case of a hard sphere scattering, we have:

Theorem 8.7. In the case of a hard sphere scattering, the cross section is

σ = πR2

with R > 0 being the radius of the sphere.

Proof. We know from Proposition 8.4 that, with the notations there, we have:

a = R cos
θ

2
At the level of the corresponding differentials, this gives the following formula:

da

dθ
= −R

2
sin

θ

2
We can now compute the differential cross section, as above, and we obtain:

D(θ) =

∣∣∣∣ a

sin θ
· da
dθ

∣∣∣∣
=

R cos(θ/2)

sin θ
· R sin(θ/2)

2

=
R2(sin θ)/2

2 sin θ

=
R2

4
Now by integrating, we obtain from this, via some calculus, the following formula:

σ =

∫
R2

4
dΩ = πR2

Thus, we are led to the conclusion in the statement. □

Summarizing, for a hard sphere scattering, the cross section turns to be something
very simple, namely the area of the sphere met by the beam. This is of course something
quite particular, and when using more complicated targets, the formula of σ gets more
complicated too. We will come back to this, with further examples, later on.
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8b. Golden Rule

Time now to get into the real thing, namely quantum electrodynamics (QED) and
Feynman diagrams, which correctly explain the behavior of the electron, and of other
particles that we know. And to be followed later by quantum chromodynamics (QCD),
which does even better, dealing with smaller beasts, quarks and related gnomes.

We will be following for our presentation the lovely particle physics book of Griffiths
[44]. That is a remarkable book, taking the challenge of explaining such things, which
are normally quite advanced, to undergraduates. Of course, in case you are not exactly
an undergraduate, say you are a professional mathematical physicist, and struggle with
what comes next, do not worry. This is normal, can happen to everyone, and I must
admit that I struggled too, sometimes quite late in my career, with such things.

Skipping a discussion here with cat, whose sardonic smile, when hearing all this, does
not look very inviting, let us get to work. As a main principle regarding particle decay,
following Fermi and others, we have the following simple and useful fact:

Principle 8.8 (Fermi Golden Rule). In the context of a particle physics decay, ∗0 →
∗1 + . . .+ ∗n, the decay rate is given by

λ =

∫
|M |2dp

with M = M(p0, . . . , pn) being the amplitude of the interaction, and with the integration
being restricted to the part of the phase space allowed by basic physics.

Obviously, several things going on here, that will take us some time, to understand. To
start with, the above Golden Rule looks quite reasonable, namely getting λ by integrating
something on the phase space. It remains to understand two things, namely what the
formula of the amplitude M is, and where does the integration exactly take place.

Leaving the formula of the amplitude M for later, let us try to answer the second
question, regarding the allowed phase space. According to the Golden Rule, that is
simply the phase space allowed by basic physics, and here that basic physics is:

Addendum 8.9. In the above context, the basic physics is as follows:

(1) The total energy and momentum must be conserved.
(2) Each outgoing particle must keep its mass constant.
(3) Each outgoing particle must have positive energy.

Summarizing, all common sense things that we have here. In mathematical terms
now, it is better to add integrands corresponding to the above conditions (1,2,3), instead
of exactly specifying the allowed state space. And with both (1) and (2) requiring Dirac
masses δ, and with (3) requiring a Heaviside function H = χ(0,∞), we are led to:



144 8. FEYNMAN DIAGRAMS

Principle 8.10 (Golden Rule 2). In the context of a particle physics decay, ∗0 →
∗1 + . . .+ ∗n, the decay rate is given by

λ =

∫
|M |2δ

(
p0 −

n∑
i=1

pi

)
n∏

i=1

δ(p2i −m2
i c

2)H(p0i )dp

with M =M(p0, . . . , pn) being the amplitude of the interaction.

Which looks quite neat, but there is actually a subtlety here, in relation with the Dirac
masses, which take as arguments squares of variables, instead of the variables themselves.
In order to clarify this, let us make the following computation, with a > 0:∫

R
f(x)δ(x2 − a2)dx =

∫ 0

−∞
f(x)δ(x2 − a2)dx+

∫ ∞

0

f(x)δ(x2 − a2)dx

=

∫ a

−∞
f(y − a)δ(y2 − 2ay)dy +

∫ ∞

−a

f(y + a)δ(y2 + 2ay)dy

≃
∫ a

−∞
f(y − a)δ(−2ay)dy +

∫ ∞

−a

f(y + a)δ(2ay)dy

=

∫ 2a2

−∞
f
( z
2a
− a
)
δ(−z)dz

2a
+

∫ ∞

−2a2
f
( z
2a

+ a
)
δ(z)

dz

2a

=
f(−a)
2a

+
f(a)

2a

=

∫
R

f(x)
δ(x− a) + δ(x+ a)

2a
dx

Sounds like physics, you would say, and in answer, yes physics that is, but in any case,
we have in this way the definition for our quadratic Dirac masses, as follows:

δ(x2 − a2) = δ(x− a) + δ(x+ a)

2a

With this understood, and before getting into what the amplitude M is, let us make
some normalizations. Here these normalizations are, and you will have to believe me here,
all of them are made for good reasons, as we will discover in a moment:

(1) We have λ ∼ S, with S = 1/
∏

i(mi!), where mi ∈ N with
∑
mi = n are the

multiplicities of the output particles, and it is better to leave S outside the integral.

(2) Also, λ ∼ 1/(2hm0), with h being as usual the reduced Planck constant, and m0

being the initial mass, and it is better to leave 1/(2hm0) outside the integral too.

(3) Each Dirac mass δ behaves better in computations when multiplied by a 2π factor.
Also, each individual dpi symbol behaves better when divided by a 2π factor.
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Now by doing all these normalizations, which amounts in correspondingly rescaling
the amplitude M , and with this being certainly not a big deal, because we haven’t even
talked yet about what this amplitude M is, so free to do this, we are led to:

Principle 8.11 (Golden Rule 3). In the context of a particle physics decay, ∗0 →
∗1 + . . .+ ∗n, the decay rate is given by

λ =
S

2hm0

∫
|M|2(2π)4δ

(
p0 −

n∑
i=1

pi

)
n∏

i=1

2πδ(p2i −m2
i c

2)H(p0i )
dpi
(2π)4

with M = M(p0, . . . , pn) being the normalized amplitude of the interaction, and with
S = 1/

∏
i(mi!), where mi ∈ N with

∑
mi = n are the multiplicities of the output.

And good news, this will be normally the final form of the Golden Rule for decays,
that we will be using, in what follows. In practice, however, we will see in a moment that
the integration with respect to time is easy to perform, and this will lead to yet another
formulation of the Golden Rule, which is the most useful one, for applications.

Before that, however, some philosophical comments. The Golden Rule has become
now something quite complicated, and there is still a discussion about M, which will
certainly bring its part of complicated mathematics. But remember that, in the end,
everything comes from Principle 8.8, which is something quite simple. So, no fear.

This being said, even when looking at Principle 8.8, you might wonder, is that really
correct, and where that really comes from. In answer, common sense as explained above,
then lots of experiments too, confirming it, or rather confirming the formula ofM, that we
haven’t talked about yet, and finally quantum field theory, which is something advanced,
that can actually prove this Golden Rule, starting from simple principles.

Back to our business now, we will take Principle 8.11 for granted, and further build
on it, with examples, the formula ofM, and more. Before that, however, let us do what
was suggested above, namely integrating with respect to time. This leads to:

Theorem 8.12 (Golden Rule 4). In the context of a particle physics decay, ∗0 →
∗1 + . . .+ ∗n, the decay rate is given, in standard p̃ = (E/c, p) notation, by

λ =
S

2hm0

∫
|M|2(2π)4δ

(
p̃0 −

n∑
i=1

p̃i

)
n∏

i=1

1

2
√
||pi||2 +m2

i c
2
· dpi
(2π)3

with M =M(p0, . . . , pn) being the normalized amplitude, S = 1/
∏

i(mi!) being the sta-

tistical factor, and with the convention Ei/c =
√
||pi||2 +m2

i c
2, both inM and δ.
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Proof. We use the formula from Principle 8.11, written with our standard notation
for energy-momentum vectors p̃ = (E/c, p) from chapter 7, which is as follows:

λ =
S

2hm0

∫
|M|2(2π)4δ

(
p̃0 −

n∑
i=1

p̃i

)
n∏

i=1

2πδ(p̃2i −m2
i c

2)H

(
Ei

c

)
dp̃i
(2π)4

In order to further process this formula, let us look at each of the n products on the
right. According to our conventions for quadratic Dirac masses, explained after Principle
8.10, the Dirac mass appearing there is given by the following formula:

δ(p̃2i −m2
i c

2) = δ

(
E2

i

c2
− ||pi||2 −m2

i c
2

)
= δ

((
Ei

c

)2

−
(√
||pi||2 +m2

i c
2

)2
)

=
δ
(

Ei

c
−
√
||pi||2 +m2

i c
2
)
+ δ

(
Ei

c
+
√
||pi||2 +m2

i c
2
)

2
√
||pi||2 +m2

i c
2

Thus we have two possibilities, and since the Heaviside term H(Ei/c) equals 1 on the
first one, and vanishes on the second one, we are led to the following formula:

δ(p̃2i −m2
i c

2)H

(
Ei

c

)
=
δ
(

Ei

c
−
√
||pi||2 +m2

i c
2
)

2
√
||pi||2 +m2

i c
2

But this leads to the conclusion in the statement. □

As an illustration, for two-particle decays many things simplify, and we have:

Theorem 8.13. For two-particle decays, ∗0 → ∗1 + ∗2, the Golden Rule reads

λ =
S||p||

8πhm2
0c
|M|2

withM being the amplitude, ||p|| being the magnitude of either outgoing momentum,

||p|| = c

2m0

√
m4

0 +m4
1 +m4

2 − 2m2
0m

2
1 − 2m2

0m
2
2 − 2m2

1m
2
2

and the statistical factor being S = 1 if ∗1 ̸= ∗2, and S = 1/2 if ∗1 = ∗2.
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Proof. In the case of two-particle decays, the formula in Theorem 8.12 takes the
following form, with the statistical factor S being the one in the statement:

λ =
S

2hm0

∫
|M|2(2π)4δ (p̃0 − p̃1 − p̃2)

2∏
i=1

1

2
√
||pi||2 +m2

i c
2
· dpi
(2π)3

=
S

32π2hm0

∫
|M|2 δ (p̃0 − p̃1 − p̃2)√

||p1||2 +m2
1c

2
√
||p2||2 +m2

2c
2
dp1dp2

Let us look now at the Dirac function. This decomposes over components, as follows:

δ (p̃0 − p̃1 − p̃2) = δ

(
E0

c
− E1

c
− E2

c

)
δ (p0 − p1 − p2)

With the particle ∗0 being supposed to be at rest, we have the following formulae:

E0

c
= m0c , p0 = 0

On the other hand, recall from Theorem 8.12 that the machinery there leads to:

E1

c
=
√
||p1||2 +m2

1c
2 ,

E2

c
=
√
||p2||2 +m2

2c
2

Thus, the above Dirac mass is in fact given by the following formula:

δ (p̃0 − p̃1 − p̃2) = δ

(
m0c−

√
||p1||2 +m2

1c
2 −

√
||p2||2 +m2

2c
2

)
δ(p1 + p2)

Getting back now to the formula of the decay rate, that becomes:

λ =
S

32π2hm0

∫
|M|2

δ
(
m0c−

√
||p1||2 +m2

1c
2 −

√
||p2||2 +m2

2c
2
)

√
||p1||2 +m2

1c
2
√
||p2||2 +m2

2c
2

×δ(p1 + p2) dp1dp2

Since we must have p2 = −p1, this expression further simplifies to:

λ =
S

32π2hm0

∫
|M|2

δ
(
m0c−

√
||p1||2 +m2

1c
2 −

√
||p1||2 +m2

2c
2
)

√
||p1||2 +m2

1c
2
√
||p1||2 +m2

2c
2

dp1

In spherical coordinates, this expression takes the following form:

λ =
S

32π2hm0

∫
|M|2

δ
(
m0c−

√
r2 +m2

1c
2 −

√
r2 +m2

2c
2
)

√
r2 +m2

1c
2
√
r2 +m2

2c
2

r2 sin s drdsdt

The point now is that by physics, to be explained later, the amplitude must be of the
formM =M(r). Thus the angular integrals contribute with factors as follows:∫ π

0

sin s ds = 2 ,

∫ 2t

0

dt = 2π



148 8. FEYNMAN DIAGRAMS

We conclude that in the end we are left with a real integral, over r, as follows:

λ =
S

8πhm0

∫ ∞

0

|M|2
δ
(
m0c−

√
r2 +m2

1c
2 −

√
r2 +m2

2c
2
)

√
r2 +m2

1c
2
√
r2 +m2

2c
2

r2dr

In order to compute this integral, consider the following variable:

u =
√
r2 +m2

1c
2 +

√
r2 +m2

2c
2

Now observe that by differentiating, we obtain the following formula:

du

dr
=

2r

2
√
r2 +m2

1c
2
+

2r

2
√
r2 +m2

2c
2

= r

(
1√

r2 +m2
1c

2
+

1√
r2 +m2

2c
2

)
=

ur√
r2 +m2

1c
2
√
r2 +m2

2c
2

Thus, in terms of this new variable u, we have the following formula:

λ =
S

8πhm0

∫ ∞

m1c+m2c

|M|2δ(m0c− u)
r

u
du

=
Sr

8πhm2
0c
|M|2

Here in the last formula r stands for the value of the variable r evaluated at the place
where the Dirac mass takes the value 1, that we can compute as follows:

u = m0c ⇐⇒
√
r2 +m2

1c
2 +

√
r2 +m2

2c
2 = m0c

⇐⇒ r2 +m2
1c

2 = r2 +m2
2c

2 +m2
0c

2 − 2m0c
√
r2 +m2

2c
2

⇐⇒ 2m0

√
r2 +m2

2c
2 = (m2

0 −m2
1 +m2

2)c

⇐⇒ 4m2
0(r

2 +m2
2c

2) = (m2
0 −m2

1 +m2
2)

2c2

⇐⇒ 4m2
0r

2 = ((m2
0 −m2

1 +m2
2)

2 − 4m2
0m

2
2)c

2

⇐⇒ r =
c

2m0

√
m4

0 +m4
1 +m4

2 − 2m2
0m

2
1 − 2m2

0m
2
2 − 2m2

1m
2
2

Thus, we are led to the conclusion in the statement. □

So long for particle decays, ∗0 → ∗1 + . . .+ ∗n. We will be back to them later in this
chapter, once we will know more about the amplitudeM.
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8c. Cross sections

With the particle decays understood, let us turn now to the other phenomenon that
can appear, namely collision, or scattering, ∗a + ∗b → ∗1 + . . . + ∗n. Here, as you can
imagine, the situation is quite similar to that for the decays, as follows:

(1) The Golden Rule in its first formulation, Principle 8.8, holds again, this time with
a new amplitude for the interaction, of the form N = N(pa, pb, p1, . . . .pn), which remains,
as before in the case of the decays, to be suitably normalized.

(2) The basic physics from Addendum 8.8, which complements Principle 8.8, namely
conservation of total energy and total momentum, and constant mass and positive energy
requirement for each outgoing particle, holds unchanged.

Thus, we led to the following analogue of Principle 8.10, or Golden Rule 2:

Principle 8.14 (Golden Rule 2’). In the context of a particle physics scattering,
∗a + ∗b → ∗1 + . . .+ ∗n, the cross section is given by

σ =

∫
|N |2δ

(
pa + pb −

n∑
i=1

pi

)
n∏

i=1

δ(p2i −m2
i c

2)H(p0i )dp

with N = N(pa, pb, p1, . . . , pn) being the amplitude of the interaction.

Regarding now the normalization of the amplitude, which is a key point, some things
change at the level of physics, the situation being as follows:

(1) We have λ ∼ S, with S = 1/
∏

i(mi!), where mi ∈ N with
∑
mi = n are the

multiplicities of the output particles, exactly as before.

(2) Next, and importantly, at the level of the physics we have the following new
formula, that we will discuss more in detail later, instead of the previous λ ∼ 1/(2hm0),
because we are doing now something else, with two particles colliding instead of one
decaying, and by computing a cross section σ instead of a decay rate λ:

λ ∼ h2

4
√
< pa, pb >2 −(mambc2)2

(3) Finally, as before, each Dirac mass δ behaves better in computations when multi-
plied by a 2π factor, and each dpi behaves better when divided by a 2π factor.

Now by doing all these normalizations, and with some amplitude magic helping, we
are led to the following analogue of Principle 8.11, or Golden Rule 3:
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Principle 8.15 (Golden Rule 3’). In the context of a particle physics scattering,
∗a + ∗b → ∗1 + . . .+ ∗n, the cross section is given by

σ =
Sh2

4
√
< pa, pb >2 −(mambc2)2

∫
|M|2(2π)4δ

(
pa + pb −

n∑
i=1

pi

)

×
n∏

i=1

2πδ(p2i −m2
i c

2)H(p0i )
dpi
(2π)4

with M = M(pa, pb, p1, . . . , pn) being the normalized amplitude of the interaction, and
with S = 1/

∏
i(mi!), where mi ∈ N with

∑
mi = n are the multiplicities of the output.

Observe that we have used here the sameM symbol as in Principle 8.11. Obviously,
this is something heavy, and deep, and the whole point with everything lies here. But in
the lack of advanced physics tools in order to explain this, which as already mentioned
on the occasion of Principle 8.11, come from quantum field theory, we will have to leave
it like this, with of course the comment that “all this is verified by experiments”.

Excuse me, but cat is here, meowing something. In English translation, what he says
is not very funny, “with your lack of understanding of physics, that you practice every
day, and share with your students too, you will end up destroying the whole planet”.
Well, dear cat, what can I answer. Physics is not everything in life, let’s not forget about
chemistry, and then especially biology, big and slow animals like dinosaurs, or nowadays
humans, usually rule, and there is nothing much we can do about this.

Moving ahead now, with Principle 8.15 agreed upon, we can integrate as before over
time, and we have the following analogue of Theorem 8.12, or Golden Rule 4:

Theorem 8.16 (Golden Rule 4’). In the context of scattering, ∗a+∗b → ∗1+ . . .+∗n,
the cross section is given, in standard p̃ = (E/c, p) notation, by

σ =
Sh2

4
√
< p̃a, p̃b >2 −(mambc2)2

∫
|M|2(2π)4δ

(
p̃a + p̃b −

n∑
i=1

p̃i

)

×
n∏

i=1

1

2
√
||pi||2 +m2

i c
2
· dpi
(2π)3

withM =M(pa, pb, p1, . . . , pn) being the normalized amplitude, S = 1/
∏

i(mi!) being the

statistical factor, and with the convention Ei/c =
√
||pi||2 +m2

i c
2, both inM and δ.

Proof. This is indeed nearly identical to the proof of Theorem 8.12, with all the
manipulations there applying unchanged, to the present situation. □

Getting now to illustrations, let us work out the analogue of Theorem 8.13, by looking
at situations of type ∗a + ∗b → ∗1 + ∗2. The result here is as follows:



8C. CROSS SECTIONS 151

Theorem 8.17. For events of type ∗a + ∗b → ∗1 + ∗2, the Golden Rule for scattering,
in the center of mass frame, gives the differential cross section formula

dσ

dΩ
=

Sh2c2|M|2

64π2(Ea + Eb)2
· ||p1||
||pa||

with M being the amplitude, ||pa|| = ||pb|| and ||p1|| = ||p2|| being the magnitudes of the
incoming and outgoing momenta, and S = 1 if ∗1 ̸= ∗2, and S = 1/2 if ∗1 = ∗2.

Proof. In the case n = 2, the formula in Theorem 8.16 takes the following form,
with the statistical factor S being the one in the statement:

σ =
Sh2

4
√
< p̃a, p̃b >2 −(mambc2)2

∫
|M|2 (2π)4δ (p̃a + p̃b − p̃1 − p̃2)

4
√
||p1||2 +m2

1c
2
√
||p2||2 +m2

2c
2
· dp1dp2
(2π)6

=
Sh2

64π2
√
< p̃a, p̃b >2 −(mambc2)2

∫
|M|2 δ (p̃a + p̃b − p̃1 − p̃2)√

||p1||2 +m2
1c

2
√
||p2||2 +m2

2c
2
· dp1dp2

Our claim now is that, assuming that we are in the center of mass frame, where
pb = −pa, the square root in the normalization factor is given by the following formula:√

< p̃a, p̃b >2 −(mambc2)2 ≃
Ea + Eb

c
||pa||

With the notation P = ||pa||2 = ||pb||2, coming from our assumption pb = −pa, this is
the same as proving that the following quantity is negligible:

K = c2
(
< p̃a, p̃b >

2 −(mambc
2)2
)
− (Ea + Eb)

2P

In order to prove our claim, the first observation is that, according to our conventions
for four-vectors, and to pb = −pa, we have the following formula:

< p̃a, p̃b >=
EaEb

c2
− < pa, pb >=

EaEb

c2
+ P

We deduce from this that the above quantity K is given by:

K = c2

((
EaEb

c2
+ P

)2

− (mambc
2)2

)
− (Ea + Eb)

2P

=
E2

aE
2
b

c2
+ c2P 2 + 2EaEbP −m2

am
2
bc

6 − E2
aP − E2

bP − 2EaEbP

=
E2

aE
2
b

c2
+ c2P 2 −m2

am
2
bc

6 − (E2
a + E2

b )P
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In terms of Lorentz factors, we obtain from this the following formula:

K =
(γamac

2)2(γbmbc
2)2

c2
+ c2P 2 −m2

am
2
bc

6 −
(
(γamac

2)2 + (γbmbc
2)2
)
P

= γ2aγ
2
bm

2
am

2
bc

6 + c2P 2 −m2
am

2
bc

6 − γ2am2
ac

4P − γ2bm2
bc

4P

= (γ2aγ
2
b − 1)m2

am
2
bc

6 + c2P 2 − (γ2am
2
a + γ2bm

2
b)c

4P

Now observe that, for a particle with relativistic momentum p = γmv, the correspond-
ing Lorentz factor γ can be computed by using the following formula:√

1 +

(
||p||
mc

)2

=

√
1 +

γ2||v||2
c2

=

√
1 +

1

1− ||v||2/c2
· ||v||

2

c2

=

√
c2

c2 − ||v||2

=
1√

1− ||v||2/c2
= γ

By using this formula for both our particles ∗a and ∗b, for which ||pa||2 = ||pb||2 = P ,
we can finish our computation of the above quantity K, and we obtain, as desired:

K = (γ2aγ
2
b − 1)m2

am
2
bc

6 + c2P 2 − (γ2am
2
a + γ2bm

2
b)c

4P

=

((
1 +

P

m2
ac

2

)(
1 +

P

m2
bc

2

)
− 1

)
m2

am
2
bc

6

−
((

1 +
P

m2
ac

2

)
m2

a +

(
1 +

P

m2
bc

2

)
m2

b

)
c4P

= (m2
ac

4P +m2
bc

4P + c2P 2)− (m2
ac

4P +m2
bc

4P + 2c2P 2)

= −c2P 2

≃ 0

Thus, claim proved, and with this in hand, our previous formula of the cross section,
from the beginning of the present proof, takes the following form:

σ =
Sh2c

64π2(Ea + Eb)||pa||

∫
|M|2 δ (p̃a + p̃b − p̃1 − p̃2)√

||p1||2 +m2
1c

2
√
||p2||2 +m2

2c
2
· dp1dp2
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Let us look now at the Dirac function. This decomposes over components, as follows:

δ (p̃a + p̃b − p̃1 − p̃2) = δ

(
Ea

c
+
Eb

c
− E1

c
− E2

c

)
δ (p1 + p2)

Now recall from Theorem 8.16 that the machinery there leads to:

E1

c
=
√
||p1||2 +m2

1c
2 ,

E2

c
=
√
||p2||2 +m2

2c
2

Thus, the above Dirac mass is in fact given by the following formula:

δ (p̃a + p̃b − p̃1 − p̃2) = δ

(
Ea + Eb

c
−
√
||p1||2 +m2

1c
2 −

√
||p2||2 +m2

2c
2

)
δ(p1 + p2)

Getting back now to the formula of the cross section, that becomes:

σ =
Sh2c

64π2(Ea + Eb)||pa||

∫
|M|2

δ
(

Ea+Eb

c
−
√
||p1||2 +m2

1c
2 −

√
||p2||2 +m2

2c
2
)

√
||p1||2 +m2

1c
2
√
||p2||2 +m2

2c
2

×δ(p1 + p2) dp1dp2

Since we must have p2 = −p1, this expression further simplifies to:

σ =
Sh2c

64π2(Ea + Eb)||pa||

∫
|M|2

δ
(

Ea+Eb

c
−
√
||p1||2 +m2

1c
2 −

√
||p1||2 +m2

2c
2
)

√
||p1||2 +m2

1c
2
√
||p1||2 +m2

2c
2

dp1

In spherical coordinates, this expression takes the following form:

σ =
Sh2c

64π2(Ea + Eb)||pa||

∫
|M|2

δ
(

Ea+Eb

c
−
√
r2 +m2

1c
2 −

√
r2 +m2

2c
2
)

√
r2 +m2

1c
2
√
r2 +m2

2c
2

×r2 sin s drdsdt
The problem now is that, with respect to what we did before for decay, something

changes here in the physics, because the quantity |M|2 depends this time on the direction
of p1, and so we cannot do the angular integrations, trivially, as before. More on this
later, when talking in detail about the amplitudeM, and in the meantime, let us finish
our computation, by using some other methods and tricks. The idea will be very simple.
Consider the solid angle Ω on the sphere, whose differential is given by:

dΩ = sin s dsdt

Now observe that we have the following formula, with the quantity on the left being
something that we certainly want to compute, namely the differential cross section:

dσ

dΩ
=

Sh2c

64π2(Ea + Eb)||pa||

∫ ∞

0

|M|2
δ
(

Ea+Eb

c
−
√
r2 +m2

1c
2 −

√
r2 +m2

2c
2
)

√
r2 +m2

1c
2
√
r2 +m2

2c
2

r2dr
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The point now is that the integral on the right is something familiar to us, and can be
computed as before, in the decay case, in the proof of Theorem 8.13. To be more precise,
following the proof there, consider the following quantity:

u =
√
r2 +m2

1c
2 +

√
r2 +m2

2c
2

As before by differentiating, we obtain the following formula:

du

dr
=

ur√
r2 +m2

1c
2
√
r2 +m2

2c
2

Thus, in terms of this new variable u, we have the following formula:

dσ

dΩ
=

Sh2c

64π2(Ea + Eb)||pa||

∫ ∞

m1c+m2c

|M|2δ
(
Ea + Eb

c
− u
)
r

u
du

=
Sh2c2r

64π2(Ea + Eb)2||pa||
|M|2

Here in the last formula r stands for the value of the variable r evaluated at the place
where the Dirac mass takes the value 1, that we can compute as follows:

u =
Ea + Eb

c

⇐⇒
√
r2 +m2

1c
2 +

√
r2 +m2

2c
2 =

Ea + Eb

c

⇐⇒ r2 +m2
1c

2 = r2 +m2
2c

2 +

(
Ea + Eb

c

)2

− 2(Ea + Eb)

c

√
r2 +m2

2c
2

⇐⇒ 2(Ea + Eb)

c

√
r2 +m2

2c
2 =

(
Ea + Eb

c

)2

+ (m2
2 −m2

1)c
2

⇐⇒ 2
√
r2 +m2

2c
2 =

Ea + Eb

c
+
m2

2 −m2
1

Ea + Eb

c3

⇐⇒ 4r2 + 4m2
2c

2 =

(
Ea + Eb

c

)2

+

(
m2

2 −m2
1

Ea + Eb

)2

c6 + 2(m2
2 −m2

1)c
2

⇐⇒ 4r2 =

(
Ea + Eb

c

)2

+

(
m2

2 −m2
1

Ea + Eb

)2

c6 − 2(m2
1 +m2

2)c
2

⇐⇒ r =
1

2

√(
Ea + Eb

c

)2

+

(
m2

2 −m2
1

Ea + Eb

)2

c6 − 2(m2
1 +m2

2)c
2

Equivalently, with r = ||p||1, we are led to the formula in the statement. □
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8d. Amplitude, diagrams

With the above discussed, generalities of the Golden Rule in particle physics, for both
decays and scattering, it remains to say what the amplitude M of the interactions is.
With this being the missing ingredient, for what we have been doing, so far.

However, this is something quite tricky. To start with, we have been talking about
decays ∗0 → ∗1 + . . . + ∗n and scattering ∗a + ∗b → ∗1 + . . . + ∗n, and the obvious good
framework for discussing both situations is that of more complex events, as follows:

◦1 + . . .+ ◦m → ∗1 + . . .+ ∗n
Generally speaking, we can think at what happens here as being a quite general type

of collision, with several input and output particles. So, let us draw a collision scheme, in
the spirit of those what we drew some time ago, when doing classical mechanics:

◦1 . . . ◦m
↘ ↙

⋆

↙ ↘
∗1 . . . ∗n

If you are already a bit familiar with Feynman diagrams, you will recognize here an
order 0 such diagram, drawn a bit in an upside-down way. So, thanks for the remark, and
in answer, we will be using in the remainder of this book the following convention:

Convention 8.18. For everything diagrams, we use the following conventions, which
are commonplace in mathematics, and in modern theoretical physics too:

(1) The vertical direction is for action, going from up to down.
(2) The horizontal direction is for scalars, and other mathematics.

We will be actually not using in this book scalars and other mathematics as in (2),
which are rather advanced things, but it is useful I think to learn the basics in this way,
so that you can understand later what modern mathematicians and physicists are doing,
without being confused by notations and orientation. And as a joke here, to finish this
discussion, all this is quite natural, because if we changed Dirac’s notation for the scalar
products, we should change Feynman’s conventions for diagrams too, right.

Back to work now, we already have some knowledge about decays and scattering, in
the particle physics context, but if there is something where we really do have some decent
knowledge, that is the movement of the electron e around the proton p, in the context of
the hydrogen atom, that we already spent most of the present book in studying.
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So, this will be our starting point, the mechanics of the hydrogen atom, with the
electron e moving around the proton p. Obviously, what happens here is some sort of
scattering, e+ p→ e+ p, so let us draw right away diagram for this situation:

e
��

p
��

⋆

e

��

p

��

You might say, end of the story here, this is the relevant diagram, and with that middle
⋆ symbol being actually a bit inappropriate, because nothing special happens anyway,
electron e spinning smoothly around the proton p, with no fight or anything.

However, this is wrong. Remember all that corrections to the hydrogen atom, that
we had troubles in understanding, and with what we understood being the tip of the
iceberg, anyway? The whole point in advanced quantum mechanics lies there, in all that
corrections, and quantum electrodynamics comes with the following bright idea:

Idea 8.19. Even for simple situations, like the hydrogen atom e + p → e + p, the
interactions should come in a hierarchic way, with the basic order 0 diagram

a1
��

. . .

am
��

⋆
b1

��

bn

��. . .

being followed by order 1, order 2 and so on diagrams, and with the corresponding ampli-
tudeM being computed accordingly, as a power series in a certain variable α.

And isn’t this bright. Everything illuminates now. So, we should blame all that
mysterious corrections to the hydrogen atom on higher order interactions and diagrams,
describing our e + p → e + p process, coming in complement to the order 0 diagram
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pictured above, with the typical higher order diagram being something as follows:

e
##

p
{{

z

{{

w

##g //

x
##

s
{{

e

{{

p

##

Here we have used some random letters, z, w, g, x, s, for the mysterious, very short
lived particles that might appear at any time in our process e + p → e + p, that we can
hold responsible for the various corrections to the hydrogen atom, that we studied before.
Of course, once our theory formally established, we will have to understand, via some
further theory, and experiments too, what these beasts z, w, g, x, s really are.

In short, bright idea that we have, but enormous work still lying ahead, for making
all this really work. Getting started now, inspired by the above, let us formulate:

Definition 8.20. A Feynman diagram for a multiple scattering and decay event a1+
. . .+ am → b1 + . . .+ bm is a diagram of type

a1
%%

. . .

am
zz

c1

yy

cp

%%

d1 %% dqyy

b1

yy

bn

$$. . .

with ci, di being short-lived particles appearing in the event, and with the middle box being
allowed to contain any such configuration of temporary particles too.

Very nice all this, and getting now to work for good, so many things to be done. Let
us start with the general recipe, since I am sure that you are very curious at this point
about how all this works, and we will understand later what this really means:
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Principle 8.21. The amplitudeM coming from a given Feynman diagram F can be
computed as follows:

(1) Label each vertex with the corresponding four-momentum vector.
(2) Put factors −ig at each vertex, g being the coupling constant.
(3) Install Feynman propagators i

p2j−m2
jc

2 on each internal line.

(4) Install rescaled Dirac masses (2π)4δ(
∑

i pi) at each vertex.

(5) Put integration factors
dpj
(2π)4

on each internal line, and integrate.

(6) Erase the global (2π)4δ(
∑

i pi) factor appearing after integrating.
(7) Multiply the answer by i. That is your amplitudeM.

Sounds exciting, doesn’t it. Obviously, it will take us some time to understand, how
all this works. To start with, passed the notations that we used in the above, which are a
bit sloppy, but that we chose so in order not to overly complicate things, at least at this
preliminary stage of things, what we are doing is quite simple, namely:

(1) The amplitudeM appears by integrating over the state space, with conservation
of energy and momentum being taken into account, at each internal vertex.

(2) What we are integrating are, basically, modulo some rescalings and other mathe-
matical manipulations, the Feynman propagators, on each internal line.

(3) And with these mathematical manipulations including, crucially, the one at the
end, namely erasing the final energy and momentum conservation term.

Which looks quite reasonable, physically speaking. However, a more careful look at
Principle 8.21 reveals some sort of bug, coming from the coupling constant g appearing
in (2) there. You would probably say, after all, what is this joke, we spent this whole
chapter in waiting for the formula of the amplitudeM, and now here that formula comes,
but by relegating everything to yet another beast, this coupling constant g.

Good point, and in answer right away, there is no cheating of any kind here, because
we have the following very simple and precise rule, for quantum electrodynamics:

Rule 8.22. In quantum electrodynamics, the coupling constant is

g =
√
4πα

with α ≃ 1/137 being the fine structure constant.

In short, with this rule complementing Principle 8.21, that principle is meant to pro-
duce something numeric, as amplitudeM. We will see examples of this in a moment.

We have opted for stating Rule 8.22 independently of Principle 8.21, as a complement
to it, because Principle 8.21 can work as well beyond quantum electrodynamics, for even
finer theories, which require the use of other coupling constants g. More on this later.
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As a basic illustration now for the above, chosen as simple as possible, without prop-
agators, or integration work to be done, we have the following result:

Theorem 8.23. For a two-particle decay ∗0 → ∗1+∗2 the order 0 amplitude isM = g,
which gives via the Golden Rule an order 0 decay rate of

λ =
S||p||α
2hm2

0c

with ||p|| being the magnitude of either outgoing momentum,

||p|| = c

2m0

√
m4

0 +m4
1 +m4

2 − 2m2
0m

2
1 − 2m2

0m
2
2 − 2m2

1m
2
2

and the statistical factor being S = 1 if ∗1 ̸= ∗2, and S = 1/2 if ∗1 = ∗2.

Proof. We know from Theorem 8.13 that for two-particle decays, ∗0 → ∗1 + ∗2, the
Golden Rule takes the following form, with S and ||p|| being as in the statement:

λ =
S||p||

8πhm2
0c
|M|2

In order to compute the amplitudeM, we use Principle 8.21. At order 0 we only have
one Feynman diagram, which is the obvious one, namely:

0

��

1

��

2

��

Now let us apply Principle 8.21. We have a −ig factor, no propagators, then a
(2π)4δ(p0 − p1 − p2) factor which appears and dissapears, and so we get, right away:

M = i(−ig) = g

Thus |M|2 = g2 = 4πα, which gives the formula of λ in the statement. □

The above example was of course extremely simple, without propagators, or inte-
gration work. However, do not worry, for decays at order 1, or for basic scatterings,
∗a + ∗b → ∗1 + ∗2, such things will appear. We will discuss them later.

Summarizing, we have now some understanding of the fine structure of hydrogen.
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8e. Exercises

Exercises:

Exercise 8.24.

Exercise 8.25.

Exercise 8.26.

Exercise 8.27.

Exercise 8.28.

Exercise 8.29.

Exercise 8.30.

Exercise 8.31.

Bonus exercise.



Part III

Bosons, fermions



Come back home to the refinery
Hiring man says son, if it was up to me

Went down to see my V.A. man
He said son, don’t you understand
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Exercise 9.1.

Exercise 9.2.

Exercise 9.3.

Exercise 9.4.

Exercise 9.5.
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Exercise 9.8.
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10a. Bosons, fermions
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10e. Exercises
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Exercise 10.3.

Exercise 10.4.

Exercise 10.5.

Exercise 10.6.

Exercise 10.7.

Exercise 10.8.

Bonus exercise.
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CHAPTER 11

Statistical mechanics

11a. Statistical mechanics

In order to advance, we need to talk about statistical mechanics. As a starting result
here, dealing with the internal mechanism of the PV = kT formula, we have:

Theorem 11.1 (Maxwell). The molecular speeds v ∈ R3 of a gas in thermal equilib-
rium are subject to the Maxwell-Boltzmann distribution formula

P (v) =
( m

2πbT

)3/2
exp

(
−m||v||

2

2bT

)
with m being the mass of the molecules, and b being the Boltzmann constant.

Proof. As usual with such things, this is rather something in between fact and
theorem. Maxwell came upon it as a fact, or perhaps as a sort of pseudo-theorem, and
a bit later Boltzmann came with a proof. In what follows we will discuss the original
argument of Maxwell, then go towards Boltzmann’s proof. Here is Maxwell’s argument:

(1) We are looking for the precise probability distribution P of the molecular speeds
v = (v1, v2, v3) which makes the mechanics of gases work. Intuition tells us that P has no
corellations between the x, y, z directions of space, and so we must have:

P (v) = f(v1)g(v2)h(v3)

Moreover, by rotational symmetry the functions f, g, h must coincide, and so:

P (v) = f(v1)f(v2)f(v3)

(2) Further thinking, again invoking rotational symmetry, leads to the conclusion that
P (v) must depend only on the magnitude ||v|| of the velocity v ∈ R3, and not on the
direction. Thus, we must have as well a formula of the following type:

P (v) = φ(||v||2)

(3) Now by comparing the requirements in (1) and (2), we are led via some math to
the conclusion that φ must be an exponential, which amounts in saying that:

P (v) = λ exp
(
−C||v||2

)
167
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(4) Obviously we must have C > 0, for things to be bounded, and then by integrating
we can obtain λ as function of C, and our formula becomes:

P (v) =

(
C

π

)3/2

exp
(
−C||v||2

)
(5) It remains to find the value of C > 0. But for this purpose, observe that, now that

we have our distribution, be that still depending on C > 0, we can compute everything
that we want to, just by integrating. In particular, we find that on average:

v21 = v22 = v23 =
1

2C

Thus the average magnitude of the molecular speed is given by:

||v|| = 3

2C

It follows that the average kinetic energy of the molecules is:

K0 =
m||v||2

2
=

3m

4C

(6) On the other hand, recall from basic thermodynamics that one of the many equiv-
alent formulations of PV = kT , using PV = 2K/3, is as follows:

2K0

3
= bT

(7) Thus we obtain m/(2C) = bT , and so C = m/(2bT ), as desired. □

In order to further discuss all this, following Boltzmann, and then Gibbs and others,
the idea will be that of connecting all the above to the key notion of entropy:

Theorem 11.2. Given a gas, with states denoted S = (P, V, T ) ∈ R3, subject to the
equation of state f(S) = 0, define the entropy of a state by the formula

E(S) =

∫ S

S0

dQ

T

where S0 is a chosen state, and the integral is over a reversible transformation from S0 to
S. Then E is well-defined up to an additive scalar, and we have the inequality

E(S1) ≤ E(S2)

for any transformation S1 → S2, with equality when this transformation is reversible.
That is, entropy increases, and there is nothing much that you can do about it.

Proof. This is something that we know well from basic thermodynamics, with the
proof using the standard methods there, namely calculus, and Carnot machines. □

Following now Boltzmann, we have the following key result:
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Theorem 11.3 (Boltzmann). The kinetic theory of gases, taking into account the
collisions between molecules, leads to the formula for entropy

E(S) = −b
∫
P (S) logP (S)dS

with P being the probability on the state space, around our given state S.

Proof. This is something quite complicated, and we refer to the literature. Observe
that E as computed above is given by an exact formula, not depending on an additive
constant, the point here being that, in the context of Theorem 11.2, we can formally
choose the state S0 there to be the one, which is unique, at temperature T = 0. □

Moving ahead now, as a second key result, also due to Boltzmann, we have:

Theorem 11.4 (Boltzmann). Given a gas with intial molecular speed distribution P ,
the collisions between molecules, leading to equilibrium, will work such as the quantity

H =

∫
P (v) logP (v)dv

decreases over time. The final distribution reached, over time, which is the one at equi-
librium, is precisely the one which minimizes H, given by the formula

P (v) =
( m

2πbT

)3/2
exp

(
−m||v||

2

2bT

)
which is the Maxwell-Boltzmann distribution, that we knew before from Maxwell.

Proof. Again, this is something at the same time a bit complicated, but of utter
beauty, and for the proof, we again refer to any solid statistical mechanics book. □

Observe the obvious similarity between Theorem 11.3 and Theorem 11.4, and also
the important theoretical consequences of the above, in view of the comments that we
previously made in connection with the Maxwell-Boltzmann distribution.

In order to further clarify all the above, we will explain now a key result of Gibbs,
called H theorem. This is something quite abstract and general, as follows:

Theorem 11.5. For a large system, wih states denoted S, the quantity

H =

∫
P (S) logP (S)dS

can only decrease over time, as to reach a minumum, where we have

P (S) ∼ exp

(∑
i

λiEi

)
where Ei are the conserved quantities, and λi ∈ R are scalars.
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Proof. This is something quite tricky, the idea being as follows:

(1) In order to prove this result, let us define quantities A(S, T ), depending on two
states S, T , close to each other, such that the rate at which the system transitions S → T
equals A(S, T )dT . With this convention, we have the following formula:

dP (S)dS

dt
=

∫ [
P (T )A(T, S)dS − P (S)A(S, T )dS

]
dT

By cancelling the differentials dS, this gives the following formula:

dP (S)

dt
=

∫ [
P (T )A(T, S)− P (S)A(S, T )

]
dT

(2) On the other hand, consider the quantity in the statement, namely:

H =

∫
P (S) logP (S)dS

By using the formula found in (1), we obtain the following formula:

dH

dt
=

∫ ∫ [
P (T )A(T, S)− P (S)A(S, T )

]
(logP (S) + 1)dSdT

Now by interchanging S, T in the second integral, this gives:

dH

dt
=

∫ ∫
P (T )A(T, S) log

P (S)

P (T )
dSdT

(3) We use now the following standard inequality, whose proof is elementary:

x, y ≥ 0 =⇒ y log
x

y
≤ x− y

By applying this to the last formula found in (2), that formula gives:

dH

dt
≤
∫ ∫

(P (S)− P (T ))A(T, S)dSdT

Now by interchanging again S, T , this inequality can be written as follows:

dH

dt
≤
∫ ∫

P (T )(A(S, T )− A(T, S))dSdT

(4) Normally this latter estimate allows us to conclude that H decreases, as claimed
in the statement, because since the laws of physics must be invariant under time reversal,
we should have A(S, T ) = A(T, S), and so our inequality simply reads:

dH

dt
≤ 0
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However, our argument has a flaw, in the context of advanced quantum mechanics,
but as good news, the same advanced quantum mechanics tells us that we have:∫

(A(S, T )− A(T, S))dS = 0

Thus, either way, we obtain dH/dt ≤ 0, and so that H decreases, as claimed.

(5) In order to prove now the second assertion, regarding what happens when H is
minimal, observe that for an infinitesimal change ∆P (S), we have:

∆H =

∫
∆P (S)(logP (S) + 1)dS

Now assuming that H is minimal, we must have ∆H = 0 for any allowed infinitesimal
change ∆P (S), with this meaning that the change ∆P (S) must preserve the conserved
quantities of the system, as for instance the energy E(S), and also be such that:∫

P (S)dS = 1

But this can only happen when P (S) is of the following form, where Ei are the
conserved quantities of the system, and λi ∈ R are certain scalars:

P (S) ∼ exp

(∑
i

λiEi

)
Thus, we are led to the conclusion in the statement. □

In practice now, assuming that the energy E is the only conserved quantity, Theorem
11.5 leads to the following distribution, called “canonical ensemble”:

P (S) = exp

[
C − E(S)

θ

]
To be more precise, here θ is a certain constant, and C is another constant, uniquely

determined by
∫
P (S)dS = 1. But, in practice, we have θ = kT , which gives:

P (S) = exp

[
C − E(S)

kT

]
More generally now, in case our system has other conserved quantities Ni, Theorem

11.5 leads to the following distribution, called “grand canonical ensemble”:

P (S) = exp

[
C − E(S)−

∑
i λiNi(S)

kT

]
We will be back to canonical ensembles later. For the moment, let us record the

following result, coming as a complement to Theorem 11.5:
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Theorem 11.6. We have the formula

E(S) = −kH
with E being the thermodynamical entropy.

Proof. In the context of our equations above, adding some heat ∆Q to the system
gives the following formula, for the corresponding change in the quantity H:

∆H =

∫
∆P (S)(logP (S) + 1)dS

= − 1

kT

∫
∆P (S)E(S)dS

= −∆Q

kT
Now since the thermodynamical entropy satisfies by definition dE = dQ/kT , we con-

clude from the above equation that we have E(S) = −kH, as claimed. □

11b.

11c.

11d.

11e. Exercises

Exercises:

Exercise 11.7.

Exercise 11.8.

Exercise 11.9.

Exercise 11.10.

Exercise 11.11.

Exercise 11.12.

Exercise 11.13.

Exercise 11.14.

Bonus exercise.
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Exotic matter

12a. Exotic matter

12b.

12c.

12d.

12e. Exercises

Exercises:

Exercise 12.1.

Exercise 12.2.

Exercise 12.3.

Exercise 12.4.

Exercise 12.5.

Exercise 12.6.

Exercise 12.7.

Exercise 12.8.

Bonus exercise.
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Part IV

Into molecules



Open to everything happy and sad
Seeing the good, meme si tout va si mal
Voir le soleil quand la nuit nous accable

Oh pour un jour croire aux dieux, croire aux fables



CHAPTER 13

Periodic table

13a. Periodic table

Let us investigate now the case of arbitrary atoms. We will need some general theory
for the many-particle systems in quantum mechanics. Let us start with:

Definition 13.1. The wave function of a system of electrons e1, . . . , eZ, given by

Pt

(
e1 ∈ V1, . . . , eZ ∈ VZ

)
=

∫
V1×...×VZ

|ψt(x1, . . . , xZ)|2dx

is governed by the Schrödinger equation ihψ̇ = Ĥψ, with Hamiltonian as follows,

Ĥ = − h

2m

∑
i

∆i +Ke2
∑
i<j

1

||xi − xj||
+ V (x1, . . . , xZ)

with the middle sum standing for the Coulomb repulsions between them.

As before with the one-particle Schrödinger equation, there is a long story with all
this, and for cutting short with the discussion here, this is what experiments lead to.

In general, and in fact at any Z > 1, and so even at Z = 2, the above Schrödinger
equation is pretty much impossible to solve, due to the Coulomb repulsion term, which
makes the mathematics extremely complicated. In fact, as an illustrating analogy here,
managing that Coulomb repulsion term is more or less the same thing as solving the
N -body problem in classical mechanics, for bodies with equal mass.

We will be interested here in the case of atoms, where V is the Coulomb attraction
potential coming from a Ze charge. Here the problem to be solved is as follows:

Problem 13.2. Consider an atom of atomic number Z, meaning a fixed Ze charge,
surrounded by electrons e1, . . . , eZ. The problem is to solve the Schrödinger equation

ihψ̇ = Ĥψ

with Hamiltonian as follows,

Ĥ =
∑
i

(
− h

2m
∆i −

KZe2

||xi||

)
+Ke2

∑
i<j

1

||xi − xj||

or at least to understand how e1, . . . , eZ manage to live together, in a stable way.

177
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A first idea would be of course that of ignoring the right term, Coulomb repulsion. In
the simplest case, that of the helium atom, the situation is as follows:

Fact 13.3. For the helium atom, Z = 2, ignoring the Coulomb repulsion between
electrons leads, via separation of variables, to product wave functions

ϕ(x1, x2) = ϕ′
n1l1m1

(x1)ϕ
′
n2l2m2

(x2)

with the prime signs standing for the doubling e→ 2e of the central charge, with energies:

En1n2 = 4(En1 + En2)

This model predicts a ground state energy for helium given by

E0 = 8× (−13.6) = −109 eV

which is considerably smaller than the observed E0 = −79 eV.

As a partial conclusion to what we have so far, things not going on every well, and in
order to advance, we will probably need to invest a lot of time in learning how to solve
complicated Schrödinger equations, and why not buying a super-computer too.

Moving ahead, let us focus on a more modest question, that at the end of Problem
13.2, namely understanding how the electrons e1, . . . , eZ manage to live together. Here
our method of ignoring the Coulomb repulsion between electrons is not that bad, and for
helium for instance, we are led in this way to some interesting conclusions. For instance
the excited states of helium must appear as products as follows:

ϕ100(x1)ϕnlm(x2) , ϕnlm(x1)ϕ100(x2)

And this is actually quite close to reality, if we add the particle spin to our discussion.
So, speaking now spin, this is indeed something that we ignored so far in the above. And
spin is in fact a key component to our problem, because we have:

Fact 13.4 (Pauli exclusion principle). Two electrons cannot occupy the same quantum
numbers n, l,m, with same spin s = ±1/2.

So, this is the famous Pauli exclusion principle, giving the golden key to the under-
standing of Z ≥ 2 atoms. There are of course many things that can be said about it.
A sample quantum mechanics book will probably tell you first something about bosons
and fermions, coming with exactly 0 evidence, then some more things about electrons,
of type “they are the same, but not really, and everything is entangled, but is it really
entangled”, and finally formulate the Pauli exclusion principle, as a theorem.

We will not get into this here, and take the Pauli exclusion principle as it is, a physics
fact. However, talking philosophy, personally I always think at it as coming from the
“human nature of electrons”. To be more precise, when I’m at my office typing the
present book, I feel like occupying some precise quantum numbers, with precise spin.
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And if 30 colleagues, all typing physics books too, manage to come by surprise to my
office, and squeeze there like sardines, I will surely find a way of getting rid of them, and
disposing of their bodies. So now that a poor human like me can do this, why shouldn’t
a mighty electron be able to do the same. This is the Pauli exclusion principle.

We have now all the ingredients for discussing the known atoms, or chemical elements,
Z = 1, . . . , 118. These can be arranged in a table, called periodic table, as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 H
1

He
2

2 Li
3

Be
4

B
5

C
6

N
7

O
8

F
9

Ne
10

3 Na
11

Mg
12

Al
13

Si
14

P
15

S
16

Cl
17

Ar
18

4 K
19

Ca
20

Sc
21

Ti
22

V
23

Cr
24

Mn
25

Fe
26

Co
27

Ni
28

Cu
29

Zn
30

Ga
31

Ge
32

As
33

Se
34

Br
35

Kr
36

5 Rb
37

Sr
38

Y
39

Zr
40

Nb
41

Mo
42

Tc
43

Ru
44

Rh
45

Pd
46

Ag
47

Cd
48

In
49

Sn
50

Sb
51

Te
52

I
53

Xe
54

6 Cs
55

Ba
56

l Lu
71

Hf
72

Ta
73

W
74

Re
75

Os
76

Ir
77

Pt
78

Au
79

Hg
80

Tl
81

Pb
82

Bi
83

Po
84

At
85

Rn
86

7 Fr
87

Ra
88

a Lr
103

Rf
104

Db
105

Sg
106

Bh
107

Hs
108

Mt
109

Ds
110

Rg
111

Cn
112

Nh
113

Fl
114

Mc
115

Lv
116

Ts
117

Og
118

l : La
57

Ce
58

Pr
59

Nd
60

Pm
61

Sm
62

Eu
63

Gd
64

Tb
65

Dy
66

Ho
67

Er
68

Tm
69

Yb
70

a : Ac
89

Th
90

Pa
91

U
92

Np
93

Pu
94

Am
95

Cm
96

Bk
97

Cf
98

Es
99

Fm
100

Md
101

No
102

Here the horizontal parameter 1, . . . , 18 is called the group, and the vertical parameter
1, . . . , 7 is called the period. The two bottom rows consist of lanthanum 57La and its
followers, called lanthanides, and of actinium 89Ac and its followers, called actinides.

Thus, the periodic table, when correctly drawn, but no one does that because of
obvious typographical reasons, is in fact a 7 × 32 table. Note here that, according to
our 7× 18 convention, which is the standard one, lanthanides and actinides don’t have a
group number 1, . . . , 18. Their group is by definition “lanthanides” and “actinides”.

We will comment in a moment on all this, but before anything:

Advice 13.5. Learn their names.



180 13. PERIODIC TABLE

This is a serious advice, the periodic table being the main theorem of mathematics,
physics, chemistry, biology and engineering combined. So if there’s one theorem to be
learned, full statement, that is the one. In case you’re out of memory, just erase from
your brain everything that you learned so far from this book of mine, and learn instead
that 118 elements. Please do it for me, this being my final wish, from the death bed.

Actually, in order to get started here, here are the names up to krypton 36Kr, which
are absolutely needed for everything, and must be all learned, to start with:

Definition 13.6. The elements up to krypton 36Kr are as follows:

(1) Hydrogen 1H, helium 2He.
(2) Lithium 3Li, beryllium 4Be, boron 5B, carbon 6C, nitrogen 7N, oxygen 8O, fluorine

9F, neon 10Ne.
(3) Sodium 11Na, magnesium 12Mg, aluminium 13Al, silicon 14Si, phosphorus 15P,

sulfur 16S, chlorine 17Cl, argon 18Ar.
(4) Potassium 19K, calcium 20Ca, scandium 21Sc, titanium 22Ti, vanadium 23V,

chromium 24Cr, manganese 25Mn, iron 26Fe, cobalt 27Co.
(5) Nickel 28Ni, copper 29Cu, zinc 30Zn, gallium 31Ga, germanium 32Ge, arsenic 33As,

selenium 34Se, bromine 35Br, krypton 36Kr.

Observe that all names fit with the abbreviations, expect for sodium 11Na, coming
from the Latin natrium, potassium 19K, coming from the Latin kalium, iron 26Fe coming
from the Latin ferrum, and also copper 29Cu, coming from the Latin cuprum.

In what regards the elements heavier than krypton 36Kr, it is heartbreaking to sort
them out, but as a useful complement to the above list, we have:

Fact 13.7. Remarkable elements heavier than krypton 36Kr include:

(1) Noble gases: xenon 54Xe, radon 86Rn.
(2) Noble metals: silver 47Ag, iridium 77Ir, platinum 78Pt, gold 47Au.
(3) Heavy metals: mercury 80Hg, lead 82Pb.
(4) Radioactive: polonium 84Po, radium 88Ra, uranium 92U, plutonium 94Pu.
(5) Miscellaneous: rubidium 37Rb, strontium 38Sr, molybdenum 42Mo, technetium

43Tc, cadmium 48Cd, tin 50Sn, iodine 53I, caesium 55Cs, tungsten 74Tu, bismuth

83Bi, francium 87Fr, americium 95Am.

Here the abbreviations not fitting with English names come from the Latin or some-
times Greek argentum 47Ag, aurum 47Au, hydrargyrum 80Hg, plumbum 82Pb and stannum

50Sn. The noble gases in (1) normally include oganesson 118Og as well. The noble metals
in (2) are something subjective. There are of course plenty of other heavy metals (3), or
radioactive elements (4). As for the list in (5), this is something subjective, basically a
mixture of well-known metals used in engineering, and some well-known bad guys in the
context of nuclear fallout. Technetium 43Tc is a bizarre element, human-made.
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But let us not forget about quantum mechanics, and what we wanted to do, namely
discuss electron structure. As a first observation, we have:

Fact 13.8. Any Z = 1, . . . , 118 corresponds to a unique element, having Z protons in
the core, and Z electrons around it. This element might come with isotopes, depending
on the number of neutrons in the core, can be in ground state or excited states, can get
ionized, and so on, but all there versions are “family”, and the element is unique.

This fact is something which might look very natural, with no need for explanation
for it, but after some thinking, is this really that natural. And the answer here is that
no, if you don’t know quantum mechanics, and yes, if you know some, as we do:

(1) For the purposes of our question, we can assume that we are in the context of
Problem 13.2, and with the Coulomb repulsions between electrons ignored.

(2) But then, we are a bit in the same situation as in Fact 13.3, and the analysis there,
based on hydrogen theory modified via e→ Ze, carries over.

(3) And so, the Z electrons will arrange on various energy levels, subject to Pauli
exclusion, as to occupy a state of lowest possible energy, so the solution is unique.

In fact, we can now understand the electron structure of the various elements, and
also how the periodic table is exactly made, the conclusions here being as follows:

Fact 13.9. For the element having atomic number Z, the electrons will occupy succe-
sively the various positions with quantum numbers n, l,m ∈ N and spin s = ±1/2, such
as the total binding energy to be minimal. In practice, the period 1, . . . , 7 corresponds to
the highest n occupied, and the group 1, . . . , 18 comes from l,m, s.

This is of course something very basic, and there is a detailed analysis to be done
afterwards, for Z = 1, . . . , 118. For the elements up to krypton 36Kr, the list of electron
configurations can be found for instance in Feynman [35] or Griffiths [43].

Time now for more advanced mathematics, for the many-electron atoms, and by talk-
ing about isotopes and ionization too, and this even for the hydrogen atom. All this
knowledge will be very useful, among others for going towards molecules, afterwards.

In other words, this means that we will be interested in what happens to a system
of Z electrons e1, . . . , eZ , surrounding a central positive charge Z ′e. For a usual atom,
which is globally electrically neutral, we have Z = Z ′, but for isotopes and ions we can
have Z < Z ′ or Z > Z ′. Thus, we will assume that the numbers Z,Z ′ are unrelated.

In practice, this corresponds to the following version of Problem 13.2:
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Problem 13.10. Consider a system of atomic number Z ′, meaning a fixed Z ′e charge,
surrounded by electrons e1, . . . , eZ. The problem is to solve the Schrödinger equation

ihψ̇ = Ĥψ

with Hamiltonian as follows,

Ĥ =
∑
i

(
− h

2m
∆i −

KZ ′e2

||xi||

)
+Ke2

∑
i<j

1

||xi − xj||

or at least to understand how e1, . . . , eZ manage to live together, in a stable way.

As explained in the discussion following Problem 13.2, a first idea is to simply ignore
the Coulomb repulsion term on the right. Indeed, this simplifies a lot the mathematics,
and by separation of variables we are led to a product of wave functions, with the numerics
being worked out, in the simplest case of the helium atom, in Fact 13.3.

So, let us see how this works in general, in the framework of Problem 13.10. As before
with helium, in view of the fact that the interactions between the electrons are ignored,
this amounts in decomposing the Hamiltonian into Z components, as follows:

Ĥ = Ĥ1 + . . .+ ĤZ

By separation of variables, we are led to products of wave functions as follows, called
Hartree products, with the prime signs standing for the modification of the central charge,
e→ Z ′e, from the case of hydrogen, to the case of the system under investigation:

ϕ(x1, . . . , xZ) = ϕ′(x1) . . . ϕ
′(xZ)

Here we have opted, for simplifying notations, to not include the quantum numbers,
as in Fact 13.3, at least in the present, preliminary stage of our study.

With this done, we are quite far from something reliable, because as explained in
Fact 13.3, such an approximation gives quite average results, with respect to the observed
values, even in the simplest case of helium. So, the following question appears:

Question 13.11. How to further improve the Hartree products, without however get-
ting into Problem 13.10 as stated, which is something of extreme difficulty?

In order to solve this question, let us get back to helium, Z = Z ′ = 2. If we denote
for simplifying by 1, 2 the first two lowest energy orbits, we have two possible Hartree
functions for the simplest excited state of our helium atom, namely:

ϕ12(x1, x2) = ϕ′
1(x1)ϕ

′
2(x2) , ϕ21(x1, x2) = ϕ′

2(x1)ϕ
′
1(x2)

A natural idea, in order to have some symmetry going on, for our solution, is that of
considering a suitable linear combination of these solutions. But since the overall electron
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density function |ϕ|2 must be invariant under electron exchange, we are led, up to a
normalization of the wave function, to linear combinations as follows:

ϕ = ±ϕ12 ± ϕ21

Moreover, by taking now into account spin, the Pauli exclusion principle tells us that
the correct symmetry property of ϕ is actually antisymmetry. Thus, up to a global ±
sign, and again up to a normalization of the wave function, the solution must be:

ϕ = ϕ12 − ϕ21

= ϕ′
1(x1)ϕ

′
2(x2)− ϕ′

2(x1)ϕ
′
1(x2)

=

∣∣∣∣ϕ′
1(x1) ϕ′

2(x1)
ϕ′
1(x2) ϕ′

2(x2)

∣∣∣∣
Getting now to the normalization factor, a simple computation shows that this factor

is 1/
√
2. Thus, as a conclusion, our symmetrization method leads to:

ϕ =
1√
2

∣∣∣∣ϕ′
1(x1) ϕ′

2(x1)
ϕ′
1(x2) ϕ′

2(x2)

∣∣∣∣
More generally now, the above method applies in the same way to a system of Z

electrons, and we are led to the following preliminary answer to Question 13.11:

Answer 13.12. The correct linear combinations of Hartree products, having the cor-
rect antisymmetrization property for the electrons, are the quantities

ϕ =
1√
Z!

∣∣∣∣∣∣
ϕ′
1(x1) . . . ϕ′

Z(x1)
...

...
ϕ′
1(xZ) . . . ϕ′

Z(xZ)

∣∣∣∣∣∣
with the subscripts standing for the hydrogen-like energy levels, and the primes standing
for the central charge modification e→ Z ′e, called Slater determinants.

To be more precise here, the fact that we must indeed consider a determinant is
standard, by reasoning as above, and with this actually corresponding to a well-known
theorem in mathematics, stating that the determinant is the unique antisymmetric mul-
tilinear form det : RN → R, normalized as to produce 1 for the standard basis of RN . As
for the computation of the normalization factor, this is again standard, as above.

Moving ahead now, the electron spin was certainly taken into account when formu-
lating the above answer, due to the Pauli exclusion principle which was used. However,
when fully taking spin into account, we are led to the following refinement of the above
formula, valid this time for a system of Z = 2N electrons, with the subscripts ignoring
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spin, and with the bars, and lack of bars, standing for spin up and down:

ϕ =
1√
Z!

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ′
1(x1) ϕ̄′

1(x1) . . . . . . ϕ′
N(x1) ϕ̄′

N(x1)
ϕ′
1(x2) ϕ̄′

1(x2) . . . . . . ϕ′
N(x2) ϕ̄′

N(x2)
...

...
...

...
...

...
...

...
ϕ′
1(xZ−1) ϕ̄′

1(xZ−1) . . . . . . ϕ′
N(xZ−1) ϕ̄′

N(xZ−1)
ϕ′
1(xZ) ϕ̄′

1(xZ) . . . . . . ϕ′
N(xZ) ϕ̄′

N(xZ)

∣∣∣∣∣∣∣∣∣∣∣∣∣
However, we will not get into full details here, because an even better approximation

method, called Hartree-Fock approximation, beating the above, is still to come.

As an example, however, for all this, let us discuss the case of the beryllium atom 4Be.
Here the Slater determinant, taking into account spin, as above, is as follows:

ϕ =
1√
24

∣∣∣∣∣∣∣∣
ϕ′
1(x1) ϕ̄′

1(x1) ϕ′
2(x1) ϕ̄′

2(x1)
ϕ′
1(x2) ϕ̄′

1(x2) ϕ′
2(x2) ϕ̄′

2(x2)
ϕ′
1(x3) ϕ̄′

1(x3) ϕ′
2(x3) ϕ̄′

2(x3)
ϕ′
1(x4) ϕ̄′

1(x4) ϕ′
2(x4) ϕ̄′

2(x4)

∣∣∣∣∣∣∣∣
Getting now to the excited states of the same beryllium 4Be, that we would like to

understand now, we need to add here a third orbital, that we will label 3.

And then, following a discussion about spin, which must be subject to certain rules,
we are led to the conclusion that the correct linear combination of Hartree products is a
difference of two Slater determinants, as follows:

ϕ =
1√
24

∣∣∣∣∣∣∣∣
ϕ′
1(x1) ϕ̄′

1(x1) ϕ′
2(x1) ϕ̄′

3(x1)
ϕ′
1(x2) ϕ̄′

1(x2) ϕ′
2(x2) ϕ̄′

3(x2)
ϕ′
1(x3) ϕ̄′

1(x3) ϕ′
2(x3) ϕ̄′

3(x3)
ϕ′
1(x4) ϕ̄′

1(x4) ϕ′
2(x4) ϕ̄′

3(x4)

∣∣∣∣∣∣∣∣
− 1√

24

∣∣∣∣∣∣∣∣
ϕ′
1(x1) ϕ̄′

1(x1) ϕ̄′
2(x1) ϕ′

3(x1)
ϕ′
1(x2) ϕ̄′

1(x2) ϕ̄′
2(x2) ϕ′

3(x2)
ϕ′
1(x3) ϕ̄′

1(x3) ϕ̄′
2(x3) ϕ′

3(x3)
ϕ′
1(x4) ϕ̄′

1(x4) ϕ̄′
2(x4) ϕ′

3(x4)

∣∣∣∣∣∣∣∣
As already mentioned, we will not get into full details here, because an even better

approximation method, called Hartree-Fock approximation, is still to come.

Central field approximation.

Adding spin, Hartree-Fock approximation.

Many things can be said here, with this being a quite powerful method.
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Good news, with what we know from the above about atoms, and in particular with
the knowledge of the Hartree-Fock method, we can now talk about molecules.

Indeed, the idea here is that a molecule can be investigated a bit like a multi-electron
atom, by replacing the central charge with a system of positive charges.

In practice, by further building on the Hartree-Fock method for the atoms, we are led
in this way to the Born-Oppenheimer method for the molecules.

Many things can be said here, notably with a number of more advanced models for
the simplest molecule of them all, which is the hydrogen molecule.

With what we know about molecules, we can now start doing some chemistry.

There is an enormous quantity of things that can be said here, all relying on quite
delicate mathematics, the simplest of which being as follows:

Theorem 13.13. The group 18 elements, namely

(1) Helium 2He,
(2) Neon 10Ne,
(3) Argon 18Ar,
(4) Krypton 36Kr,
(5) Xenon 54Xe,
(6) Radon 86Rn,

called noble gases, are allergic to chemistry.

Proof. This follows from the electron structure, because the group 18 elements are
precisely those with all possible electron positions fully occupied, up to a certain n ∈ N,
which makes them very unfriendly to any chemistry proposition from the outside. By the
way, oganesson 118Og is normally part of this group too, but since this element has only
been created and observed for a tiny fraction of a second, who really knows, and by the
standard scientific etiquette, in the lack of experiments, no comment about it. □

More about noble gases.

The particular case of helium 2He, which is a remarkable element.

Discussion about radon 86Rn too, going beyond basic physics and chemistry.
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13b.

13c.

13d.

13e. Exercises

Exercises:

Exercise 13.14.

Exercise 13.15.

Exercise 13.16.

Exercise 13.17.

Exercise 13.18.

Exercise 13.19.

Exercise 13.20.

Exercise 13.21.

Bonus exercise.
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Ions, isotopes

14a. Ions, isotopes

14b.

14c.

14d.

14e. Exercises

Exercises:

Exercise 14.1.

Exercise 14.2.

Exercise 14.3.

Exercise 14.4.

Exercise 14.5.

Exercise 14.6.

Exercise 14.7.

Exercise 14.8.

Bonus exercise.
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CHAPTER 15

Small molecules

15a. Small molecules

15b.

15c.

15d.

15e. Exercises

Exercises:

Exercise 15.1.

Exercise 15.2.

Exercise 15.3.

Exercise 15.4.

Exercise 15.5.

Exercise 15.6.

Exercise 15.7.

Exercise 15.8.

Bonus exercise.
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CHAPTER 16

Big molecules

16a. Big molecules

16b.

16c.

16d.

16e. Exercises

Congratulations for having read this book, and no exercises for this final chapter.
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electric field, 18
electric permittivity, 26
electricity, 18
electrodynamics, 18
electromagnetic radiation, 23
electromagnetic wave, 22
electromagnetism, 18
electron, 30
electron exchange, 182
electron fall, 31
electron jump, 31
electron spin, 85, 102
electron-volt, 75
electrostatics, 18
elliptic orbits, 31
energy levels, 109, 110
ensemble, 171
entropy, 168, 169, 171
equation of state, 168
excited state, 181

Faraday law, 18
faster than light, 11
Feynman diagram, 157
Feynman propagators, 157
fictious force, 92
fine structure constant, 87, 88, 106, 109, 110,

158
fluorine, 180
Fourier analysis, 23
Fourier transform, 27, 47
frame change, 18
free space, 22
frequency, 23, 25

Galileo formula, 12
gamma ray, 25
Gauss law, 18
Gibbs entropy, 171
Gibbs theorem, 169
Golden Rule, 143

gradient, 18
Gram-Schmidt, 53
grand canonical ensemble, 171
ground state, 80

H theorem, 169
half-life, 138
Hamiltonian, 37, 41, 177
hard sphere, 140
Hartree product, 182
Hartree-Fock, 183
heat diffusion, 42
heat equation, 42
Heaviside function, 143
heavy metals, 180
Heisenberg uncertainty principle, 63
helium, 178, 180, 185
helium atom, 178
Hilbert space, 50
homogeneous medium, 26
Hooke law, 20
Humphreys series, 29
hydrogen, 180

ideal gas, 167, 168
impact parameter, 139
incoming beam, 141
incoming momenta, 150
inertial observer, 11, 92
infinite matrix, 54, 55
interference, 33
ionization, 181
IR, 25
isotopes, 181

Kepler laws, 91
kinetic energy operator, 63
kinetic theory, 168
Klein-Gordon equation, 88, 117
krypton, 180, 185

Laguerre polynomials, 81
lanthanides, 179
Laplace operator, 20, 22, 42, 65
Laplacian, 20, 42
large system, 169
lattice model, 20, 42
Legendre equation, 71
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Legendre function, 74
Legendre polynomials, 73
length contraction, 16
light, 11, 22, 23
light bulb, 23
linear medium, 26
linearity, 50
lithium, 180
Lorentz contraction, 16
Lorentz dilation, 16
Lorentz factor, 16, 19
Lorentz transformation, 18, 19
low speeds, 12
Lyman series, 28

magnetic field, 18
magnetic moment, 109
magnetic permeability, 26
magnetism, 18
magnetostatics, 18
many-body problem, 177
Maxwell equations, 18, 19, 22, 26
Maxwell-Boltzmann formula, 167, 169
mean lifetime, 138
measurements, 63
microwave, 25
mixed frequencies, 24
modified Planck constant, 36
molecular speed, 167
momentum, 39
momentum conservation, 107
momentum operator, 63
monochromatic, 24
moving charge, 18

neon, 180, 185
neutron, 30
Newton law, 20
nitrogen, 180
noble gases, 180, 185
noble metals, 180
non-vacuum, 11
norm of operator, 54
normal operator, 61, 62
normalized amplitude, 145
nuclear plant, 23

observable, 41, 63

oganesson, 185
opaque, 26
operator, 54
operator norm, 54
orthonormal basis, 53
outgoing momenta, 150
oxygen, 180

particles and waves, 33
Paschen series, 29
Pauli exclusion, 178
Pauli matrices, 102, 119
periodic table, 178, 179
perturbation theory, 110
Pfund series, 29
phase, 23
phase constant, 23
photon, 116
Planck formula, 79
plane wave, 24
polar equation, 70
polarization, 25
polarized light, 25
position, 39
position operator, 63
positive energy, 143
positrons, 120
prism, 27
probability density, 33
probability one, 38
propagators, 157
proton, 30

QED, 158
quantization, 105
quantum electrodynamics, 158
quantum number, 109
quantum numbers, 178

radial equation, 68, 75
radiation, 23
radio wave, 25
radioactive, 180
radon, 180, 185
ralativistic correction, 109
rational calculus, 58
rational function, 58
reflection angle, 27
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refraction, 27
refraction angle, 27
refraction index, 26, 27
relativistic collision, 107
relativistic correction, 110
relativistic energy, 108
relativistic frame change, 18
relativistic kinetic energy, 108
relativistic length, 16
relativistic mass, 107
relativistic momentum, 107
relativistic time, 16
relativity, 16, 19
repulsion term, 177
resistor, 23
rest energy, 108
rest mass, 108
reversible transformation, 168
right-hand rule, 89
Ritz-Rydberg, 29
rotating axis, 92
rotating body, 92
rotational invariance, 167
Rydberg constant, 79
Rydberg formula, 29, 79

sandwiching, 41
scalar product, 50
scattering, 137
scattering angle, 139
Schrödinger equation, 36, 177
self-adjoint operator, 59, 62
separation of variables, 45, 47, 74
shift operator, 57
short-lived particles, 157
Slater determinant, 183
Snell law, 27
solid angle, 141
special relativity, 16
spectral lines, 28
spectral radius, 60, 61
spectral theorem, 62
spectroscopy, 27
spectrum of operator, 56
spectrum of products, 57
speed addition, 12
speed of light, 11, 22, 26

speed operator, 63
speed summation, 12
spherical coordinates, 65
spherical harmonics, 74, 80, 82, 98
spin operator, 101
square-summable, 50
state space, 168
statistical factor, 145
Stern-Gerlach experiment, 85
system of electrons, 177

thermal diffusivity, 42
thermal equilibrium, 167
thermodynamics, 167
time dilation, 16
time evolution, 37
time-independent equation, 45
time-independent potential, 45
total energy, 41
total energy operator, 63
transparent, 26
two-particle decay, 146, 159

uncertainty principle, 63
unitary operator, 59
UV, 25

vacuum, 11
vector product, 89

wave, 22
wave equation, 20, 22, 23
wave function, 177
wave functions, 80, 82
wave number, 23
wave packet, 23
wavelength, 23, 25
waves and particles, 33

X ray, 25
xenon, 180, 185

Zorn lemma, 53
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