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ABSTRACT. The permutation group Sy has a quantum analogue Sj\',, which is infinite
at N > 4. We review the known facts regarding SJ'G, and notably its easiness property,
Weingarten calculus, and the isomorphism S = S O3 ! and its consequences. We discuss
then the structure of the closed subgroups G C S;\L,, and notably of the quantum sym-
metry groups of finite graphs G (X) C Sj\}, with particular attention to the quantum
reflection groups HJSVJF. We also discuss, more generally, the quantum symmetry groups
S}“ of the finite quantum spaces Z, and their closed subgroups G C S}“, with particular
attention to the quantum graph case, and to quantum reflection groups.



Preface

One of the most puzzling discoveries in quantum algebra, going back to work of Wang
from the late 90s, in answer to a question of Connes, is that the set {1,..., N} with
N > 4 has an infinity of quantum permutations. At the first glance, this looks as one of
these physicists’ crazy things, which might be worth attention or not. But please don’t
go away, and listen to what I have so say. Yes, all this is related to physics. But the
mathematics behind it is extremely simple, and worth some attention.

Let us first look at the symmetric group Sy. When regarding it as group of permuta-
tions of the N coordinate axes of R, so as subgroup Sy C Oy, the standard coordinates
u;; € C(Sy) are given by a very simple formula, u;;(0) = 6,(;);. It follows that these
coordinates u;; € C'(Sy) form a matrix u = (u;;) which is “magic”, in the sense that its
entries are projections, p> = p* = p, which sum up to 1 on each row and each column.
Moreover, by Stone-Weierstrass we have C'(Sy) =< wu;; >, and with a bit more work,
by using the Gelfand theorem, we can see that C(Sy) is isomorphic to the universal
commutative C*-algebra generated by the entries of a N x N magic matrix.

This suggests looking at the universal C*-algebra C(S};) generated by the entries
of a N x N magic matrix. In analogy with what happens for C'(Sy), this algebra has
a comultiplication A, a counit ¢ and an antipode S, so according to general results of
Woronowicz, its spectrum Sy is a compact quantum group, called quantum permutation
group. And the point is that the inclusion Sy C S} is not an isomorphism at N > 4,
because diagonally joining magic matrices of size > 2 shows that S}, is a non-classical,
infinite compact quantum group, substantially bigger than Sy.

Summarizing, some interesting mathematics going on here, and with this digested, the
first thought goes to physics. Can such beasts be of help in connection with statistical
mechanics, along the lines suggested by Jones? What about quarks and the Standard
Model, along the lines suggested by Connes? What about statistical mechanics and
quantum physics alike, via random matrices, and freeness in the sense of Voiculescu?
And also, in tune with our times, what about quantum information?

These questions are all old and difficult, going back to Wang’s discovery of S5 in the
late 90s, and the few years that followed. So, perhaps more modestly, we should start
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4 PREFACE

with some pure mathematics. The point indeed is that Sy and its subgroups G C Sy
have a lot of interesting mathematics, so before anything, we should understand what
the analogous theory of S¥ and of its closed quantum subgroups G C S}, is. And with
a bit of luck, we will get in this way precisely into the mathematics of Connes, Jones,
Voiculescu, putting us on the right track for doing some physics afterwards.

The present book is precisely about this, the mathematics of Sy and of its closed
subgroups G C Sj;, with physics motivations in mind. We will be interested in mathe-
matics in a large sense, mixing algebra, geometry, analysis and probability. At the level
of subgroups, we will mostly insist on the quantum reflection groups, which are quite fun-
damental objects, mathematically speaking, and which are expected as well to be useful
in physics. Finally, we will discuss also the more general case of the quantum permuta-
tion groups S of the arbitrary “finite quantum spaces” Z, and their closed subgroups
G C S}, with special attention to the quantum reflection subgroups.

All in all, many things to be discussed. We will assume some familiarity with basic
graduate level mathematics, such as operator algebras and quantum groups. In case you
are not familiar with this, have a copy of my quantum group book [4] handy. However,
the present book is for the most self-contained, up to undergraduate mathematics, and if
you’re not afraid of theorems coming with very short proofs, it is for you as such.

Finally, regarding physics, there will be not much of it in this book, which is meant
to be a purely mathematical text. However, the relation with the work of Connes, Jones,
Voiculescu, potentially leading to physics, will be carefully explained. In short, you will
learn in this way everything that is needed for doing good physics afterwards. With this
applying to myself too, my lattice model book [5] being long overdue.

This book is heavily based on a number of research papers on quantum permutations
and reflections, and I am particularly grateful to Julien Bichon, Benoit Collins and Steve
Curran, for substantial joint work on the subject. Many thanks go as well to my cats, for
precious support and advice, during the preparation of the present book.

Cergy, August 202/

Teo Banica
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Part 1

Quantum permutations



Carry me, caravan, take me away
Take me to Portugal, take me to Spain
Andalucia with fields full of grain

I have to see you again and again



CHAPTER 1

Quantum permutations

la. Quantum spaces

Welcome to quantum permutations. In this first part of the present book we discuss
the construction and basic properties of the quantum permutation groups Sj;, and of
their generalizations S5, with Z being a finite quantum space. The story here involves
the foundational papers of Woronowicz [98], [99], from the end of the 80s, then the key
papers of Wang [95], [96], from the mid 90s, then my own papers [1], [2], [3], from the
late 90s and early 00s, and finally some more specialized papers from the mid and late
00s, including [8], [12], [15], [16], [18], [25], containing a few fundamentals too.

In short, cavern man mathematics from about 20 years ago, but lots of things to be
learned. We will provide here 100 pages on the subject, with a decent presentation of
what is known about Sj and S¥, of fundamental type, coming in the form of theorems
accompanied by short proofs. For further details on all this, you have my graduate
textbook on quantum groups [4], along with the original papers cited above.

Getting started now, at the beginning of everything, we have:
QUESTION 1.1 (Connes). What is a quantum permutation group?

This question is more tricky than it might seem. For solving it you need a good
formalism of quantum groups, and there is a bewildering number of choices here, with
most of these formalisms leading nowhere, in connection with the above question. So, we
are into philosophy, and for truly getting started, we have to go back in time, with:

QUESTION 1.2 (Heisenberg). What is a quantum space?

Regarding this latter question, there are as many answers as quantum physicists,
starting with Heisenberg himself in the early 1920s, then Schrédinger and Dirac short
after, with each coming with his own answer to the question. Not to forget Einstein, who
labeled all these solutions as “nice, but probably fundamentally wrong”.

In short, we are now into controversy, and a look at more modern physics does not help
much, with the controversy basically growing instead of diminishing, over the time. So, in
the lack of a good answer, let us take as starting point something nice and mathematical,
rather agreed upon in the 1930s, coming from Dirac’s work, namely:
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12 1. QUANTUM PERMUTATIONS

ANSWER 1.3 (von Neumann). A quantum space is the dual of an operator algebra.

Fast forward now to the 90s and to Connes’ question, this remains something non-
trivial, even when knowing what a quantum space is, and this for a myriad technical
reasons. You have to work a bit on that question, try all sorts of things which do not
work, until you hit the good answer. With this good answer being as follows:

ANSWER 1.4 (Wang). The quantum permutation group Sy% is the biggest compact
quantum group acting on {1,..., N}, by leaving the counting measure invariant.

To be more precise, the idea is that {1,..., N} has all sorts of quantum permutations,
and even when restricting the attention to the “correct” ones, namely those leaving in-
variant the counting measure, there is still an infinity of such quantum permutations, and
the quantum group formed by this infinity of quantum permutations is compact.

This was for the story of the subject, very simplified, and as a final ingredient, two
answers to two natural questions that you might have:

(1) Isn’t the conclusion |SF;| = co a bit too speculatory, not to say crazy? Certainly
not, I would say, because in quantum mechanics particles do not have clear positions and
speeds, and once you're deep into this viewpoint, “think quantum”, a bit fuzzy about
everything, why the set {1,..., N} not being allowed to have an infinity of quantum
permutations, after all. So, no contradiction, philosophically speaking.

(2) Why was the theory of Sy developed so late? Good question, and in answer,
looking retrospectively, quantum groups and permutations should have been developed
by von Neumann and Weyl, sometimes in the 1940s, perhaps with some help from Gelfand.
But that never happened. As for the story after WW2, with mathematics, physics, and
mankind in general: that was sex, drugs and rock and roll, forget about it.

Getting started now for good, we have the whole remainder of this chapter for un-
derstanding what Question 1.1 is about, and what its Answer 1.4 says. But before that,
Question 1.2 and Answer 1.3 coming first. Leaving aside physics, we must first talk about
operator algebras, and the starting definition here is as follows:

DEFINITION 1.5. A C*-algebra is a complex algebra A, having a norm ||.|| making it
a Banach algebra, and an involution *, related to the norm by the formula

llaa™|| = [|al[*
which must hold for any a € A.
As a basic example, the algebra My (C) of the complex N x N matrices is a C*-algebra,

with the usual matrix norm and involution of matrices, namely:
IM|] = sup [[Mzl| , (M) = Mj

||l||=1
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More generally, any s-subalgebra A C My (C) is automatically closed, and so is a
C*-algebra. In fact, in finite dimensions, the situation is as follows:

PROPOSITION 1.6. The finite dimensional C*-algebras are exactly the algebras
A=M,(C)®...® M, (C)
with norm ||(ay, ..., ax)|| = sup; ||a]|, and involution (ay,...,ar)* = (af,...,a}).

PROOF. In one sense this is clear. In the other sense, this comes by splitting the unit
of our algebra A as a sum of central minimal projections, 1 = p; + ...+ pr. Indeed, when
doing so, each of the x-algebras A; = p;Ap; follows to be a matrix algebra, A; ~ M, (C),
and this gives the direct sum decomposition in the statement. U

In general now, a main theoretical result about C*-algebras, due to Gelfand, Naimark
and Segal, and called GNS representation theorem, is as follows:

THEOREM 1.7. Given a complex Hilbert space H, finite dimensional or not, the algebra
B(H) of linear operators T : H — H which are bounded, in the sense that

IT]| = sup [|Tx||
llz]|=1
18 finite, is a C*-algebra, with the above norm, and with involution given by:
<Tx,y>=<uz,T"y >
More generally, and norm closed x-subalgebra of this full operator algebra
AC B(H)
is a C*-algebra. Any C*-algebra appears in this way, for a certain Hilbert space H.

PROOF. There are several statements here, with the first ones being standard operator
theory, and with the last one being the GNS theorem, the idea being as follows:

(1) First of all, the full operator algebra B(H) is a Banach algebra. Indeed, given a
Cauchy sequence {7} inside B(H), we can set Tz = lim,_,, T,,x, for any = € H. It is
then routine to check that we have 7' € B(H), and that 7,, — T" in norm.

(2) Regarding the involution, the point is that we must have < Tx,y >=< x,T*y >,
for a certain vector T*y € H. But this can serve as a definition for 7™, and the fact that
T* is indeed linear, and bounded, with the bound ||T*|| = ||T|, is routine. As for the
formula ||TT*|| = ||T||?, this is elementary as well, coming by double inequality.

(3) Finally, the fact that any C*-algebra appears as A C B(H), for a certain Hilbert
space H, is advanced. The idea is that each a € A acts on A by multiplication, T,(b) = ab.
Thus, we are more or less led to the result, provided that we are able to convert our algebra
A, regarded as a complex vector space, into a Hilbert space H = L?(A). But this latter
conversion can be done, by taking some inspiration from abstract measure theory. U
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As a third and last basic result about C*-algebras, which will be of particular interest
for us, we have the following well-known theorem of Gelfand:

THEOREM 1.8. Given a compact space X, the algebra C(X) of continuous functions
f: X = C s a C*-algebra, with norm and involution as follows:

1Al =suplf@)] . F @) =F@)

This algebra is commutative, and any commutative C*-algebra A is of this form, with
X = Spec(A) appearing as the space of Banach algebra characters x : A — C.

PROOF. Once again, there are several statements here, some of them being trivial,
and some of them being advanced, the idea being as follows:

(1) First of all, the fact that C'(X) is indeed a Banach algebra is clear, because a
uniform limit of continuous functions is continuous.

(2) Regarding now for the formula ||ff*|| = ||f||?, this is something trivial for func-
tions, because on both sides we obtain sup,¢y | f(z)|?.

(3) Given a commutative C*-algebra A, the character space X = {x : A — C} is
compact, and we have an evaluation morphism ev : A — C(X).

(4) The tricky point, which follows from basic spectral theory in Banach algebras, is
to prove that ev is indeed isometric. This gives the last assertion. U

In what follows, we will be mainly using Definition 1.5 and Theorem 1.8, as general
framework. To be more precise, in view of Theorem 1.8, let us formulate:

DEFINITION 1.9. Given an arbitrary C*-algebra A, we agree to write
A=C(X)
and call the abstract space X a compact quantum space.

In other words, we can define the category of compact quantum spaces X as being
the category of the C*-algebras A, with the arrows reversed. A morphism f : X — Y
corresponds by definition to a morphism ® : C(Y) — C(X), a product of spaces X x Y
corresponds by definition to a product of algebras C'(X) ® C(Y'), and so on.

All this is of course quite speculative, and as a first result regarding these compact
quantum spaces, coming from Proposition 1.6, we have:
PROPOSITION 1.10. The finite quantum spaces are exactly the disjoint unions of type
X =M, U...UM,,
where M, is the finite quantum space given by C(M,) = M,(C).
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Proor. This is a reformulation of Proposition 1.6, by using the above philosophy.
Indeed, for a compact quantum space X, coming from a C*-algebra A via the formula
A = C(X), being finite can only mean that the following number is finite:

’X’ =dimc A < o0
Thus, by using Proposition 1.6, we are led to the conclusion that we must have:
CX)=M,(C)&...& M, (C)

But since direct sums of algebras A correspond to disjoint unions of quantum spaces
X, via the correspondence A = C'(X), this leads to the conclusion in the statement. [

This was for the basic theory of C*-algebras, the idea being that we have some basic
operator theory results, that can be further learned from any standard book, such as
Blackadar [35], and then we can talk about reformulations of these results in quantum
space terms, by using Definition 1.9 and some basic common sense.

Finally, no discussion would be complete without a word about the von Neumann
algebras. These are operator algebras of more advanced type, as follows:

THEOREM 1.11. For a *-algebra A C B(H) the following conditions are equivalent,
and if they are satisfied, we say that A is a von Neumann algebra:

(1) A is closed with respect to the weak topology, making each T — Tz continuous.
(2) A is equal to its algebraic bicommutant, A = A", computed inside B(H).

As basic examples, we have the algebras A = L>=(X), acting on H = L*(X). Such algebras
are commutative, any any commutative von Neumann algebra is of this form.

PROOF. There are several assertions here, the idea being as follows:

(1) The equivalence (1) <= (2) is the well-known bicommutant theorem of von
Neumann, which can be proved by using an amplification trick, H — CV @ H.

(2) Given a measured space X, we have indeed an emdedding L>(X) C B(L*(X)),
with weakly closed image, given by Tt : ¢ — fg, as in the proof of the GNS theorem.

(3) Given a commutative von Neumann algebra A C B(H) we can write A =< T >
with 7" being a normal operator, and the Spectral Theorem gives A ~ L>(X). O

In the context of a C*-algebra representation A C B(H) we can consider the weak clo-
sure, or bicommutant A” C B(H), which is a von Neumann algebra. In the commutative
case, C(X) C B(L*(X)), the weak closure is L>(X). In general, we agree to write:

A" = L*(X)

For more on all this, basic theory of the C*-algebras and von Neumann algebras, we
refer to any standard operator algebra book, such as Blackadar [35].
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1b. Quantum groups

We are ready now to introduce the compact quantum groups. The axioms here, due
to Woronowicz [98], and slightly modified for our present purposes, are as follows:

DEFINITION 1.12. A Woronowicz algebra is a C*-algebra A, given with a unitary
matriz uw € My(A) whose coefficients generate A, such that the formulae

Alug) =Y ugw@uy ,  eug) =d; ,  Sluy) =u,
k

define morphisms of C*-algebras A : A - AR A, e¢: A— Cand S : A — AP, called

comultiplication, counit and antipode.

In this definition the tensor product needed for A can be any C*-algebra tensor prod-
uct. In order to get rid of redundancies, coming from this and from amenability issues,
we will divide everything by an equivalence relation, as follows:

DEFINITION 1.13. We agree to identify two Woronowicz algebras, (A,u) = (B,v),
when we have an isomorphism of x-algebras

< Uy > V5 >
mapping standard coordinates to standard coordinates, u;; — v;;.

We say that A is cocommutative when ¥A = A, where ¥(a ® b) = b ® a is the flip.
We have then the following key result, from [98], providing us with examples:

PRrROPOSITION 1.14. The following are Woronowicz algebras, which are commutative,
respectively cocommutative:

(1) C(G), with G C Ux compact Lie group. Here the structural maps are:
Alp) = [(g.h) = elgh)] . =(p)=¢(1) , S()=[g9—elg )]
(2) C*(T"), with Fy — T' finitely generated group. Here the structural maps are:
Alg)=g@g . elg=1 , Slg=g"

Moreover, we obtain in this way all the commutative/cocommutative algebras.

PROOF. In both cases, we first have to exhibit a certain matrix u, and then prove
that we have indeed a Woronowicz algebra. The constructions are as follows:

(1) For the first assertion, we can use the matrix u = (u;;) formed by the standard
matrix coordinates of GG, which is by definition given by:

u(g) ... win(g)
g = : :
uni(g) .. unn(9)
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(2) For the second assertion, we can use the diagonal matrix formed by generators:

g1 0
u = .
0 gn
Finally, regarding the last assertion, in the commutative case this follows from the
Gelfand theorem, and in the cocommutative case, we will be back to this. Il

In order to get now to quantum groups, we will need as well:

PRrROPOSITION 1.15. Assuming that G C Uy s abelian, we have an identification of
Woronowicz algebras C(G) = C*(T'), with T being the Pontrjagin dual of G:

Fz{x:G—>T}

Conversely, assuming that Fy — T is abelian, we have an identification of Woronowicz
algebras C*(T") = C(QG), with G being the Pontrjagin dual of T':

Gz{x:F—>T}

Thus, the Woronowicz algebras which are both commutative and cocommutative are exactly
those of type A = C(G) = C*(T'), with G, T being abelian, in Pontrjagin duality.

PROOF. This follows from the Gelfand theorem applied to C*(T"), and from the fact
that the characters of a group algebra come from the characters of the group. O

In view of this result, and of the findings from Proposition 1.14 too, we have the
following definition, complementing Definition 1.12 and Definition 1.13:

DEFINITION 1.16. Given a Woronowicz algebra, we write it as follows, and call G a
compact quantum Lie group, and I' a finitely generated discrete quantum group:

A=C(G)=CcI)
Also, we say that G,T" are dual to each other, and write G = f, r=aG.

Let us discuss now some tools for studying the Woronowicz algebras, and the under-
lying quantum groups. First, we have the following result:

PROPOSITION 1.17. Let (A,u) be a Woronowicz algebra.
(1) A e satisfy the usual axioms for a comultiplication and a counit, namely:

(A ®id)A = (id® A)A
(e®id)A = (id®e)A =id
(2) S satisfies the antipode aziom, on the x-algebra generated by entries of u:
m(S ®id)A = m(id ® S)A =¢(.)1
(3) In addition, the square of the antipode is the identity, S* = id.
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PROOF. As a first observation, the result holds in the commutative case, A = C(G)
with G C Uy. Indeed, here we know from Proposition 1.14 that A, e, S appear as func-
tional analytic transposes of the multiplication, unit and inverse maps m, u, :

A=mt | e=u" , S=1¢
Thus, in this case, the various conditions in the statement on A, ¢, .S simply come by
transposition from the group axioms satisfied by m, u, 7, namely:
m(m x id) = m(id x m)
m(u X id) = m(id X u) = id
m(i x id)6 = m(id x i)6 =1

Here 6(g) = (g,9). Observe also that the result holds as well in the cocommutative

case, A = C*(I') with Fy — I, trivially. In general now, the first axiom follows from:

(A @ id)A(ui;) = (id @ A)A(uy) = > g ® g @ uy
kl
As for the other axioms, the verifications here are similar. O

In order to reach to more advanced results, the idea will be that of doing representation
theory. Following Woronowicz [98], let us start with the following definition:

DEFINITION 1.18. Given (A,u), we call corepresentation of it any unitary matric
v € M,(A), with A =< w;; >, satisfying the same conditions as u, namely:

A(vij) = Zvik @ugj 5 e(viy) =0 ,  S(viy) = v
k
We also say that v is a representation of the underlying compact quantum group G.

In the commutative case, A = C(G) with G C Uy, we obtain in this way the finite
dimensional unitary smooth representations v : G — U, via the following formula:

vi(g) . vin(9)
vig) =1 :
Un1(g9) - Unn(9)

In the cocommutative case, A = C*(I") with Fiy — I', we will see in a moment that

we obtain in this way the formal sums of elements of I', possibly rotated by a unitary. As
a first result now regarding the corepresentations, we have:

PROPOSITION 1.19. The corepresentations are subject to the following operations:
(1) Making sums, v+ w = diag(v,w).
(2) Making tensor products, (v & W);q jb = VijWap-
(3) Taking conjugates, (v)i; = vj;.

(4)

4) Rotating by a unitary, v — UvU*.
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PRrooF. We first check the fact that the matrices in the statement are unitaries:
(1) The fact that v + w is unitary is clear.

(2) Regarding now v ® w, this can be written in standard leg-numbering notation as
v ® w = v13ws3, and with this interpretation in mind, the unitarity is clear.

(3) In order to check that v is unitary, we can use the antipode. Indeed, by regarding
the antipode as an antimultiplicative map S : A — A, we have:

(00")i; =D v = > S(viyue) = S((070);1) = 6
k k

(') = > _vwaviy = > S(uviy) = S((v0);1) = 6
k k

(4) Finally, the fact that UvU* is unitary is clear. As for the verification of the
comultiplicativity axioms, involving A, ¢, .S, this is routine, in all cases. U

As a consequence of the above result, we can formulate:

DEFINITION 1.20. We denote by u®*, with k = c @ e o ... being a colored integer, the
various tensor products between wu,u, indexed according to the rules
=1, u®=u , W¥=u
and multiplicativity, u®* = u®* @ u®', and call them Peter-Weyl corepresentations.

Here are a few examples of such corepresentations, namely those coming from the
colored integers of length 2, to be often used in what follows:

WP =u@u , W =u®u

WP =uou , u*T=u®u
In order to do representation theory, we first need to know how to integrate over G.
And we have here the following key result, due to Woronowicz [98]:

THEOREM 1.21. Any Woronowicz algebra A = C(G) has a unique Haar integration,

</G®id> A= (im/(;) A= fon

which can be constructed by starting with any faithful positive form ¢ € A*, and setting
1 n
= lim — *k
/; n—oo 1 k; Y

where ¢ x 1) = (¢ @ Y)A. Moreover, for any corepresentation v € M, (C) ® A we have

(ias [ Jo=r

where P is the orthogonal projection onto Fix(v) = { € C*"|v§ = &}



20 1. QUANTUM PERMUTATIONS

PRroOF. Following [98], this can be done in 3 steps, as follows:

(1) Given ¢ € A*, our claim is that the following limit converges, for any a € A:

1 n
a=lim — Y ¢*(a)

Indeed, by linearity we can assume that a is the coefficient of certain corepresentation,
a = (T ® id)v. But in this case, an elementary computation gives the following formula,
with P, being the orthogonal projection onto the 1-eigenspace of (id ® ¢)v:

(¢d®[p)vzp¢

(2) Since v€ = ¢ implies [(id ® ¢)v]¢ = &, we have P, > P, where P is the orthogonal
projection onto the following fixed point space:

Fiz(v) = {5 eC”

ve=¢}

The point now is that when ¢ € A* is faithful, by using a standard positivity trick,
we can prove that we have P, = P. Assume indeed F,§ = &, and let us set:

J k
A straightforward computation shows then that ¢(a) = 0, and so a = 0, as desired.

(3) With this in hand, the left and right invariance of [, = [ is clear on coefficients,
and so in general, and this gives all the assertions. See [98]. u

We can now develop a Peter-Weyl type theory for the corepresentations, in analogy
with the theory from the classical case. We will need:

DEFINITION 1.22. Given two corepresentations v € M, (A),w € M,,(A), we set
Hom(v,w) = {T € men(C)‘TU = wT}

and we use the following conventions:
(1) We use the notations Fixz(v) = Hom(1,v), and End(v) = Hom(v,v).
(2) We write v ~ w when Hom(v,w) contains an invertible element.
(3) We say that v is irreducible, and write v € Irr(G), when End(v) = C1.

In the classical case, where A = C(G) with G C Uy being a closed subgroup, we
obtain in this way the usual notions regarding the representation intertwiners. Observe
also that in the group dual case we have g ~ h when g = h. Finally, observe that v ~ w
means that v, w are conjugated by an invertible matrix.

Here are now a few basic results, regarding the above linear spaces:
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PROPOSITION 1.23. We have the following results:
(1) T € Hom(u,v),S € Hom(v,w) = ST € Hom(u,w).
(2) S € Hom(u,v), T € Hom(w,z) = S®T € Hom(u ® w,v ® z).
(3) T € Hom(v,w) = T* € Hom(w,v).

In other words, the Hom spaces form a tensor x-category.
PROOF. The proofs are all elementary, as follows:
(1) Assume indeed that we have Tu = vT, Sv = Ws. We obtain, as desired:
STu = SvT = wST
(2) Assuming that we have Su = vS, Tw = 2T, we obtain, as desired:
(S@T)(u®w) = (Su)13(Tw)as = (v8)13(2T)23 = (V@ 2) (SR T)
(3) By conjugating, and then using the unitarity of v, w, we obtain:
Tv=uwT = v'T"=T""
= vw'T"w = vT"w*w
= T'w=vT"

Finally, the last assertion follows from definitions, and from the obvious fact that, in
addition to (1,2,3), the Hom spaces are linear spaces, and contain the units. U

Finally, in order to formulate the Peter-Weyl results, we will need as well:
PROPOSITION 1.24. The characters of the corepresentations, given by
Xv = Z (%70
behave as follows, in respect to the various operations:
Xv+w = Xv + Xw Xvew = XvXw > Xo = XZ

In addition, given two equivalent corepresentations, v ~ w, we have Xy = Xw-

PROOF. The three formulae in the statement are all clear from definitions. Regarding
now the last assertion, assuming that we have v = T~ 'wT, we obtain:

Xo = Tr(v) =Tr(T'wT) = Tr(w) = Yu
We conclude that v ~ w implies x, = X, as claimed. O

Consider the dense x-subalgebra A C A generated by the coefficients of the funda-
mental corepresentation u, and endow it with the following scalar product:

<a,b >:/ab*
G

With this convention, we have the following fundamental result, from [98]:
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THEOREM 1.25. We have the following Peter-Weyl type results:

(1) Any corepresentation decomposes as a sum of irreducible corepresentations.
(2) Each irreducible corepresentation appears inside a certain u®*.

(3) A= Derrr(a) Maimw)(C), the summands being pairwise orthogonal.

(4) The characters of irreducible corepresentations form an orthonormal system.

ProoOF. All these results are from Woronowicz [98], the idea being as follows:

(1) Given a corepresentation v € M, (A), we know from Proposition 1.23 that End(v)
is a finite dimensional C*-algebra, and by using Proposition 1.6, we obtain:

End(v) = My, (C) & ... & M,,(C)

But this decomposition allows us to define subcorepresentations v; C v, which are
irreducible, so we obtain, as desired, a decomposition v = vy + ... + vp.

(2) To any corepresentation v € M,(A) we associate its space of coefficients, given
by C(v) = span(v;j). The construction v — C(v) is then functorial, in the sense that it
maps subcorepresentations into subspaces. Observe also that we have:

A=Y Cu®)
keNxN

Now given an arbitrary corepresentation v € M, (A), the corresponding coefficient
space is a finite dimensional subspace C(v) C A, and so we must have, for certain positive
integers ki, ..., kp, an inclusion of vector spaces, as follows:

C(v) c Clu® @ ... ¢ u®k)
Thus we have v C u®* @ ... ®u® and by (1) we obtain the result.

(3) As a first observation, which follows from an elementary computation, for any two
corepresentations v, w we have a Frobenius type isomorphism, as follows:

Hom(v,w) ~ Fiz(t ® w)

Now assume v o w, and let us set P, ;5 = fG vi;wiy. According to Theorem 1.21, the
matrix P is the orthogonal projection onto the following vector space:

Fiz(v® w) ~ Hom(v,w) = {0}
Thus we have P = 0, and so C(v) L C(w), which gives the result.

(4) The fact that the characters form indeed an orthogonal system follows from (3).
Regarding now the norm 1 assertion, consider the following integrals:

*
Pik,jl:/vijvkl
G
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We know from Theorem 1.21 that these integrals form the orthogonal projection onto
Fiz(v®v) ~ End(v) = C1. By using this fact, we obtain the following formula:

1
\/GXUX:;:%:/GU’L’LU;j:Z:N:]-

Thus the characters have indeed norm 1, and we are done. Il

Observe that in the cocommutative case, we obtain from (4) that our algebra must be
of the form A = C*(I"), for some discrete group I', as mentioned in Proposition 1.14. As
another consequence of the above results, following Woronowicz [98], we have:

THEOREM 1.26. Let Ay be the enveloping C*-algebra of A, and A,cq be the quotient
of A by the null ideal of the Haar integration. The following are then equivalent:

) The Haar functional of Ay ts faithful.

(1

(2) The projection map Ajpyy — Areq i an isomorphism.

(3) The counit map € : Apuy — C factorizes through A,eq.

(4) We have N € o(Re(xy.)), the spectrum being taken inside Ayeq.

If this is the case, we say that the underlying discrete quantum group I' is amenable.

PROOF. This is well-known in the group dual case, A = C*(T"), with T" being a usual
discrete group. In general, the result follows by adapting the group dual case proof:

(1) <= (2) This simply follows from the fact that the GNS construction for the
algebra Ay,; with respect to the Haar functional produces the algebra A, 4.

(2) < (3) Here = is trivial, and conversely, a counit € : A,.q — C produces an
isomorphism ® : A,.q — Ay, by slicing the map A Ayeqg = Ared @ Agun.

(3) <= (4) Here = is clear, coming from (/N — Re(x(u))) = 0, and the converse
can be proved by doing some functional analysis. See [98]. U

With these results in hand, we can formulate, as a refinement of Definition 1.16:
DEFINITION 1.27. Given a Woronowicz algebra A, we formally write as before
A=C(G)=CcI)
and by GNS construction with respect to the Haar functional, we write as well
A" = L=(G) = L(T)
with G being a compact quantum group, and I' being a discrete quantum group.

Now back to Theorem 1.26, as in the discrete group case, the most interesting criterion
for amenability, leading to some interesting mathematics and physics, is the Kesten one,
(4) there. This leads us into computing character laws:
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THEOREM 1.28. Given a Woronowicz algebra (A, u), consider its main character:
X = Z Wi

(1) The moments of x are the numbers My = dim(Fiz(u®*)).
(2) When u ~ @ the law of x is a real measure, supported by o(x).
(3) The notion of coamenability of A depends only on law(x).

Proor. All this follows from the above results, the idea being as follows:

(1) This follows indeed from Peter-Weyl theory.

(2) When u ~ @ we have xy = x*, which gives the result.

(3) This follows from Theorem 1.26 (4), and from (2) applied to u + . O

This was for the basic theory of compact and discrete quantum groups. For more on
all this, we refer to Woronowicz [98] and related papers, or to the book [4].

lc. Quantum rotations

We know so far that the compact quantum groups include the usual compact Lie
groups, G C Uy, and the abstract duals G = T of the finitely generated groups Fn — T
We can combine these examples by performing basic operations, as follows:

PROPOSITION 1.29. The class of Woronowicz algebras is stable under taking:

(1) Tensor products, A= A" @ A", with uw = v +u". At the quantum group level we
obtain usual products, G =G x G" and ' =T" x I'”".

(2) Free products, A = A" x A", with u = v’ + u”. At the quantum group level we
obtain dual free products G = G' * G" and free products T' =T" % T,

PRrROOF. Everything here is clear from definitions. In addition to this, let us mention as
well that we have [ oA = Ju® [yand [, . = [, * [, Also, the corepresentations
of the products can be explicitely computed. See Wang [95]. U

Here are some further basic operations, once again from Wang [95]:

ProproOSITION 1.30. The class of Woronowicz algebras is stable under taking:

(1) Subalgebras A" =< wj; >C A, with u' being a corepresentation of A. At the
quantum group level we obtain quotients G — G’ and subgroups I C T

(2) Quotients A — A" = A/I, with I being a Hopf ideal, A(I) CARQ I +1® A. At
the quantum group level we obtain subgroups G' C G and quotients I' — 1",

PROOF. Once again, everything is clear, and we have as well some straightforward
supplementary results, regarding integration and corepresentations. See [95]. Il

Finally, here are two more operations, which are of key importance:
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PRrROPOSITION 1.31. The class of Woronowicz algebras is stable under taking:

(1) Projective versions, PA =< wjq ;s >C A, where w = u® u. At the quantum
group level we obtain projective versions, G — PG and PI' C T.

(2) Free complezifications, A =< zu;; >C C(T) = A. At the quantum group level we
obtain free complexifications, denoted G andT.

PRrROOF. This is clear from the previous results. For details here, we refer to [95]. O

Once again following Wang [95] and related papers, let us discuss now a number of
truly “new” quantum groups, obtained by liberating. We first have:

THEOREM 1.32. The following universal algebras are Woronowicz algebras,

C’(OX,) =C" <(uij)i,j=1,...,N‘u =a,u’ = lfl)

C(Uy)=C" ((uij>i,j:1,...,N‘U* =yt ut = ﬁ’1>
so the underlying quantum spaces O;{,, U;; are compact quantum groups.

PRrROOF. This comes from the elementary fact that if a matrix u = (u;;) is orthogonal
or biunitary, then so must be the following matrices:

W)y =Y uw@ugy (W) =0y , (W)y=uj
k

Thus we can define A, ¢, .S by using the universal property of C(O}), C(U}). O

Now with this done, we can look for various intermediate subgroups Oy C O% C OF,
and Uy C Uy C Uy Following [25], a basic construction here is as follows:

THEOREM 1.33. The following quotient algebras are Woronowicz algebras,

C(Oy) = C(O;{,)/ <abc = cba)Va, b,c € {uw}>

C(Ux) = C’(U;\;)/ <abc = cba‘Va, b, c € {uy, uj; >
so the underlying quantum spaces Oy, Ux; are compact quantum groups.

Proor. This follows as in the proof of Theorem 1.32, because if the entries of u satisfy
the half-commutation relations abc = cba, then so do the entries of u®,u®, u”. U

Obviously, there are many more things that can be done here, with the above con-
structions being just the tip of the iceberg. But instead of discussing this, let us first
verify that Theorem 1.32 and Theorem 1.33 provide us indeed with new quantum groups.
For this purpose, we can use the notion of diagonal torus, which is as follows:
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PROPOSITION 1.34. Given a closed subgroup G C Uy, consider its diagonal torus,
which is the closed subgroup T C G constructed as follows:

(1) = C(G) [ (wiy = 0fvi # )

This torus is then a group dual, T = K, where A =< g1, ...,gn > is the discrete group
generated by the elements g; = u;;, which are unitaries inside C(T).

PROOF. Since w is unitary, its diagonal entries g; = w;; are unitaries inside C(T).
Moreover, from A(u;;) = >, wix ® ug; we obtain, when passing inside the quotient:

A(gi) = 9 ® gi

It follows that we have C'(T") = C*(A), modulo identifying as usual the C*-completions
of the various group algebras, and so that we have T'= A, as claimed. O

We can now distinguish between our various quantum groups, as follows:

THEOREM 1.35. The diagonal tori of the basic unitary quantum groups, namely

Uy U Uy

O o o%

are the following discrete group duals,

o~ — o~

N Z°N Fy

with o standing for the half-classical product operation for groups.

PROOF. This is clear for Uy, where on the diagonal we obtain the biggest possible
group dual, namely Fl. For the other quantum groups this follows by taking quotients,
which correspond to taking quotients as well, at the level of the groups A =T U

As a consequence of the above result, the quantum groups that we have are indeed
distinct. There are many more things that can be said about these quantum groups, and
about further versions of these quantum groups that can be constructed. More later.
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1d. Quantum permutations

Eventually. Following Wang [96], let us discuss now the construction and basic prop-
erties of the quantum permutation group Sy;. Let us first look at Sy. We have:

PROPOSITION 1.36. Consider the symmetric group Sy, viewed as permutation group
of the N coordinate azes of RN . The coordinate functions on Sy C On are given by

Uij = X <a € G‘a(j) = z)

and the matriz uw = (u;;) that these functions form is magic, in the sense that its entries
are projections (p? = p* = p), summing up to 1 on each row and each column.

PROOF. The action of Sy on the standard basis e1,...,ey € RY being given by
0 1 ej — eq(;), this gives the formula of u;; in the statement. As for the fact that the
matrix u = (u;;) that these functions form is magic, this is clear. O

With a bit more effort, we obtain the following nice characterization of Sy:
THEOREM 1.37. The algebra of functions on Sy has the following presentation,
C(Sy)=0Cx ((uij)i7j:17,,,,N‘u = magic)
and the multiplication, unit and inversion map of Sy appear from the maps

A(ugj) = Zum Qug; ,  e(uy) =06y ,  Sluy) =uy
k

defined at the algebraic level, of functions on Sy, by transposing.

PROOF. The universal algebra A in the statement being commutative, by the Gelfand
theorem it must be of the form A = C'(X), with X being a certain compact space. Now
since we have coordinates u;; : X — R, we have an embedding X C My (R). Also, since
we know that these coordinates form a magic matrix, the elements ¢ € X must be 0-1
matrices, having exactly one 1 entry on each row and each column, and so X = Sy. Thus
we have proved the first assertion, and the second assertion is clear as well. O

Following now Wang [96], we can liberate Sy, as follows:

THEOREM 1.38. The following universal C*-algebra, with magic meaning as usual
formed by projections (p* = p* = p), summing up to 1 on each row and each column,

C(sy) =" ((Uz‘j)i,y‘:l,...,zv
1s a Woronowicz algebra, with comultiplication, counit and antipode given by:

A(u) = Zuzk Qugj , e(uy) =065 , Suy)=1uy
k

U = magic)

Thus the space S¥ is a compact quantum group, called quantum permutation group.
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PROOF. As a first observation, the universal C*-algebra in the statement is indeed
well-defined, because the conditions p? = p* = p satisfied by the coordinates give:

[Jugl| <1

In order to prove now that we have a Woronowicz algebra, we must construct maps
A e, S given by the formulae in the statement. Consider the following matrices:

A _2 : e _ S.. Sy
k

Our claim is that, since u is magic, so are these three matrices. Indeed, regarding u?,
its entries are idempotents, as shown by the following computation:

A2 A
(uij> = E Uik Ui & UpUy = E Okl @ Oy = U
Kl Kl

These elements are self-adjoint as well, as shown by the following computation:
(u)" = D ui @ uiy = 3 uan ® wg = g
k k

A

The row and column sums for the matrix 4= can be computed as follows:

ZuiAj:ZUik@)ukg‘:Zuik@l:l
J ik k
ZuiAj:Zuik(gukj:Zl@Ukj:l
i ik k

Thus, u® is magic. Regarding now u°, u®, these matrices are magic too, and this for
obvious reasons. Thus, all our three matrices u®, uf, u® are magic, so we can define A, ¢, S
by the formulae in the statement, by using the universality property of C(Sy). O

Our first task now is to make sure that Theorem 1.38 produces indeed new quantum
groups, which do not collapse to Sy. Following Wang [96], we have:

THEOREM 1.39. We have an embedding Sy C Sy, given at the algebra level by:
Ui —> X (O’ < SN’O'O) = Z)
This is an isomorphism at N < 3, but not at N > 4, where S5, is not classical, nor finite.

PROOF. The fact that we have indeed an embedding as above follows from Theorem
1.37. Observe that in fact more is true, because Theorems 1.37 and 1.38 give:

C(Sy) = C(S%) / <ab - ba>

Thus, the inclusion Sy C Sj; is a “liberation”, in the sense that Sy is the classical
version of SJ;. We will often use this basic fact, in what follows. Regarding now the
second assertion, we can prove this in four steps, as follows:



1D. QUANTUM PERMUTATIONS 29

Case N = 2. The fact that S5 is indeed classical, and hence collapses to S, is trivial,
because the 2 x 2 magic matrices are as follows, with p being a projection:

-2, 1)
I—-p p

Indeed, this shows that the entries of U commute. Thus C(Sy) is commutative, and
so equals its biggest commutative quotient, which is C'(S;). Thus, Sy = Ss.

Case N = 3. By using the same argument as in the N = 2 case, and the symmetries
of the problem, it is enough to check that wuqy, uss commute. But this follows from:
Uy = UriUg(urr + Uiz + Ui3)
= U U22U11 + U1 U22UI3
Ur U1 + upr (1 — g1 — Ug3) Uiz
= UpU22U11

Indeed, by applying the involution to this formula, we obtain that we have as well
Ugol11 = U 1UgeUir. Thus, we obtain uiiugsy = ugouyy, as desired.

Case N = 4. Consider the following matrix, with p, ¢ being projections:
P 1—p O 0
1—p p 0 0

0 0 q 1—g¢q
0 0 1—gq q

U —

This matrix is magic, and we can choose p,q € B(H) as for the algebra < p,q > to be
noncommutative and infinite dimensional. We conclude that C(S)) is noncommutative
and infinite dimensional as well, and so S is non-classical and infinite, as claimed.

Case N > 5. Here we can use the standard embedding S} C S}, obtained at the level
of the corresponding magic matrices in the following way:

N U 0
“ 0 In—4

Indeed, with this in hand, the fact that S is a non-classical, infinite compact quantum
group implies that Sj; with N > 5 has these two properties as well. O

The above result is quite surprising. How on Earth can the set {1,2,3,4} have an
infinity of quantum permutations, and will us be able to fully understand this, one day.
But do not worry, the remainder of the present book will be here for that.

As a first observation, as a matter of doublechecking our findings, we are not wrong
with our formalism, because as explained once again in [96], we have as well:
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THEOREM 1.40. The quantum permutation group Sy acts on the set X = {1,..., N},
the corresponding coaction map ® : C(X) — C(X) @ C(S%) being given by:

(I)(GZ) = Z €; ® Uj;
J

In fact, Sy is the biggest compact quantum group acting on X, by leaving the counting
measure invariant, in the sense that (tr ® id)® = tr(.)1, where tr(e;) = =, Vi.

PrROOF. Our claim is that given a compact matrix quantum group G, the follow-
ing formula defines a morphism of algebras, which is a coaction map, leaving the trace
invariant, precisely when the matrix u = (u;;) is a magic corepresentation of C(G):

(I)(el) = Z €; ® Ugjs
J
Indeed, let us first determine when ® is multiplicative. We have:

O(e;)P(ey) = Z ejer @ Wyl = Z e; @ ;i
gl J
®(€i€k> = 5z/€(1)(61) = 5119 Z €; & Ui
J
We conclude that the multiplicativity of ® is equivalent to the following conditions:
Ujitgr = Oiptji Vi, 7,k

Similarly, ® is unital when ) u;; = 1, Vj. Finally, the fact that ® is a *-morphism
translates into u;; = uj;, Vi,j. Summing up, in order for ®(e;) = Zj e; ® u;; to be a
morphism of C*-algebras, the elements u;; must be projections, summing up to 1 on each
row of u. Regarding now the preservation of the trace, observe that we have:

(tr @ id)®(e;) = % Z Uyj;

Thus the trace is preserved precisely when the elements w;; sum up to 1 on each of
the columns of u. We conclude from this that ®(e;) = >_, e; ® uj; is a morphism of C*-
algebras preserving the trace precisely when u is magic, and since the coaction conditions
on ® are equivalent to the fact that u must be a corepresentation, this finishes the proof
of our claim. But this claim proves all the assertions in the statement. U

As a technical comment here, the invariance of the counting measure is a key assump-
tion in Theorem 1.40, in order to have an universal object S3. That is, this condition
is automatic for classical group actions, but not for quantum group actions, and when
dropping it, there is no universal object of type S%. This explains the main difficulty
behind Question 1.1, and the credit for this discovery goes to Wang [96].

In order to study now Sy, we can use the technology that we have, which gives:
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THEOREM 1.41. The quantum groups Sy have the following properties:
1) We have S} % S§; C Sy, for any N, M.

) In particular, we have an embedding Dy, C Sy .

) Sy C Sy are distinguished by their spinned diagonal tori.

) If Zn, % ... x Ly, — T, with N =5 N;, then T C S},.

) The quantum groups Sj; with N > 5 are not coamenable.

) The half-classical version Sk = Sy N O% collapses to Sy.

PROOF. These results follow from what we have, the proofs being as follows:

(1) If we denote by wu,v the fundamental corepresentations of C(Sy),C(S};), the
fundamental corepresentation of C'(Sy % S;;) is by definition:

_(u O
=10 v
But this matrix is magic, because both u, v are magic, and this gives the result.
(2) This result, which refines our N = 4 trick from the proof of Theorem 1.39, follows
from (1) with N = M = 2. Indeed, we have the following computation:
S;_%S;_ - SQ%SQZZQQZQ
~ Dok Zn =T * I

- D..

(3) Observe first that S; C S; are not distinguished by their diagonal torus, which is
{1} for both of them. However, according to the Peter-Weyl theory applied to the group

duals, the group dual 1/7\00 C S; from (2) must be a subgroup of the diagonal torus of
(Sy, FuF™), for a certain unitary F' € Uy, and this gives the result.

(4) This result, which generalizes (2), can be deduced as follows:

I' C ZNl*---*ZNk:Zqu‘”'%ZNk
~ ZN1>T<. -;‘ZN;CCSN1’T< ;‘SN;C
C S§h. ASE CSh

(5) This follows from (4), because at N = 5 the dual of the group I' = Zy * Zs, which
is well-known not to be amenable, embeds into Si. As for the general case, that of S¥
with N > 5, here the result follows by using the embedding S5 C S5 .

(6) We must prove that Sk = Sy N Oy is classical. But here, we can use the fact that
for a magic matrix, the entries on each row sum up to 1. Indeed, by making ¢ vary over
a full row of u, we obtain abc = cba = ab = ba, as desired. O
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The above results are all quite interesting, notably with (2) providing us with a better
understanding of why S is infinite, and with (4) telling us that S5 is not only infinite,
but just huge. We have as well (6), suggesting that Sj might be the only liberation of
Sy. We will be back to these observations, with further results, in due time.

le. Exercises

There has been a lot of mathematics in this chapter, and as a best exercise on all this,
read more about operator algebras and quantum groups, in general. Regarding now the
quantum rotations and permutations, as a first exercise about them, we have:

EXERCISE 1.42. Prove that the quantum group inclusion
OF Cc U
is an tsomorphism at the level of the corresponding diagonal tori.
To be more precise, the fact that we have an inclusion O C Uy is clear, and it can

be actually proved that this inclusion is an isomorphism, but this is non-trivial. So, more
on this later, and in the meantime, you can have some fun with the above exercise.

EXERCISE 1.43. Find the shortest proof ever for the equality
Sf =5
by doing some original manipulations with the 3 X 3 magic matrices.

To be more precise, we have already seen such a proof in the above, and the problem
is that of finding a new proof, a bit in the same spirit, based on new computations.

EXERCISE 1.44. Prove that we have S = Ss by looking at the coaction
P:C* = C’C(S)
written in terms of the Fourier basis of C3.

To be more precise, the question here is that of changing the basis of C?, by using the
Fourier transform over Zs, and then deducing that the coefficients must commute.
EXERCISE 1.45. Prove that the following quantum groups are not coamenable:
Of (N>3) , Ut (N>2)
For a bonus point, prove as well that O and Sy are coamenable.
Here the first part can only be quite standard, by using the same type of ideas as for
Sy with N > 5. As for the bonus point question, this is something quite difficult, and I

don’t know myself a simple proof for that. Which of course does not mean anything, old
man and I might just miss something, and this is a good problem for you, reader.



CHAPTER 2

Diagrams, easiness

2a. Some philosophy

We have seen the definition and basic properties of S¥, and a number of more advanced
results as well, such as the non-isomorphism of Sy C Sy at N > 4, obtained by using
suitable group duals T C S Tt is possible to further build along these lines, but all this
remains quite amateurish. For strong results, we must do representation theory.

So, let us first go back to the general closed subgroups G C Uj;. We have seen in
chapter 1 that such quantum groups have a Haar measure, and that by using this, a
Peter-Weyl theory can be developed for them. However, all this is just a beginning, and
many more things can be said, at the general level, which are all useful. We will present
now this material, and go back afterwards to our problems regarding Sy .

Let us start with a claim, which is quite precise, and advanced, and which will stand
as a guiding principle for this chapter, and in fact for the remainder of this book:

CrAaM 2.1. Given a closed subgroup G C, Uy, no matter what you want to do with
it, of algebraic or analytic type, you must compute the following spaces:

F}, = Fiz(u®*)
Moreover, for most questions, the computation of the dimensions M = dim F},, which are

the moments of the main character x =), u;, will do.

This might look like a quite bold claim, so let us explain this. Assuming first that
you are interested in doing representation theory for G, you will certainly run into the
spaces F}, via Peter-Weyl theory. In fact, Peter-Weyl tells you that the irreducible rep-
resentations appear as r C u®*, so for finding them, you must compute the algebras
Cr = End(u®). But the knowledge of these algebras Cj, is more or less the same thing
as the knowledge of the spaces Fj, due to Frobenius duality, as follows:

PROPOSITION 2.2. Given a closed subgroup G C, Uy, consider the following spaces:
F, = Fiz(u®) | Cy=Endu®) , Cy= Hom(u®" u®)

Then knowing the sequence {Fy} is the same as knowing the double sequence {Cy}, and
in the case 1 € u, this is the same as knowing the sequence {Cy}.

33
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PROOF. In the particular case of the Peter-Weyl corepresentations, the Frobenius
isomorphism Hom(v,w) ~ Fix(v ® w), that we know from chapter 1, reads:

Cly = Hom(u®*, u®) = Fiz(u®™) = Fy,

But this gives the equivalence in the statement. Regarding now the last assertion,
assuming 1 € u we have 1 € u®* for any colored integer k, and so:

Fy, = Hom(1,u®*) € Hom(u®*,u®*) = G
Thus the spaces F}, can be identified inside the algebras C}, and we are done. O

Summarizing, we have now good algebraic motivations for Claim 2.1. Before going
further, however, let us point out that looking at Proposition 2.2 leads us a bit into a
dillema, on which spaces are the best to use. And the traditional answer here is that the
spaces CY; are the best, due to Tannakian duality, which is as follows:

THEOREM 2.3. The following operations are inverse to each other:

(1) The construction G — C, which associates to a closed subgroup G C, Uy the
tensor category formed by the intertwiner spaces Cyy = Hom(u®*, u®).

(2) The construction C — G, associating to a tensor category C' the closed subgroup
G C, Uy coming from the relations T € Hom(u®* u®), with T € Cy,.

ProoOF. This is something quite deep, going back to Woronowicz [99] in a slightly
different form, and to Malacarne [70] in the simplified form above. The idea is that we
have indeed a construction G — Cg, whose output is a tensor C*-subcategory with duals
of the tensor C*-category of finite dimensional Hilbert spaces, as follows:

(Ca)ur = Hom(u®*, u®")
We have as well a construction C' — G¢, obtained by setting:

C(Ge) = C(UY)/ <T e Hom(u®,u®)|Vk,1|,VT ¢ Ckl>

Regarding now the bijection claim, some elementary algebra shows that C' = Cg,.
implies G = G¢,,, and that C' C Cg,, is automatic. Thus we are left with proving:

CGC ccC
But this latter inclusion can be proved indeed, by doing some algebra, and using von
Neumann’s bicommutant theorem, in finite dimensions. See Malacarne [70]. O

The above result is something quite abstract, yet powerful. We will see applications
of it in a moment, in the form of Brauer theorems for Uy, Oy, Sy and Uy, O, S¥.

All this is very good, providing us with strong motivations for Claim 2.1. However,
algebra is of course not everything, and we must comment now on analysis as well. As an
analyst you would like to know how to integrate over GG, and here, we have:
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THEOREM 2.4. The integration over G C, Uy is given by the Weingarten formula
[t = Y 508G Wilm,o)
G m,0€Dy,
for any colored integer k = ey ... ey, and indices i, j, where Dy, is a linear basis of Fiz(u®*),
0r(i) =<m e ®...Qe; >
and Wy, = G*, with Gy(w,0) =< 7,0 >.

ProoF. We know from chapter 1 that the integrals in the statement form altogether
the orthogonal projection P* onto the following space:

Fiz(u®*) = span(Dy)

Consider now the following linear map, with Dy = {{;} being as in the statement:

E@)=> <2t >&
weDy
By a standard linear algebra computation, it follows that we have P = W E, where W
is the inverse on span(T,|m € Dy) of the restriction of E. But this restriction is the linear
map given by Gy, and so W is the linear map given by Wy, and this gives the result. [J

As a conclusion, regardless on whether you're an algebraist or an analyst, if you
want to study G C, Uy you are led into the computation of the spaces Fy = Fiz(u®*).
However, the story is not over here, because you might say that you are a functional
analyst, interested in the fine analytic properties of the dual I' = G. But here, T would
strike back with the following statement, based on the Kesten amenability criterion:

PROPOSITION 2.5. Given a closed subgroup G C, Uy, consider its main character:
X = Z Uz
i

(1) The moments of x are the numbers M, = dim(Fiz(u®*)).
(2) When u ~ @ the law of x is a real measure, supported by o(x).
(3) The notion of amenability of ' = G depends only on law(x).

PROOF. This is something that we know from chapter 1, the idea being that (1) comes
from Peter-Weyl theory, that (2) comes from v ~ 4 = x = x*, and that (3) comes
from the Kesten amenability criterion, and from (2) applied to u + a. O

Finally, you might argue that you are in fact a pure mathematician interested in the
combinatorial beauty of the dual I' = . But I have an answer to this too, as follows,
again urging you to look at the spaces F, = Fiz(u®*), before getting into I':
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PROPOSITION 2.6. Consider a closed subgroup G C, Uy, and assume, by enlarging if

necessary u, that we have 1 € uw = u. The formula
d(v,w) = min{k € N‘l C 6®w®u®k}

defines then a distance on Irr(G), which coincides with the geodesic distance on the
associated Cayley graph. Moreover, the moments of the main character,

/ x* = dim (Fiz(u®))
a
count the loops based at 1, having lenght k, on the corresponding Cayley graph.

PROOF. Observe first the result holds indeed in the group dual case, where the
Woronowicz algebra is A = C*(I'), with I' =< S > being a finitely generated discrete
group. In general, the fact that the lengths are finite follows from Peter-Weyl theory. The
symmetry axiom is clear as well, and the triangle inequality is elementary to establish
too. Finally, the last assertion, regarding the moments, is elementary too. O

As a conclusion, looks like I won the debate, with Claim 2.1 reigning over both the
compact and discrete quantum group worlds, without opposition. Before getting further,
let us record a result in relation with the second part of that claim, as follows:

THEOREM 2.7. Given a closed subgroup G C, Uy, the law of its main character
X = Z U

with respect to the Haar integration has the following properties:
(1) The moments of x are the numbers My, = dim(Fiz(u®*)).
) =d.
) law(x) is the Kesten measure of the discrete quantum group I' = G.
) When u ~ u the law of x is a usual measure, supported on [—N, N].
) T =G is amenable precisely when N € supp(law(Re(x))).
) Any inclusion G C,, H C, U;; must decrease the numbers M;,.
) Such an inclusion is an isomorphism when law(x,) = law(x.).

Proor. All this is very standard, coming from the Peter-Weyl theory developed by
Woronowicz in [98], and explained in chapter 1, the idea being as follows:

(1) This comes from the Peter-Weyl type theory, which tells us the number of fixed
points of v = u®* can be recovered by integrating the character y, = x*.

(2) This is something true, and well-known, for G = T with I =< J1,--.,9n > being
a discrete group. In general, the proof is quite similar.

(3) This is actually the definition of the Kesten measure, in the case G = f, with
['=<g,...,gn > being a discrete group. In general, this follows from (2).
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(4) The equivalence u ~ u translates into x, = X, and this gives the first assertion.
As for the support claim, this follows from vu* =1 = ||uy|| < 1, for any i.

(5) This is the Kesten amenability criterion, which can be established as in the group
dual case, G =T, with I' =< ¢1,...,gny > being a discrete group.

(6) This is something elementary, which follows from (1), and from the fact that the
inclusions of closed subgroups of U}, decrease the spaces of fixed points.

(7) This follows by using (6), and the Peter-Weyl type theory, the idea being that if
G C H is not injective, then it must strictly decrease one of the spaces Fiz(u®*). O

As a conclusion to all this, somewhat improving Claim 2.1, given a closed subgroup
G C, Uj;, regardless of our precise motivations, be that algebra, analysis or other, com-
puting the law of x = >, u;; is the “main problem” to be solved. Good to know.

2b. Diagrams, easiness

Let us discuss now the representation theory of S, and the computation of the law
of the main character. Our main result here, which will be something quite conceptual,
will be the fact that Sy C Sy is a liberation of “easy quantum groups”.

Looking at what has been said above, as a main tool, at the general level, we only
have Tannakian duality. So, inspired by that, and following [25], let us formulate:

DEFINITION 2.8. Let P(k,l) be the set of partitions between an upper row of k points,
and a lower row of | points. A collection of sets

D =| | D(k,1)

kel
with D(k,1) C P(k,l) is called a category of partitions when it has the following properties:

(

(1) Stability under the horizontal concatenation, (w,0) — [mo].
(2) Stability under the vertical concatenation, (w,0) — [2].

(3) Stability under the upside-down turning, ™ — 7*.

(4) Each set P(k,k) contains the identity partition ||...||.

(5) The sets P(D,0e) and P((), ®0) both contain the semicircle N.

As a basic example, we have the category of all partitions P itself. Other basic
examples are the category of pairings P,, and the categories NC, NCy of noncrossing
partitions, and pairings. We have as well the category P, of pairings which are “matching”,
in the sense that they connect o — o, @ — @ on the vertical, and o — e on the horizontal,
and its subcategory NCy C P, consisting of the noncrossing matching pairings.

There are many other examples, and we will be back to this. Following [25], the
relation with the Tannakian categories and duality comes from:
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PROPOSITION 2.9. FEach partition m € P(k,l) produces a linear map
T7T . ((CN>®k — (CN)®l

given by the following formula, with ey, ..., en being the standard basis of CV,
11 ... I
Tw(eh®-..®eik>=;‘5”(ﬁ jl)%@“'@eﬁ
101

and with the Kronecker type symbols 6, € {0,1} depending on whether the indices fit or
not. The assignement m — T, is categorical, in the sense that we have

T. 1T, = T[ﬂa] , 1T, = NC(W’U)T[Z] ; T; =T.
where c(m,0) are certain integers, coming from the erased components in the middle.

PROOF. The concatenation axiom follows from the following computation:

(T @T,)(€, ®..Q¢€, ey, ® ... ex,)

= Y 5ﬂ<2 ;.”>§U(l11 lr)ej1®...®ejq®el1®...®els
g )

jl---jq ly..ls

= E E 5[7@(,1 P ll l>€j1®---®€jq®€ll®---®els
: / Jro--. jq 1 e s
J1-Jg li.ls

= 7—‘[71'0'](62'1 ®“'®eip®ek’1 ®®€kr)
As for the composition and involution axioms, their proof is similar. O
In relation with quantum groups, we have the following result, from [25]:

THEOREM 2.10. Fach category of partitions D = (D(k,l)) produces a family of com-
pact quantum groups G = (Gy), one for each N € N, via the formula

Hom(u®* u®") = span <T,r

© e D(k, l))
which produces a Tannakian category, and so a closed subgroup Gy C, Uy

PROOF. Let call Cy; the spaces on the right. By using the axioms in Definition 2.8,
and the categorical properties of the operation # — T, from Proposition 2.9, we see that
C' = (Cyy) is a Tannakian category. Thus Theorem 2.3 applies, and gives the result. [

We can now formulate a key definition, as follows:
DEFINITION 2.11. A compact quantum group G is called easy when we have

Hom(u®* u®") = span (T7r 7 € D(k, l))

for any colored integers k,l, for a certain category of partitions D C P.
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In other words, a compact quantum group is called easy when its Tannakian category
appears in the simplest possible way: from a category of partitions. The terminology is
quite natural, because Tannakian duality is basically our only serious tool. In relation
now with quantum permutation groups, and with the orthogonal and unitary quantum
groups too, here is our main result, coming from [1], [15], [25]:

THEOREM 2.12. The basic quantum permutation and rotation groups,

Sy Oy Uy
SN ON UN
are all easy, the corresponding categories of partitions being as follows,
NC NC, NC,
P P2 PQ

with 2 standing for pairings, NC for noncrossing, and calligraphic for matching.

ProOF. This is something quite fundamental, the proof being as follows:

(1) The quantum group Uy; is defined via the following relations:

* -1 t -1

ut=u , u =1

But, by doing some elementary computations, these relations tell us precisely that the
following two operators must be in the associated Tannakian category C"
T. : n=151, 1

Thus, the associated Tannakian category is C' = span(T,|m € D), with:

D=< [, l>=NC,
(2) The subgroup OF C Uy, is defined by imposing the following relations:

Ujj = Usj
Thus, the following operators must be in the associated Tannakian category C"
T. : wm=%,1

We conclude that the Tannakian category is C' = span(T,|r € D), with:

D:<NCQ,T,I >= NCQ
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(3) The subgroup Uy C Uy is defined via the following relations:
[Wij,ui) =0, [wij, Gg) =0
Thus, the following operators must be in the associated Tannakian category C'
. : m=%,%
Thus the associated Tannakian category is C' = span(T,|r € D), with:
D =< NCy, %, % >= P,
(4) In order to deal now with Oy, we can simply use the following formula:
On =04 NUy
At the categorical level, this tells us that Oy is indeed easy, coming from:
D =< NCy, Py >= Py
(5) We know that the subgroup S3; C O3 appears as follows:

C(s}) = C(0}) / (u = magic)
In order to interpret the magic condition, consider the fork partition:
Y € P(2,1)
Given a corepresentation u, we have the following formulae:

(Tyu™)i e = Y (T )i (U™ )im i = izt

Im
(WTy)ige = > wa(Ty)ije = Ot
z

We conclude that we have the following equivalence:
Ty € Hom(u®? u) < wjjug = 6w, Vi, j, k
The condition on the right being equivalent to the magic condition, we obtain:
C(Sy%) = C’(O;{,)/<Ty € Hom(u®2,u)>
Thus S} is indeed easy, the corresponding category of partitions being:
D =<Y >=NC
(6) Finally, in order to deal with Sy, we can use the following formula:
Sy =SHNOy
At the categorical level, this tells us that Sy is indeed easy, coming from:
D=<NC,P,>=P

Thus, we are led to the conclusions in the statement.
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The above result is something quite deep, and we will see in what follows countless
applications of it. As a first such application, which is rather philosophical, we have:

THEOREM 2.13. The constructions Gy — Gx with G = U,0, S are easy quantum
group liberations, in the sense that they come from the construction

D—DNNC
at the level of the associated categories of partitions.

ProoOF. This is clear indeed from Theorem 2.12, and from the following trivial equal-
ities, connecting the categories found there:

NCy,=P,NNC , NC,=P,NNC , NC=PNNC
Thus, we are led to the conclusion in the statement. O

The above result is quite nice, because the various constructions Gy — G}, that we
saw in chapter 1, although natural, were something quite ad-hoc. Now all this is no longer
ad-hoc, and the next time that we will have to liberate a subgroup Gy C Uy, we know
what the recipe is, namely check if G is easy, and if so, simply define G}, C Uy, as being
the easy quantum group coming from the category D = Dg N NC.

2c. Laws of characters

Let us discuss now some more advanced applications of Theorem 2.12; this time to
the computation of the law of the main character, in the spirit of Claim 2.1. First, we
have the following result, valid in the general easy quantum group setting:

PROPOSITION 2.14. For an easy quantum group G = (Gy), coming from a category
of partitions D = (D(k,l)), the moments of the main character are given by

/GN " = dim (span (é} TE D(k)))

where D(k) = D(0, k), and with the notation &, = Ty, for partitions m € D(k).

PROOF. According to the Peter-Weyl theory, and to the definition of easiness, the
moments of the main character are given by the following formula:

[ o
= dim (sz(u®k))
dim (span (&T e D(k)))

Thus, we obtain the formula in the statement. U




42 2. DIAGRAMS, EASINESS

With the above result in hand, you would probably say very nice, so in practice, this is
just a matter of counting the partitions appearing in Theorem 2.12, and then recovering
the measures having these numbers as moments. However, this is wrong, because such
a computation would lead to a law of y which is independent on N € N, and for the
classical groups at least, Sy, Oy, Uy, we obviously cannot have such a result.

The mistake comes from the fact that the vectors &, are not necessarily linearly inde-
pendent. Let us record this finding, which will be of key importance for us:

CONCLUSION 2.15. The vectors associated to the partitions m € P(k), namely

gﬂ': Z57r(2.17'--7ik)ei1®"'®eik

i1

are not linearly independent, with this making the main character moments for Sy,

/S " = dim <span <§7r T E P(k:)))

depend on N € N. Moreover, the same phenomenon happens for Oy, Uy.

All this suggests by doing some linear algebra for the vectors &, but this looks rather
complicated, and let’s keep that for later. What we can do right away, instead, is that of
studying Sy with alternative, direct techniques. And here we have:

THEOREM 2.16. Consider the symmetric group Sy, regarded as a compact group of
matrices, Sy C Oy, via the standard permutation matrices.

(1) The main character x € C(Sn), defined as usual as x = Y . u;, counts the
number of fized points, x(o) = #{i|lo(i) =i}.

(2) The probability for a permutation o € Sy to be a derangement, meaning to have
no fized points at all, becomes, with N — oo, equal to 1/e.

(3) The law of the main character x € C(Sn) becomes with N — oo the Poisson law
P = %Zk O/ k!, with respect to the counting measure.

PRroOF. This is something very classical, the proof being as follows:

(1) We have indeed the following computation, which gives the result:
W) = Y wis(0) = - doiai = # i) = i}
(2) We use the inclusion-exclusion principle. Consider the following sets:

S = {U € SN‘J(Z') = 2}
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The probability that we are interested in is then given by:

P(x=0) = m<|SN\—Z\S]\,]JFZLSNQS{V\— Z ySNmSijS]’“VH...)

i<j i<j<k

_ %Z(—l)r'z‘(N—r)!

- w3 (Me-n
N 1y

B Z;(r!

Since we have here the expansion of 1/e, this gives the result.

(3) This follows by generalizing the computation in (2). To be more precise, a similar
application of the inclusion-exclusion principle gives the following formula:

. 1
A POc=h) =
Thus, we obtain in the limit a Poisson law of parameter 1, as stated. U

The above result is quite interesting, and tells us what to do next. As a first goal,
we can try to recover (3) there by using Proposition 2.14, and easiness. Then, once this
understood, we can try to look at S}, and then at Oy, Uy and Oy, Uy too, with the
same objective, namely finding N — oo results for the law of x, using easiness.

So, back to Proposition 2.14 and Conclusion 2.15, and we have now to courageously
attack the main problem, namely the linear independence question for the vectors &;.
This will be quite technical. Let us begin with some standard combinatorics:

DEFINITION 2.17. Let P(k) be the set of partitions of {1,...,k}, and 7,0 € P(k).

(1) We write m < o if each block of 7 is contained in a block of o.
(2) We let mV o € P(k) be the partition obtained by superposing 7, o.

Also, we denote by |.| the number of blocks of the partitions = € P (k).
As an illustration here, at k = 2 we have P(2) = {||,M}, and we have:
<
Also, at k = 3 we have P(3) = {|||,M|, 1, |r1,M}, and the order relation is as follows:
1< nap, m, n < rm

In relation with our linear independence questions, the idea will be that of using:
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PROPOSITION 2.18. The Gram matrixz of the vectors &, is given by the formula
< 571—’50' >— N|TI'VO'|
where V is the superposition operation, and |.| is the number of blocks.

PRrROOF. According to the formula of the vectors &, we have:

< &r,&, > = Z (Sﬂ('l'l, . ,ik)5a(i1, .. ,ik)

i1

— Z 57T\/0(i1, o ,ik)

110k
_ N|TI'\/O'|
Thus, we have obtained the formula in the statement. Il

In order to study the Gram matrix Gy (7, 0) = N!™°| and more specifically to compute
its determinant, we will use several standard facts about the partitions. We have:

DEFINITION 2.19. The Mébius function of any lattice, and so of P, is given by

1 itr=o0
(o) =< =2 o um7) ifm<o
0 ifrLo

with the construction being performed by recurrence.
As an illustration here, for P(2) = {||,M}, we have by definition:
pudlls 1) = p(m,m1) =1
Also, || < M, with no intermediate partition in between, so we obtain:
pdl, ) = =pdll 1)) = -1
Finally, we have M £ ||, and so we have as well the following formula:
p(M,[1) =0

Thus, as a conclusion, we have computed the M&bius matrix My(w,0) = p(w,0) of
the lattice P(2) = {||, M}, the formula being as follows:

1 -1
o )

Back to the general case now, the main interest in the Mobius function comes from
the Mobius inversion formula, which states that the following happens:

flo)=) g(m) = glo) =) p(mo)f(r)

<o <o

In linear algebra terms, the statement and proof of this formula are as follows:
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THEOREM 2.20. The inverse of the adjacency matriz of P(k), given by
1 ifr<
Amo) =3 "0
0 frLo
is the Mébius matriz of P, given by My(mw, o) = p(m, o).

Proor. This is well-known, coming for instance from the fact that Aj is upper trian-
gular. Indeed, when inverting, we are led into the recurrence from Definition 2.19. U

As an illustration, for P(2) the formula M, = A;' appears as follows:
(1 —1) i (1 1)‘1
0 1 01
Now back to our Gram matrix considerations, we have the following key result:
PROPOSITION 2.21. The Gram matriz of the vectors & with m € P(k),
Grp = NI
decomposes as a product of upper/lower triangular matrices, Gy, = Ay Ly, where
O AR A
and where Ay, is the adjacency matriz of P(k).
ProoOF. We have the following computation, based on Proposition 2.18:
Gp(m,0) = NI™vel
- #{zlzk c {1,...,N}‘keri 27r\/a}
- ¥ #{z’l,...,ike {1,...,N}‘kerz’:7}

T>1mNVo

= Y N(N-1)...(N-|r|+1)

>N

According now to the definition of Ay, Ly, this formula reads:

Gy(m,o0) = Z Ly(t,0)

T>T

= Z Ay (7, 7)Ly(T,0)

= @Akl%)(ﬁ,a)

Thus, we are led to the formula in the statement. U
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As an illustration for the above result, at k = 2 we have P(2) = {||,M}, and the above
decomposition Gy = Ay Ly appears as follows:

N? N\ (1 1\ (N*-N 0
N N) \0 1 N N
We are led in this way to the following formula, due to Lindstom [67]:

THEOREM 2.22. The determinant of the Gram matriz Gy is given by

N!

weP (k)

with the convention that in the case N < k we obtain 0.

Proor. If we order P(k) as usual, with respect to the number of blocks, and then
lexicographically, Ay is upper triangular, and Ly is lower triangular. Thus, we have:

det(Gk) = det(Ak)det(Lk)
= det(Lk)

= HLk(ﬂ',ﬂ')

= [[NWNV=1) ... (N = x| +1)

Thus, we are led to the formula in the statement. U
Now back to easiness and laws of characters, we can formulate:

THEOREM 2.23. For an easy quantum group G = (Gy), coming from a category of
partitions D = (D(k, 1)), the asymptotic moments of the main character are given by

im [\ = |D(k)|

N—o0 Gn

where D(k) = D(0, k), with the limiting sequence on the left consisting of certain integers,
and being stationary at least starting from the k-th term.

Proor. We know from Proposition 2.14 that we have the following formula:

/GN ¥ = dim <span (fﬂ TE D(k)))

Now since by Theorem 2.22 the vectors &, are linearly independent with N > k, and
in particular with N — oo, we obtain the formula in the statement. Il

This is very nice, and as a first application, we can recover as promised the Poisson
law result from Theorem 2.16, this time by using easiness, as follows:
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THEOREM 2.24. For the symmetric group Sy, the main character becomes Poisson
X~ D1
in the N — oo limit.

PROOF. As already mentioned, this is something that we already know, from Theorem
2.16. Alternatively, according to Theorem 2.23, we have the following formula:

lim [ x*=[P(k)|
N—o0 SN
Now since a partition of {1,...,k + 1} appears by choosing s neighbors for 1, among
the k& numbers available, and then partitioning the k — s elements left, the numbers on
the right By = |P(k)|, called Bell numbers, satisfy the following recurrence:

By = Z (lz) By

S

On the other hand, the moments Mj, of the Poisson law p; = 13" 4, /r! are subject
to the same recurrence formula, as shown by the following computation:

1 (r+ 1)
T L

k
- 2 ()
— \s
As for the initial values, at k = 1, 2, these are 1,2, for both the Bell numbers By, and
the Poisson moments M. Thus we have B, = M}, which gives the result. O

2d. Free probability

Moving ahead, we have now to work out free analogues of Theorem 2.24 for the other
easy quantum groups that we know. A bit of thinking at traces of unitary matrices
suggests that for the groups Oy, Uy we should get the real and complex normal laws. As
for O%, U, Sy, we are a bit in the dark here, and we can only say that we can expect to
have “free versions” of the real and complex normal laws, and of the Poisson law.
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Long story short, the combinatorics ahead looks quite complicated, and we are in need
of a crash course on probability. So, let us start with that, classical and free probability,
and we will come back later to combinatorics and quantum groups. We first have:

DEFINITION 2.25. Let A be a C*-algebra, given with a trace tr : A — C.

(1) The elements a € A are called random variables.
(2) The moments of such a variable are the numbers My(a) = tr(a®).
(3) The law of such a variable is the functional i : P — tr(P(a)).

Here k = ceeo. .. is by definition a colored integer, and the corresponding powers a”

are defined by the following formulae, and multiplicativity:
=1, a®=a , a" =a
As for the polynomial P, this is a noncommuting *-polynomial in one variable:
PeC< X, X*>

Observe that the law is uniquely determined by the moments, because we have:
P(X) =) MX" = u(P)=> A\eMy(a)
k k

Generally speaking, the above definition is something quite abstract, but there is no
other way of doing things, at least at this level of generality. However, in certain special
cases, the formalism simplifies, and we recover more familiar objects, as follows:

PROPOSITION 2.26. Assuming that a € A is normal, aa® = a*a, its law corresponds
to a probability measure on its spectrum o(a) C C, according to the following formula:

r(P(a) = [ | Plintz)
When the trace is faithful we have supp(u) = o(a). Also, in the particular case where the
variable is self-adjoint, a = a*, this law is a real probability measure.

PRroOOF. This is something very standard, coming from the Gelfand theorem, applied
to the algebra < a >, which is commutative, and then the Riesz theorem. U

Following Voiculescu [92], we have the following two notions of independence:
DEFINITION 2.27. Two subalgebras A, B C C' are called independent when
tr(a) =tr(b) =0 = tr(ab) =0
holds for any a € A and b € B, and free when
tr(a;) =tr(b;) =0 = tr(aibjagby...) =0
holds for any a; € A and b; € B.
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In short, we have here a straightforward extension of the usual notion of independence,
in the framework of Definition 2.25, along with a quite natural free analogue of it. In order
to understand what is going on, let us first discuss some basic models for independence
and freeness. We have the following result, from [92], which clarifies things:

PROPOSITION 2.28. Given two algebras (A, tr) and (B, tr), the following hold:

(1) A, B are independent inside their tensor product A ® B.
(2) A, B are free inside their free product A x B.

PrOOF. Both the assertions are clear from definitions, after some standard discussion
regarding the tensor product and free product trace. See Voiculescu [92]. U

In relation with groups, we have the following result:

PROPOSITION 2.29. We have the following results, valid for group algebras:
(1) C*(I"),C*(A) are independent inside C*(I" x A).
(2) C*(T'),C*(A) are free inside C*(I" % A).

Proor. This follows from the general results in Proposition 2.28, along with the
following two isomorphisms, which are both standard:

CT x A) = C*(A) @ C*(T) , C*(%A)=C*(A)*CH(T)

Alternatively, we can prove this directly, by using the fact that each algebra is spanned
by the corresponding group elements, and checking the result on group elements. U

In order to study independence and freeness, our main tool will be:
THEOREM 2.30. The convolution is linearized by the log of the Fourier transform,
Fy(x) = E(e'™)
and the free convolution is linearized by the R-transform, given by:

60 = [ P — 6, (R0 + ) =

rRE—1

PROOF. In what regards the first assertion, if f, g are independent, we have indeed:

Froa) = [ ewdlng + )2

= [ e )y
RxR

— /emzd,uf(z)/emd,ug(t)
R R

= F(a)Fy(z)
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As for the second assertion, here we need a good model for free convolution, and the
best is to use the semigroup algebra of the free semigroup on two generators:

A=C*(N*N)

Indeed, we have some freeness in the semigroup setting, a bit in the same way as for
the group algebras C*(I" x A), from Proposition 2.29, and in addition to this fact, and to
what happens in the group algebra case, the following two key things happen:

(1) The variables of type S*+ f(.9), with S € C*(N) being the shift, and with f € C[X]
being a polynomial, model in moments all the distributions p : C[X] — C. This is indeed
something elementary, which can be checked via a direct algebraic computation.

(2) Given f, g € C[X], the variables S* + f(S) and T + ¢(T), where S,T € C*(N*N)
are the shifts corresponding to the generators of N % N, are free, and their sum has the
same law as S* + (f + ¢)(.S). This follows indeed by using a 45° argument.

With this in hand, we can see that the operation y — f linearizes the free convolution.
We are therefore left with a computation inside C*(N), whose conclusion is that R, = f
can be recaptured from p via the Cauchy transform G, as stated. See [92]. g

As a first result now, which is central and classical and free probability, we have:

THEOREM 2.31 (CLT). Given self-adjoint variables x1, x2, x3, . . . which are i.i.d. /f.i.d.,
centered, with variance t > 0, we have, with n — 00, in moments,

1 n
— ) @i~ g/
Vn i=1
where g/ are the normal and Wigner semicircle law of parameter t, given by:

1 2 1
_ —z?/2t — NSAF2 — 2
g = e de |, v = 4t? — x?dx
V2rt 2mt

PRrROOF. This is routine, by using the Fourier transform and the R-transform. U
Next, we have the following complex version of the CLT:

THEOREM 2.32 (CCLT). Given variables x1,xa, x3, ... which are i.i.d./f.i.d., centered,
with variance t > 0, we have, with n — 0o, in moments,

1 n
_le ~ Gt/Ft
ﬁi:l

where Gy /Ty are the complex normal and Voiculescu circular law of parameter t, given by:

Gy = law (%(a + ib)) . Ty =law (%(a + zﬂ))

where a,b/a, B are independent/free, each following the law g;/7:.
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PRrROOF. This follows indeed from the CLT, by taking real and imaginary parts. [J
Finally, we have the following discrete version of the CLT:

THEOREM 2.33 (PLT). The following Poisson limits converge, for any t > 0,

*n Hn
t t t t
p; = lim ((1——) 50—1-—(51) , m = lim ((1——) (5o+—51)
n—o00 n n n— 00 n n

the limiting measures being the Poisson law py, and the Marchenko-Pastur law m,

1 < tF At — (x — 1 —1t)2
Ok VAt — (z )dx

et K omx
k=0

with at t = 1, the Marchenko-Pastur law being m = %\/496—1 — ldx.

pe = 7 = max(1 —¢,0)d +

Proor. This is again routine, by using the Fourier and R-transform. O

This was for the basic classical and free probability. In relation now with combina-
torics, we have the following result, which reminds easiness, and is of interest for us:

THEOREM 2.34. The moments of the various central limiting measures, namely

Ty Mt Iy

bt Gt Gy
are always given by the same formula, involving partitions, namely
= ¥ i
weD(k)

with the sets of partitions D(k) in question being respectively

NC NOQ NCQ

P Py P
and with |.| being the number of blocks.

Proor. This follows indeed from the various computations leading to Theorems 2.31,
2.32, 2.33, and details can be found in any free probability book. See [78], [94]. O
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It is possible to say more on this, following Rota in the classical case, Speicher in the
free case, and Bercovici-Pata for the classical/free correspondence. We first have:

DEFINITION 2.35. The cumulants of a self-adjoint variable a € A are given by
N (i€)"
10g Fa(f) - Zl kn(a) T
and the free cumulants of the same variable a € A are given by:

Ry (§) = Z ”in(a)gn_l

Moreover, we have extensions of these notions to the non-self-adjoint case.

In what follows we will only discuss the self-adjoint case, which is simpler, and illustrat-
ing. Since the classical and free cumulants are by definition certain linear combinations
of the moments, we should have conversion formulae. The result here is as follows:

THEOREM 2.36. The moments can be recaptured out of cumulants via
M= Y hela) . M= Y wela)
TEP(n) TENC(n)
with the convention that k., k., are defined by multiplicativity over blocks. Also,
kn(a) = Z pp(v,1n)My(a) ,  Kula) = Z pne (Vs 1,) M, (a)
veP(n) veNC(n)
where pp, pine are the Mébius functions of P(n), NC'(n).

PROOF. Here the first formulae follow from Definition 2.35, by doing some combina-
torics, and the second formulae follow from them, via M6bius inversion. Il

In relation with the various laws that we are interested in, we have:

PROPOSITION 2.37. The classical and free cumulants are as follows:

(1) For u =4, both the classical and free cumulants are ¢, 0,0, ...
(2) For pn= g¢/v the classical/free cumulants are 0,t,0,0,. ..
(3) For u = pi/m the classical/free cumulants are t,t,t,. ..

PRrROOF. Here (1) is something trivial, and (2,3) can be deduced either directly, starting
from the definition of the various laws involved, or by using Theorem 2.34. U

Following now Bercovici-Pata [23], let us formulate the following definition:

DEFINITION 2.38. If the classical cumulants of n equal the free cumulants of u,

kn(n) = kn(p)
we say that n is the classical version of u, and that p is the free version of n.
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All this is quite interesting, and we have now a better understanding of Theorem 2.34,
the point there being that on the vertical, we have measures in Bercovici-Pata bijection.
Now back to quantum groups, we first have the following result, from [15]:

THEOREM 2.39. The asymptotic laws of characters for the basic quantum groups,

Sn O% Uy

SN ON UN

are precisely the main laws in classical and free probability at t = 1.

Proo¥F. This follows indeed from our various easiness considerations before, and from
Theorem 2.34 applied at t = 1, which gives My = |D(k)| in this case. d

More generally, again following [15], let us discuss now the computation for the trun-
cated characters. These are variables constructed as follows:

DEFINITION 2.40. Associated to any Woronowicz algebra (A, w) are the variables
[tN]

Xt = Z Ui
i=1

depending on a parameter t € (0,1], called truncations of the main character.

In order to understand what these variables x; are about, let us first investigate the
symmetric group Sy. We have here the following result:

THEOREM 2.41. For the symmetric group Sy C Oy, the truncated character

[tN]
xt(g) = Z WUij
i=1
becomes, with N — oo, a Poisson variable of parameter t.

Proo¥r. This can be deduced via inclusion-exclusion, as in the proof of Theorem 2.16,
but let us prove this via an alternative method, which is instructive as well. Our first
claim is that the integrals over Sy are given by the following formula:

N—|keri])! - . .
/ Ui s - % if keri = kerj
sy TR 0 otherwise

Indeed, according to the definition of w;;, the above integrals are given by:

1 . . . .
/SN Uiyjp » - - Wiy, = ﬁ# {O' € SN‘U(jl) =11, ,U<]k) - Zk}
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But this proves our claim. Now with the above formula in hand, with Sy, being the
Stirling numbers, counting the partitions in P(k) having b blocks, we have:

[tN]

k
/ Xt = E , / Wsyiy - - - Wigiy,
SN SN

i1..ip=1

tN]! N — |x|!
- ¥ [tN] (N —|=]1)

([EN] = [=]!) N!

weP(k)
[tN]

[tN]! (N —b)!
;([W]—b)!' NSk

Thus with N — oo the moments are M}, ~ Zlgzl Sipt’, which gives the result. O

Summarizing, we have nice results about Sy. In general, however, and in particular
for Oy, Uy and S}, OF, Uy, there is no simple trick as for Sy, and we must use general
integration methods, from [15], [42]. We have here the following formula:

THEOREM 2.42. For an easy quantum group G C, Uy, coming from a category of
partitions D = (D(k, 1)), we have the Weingarten integration formula

/G Wigy - - Uiyj, = w;(k) 0r(1)05 () Wi (m, )
where D(k) = D(0, k), § are usual Kronecker symbols, and Wiy = G, with
G (m,0) = NI™!
where |.| is the number of blocks.

PRrROOF. This follows from the general Weingarten formula from Theorem 2.4. Indeed,
in the easy case we can take Dy = D(k, k), and the Kronecker symbols are given by:

6§W(Z') =< gﬂ, €, ...Q¢e, >= 57r(ila . ,Zk)
The Gram matrix being as well the correct one, we obtain the result. See [15]. U

With the above formula in hand, we can go back to the question of computing the
laws of truncated characters. First, we have the following moment formula, from [15]:

PROPOSITION 2.43. The moments of truncated characters are given by the formula
/ (uns + -+ 1)t = Tr(WinGro)
a

where Gy and Win = G,;]b are the associated Gram and Weingarten matrices.



2D. FREE PROBABILITY 55

PrROOF. We have indeed the following computation:

/G(un +...+ uss)k Z Z /um1 Uiy

i1=1 =1

= Z WkNWUZ 25

moeD(k =1 =1
= Z WkN (m,0)Gs(o, )
mo€D(k)
= TT(WkNGkS)
Thus, we have obtained the formula in the statement. U

In order to process now the above formula, things are quite technical, and won’t work
well in general. We must impose here a uniformity condition, as follows:

THEOREM 2.44. For an easy quantum group G = (Gy), coming from a category of
partitions D C P, the following conditions are equivalent:

(1) Gn—1 = Gy NUN_y, via the embedding Uy;_; C Uy given by u — diag(u, 1).
(2) Gy_1 =Gy NUN_, via the N possible diagonal embeddings Uy, C Uy,
(3) D is stable under the operation which consists in removing blocks.
If these conditions are satisfied, we say that G = (Gy) is uniform.
Proor. This is something very standard, the idea being as follows:

(1) <= (2) This equivalence is elementary, coming from the inclusion Sy C Gy,
which makes everything Sy-invariant.

(1) <= (3) Given a closed subgroup K C Uj;_,, with fundamental corepresentation
u, consider the following N x N matrix:

B <u O>
0 1

Then for any 7 € P(k) a standard computation shows that we have:

& € Fiz(v®*) «—= & € Fiz(v®), Vo' e P(K),n' C =
Now with this in hand, the result follows from Tannakian duality. U
By getting back now to the truncated characters, we have the following result:
THEOREM 2.45. For a uniform easy quantum group G = (Gy), we have the formula

' ||
s 2

with D C P being the associated category of partztzons.
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PROOF. In the uniform case the Gram matrix, and so the Weingarten matrix too, are
asymptotically diagonal, so the asymptotic moments are given by:

/ = Tr(WinGipn)) =~ Z N[N 3 i
Gn

weD(k weD(k)

Thus, we are led to the conclusion in the statement. See [15], [25]. O
We can now improve our quantum group results, as follows:

THEOREM 2.46. The asymptotic laws of truncated characters for the quantum groups

St 0%, Uy
S N O N U N
are precisely the main limiting laws in classical and free probability, namely:
T Mt I’y
2 Gt Gy
Proor. This follows indeed from easiness, Theorem 2.34 and Theorem 2.45. Il

2e. Exercises

Generally speaking, as a best complement to the above material, we recommend some
probability reading. Here is a first exercise, in relation with the above:

EXERCISE 2.47. Work out all details for the classical and free CLT, CCLT, PLT.
Here the tools were discussed in the above, and left to do are some computations.
EXERCISE 2.48. Prove that Sy is easy, directly.

To be more precise, our proof for Sy was based on the fact that Sy is easy. The
problem is that of finding a direct proof, with no reference to quantum groups.

EXERCISE 2.49. Try finding Gram determinant formulae for the groups On,Ux and
for the quantum groups S3, O%, Uy, complementing the Lindstom formula for Sy.

This is actually a quite difficult exercise, but we will be back to this.



CHAPTER 3

Representation theory

3a. Rotation groups

We have seen that the inclusion Sy C Sy, and its companion inclusions Oy C OF
and Uy C Uy, are all liberations in the sense of easy quantum group theory, and that
some representation theory consequences, in the N — oo limit, can be derived from this.
We discuss here the case where N € N is fixed, which is more technical.

Let us first study the representations of OF;. We know that in the N — oo limit we
have x ~ 71, and as a first question, we would like to know how the irreducible repre-
sentations of a “formal quantum group” should look like, when subject to the condition
X ~ 1. And fortunately, the answer here is very simple, coming from SUs:

THEOREM 3.1. The group SUs is as follows:

(1) The main character is real, its odd moments vanish, and its even moments are
the Catalan numbers:
/ X2k — Ck
SU>

(2) This main character follows the Wigner semicircle law, x ~ 7.
(3) The irreducible representations can be labelled by positive integers, ry with k € N,
and the fusion rules for these representations are:

Tk @11 = Tg—i] + Tk—i|42 + - - - + Tk
(4) The dimensions of these representations are dimry = k + 1.
PROOF. There are many possible proofs here, the idea being as follows:

(1,2) These statements are equivalent, and in order to prove them, a simple argument
is by using the well-known isomorphism SU, ~ S3, coming from:

B r+iy z+ial
SU, = {(—z—i—it :E—z'y)
Indeed, in this picture the moments of y = 2x can be computed via spherical coordi-
nates and some calculus, and follow to be the Catalan numbers:

1 (2
Ck—k+1<k>

57

x2+y2+22+t2—1}
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As for the formula x ~ 71, this follows from this, and is geometrically clear as well.

(3,4) Our claim is that we can construct, by recurrence on k € N, a sequence 1 of
irreducible, self-adjoint and distinct representations of SUs, satisfying:

ro=1 , m=u , T ®r=rea+ry

Indeed, assume that rg,...,ry_; are constructed, and let us construct r,. We have:
Th—2 @ T1 = Tk—3 + Tk-1
Thus ry_1 C rg_o ® 11, and since ry_s is irreducible, by Frobenius we have:
Th—2 C Tp—1 @11
We conclude there exists a certain representation r; such that:
Tp—1 @11 = Tp—2 + Tk

By recurrence, ry is self-adjoint. Now observe that according to our recurrence formula,

we can split u®* as a sum of the following type, with positive coefficients:

k
u®" = ¢y + CpaTk—2 + ChoaTra + . ..

We conclude by Peter-Weyl that we have an inequality as follows, with equality pre-
cisely when 7, is irreducible, and non-equivalent to the other summands r;:

Zc? < dim(End(u®*))
But by (1) the number on the right is Cj, and some straightforward combinatorics,
based on the fusion rules, shows that the number on the left is C}, as well. Thus:

Cp = 3" & < dim(End(u®™)) = / NS
- SU>

We conclude that we have equality in our estimate, so our representation 7y is ir-
reducible, and non-equivalent to r;_s,7,_4,... Moreover, this representation r, is not
equivalent to r_q, g3, ... either, with this coming from r, C u®?, and from:

dim(Fi$(u®25+1)) — / X23+1 =0
SUs
Thus, we have proved our claim. Now since each irreducible representation of SU,
must appear in some tensor power u®*, and we know how to decompose each u®* into
sums of representations 7y, these representations r; are all the irreducible representations
of SUs,, and we are done with (3). As for the formula in (4), this is clear. O

There are of course many other proofs for the above result, which are all instructive,
and we recommend here any good book on geometry and physics. In what concerns us,
the above will do, and we will be back to this later, with some further comments.
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Getting back now to O}, we know that in the N — oo limit we have y ~ 71, so
by the above when formally setting N = oo, the fusion rules are the same as for SUs,.
Miraculously, however, this happens in fact at any N > 2, the result being as follows:

THEOREM 3.2. The quantum groups O with N > 2 are as follows:
(1) The odd moments of the main character vanish, and the even moments are:

/ X =Gy
0

+
N
(2) This main character follows the Wigner semicircle law, x ~ 7.
(3) The fusion rules for irreducible representations are as for SUs,, namely:

T QT = T k—1| +T|k—l|+2 + . T
(4) We have dimry = (¢ —¢*") /(¢ —¢7"), withq+¢~' = N.
PROOF. The idea is to skilfully recycle the proof of Theorem 3.1, as follows:

(1,2) These assertions are equivalent, and since we cannot prove them directly, we will
simply say that these follow from the combinatorics in (3) below.

(3,4) As before, our claim is that we can construct, by recurrence on k € N, a sequence
To,T1, 79, ... of irreducible, self-adjoint and distinct representations of O3, satisfying:

ro=1 , m=u , 11 @®@ri=rpao+rg

In order to do so, we can use as before r,_o ® r1 = rp_3 + rr—1 and Frobenius, and we
conclude there exists a certain representation r; such that:

Th—1 ®T1 =Tr—2 + Tk

As a first observation, r is self-adjoint, because its character is a certain polynomial
with integer coefficients in y, which is self-adjoint. In order to prove now that ry is
irreducible, and non-equivalent to r, ..., r,_1, let us split as before u®*, as follows:

k
u® = CxTk + Ck—2Tk—2 + Ch—aTh—g + ...

The point now is that we have the following equalities and inequalities:

Cr=Y ¢ < dim(End(u®)) < |[NCy(k, k)| = Cy

7
Indeed, the equality at left is clear as before, then comes a standard inequality, then
an inequality coming from easiness, then a standard equality. Thus, we have equality,
so 1y is irreducible, and non-equivalent to ry_s, rr_4, . .. Moreover, r; is not equivalent to
Tk—1,Tk—3,- - . €ither, by using the same argument as for SU,, and the end of the proof of
(3) is exactly as for SU,. As for (4), by recurrence we obtain, with ¢ + ¢~! = N:

dimr, = ¢* +¢* 2+ ... 4q¢ 244"

But this gives the dimension formula in the statement, and we are done. U
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The above result raises several interesting questions. For instance we would like to
know if Theorem 3.1 can be unified with Theorem 3.2. Also, combinatorially speaking,
we would like to have a better understanding of the “miracle” making Theorem 3.2 hold
at any N > 2, instead of N = oo only. These questions will be answered in due time.

Regarding now the quantum group Uy, a similar result holds here, which is also
elementary, using only algebraic techniques, based on easiness. Let us start with:

THEOREM 3.3. We have isomorphisms as follows,
Ut—0. ., PO%L=PUS
modulo the usual equivalence relation for compact quantum groups.

PrOOF. The above isomorphisms both come from easiness, as follows:

(1) We have embeddings as follows, with the first one coming by using the counit, and
with the second one coming from the universality property of Uy:

O} c Of, c Uy,
We must prove that the embedding on the right is an isomorphism. In order to do so,

let us denote by v, zv, u the fundamental representations of the above quantum groups.
At the level of the associated Hom spaces we obtain reverse inclusions, as follows:

Hom(v®*,v®) 5 Hom((2v)®*, (20)®") D Hom(u®*, u®")

But the spaces on the left and on the right are known from chapter 2, the easiness
result there stating that these are as follows:

span (T,r T € NCyk, l)) D span <T,r e NCy(k, l))

Regarding the spaces in the middle, these are obtained from those on the left by
coloring, and we obtain the same spaces as those on the right. Thus, by Tannakian duality,

our embedding O}, C U} is an isomorphism, modulo the usual equivalence relation.

(2) Regarding now the projective versions, the result here follows from:
PUY, = PO}, = PO}
Alternatively, with the notations in the proof of (1), we have:

Hom ((v®@v)*, (v®wv)') = span (T,r T € NCy((00)F, (oo)l)>

Hom ((u®a)¥, (u® u)') = span (T7r

7€ NCa((on)", (00)))

The sets on the right being equal, we conclude that the inclusion PO}, C PU}; pre-
serves the corresponding Tannakian categories, and so must be an isomorphism. O

Getting now to the representations of Uy, the result here is as follows:
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THEOREM 3.4. The quantum groups Uy with N > 2 are as follows:
(1) The moments of the main character count the matching pairings:

[ =)
Uy

(2) The main character follows the Voiculescu circular law of parameter 1:
X~ T

(3) The irreducible representations are indexed by N x N, with as fusion rules:

rE QT = E Trz

k=xy,l=1yz
(4) The corresponding dimensions dimry can be computed by recurrence.
PROOF. There are several proofs here, the idea being as follows:

(1) The original proof, explained for instance in [4], is by construcing the representa-
tions 7, by recurrence, exactly as in the proof of Theorem 3.2, and then arguing, also as
there, that the combinatorics found proves the first two assertions as well. In short, what
we have is a “complex remake” of Theorem 3.2, which can be proved in a similar way.

(2) An alternative argument, discussed as well in [4], is by using Theorem 3.3. Indeed,

the fusion rules for Uy, = OF can be computed by using those of OF;, and we end up
with the above “free complexification” of the Clebsch-Gordan rules. As for the first two

assertions, these follow too from Uy, = O}, via standard free probability. O

As a conclusion, our results regarding O}, U}, show that the N — oo convergence
of the law of the main character to v1,1"1, known since chapter 2, is in fact stationary,
starting with NV = 2. And this is quite a miracle, for instance because for Oy, Uy, some
elementary computations show that the same N — oo convergence, this time to the
normal laws g1, GGy, is far from being stationary. Thus, it is tempting to formulate:

CONCLUSION 3.5. The free world is simpler than the classical world.

And please don’t get me wrong, especially if you're new to the subject, having struggled
with the free material explained so far in this book. What I'm saying here is that, once
you're reasonably advanced, and familiar with freeness, and so you will be soon, a second
look at what has been said so far in this book can only lead to the above conclusion.

More on this later, in connection with permutations and quantum permutations too.
Finally, as an extra piece of evidence, we have the isomorphism PO}, = PUy from
Theorem 3.3, which is something quite intruiguing too, suggesting that the “free projective
geometry is scalarless”. We will be back to this later, with the answer that yes, free
projective geometry is indeed scalarless, simpler than classical projective geometry.
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3b. Clebsch-Gordan rules

We discuss now the representation theory of S}, at N > 4. Let us begin our study
exactly as for OF;. We know that in the N — oo limit we have x ~ 7, and as a
first question, we would like to know how the irreducible representations of a “formal
quantum group” should look like, when subject to the condition y ~ 7. And fortunately,
the answer here is very simple, involving this time the group SOs:

THEOREM 3.6. The group SOz is as follows:

(1) The moments of the main character are the Catalan numbers:

/ Xk = C}
SO5

(2) The main character follows the Marchenko-Pastur law of parameter 1:
X~ T
(3) The fusion rules for irreducible representations are as follows:
T QT =Tkt + k=41 + -+ -+ Tkpi
(4) The dimensions of these representations are dimry = 2k — 1.

PROOF. As before with SU,, there are many possible proofs here, which are all in-
structive. Here is our take on the subject, in the spirit of our proof for SUs,:

(1,2) These statements are equivalent, and in order to prove them, a simple argument
is by using the SU, result, and the double cover map SU; — SOs5. Indeed, let us recall
from the proof for SU, that we have an isomorphism SU, ~ S3, coming from:

. T4y 2+t ‘2 9 9 .o
SU; = {(—z+z’t x—iy) Yy 2+t —1}

The point now is that we have a double cover map SUs — SOs, which gives the

following formula for the generic elements of SOj, called Euler-Rodrigues formula:

2yt — 22— 12 2(yz — wt) 2(xz + yt)
U= 2(xt + yz) 2?22 -yt — 12 2(zt — xy)
2(yt — x2) 2(xy + zt) e A A

It follows that the main character of SOj is given by the following formula:
x(U) = Tr(U)+1
= 3x2—y2—22—t2+1
= 4a?

On the other hand, we know from Theorem 3.1 and its proof that 2z ~ ~;. Now since
we have f ~ v = f? ~ m, we obtain y ~ 7, as desired.
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(3,4) Our claim is that we can construct, by recurrence on k € N, a sequence 4, of
irreducible, self-adjoint and distinct representations of SOs, satisfying:

ro=1 , m=u—-1 , 71 1®@r =ryo+r,1+7m

Indeed, assume that rq,...,ry_1 are constructed, and let us construct r,. The Frobe-
nius trick from the proof for SU, will no longer work, as you can verify yourself, so we
have to invoke (1). To be more precise, by integrating characters we obtain:

Th—1,Tk—2 C Tp—1 @ T
Thus, there exists a representation r; such that:
Tp—1 & T1 = Tk + g1+ 7Tk

Once again by integrating characters, we conclude that r; is irreducible, and non-
equivalent to rq,...,7x_1, and this proves our claim. Also, since any irreducible repre-
sentation of SOz must appear in some tensor power of u, and we can decompose each
u®* into sums of representations r,, we conclude that these representations r, are all the
irreducible representations of SO3. Finally, the dimension formula is clear. O

Based on the above result, and on what we know about the relation between SU,; and
the quantum groups O} at N > 2, we can safely conjecture that the fusion rules for Sy
at N > 4 should be the same as for SO3;. However, a careful inspection of the proof of
Theorem 3.6 shows that, when trying to extend it to S}, a bit in the same way as the
proof of Theorem 3.1 was extended to O}, we run into a serious problem, namely:

PROBLEM 3.7. Regarding S3; with N > 4, we can’t get away with the estimate

/ X < Gy
S

+
N
because the Frobenius trick won’t work. We need equality in this estimate.

To be more precise, the above estimate comes from easiness, and we have seen that
for OF; with N > 2, a similar easiness estimate, when coupled with the Frobenius trick,
does the job. However, the proof of Theorem 3.6 makes it clear that no Frobenius trick
is available, and so we need equality in the above estimate, as indicated.

So, how to prove the equality? The original argument, from [1], is something quick
and advanced, saying that modulo some standard identifications, we are in need of the
fact that the trace on the Temperley-Lieb algebra T'Ly (k) = span(NCq(k, k)) is faithful
at index values N > 4, and with this being true by the results of Jones in [59]. However,
while very quick, this remains something advanced, because the paper [59] itself is based
on a good deal of von Neumann algebra theory, covering a whole book or so. And so, we
don’t want to get into this, at least at this stage of our presentation.
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In short, we are a bit in trouble. But no worries, there should be a pedestrian way
of solving our problem, because that is how reasonable mathematics is made, always
available to pedestrians. Here is an idea for a solution, which is a no-brainer:

SOLUTION 3.8. We can get the needed equality at N > 4, namely

/ ' =Gy
Sk

by proving that the vectors {&:|m € NC(k)} are linearly independent.

Indeed, this is something coming from easiness, and since this problem does not look
that scary, let us try to solve it. As a starting point for our study, we have:

PROPOSITION 3.9. The following are linearly independent, at any N > 2:
(1) The linear maps {Tx|m € NCo(k,1)}, with k+1 € 2N.
(2) The vectors {&|m € NCy(2k)}, with k € N.
(3) The linear maps {Tx|m € NCa(k,k)}, with k € N.

PROOF. All this follows from the dimension equalities established in the proof of
Theorem 3.2, because in all cases, the number of partitions is a Catalan number. U

In order to pass now to quantum permutations, we can use the following trick:

PROPOSITION 3.10. We have a bijection NC(k) ~ NC5(2k), constructed by fattening
and shrinking, as follows:

(1) The application NC(k) — NCy(2k) is the “fattening” one, obtained by doubling
all the legs, and doubling all the strings too.

(2) Its inverse NCy(2k) — NC(k) is the “shrinking” application, obtained by col-
lapsing pairs of consecutive neighbors.

PROOF. The fact that the above two operations are indeed inverse to each other is
clear, by drawing pictures, and computing the corresponding compositions. Il

At the level of the associated Gram matrices, the result is as follows:
PROPOSITION 3.11. The Gram matrices of NCy(2k) ~ NC (k) are related by
Gan(7,0) = 0 (A G2 A (', o)
where m — 7' is the shrinking operation, and Ay, is the diagonal of Gy,,.
PROOF. In the context of the bijection from Proposition 3.10, we have:
|TrVo|=k+2n'Vd|—|r|—|o]
We therefore have the following formula, valid for any n € N:

n\w\/a\ _ nk+2\7r’Va’|—\7r’|—|a’\

Thus, we are led to the formula in the statement. U
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We can now formulate a “projective” version of Proposition 3.9, as follows:

PROPOSITION 3.12. The following are linearly independent, for N = n? with n > 2:
(1) The linear maps {Tﬂ|7r € NC(k,l)}, with k,1 € 2N.
(2) The vectors {&|m € NC(k)}, with k € N.
(3) The linear maps {Tﬂ|7r € NC’(k,k)}, with k € N.

Proor. This follows from the various linear independence results from Proposition
3.9, by using the Gram matrix formula from Proposition 3.11, along with the well-known
fact that vectors are linearly independent when their Gram matrix is invertible. U

Good news, we can now discuss Sy with N = n? n > 2, as follows:

THEOREM 3.13. The quantum groups Sy with N =n?, n > 2 are as follows:
(1) The moments of the main character are the Catalan numbers:

/ X" =Gy
Sy

(2) The main character follows the Marchenko-Pastur law, x ~ .

(3) The fusion rules for irreducible representations are as for SOz, namely:

T QT = Tlk—t] + Tk—i]+1 + -+ Tkpi
(4) We have dimry, = (¢"*' — ¢ %) /(¢ — 1), with q+q ' = N — 2.
ProOF. This is quite similar to the proof of Theorem 3.2, by using the linear inde-
pendence result from Proposition 3.12 as main ingredient, as follows:

(1) We have the following computation, using Peter-Weyl, then the easiness property
of Sy, then Proposition 3.12 (2), then Proposition 3.10, and the definition of C:

/S ¥ = INC(H)] = NGy (2R)| =

N

(2) This is a reformulation of (1), using standard free probability theory.
(3) This is identical to the proof of Theorem 3.6 (3), based on (1).
(4) Finally, the dimension formula is clear by recurrence. d

All this is very nice, and although there is still some work, in order to reach to results
for S% at any N > 4, let us just enjoy what we have. As a consequence, we have:

THEOREM 3.14. The free quantum groups are as follows:
(1) Uy, is not coamenable at N > 2.

(2) OF is coamenable at N = 2, and not coamenable at N > 3.
(3) Sy is coamenable at N < 4, and not coamenable at N > 5.
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PRrOOF. The various non-coamenability assertions are all clear, due to various exam-
ples of non-coamenable group dual subgroups rca , coming from the theory in chapter
1. As for the amenability assertions, regarding O; and S, these come from Theorem 3.2
and Theorem 3.13, which show that the support of the spectral measure of y is:

supp(m) =[—2,2] , supp(m) =[0,4]

Thus the Kesten criterion from chapter 1, telling us that G C O}, is coamenable
precisely when N € supp(law(x)), applies in both cases, and gives the result. O

3c. Meander determinants

Let us discuss now the extension of Theorem 3.13, to all the quantum groups S}, with
N > 4. For this purpose we need an extension of the linear independence results from
Proposition 3.12. This is something non-trivial, and the first thought goes to:

SPECULATION 3.15. There should be a theory of deformed compact quantum groups,
alowing us to talk about OF with n € [2,00), having the same fusion rules as SUs,, and
therefore solving via partition shrinking our Sj; problems at any N > 4.

This speculation is legit, and in what concerns the first part, generalities, that theory
is indeed available, from the Woronowicz papers [98], [99]. Is it also possible to talk
about deformations of O}, in this setting, as explained in Wang’s paper [95], with the new
parameter n € [2, 00) being of course not the dimension of the fundamental representation,
but rather its “quantum dimension”. And with this understood, all the rest is quite
standard, and worked out in the quantum group literature. We refer to [4] for more
about this, but we will not follow this path, which is too complicated.

As a second speculation now, which is something complicated too, but is far more
conceptual, we have the idea, already mentioned before, of getting what we want via the
trace on the Temperley-Lieb algebra T'Ly (k) = span(NCy(k, k)). We will not follow this
path either, which is quite complicated too, but here is how this method works:

THEOREM 3.16. Consider the Temperley-Lieb algebra of index N > 4, defined as
TLy(k) = span(NCsy(k, k))

with product given by the rule () = N, when concatenating.

(1) We have a representation i : T Ly (k) — B((CN)®%), given by m — T.
(2) Tr(Ty) = N'ors(<m) where 1 —< 7 > is the closing operation.

(3) The linear form T =Troi:TLy(k) — C is a faithful positive trace.
(4) The representation i : TLyn(k) — B((CN)®*) is faithful.

In particular, the vectors {&x|m € NC(k)} C (CN)®* are linearly independent.
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Proor. All this is quite standard, but advanced, the idea being as follows:
(1) This is clear from the categorical properties of 7 — T.

(2) This follows indeed from the following computation:

) = ()

91 0)

= #{Zl,,ZkE{l,,N}‘ker(zllk) ZT(}
11 ...

Nloops(<7r>)

(3) The traciality of 7 is clear from definitions. Regarding now the faithfulness, this
is something well-known, and we refer here to Jones’ paper [59].

(4) This follows from (3) above, via a standard positivity argument. As for the last
assertion, this follows from (4), by fattening the partitions. O

We will be back to this later, when talking subfactors and planar algebras, with a closer
look into Jones’ paper [59]. In the meantime, however, Speculation 3.15 and Theorem
3.16 will not do, being too advanced, so we have to come up with something else, more
pedestrian. And this can only be the computation of the Gram determinant.

We already know, from chapter 2, that for the group Sy the formula of the corre-
sponding Gram matrix determinant, due to Lindstom [67], is as follows:
THEOREM 3.17. The determinant of the Gram matrix of Sy is given by

NI
det(GkN): H m

weP (k)
with the convention that in the case N < k we obtain 0.

Proor. This is something that we know from chapter 2, the idea being that Gy
decomposes as a product of an upper triangular and lower triangular matrix. U

Although we will not need this here, let us discuss as well, for the sake of complet-
ness, the case of the orthogonal group Oy. Here the combinatorics is that of the Young
diagrams. We denote by |.| the number of boxes, and we use quantity f*, which gives the
number of standard Young tableaux of shape . The result is then as follows:

THEOREM 3.18. The determinant of the Gram matriz of Oy s given by
det(GkN) = H fN(A)fM
I\|=k/2

where the quantities on the right are fn(A) = [ jea(N +25 —i—1).
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ProoF. This follows from the results of Zinn-Justin in [100]. Indeed, it is known
from there that the Gram matrix is diagonalizable, as follows:

Gin =Y [n(\)Pa

[Al=k/2

Here 1 = ) P,y is the standard partition of unity associated to the Young diagrams
having k/2 boxes, and the coefficients fy(A) are those in the statement. Now since we
have T'r(Py) = f?*, this gives the result. See [18], [100]. O

For the free orthogonal and symmetric groups, the results, by Di Francesco [49], are
substantially more complicated. Let us begin with some examples. We first have:

PROPOSITION 3.19. The first Gram matrices and determinants for O3, are

2
det (jjvv szv2> — N(N?—1)

N3 N? N? N2 N
N? N3 N N N?
det | N2> N N® N N?2|=N°N?-1)*N?*-2)
N2 N N N3 N?
N N? N2 N?2 N3
with the matrices being written by using the lexicographic order on NCy(2k).

PRrROOF. The formula at k = 2, where NCy(4) = {11, A}, is clear. At k = 3 however,
things are tricky. We have NC(3) = {||[,M|,m, |7, M1}, and the corresponding Gram
matrix and its determinant are, according to Theorem 3.17:

N3 N? N? N2 N
N> N> N N N
det [ N2 N N2 N N|=N(N-1D%N-2)
N> N N N? N
N N N N N

By using Proposition 3.11, the Gram determinant of NC5(6) is given by:

det(Gey) = — ><N10(N2—1)4(N2—2)><N21/N

N2y/N
= N°(N?-1D*}N*-2)

Thus, we have obtained the formula in the statement. Il

In general, such tricks won't work, because NC(k) is strictly smaller than P(k) at
k > 4. However, following Di Francesco [49], we have the following result:
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THEOREM 3.20. The determinant of the Gram matriz for OF; is given by

[k/2]
det(GkN) = H PT(N)dk/2*T
r=1

where P, are the Chebycheff polynomials, given by
=1, PA=X , Pu=XP -P,
and diy = fir — for+1, With fi, being the following numbers, depending on k,r € Z,

for = 2k \ 2k
e \k - kE—r—1
with the convention fy,. =0 for k ¢ 7.

Proor. This is something quite technical, obtained by using a decomposition as fol-
lows of the Gram matrix Gy, with the matrix Ty being lower triangular:

Gin = TinTin
Thus, a bit as in the proof of the Lindstom formula, we obtain the result, but the

problem lies however in the construction of Ty, which is non-trivial. See [49]. O

We refer to [18] for further details regarding the above result, including a short proof,
based on the bipartite planar algebra combinatorics developed by Jones in [62]. Let us
also mention that the Chebycheff polynomials have something to do with all this due to
the fact that these are the orthogonal polynomials for the Wigner law. See [18].

Moving ahead now, regarding Sy, we have here the following formula, which is quite
similar, obtained via shrinking, also from Di Francesco [49]:

THEOREM 3.21. The determinant of the Gram matriz for S¥; is given by
k

det(Gry) = (\/N)ak HPT(\/N)dkT

r=1

where P, are the Chebycheff polynomials, given by
PBR=1, P=X , P,2w=XP—P_,
and di, = fir — fror+1, with fy, being the following numbers, depending on k,r € Z,
2k 2k
Jor = (k—r) a (/{;—7’—1)
with the convention fi, =0 for k ¢ Z, and where ar, = 3 pq, (2|7| — k).

Proor. This follows indeed from Theorem 3.20, by using Proposition 3.11. U
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Getting back now to our quantum permutation group questions, by using the above
results we can produce a key technical ingredient, as follows:

PROPOSITION 3.22. The following are linearly independent, for any N > 4:
(1) The linear maps {T,r|7r € NC(k,1)}, with k,1 € 2N.
(2) The vectors {ﬁﬂ}w € NC(k)}, with k € N.
(3) The linear maps {Tx|m € NC(k,k)}, with k € N.

PROOF. The statement is identical to Proposition 3.12, with the assumption N = n?
lifted. As for the proof, this comes from the formula in Theorem 3.21. U

With this in hand, we have the following extension of Theorem 3.13:

THEOREM 3.23. The quantum groups Sy with N > 4 are as follows:

(1) The moments of the main character are the Catalan numbers:

/ Xk:Ck:
s

+
N
(2) The main character follows the Marchenko-Pastur law, x ~ .
(3) The fusion rules for irreducible representations are as for SOz, namely:

Tk @ T = Tp—g| + Tp—i|+1 + - - - + Tt
(4) We have dimry, = (¢** — ¢ %) /(¢ — 1), with q+ ¢ ' = N — 2.

Proor. This is identical to the proof of Theorem 3.13, by using this time the linear
independence result from Proposition 3.22 as technical ingredient. U

So long for representations of S3;. All the above might seem quite complicated, but
we repeat, up to some standard algebra, everything comes down to Proposition 3.22. And
with some solid modern mathematical knowledge, be that operator algebras a la Jones, or
deformed quantum groups a la Woronowicz, or meander determinants a la Di Francesco,
the result there is in fact trivial. You can check here [1], [15], both short papers.

In what concerns us, we will be back to the similarity between S}, and SO3 on several
occasions, with a number of further results on the subject, refining Theorem 3.23.

3d. Planar algebras

In the remainder of this chapter we keep developing some useful theory for Uy, O%, St
We will present among others a result from [3], refining the Tannakian duality for the
quantum permutation groups G C S;{,, stating that these quantum groups are in corre-
spondence with the subalgebras of Jones’ spin planar algebra P C Sy.
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In order to get started, we need a lot of preliminaries, the lineup being von Neumann
algebras, II; factors, subfactors, and finally planar algebras. We already met von Neumann
algebras, in chapter 1. The advanced general theory regarding them is as follows:

THEOREM 3.24. The von Neumann algebras A C B(H) are as follows:

(1) Any such algebra decomposes as A = fX Agdx, with X being the spectrum of the
center, Z(A) = L*(X), and with the fibers A, being factors, Z(A,) = C.

(2) The factors can be fully classified in terms of 11y factors, which are those factors
satisfying dim A = oo, and having a faithful trace tr : A — C.

(3) The 11y factors enjoy the “continuous dimension geometry” property, in the sense
that the traces of their projections can take any values in [0, 1].

(4) Among the 11; factors, the smallest one is the Murray-von Neumann hyperfinite
factor R, obtained as an inductive limit of matriz algebras.

ProoF. This is something heavy, the idea being as follows:

(1) This is von Neumann’s reduction theory theorem, which follows in finite dimensions
from A= M,,(C)& ... & M,, (C), and whose proof in general is quite technical.

(2) This comes from results of Murray-von Neumann and Connes, the idea being that
the other factors can be basically obtained via crossed product constructions.

(3) This is subtle functional analysis, with the rational traces being relatively easy to
obtain, and with the irrational ones coming from limiting arguments.

(4) Once again, heavy results, by Murray-von Neumann and Connes, the idea being
that any finite dimensional construction always leads to the same factor, called R. U

Let us discuss now subfactor theory, following Jones’ fundamental paper [59]. Jones
looked at the inclusions of II; factors A C B, called subfactors, which are quite natural
objects in physics. Given such an inclusion, we can talk about its index:

DEFINITION 3.25. The index of an inclusion of 11} factors A C B is the quantity
[B: Al =dimy B € [1, 0]
constructed by using the Murray-von Neumann continuous dimension theory.

In order to explain Jones’ result in [59], it is better to relabel our subfactor as Ay C A;.
We can construct the orthogonal projection e; : A1 — Ap, and set:

Ag =< Al, ey >

This remarkable procedure, called “basic construction”, can be iterated, and we obtain
in this way a whole tower of II; factors, as follows:

Ay Cey Ay Ce, Ao Ces A3 C......

Quite surprisingly, this construction leads to a link with the Temperley-Lieb algebra
TLy = span(NCy). The results can be summarized as follows:
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THEOREM 3.26. Let Ag C Ay be an inclusion of 11y factors.

(1) The sequence of projections ey, es, €3, ... € B(H) produces a representation of the
Temperley-Lieb algebra of index N = [Ay, Ao], as follows:

TLy C B(H)

(2) The index N = [Ay, Ao, which is a Murray-von Neumann continuous quantity
N € [1, 00|, must satisfy the following condition:

N € {4(3052 <§) ’n € N} U [4, o0

PROOF. This result, from [59], is something tricky, the idea being as follows:

(1) The idea here is that the functional analytic study of the basic construction leads to

the conclusion that the sequence of projections e, es, €3, ... € B(H) behaves algebrically,
when rescaled, exactly as the sequence of diagrams €1, e9,€3,... € T'Ly given by:
81:H ) 52:|% ) 6\3:||H )

But these diagrams generate T'Ly, and so we have an embedding T'Ly C B(H), where
H is the Hilbert space where our subfactor Ag C A; lives, as claimed.

(2) This is something quite surprising, which follows from (1), via some clever positivity
considerations, involving the Perron-Frobenius theorem. In fact, the subfactors having
index N € [1,4] can be classified by ADE diagrams, and the obstruction N = 4 cos*(Z)
comes from the fact that N must be the squared norm of such a graph. O

Quite remarkably, Theorem 3.26 is just the tip of the iceberg. One can prove indeed
that the planar algebra structure of T'Ly, taken in an intuitive sense, extends to a planar
algebra structure on the sequence of relative commutants P, = Aj N Ag. In order to
discuss this key result, due as well to Jones, from [61], and that we will need too, in
connection with our quantum group problems, let us start with:

DEFINITION 3.27. The planar algebras are defined as follows:

(1) A k-tangle, or k-box, is a rectangle in the plane, with 2k marked points on its
boundary, containing r small bozes, each having 2k; marked points, and with the
2k + > 2k; marked points being connected by noncrossing strings.

(2) A planar algebra is a sequence of finite dimensional vector spaces P = (Py),
together with linear maps Py, ® ... ® P, — Py, one for each k-box, such that the
gluing of boxes corresponds to the composition of linear maps.

As basic example of a planar algebra, we have the Temperley-Lieb algebra T L.
Indeed, putting T'Ly(k;) diagrams into the small r boxes of a k-box clearly produces a
T Ly (k) diagram, so we have indeed a planar algebra, of somewhat “trivial” type.

In general, the planar algebras are more complicated than this, and we will be back
later with some explicit examples. However, the idea is very simple, namely that “the
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elements of a planar algebra are not necessarily diagrams, but they behave like diagrams”.
In relation now with subfactors, the result, which extends Theorem 3.26 (1), and which
was found by Jones in [61], almost 20 years after [59], is as follows:

THEOREM 3.28. Given a subfactor Ay C Ay, the collection P = (Py) of linear spaces
P, = AN Ay
has a planar algebra structure, extending the planar algebra structure of T Ly .

PROOF. As a first observation, since e; : A} — Ay commutes with Ay we have e; € Pj.
By translation we obtain ey, ..., e;_1 € Py for any k, and so:

TLy C P

The point now is that the planar algebra structure of T'Ly, obtained by composing
diagrams, can be shown to extend into an abstract planar algebra structure of P. This is
something quite technical, and we will not get into details here. See [61]. u

Getting back to quantum groups, all this machinery is interesting for us. We will need
the construction of the tensor and spin planar algebras Ty, Sy. Let us start with:

DEFINITION 3.29. The tensor planar algebra Ty is the sequence of vector spaces
Py = My(C)®F
with the multilinear maps T, : Py, ® ... ® Py, — Py being given by the formula

Tﬂ-(eil ®®€ZT) = Z(Srr(ila"-air :j)ej
J

with the Kronecker symbols 0, being 1 if the indices fit, and being 0 otherwise.

In other words, we are using here a construction which is very similar to the construc-
tion m — T that we used for easy quantum groups. We put the indices of the basic
tensors on the marked points of the small boxes, in the obvious way, and the coefficients
of the output tensor are then given by Kronecker symbols, exactly as in the easy case.

The fact that we have indeed a planar algebra, in the sense that the gluing of tangles
corresponds to the composition of linear maps, as required by Definition 3.27, is something
elementary, in the same spirit as the verification of the functoriality properties of the
correspondence m — T}, discussed in chapter 2, and we refer here to Jones [61].

Let us discuss now a second planar algebra of the same type, which is important as
well for various reasons, namely the spin planar algebra Sy. This planar algebra appears
somehow as the “square root” of the tensor planar algebra 7Ty. Let us start with:
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DEFINITION 3.30. We write the standard basis of (CN)®* in 2 x k matriz form,
i1 i1 Gyl 03 ... ...
Cirap = i . .
ko U Up—1 .. oo oo Ll
by duplicating the indices, and then writing them clockwise, starting from top left.

Now with this convention in hand for the tensors, we can formulate the construction
of the spin planar algebra Sy, also from [61], as follows:

DEFINITION 3.31. The spin planar algebra Sy is the sequence of vector spaces

Pk —_ ((CN)®k
written as above, with the multiplinear maps T : Py, @ ... ® P, — Py being given by
Te(len ®...Qe€;,) = Zé B,y iyt g)eg

with the Kronecker symbols 0, being 1 if the mdzces fit, and being 0 otherwise.
Here are some illustrating examples for the spin planar algebra calculus:

(1) The identity 1; is the (k, k)-tangle having vertical strings only. The solutions of
1, (z,y) = 1 being the pairs of the form (x,z), this tangle 1; acts by the identity:

1, Juoee I\ _ (- Tk
Zl ’Lk 11 Zk

(2) The multiplication My, is the (k, k, k)-tangle having 2 input boxes, one on top of
the other, and vertical strings only. It acts in the following way:

Mk,((fl f’“)@(ﬂf ﬁ)):@m@m(ﬁl f’“)
1 k 1 k 1 k

(3) The inclusion I is the (k,k + 1)-tangle which looks like 1, but has one more
vertical string, at right of the input box. Given z, the solutions of d;, (z,y) = 1 are the
elements y obtained from z by adding to the right a vector of the form (!), and so:

Jl A Jioooo gk

(4) The expectation Uy is the (k + 1, k)-tangle which looks like 1, but has one more
string, connecting the extra 2 input points, both at right of the input box:

N Tk e _ o [0 o Tk
U (21 ’lk ’ik+1> o 6Zk+1]k+l <21 c. ’Lk>
(5) The Jones projection Ej is a (0, k + 2)-tangle, having no input box. There are
k vertical strings joining the first k upper points to the first k lower points, counting
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from left to right. The remaining upper 2 points are connected by a semicircle, and the
remaining lower 2 points are also connected by a semicircle. We have:

B S YR B
Ee(1) =2 (7;1 i l)
ijl
The elements e, = N1 Ej(1) are then projections, and define a representation of the
infinite Temperley-Lieb algebra of index N inside the inductive limit algebra Sy.

(6) The rotation Ry, is the (k, k)-tangle which looks like 15, but the first 2 input points
are connected to the last 2 output points, and the same happens at right:

m ||
Ry =| |
(ARRRY

The action of Ry on the standard basis is by rotation of the indices, as follows:
Ri(€irig..ir) = Cig.ipin

There are many other interesting examples of k-tangles, but in view of our present
purposes, we can actually stop here, due to the following fact:

THEOREM 3.32. The multiplications, inclusions, expectations, Jones projections and
rotations generate the set of all tangles, via the gluing operation.

ProoF. This is something well-known and elementary, obtained by “chopping” the
various planar tangles into small pieces, as in the above list. See [61]. O

Finally, in order for our discussion to be complete, we must talk as well about the
x-structure of the spin planar algebra. Once again this is constructed as in the easy
quantum group calculus, by turning upside-down the diagrams, as follows:

R T N A TR
i [T
Getting back now to quantum groups, following [3], we have the following result:

THEOREM 3.33. Given G C S5, consider the tensor powers of the associated coaction
map on C(X), where X = {1,..., N}, which are the folowing linear maps:

dF . O(XF) = O(XP) @ C(G)
eil...ik — Z e]l]k ® U’jlil tte u]klk

Jie-Jk
The fized point spaces of these coactions, which are by definition the spaces

P = {:c c C(X’“)‘CI)’“(:(;) —1® ;1:}

are given by P, = Fiz(u®*), and form a subalgebra of the spin planar algebra Sy .
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PROOF. Since the map ® is a coaction, its tensor powers ®* are coactions too, and at
the level of fixed point algebras we have the following formula:
Py, = Fiz(u®*)

In order to prove now the planar algebra assertion, we will use Theorem 3.32. Consider
the rotation Rj. Rotating, then applying ®*, and rotating backwards by R,;l is the same
as applying ®*, then rotating each k-fold product of coefficients of ®. Thus the elements
obtained by rotating, then applying ®*, or by applying ®*, then rotating, differ by a sum
of Dirac masses tensored with commutators in A = C(G):

O* Ry, (z) — (R @ id)®F () € C(X*) @ [A, A]

Now let [ 4 be the Haar functional of A, and consider the conditional expectation onto
the fixed point algebra P, which is given by the following formula:

br = (id@/A)CI)’“

Since [ 4 18 a trace, it vanishes on commutators. Thus R; commutes with ¢y:

OrRi = Ry

The commutation relation ¢, = T'¢; holds in fact for any (I, k)-tangle T. These
tangles are called annular, and the proof is by verification on generators of the annular
category. In particular we obtain, for any annular tangle 7'

o TP =Ty
We conclude from this that the annular category is contained in the suboperad P’ C P

of the planar operad consisting of tangles T satisfying the following condition, where
¢ = (¢r), and where i(.) is the number of input boxes:

¢T¢®i(T) — T¢®i(T)

On the other hand the multiplicativity of ®* gives M), € P’. Now since the planar
operad P is generated by multiplications and annular tangles, it follows that we have
P’ = P. Thus for any tangle T" the corresponding multilinear map between spaces P (X)
restricts to a multilinear map between spaces Pi.. In other words, the action of the planar
operad P restricts to P, and makes it a subalgebra of Sy, as claimed. O

As a second result now, also from [3], completing our study, we have:

THEOREM 3.34. We have a bijection between quantum permutation groups and subal-
gebras of the spin planar algebra,

(GCSH +— (QcSy)

given 1n one sense by the construction in Theorem 3.33, and in the other sense by a
suitable modification of Tannakian duality.
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PROOF. The idea is that this will follow by applying Tannakian duality to the annular
category over (). Let n, m be positive integers. To any element 7,.,, € (., We associate
a linear map L (Thim) @ Po(X) = P (X) in the following way:

|

| | | | Tn+m

Lom | Towm | : lan | = | |] |
!

That is, we consider the planar (n,n + m, m)-tangle having an small input n-box, a
big input n + m-box and an output m-box, with strings as on the picture of the right.
This defines a certain multilinear map, as follows:

Po(X)® Ppim(X) = Pp(X)

If we put the element T,,,, in the big input box, we obtain in this way a certain linear
map P,(X) — P, (X), that we call L,,,. With this convention, let us set:

Qnm = {an(Tn-l—m) . Pn(X) — Pm(X) Tn+m € Qn—i—m}

These spaces form a Tannakian category, so by [99] we obtain a Woronowicz algebra
(A, u), such that the following equalities hold, for any m, n:

Hom(u®™, u®") = Qun

We prove now that u is a magic unitary. We have Hom(1,u®?) = Qg = Q-, so the
unit of Q, must be a fixed vector of u®2. But u®? acts on the unit of Q5 as follows:

= (2 )

1

k k
= Z(l l>®ukiuli

ikl
- Z (l; ]?) ® (uu')y
Kl

From u®%(1) = 1®1 ve get that wu’ is the identity matrix. Together with the unitarity
of u, this gives the following formulae:
ut=ut =ut

Consider the Jones projection F; € Q3. After isotoping, Loi(E;) looks as follows:
|
|

N
U Ll I
(1) 51) = (552 = o
i)\
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In other words, the linear map M = Lo (E}) is the multiplication §; ® 0; — §;;0;:

;)0 )

In order to finish, consider the following element of C'(X) ® A:

(M ® id)u® ((; ;) ® 1) -y (z) B ® Uity

k
Since M € Qo1 = Hom(u®? u), this equals the following element of C'(X) ® A:

() k
( )<(J J) ) Z,;@’“ T
Thus we have wup;ur; = 0;jux; for any 4, j, k, which shows that v is a magic unitary.

Now if P is the planar algebra associated to u, we have Hom(1,v*") = P, = Q,, as
desired. As for the uniqueness, this is clear from the Peter-Weyl theory. g

All the above might seem a bit technical, but is worth learning, and for good reason,
because it is extremely powerful. As an example of immediate application, if you agree
with the bijection G <+ @ in Theorem 3.34, then G = Sy itself, which is the biggest
object on the left, must correspond to the smallest object on the right, namely ) = T'Ly.
Thus, more or less everything that we learned so far in this book is trivial.

Welcome to planar algebras. Try to master this technology. And once this understood,
get to know some analysis too, which comes after. But it will be among our main purposes
here to do so, getting you familiar with algebra, and with some analysis as well.

Back now to work, the results established above, regarding the subgroups G C Sy,
have several generalizations, to the subgroups G C O%; and G C Uy, as well as subfactor
versions, going beyond the combinatorial level. At the algebraic level, we have:

THEOREM 3.35. The following happen:

(1) The closed subgroups G C O%; produce planar algebras P C Ty, via the following
formula, and any subalgebra P C Ty appears in this way:

Py, = End(u®)
(2) The closed subgroups G C Uy, produce planar algebras P C Ty, via the following
formula, and any subalgebra P C Ty appears in this way:
Po=Endu®@u®u®...)

k terms

(3) In fact, the closed subgroups G C POY, ~ PUy are in correspondence with the
subalgebras P C Ty, with G — P being given by P, = Fiz(u®*).
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PROOF. There is a long story with this result, whose origins go back to papers of mine
written before the 1999 papers [1], [61], using Popa’s standard lattice formalism, instead
of the planar algebra one, and then to a number of papers written in the early 2000s,
proving results which are more general. For the whole story, and a modern treatment of
the subject, we refer to Tarrago-Wahl [89]. As in what regards the proof:

(1) This is similar to the proof of Theorem 3.33 and Theorem 3.34, ultimately coming
from Woronowicz’s Tannakian duality in [99]. Note however that the correspondence is
not bijective, because the spaces P, determine PG C PO}, but not G C O, itself.

(2) This is an extension of (1), and the same comments apply. With the extra comment
that the fact that the subgroups PG C PO}; produce the same planar algebras as the
subgroups PG C PUj; should not be surprising, due to PO}, = PU},.

(3) This is an extension of (2), and a further extension of (1), and is in fact the best
result on the subject, due to the fact that we have there a true, bijective correspondence.
As before, this ultimately comes from Woronowicz’s Tannakian duality in [99].

(4) As a final comment, you might say that, now that we have (3) as ultimate result on
the subject, why not saying a few words about the proof. In answer, (3) is in fact just the
tip of the iceberg, so we prefer to discuss this later, once we’ll see the whole iceberg. [J

Finally, in relation with subfactors, the result here is as follows:

THEOREM 3.36. The planar algebras coming the subgroups G C S3; appear from fived
point subfactors, of the following type,

A% c (CN ® A)°

and the planar algebras coming from the subgroups G C POJ; = PUY; appear as well from
fixed point subfactors, of the following type,

AS c (My(C) ® A)°
with the action G ~ A being assumed to be minimal, (A%) N A= C.

PROOF. Again, there is a long story with this result, and besides needing some expla-
nations, regarding the proof, all this is in need of some unification. We will be back to
this in chapter 4, and in the meantime we refer to [1], [89] and related papers. O

Finally, let us mention that an important question, which is still open, is that of
understanding whether the above subfactors can be taken to be hyperfinite, A ~ R.
This is related to the axiomatization of hyperfinite subfactors, another open question,
which is of central importance in von Neumann algebras. We will be back to this.
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3e. Exercises

Things have been quite technical in this chapter, and our exercises will be quite tech-
nical too. But before that, in relation with SUs,, SO3, we have:

EXERCISE 3.37. Learn more about SUs, SO3, namely Euler-Rodrigues, various proofs
for the Clebsch-Gordan rules, and ADE/McKay correspondence for subgroups too.

All this, and we insist, is very important. The more you know about SUs,, SO3, and
with such things being a pleasure to learn, the better your mathematics and physics will
be, no matter what mathematics and physics you are interested in.

EXERCISE 3.38. Prove that the quantum group OF appears as a twist of SUs,,
Of ~ SU,*
and deduce the Clebsch-Gordan fusion rules for OF by using this.

As a bonus exercise, you can try to understand as well the relation between O} and
SU; at N > 3, with the indication here that all this is related to two technical topics,
namely the “FRT deformation” procedure, and the “free symplectic groups”.

EXERCISE 3.39. Prove that the quantum group S, appears as a twist of SOs,
S} ~S0;*
and deduce the Clebsch-Gordan fusion rules for S by using this.

As before with the previous exercise, all this requires a good knowledge of the cocycle
twisting procedure, and basically the same comments as there apply.

EXERCISE 3.40. Establish, with full details, the linear independence of the vectors

{@r Te NC(k)}

using meander determinants, subfactor theory, and deformed quantum groups.

Here the first question, in relation with meander determinants, is that of fully under-
standing the proof of Di Francesco’s formula, following his paper, or one of the subsequent
other proofs. In relation with the subfactor approach, the question here is that of under-
standing, following Jones, the positivity of the Temperley-Lieb algebra trace. Finally, in
relation with quantum group deformations, check here Wang [95], and related papers.



CHAPTER 4

Twisted permutations

4a. Symmetry groups

We investigate here, following [1], [96] and subsequent papers, the quantum symmetry
groups S of the finite quantum spaces Z, generalizing the quantum group Sy, coming
from Z = {1,..., N}. Besides providing a useful extension of our results regarding Sy,
this will eventually explain the connection with SOs, in an elegant way. As a bonus, we
will obtain as well a conceptual result on the connection between Sy and Oj.

In order to get started, we must talk about finite quantum spaces. In view of the
general C*-algebra theory explained in chapter 1, we have the following definition:

DEFINITION 4.1. A finite quantum space Z is the abstract dual of a finite dimensional
C*-algebra B, according to the following formula:

C(Z)=B

The formal number of elements of such a space is |Z| = dim B. By decomposing the
algebra B, we have a formula of the following type:

CZ)=M,C)@...® M, (C)

Withn, = ... =ng = 1 we obtain in this way the space Z = {1, ..., k}. Also, when k =1
the equation is C(Z) = M,(C), and the solution will be denoted Z = M,,.

In order to talk now about the quantum symmetry group S, we must use universal
coactions. As in chapter 1 when defining S5, when dealing with universal coactions on
the space Z = {1,..., N}, we must endow our space Z with its counting measure:

DEFINITION 4.2. We endow each finite quantum space Z with its counting measure,
corresponding as the algebraic level to the integration functional

tr: C(Z) — B(I*(Z)) —» C
obtained by applying the reqular representation, and then the normalized matrix trace.

To be more precise, consider the algebra B = C(Z), which is by definition finite
dimensional. We can make act B on itself, by left multiplication:

7:B—L(B) , a— (b— ab)
81
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The target of m being a matrix algebra, £(B) ~ My(C) with N = dim B, we can
further compose with the normalized matrix trace, and we obtain tr:

tr:NTroW

As basic examples, for both Z = {1,..., N} and Z = My we obtain the usual trace.
In general, with C(Z) = M,,(C) & ... & M,, (C), the weights of tr are:

2
_M
2

i

C; =
Let us study now the quantum group actions G ~ Z. If we denote by pu,n the
multiplication and unit map of the algebra C'(Z), we have the following result:

PROPOSITION 4.3. Consider a linear map ® : C(Z) — C(Z) @ C(G), written as
CD(eZ) = Z €; ® Ujs
J

with {e;} being a linear space basis of C(Z), chosen orthonormal with respect to tr.

(1) @ is a linear space coaction <= wu is a corepresentation.
(2) @ is multiplicative <= p € Hom(u®? u).

(3) @ is unital <= n € Hom(1,u).

(4) © leaves invariant tr <= n € Hom(1,u*).

(5) If these conditions hold, ® is involutive <= w is unitary.

PROOF. This is similar to the proof for S}, from chapter 1, as follows:

(1) There are two axioms to be processed here, and we have indeed:

(id @A) = (PR id)D < Aluj) =Yt ®
k

(2) By using ®(e;) = u(e; ® 1) we have the following identities, which give the result:
D(ejer) =u(p ®id)(e; @ ep @ 1)
De)®(er) = (n @ id)u®(e; @ e, @ 1)
(3) From ®(e;) = u(e; ® 1) we obtain by linearity, as desired:

o(1) = u(l®1)
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(4) This follows from the following computation, by applying the involution:
(tr @id)®(e;) = tr(e)l <= > tr(ej)u; = tr(e;)l

J
J

L;

— (u'l);
= u'l=

—_

(5) Assuming that (1-4) are satisfied, and that ® is involutive, we have:

(W) = Y uju
!
= Ztr(e;el)u;ulk
jl

= (tr ®id) Z ejer @ wi
5l
= (tr ®id)(P(e;)* P(ex))
(tr @ id)®(efex,)
= tr(ejeg)l
= 4
Thus u*u = 1, and since we know from (1) that u is a corepresentation, it follows that u
is unitary. The proof of the converse is standard too, by using a similar computation. [J

Following now [1], [96], we have the following result, extending the basic theory of S},
from chapter 1 to the present finite quantum space setting:

THEOREM 4.4. Given a finite quantum space Z, there is a universal compact quantum
group S} acting on Z, and leaving the counting measure invariant. We have

C(S}) = C’(Uﬁ)/<,u € Hom(u®?* u),n € Fm(u)>

where N = |Z|, and where u,n are the multiplication and unit maps of the algebra C(Z).
For the classical space Z = {1,..., N} we have S}, = S¥.

PROOF. Here the first two assertions follow from Proposition 4.3, by using the stan-
dard fact that the complex conjugate of a corepresentation is a corepresentation too. As
for the last assertion, regarding Sy, this follows from the results in chapter 1. U

The above result is quite conceptual, and we will see some applications in a moment.
However, for many concrete questions, nothing beats multimatrix bases and indices. So,
following the original paper of Wang [96], let us discuss this. We first have:
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DEFINITION 4.5. Given a finite quantum space Z, we let {e;} be the standard basis of
B =C(Z), so that the multiplication, involution and unit of B are given by

eiej=¢ej , € =¢€ 12261'
i=i
where (i,7) — ij 1is the standard partially defined multiplication on the indices, with the
convention ey = 0, and where i — 1 1s the standard involution on the indices.

To be more precise, let {e/,} C B be the multimatrix basis. We set i = (abr), and
with this convention, the multiplication, coming from e’ e, = d,,0p.€.,, is given by:

(adr) ifb=c, r=p

(abr)(cdp) = {

0 otherwise
As for the involution, coming from (e,)* = e}, this is given by:
(a,b,r) = (b,a,7)
Finally, the unit formula comes from the following formula for the unit 1 € B:

=Y

ar
Regarding now the generalized quantum permutation groups S}, the construction in
Theorem 4.4 reformulates as follows, by using the above formalism:

PROPOSITION 4.6. Given a finite quantum space Z, with basis {e;} C C(Z) as above,
the algebra C(S}) is generated by variables u;; with the following relations,

E UipUjp = Up kl E UipUjy = Ujp

ij=p kl=p
Zuij = 5]'5 ) Zuij =05
i=i 7=j
Uiy = i
with the fundamental corepresentation being the matriz v = (u;;). We call a matriz

u = (u;;) satisfying the above relations “generalized magic”.

PROOF. We recall from Theorem 4.4 that the algebra C'(S}) appears as follows, where
N = |Z|, and where p,n are the multiplication and unit maps of C'(Z):

C(S}) = C’(Uﬁ)/<,u € Hom(u®?* u),n € Fm(u)>

But the relations p € Hom(u®?, u) and n € Fiz(u) produce the 1st and 4th relations
in the statement, then the biunitarity of u gives the 5th relation, and finally the 2nd and
3rd relations follow from the 1st and 4th relations, by using the antipode. U
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As an illustration, consider the case Z = {1,..., N}. Here the index multiplication is
it =1 and ij = () for ¢ # j, and the involution is 7 = 7. Thus, our relations are as follows,
corresponding to the standard magic conditions on a matrix v = (u;):

UikWip = Ok Uik Uik = 5ijuik
E Ui = 1 s E U5 = 1
i J
* R

As a second illustration now, which is something new, we have:

THEOREM 4.7. For the space Z = M,, coming via C(Z) = My(C), we have
S} =503
with the action SOz ~ My(C) being the standard one, coming from SUs — SOs.

PRroOF. This is something quite tricky, the idea being as follows:

(1) First, we have an action by conjugation SUy ~ My(C), and this action produces,
via the canonical quotient map SUs; — SO3, an action as follows:
SOg % MQ(C)

(2) Then, it is routine to check, by using computations like those from the proof of
SY = Sy at N < 3, from chapter 1, that any action G ~ My(C) must come from a
classical group. Thus the action SO3 ~ M,(C) is universal, as claimed. g

Let us develop now some basic theory for the quantum symmetry groups S}, and their
closed subgroups G C S. We have here the following key result:

THEOREM 4.8. The quantum groups S have the following properties:

(1) The associated Tannakian categories are T Ly, with N = |Z|.
(2) The main character follows the Marchenko-Pastur law w1, when |Z| > 4.
(3) The fusion rules for S}, with |Z| > 4 are the same as for SOs.

PROOF. This result is from [1], the idea being as follows:

(1) Let us pick our orthogonal basis {e;} as in Definition 4.5, so that we have e} = ¢,
for a certain involution ¢ — ¢ on the index set. With this convention, we have:

Ble) =) e;@u; = De)' =) e @u
J J
= () = Z e; ® uj,;

J

= P(e;) = Zej ® u;;

J
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Thus u}; = w5, so u ~ u. Now with this result in hand, the proof goes as for the

proof for S3;, from chapter 3. To be more precise, the result follows from the fact that
the multiplication and unit of any complex algebra, and in particular of the algebra C'(Z)
that we are interested in here, can be modeled by the following two diagrams:

m=|U| , u="n

Indeed, this is certainly true algebrically, and well-known, with as an illustration here,
the associativity formula m(m ® id) = (id ® m)m being checked as follows:

IS N NI
U v

As in what regards the *-structure, things here are fine too, because our choice for
the trace from Definition 4.2 leads to the following formula regarding the adjoints, corre-
sponding to mm* = N, and so to the basic Temperley-Lieb calculus rule () = N:

= N -id
We conclude that the Tannakian category associated to S3 is, as claimed:
C=<pu,n>=<myu>=<|U|,N>=TLy

(2) The proof here is exactly as for S, by using moments. To be more precise,
according to (1) these moments are the Catalan numbers, which are the moments of 7.

(3) Once again same proof as for Sy, by using the fact that the moments of x are the
Catalan numbers, which naturally leads to the Clebsch-Gordan rules. U

We can merge and reformulate our main results so far in the following way:

THEOREM 4.9. The quantun groups S}, have the following properties:
(1) For Z={1,...,N} we have S}, = S%.
(2) For the space Z = My we have S}, = PO}, = PU;.
(3) In particular, for the space Z = My we have S}, = SOj.
(4) The fusion rules for S} with |Z| > 4 are independent of Z.
(5) Thus, the fusion rules for S}, with |Z| > 4 are the same as for SOs.

ProoOF. This is basically a compact form of what has been said above, with a new
result added, and with some technicalities left aside, the idea being as follows:

(1) This is something that we know from Theorem 4.4.

(2) We recall from chapter 3 that we have PO}, = PU};. Consider the standard vector
space action of the free unitary group Uy, and its adjoint action:

Ui ~CY | PUY ~ My(C)
By universality of SAJZIN, we must have inclusions as follows:

PO} C PUS C Sy
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On the other hand, the main character of OF, with N > 2 being semicircular, the main
character of PO}, must be Marchenko-Pastur. Thus the inclusion PO} C S}; has the
property that it keeps fixed the law of main character, and by Peter-Weyl we conclude
that this inclusion must be an isomorphism, as desired.

(3) This is something that we know from Theorem 4.7, and that can be deduced
as well from (2), by using the formula POS = SOs, which is something elementary.
Alternatively, this follows without computations from (4) below, because the inclusion of
quantum groups SO3 C S]t[z has the property that it preserves the fusion rules.

(4) This is something that we know from Theorem 4.8.
(5) This follows from (3,4), as already pointed out in Theorem 4.8. O

As another application of our extended formalism, the Cayley theorem for the finite
quantum groups holds in the S} setting. We have indeed the following result:

THEOREM 4.10. Any finite quantum group G has a Cayley embedding, as follows:
GcCSE
However, there are finite quantum groups which are not quantum permutation groups.
PROOF. There are two statements here, the idea being as follows:

(1) We have an action G ~ G, which leaves invariant the Haar measure. Now since
the counting measure is both left and right invariant, it is the Haar measure. We conclude
that G ~ G leaves invariant the counting measure, and so G C Sg;, as claimed.

(2) Regarding the second assertion, this is something non-trivial, from [13], the sim-
plest counterexample being a certain quantum group G appearing as a split abelian ex-
tension associated to the factorization Sy = Z4Ss, having cardinality |G| = 24. O

Finally, some interesting phenomena appear in the “homogeneous” case, where our
quantum space is of the form Z = My x {1..., L}. Here we first have:

PROPOSITION 4.11. The classical symmetry group of Z = Mg x {1... L} is
SZ = PUK ! SL
with on the right a wreath product, equal by definition to PUE x Sp.

PrOOF. The fact that we have an inclusion PUg 1S}, C Sy is standard, and this follows
as well by taking the classical version of the inclusion PU 1, S; C S}, established below.
As for the fact that this inclusion PUk 1 S;, C Sz is an isomorphism, this can be proved
by picking an arbitrary element g € Sz, and decomposing it. Il

In order to discuss the quantum analogue of the above result, we will need a notion
of free wreath product. The basic theory here, from [30], is as follows:
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PROPOSITION 4.12. Given closed subgroups G C Uy, H C S, with fundamental
corepresentations u, v, the following construction produces a closed subgroup of Uy, :

C(G L H) = (C(G)™ x C(H))/ < [uf, va] = 0 >

In the case where G, H are classical, the classical version of G . H s the usual wreath
product GV H. Also, when G is a quantum permutation group, so is G 1, H.

Proor. Consider the matrix wj, ji = uz(»?)vab, over the quotient algebra in the state-
ment. It is routine to check that w is unitary, and in the case G C S}, our claim is that
this matrix is magic. Indeed, the entries are projections, and we have:

Zwia,jb = Zugj)vab = Zvabzug’l) 1
Jjb jb b ;
SIS S W

Thus, G 1, H is indeed a quantum permutation group, with fundamental corepresen-
tation w. Finally, the assertion regarding classical versions is clear too. See [30]. U
With the above notion in hand, we can now formulate the following result:
THEOREM 4.13. The quantum symmetry group of Z = Mk x {1..., L} satisfies:
PU ST C S%
Howewver, this inclusion is not an isomorphism at K, L > 2.
Proor. We have several assertions to be proved, the idea being as follows:

+, ot + : :
3 )
(1) The fact that we have PU, 1. S} C S5 is well-known and routine, by checking the
fact that the matrix w;jqm = uz(;.l’),dvab is a generalized magic unitary.

(2) The inclusion PU 1, S; C S5 is not an isomorphism, for instance by using [89],
along with the fact that m; X my # m; where 7; is the Marchenko-Pastur law. O

Finally, let us upgrade our previous planar algebra results from chapter 3, to the
present quantum symmetry group setting. The result here is as follows:

THEOREM 4.14. The closed subgroups G C Sj are in correspondence with the subal-
gebras P C Py of the planar algebra associated to Z, with G — P being given by:

Py, = Fiz(u®*)
Moreover, the associated subfactors can be chosen to be fized point subfactors,
A% C (C(2)® A)C
with the action G ~ A being assumed to be minimal, (A€) N A = C.
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PROOF. As before with our previous planar algebra results from chapter 3, there is a
long story with this result, the idea being as follows:

(1) In what regards the statement, the planar algebra P, associated to Z is a joint
generalization of the spin and tensor planar algebras Sy, 7Ty, which appear for Z =
{1,...,N} and Z = My, and whose construction is via standard tensor calculus.

(2) From a modern perspective, P, appears as the planar algebra associated to the
bipartite graph of the inclusion C C C(Z), by using Jones’ construction in [62]. We will
discuss this in detail in chapter 7, when dealing with more general such constructions.

(3) In what regards the proof, this can be obtained along the lines of the proofs for
Z={1,...,N}and Z = My, from chapter 3. For the full story here, and generalizations,
we refer to Tarrago-Wahl [89]. We will be back to this, in chapter 7 below. 4

4b. Twisting results

Let us go back to the case N = 4. According to our various considerations above,
the link between S;” and SO3 should come via some sort of twisting. To be more precise,
since the classical space {1,2,3,4} and the quantum space M both have 4 elements, in
the formal sense of Definition 4.1, we can expect to have a twisting result, as follows:

{1,2,3,4} ~ M,

It is possible to be a bit more precise here, by developing some abstract algebra for this,
but going ahead now towards what we are interested in, namely quantum permutation
groups, this suggests that we should have a twisting relationship, as follows:

SI = S+ 8&2 - 503

{1,234} ™
We will see that this is indeed the case, with the subject being quite interesting. In
order to discuss twisting, in general, let us start with the following construction:

PROPOSITION 4.15. There is a signature map € : P, — {—1,1}, given by

o(7) = (—1)°
where ¢ is the number of switches needed to make T noncrossing. In addition:

(1) For t € Sk, this is the usual signature.
(2) For T € P, we have (—1)°, where ¢ is the number of crossings.
(3) For 7 <1 € NCoypen, the signature is 1.

PrROOF. The fact that ¢ is indeed well-defined comes from the fact that the number
¢ in the statement is well-defined modulo 2, which is standard combinatorics. In order
to prove now the remaining assertion, observe that any partition 7 € P(k,l) can be put
in “standard form”, by ordering its blocks according to the appearence of the first leg in
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each block, counting clockwise from top left, and then by performing the switches as for
block 1 to be at left, then for block 2 to be at left, and so on:

With this convention, the proof of the remaining assertions is as follows:

(1) For 7 € S the standard form is 7/ = id, and the passage 7 — id comes by
composing with a number of transpositions, which gives the signature.

(2) For a general 7 € Py, the standard form is of type 7/ =|... |51, and the passage
7 — 7’ requires ¢ mod 2 switches, where ¢ is the number of crossings.

(3) Assuming that 7 € P, comes from m € NCqpe, by merging a certain number of
blocks, we can prove that the signature is 1 by proceeding by recurrence. U

With the above result in hand, we can now formulate:
DEFINITION 4.16. Associated to a partition m € Peyen(k, 1) is the linear map

Tﬂ(ei1®"'®eik): Z:(§71-(Z~1 Z.k)ej1®...®€jl

Jr o

where the signed Kronecker symbols
o € {—1,0,1}
are given by 6, = &(7) if T > 7, and 6, = 0 otherwise, with T = ker(}).

In other words, what we are doing here is to add signatures to the usual formula of
T.. Indeed, observe that the usual formula for T, can be written as folllows:

Tﬂ—<€i1®...®€ik): Z €j1®...®€jl
j:ker(§)27r

Now by inserting signs, coming from the signature map € : Py, — {£1}, we are led
to the following formula, which coincides with the one from Definition 4.16:

Tr(ei, @...0¢e,) = 25(7') Z e, ®...Qej
> j:ker(;l):r
We have the following key categorical result:
PROPOSITION 4.17. The assignement m — T is categorical, in the sense that
T @Ty=Tiwo) » Tuly=NTITo | TF =T

where c(m,0) are certain positive integers.
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PrROOF. We have to check three conditions, as follows:

1. Concatenation. It is enough to check the following formula:

o ker z'.l...i'p o ker ky...k, — o (ker ?1...i?, ky...k,
J1---Jq ll...ls J1---Jq ll...ls

Let us denote by 7,v the partitions on the left, so that the partition on the right is
of the form p < [rv]. Now by switching to the noncrossing form, 7 — 7" and v — v/, the
partition on the right transforms into p — p’ < [7'v/]. Now since [7'1/] is noncrossing, we
can use Proposition 4.15 (3), and we obtain the result.

2. Composition. Here we must establish the following formula:

il"'ip jl.]q _ lep
€ (ker (j1-~jq>) € (ker (k:lk,)) =¢ (ker (lﬁk‘r))

Let 7, v be the partitions on the left, so that the partition on the right is of the form
p < [7]. Our claim is that we can jointly switch 7,v to the noncrossing form. Indeed, we
can first switch as for ker(j; ... j,) to become noncrossing, and then switch the upper legs
of 7, and the lower legs of v, as for both these partitions to become noncrossing. Now
observe that when switching in this way to the noncrossing form, 7 — 7’ and v — /| the
partition on the right transforms into p — p’ < [7;]. Now since [,] is noncrossing, we can
apply Proposition 4.15 (3), and we obtain the result.

3. Involution. Here we must prove the following formula:
A UNEANPREI
"\J1---Jq T\t
But this is clear from the definition of §,, and we are done. U

As a conclusion, our construction 7 — T} has all the needed properties for producing
quantum groups, via Tannakian duality. So, we can now formulate:

THEOREM 4.18. Given a category of partitions D C P.,.p, the construction

Hom(u®* u®") = span (T,r

Te D(k,l))

produces via Tannakian duality a quantum group G]_Vl C Uy, for any N € N.

Proor. This follows indeed from the Tannakian results from chapter 2, exactly as in
the easy case, by using this time Proposition 4.17 as technical ingredient. U

We can unify the easy quantum groups, or at least the examples coming from categories
D C P,.yen, with the quantum groups constructed above, as follows:
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DEFINITION 4.19. A closed subgroup G C Uy, is called q-easy, or quizzy, with defor-
mation parameter ¢ = +1, when its tensor category appears as

Hom(u®* u®) = span (Tﬂ

7€ D(k,1))
for a certain category of partitions D C P.yen, where, for ¢ = —1,1:
T=T,T
The Schur-Weyl twist of G is the quizzy quantum group G=* C Uy, obtained via ¢ — —q.

In order to compute now the twists of the basic compact groups, we recall that the
Mobius function of any lattice, and in particular of P.,.,, is given by:

1 ito=m
pwlo,m) =9 = geren o) ifo<m
0 if o L

With this notation, we have the following result:

PROPOSITION 4.20. For any partition m € Py, we have the formula
T. = Z a1,
T

where ay =Y &(T)p(o,7), with p being the Mdbius function of Peyen.

PROOF. The linear combinations T'=>"__ _«,T, acts on tensors as follows:

T

T(611®®€Zk) = ZQTTT(GZ‘I ®®€’Lk>

<<

- Y ¥ goo e
T<m O=T jiker(})=0

- Z(Z aT> Y e ®...®e
o<m \o<7<m j:ker(";.):U

Thus, in order to have T, = > <. a; T, we must have, for any o <
g(o) = Z o,
o<r<m

But this problem can be solved by using the Mobius inversion formula, and we obtain
the numbers a, = > . _e(7)p(o, 7) in the statement. O

We can now twist Oy, and Uy as well. The result here is as follows:
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THEOREM 4.21. The twists of On,Uy are obtained by replacing the commutation
relations ab = ba between the coordinates u;; and their adjoints uj; with the relations
ab = tba
with anticommutation on rows and columns, and commutation otherwise.

PROOF. The basic crossing, ker (;JZ) with ¢ # j, comes from the transposition 7 € Sy,

so its signature is —1. As for its degenerated version ker (Z), this is noncrossing, so here
the signature is 1. We conclude that the linear map associated to the basic crossing is:

— —e;®e; fori#j
Ty(e;@ej) =4 77 i~
ej®e;  otherwise
We can proceed now as in the untwisted case, and since the intertwining relations
coming from Ty correspond to the relations defining Ox', Uyt, we obtain the result. [

Now going towards Sy, let us start with the following definition, from [8]:

DEFINITION 4.22. We let SO3' C O3 be the subgroup coming from the relation
Z Ut (1) U20(2) U0 (3) = 1
o€Ss3
called twisted determinant one condition.
Normally, we should prove here that C'(SO;"') is indeed a Woronowicz algebra. This

is of course possible, by doing some computations, but we will not need to do these
computations, because this follows from the following result, also from [8]:

THEOREM 4.23. We have an isomorphism of compact quantum groups
S5 =80;*
given by the Fourier transform over the Klein group K = Zo X Zs.

PrOOF. Consider the following matrix, coming from the action of SO; ' on C*:

10
+ _
=)
We apply to this matrix the Fourier transform over the Klein group K = Zy X Zs:

1 1 1 1 10 0 0 1 1 1 1
1 1 -1 -1 1 0 U1 U2 U3 1 -1 -1 1
Z 1 -1 1 —1 0 Ug1 U222 U923 1 -1 1 -1

1 1 -1 -1 0 U3z1 U3z Uss 1 1 -1 -1

v =

This matrix is then magic, and vice versa, so the Fourier transform over K converts
the relations in Definition 4.22 into the magic relations. But this gives the result. U
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There are many more things that can be said here, and we have:

THEOREM 4.24. The quantum group S; = SO3* has the following properties:

(1) It appears as a cocycle twist of SO3.
(2) Its fusion rules are the same as for SOs3.
(3) Its subgroups are basically twists of the subgroups of SOs.

PROOF. These are more advanced results, from [8], the idea being as follows:

(1) This follows by suitably reformulating the definition of SO3 ' given above in purely
algebraic terms, using cocycles, and for details here, we refer to [8]. In what concerns us,
we will actually discuss a generalization of this, right next, following [12].

(2) This is something that we know well, via numerous proofs, and we can add to our
trophy list one more proof, coming from (1), via standard cocycle twisting theory.

(3) The idea here is that the closed subgroups G C SOj are subject to a well-known
ADE/McKay classification result, and the subgroups of SO; ! are basically twists of these,
G~' C SO3'. We will discuss this, following [8], in chapter 10 below. O

4c. Cocycle twisting

An interesting extension of the S = SO;*' result comes by looking at the general
case N = n?, with n € N. We will prove that we have a twisting result, as follows:

PO} = (S})°
In order to explain this material, from [12], which is quite technical, requiring good

algebraic knowledge, let us begin with some generalities. We first have:

PROPOSITION 4.25. Given a finite group G, the algebra C(S;I) s 1somorphic to the
abstract algebra presented by generators xg4y with g, h € G, with the following relations:

Tig = Tg1 = 619 y  Lsgh = E Tgp—1 gTth , Lghs — § Tgt—1Thts
teG teG

The comultiplication, counit and antipode are given by the formulae

A(Igh) = ngs K Tsp 5(5Egh) = O0gh S(fL‘gh) = Tp-14-1
seG

on the standard generators xgp.

Proor. This follows indeed from a direct verification, based either on Theorem 4.4,
or on its equivalent formulation from Proposition 4.6. See [12]. O

Let us discuss now the twisted version of the above result. Consider a 2-cocycle on G,
which is by definition a map o : G x G — C* satisfying:

Ogh,sOgh = OghsOhs 5 Ogl = 019 = 1
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Given such a cocycle, we can construct the associated twisted group algebra C' (@0),
as being the vector space C(G) = C*(G), with product egep, = ogneq. We have:

PROPOSITION 4.26. The algebra C’(SJr ) is isomorphic to the abstract algebra presented
by generators xg, with g,h € G, with the relations Tig = Ty = 014 and:

OghTs,gh = E Ost—1tLst=1 gLth o-g_h Tgh,s = E 0;17tsxgt*1xh,ts
teG teG
The comultiplication, counit and antipode are given by the formulae
xgh E Lgs & Tsp E(xgh) = Ogh S(Igh) = Op— 1hg 1 Zl'h lg
seG
on the standard generators xgp,.

PROOF. Once again, this follows from a direct verification, explained in [12]. O

In what follows, we will prove that the quantum groups S+ and Sg are related by a
cocycle twisting operation. Let A be a Hopf algebra. We recall that a left 2- cocycle is a

convolution invertible linear map o : A ® A — C satisfying:
Oz191Ozoya,z = Oyrz210my020 5 Oxl = Olg = 6(:L‘)

Note that o is a left 2-cocycle if and only if !, the convolution inverse of o, is a
right 2-cocycle, in the sense that we have:

-1 R | —1 -1 -1
Ot1y1,2%2192 = 241219220+ 21 = O1z = e(z)

Given a left 2-cocycle o on A, one can form the 2-cocycle twist A7 as follows. As a
coalgebra, A = A, and an element x € A, when considered in A7, is denoted [z]. The
product in A7 is then defined, in Sweedler notation, by:

= Z Ul’lyl 0-;313/3 [xzyz]
We can now state and prove a main theorem from [12], as follows:
THEOREM 4.27. If G is a finite group and o is a 2-cocycle on G, the Hopf algebras
+ +
are 2-cocycle twists of each other, in the above sense.
PROOF. In order to prove this result, we use the following Hopf algebra map:
T:C(SH) = C(G) , wgn — dgne

Our 2-cocycle 0 : G x G — C* can be extended by linearity into a linear map as
follows, which is a left and right 2-cocycle in the above sense:

o:C(GQ)®C(G) = C
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Consider now the following composition:
a=o(r®n): C(SL)®C(SL) = C(G)@C(G) = C

Then « is a left and right 2-cocycle, because it is induced by a cocycle on a group
algebra, and so is its convolution inverse a~!. Thus we can construct the twisted algebra
C (Sg)“il, and inside this algebra we have the following computation:

[gn)[trs) = o (2, 20 )t (T, ) [T gnTrs] = 0, Ons[Tgnes]

By using this, we obtain the following formula:

Z Ust—l,t[mst—l,g][xth] = Z Ust_l,to-;1—17tO-Qh[:Cst_l,gxth] = Ugh[xs,gh]
teG@ teG

Similarly, we have the following formula:

> ok ltgaloned = ol e

teG

We deduce from this that there exists a Hopf algebra map, as follows:
a1
D C(S;IU) — C’(Sg) . Tgh = [Tgn)

This map is clearly surjective, and is injective as well, by a standard fusion semiring
argument, because both Hopf algebras have the same fusion semiring. U

Summarizing, we have proved our main twisting result. Our purpose in what follows
will be that of working out versions and particular cases of it. We first have:

PROPOSITION 4.28. If G is a finite group and o is a 2-cocycle on G, then

D(Tginy - Tgpnn) = U1,y Gm) Ry BTy - Ty,
with the coefficients on the right being given by the formula

m—1
Q(gh e 7gm) = H O91...9%:9k+1
k=1

is a coalgebra isomorphism C’(S;,I ) — C’(S;I), commuting with the Haar integrals.

Proor. This is indeed just a technical reformulation of Theorem 4.27. U

Let us discuss now some concrete applications of the general results established above.
Consider the group G = Z2, let w = ¢*/™ and consider the following cocycle:

c:GxG—=C* , U(ij)(kl):wjk

In order to understand what is the formula that we obtain, we must do some compu-
tations. Let E;; with i, j € Z, be the standard basis of M, (C). We first have:
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PROPOSITION 4.29. The linear map given by

Z
¥(eq. ) E W B gy

defines an isomorphism of algebras 1) : C(@U) ~ M,(C).

PRrROOF. Consider indeed the following linear map:

E:w k,j—i)

It is routine to check that both ), are morphlsms of algebras, and that these maps
are inverse to each other. In particular, 1 is an isomorphism of algebras, as stated. [

Next in line, we have the following result:

PropPOSITION 4.30. The algebra map gifuen by

ai—bj
uzjukl E w JiCak ),(b,1—7)
ab 0

defines a Hopf algebra isomorphism o : C’(S]T/[n) ~ C(Sga).
PRrROOF. Consider the universal coactions on the two algebras in the statement:
a:M,(C) — M, (C)®C(S;.)
B:C(G,) — C(G,)@C(S])
In terms of the standard bases, these coactions are given by:

a(Ey) = Z Eiy @ upiwg;
il

Bleus) = Ze(k,l) @ T (k,0),(i.5)

kl

We use now the identification C (GU) ~ M, (C) from Proposition 4.29. This identifi-
cation produces a coaction map, as follows:

v+ My(€) = M,(C) ® C(S )

Now observe that this map is given by the following formula:

1 ar—i
ab kr

By comparing with the formula of «, we obtain the isomorphism in the statement. [J

We will need one more result of this type, as follows:
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PRrOPOSITION 4.31. The algebra map given by
1 o
Pt ) = D Wk k)
klrs
defines a Hopf algebra isomorphism p : C’(Sg) ~ C(S).
PrRoOOF. We have a Fourier transform isomorphism, as follows:
C(G) ~ C(G)
Thus the algebras in the statement are indeed isomorphic. U
As a conclusion to all this, we have the following result, from [12]:

THEOREM 4.32. Let n > 2 and w = e2™/™. Then

n—1

1 —a(k—1 —J
O(ugjup) = n Z w etk j)pia,jb
ab=0

defines a coalgebra isomorphism C(PO}) — C(ST,) commuting with the Haar integrals.

ProoF. We know from Theorem 4.9 that we have identifications as follows, where the
projective version of (A, u) is the pair (PA,v), with PA =< v;; > and v =u ® @

POr = PU' = S;\}n
With this in hand, the result follows from Theorem 4.27 and Proposition 4.28, by

combining them with the various isomorphisms established above. U

Summarizing, the twisting formula S = SOz' ultimately comes from something of
type Xy o~ M, where Xy = {1,2,3,4} and My = Spec(M5(C)), and at N > 5 there are
some extensions of this, and notably when N = n? with n > 3. For more on all this,
advanced algebraic aspects of Sy, we refer to [8], [12], [22], [38].

4d. Hypergeometric laws

Still following [12], let us discuss now some probabilistic consequences of the above.
We first have the remarkable result, having no classical counterpart:

THEOREM 4.33. The following families of variables have the same joint law,
(1) {u;} € 10(0;5),
(2) {Xij = 3 X apPiage} € C(S2),
where w = (u;;) and p = (piajp) are the corresponding fundamental corepresentations.
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PRrROOF. This follows from Theorem 4.32, but we can recover this as well directly, by
using the Weingarten formula for our two quantum groups, and the shrinking operation
for partitions m — #’. Indeed, we have the following moment formulae:

/o+ u?jk = Z Wopn(, 0)

m,0€NC2(2k)
kE _ 7' |+|o’ |-k ot
/+Xl.j_ E plm el Win2 (', 0")
52 m,0€NC2(2k)

According to the fattening/shrinking results in chapter 3 the summands coincide, and
so the moments are equal, as desired. The proof for joint moments is similar. Il

In what follows we will be interested in single variables. We have here:
DEFINITION 4.34. The noncommutative random variable
(n,m, N) Z Zuw e C( S+
i=1 j=1

is called free hypergeometric, of parameters (n,m,N).

The terminology comes from the fact that the variable X'(n, m, N), defined as above,
but over the algebra C'(Sy), follows a hypergeometric law of parameters (n,m, N). Fol-
lowing [12], here is an exploration of the basic properties of these laws:

THEOREM 4.35. The free hypergeometm’c laws have the following properties:
(1) Let n,m, N — oo, with 57+ —t € (0,00). Then the law of
X(n,m,N)

converges to Marchenko-Pastur law ;.
(2) Let n,m, N — oo, with 3z — v € (0,1) and 5 — 0. Then the law of

S(n,m,N) = (X (n,m,N) —mv)/y/mv(l —v)
converges to the semicircle law ;.
Proor. This is standard, by using the Weingarten formula, as follows:
(1) From the Weingarten formula, we have:

X(n,m,N)* = Z Wiy (7, o) nlmm/e!

+
Sy m,0eNC (k)

The point now is that we have the following estimate:

N—|7l'| + O(N_lﬂ‘_l) lf m™=0
WkN(7T7 U) - {O(N|WVU|7T|U|) if © 7é g
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It follows that we have the following estimate, which gives the result:
tl if r =0
Wi (. o)™l —
(T, o)n"m 0 ifrn#o
(2) We need to show that the free cumulants satisfy:
1 ifp=2
RO[S(n,m, N). ..., S(,m, N) =9 07
0 ifp#2

The case p = 1 is trivial, so suppose p > 2. We have:
kP [S(n,m,N),...,S(n,m,N)| = (mv(l — )PP [X(n,m,N),..., X(n,m,N)
On the other hand, from the Weingarten formula, we have:

kP [X (n,m,N),..., X (n,m,N)

- Z up(w,lp)H Z Wxew) (T, ov)nl™Imlov

weNC(p) Vew my,oy eNC(V)
= Y w6 ov) + Ol
weNC(p) Vew ry,oyeNC(V)
= Y (Nl (o) + 0N almle N (w, 1)
m,0eNC(p) weNC(p)
<o o<w

We use now the following standard identity:

1 ifo=1
2 mplwly)= {o o1,
weNC(p) p
o<w
This gives the following formula for the cumulants:
KO X (o, V), X nm, N) =m0 3 (N, 1,) + O(N )l
TeNC(p)

It follows that for p > 3 we have, as desired:
kP [S(n,m,N),...,S(n,m,N)] =0

As for the remaining case p = 2, here we have:
1

kP[S(n,m,N),S(n,m,N)] — —— Z Vg (7, 15)
v(1-v) rENC(2)
1 9y
= m(y —v)=1

Thus, we are led to the conclusion in the statement.



4D. HYPERGEOMETRIC LAWS 101

Let us discuss as well some similar computations for the free hyperspherical laws,
which are quite interesting. To start with, we have the following definition:

DEFINITION 4.36. The free real sphere is the quantum algebraic manifold given by:

:L‘Z-:x;‘,g x?zl)
i

We endow this sphere with the uniform measure coming from the action Oy ~ S]fgfjrl.

C(Sﬂgll) =C" (l‘l,...,ZEN

Here, as usual in the present book, the word “quantum” refers to the general framework
of Gelfand duality. In the case of Sﬂg 11, however, things are much more concrete, because
in analogy with what happens in the classical case, we have an embedding of algebras as
follows, after GNS construction with respect to the Haar functional:

C(Sﬂg;l) cCOy) , xi=uy

Thus, the integration questions over S]{{ ;1 correspond to integration questions over
O}, and we have the following result, that we basically know from chapter 2:

THEOREM 4.37. For the free sphere S]fg,jrl, the rescaled coordinates

Yi = VN,
become semicircular and free, in the N — oo limit.

PROOF. By using the above identification z; = wuy;, the Weingarten formula for O;Q
gives a Weingarten formula for Sﬂg :Ll, and together with the standard fact that the Gram
matrix, and hence the Weingarten matrix too, is asymptotically diagonal, this gives:

/s]{g xil...xikdx:]\f_kﬂ Z )5a(i1,...,ik)

-1
-+ ceNCsy(k

With this formula in hand, we can compute the asymptotic moments of each coordinate
x;. Indeed, by setting 7; = ... = 1 = ¢, all Kronecker symbols are 1, and we obtain:

/ z¥dx ~ N7F2|NCy (k)|
Se,

—1
T+

Thus the rescaled coordinates y; = v Nx; become semicircular in the N — oo limit, as
claimed. As for the asymptotic freeness result, this follows as well from the above general
joint moment estimate, via standard free probability theory. See [4]. 4

The problem now, which is highly non-trivial, is that of computing the moments of
the coordinates of the free sphere at fixed values of N € N. The answer here, from [17],
based on advanced quantum group and calculus techniques, is as follows:
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THEOREM 4.38. The moments of the free hyperspherical law are given by
I+1

1 q+1 1 20+ 2 r
21 r
do = . . -1 .
/SN—lxl v (N+1) g—1 l—i—lTZ( ) (Z+T+1>1+qr

=—[-1

where q € [—1,0) is such that ¢+ ¢ ' = —N.
ProoOF. This is something quite technical, as follows:
(1) To any F € GLy(R) satisfying F? = 1 we associate the following algebra:
C(Of)=cC* ((uij)i,jzl,,,,7N‘u = FuF = unitary)
Observe that we have O}“N = Oj(,. In general, the above algebra satisfies Woronowicz’s
generalized axioms in [98], which do not include the strong antipode axiom S? = id.

(2) At N = 2, up to a trivial equivalence relation on the matrices F', and on the
quantum groups O}, we can assume that F' is as follows, with ¢ € [—1,0):

o=l )
1//—¢ 0
Our claim is that for this matrix F' we have an identification O}, = SUJ. Indeed, the
relations v = F'uF tell us that v must be of the following form:

()
Y «

Thus C(O}) is the universal algebra generated by two elements «, v, with the relations
making the above matrix u unitary. But these unitarity conditions are as follows:

ay=qya , oy =qya , ¥ =7y
aratyy=1, ad+¢yy =1

We recognize here the relations in [98] defining the algebra C'(SUJ), and it follows
that we have an isomorphism of Hopf C*-algebras, as follows:

C(OF) = C(SU3)

(3) Now back to the general case, let us try to understand the integration over O}..

Given a noncrossing pairing 7 € NCy(2k) and an index i = (i1, ...,i2), we set:
F/-
671’ (Z) = Hﬂslisr
sem

Here the product is over all strings s = {s; ~ s,.} of 7. Our claim is that the following
family of vectors, with m € NCy(2k), spans the space of fixed vectors of u®2:

fﬂ- = de(z)e“ R...Q em
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Indeed, having & fixed by u®? is equivalent to assuming that u = F@F is unitary. By
using now the above vectors, we obtain the following Weingarten formula:

/O it = 900700 () W, 0)

F s

(4) With these preliminaries in hand, let us start the computation. Let ¢ € [—1,0) be
such that ¢ + ¢~' = —N. Our claim is that we have the following formula:

/Ofv@(\/mwj):/ ola+a* +v—q7)

SuUd
Indeed, the moments of the variable on the left are given by:

/+ U?jk = ZWkN(T(’,O')
Oy o

On the other hand, the moments of the variable on the right, which in terms of the
fundamental corepresentation v = (v;;) is given by w = 3, v;;, are given by:

[ =3 S @5 () Wi (o)
SUS ij o
We deduce that w/+/N + 2 has the same moments as w;;, which proves our claim.

(5) In order to do now the computation over SUJ, we can use a matrix model due to
Woronowicz [98], where the standard generators «, are mapped as follows:

Wu(Oé)ek =+v1- q*ep_1 Wu(V)ek = qué’k
Here v € T is a parameter, and (e,) is the standard basis of [?(N). The point with

this representation is that it allows the computation of the Haar functional. Indeed, if D
is the diagonal operator given by D(e;) = ¢**ey, then the formula is as follows:

/Sng — (- /Ttr(Dﬂu(a:‘))2i?u

(6) Thus, the law of the variable that we are interested in is of the following form:
| plarasr—m) =) [ (Do)
SUg T 2miu
To be more precise, this formula holds indeed, with:

M(ex) = €41+ qk(u - qufl)ek + (1 - qzk)ekfl

The point now is that the integral on the right can be computed, by using advanced
calculus methods, and this gives the result. We refer here to [17]. O

For more regarding the above, including open problems, we refer to [12], [17].
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4e. Exercises

Things have been quite technical in this chapter, especially towards the end, and our
exercises here will focus on the first part, which is more elementary. First, we have:

EXERCISE 4.39. Write down a complete, elementary proof of

S;\}Q = S0;
and then unify this with the other such result that we have, namely Sq = Ss.

This is something quite tricky, the key word here being “elementary”. Indeed, as we
have seen in the above, all this can be understood via representation theory.

EXERCISE 4.40. Come up with explicit constructions for the subgroups of

S; =850;"
and explain what the associated ADE diagrams should be.

This is again an instructive exercise, potentially leading you into a lot of interesting
mathematics. You will have to learn here first, as a preliminary exercise, more about
SU,, SO5 and their subgroups, with the theory here going under different names, with
the keywords being “ADE” and “McKay”. Then, get into the quantum group case, and

with a look into subfactors too, where there are many interesting things to be learned. In
what concerns us, we will be back to this, but only later in this book.

EXERCISE 4.41. Perform a study of the group dual subgroups
Ics;
in the homogeneous space case, where Z = My x {1,..., L}.

We will be back to such subgroup questions later on, when analyzing the quantum
subgroups G C S coming from the finite quantum graphs with vertex set Z.

EXERCISE 4.42. Meditate about the lack of relationship between Sy, Oy, as opposed
to the relationship between SY;, O3, explained above. Would you consider, in view of this,
that the free world is simpler than the classical one?

This looks more like a philosophy exercise, but philosophy is important too. You need
good motivations for staying up late doing math computations, and personally, my belief
that the answer to the above question is “yes” has always motivated me.



Part 11

Quantum reflections



I'm gonna make me a good sharp aze
Shining steel tempered in the fire
I’ll chop you down like an old dead tree
Dirty old town, dirty old town



CHAPTER 5
Finite graphs

5a. Finite graphs

In the classical case, many interesting permutation groups G C Sy appear as sym-
metry groups G(X) of the graphs X having N vertices. In analogy with this, many
interesting examples of quantum permutation groups G C S;{, appear as particular cases
of the following general construction from [3], involving finite graphs:

PROPOSITION 5.1. Given a finite graph X, with adjacency matriz d € My(0,1), the
following construction produces a quantum permutation group,

C(GH(X)) = O(SF) / <du - ud>
whose classical version G(X) is the usual automorphism group of X.

PRrROOF. The fact that we have a quantum group comes from the fact that du = ud
reformulates as d € End(u), which makes it clear that we are dividing by a Hopf ideal.
Regarding the second assertion, we must establish here the following equality:

C(G(X)) = C(Sy) / <du - ud>

For this purpose, recall that we have wu;; (a) = 0q(j)i- We therefore obtain:

du z] Z dzkuk] Z dzk(s Ve — zcr(j
Ud ’L_] Zuzk dk] 25 k)zdk] = 0 —1(4)5

Thus du = ud reformulates as dij = dy(i)o(j); Wthh gives the result. O
Let us work out some basic examples. We have the following result:

PROPOSITION 5.2. The construction X — G*(X) has the following properties:

) For the N-point graph, having no edges at all, we obtain Sy.
2) For the N-simplex, having edges everywhere, we obtain as well Sy
3) We have GT(X) = GT(X°), where X€ is the complementary graph.
4) For a disconnected union, we have GT(X)*GH(Y) C GH(X UY).
5) For the square, we obtain a non-classical, proper subgroup of Sy .

(1
(
(
(
(
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PRroOOF. All these results are elementary, the proofs being as follows:
(1) This follows from definitions, because here we have d = 0.

(2) Here d = T — 1, where I is the all-one matrix, and the magic condition gives
ul = Tu = NI. We conclude that du = ud is automatic, and so G*(X) = Sj.
(3) The adjacency matrices of X, X¢ being related by the following formula:

By using now the above formula ul = u = NI, we conclude that dxu = udyx is
equivalent to dycu = udxe. Thus, we obtain, as claimed, GT(X) = G*(X°).

(4) The adjacency matrix of a disconnected union is given by:
dxuy = diag(dx, dy)

Now let w = diag(u,v) be the fundamental corepresentation of G*(X) % G*(Y). Then
dxu = udx and dyv = vdy, and we obtain, as desired, dx yw = wdx y.

(5) We know from (3) that we have G () = G*(| |). We know as well from (4) that
we have Zy % Zy C G*(] |). It follows that G*(0) is non-classical. Finally, the inclusion
GT(O) c Sy is indeed proper, because S; C S does not act on the square. O

In order to further advance, and to explicitely compute various quantum automor-
phism groups, we can use the spectral decomposition of d, as follows:

THEOREM 5.3. A closed subgroup G C S¥ acts on a graph X precisely when
Pou=uP, VA eR
where d =), X+ Py is the spectral decomposition of the adjacency matriz of X.

PROOF. Since d € My(0,1) is a symmetric matrix, we can consider indeed its spectral
decomposition, d = >, X - Py, and we have the following formula:

< d >= span {P,\’/\ € R}
Thus d € End(u) when P, € End(u) for all A € R, which gives the result. O
In order to exploit Theorem 5.3, we will often combine it with the following fact:
PROPOSITION 5.4. Given a closed subgroup G C Sy;, with associated coaction

o:CV - CVRCG) , e Y e Duy
J

and a linear subspace V.C CV, the following are equivalent:

(1) The magic matriz u = (u;;) commutes with Py .
(2) V is invariant, in the sense that (V) C V ® C(G).
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PROOF. Let P = Py. For any i € {1,..., N} we have the following formula:

(ID(P(el)) = (Z pk16k> = ZPkiej & Ujk = Z €j & (UP)JZ
k gk J
On the other hand the linear map (P ® id)® is given by a similar formula:
(P®id)(P(e:) = > Pler) @upi = ¥ Pire; @upi = Y ¢; @ (Pu)ji
k Jk J
Thus uP = Pu is equivalent to P = (P ® id)®, and the conclusion follows. U
As an application of the above results, we have the following computation:

THEOREM 5.5. The quantum automorphism group of the N-cycle is, at N # 4:
GT(X) =Dy
However, at N = 4 we have Dy C G (X) C S, with proper inclusions.

PROOF. We know from Proposition 5.2, and from Sy = S¥ at N < 3, that the various
assertions hold indeed at N < 4. So, assume N > 5. Given a N-th root of unity, w" =1,
the vector £ = (w') is an eigenvector of d, with eigenvalue as follows:

A=w+wV?

2mi/N it follows that the are eigenvectors of d are:

17f7f2""7fN_1
More precisely, the invariant subspaces of d are as follows, with the last subspace
having dimension 1 or 2 depending on the parity of N:

Cl,CfecCfN -t CcfroCsN=2 ...
Assuming G C G*(X), consider the coaction ® : CN¥ — CV @ C(G), and write:
d(fl=f@a+ N Tab

By taking the square of this equality we obtain:

() =lod+ 200 +1® (ab+ ba)
It follows that ab = —ba, and that ®(f?) is given by the following formula:

O(f2) = fPoa+ [N @b
By multiplying this with ®(f) we obtain the following formula:
(Y =red+ NP+ N ®a?+ f @ bd®

Now since N > 5 implies that 1, N — 1 are different from 3, N — 3, we must have
ab? = ba* = 0. By using this and ab = —ba, we obtain by recurrence on k that:

q)(fk) — fk®ak+fok®bk

Now by taking w = e
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In particular at £ = N — 1 we obtain the following formula:
@(fN—l) — fN—l ®CZN_1 + f ® bN—l
On the other hand we have f* = f¥~1 so by applying * to ®(f) we get:
@(fN—l) — fN—l ®a* +f®b*
Thus a* = a™~! and b* = b¥~!. Together with ab? = 0 this gives:
(ab)(ab)* = abb*a* = ab™a™¥ 7! = (ab®)DV 2N =0

From positivity we get from this ab = 0, and together with ab = —ba, this shows that

a,b commute. On the other hand C(G) is generated by the coefficients of ®, which are
powers of a, b, and so C'(G) must be commutative, and we obtain the result. O

The above result is quite suprising, but we will be back to this, with a more conceptual

explanation for the fact that the square [J has quantum symmetry. Back to theory now,

we

have the following useful result from [3], complementary to Theorem 5.3:

THEOREM 5.6. Given a matriz p € My(C), consider its “color” decomposition

p=> cpe

ceC

with the color components p. € My(0,1) with ¢ € C being constructed as follows:

1 if p;=c
(pc)ij :{ !

0 otherwise

Then a magic matriz uw = (u;;) commutes with p iff it commutes with all matrices pe.

ProOF. Consider the multiplication and counit maps of the algebra C:
M:eg®@ej —ee; , Cieg—e Qe
Since M, C' intertwine u, u®?, their iterations M®) C*) intertwine u, u®*, and so:

MBpEkC k) — chpc € End(u)
ceC
Now since this formula holds for any k£ € N, we obtain the result. O

The above general results can be combined, and we are led to the following statement:
THEOREM 5.7. A closed subgroup G C S¥ acts on a graph X precisely when

u = (u)

commutes with all the matrices coming from the color-spectral decomposition of d.

Proor. This follows by combining Theorem 5.3 and Theorem 5.6, with the “color-

spectral” decomposition in the statement referring to what comes out by succesively doing

the

color and spectral decomposition, until the process stabilizes. U
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All this might seem in need of some further discussion. In answer to this, the point is
that we are in fact doing planar algebras. Following [3], we have indeed:

THEOREM 5.8. The planar algebra associated to GT(X) is equal to the planar algebra
generated by d, viewed as a 2-box in the spin planar algebra Sy, with N = | X|.

PROOF. We recall from chapter 3 that any quantum permutation group G C S
produces a subalgebra P C Sy of the spin planar algebra, given by:
Py, = Fiz(u®F)
In our case, the idea is that G = G (X) comes via the relation d € End(u), but we
can view this relation, via Frobenius duality, as a relation of the following type:
&4 € Fiz(u®?)

Indeed, let us view the adjacency matrix d € My(0,1) as a 2-box in Sy, by using the
canonical identification between My (C) and the algebra of 2-boxes Sy (2):

(di) < ;dzj <§ ;)

Let P be the planar algebra associated to GT(X) and let @ be the planar algebra
generated by d. The action of u®2 on d viewed as a 2-box is given by:

ikl

ij kl
Since v is a magic unitary commuting with d we have:
udu' = duu' = d

But this means that d, viewed as a 2-box, is in the algebra P, of fixed points of u®2.
Thus @ C P. As for P C @, this follows from the duality found in chapter 3. O

As a conclusion to all this, the construction X — G*(X) is something quite interest-
ing. In analogy with the usual construction X — G(X), this often leads to the spectral
theory of X. And also, there are some interesting planar algebra aspects.

5b. The hypercube

Let us go back to the square [J. This is naturally part of the series of N-cycles, but
Theorem 5.5 shows that, within this series, [ is an exceptional object. With the reason
for this coming somehow from the fact that the complement [1° = | | is not connected.

We will discuss later this phenomenon, with a systematic study of the graphs of type
| |, which appear as products. Before that, however, let us try to compute G*(O), with
the tools that we have. Quite remarkably, the result here is as follows:
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THEOREM 5.9. The quantum symmetry group of the N -hypercube is
GH(Oy) = Oy
with the corresponding coaction map on the vertex set being given by

©:CN(ZY) = CHZY) @ COY) |, g— ) gi®uy

J

via the standard identification Uyn = ié\v In particular we have G*(0) = O5*.

PROOF. This result is from [11], with its N = 2 particular case, corresponding to the
last assertion, going back to [29], the idea being as follows:

(1) Our first claim is that Oy is the Cayley graph of ZY =< 7,..., 7y >. Indeed,
the vertices of this latter Cayley graph are the products of the following form:
g="1"... T;;,N

The sequence of 0-1 exponents defining such an element determines a point of R,
which is a vertex of the cube. Thus the vertices of the Cayley graph are the vertices of the
cube. Now regarding the edges, in the Cayley graph these are drawn between elements
g, h having the property g = ht; for some 7. In terms of coordinates, the operation h — hr;
means to switch the sign of the i-th coordinate, and to keep the other coordinates fixed.
In other words, we get in this way the edges of the cube, as desired.

(2) Our second claim is that, when identifying the vector space spanned by the vertices
of Oy with the algebra C*(Z2'), the eigenvectors and eigenvalues of [y are given by:

Viy iy = Z (_1)i1j1+-..+’iNjNT{1 N ’TJJ\’[N
Ji--JN
)\il...iN = (—1)i1 + ...+ <_1)izv

Indeed, let us recall that the action of d on the functions on vertices is given by the
following formula, with ¢ ~ p standing for the fact that ¢, p are joined by an edge:

df(p) =>_ f(q)

qa~p

Now by identifying the vertices with the the elements of Z2', hence the functions on
the vertices with the elements of the algebra C*(ZY), we get the following formula:

dv=mnv+...+ 75V
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With v;, ;, as above, we have the following computation, which proves our claim:

o _ E : E 1\iJit+tHiNIN 1 JN
dvzl...zN - Ts ( 1) TN

s J1..N

= Z Z (—1)artetiningt it Iy
s J1--JN

= ) ) (=L)f(—nytean g ey
s Ji--JN

= SN Y () (g
s Ji1JN

- )\il...iNUil...iN

(3) We prove now that the quantum group Oy' acts on the cube (. For this purpose,
observe first that we have a map as follows:

©:CNZY) = CHZY) @ COY) , mi—= > T®uy
J
It is routine to check that for iy # iy # ... # i; we have:

(D(Ti1"'7—il): Z le“‘le®uj1i1“‘ujlil
N#-FEh
In terms of eigenspaces F of the adjacency matrix, this gives:
®(E,) C E, ® C(O3")
Thus @ preserves the adjacency matrix of [y, so is a coaction on [y, as claimed.

(4) Conversely now, consider the universal coaction on the cube:
J
By applying U to the relation 7;7; = 7;7; we get u'u = 1, so the matrix u = (u;;) is
orthogonal. By applying ¥ to the relation 72 = 1 we get:
I® Zuzl + ZTM ® (upiug + wgug;) = 1 @ 1
k k<l
This gives ug;uy; = —uyug; for © # j, k # [, and by using the antipode we get
wikly = —ugu for k # 1. Also, by applying ¥ to 7,7; = 7;7; with 7 # j we get:
Z TiT1 @ (Upithyj + wgiugg) = Z TiTE @ (Upjty; + Ugjug;)
k<l k<l
It follows that for ¢ # j and k # [, we have:

Ui Upj + U Uk = Ui Uy + U U
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In other words, we have [uy;, u;;] = [ugj, w;]. By using the antipode we get [w;i, ui] =
[wi, w;k]. Now by combining these relations we get:

[wit, ujr] = [wik, wj] = [uge, ual = —[wi, ]
Thus [ui, u;1] = 0, so the elements u;; satisfy the relations for C'(Oy'), as desired. [J

Our purpose now is to understand which representation of Oy produces by twisting
the magic representation of O;,l. In order to solve this question, we will need:

PROPOSITION 5.10. The Fourier transform over Z is the map
1 o )
N * N 2,
a:C(Zy)—C"(Zy) (59;-1._.9? — 9N Z (1)< gl gly
Jre-JN
with the usual convention < i,j >= Y, ixj, and its inverse is the map

. (g N N 11 iN 1\ <4,i> 5
B:CZy) = C(Zy) , 91" .98 — Z( 1)+ 5911

Ji--JN

IN
N

with all the exponents being binary, iy, ... iy, ji,.--,jn € {0,1}.

PROOF. Observe first that the group Z can be written as follows:

Thus both «, 8 are well-defined, and it is elementary to check that both are morphisms
of algebras. Also, we have aff = fa = id, coming from the following standard formula:

N
1 i 1 i
3o 3 o =TT () <o
JiJN k=1 Jr

Thus we have indeed a pair of inverse Fourier morphisms, as claimed. U
By using now these Fourier transforms, we obtain following result:

PROPOSITION 5.11. The magic unitary for the embedding Oy C S;N s given by

1 cirmgs (LY in
Wiy in k1 ky — oN Z Z (—1) N Uy, - UNy
Ji.-JN b1...by

where ky = (ky,, ..., k), with respect to multi-indices i,k € {0,1}" as above.
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PROOF. By composing the coaction map ® from Theorem 5.9 with the above Fourier
transform isomorphisms «, 3, we have a diagram as follows:

C*(Z) - oH(Zh) 2 C(OV)
e BRid
C(ZY) ot C(ZY) @ C(OFY)

In order to compute the composition on the bottom W, we first recall from Theorem
5.9 that the coaction map ® is defined by the following formula:

D(g) = Ga ® tas

Now by making products of such quantities, we obtain the following global formula
for @, valid for any exponents iy,...,ixy € {1,...,N}:

. ) 1\ 7€) . . . .
oo = () X ey o,
b1..by

The term on the right can be put in “standard form” as follows:

1 iN o Zb =1 iz Zb (23
by -Gy = 91 o gN ”

We therefore obtain the following formula for the coaction map ®:
i i 1 #(0€?) b= b 2 bp=nN ta i i
O(gyt...9%) = (ﬁ) Z g T gy T T @l - uly
bi...by

Now by applying the Fourier transforms, we obtain the following formula:

\I](égilmg%\f)

1 o .
= (Bid)® (2—N 3 (—1)<w>g{1...gg¢v>

J1--JN

1 <ig> [ 1 #(0€5) Sy da SN Ja i in

J1-JN b1...by
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By using now the formula of § from Proposition 5.10, we obtain:

1 1 #(0€j)
W) = X XY (3)
J1.--JN b1...bN k1. kN
(_1)<z‘,j>(_1)<(2b1:1 Jases2 by =N Jz)5(ksee k) >

59;51”'91@ ® Uy, - - UNy
Now observe that, with the notation k, = (ks,, . .., kpy ), we have:

<<ij7a jx)»(kl7"'7kN)>:<jakb>
be=1 be=N

Thus, we obtain the following formula for our map W:

#(0€7)
1 im s (1 . ,
gil...gij> TN Z Z Z (=)=t (N) 5g]f1~-~9]1€\rN @ Uipy - Uy

Ji--Jn b1..bn k1. kn

(s

But this gives the formula in the statement for the corresponding magic unitary, with
respect to the basis {6911 giN} of the algebra C(ZY), and we are done. O
1IN

We can now solve our original question, namely understanding where the magic rep-

resentation of Oy' really comes from, with the following final answer to it:
THEOREM 5.12. The magic representation of O, coming from its action on the
N-cube, corresponds to the antisymmetric representation of Oy, via twisting.

Proor. This follows from the formula of w in Proposition 5.11, by computing the
character, and then interpreting the result via twisting, as follows:

(1) By applying the trace to the formula of w, we obtain:

1 o 1\70) .
Y Y (v ) (5) e,

Ji--jn b1...by 010N

(2) By computing the Fourier sum in the middle, we are led to the following formula,
with binary indices ji,...,jny € {0,1}, and plain indices by, ..., by € {1,...,N}:

1 #(0€5) ) )
X = Z Z (N) 5j1»sz:1 ]z st 5jN»be:szui21 ce /Uf;\%N

J1.-.JN b1...bn

(3) With the notation r = #(1 € j) we obtain a decomposition as follows:

N
X = ZXT
r=0
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To be more precise, the variables y, are as follows:
1 , .
XT - NN_T Z Z 5j172bz:1 Jx t 6]'N7sz:]vjzu{%71 v u?\%]}v
#(16j):T b1...bn
(4) Consider now the set A C {1,..., N} given by:
A= {alj. =1}
The binary multi-indices j € {0, 1} satisfying #(1 € j) = r being in bijection with

such subsets A, satisfying |A| = r, we can replace the sum over j with a sum over such
subsets A. We obtain a formula as follows, where j is the index corresponding to A:

! E g ) )
XT‘ = NN,T thbx:l Jz = v jN7ZbI:N Jx H uaba
|A|:7" b1..by acA

(5) Let us identify b with the corresponding function b: {1,..., N} — {1,..., N}, via
b(a) = b,. Then for any p € {1,..., N} we have:

0y Speyie = L == 071 (p) N A] = xa(p) (mod 2)

We conclude that the multi-indices b € {1,..., N} which effectively contribute to
the sum are those coming from the functions satisfying b < A. Thus, we have:

1
i O
|A|=r b<A acA

(6) We can further split each x, over the sets A C {1,..., N} satisfying |A| = r. The
point is that for each of these sets we have:

1
v 2 e = 2 [T o

b<AacA sesh a€A

Thus, the magic character of Oy splits as x = Zivzo Xr, the components being:
=22 [T
|A\:'r’ O'ES]’% a€A
(7) The twisting operation Oy — O;,l makes correspond the following products:

8(0') H Uqao(a) — H Uao(a)

acA ac€A

Now by summing over sets A and permutations o, we conclude that the twisting
operation Oy — Ox' makes correspond the following quantities:

S e ] vaow = D D ] ttartw

|A|=r UESR‘] acA |Al=r 0651‘3 acA

Thus, we are led to the conclusion in the statement. U
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5c. Product operations

We discuss now the behavior of the operation X — G*(X) under taking various
products of graphs. We use the notation X = (X, ~), where the X on the right is the set
of vertices, and where we write ¢ ~ j when 7, 7 are connected by an edge. We have:

DEFINITION 5.13. Let XY be two finite graphs.
(1) The direct product X x'Y has vertez set X x'Y, and edges:
(i,0) ~ (j, B) =i~ j, o~ B
(2) The Cartesian product X OY has vertex set X x Y, and edges:
(l,a) ~ (j,B) <= i=j,a~Bori~ja=pf
(3) The lexicographic product X oY has vertexr set X XY, and edges:
(l,a) ~ (J,0) <= a~Pora=p,i~]

The direct product X x Y is the usual one in a categorical sense. The Cartesian
product X Y is quite natural too from a geometric viewpoint, for instance because a
product by a segment gives a prism. As for the lexicographic product X o Y, this is
something interesting too, obtained by putting a copy of X at each vertex of Y.

The above products are all well-known in graph theory, and at the level of symmetry
groups, we have some straightforward embeddings, as follows:

GX)xGY)CGX xY)
GX)xGY)caGXxXay)
GX)GY)CGX oY)
Following [7], these embeddings have the following quantum analogues, using the
various product operations constructed in chapter 1 and chapter 4:

PROPOSITION 5.14. We have embeddings as follows,
GT(X)xGHY)C GHX xY)
GT(X)x GHY)cGH(XOy)
GT(X)LGHY)CGH(X oY)

with the operation U, being a free wreath product.
PRroOOF. All the assertions are elementary, coming from definitions, as follows:
(1) We use the following identification, given by d(; ) = 6; ® dq:
CXxY)=C(X)®C(Y)
The adjacency matrix of the direct product is then given by:

dxxy = dx @ dy
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Thus if v commutes with dx and v commutes with dy, then © ® v = (u;;Va8) (ia,j8) 15
a magic unitary that commutes with dxy. But this gives a morphism as follows:

C(GHX xY)) = C(GT(X) x GH(Y))
Finally, the surjectivity of this morphism follows by summing over ¢ and (3.

(2) The proof here is nearly identical to the one of (1). Indeed, with the identification
there, the adjacency matrix of the Cartesian product is given by:

dxpy =dx @1+ 1®dy

Thus if v commutes with dx and v commutes with dy, then © ® v = (u;jVa8)(ia,j8) 1S
a magic unitary that commutes with dxpy, and this gives the result.

(3) With the same identification as before, namely 6oy = 0; ® do, the adjacency
matrix of the lexicographic product X oY is given by:

dxoy =dx @ 1 +1® dy
Now let u,v be the magic unitary matrices of G*(X),GT(Y). The magic unitary
matrix of GT(X), GT(Y) is then given by:
Wia,jb = UE?)Uab

Since u,v commute with dx, dy, we get that w commutes with dx.y. But this gives
the desired morphism, and the surjectivity follows by summing over ¢ and b. U

The problem now is that of deciding when the embeddings in Proposition 5.14 are
isomorphisms. This is something non-trivial, even at the level of the classical symmetry
groups, and the results here will be quite technical. Following [7], we first have:

THEOREM 5.15. Let X and Y be finite connected reqular graphs. If their spectra {\}
and {u} do not contain 0 and satisfy

{X /A 0w/} = {1}
then GH(X xY) =GH(X) x GT(Y). Also, if their spectra satisfy
{Xi = A 0 {pk — i} = {0}
then GT(XOY) =GT(X) x GT(Y).

PROOF. Let A; be the valence of X. Since X is regular we have A\; € Sp(X), with 1 as
eigenvector, and since X is connected A; has multiplicity 1. Hence if P, is the orthogonal
projection onto C1, the spectral decomposition of dx is of the following form:

dx = /\1P1+Z)\ipi
i#1
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We have a similar formula for the adjacency matrix dy, namely:
dy = mQ1 + Y 1;Q;
J#1
This gives the following formulae for products:
dxxy =Y Ni)P®Q; . dxoy =Y (Ni+m)PeQ;
ij 0]
Here the projections form partitions of unity, and the scalar are distinct, so these are
spectral decompositions. The coactions will commute with any of the spectral projections,

and hence with both P, ® 1, 1 ® ;. In both cases the universal coaction v is the tensor
product of its restrictions to the images of P, ® 1, 1 ® ()1, which gives the result. O

Regarding the lexicographic products, we have the following result, also from [7]:

THEOREM 5.16. Let XY be reqular graphs, with X connected. If their spectra {\;}
and {p;} satisfy the condition

D=\ £ 10 (=g} = 0
where n and Ay are the order and valence of X, then GT(X oY) =GT(X) L GT(Y).

ProOOF. We denote by F;, ); the spectral projections corresponding to A;, pt;. Since
X is connected we have P, = [/n, and we obtain:

dxoy = dx®14+1®dy
= <Z )\sz> & <Z Q;) + (nP) ® (ZMij)

= Y it m)(PioQ)+ Y MP®L)
j i#1
In this formula the projections form a partition of unity and scalars are distinct, so
this is the spectral decomposition of dx.y. Now let W be the universal magic matrix for
X oY. Then W must commute with all spectral projections, and in particular:

[VVaP1®Qj]:O

Summing over j gives (W, P, ® 1] = 0, so 1 ® C(Y) is invariant under the coaction.
The corresponding restriction of W gives a coaction of Gt(X oY) on 1 ® C(Y), say:

W(1®6a)221®eb®yba
b

Here y is a magic unitary. On the other hand we can write:

Wi, ®1)= Zej@)eb@x;’-i
jb
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By multiplying by the previous relation we get:
Wie ®eq) = Z ej ey ® ybaxs’-i = Z e ®ey ® a:?iyba
b b
This shows that coefficients of W are of the following form:

b b
ij,ia = Yoalj; = Tj;Yba

Consider now the matrix z° = (mfj) Since W is a morphism of algebras, each row of

2% is a partition of unity. Also using the antipode, we have

) o) o
J Jja Jja
= Z Wia,jb = Z'x%yab
ja ja

- Zyabzl

Thus 2° is magic. We check now that 2%,y commute with dx, dy. We have:

(dxoy )iajb = (dx)ij6ab + (dy)ab
Thus the two products between W and dx.y are given by:

(Wdxoy )iake = Z Wiaje(dx)jx + Z Wiajo(dy )pe

J Jjb
(dxoy W )ia ke = Z(dX)ijoa,kc + Z(dY)aijb,kc
J Jjb

Now since W commutes with dx.y, the terms on the right are equal, and by summing
over ¢ we get:

Z i (dx ) jr + Z Yab(dy )pe = Z(dx)ijl”?k + Z(dY)abybc
J cb j cb
The second sums in both terms are equal to the valency of Y, so we get [z dx]| = 0.
Now once again from the formula coming from commutation of W with dx.y, we get
[y,dy] = 0. Summing up, the coefficients of W are of the following form, where z° are

magic unitaries commuting with dx, and y is a magic unitary commuting with dy:
b
Vij,z‘a = ZjiYba

But this gives a morphism C(G*(X) GH(Y) — GT(X oY) mapping u'? — b, and

Ji
Upa — Yba, Which is inverse to the morphism in Proposition 5.14, as desired. U

As an application, we have the following result:
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THEOREM 5.17. Given a connected graph X, and k € N, we have the formulae
GkX)=G(X)1S, , GT(kX)=G"(X)un S
where kX = X U...U X is the k-fold disjoint union of X with itself.

PRrROOF. The first formula is something well-known, which follows as well from the
second formula, by taking the classical version. Regarding now the second formula, it is
elementary to check that we have an inclusion as follows, for any finite graph X:

GH(X) . S c GH(kX)

Regarding now the reverse inclusion, which requires X to be connected, this follows
by doing some matrix analysis, by using the commutation with u. To be more precise, let
us denote by w the fundamental corepresentation of G*(kX), and set:

W =S wi Vap = Y U
ij ia,jb ab — ab
b 7

It is then routine to check, by using the fact that X is indeed connected, that we have
here magic unitaries, as in the definition of the free wreath products. Thus, we obtain:

GT(kX) C GT(X)u S
But this gives the result, as a consequence of Theorem 5.16. See [7]. U
We are led in this way to the following result, from [11]:

THEOREM 5.18. Consider the graph consisting of N segments.

(1) Its symmetry group is the hyperoctahedral group Hy = Zo ! Sy .
(2) Its quantum symmetry group is the quantum group Hy = Zy . S¥.

PROOF. Here the first assertion is clear from definitions, with the remark that the
relation with the formula Hy = G(Oy) comes by viewing the N segments as being the
[—1,1] segments on each of the N coordinate axes of RY. Indeed, a symmetry of the
N-cube is the same as a symmetry of the N segments, and so, as desired:

G(On) =Zy 1 SN

As for the second assertion, this follows from Theorem 5.17, applied to the segment
graph. Observe also that (2) implies (1), by taking the classical version. O

We will be back to quantum reflections later, in chapter 6 below, with a systematic
study of such quantum groups, and with some generalizations as well.

As an application of the above methods, as explained in [7], it is possible to compute
the quantum isometry groups of all vertex-transitive graphs of order < 11, except for the
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Petersen graph. This latter graph Pjg, which is a famous graph, is as follows:

I

~ N

e}

@) o
@) / \ @)
In order to explain the computation for Pjy, done by Schmidt in [83], we will need a
number of preliminaries. Let us start with the following notion, from [29]:

DEFINITION 5.19. The reduced quantum automorphism group of X is given by
C(G(X)) = C(GH(X)) / <uijukl = wpug; Vi ~ ki, j ~ z>

with © ~ j standing as usual for the fact that i,j are connected by an edge.

As explained by Bichon in [29], the above construction produces indeed a quantum
group G*(X), which sits as an intermediate subgroup, as follows:
G(X)cC G(X) c GHX)

There are many things that can be said about this construction, but in what concerns
us, we will rather use it as a technical tool. Following Schmidt [83], we have:

PROPOSITION 5.20. Assume that a reqular graph X is strongly reqular, with parameters
A =0 and p =1, in the sense that:

(1) i ~ j implies that i,j have X common neighbors.
(2) i # j implies that i,j have p common neighbors.

The quantum group inclusion G*(X) C GT(X) is then an isomorphism.

Proor. This is something quite tricky, the idea being as follows:

(1) First of all, regarding the statement, a graph is called regular, with valence k,
when each vertex has exactly k£ neighbors. Then we have the notion of strong regularity,
given by the conditions (1,2) in the statement. And finally we have the notion of strong
regularity with parameters A = 0, 4 = 1, that the statement is about, and with as main
example here Pjg, which is 3-regular, and strongly regular with A =0, u = 1.

(2) Regarding now the proof, we must prove that the following commutation relation
holds, with u being the magic unitary of the quantum group G*(X):

UgjUpy = UpUj , Vi~ kg~
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But for this purpose, we can use the A = 0, u = 1 strong regularity of our graph, by
inserting some neighbors into our computation. To be more precise, we have:

UijURL = uijuklg Ujs
s~
= Ui UgUj + E Ui Uk Ujs
sl s

= Ui Upj + E uz]<§ Uk:a) Uss
a

sl s

= UjUp U + E UijUis
e
= Ui Uk U

(3) But this gives the result. Indeed, we conclude from this that u;;uy, is self-adjoint,
and so, by conjugating, that we have u;jui = uiu,j, as desired. U

In the particular case of the Petersen graph Pjq, which in addition is 3-regular, we can
further build on the above result, and still following Schmidt [83], we have:

THEOREM 5.21. The Petersen graph has no quantum symmetry,
G"(P) = G(Pyw) = S5
with S5 acting in the obvious way.

PROOF. In view of Proposition 5.20, we must prove that the following commutation
relation holds, with u being the magic unitary of the quantum group G*(Pyp):
UjjUgl = UkiUij Vi k,jtl
We can assume i # k, j # [. Now if we denote by s,t the unique vertices having the
property i ~ s,k ~ s and j ~ t,l ~ t, a routine study shows that we have:

Ujj Ul = UijUstUk]
With this in hand, if we denote by ¢ the third neighbor of ¢, we obtain:
UiUup, = WiglstUp (Uij + Uit + Uig)

= UjjUsUpti; +0+0

= UijUst Ui Ui

= UijUkiUij
Thus w;;juy is self-adjoint, and so w;;ug = uku;;, as desired. O
As an application of all this, we have the following classification table from [7], im-

proved using [83], containing all vertex-transitive graphs of order < 11 modulo comple-
mentation, with their classical and quantum symmetry groups:
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] Order \ Graph \ Classical group \ Quantum group \
2 |5 | Z, [ Z> |
3 [ B B |
4 2K, H, Hy
4 K, Sy ST
5 Cs Ds Ds
5 K Ss S
6 Cs Dg D
6 2K3 S3 l ZQ Sg s ZQ
6 3K, Hj H
6 K S Sg
7 C D; Dr
7 Ky Sy ST
8 Cs, Cg Dg Dg
8 P(Cy) Hj S; x Z,
8 2K, Sy 17 S 2y
8 20, Hy 1 7y H L 7y
8 4K, H, Hf
8 Ky Sg Sq
9 Cy, C3 Dy Dy
9 K3 x K3 S5 7o S3 1 Zs
9 3K3 S3053 S350 S3
9 Ky S Sy
10 010, 0120, C;E), P(C5) D10 D10
10 P(K5) Ss X Zio S X Zsy
10 Clo Zo ! Dy Zo . Ds
10 2C5 D35 Zs D5, 7o
10 2K S5 1 Zs S Zo
10 5K, H; H:
10 K10 SIO Sl+0
10 Py Ss Ss
11 Cy, C3, C3, Dy, Dy
11 Ky Si1 ST

Here K denote the complete graphs, C' the cycles with chords, and P stands for
prisms. Moreover, by using more advanced techniques, the above table can be considerably
extended. For more on all this, we refer to Schmidt’s papers [83], [84], [85].
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5d. Circulant graphs

Following [10], let us discuss now the case of the circulant graphs, which is quite
interesting, due to the fact that we can use the Fourier transform. We first have:

DEFINITION 5.22. Associated to any circulant graph X having N vertices are:

(1) The set S C Zy given byi~x j <= j—1€S.
(2) The group E C Z% consisting of elements g such that gS = S.
(3) The number k = |E|, called type of X.

In what follows X will be a circulant graph having p vertices, with p prime. We denote
by € the column vector (1,w,w?,...,wP™!), where w = €*>™/?. We have:

PROPOSITION 5.23. The eigenspaces of d are given by Vo = C1 and

%:@Cgl‘a

acl

with x € Z,. Moreover, we have V, =V, if and only if vE2 = yE.

PROOF. Since d is circulant, we have d(&%) = f(2)&", with f : Z, — C being:

fla) =) w"

tes

Let K = Q(w) and let H be the Galois group of the Galois extension Q C K. We
have then a group isomorphism as follows:

Zy~H |, 18 =[w-—w’]

Also, we know from a theorem of Dedekind that the family {s, | ¥ € Z;} is free in
Endg(K). Now for x,y € Z consider the following operator:

L= stt — Zsyt € Endg(K)
tes tes
We have L(w) = f(z) — f(y), and since L commutes with the action of H, we have:
L=0 = Lw) =0 < [f(z) = [(y)
By linear independence of the family {s, | x € Z}} we get:
f(x)=fly) &= 1S =yS < zE=yE

It follows that d has precisely 1 + (p — 1)/k distinct eigenvalues, the corresponding
eigenspaces being those in the statement. U

Consider now a commutative ring (R, +, ). We denote by R* the group of invertibles,
and we assume 2 € R*. A subgroup G C R* is called even if —1 € G. We have:
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DEFINITION 5.24. An even subgroup G C R* is called 2-maximal if, inside G:
a—b=2(c—d) = a==b
We call a = b, c = d trivial solutions, and a = —b = ¢ — d hexagonal solutions.

To be more precise, in what regards our terminology, consider the group G C C
formed by k-th roots of unity, with k£ even. An equation of the form a — b = 2(¢c — d)
with a,b, c,d € G says that the diagonals a — b and ¢ — d must be parallel, and that the
first one is twice as much as the second one. But this can happen only when a,c, d, b are
consecutive vertices of a regular hexagon, and here we have a + b = 0.

The relation with our quantum symmetry considerations comes from:

PROPOSITION 5.25. Assume that R has the property 3 # 0, and consider a 2-maximal
subgroup G C R*. Then, the following happen:

(1) 2,3¢G.
(2) a+b=2c with a,b,c € G implies a =b = c.
(3) a—+ 2b = 3c with a,b,c € G implies a = b = c.
ProoOF. All these assertions are elementary, as follows:
(1) This follows from the following formulae, which cannot hold in G:
4-2=2(2-1) , 3—-(-1)=2(3-1)
Indeed, the first one would imply 4 = £2, and the second one would imply 3 = £1.
But from 2 € R* and 3 # 0 we get 2,4,6 # 0, contradiction.

(2) We have a — b = 2(c — b). For a trivial solution we have a = b = ¢, and for a
hexagonal solution we have a + b = 0, hence ¢ = 0, hence 0 € G, contradiction.

(3) We have a — ¢ = 2(¢ — b). For a trivial solution we have a = b = ¢, and for a
hexagonal solution we have a + ¢ = 0, hence b = —2a, hence 2 € G, contradiction. O

We can now formulate a general non quantum symmetry result, as follows:

THEOREM 5.26. A circulant graph X with a prime number p > 5 of vertices, such
that the corresponding group E C Z, is 2-mazimal, has no quantum symmetry.

Proor. We use Proposition 5.23, which ensures that Vi, V5, V3 are eigenspaces of d.
By 2-maximality of E, these three eigenspaces are different. From eigenspace preservation
and 2-maximality we get formulae of the following type, with r, € A = C(G*(X)):

a§) = &ar , o) = &er , af)=> e

aclE a€eFE aceFE
Our claim now is that for a # b, we have the following key formula:

rary =0
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Indeed, as explained in [10], this follows by examining the following equality:

(Zf‘l@m) (Z@b@wz) =2 &en
acE beE cEE
By using this key formula, we get by recurrence on s > 3 that we have:
o (51+8> _ Zg(l-i-s)a ® r;-ﬁ-s
acl
But this gives r* = rP~! for any a, and now by using the key formula, we get:

(1arp) (rals)” = Tarpryrs = rorirs = (rar,:;’)(rf*gr;) =0

Thus 7,1, = rrqe = 0. On the other hand, A is generated by coefficients of «, which
are in turn powers of elements r,. It follows that A is commutative, and we are done. [J

Still following [10], we can now formulate a main result, as follows:

THEOREM 5.27. A type k circulant graph having p >> k wvertices, with p prime, has
no quantum symmetry.

Proor. This follows from Theorem 5.26 and some arithmetics, as follows:

(1) Let k be an even number, and consider the group of k-th roots of unity G =
{1,¢,...,¢F 1}, where ¢ = €?™/*. By some standard arithmetics, G is 2-maximal in C.

(2) As a continuation of this, again by some standard arithmetics, for p > 69 with
¢ being the Euler function, any subgroup £ C Z; of order k is 2-maximal.

(3) But this proves our result. Indeed, by using (2), we can apply Theorem 5.26
provided that we have p > 69 and our graph has no quantum symmetry, as desired. [

5e. Exercises

The constructions in this chapter produce many interesting examples of quantum
permutation groups, and we will keep studying them. As a first exercise, we have:

EXERCISE 5.28. Learn more about quantum symmetries of finite graphs, from Lupini,
Mancinska, Roberson, Schmidt et al., with a look into Musto-Reutter-Verdon too.

The idea here is that a lot of theory, going beyond what we can reasonably explain in
this book, has been recently developed by the above people, and their collaborators. We
will be back to this later, in this book, but only with some very basic results.

EXERCISE 5.29. Work out some theoretical generalizations of the no quantum symme-
try result for the N-cycle, in the N — oo limit.

This is something that we already discussed in the above, with the comment that some
technology is available in the case where N is prime, and that all this is in need of some
further extensions, to the case where N is not necessarily prime.



CHAPTER 6

Quantum reflections

6a. Real reflections

In this chapter and in the next one, which are central to the present book, we discuss
the quantum reflection groups and their twisted analogues, following [2], [6], [11], [26]
and related papers. The material will be quite technical, and we will be here at the core
of modern quantum group theory. The point indeed is that, no matter what applications
of your quantum groups you are looking for, it is most likely that these applications will
come from a suitable quantum reflection group. Or at least, that is a common belief.

In order to get started, let us go back to the square graph problem. In order to present
the correct, final solution to it, the idea will be that of looking at G*(] |), which is equal
to G*(0O). We recall from chapter 5 that we have the following result, from [11]:

THEOREM 6.1. Consider the graph consisting of N segments.

(1) Its symmetry group is the hyperoctahedral group Hy = Zo ! Sy .

(2) Its quantum symmetry group is the quantum group Hy = Zs 1. Sy
Proor. This is something that we know, the idea being as follows:

(1) This is clear from definitions, and with the remark that Hy appears as well as the
symmetry group of the hypercube, G(Oy) = Hy.

(2) This is something that we know from the previous chapter, and with the remark
that for the hypercube we obtain something different, G(Oy) = Oy'. O

Now back to the square, we have G*(0J) = H,, and our claim is that this is the
“good” and final formula. In order to prove this, we must work out the easiness theory
for Hy, H};, and find a compatibility there. We first have the following result:

PROPOSITION 6.2. The algebra C(Hy;) can be presented in two ways, as follows:

(1) As the universal algebra generated by the entries of a 2N X 2N magic unitary
having the “sudoku” pattern w = (¢ %), with a,b being square matrices.
(2) As the universal algebra generated by the entries of a N x N orthogonal matriz
which is “cubic”, in the sense that w;ju, = wjuk; =0, for any j # k.
As for C(Hy), this has similar presentations, among the commutative algebras.

129
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PROOF. We must prove that the algebras Ay, A. coming from (1,2) coincide. We can
define a morphism A, — A, by the following formula:
p(uij) = aij — b
We construct now the inverse morphism. Consider the following elements:
ug; + uy; B, = uy; — uj
2 oY 2

These are projections, and the following matrix is a sudoku unitary:
(aig)  (Bs -))
M = J J
((%‘) (ci5)
Thus we can define a morphism A; — A, by the following formula:
uf; + ugy u? — uy;
U(ay) = 15— ’

5 o Ylby) = 5

We check now the fact that 1, ¢ are indeed inverse morphisms:

OQ'J' =

2 2
U,L-j + Uyj B uij — Uiy

bpluig) = Play — by) = —— )
As for the other composition, we have the following computation:

v]

2 i
A similar computation gives ¢ (b;;) = b;;, as desired. As for the final assertion,
regarding C'(Hy), this follows from the above results, by taking classical versions. O

5 =

We can now work out the easiness property of Hy, Hy, with respect to the cubic
representations, and we are led to the following result, from [11]:

THEOREM 6.3. The quantum groups Hy, Hy, are both easy, as follows:

(1) Hy corresponds to the category P.yen.
(2) Hy corresponds to the category NCeyen.

Proor. This is something quite routine, the idea being as follows:
(1) We know that H}; C Of appears via the cubic relations, namely:
Ui Uil = UjiUk; = 0, Vj 7’é k

Our claim is that, in Tannakian terms, these relations reformulate as follows, with
H € P(2,2) being the 1-block partition, joining all 4 points:

Ty € End(u®?)
(2) In order to prove our claim, observe first that we have, by definition of T:

TH(eZ- & €j) = 51-]-62- ® e;
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With this formula in hand, we have the following computation:

Thu®(e;@e;®1) = Ty (Z €ai ® €pj ® Uaz'ubj> (ei®e;®@1)

abij

= Ty E eq @ €p @ UgiUpj
ab

= § e ® €q & UqiUayj
a

On the other hand, we have as well the following computation:
u®2TH(e¢ X €; X 1) = 5iju®2(ei X € (24 1)
= 0y (Z €ai @ €p; ® Uaiubj> (ei®e;®1)
abij

= 0y E €q & €p @ Ug;Up;

ab

We conclude that Tpu®? = ©®?Ty means that u is cubic, as desired.

(3) With our claim proved, we can go back to Hy. Indeed, it follows from Tannakian
duality that this quantum group is easy, coming from the following category:

D =< H >= NC,yen

(4) But this proves as well the result for Hy. Indeed, since this group is the classical
version of H};, we have as desired easiness, the corresponding category being:

E =< Ncevenax >= Peven
Thus, we are led to the conclusions in the statement. ]
As an immediate consequence of the above result, we have:

THEOREM 6.4. The operation Hy — Hy is a liberation in the sense of easy quantum
groups, in the sense that the category of partitions for Hy, appears as

Dt =DnNC
with D being the category of partitions for Hy.
PROOF. We already know, from definitions, that Hy — Hj; is a liberation, in the
sense that the classical version of Hy, is Hy. However, by using Theorem 6.3, we can see

that much more is true, in the sense that Hy — Hj; is an easy quantum group liberation,
as stated, and with this coming from NCeyep, = Poyen N NC. ]

We refer to [11] for more regarding the above results. In what concerns us, we will be
back to this in a moment, with some probabilistic consequences as well.
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6b. Complex reflections

The reflection groups Hy and their liberations Hy; belong in fact to two remarkable
series, depending on a parameter s € NU {oo}, constructed as follows:

HY =78y , Hy =7, 8%

We discuss now, following [6], [26], the algebraic and analytic structure of these latter
quantum groups. The main motivation comes from the cases s = 1, 2, oo, where we recover
respectively Sy, Si and Hy, Hy, and the full reflection groups Ky, K. Let us start with
a brief discussion concerning the classical case. The result that we will need is:

PROPOSITION 6.5. The group HY, = Z;0Sn of N x N permutation-like matrices having
as nonzero entries the s-th roots of unity is as follows:
(1) Hi = Sy is the symmelric group.
(2) H% = Hy is the hyperoctahedral group.
(3) HY = Ky is the group of unitary permutation-like matrices.

PRrOOF. Everything here is clear from definitions, and with permutation-like meaning
of course that each row and column contain exactly one nonzero entry. U

The free analogues of the reflection groups H3; can be constructed as follows:

DEFINITION 6.6. The algebra C(HY") is the universal C*-algebra generated by N*
normal elements u;j, subject to the following relations,

(1) u = (uy;) 1s unitary,

(2) u' = (uy;) is unitary,
(3) Pm = wjuy; s a projection,
(4) uj; = pij,

with Woronowzcz algebra maps A, e, S constructed by universality.

Here we allow the value s = oo, with the convention that the last axiom simply
disappears in this case. Observe that at s < oo the normality condition is actually
redundant. This is because a partial isometry a subject to the relation aa* = a® is
normal. As a first result now, making the connection with Hy;, we have:

THEOREM 6.7. We have an inclusion of quantum groups

Hy C HY
which is a liberation, in the sense that the classical version of Hy', obtained by dividing
by the commutator ideal, is the group HY;.

PROOF. This follows as before for Oy C OF or for Sy C S5, by using the Gelfand
theorem, applied to the quotient of C(H3") by its commutator ideal. O

In analogy with the results from the real case, we have the following result:



6B. COMPLEX REFLECTIONS 133

PROPOSITION 6.8. The algebras C(H3') with s = 1,2,00, and their presentation
relations in terms of the entries of the matriz u = (u;;), are as follows:

(1) For C(HNT) = CO(SY;), the matriz u is magic: all its entries are projections,
summing up to 1 on each row and column.

(2) For C(H3") = C(H},) the matriz u is cubic: it is orthogonal, and the products
of pairs of distinct entries on the same row or the same column vanish.

(3) For C(Hy™") = C(Ky,) the matriz u is unitary, its transpose is unitary, and all
its entries are normal partial isometries.

PRrOOF. This is something elementary, from [6], [26], the idea being as follows:
(1) This follows from definitions and from standard operator algebra tricks.
(2) This follows as well from definitions and standard operator algebra tricks.

(3) This is just a translation of the definition of C(HY"), at s = oo. O

Let us prove now that Hy" with s < co is a quantum permutation group. For this
purpose, we must change the fundamental representation. Let us start with:

DEFINITION 6.9. A (s, N)-sudoku matriz is a magic unitary of size sN, of the form

a® ot ... a7t
as—l (ZO CZS_2
m= ,
at  a? a’
where a’, ..., a*" ' are N x N matrices.

The basic examples of such matrices come from the group H?. Indeed, with w = €™/

each of the N? matrix coordinates u;; : Hy — C takes values in the following set:
S={0}u{l,w,...,w"}

Thus, this coordinate function u,;; : Hy — C decomposes as follows:

s—1
T
r=0

Here each a;; is a function taking values in {0,1}, and so a projection in the C*-algebra
sense, and it follows from definitions that these projections form a sudoku matrix. With
this notion in hand, we have the following result, from [26]:

THEOREM 6.10. The following happen:

(1) The algebra C(HY;) is isomorphic to the universal commutative C*-algebra gen-
erated by the entries of a (s, N)-sudoku matriz.

(2) The algebra C(HY") is isomorphic to the universal C*-algebra generated by the
entries of a (s, N)-sudoku matriz.
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PROOF. The first assertion follows from the second one, via Theorem 6.7. In order to
prove the second assertion, consider the universal algebra in the statement, namely:

A=C" <afj (al™® = (s, N) — sudoku )

i )pz}qj

Consider also the algebra C(H3'). According to Definition 6.6, this is presented by
certain relations R, that we will call here level s cubic conditions:

CHH) =C* <uij u= N x N level s cubic )

We will construct a pair of inverse morphisms between these algebras.

(1) Our first claim is that Uj; = > w™ay; is a level s cubic unitary. Indeed, by using
the sudoku condition, the verification of (1-4) in Definition 6.6 is routine.

(2) Our second claim is that the elements AY; = L3 wuj;, with the convention
u?j = pij, form a level s sudoku unitary. Once again, the proof here is routine.

(3) According to the above, we can define a morphism @ : C(Hy") — A by the formula
®(uy) = Uy, and a morphism ¥ : A — C(HY") by the formula ¥(af;) = A7,

(4) We check now the fact that ®, U are indeed inverse morphisms:

Vd(uy) = ) wPAY
P
= %;w_p;w”’ug

1
_ = (r—=Lp,
= sg W (r
pr

As for the other composition, we have the following computation:

(ID\IJ(afj) = % Z WU}
= é d_w?ry w
r q
_ % Sl Y wrteo
q T

— p
= &ij

Thus we have an isomorphism C(H}") = A, as claimed. O

We will need the following simple fact:
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PROPOSITION 6.11. A sN x sN magic unitary commutes with the matrix

0O Iy O ... 0

0 0 Iy ... 0
s=|:

0O 0 0 ... Iy

I 0 0 ... O

if and only if it is a sudoku matrixz in the sense of Definition 6.9.

PRroOF. This follows from the fact that commutation with > means that the matrix
is circulant. Thus, we obtain the sudoku relations from Definition 6.9. U

Now let Z; be the oriented cycle with s vertices, and consider the graph N Z, consisting
of N disjoint copies of it. Observe that, with a suitable labeling of the vertices, the
adjacency matrix of this graph is the above matrix . We obtain from this:

THEOREM 6.12. We have the following results:
(1) Hy, is the symmetry group of NZs.
(2) Hy' is the quantum symmetry group of NZ.

Proor. This is something elementary, the idea being as follows:
(1) This follows from definitions.

(2) This follows from Theorem 6.10 and Proposition 6.11, because the algebra C'(H3'")
is the quotient of the algebra C(S]y) by the relations making the fundamental corepre-
sentation commute with the adjacency matrix of NZ,. U

Next in line, we must talk about wreath products. We have here:

THEOREM 6.13. We have the following results:
(1) Hy =741 Sn.-

Proor. This follows from the following formulae, valid for any connected graph X,
and explained before, in chapter 5, applied to the graph Z,:

GINX)=G(X)1Sy , GH(NX)=GH(X)w S5

Alternatively, (1) follows from definitions, and (2) can be proved directly, by con-
structing a pair of inverse morphisms. For details here, we refer to [26]. O

Regarding now the easiness property of Hy, Hy', we already know that this happens
at s = 1,2. The point is that this happens at s = 0o too, the result being as follows:

THEOREM 6.14. The quantum groups Ky, Ky are easy, the corresponding categories
Peven cP 5 Nceven C NC

consisting of the partitions satisfying #o = #e, as a weighted equality, in each block.
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PRroOOF. This is something which is routine, along the lines of the proof of Theorem
6.3, and for full details here, we refer to the paper [6]. O

More generally now, we have the following result, from [6]:

THEOREM 6.15. The quantum groups H, Hy' are easy, the corresponding categories
pPPcCcP , NC°CNC
consisting of partitions satisfying #o = # e (s), as a weighted sum, in each block.

PROOF. Observe that the result holds at s = 1, trivially, then at s = 2 as well, where
our condition is equivalent to #o = # e (2) in each block, as found in Theorem 6.3, and
finally at s = oo too, as explained in Theorem 6.14. In general, this follows as in the case
of Hy, Hy;, by using the one-block partition in P(s, s). See [6]. O

The above proofs were of course quite brief, but we will be back to this, with details,
in the next section, with full proofs for certain more general results.

6¢. Fusion rules

Let us discuss now, following [26], the classification of the irreducible representations
of Hy", and the computation of their fusion rules. For this purpose, let us go back to the
elements u;;, p;; in Definition 6.6. We recall that, as a consequence of Proposition 6.8, the
matrix p = (p;;) is a magic unitary. We first have the following result:

PROPOSITION 6.16. The elements u;; and p;; satisfy:

(1) pijui = ;.
(2) u;'kj = ufj_l‘
(3) wijuwip =0 for j # k.
PrROOF. We use the fact that in a C*-algebra, aa* = 0 implies a = 0.

(1) This follows from the following computation, with a = (p;; — 1)u;;:
aa” = (pij — 1)pij(pi; —1) =0

(2) With a = uj; — ufj_l we have aa* = 0, which gives the result.

(3) With a = u;ju;, we have aa* = 0, which gives the result. O
In what follows, we make the convention u?j = p;j. We have then:

PROPOSITION 6.17. The algebra C(H3') has a family of N-dimensional corepresen-
tations {ug|k € Z}, satisfying the following conditions:
(1) w, = (uy;) for any k > 0.
(2) up = upys for any k € Z.
(3) ar = u_y, for any k € Z.
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ProoF. This is something elementary, the idea being as follows:
(1) Let us set u, = (uf;). By using Proposition 6.16 (3), we have:
A(uf]) = Z Wity - Wity @ Upyjo - Upyj = Zufl ® ufj
ll...lk l

We have as well, trivially, the following two formulae:

s(uf]) =0y S(ufj) = ujf

(2) This follows once again from Proposition 6.16 (3), as follows:

o5 =ty = s = o
(3) This follows from Proposition 6.16 (2), and we are done. O

Let us compute now the intertwiners between the various tensor products between
the above corepresentations u;. For this purpose, we make the assumption N > 4, which
brings linear independence. In order to simplify the notations, we will use:

DEFINITION 6.18. For iy,...,1x € Z we use the notation
Uiy.dyy = Uiy oo @ Ugy
where {w;|i € Z} are the corepresentations in Proposition 6.17.

Observe that in the particular case ij,...,ix € {£1}, we obtain in this way all the
possible tensor products between v = u; and @ = wu_;, known by [98] to contain any
irreducible corepresentation of C(Hy"). Here is now our main result:

THEOREM 6.19. We have the following equality of linear spaces,

pe NCs(il..-ik,jl---jl)}

where the set on the right consists of elements of NC(k,l) having the property that in
each block, the sum of 1 indices equals the sum of 7 indices, modulo s.

Hom(ui,. iy uj,...5,) = span {Tp

PROOF. This result is from [26], the idea of the proof being as follows:

(1) Our first claim is that, in order to prove D, we may restrict attention to the case
k = 0. This follow indeed from the Frobenius duality isomorphism.

(2) Our second claim is that, in order to prove D in the case k = 0, we may restrict
attention to the one-block partitions. Indeed, this follows once again from a standard
trick. Consider the following disjoint union:

o0

NC, =] | NC(0,4 .. i)

k=041...ip
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This is a set of labeled partitions, having property that each p € NC is noncrossing,
and that for p € NCy, any block of p is in NC. But it is well-known that under these
assumptions, the global algebraic properties of NC can be checked on blocks.

(3) Proof of D. According to the above considerations, we just have to prove that the
vector associated to the one-block partition in NC(I) is fixed by w;,. ;,, when:

slgi 4.+

Consider the standard generators e, € My (C), acting on the basis vectors by:
€ab(€c) = Obc€a

The corepresentation u;,j, is given by the following formula:

_ E E Ji Ji
Uy = Warby -+ - Ugyp, X eaub, ... Ca;by

ai...a; by...b;

As for the vector associated to the one-block partition, this is:
&=
b

By using now several times the relations in Proposition 6.16, we obtain, as claimed:

uj1---jz(1 ®&) = Z Zuillb ce Uillb &€ V... R e,

ai...a; b

1447 I
= > uy e
ab
= 1®¢§

(4) Proof of C. The spaces in the statement form a Tannakian category, so they
correspond to a Woronowicz algebra A, coming with corepresentations {v;}, such that:

pe NCS(il...ik,jl...jl)}

On the other hand, the inclusion D that we just proved shows that C(H") is a model
for the category. Thus we have a quotient map as follows:

Hom(vil...ik7 Ujl---jl) = span {Tp

A—>C(H}9V+) , U — Uy
But this latter map can be shown to be an isomorphism, by suitably adapting the
proof from the s = 1 case, for the quantum permutation group S¥. See [6], [26]. O

As an illustration for the above result, we have the following statement:

PROPOSITION 6.20. The basic corepresentations ug, . . .,us_1 are as follows:
(1) uy,...,us_q1 are irreducible.
(2) ug = 1+ rg, with ro irreducible.
(3) ro,u, ..., us—1 are distinct.
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Proor. We apply Theorem 6.19 with £ =1 =1 and ¢; = 4, j; = j. This gives:
dim(Hom/(u;, uj)) = #NCs(1, j)

We have two candidates for the elements of NCs(i,7), namely the two partitions in
NC(1,1). So, consider these two partitions, with the points labeled by i, j:

We have to check for each of these partitions if the sum of ¢ indices equals or not the
sum of j indices, modulo s, in each block. The answer is as follows:

p € NC(i,j) <= i=]j
q€ NCs(i,j) <= i=7=0

By collecting together these two answers, we obtain:

0 if i
#NC,(i,j) =31 ifi=j#0
2 ifi=j=0

We can now prove the various assertions, as follows:

(1) This follows from the second equality.

(2) This follows from the third equality and from the fact that we have 1 € us.

(3) This follows from the first equality. O

We can now compute the fusion rules for Hy". The result, from [26], is as follows:

THEOREM 6.21. Let F' =< Zs > be the set of words over Zs, with involution given by
(11 ...1k)" = (—ig) ... (—11), and with fusion product given by:
(1. i) (g1 gi) =1+ ig_1(ix + J1)Jo - - - Ju

The irreducible representations of HY can then be labeled r, with x € F, such that the
mwvolution and fusion rules are ¥, = rz and

Te QTy = g Tow + Toaw

T=VZ2,Yy=ZwW

and such that we have r; = u; — d;01 for any i € Zs.
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PRrROOF. This basically follows from Theorem 6.19, the idea being as follows:

(1) Consider the monoid A = {a,|r € F'}, with multiplication a,a, = a,,. We denote
by NA the set of linear combinations of elements in A, with coefficients in N, and we
endow it with fusion rules as in the statement:

Qy Q ay = Z Ay + Ay
T=V2,Yy=zZW
With these notations, (NA, +,®) is a semiring. We will use as well the set ZA,

formed by the linear combinations of elements of A, with coefficients in Z. The above
tensor product operation extends to ZA, and (ZA, +,®) is a ring.

(2) Our claim is that the fusion rules on ZA can be uniquely described by conversion
formulae as follows, with C' being positive integers, and D being integers:

. . _E E VIRV
all ® e ® alk - Czl zkajl---]l

L Ji--J1

Ji---Ji
Ay ..ipy = § E Dll ’Lkajl . ® aj,
Ji-Ji

Indeed, the existence and uniqueness of such decompositions follow from the definition
of the tensor product operation, and by recurrence over k for the D coefficients.

(3) Our claim is that there is a unique morphism of rings ® : ZA — R, such that
®(a;) = r; for any i. Indeed, consider the following elements of R:

A § E : J1---J1 '
Tiy.dp = Dzl szh '®r]l
U ogi-di

In case we have a morphism as claimed, we must have ®(a,) = 7, for any z € F.
Thus our morphism is uniquely determined on A, so it is uniquely determined on ZA. In
order to prove now the existence, we can set ®(a,) = r, for any x € F, then extend ® by
linearity to the whole ZA. Since ® commutes with the above conversion formulae, which
describe the fusion rules, it is indeed a morphism.

(4) Our claim is that ® commutes with the linear forms x — #(1 € z). Indeed, by
linearity we just have to check the following equality:

#(16@11(8@@%):#(167'“@®7"lk)

Now remember that the elements r; are defined as r; = u; — d;0l. So, consider the
elements ¢; = a; + d;01. Since the operations r; — u; and a; — ¢; are of the same nature,
by linearity the above formula is equivalent to:

#(1€cu®®czk):#(1€u”®®ulk)
Now by using Theorem 6.19, what we have to prove is:
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In order to prove this formula, consider the product on the left:
P = (ail + (51'101) (24 (CLZ'2 + 51'201) ®...Q (aik + 5%01)

This quantity can be computed by using the fusion rules on A. A recurrence on k
shows that the final components of type a, will come from the different ways of grouping
and summing the consecutive terms of the sequence (iy,...,7), and removing some of
the sums which vanish modulo s, as to obtain the sequence x. But this can be encoded
by families of noncrossing partitions, and in particular the 1 components will come from
the partitions in NCs(iy .. .1x). Thus #(1 € P) = #NC,(iy ... 1), as claimed.

(5) Our claim now is that ® is injective. Indeed, this follows from the result in the
previous step, by using a standard positivity argument, namely:

Pla)=0 = P(aa™)=0
= #(leP(aa”))=0
= #(lecaa")=0
= a=0
Here v is arbitrary in the domain of ®, we use the notation a* = az, where a — #(1, a)
is the unique linear extension of the operation consisting of counting the number of 1’s.

Observe that this latter linear form is indeed positive definite, according to the identity
#(1,a,a;) = 04y, which is clear from the definition of the product of ZA.

(6) Our claim is that ®(A) C Ry... This is the same as saying that r, € R;.. for any
x € F, and we will prove it by recurrence. Assume that the assertion is true for all the
words of length < k, and consider an arbitrary length & word, z =iy ...4;. We have:

iy @ Gy iy = O+ Qiytigig...ix T Oiytin,00is. ik
By applying ® to this decomposition, we obtain:
Tiy @ Tig.iyy = T+ Tiytisyiz.ip T Oir4in,0Tis...ix
We have the following computation, which is valid for y = i1 + 9, 73.. .17, as well as
for y = i3...14; in the case 7; + 15 = 0:
H#H(ry €1y @riy4) = #H#(L1rg @1, @74y 4,)
= #(1,a; ® a;, @ ai,._4,)
= F#(ay € a;, @ aiy, _,)
=1
Moreover, we know from the previous step that we have r;, 14,5 i, 7 Tis..ip, SO We

conclude that the following formula defines an element of R™:

Q=T @ Tiy iy = Tiytissis...i — Oiy+is,0Tis...ix
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On the other hand, we have o = r,, so we conclude that we have r, € R*. Finally,
the irreducibility of r, follows from the following computation:

#ler,®@r,) = #1er,®rz)
= #(1 €a,®az)
= #(l€a,®ay,)
=1

(7) Summarizing, we have constructed an injective ring morphism, as follows:
d:7ZA— R , @(A) C Rirr

The remaining fact to be proved, namely that we have ®(A) = Ry, is clear from
the general results in [98]. Indeed, since each element of NA is a sum of elements in A,
by applying ® we get that each element in ®(NA) is a sum of irreducible corepresenta-
tions in ®(A). But since ®(NA) contains all the tensor powers between the fundamental
corepresentation and its conjugate, we get ®(A) = Ry, and we are done. O

Still following [26], let us present now a useful formulation of Theorem 6.21. We begin
with a slight modification of Theorem 6.21, as follows:

THEOREM 6.22. Consider the free monoid A =< a;|i € Zs > with the involution
a; = a_;, and define inductively the following fusion rules on it:

Pa; @ a;q = pa;a;q + pair;q + divjop @ q

Then the irreducible representations of Hy' can be indexed by the elements of A, and the
fusion rules and involution are the above ones.

PRrROOF. Our claim is that this follows from Theorem 6.21, by performing the following
relabeling of the irreducible corepresentations:

Ti1.ig — Ay - - Qg

Indeed, with the notations in Theorem 6.21 we have the following computation, valid
for any two elements 7, j € Z; and any two words x,y € F"

Ty & Tiy = E Tow + Tvw

TI=VZ2,jYy=Zw

Ta:ijy + Tm,z’+j,y + 5i+j,0 E Tow T Tow
T=V2Z,Y=ZW

Tzijy + T ity + 5i+j,0rz ® Ty

With the above relabeling 7, i, — a;, ...a;,, this gives the formula in the statement
(with r, — p and r, — ¢), and we are done. O
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Our alternative reformulation of Theorem 6.21 is based on the idea of embedding R™
into a bigger fusion semiring. Given a fusion monoid M and an element b € M, we denote
by < b > the fusion monoid generated by b. That is, < b > is the smallest subset of M
containing b, which is stable by composition, involution and fusion rules. We have:

THEOREM 6.23. Consider the monoid M =< a, z|z® = 1 > with the involution a* =
a,z* = z71, and define inductively the following fusion rules on it:
vaz' ® Zaw = vaz™aw + G540 @ w

Then the irreducible representations of Hy' can be indexed by the elements of the monoid
N =< aza >, and the fusion rules and involution are the above ones.

PROOF. It is routine to check that the elements az‘a with i = 1,..., s are free inside
M. In other words, the submonoid N' =< az'a > is free on s generators, so it can be
identified with the free monoid A in Theorem 6.22, via a; = az'a. We have (az'a)* =
az"'a, so this identification is involution-preserving. Consider now two arbitrary elements
p,q € N'. By using twice the formula in the statement, we obtain:

pa; ®a;q = paz'a® az’ag
= paz'aaz’aq + paz' ® Faq
= paz'aaz’aq + pazaq+ Siiop ® q
Pa;a;q + paiyjq + 0ivjop @ q

Thus our identification N’ ~ A is fusion rule-preserving. In order to conclude, it

remains to prove that the inclusion N C N’ is actually an equality. But this follows from

the fact that A is generated as a fusion monoid by a;. Indeed, by using the identification
N'" ~ A this shows that N’ is generated as a fusion monoid by aza, and we are done. [

6d. Bessel laws
Let us discuss now the computation of the asymptotic laws of characters. We begin
with a discussion for Hy, from [11], which has its own interest:
THEOREM 6.24. The asymptotic law of x; for the group Hy is given by
(t/2)IF+2p

heet 30 Zrmpw

k=—co  p=0
where 0y, is the Dirac mass at k € 7.
PRrROOF. We regard the group Hy as being the symmetry group of the graph Iy =
{I',..., IV} formed by N segments. The diagonal coefficients are then:
0 if g moves I°
uii(g) = 1 if g fixes I
—1if g returns I
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Let s = [tN], and denote by 1 ¢, ] g the number of segments among {I*, ..., I*} which
are fixed, respectively returned by an element g € Hy. With this notation, we have:

u11+--~+uss:Tg_\Lg

We denote by Py probabilities computed over the group Hy. The density of the law
of uyy + ...+ ug at a point £ > 0 is given by the following formula:

D(k) = Pn(tg—1g=k)
= > Px(tg=k+plg=p)
p=0

At t = 1, since the probability for ¢ € Sy to have no fixed points is asymptotically
Py = é, the probability of o € Sy to have m fixed points is asymptotically:

1

P, =—
em/!

In terms of probabilities over Hp, we obtain, as desired:

N—oo k—|—p

- k+ 2p 1

— 1 2k‘+2p -
o (337 T
1o (1/2)%2

B EZ (k +p)!p!

p=

im D) = Jim 3072 (452 att gt Lo =kt )
p=0

The general case t € (0,1] follows by performing some modifications in the above
computation. The asymptotic density is computed as follows:

lim D(k) = lim 3 (1/2) (’fk*f;’) Pu(t g+ Lg=k+2p)
P
= S ()
p=0
_ i (t/2)"+2
= (k+p)'p!
On the other hand, we have D(—k) = D(k), so we obtain the result. O

Next, we have the following result, once again from [11]:
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THEOREM 6.25. The Bessel laws by have the additivity property
bs * bt = b3+t
so they form a truncated one-parameter semigroup with respect to convolution.

ProOF. The Fourier transform of b; is given by:
Foy(y)=e™ Y e filt/2)
k=—oc0
We compute now the derivative with respect to ¢:

—t oo

Fhu(y) = =Fh(y) + 5 Y & fi(t/2)

k=—o00

On the other hand, the derivative of fj with k£ > 1 is given by:

PR

_ i (/{7 + p>tk+2p—1 o ptk+2p—l
— (k+p)p! ~ (k+p)lp!
* $ht2p—1 > th+2p—1

= ———— +
p;o(k—i-p—l)!p! ;(k: +p)l(p—1)!
o0 k=1)+2p 00 HE+1D)+2(p—1)

= +
p;((k—al)!p! ;((/ﬂﬂ)ﬂp—l))!(p—l)!

= fi1(t) + fera(?)

This computation works in fact for any k, so we get:

—t [e.e]

Fhf) = =Fhy)+ 5 30 Mot/ + fua(t/2)

k=—00

—t o

= —Fb(y) + 67 > e f(E/2) + e f(t/2)

k=—o0

eV +eY

= —Fb(y) + 5 Fby(y)

- (*T - 1) Fhy(y)

Thus the log of the Fourier transform is linear in ¢, and we get the assertion. U
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In order to discuss now the free analogues 3; of the above measures b;, and then the
s-analogues 07, 57 of the measures b, 5;, we need some free probability. We have the
following notion, extending the Poisson limit theory from chapter 1:

DEFINITION 6.26. Associated to any compactly supported positive measure p are the

probability measures
1 *70
pp = lim ((1 — E) 0o + —p)
n—00 n n

c 1 Hn
mp = Jim ((1 — )t ;P)

where ¢ = mass(p), called compound Poisson and compound free Poisson laws.

In what follows we will be interested in the case where p is discrete, as is for instance
the case for p = td; with ¢ > 0, which produces the Poisson and free Poisson laws. The
following result allows us to detect compound Poisson/free Poisson laws:

PROPOSITION 6.27. For p=3%"_, ¢;0,, with ¢; >0 and z; € R we have

Fy,(y) = exp (Z (e = 1>>

S

R (y) = > —~

i=1 1 —yz

where F, R denote respectively the Fourier transform, and Voiculescu’s R-transform.

PRrOOF. Let u, be the measure in Definition 6.26, under the convolution signs:

= (-5

In the classical case, we have the following computation:

1 i ) 1 s ' "
Fu,(y) = (1 - E) + Y eVt = Fu(y) = ((1 - %) + = Zciewzi)
=1
= F,(y) =exp (Z ci(e* — 1))

i=1
In the free case now, we use a similar method. The Cauchy transform of u,, is:

Nl 1SS ¢
Gn©) = (1-5) £+~ ’
o (€) - €+n;§_%
Consider now the R-transform of the measure p", which is given by:
Ru%" (y) = nRHn (y)
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The above formula of G, shows that the equation for R = R, @n is as follows:

c 1 1 c
1-2) o+ - i _
( n y‘1+R/n+n;y—1+R/n—zi Y

n/ 14+yR/n n L+yR/n—yz

=1

Now by multiplying by n, rearranging the terms, and letting n — oo, we get:

S S

c+yR ci Ci
—_— — Rﬂ_ =
1+yR/n ;1+yR/n—yzi ¢+ yhs, () zl—yzi
® Ciz;
—— Rﬂ_ =
() ; e
This finishes the proof in the free case, and we are done. O

We have the following result, providing an alternative to Definition 6.26, and which
will be our formulation here of the Compound Poisson Limit Theorem (CPLT):

THEOREM 6.28. For p =Y, ¢;0,, with ¢c; >0 and z; € R we have
P/ T, = law (Z ziozi)
i=1
where the variables o; are Poisson/free Poisson(c;), independent/free.

PROOF. Let a be the sum of Poisson/free Poisson variables in the statement. We
will show that the Fourier/R-transform of « is given by the formulae in Proposition 6.27.
Indeed, by using some well-known Fourier transform formulae, we have:

Fo(y) = exp(ci(e” = 1)) == Fiq,(y) = exp(ci(e¥™ — 1))

—  Fuly)=exp (Z (e - 1>>

i=1
Also, by using some well-known R-transform formulae, we have:

C; Cizi
Ra. = : RZ‘OA‘ =
(Y) T i (Y) —
: CiZ;
> Ra =
(v) ; e
Thus we have indeed the same formulae as those in Proposition 6.27. U

Summarizing, we have now a full extension of the basic Poisson limit theory from
chapter 1, in the classical and free cases. Back to quantum reflection groups, we have:
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THEOREM 6.29. The asymptotic laws of truncated characters are as follows, where €
with s € {1,2,...,00} is the uniform measure on the s-th roots of unity:

1) For H} we obtain the compound Poisson law b] = py._.
N ¢ .
(2) For H3" we obtain the compound free Poisson law [ = m.,.

These measures are in Bercovici-Pata bijection.

Proor. This follows from easiness, and from the Weingarten formula, exactly as for
the classical and quantum permutation groups. For details here, we refer to [6]. O

The Bessel and free Bessel laws have particularly interesting properties at the param-
eter values s = 2,00. So, let us record the precise statement here:

THEOREM 6.30. The asymptotic laws of truncated characters are as follows:

(1) For Hy we obtain the real Bessel law by = pye,.

(2) For Ky we obtain the complex Bessel law By = pye_, .

(3) For H}, we obtain the free real Bessel law By = ..

(4) For Kj; we obtain the free complex Bessel law By = .. .

ProOF. This follows indeed from Theorem 6.29, at s = 2, cc. Il

Let us discuss now, as a final topic, the computation of the moments of the free Bessel
laws. The idea will be that of expressing these moments in terms of generalized binomial
coefficients. We recall that the coefficient corresponding to v € R, k € N is:

(2) :oz(oz—l)..l;:!(a—k:—i—l)

We denote by mq, mo, ms, ... the sequence of moments of a given probability measure.
With this convention, we first have the following result, from [6]:

THEOREM 6.31. The moments of 3] with s > 0 are

— 1 sk +k
sk 1\ k

which are the Fuss-Catalan numbers.

PROOF. In the case s € N, we know that we have my, = #NC,(k). The formula in
the statement follows then by counting such partitions. In the general case s > 0, observe
first that the Fuss-Catalan number in the statement is a polynomial in s:

1 sk+k\  (sk+2)(sk+3)...(sk+k)
sk+1\ &k ) k!
Thus, in order to pass from the case s € N to the case s > 0, it is enough to check that

the k-th moment of 7, is analytic in s. But this is clear from the equation f = 1+ zf**!
of the Stieltjes transform of 7, and this gives the result. O
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We have as well the following result, which deals with the general case t > 0:
THEOREM 6.32. The moments of 8; with s > 0 are
k
1/k—-1 sk \
= — t
M ;b<b—1> (5—1)

which are the Fuss-Narayana numbers.

PROOF. In the case s € N, we know from the above that we have the following formula,
where Fy;, is the number of partitions in NCs(k) having b blocks:

my = Z Fkbtb
b

With this observation in hand, the formula in the statement follows by counting such
partitions, with this count being well-known. This result can be then extended to any
parameter s > 0, by using a standard complex variable argument, as before. See [6]. O

In the case s ¢ N, the moments of 3§ can be further expressed in terms of gamma
functions. In the case s = 1/2, the result, also from [6], is as follows:

THEOREM 6.33. The moments of ﬁi/Q are given by the following formulae:
1 (3p> 24P +3p pl(6p)!
1 ) 2p—1 —

mgp

(6p—1)(2p+1) (2p)!(2p)!(3p)!

PROOF. According to our various results above, the even moments of the free Bessel
law 37 with s =n —1/2, n € N, are given by:

- 1 (n+1/2)2p\ _ 1 ((n+1)p
m2p_(n_1/2)(2p)+1< 2p >_(2n—1)p+1< 2p )

With n = 1 we get the formula in the statement. Now for the odd moments, we can
use here the following well-known identity:

(m—1/2> AR 2m)! (m—k)!
k El ml o (2m — 2k)!
With m =2np+p —n and k = 2p — 1 we get:
1 (n+1/2)(2p—1)
(n—1/2)(2p—1)+1( 2p —1 )
2 (2np+p—n)—1/2

- (2n—1)(2p—1)+2< 2p—1 )
27 (Anp+2p—2n)!  (2np—p-—n+1)!

2p—1)! (np+p—n)! (4np—2p —2n+ 3)!

:p—i—l P .

Mop—1
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In particular with n = 1 we obtain:

2743 (6p — 2)! p!
m2p_1 = . .
2p—-1! Bp-1)! (2p+1)!
_ o 27(2p)  (6p)ip) p!
(2p)t (3p)(6p—1)6p (2p)!(2p +1)
But this gives the formula in the statement. U

There are many other interesting things, of both combinatorial and complex analytic
nature, that can be said about the free Bessel laws, their moments and their densities,
and for a full discussion here, we refer to [6], and subsequent papers.

Finally, we have the following result, which is of theoretical interest:

THEOREM 6.34. The moments of the various central limiting measures, namely

ﬁts Vi I

bf gt Gy

are always given by the same formula, involving partitions, namely

M= Y
)

meD(k
where the sets of partitions D(k) in question are respectively

NCS NCQ NCZ

P? P, Ps

and where |.| is the number of blocks.

Proor. This follows indeed by putting together the various moment results that we
have, from this chapter and from the previous ones. O

As already mentioned, in what regards the Bessel and free Bessel laws b7, 57, the
important particular cases are s = 1,2, 00. It is therefore tempting to leave one of these
3 cases aside, and fold the corresponding diagram into a cube. We obtain:
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THEOREM 6.35. The moments of the various central limiting measures,

B, ——I}

v

By Vi

By Gy
bp————a
are always given by the same formula, involving partitions, namely
me- ¥
weD(k)

where the sets of partitions D(k) in question are respectively:

NCepen NC,
N Ceven/ N 02/
Peven Po
S
Peven/ Py
Proor. This follows indeed from the various moment results that we have. g

The above result is quite interesting, with the cubes in question, along with the cube
formed by the corresponding quantum groups, being called “standard cubes”. The point
indeed is that all these cubes provide us with some useful 3D intuition, in relation with
various aspects of quantum algebra, be them algebraic or probabilistic. So, saved.

6e. Exercises
As a first key exercise, in relation with the above, we have:
EXERCISE 6.36. Prove that Ky, Ky, regarded as intermediate quantum groups
SyCKycCcUy , SHcKficUy
are indeed easy, the corresponding categories of partitions being as follows,
POPuendDPs ., NC D NCepen D NCo

consisting of the partitions satisfying #o = #e, as a weighted equality, in each block.
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This is something that we briefly discussed in the above, and the problem now is that
of working out all the details. Along the same lines, more generally, we have:
EXERCISE 6.37. Prove that Hy, Hy', regarded as intermediate quantum groups
SyCHyCcUy , SyCHYcCUyY
are indeed easy, the corresponding categories of partitions being as follows,
P>P°D>Py, , NCDNC®DNC
consisting of the partitions satisfying #o = # e (s), as a weighted equality, in each block.

Again, this is something that we discussed in the above, and fully proved at s =1, 2,
and the problem now is that of working out all the details. Assuming that you solved the
previous exercise, corresponding to the case s = oo, this should not be very hard.

EXERCISE 6.38. Reformulate the Schur-Weyl twisting theory from chapter 4 in terms
of the intermediate easy quantum groups

Hy CcGC U;
as a duality between such intermediate quantum groups.

The point here is that, as explained in chapter 4, in order to perform the Schur-Weyl
twisting operation we need a signature map for the partitions, and this signature map
is only defined on P,,.,. Thus, we have a link here with Hy, and so the whole twisting
material from chapter 4 must be now reviewed, by taking this into account.

EXERCISE 6.39. Prove that the quantum reflection groups Hy, Hy equal their own
Schur-Weyl twists, and then do the same for Hy,, Hy' .

This is not something very difficult, normally coming from definitions, one subtlety
however coming from the fact that for the second question we must assume s € 2N, in
order for the quantum groups H%, H3' to be indeed twistable in our sense.

EXERCISE 6.40. Prove that the intermediate easy quantum groups Hy C G C Hy; are
subject to a dichotomy, as follows,

HycGcHY )/  HYPcGcH)
where HJ[\C;O} 15 a certain suitably chosen such intermediate quantum group.
As already mentioned, this is a rather difficult exercise.
EXERCISE 6.41. Fully classify the intermediate easy quantum groups
Hy C G C Hy,
by solving the 2 classification problems raised by the previous exercise.

As before, this is a difficult exercise, and the problem here is rather that of finding
the relevant literature, reading it, and writing down a brief account of that.



CHAPTER 7

Twisted reflections

7a. Quantum graphs

We have seen in the previous two chapters that some general theory can be developed
for the closed subgroups G C Sy, in particular with a notion of “quantum reflection
group”. We discuss here the twisted extension of these results, and in particular the
twisted analogues of the quantum reflection groups, obtained by using generalized quan-
tum permutation groups S5, with Z being an arbitrary finite quantum space.

In order to discuss this, let us go back to chapter 4, where the finite quantum spaces
Z and the quantum groups S were introduced. We recall from there that we have:

DEFINITION 7.1. A finite quantum space Z is the abstract dual of a finite dimensional
C*-algebra B, according to the following formula:

C(Z)=1B
Alternatively, by decomposing the algebra B, we have the following formula:
C(Z)=M,(C)®...® M, (C)

With the choice ny = ... = ny = 1 we obtain the space Z = {1,... k}. Also, with k =1
we must have C(Z) = M,(C), and we obtain a quantum space denoted Z = M,,.

In order to do some mathematics on such spaces, the very first observation is that we
can talk about the formal number of points of such a space, as follows:

|Z| = dim B

Alternatively, by decomposing the algebra B as a sum of matrix algebras, as in Defi-
nition 7.1, we have the following formula for the formal number of points:

Z| =ni+...+n}

Pictorially, this suggests representing Z as a set of |Z]| points in the plane, arranged

in squares having sides nq, ..., n;, coming from the matrix blocks of B, as follows:
o O O
o O O (]
o O O

As a second piece of mathematics, we can talk about counting measures, as follows:

153
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DEFINITION 7.2. Given a finite quantum space Z, we construct the functional
tr:C(Z) — B(1*(Z)) — C

obtained by applying the reqular representation, and the normalized matrix trace, and we
call it integration with respect to the normalized counting measure on Z.

As an illustration here, for the space Z = {1,...,k} we obtain the integration with
respect to the normalized counting measure, p({i}) = 1/k for any i. Also, for the space
Z = M,, we obtain the normalized trace of matrices, tr = Tr/n. In general, in terms of
the matrix decomposition of B = C'(Z), as in Definition 7.1, the formula is:

tr(ay,...,ax) |Z’Zn tr(a;)

Pictorially, this suggests fine-tuning our previous picture of Z, by adding to each point
the unnormalized trace of the corresponding element of B, as follows:

®,, % %o
% ®n; ©0 S %,  ©0
%0 ©0 Oy S0 Oy,

Here we have represented the points on the diagonals with solid circles, since they
are of different nature from the off-diagonal ones, the attached numbers being nonzero.
However, this picture is not complete either, and we can do better, as follows:

DEFINITION 7.3. Given a finite quantum space Z, coming via a formula of type
C(Z)=M,(C)®...®& M, (C)

we use the following equivalent conventions for drawing Z :

(1) Triple indices. We represent Z as a set of N = |Z| points, with each point being
decorated with a triple index ija, coming from the standard basis {e -} C B.

(2) Double indices. As before, but by ignoring the index a, with the conventwn that
1,7 belong to various indexing sets, one for each of the matriz blocks of B.

(3) Single indices. As before, but with each point being now decorated with a single
index, playing the role of the previous triple indices ija, or double indices ij.

All the above conventions are useful, and in practice, we will be mostly using the
single index convention from (3). As an illustration, consider the space Z = {1,...,k}.
According to our single index convention, we can represent this space as a set of k points,
decorated by some indices, which must be chosen different. But the obvious choice for
these k different indices is 1, ..., k, and we are led to the following picture:

L1 (D) Ce o
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As another illustration, consider the space Z = M,,. Here the picture is as follows,
using double indices, which can be regarded as well as being single indices:

®11 ©O12 ©O13
O21 @32 O3
©31 ©32 @33
As yet another illustration, for the space Z = M3 U M,, which appears by definition

from the algebra B = M;3(C) & M>(C), we are in need of triple indices, which can be of
course regarded as single indices, in order to label all the points, and the picture is:

®111 ©O121 ©131
0211 @221 ©231 ®112 0122
0311 ©321 @331 0212 @222

So long for finite quantum spaces Z and their pictures, and we will stop here, because
all this looks a bit like reinventing the wheel. As a last piece of preliminaries now, let us
recall from chapter 4 that we have the following result, coming from [96]:

THEOREM 7.4. Associated to any finite quantum space Z are its classical and quantum
counting measure-preserving symmetry groups Sz C S}, with S}r being given by

C(Sy) = C’(Uj\?)/<,u € Hom(u®* u),n € an:(u)>

where N = |Z|, and u,n are the multiplication and unit maps of C(Z), and with Sz being
its classical version. Alternatively, the relations defining S, are

E Uik Uj1 = Up kel E Uik Uj1 = Uigp

ij=p kl=p
E Uiy =055 E uz; = 0y
i=i =
* — R

in single index notation, with the usual multiplication and involution for the indices.

ProoOF. This is something that we know well from chapter 4, the idea being that the
relations in the statement, be them in abstract u,n formulation, or in their equivalent
single index formulation, are what comes out of the coaction axioms. O

Getting now to the point where we wanted to get, quantum graphs and their symme-
tries, let us start with the following straightforward extension of the usual notion of finite
graph, from [52], obtained by using a finite quantum space as set of vertices:

DEFINITION 7.5. We call “finite quantum graph” a pair of type
X =(Z,d)
with Z being a finite quantum space, and with d € My(C), where N = |Z]|.
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This is of course something quite general. In the case Z = {1,..., N} for instance,
what we have here is a directed graph, with the edges i — j colored by complex numbers
d;; € C, and with self-edges i — 7 allowed too, again colored by numbers d;; € C. In the
general case, however, where Z is arbitrary, the need for extra conditions of type d = d*,
ordy; =0,orde My(R), or d € My(0,1) and so on, is not very natural, as we will soon
discover, and it is best to use Definition 7.5 as such, with no restrictions on d.

In general, a quantum graph can be represented as a colored oriented graph on
{1,...,N}, where N = |Z|, with the vertices being decorated by single indices 7, and
with the colors being complex numbers, namely the entries of d. This is similar to the
formalism from chapter 5, but there is a discussion here in what regards the exact choice
of the colors, which are usually irrelevant in connection with our symmetry problematics,
and so can be true colors instead of complex numbers. More on this later.

With the above notion in hand, we have the following definition, also from [52]:
DEFINITION 7.6. The quantum automorphism group of X = (Z,d) is the subgroup
GT(X)c S}
obtained via the relation du = ud, where u = (u;;) is the fundamental corepresentation.

Again, this is something very natural, coming as a continuation of the constructions
in chapter 5. We refer to [52], [89] for more on this notion, and for a number of advanced
computations, in relation with free wreath products. At an elementary level, which will be
ours for the moment, a first problem is that of working out the basics of the correspondence
X — GT(X), following [3]. And there are several things to be done here, namely simplices,
complementation, color independence, multi-simplices, and reflections.

Let us start with the simplices. As we will soon discover, things are quite tricky here,
leading us in particular to the conclusion that the simplex based on an arbitrary finite
quantum space Z is not a usual graph, with d € My(0,1) where N = |Z|, but rather a
sort of “signed graph”, with d € My(—1,0,1). Let us start our study with:

THEOREM 7.7. Given a finite quantum space Z, we have
G+(Zempty) - G+(qull) - S}“

where Zempry 15 the empty graph on the vertex set Z, coming from the matriz d = 0, and
where Zyy 1s the simplex on the vertex set Z, coming from the matrix

d:Npl—lN

where N = |Z|, and where Py is the orthogonal projection on the unit 1 € C(Z).
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Proor. This is something quite tricky, the idea being as follows:

(1) First of all, the formula G*(Zeppy,) = S5 is clear from definitions, because the
commutation of v with the matrix d = 0 is automatic.

(2) Regarding G (Zpu) = S5, let us first discuss the classical case, Z = {1,..., N}.
Here the simplex Z, is the graph having having edges between any two vertices, whose
adjacency matrix is d = [y — 1y, where Iy is the all-1 matrix. The commutation of u
with 1y being automatic, and the commutation with Iy being automatic too, u being
bistochastic, we have [u,d] = 0, and so GT(Z.) = S5 in this case, as stated.

(3) In general, we know from Theorem 7.4 that we have by definition n € Fiz(u),
with n : C — C(Z) being the unit map. Thus we have P, € End(u), and so the
condition [u, P;] = 0 is automatic. Together with the fact that in the classical case we
have Iy = NPy, this suggests to define the adjacency matrix of the simplex as being
d = NP, — 1y, and with this definition, we have indeed G (Zp.;) = S5, as claimed. O

Let us study now the simplices Zf,; found in Theorem 7.7. In the classical case,
Z ={1,...,N}, what we have is of course the usual simplex. However, in the general
case things are more mysterious, the first result here being as follows:

PROPOSITION 7.8. The adjacency matriz of the simplex Zuy, given by definition by
d= NP, — 1y, is a matrir d € My(—1,0,1), which can be computed as follows:

(1) In single index notation, d;; = 00,5 — dy;.
(2) In double index notation, dap.cq = dapOcd — dacOpd-

(3) In triple index notation, dapp,cdq = OabOcd — OacObdlpq-

PROOF. According to our single index conventions, from Definition 7.3, the adjacency
matrix of the simplex is the one in the statement, namely:

dij - (NP1 — 1N)ij

= Ll] — (Sij
= 05055 — 0y

In double index notation now, with i = (ab) and j = (cd), and a, b, ¢, d being usual
matrix indices, each thought to be attached to the corresponding matrix block of C'(Z),
the formula that we obtain in the second one in the statement, namely:

dab,cd - 5ab,ba50d,dc - 5ab,cd
= 5ab50d - 5ac(5bd

Finally, in standard triple index notation, i = (abp) and j = (cdq), with a,b,c,d
being now usual numeric matrix indices, ranging in 1,2, 3, ..., and with p, ¢ standing for
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corresponding blocks of the algebra C(Z), the formula that we obtain is:

dabp,cdq = 6abp,bap50dq,dcq - 6abp,cdq

= 6ab56d - 5&05bd5pq
Thus, we are led to the conclusions in the statement. U

At the level of examples, for Z = {1,..., N} the best is to use the above formula (1).
The involution on the index set is i = 4, and we obtain, as we should:

dij =1- 5ij
As a more interesting example now, for the quantum space Z = M,, coming by
definition via the formula C'(Z) = M, (C), the situation is as follows:
PROPOSITION 7.9. The simplex Zpy with Z = M, is as follows:

(1) The vertices are n* points in the plane, arranged in square form.
(2) Usual edges, worth 1, are drawn between distinct points on the diagonal.
(3) In addition, each off-diagonal point comes with a self-edge, worth —1.

PROOF. Here the most convenient is to use the double index formula from Proposition
7.8 (2), which tells us that d is as follows, with indices a,b,c,d € {1,...,n}:

dab,cd = 5ab5cd - 5ac6bd
This quantity can be —1,0, 1, and the study goes as follows:

— Case dgpcq = 1. This can only happen when d440.¢ = 1 and ,.05¢ = 0, corresponding
to a formula of type dgq .. = 0, with a # ¢, and so to the edges in (2).

— Case dgp, ¢ = —1. This can only happen when 64,0, = 0 and 0,4.05¢ = 1, correspond-
ing to a formula of type dupq = 0, with a # b, and so to the self-edges in (3). U

The above result is quite interesting, and as an illustration, here is the pictorial rep-
resentation of the simplex Zy,; on the vertex set Z = Ms, with the convention that the
solid arrows are worth —1, and the dashed arrows are worth 1:

[ J OO OO
N
NN
NN
OO o OO
AN
AN
N\
OO OO [ ]

More generally, we can in fact compute Zy,;; for any finite quantum space Z, with the
result here, which will be our final saying on the subject, being as follows:
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THEOREM 7.10. Consider a finite quantum space Z, and write it as follows, according
to the decomposition formula C(Z) = M,,(C) @ ... ® M,, (C) for its function algebra:

Z =M, U...UM,,

The simplex Zgu 1s then the classical simplex formed by the points lying on the diagonals
of My, , ..., M,,, with self-edges added, each worth —1, at the non-diagonal points.

PROOF. The study here is quite similar to the one from the proof of Proposition 7.9,
but by using this time the triple index formula from Proposition 7.8 (3), namely:

dabp,cdq = 5ab(50d - 5ac5bd5pq

Indeed, this quantity can be —1,0,1, and the 1 case appears precisely as follows,
leading to the classical simplex mentioned in the statement:

daap,ccq =1 ) vap 7é cq
As for the remaining —1 case, this appears precisely as follows, leading this time to
the self-edges worth —1, also mentioned in the statement:

dabp,abp =1 s Ya 7£ b
Thus, we are led to the conclusion in the statement. Il

As an illustration, here is the simplex on the vertex set Z = M;3 U My, with again the
convention that the solid arrows are worth —1, and the dashed arrows are worth 1:

o _ OO OO
XT ~<
NN T o
NN =~ -
NN ST~
o o _ o0 T~ Tze o®
\N\T == — = T 7N
N\ \\\// ~ o N
AN =~ ~ N\
AN - T=22
- - N
o o ° o0 TZoe

Long story short, we know what the simplex Zy,; is, and we have the formula
G (Zempty) = G (Zyuy) = S§, exactly as in the Z = {1,..., N} case. Now with the
above results in hand, we can talk as well about complementation, as follows:

THEOREM 7.11. For any finite quantum graph X we have the formula
GT(X) = GH(X")
where X — X is the complementation operation, given by dx + dxe = dz,,,,

ProoF. This follows from Theorem 7.7, and more specifically from the following com-
mutation relation, which is automatic, as explained there:
[uv deull] =0

Let us mention too that, in what concerns the pictorial representation of X¢, this can
be deduced from what we have Theorem 7.10, in the obvious way. U
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Following now [3], let us discuss an important point, namely the “independence on
the colors” question. The idea indeed is that given a classical graph X with edges colored
by complex numbers, or other types of colors, G(X) does not change when changing the
colors. This is obvious, and a quantum analogue of this fact, involving G™(X), can be
shown to hold as well, as explained in [3], and in chapter 5. In the quantum graph setting
things are more complicated. Let us start with the following technical definition:

DEFINITION 7.12. We call a quantum graph X = (Z,d) washable if, with
d=>cd,

being the color decomposition of d, we have the equivalence
[u,d] =0 <= [u,d.] =0,Vc
valid for any magic unitary matriz u, having size |Z|.
Obviously, this is something which is not very beautiful, but the point is that some

quantum graphs are washable, and some other are not, and so we have to deal with the
above definition, as stated. As a first observation, we have the following result:

PROPOSITION 7.13. Assuming that X = (Z,d) is washable, its quantum symmetry
group GT(X) does not depend on the precise colors of X. That is, whenever we have
another quantum graph X' = (Z,d’) with same color scheme, in the sense that

dij = dkl e d;] = d;cl
we have GT(X) = GT(X').

PRrROOF. This is something which is clear from the definition of G*(X), namely:

C(G* (X)) = C(5§) [ {u.d) = 0)

Indeed, assuming that our graph is washable in the above sense, we have:

C(G* (X)) = C(5%) [ ([u.d.] = 0, %)
Thus, we are led to the conclusion in the statement. Il

As already mentioned, it was proved in [3] that in the classical case, Z = {1,..., N},
all graphs are washable. This is a key result, and this for several reasons:

(1) First, this gives some intuition on what is going on with respect to colors, in
analogy with what happens for G(X). Also, it allows the use of true colors, like black,
blue, red and so on, when drawing colored graphs, instead of complex numbers.

(2) Also, this can be combined with the fact that G*(X) is invariant as well via some
similar changes in the spectral decomposition of d, at the level of eigenvalues, with all
this leading to some powerful combinatorial methods for the computation of G*(X).
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All these things do not necessarily hold in general, and to start with, we have:

THEOREM 7.14. There are quantum graphs, such as the simplex in the homogeneous
quantum space case, where

Z =Mk xA{1,...,L}
with K, L > 2, which are not washable.

PROOF. We know that the simplex, in the case Z = My x{1,..., L}, has as adjacency
matrix a certain matrix d € My(—1,0,1), with N = K2L. Moreover, assuming K, L > 2
as above, entries of all types, —1,0, 1, are possible. Thus, the color decomposition of the
adjacency matrix is as follows, with all 3 components being nonzero:

d=-1-d1+0-dy+1-d4

Now assume that our simplex X = Z,; is washable, and let u be the fundamental
corepresentation of GT(X). We have then the following commutation relations:

dfl, do, d1 S End(u)
Now since the matrices d_1, dy, d; are all nonzero, we deduce from this that:
dim(End(u)) > 3

On the other hand, we know from Theorem 7.7 that we have GT(X) = S}. Also, we
know from chapter 4 that the Tannakian category of S} is the Temperley-Lieb category
TLy, with N = K?L as above. By putting these two results together, we obtain:

dim(End(u)) = dim <span< ', = > ) <2
Thus, we have a contradiction, and so our simplex is not washable, as claimed. Il

In order to come up with some positive results as well, the general idea will be that
of using the method in [3]. We have the following statement, coming from there:

THEOREM 7.15. The following matriz belongs to End(u), for any n € N:

dm= > digy, - dyy,

i=k1..kp j=l1..ln
In particular, in the classical case, Z = {1,..., N}, all graphs are washable.
ProOOF. We have two assertions here, the idea being as follows:

(1) Consider the multiplication and comultiplication maps of the algebra C(Z), which
in single index notation are given by:

ple; ®ej) =€, v(e) = Z €; & eg

i=jk
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Observe that we have p* = v, with the adjoint taken with respect to the scalar product
coming from the canonical trace. We conclude that we have:

p € Hom(u®* u) , € Hom(u,u®?)

The point now is that we can consider the iterations u(™, ™ of y,~, constructed in
the obvious way, and we have then, for any n € N:

™ e Hom(u®"u) , ~™ € Hom(u,u®")

Now if we assume that we have d € End(u), we have d®" € End(u®") for any n € N,
and we conclude that we have the following formula:

pMd®m ™ ¢ End(u)

But, in single index notation, we have the following formula:

(M dEma ™), = Z Z Aty - i,

i=k1...kn j=l1...ln,
Thus, we are led to the conclusion in the statement.

(2) Assuming that we are in the case Z = {1,..., N}, the matrix d*" in the statement
is simply the componentwise n-th power of d, given by:

xn __ n
dij _dij

As explained in [3] or in chapter 5, a simple analytic argument based on this, using
n — oo and then a recurrence on the number of colors, shows that we have washability
indeed. Thus, we are led to the conclusions in the statement. O

In order now to further exploit the findings in Theorem 7.15, an idea would be that
of assuming that we are in the homogeneous case, Z = My x {1,...,L}, and that the
adjacency matrix is split, in the sense that one of the following happens:

dab,cd - 6abfcd ) dab,cd = 6acfbd ) dab,cd - eadfbc

Normally the graph should be washable in this case, but the computations are quite
complex, and there is no clear result known in this sense. Thus, as a conclusion to all
this, the basic theory of the quantum groups G*(X) from chapter 5 extends well to the
present quantum graph setting, modulo some subtleties in connection with the colors.

7b. Cayley graphs

With the basic theory of quantum symmetry groups of quantum graphs G*(X) C S5
developed, we can now start hunting for examples. We already know from chapter 5 that,
even in the Z = {1,..., N} case, going beyond trivialities is quite tricky. In the present,
general case, there are however at least 3 things that can be done, as follows:
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(1) We can try to study the quantum graphs modelled on the simplest, non-trivial
quantum space, namely Z = M,. Here we have S} = S, = SOs, and for the few graphs
here, having | M| = 4 vertices, we recover certain subgroups of SO3. We will discuss this
in chapter 10 below, when talking about the ADE classification of such subgroups.

(2) We can look for the S} analogues of the quantum reflection groups. This is some-
thing quite fundamental, and potentially useful, and we defer the discussion here, which
is a bit technical, to the end of the present chapter. We will see that such “generalized
quantum reflection groups” exist indeed, and are quite interesting objects.

(3) Finally, we can talk about Cayley theorems and Frucht theorems, in the present
quantum space and quantum graph setting. We already know from chapter 4 that the
passage {1,..., N} — Z fixes a number of issues in respect to Cayley theorems, and we
will see here that the same happens in relation with Frucht theorems.

In order to get started, we have the following result, that we basically know from
chapter 4, and that we reproduce here for convenience:
THEOREM 7.16. Any finite quantum group G has a Cayley embedding, as follows:
G C S
Howewver, there are finite quantum groups which are not quantum permutation groups.
PROOF. There are two statements here, the idea being as follows:

(1) We have an action G ~ G, which leaves invariant the Haar measure. Now since
the counting measure is left and right invariant, so is the Haar measure, we conclude that
G ~ G leaves invariant the counting measure, and so we have G C S, as claimed.

(2) Regarding the second assertion, this is something non-trivial, from [13], the sim-
plest counterexample being a certain quantum group G appearing as a split abelian ex-
tension associated to the factorization Sy = Z4Ss, having cardinality |G| = 24. O

The question now is whether we can do better, by viewing GG as the quantum symmetry
group of a certain finite quantum graph X, modelled on the finite quantum space G.
Such questions are quite interesting, and in order to discuss them, let us start with a
study for the classical finite groups GG. Here we first have the following result:

PROPOSITION 7.17. Any finite group G appears as G = G(X), with X being the
colored oriented graph having G as set of vertices, and with the edges being colored by

dp, = h 'k

according to the usual colored graph conventions, with color set C' = G.
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PRrROOF. Consider indeed the Cayley action of G on itself, which is given by:
GCSe , g—[h—gh

We have dgp g = dpg, which gives an action G ~ X, and so an inclusion G C G(X).
Conversely now, pick an arbitrary permutation ¢ € Sg. We have then:

s G(X) = da(h)g(k) = dp
— o(h)to(k) =h"'k

— o(1)to(k) =k
— o(k)=0a(1)k
— o€l
Thus, the inclusion G C G(X) is an equality, as desired. O

We have the following improvement of the above result, in the quantum setting:

THEOREM 7.18. Any finite group G appears as G = GT(X), with X being the colored
oritented graph from Proposition 7.17, with vertex set G and adjacency matrix

dpe = h™ 'k
with the conventions there, namely that the set of colors is C' = G itself.

PrOOF. We know from chapter 5 that the magic matrix u = (u;;) of the quantum
group G*(X) must commute with all the color components of d. But these color compo-
nents, d° € Mq(0,1) with ¢ € G, are given by the following formula:

. 1 ifhtk=c
hk — .
0 otherwise

With this formula in hand, the commutation computation goes as follows:
d°u = ud"® (d°U)pg = (ud)py

c _ c
E dhgugk‘ - § :uhgdgk
g g
E 5h_1g,cugk = E uhg(ig_l,ac
g g

Uhek = Up,ke—1

[

Uhe,de = Uhd
In particular, with h = 1 we obtain the following formula:
Ue,de = U1d

Thus all the rows of our magic matrix u = (u;;) appear as permutations of the 1st row.
Now since the entries in the 1st row commute, as being pairwise orthogonal projections,
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it follows that all the entries of u commute. Thus our graph has no quantum symmetry,
GT(X) = G(X), and the result follows from Proposition 7.17. O

Our next goal will be that of improving Proposition 7.17 and Theorem 7.18, as to get
rid of orientation, or colors. We first have the following extension of Proposition 7.17:

PROPOSITION 7.19. Given a finite group G, written as G =< S >, define the associ-
ated Cayley graph X by saying that the edges g — h exist when

g 'hes
and are colored by g~'h € S precisely. Then we have G = G(X).

ProOOF. We use the same method as in the proofs of Proposition 7.17 and Theorem
7.18. The adjacency matrix of the graph X in the statement is given by:

h 1k if h ke S
dpp = }
0 otherwise

Thus we have an action G ~ X, and so on inclusion G C G(X). Conversely now, pick
an arbitrary permutation o € Si. We know that ¢ must preserve all the color components
of d, which are the following matrices, depending on a color ¢ € S:

. 1 ifhtk=c
hk — .
0 otherwise

In other words, we have the following equivalences:
c€eG(X) <= dynow =dm,Vc €S
< o(h) to(k)=h"'k,Vh ke S
Now observe that with A = 1 we obtain from this that we have:
keS = o) tok)=k
= o(k)=0(1)k

Next, by taking h € S, we obtain from the above formula that we have:

kehS = o(h)lo(k)=h'%
= o(k) =o(h)h 'k
—  o(k) = (oc(1)h)h 'k
= o(k)=0(1)k

Thus with g = (1) we have the following formula, for any k € S:
o(k) =gk



166 7. TWISTED REFLECTIONS

But the same method shows that this formula holds as well for any k¥ € S?, then for
any k € S, any k € S* and so on. Thus the above formula o(k) = gk holds for any
k € G, and so the inclusion G C G(X) is an equality, as desired. O

We have the following joint extension of Theorem 7.18 and Proposition 7.19:

THEOREM 7.20. Given a finite group G, written as G =< S >, define the associated
Cayley graph X by saying that the edges g — h exist when

g thes
and are colored by g~ *h € S precisely. Then we have G = Gt (X).

ProoF. We use the same method as in the proof of Theorem 7.18. The computation
there applies, but this time under the assumption ¢ € S, and gives:

du = ud® <= Upcde = Upd
Now observe that with A = 1 we obtain from this that we have:
Ue,de = Uld

But this shows that the entries of the various c-rows of u = (u;;), with ¢ € {1} U S,
pairwise commute. Next, by taking h = ¢ € S, we obtain from the above formula:

hc’c,d = Ue/d

We conclude from this that the entries of the various c-rows of v = (u;;), indexed by
group elements ¢ € {1} U S U S? pairwise commute. By continuing the procedure we
obtain in this way that all the entries of u commute. Thus our graph has no quantum
symmetry, GT(X) = G(X), and the result follows from Proposition 7.19. O

The above result is not the end of the story, but rather the beginning of it. Indeed,
at a more advanced level, we have the following classical result, due to Frucht:

THEOREM 7.21 (Frucht). Any finite group G appears as the symmetry group
G =G(X)
of a certain uncolored, unoriented graph X.

PRrROOF. The idea is to start with the oriented graph in Proposition 7.19, and make
a unoriented graph out of it, by replacing each edge with a copy of the following graph,
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with the height being in a chosen bijection with the corresponding element g~'h € S:

o

o o o op,

)

With these replacements made, under suitable assumptions on the generating S,
namely 1 ¢ S, plus the fact that S N S~! must consist only of involutions, one can
prove that GG appears indeed of the symmetry group of this graph X. O

So long for classical groups G, viewed as symmetry groups. Further questions, which
are more technical, include getting rid of orientation in Theorem 7.20, as for G to appear
as classical or quantum symmetry group of its Cayley graph, viewed as metric space, and
also the study of the quantum symmetry group of the graph from Theorem 7.21.

In the quantum group case, similar problems make sense, with Theorem 7.16 as a
starting point. For more on all this, we refer to [52], [58] and related papers.

7c. Twisted reflections

With the above technology in hand, we can talk about twisted quantum reflections.
The idea here, from [2], will be that the twisted analogues of the quantum reflection
groups H3t C Sy from chapter 6 will be the quantum automorphism groups S} . of
the fibrations of finite quantum spaces Z — Y, which correspond by definition to the
Markov inclusions of finite dimensional C*-algebras C'(Y) C C(Z).

In order to discuss this material, let us start with the following definition:

DEFINITION 7.22. A fibration of finite quantum spaces Z — Y corresponds to an
inclusion of finite dimensional C*-algebras
cyY)ccoz)
which is Markov, in the sense that it commutes with the canonical traces.

Here the commutation condition with the canonical traces means that the composition
C(Y) € C(Z) — C should equal the canonical trace C(Y) — C. At the level of the
corresponding quantum spaces, this means that the quotient map Z — Y must commute
with the corresponding counting measures, and this is where our term “fibration” comes
from. As for the term “Markov”, this is something standard in subfactor theory.

In order to talk about the quantum symmetry groups S} .-, we will need:
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PROPOSITION 7.23. Given a fibration Z — Y, a closed subgroup G C S, leaves
invariant Y precisely when its magic unitary u = (u;;) satisfies the condition

e € End(u)
where e : C(Z) — C(Z) is the Jones projection, onto the subalgebra C(Y) C C(Z).

ProOF. This is something that we know well from chapter 5, in the commutative
case, where Z is a usual finite set, and the proof in general is similar. O

We can now talk about twisted quantum reflection groups, as follows:

THEOREM 7.24. Any fibration of finite quantum spaces Z — Y has a quantum sym-
metry group, which is the biggest acting on Z by leaving Y invariant:

+ +
Sy .y C Sy

At the level of algebras of functions, this quantum group S}, ., is obtained as follows, with
e:C(Z) — C(Y) being the Jones projection:

C(St_y) = C(S) / <e c End(u)>

We call these quantum groups S5 . twisted quantum reflection groups.
Proor. This follows indeed from Proposition 7.23. U
As a basic example, let us discuss the commutative case. Here we have:

PROPOSITION 7.25. In the commutative case, the fibration Z — Y must be of the
following special form, with N,s being certain integers,

{1,...,N}x{1,...;s} = {1,....N} , (i,a) —>1
and we obtain the quantum reflection groups studied in chapter 6,
(S7y CSz) = (Hy C Siy)
via some standard identifications.

PRrROOF. In the commutative case our fibration must be a usual fibration of finite
spaces, {1,...,M} — {1,..., N}, commuting with the counting measures. But this
shows that our fibration must be of the following special form, with N, s € N:

(1, N}yx{L....s} > {1,....,N} , (i,a)—i

Regarding now the quantum symmetry group, we have the following formula for it,
with e : CY ® C* — CV being the Jones projection for the inclusion CV¥ ¢ CV @ C¢:

C(Shy) = C(Siy) [ (e € End(w))
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On the other hand, recall from chapter 6 that the quantum reflection group Hyt C Sy
appears via the condition that the corresponding magic matrix must be sudoku:

a® o .. @t
asfl (10 a572
U = )
at  a? a

But, as explained in [2], [3], this is the same as saying that the quantum group
HY" c Sy appears as the symmetry group of the multi-simplex associated to the fibration
{1,...,N} x{1,...,s} = {1,..., N}, so we have an identification as follows:

(Sz.y CSz) = (Hy CSly)
Thus, we are led to the conclusions in the statement. Il

Observe that in Proposition 7.25 the fibration Z — Y is “trivial”, in the sense that it
is of the following special form:

YXT—=Y | (i,a)—i

However, in the general quantum case, there are many interesting fibrations Z — Y
which are not trivial, and in what follows we will not make any assumption on our
fibrations, and use Definition 7.22 and Theorem 7.24 as stated.

7d. Subfactor results

Following [2], we will prove now that the Tannakian category of S} ..., which is by
definition a generalization of S}, is the Fuss-Catalan category, which is a generalization
of the Temperley-Lieb category, introduced by Bisch and Jones in [34].

In order to do so, let us first reformulate Theorem 7.24 in a more convenient way, in
purely functional analytic terms, and also as a self-contained statement, as follows:

THEOREM 7.26. Any Markov inclusion of finite dimensional algebras D C B has a
quantum symmetry group SBC g- The corresponding Woronowicz algebra is generated by
the coefficients of a biunitary matriz v = (v;;) subject to the conditions

m € Hom(v®* v) , we€ Hom(l,v) , e€ End(v)

where m : B® B — B is the multiplication, u : C — B is the unit and e : B — B is the
projection onto D, with respect to the scalar product < x,y >= tr(zy*).

Proor. This is a reformulation of Theorem 7.24, with several modifications made.
Indeed, by using the algebras D = C(Y'), B = C(Z) instead of the quantum spaces Y, Z
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used there, and also by calling the fundamental corepresentation v = (v;;), in order to
avoid confusion with the unit u : C — B, the formula in Theorem 7.24 reads:

C(Sheg) = C(S5) [ (e € End(v))

Also, we know from Theorem 7.4 that we have the following formula, again by using
B instead of Z, and by calling the fundamental corepresentation v = (v;;):

C(S3) = C(U]T,)/<m € Hom(v®%,v),u € cmc(v)>
Thus, we are led to the conclusion in the statement. Il

As already mentioned, our goal will be that of proving that the Tannakian category
of S} p is the Fuss-Catalan category, introduced by Bisch and Jones in [34]. This will
be something quite technical, from [2], jointly generalizing our previous Temperley-Lieb
computations for S, and our previous results regrading quantum reflection groups.

The Fuss-Catalan category, to be introduced in a moment, is a tensor C*-category
having (N, +) as monoid of objects. In what follows, we will call such a tensor category
a N-algebra. If C' is a N-algebra we use the following notations:

C(m,n) = Home¢(m,n) , C(m)= Endc(m)

Let us first discuss in detail the Temperley-Lieb algebra, as a continuation of the
material from chapters 1-4. In the present context, we have the following definition:

DEFINITION 7.27. The N-algebra TL? of index § > 0 is defined as follows:

(1) The space TL*(m,n) consists of linear combinations of noncrossing pairings be-
tween 2m points and 2n points:

~~~~~~ <  2m points
TL*(m,n) = Z a W <« m+n strings
- — 2n points

(2) The operations o, ®, x are induced by the vertical and horizontal concatenation
and the upside-down turning of diagrams:

AoB:(ﬁ) , A B=AB , A"=YV

(3) With the rule O = 9, erasing a circle is the same as multiplying by 6.

Our first task will be that of finding a suitable presentation for this algebra. Consider
the following two elements u € TL*(0,1) and m € TL?*(2,1):

u=07:n , m=067|U]

With this convention, we have the following result:



7D. SUBFACTOR RESULTS 171

THEOREM 7.28. The following relations are a presentation of T L? by the above rescaled

diagrams u € TL*(0,1) and m € TL*(2,1):

(1) mm* = §°.

(2) wu=1.

(3) m(m®1) =m(1l®m).
4) mleu) =muel)=1.
B) (me )1 em*)=1em)(m* 1) =m*m.
ProOF. This is something well-known, and elementary, by drawing diagrams, and for

details here, we refer for instance to [34]. O

In more concrete terms, the above result says that u, m satisfy the above relations,
which is something clear, and that if C' is a N-algebra and v € C'(0,1) and n € C(2,1)
satisfy the same relations then there exists a N-algebra morphism as follows:

TI? -C , u—v , m—n

Now let B be a finite dimensional C*-algebra, with its canonical trace. We have
a scalar product < z,y >= tr(zy*) on B, so B is an object in the category of finite
dimensional Hilbert spaces. Consider the unit u and the multiplication m of B:

weNB(0,1) , meNB(21)

The relations in Theorem 7.28 are then satisfied, and one can deduce from this that
in this case, the category of representations of S} is the completion of TL?, as we already
know from chapter 4. Getting now to Fuss-Catalan algebras, we have here:

DEFINITION 7.29. A Fuss-Catalan diagram is a planar diagram formed by an upper
row of 4m points, a lower row of 4n points, both colored

cCceeocOee. . .

and by 2m + 2n noncrossing strings joining these 4m + 4n points, with the rule that the
points which are joined must have the same color.

Fix 8 > 0 and w > 0. The N-algebra F'C is defined as follows. The spaces F'C(m,n)
consist of linear combinations of Fuss-Catalan diagrams:

0Cee00®eO0 . ..... < 4m colored points
m + n black strings
FC(m,n) = Z a 27 — and
m + n white strings
000000800 . .. ... < 4n colored points

As before with the Temperley-Lieb algebra, the operations o, ®, * are induced by
vertical and horizontal concatenation and upside-down turning of diagrams, but this time
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with the rule that erasing a black/white circle is the same as multiplying by (/w:
B
AoB= (A) , A B=AB , A*=V
black%ozﬁ , White—>O:w

Let 0 = Sw. We have the following bicolored analogues of the elements u, m:

w=35: ), m=d[JI

Consider also the black and white Jones projections, namely:
_ -1 U a1 Y
e=w" 2], F=pT 1Y)
For simplifying writing we identify = and z ® 1. We have the following result:

THEOREM 7.30. The following relations, with f = $72(1 @ me)m*, are a presentation
of FC bym € FC(2,1), u € FC(0,1) and e € FC(1):
The relations in Theorem 7.28, with § = fw.
e—e =, f= [ and (1 f)f = [1& f).

mem* =m(1l ® e)m* = 32
) mme®e®e) =emm(e®1®e).
PROOF. As for any presentation result, we have to prove two assertions:
(I) The elements m, u, e satisfy the relations (1-5) and generate the N-algebra F'C'.

(IT) If M, U and E in a N-algebra C satisfy the relations (1-5), then there exists a
morphism of N-algebras FFC' — C sending m — M, u— U, e —» F.

(I) First, the relations (1-5) are easily verified by drawing pictures. Let us show now
that the N-subalgebra C' =< m,u,e > of F'C is equal to FC. First, C contains the
infinite sequence of black and white Jones projections:

LU
2

n=e=w
_ U
o p-1
pe=f=5" 12
U
_ -1
pr=l@e=w Il 5]

_ U
p=10f=8" [l 21l
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The algebra C' contains as well the infinite sequence of bicolored Jones projections:

9)

ey =uut =061t A

Yy

er =0 m*m=0"|] A

es = 1@uu =5 ||| %

cv=5@mm) =5 [l g |

By the results of Bisch and Jones in [34], these latter projections generate the diagonal
N-algebra AFC'. Thus we have inclusions as follows:

AFCcCcCFC
By definition of C, we have as well the following equality:
AFC = AC

Also, the existence of semicircles shows that the objects of C' and F'C' are self-dual,
and by Frobenius reciprocity we obtain that for m + n even, we have:

dim(C(m,n)) = dim(FC(m,n))
By tensoring with u and u* we get embeddings as follows:
C(m,n) C C(m,n+1) , FC(m,n) C FC(m,n+1)

But this shows that the above dimension equalities hold for any m and n. Together
with AFC C C' C FC, this shows that C' = FC.

(IT) Assume that M, U, E in a N-algebra C satisfy the relations (1-5). We have to
construct a morphism F'C' — C sending:

m—-M , u—U , e—FE
As a first task, we would like to construct a morphism AFC — AC sending;:
m'm— MM | w —-UU* |, e—=>FE
By constructing the corresponding Jones projections E; and P;, we must send:
e, —FE; , pi— B
In order to construct these maps, we use now the fact, from [34], that the following

relations are a presentation of AFC"

(a) €2 = e;, e;e; = eje; if |i — j| > 2 and e;e;01e; = 0 e,
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(b) p? = pi and p;p; = p;p;.

(c) e;pi = pie; = e; and pe; = e;p; if |t — j| > 2.

(d) ezitiprieoits = B 2egi1 and €2iP2i+1€2; = w2y

(e) D2i€2i+1P2i = ﬁ_zp%ﬂpzz‘ and pojt1€iP2it1 = W_szipmil-

Thus, it remains to verify that we have the following implication, where m,u, e are
now abstract objects, and we are no longer allowed to draw pictures:

(1-5) = (a—e)

But these relations are all easy to verify. The conclusion is that we constructed a
certain N-algebra morphism, as follows:

AJ: AFC — AC

We have to extend now this morphism into a morphism J : FC' — C' sending u — U
and m — M. We will use a standard argument. For w > k, [ we define:

¢: FC(l,k) = FC(w)
z— WP M1z (W) 1)
We can define as well a morphism as follows:
0: FC(w)— FC(l, k)
z— ()P @ 1)z (w®@V ®1)

Here 1;, = 19%, and the convention z = x ® 1 is no longer used. We define ® and © in

C' by similar formulae. We have 8¢ = ©® = [d. We define a map J by:
FC(I, k) —2— C(1, k)

FC(w) —2L— C(w)

Since J(a) does now depend on the choice of w, these J maps are the components of
a global map J : FC' — C, which sends u — U and m — M, as desired. O

Getting back now to the inclusions D C B, we have the following result:
THEOREM 7.31. Given a Markov inclusion D C B, we have
<m,u,e >= FC

as an equality of N-algebras.



7D. SUBFACTOR RESULTS 175

PRrROOF. It is routine to check that the linear maps m, u, e associated to an inclusion
D C B as in the statement satisfy the relations (1-5) in Theorem 7.30. Thus, we obtain
a certain N-algebra surjective morphism, as follows:

J: FC =< m,u,e >

It remains to prove that this morphism J is faithful. For this purpose, consider the
following map, where v = m*u € FC(0,2):

¢n: FC(n) - FC(n —1)
z— (120D %) (z @ 1) (18" @ v)
Consider as well the following map, where v = m*u € FC(0,2) is as above:
Yp : C(n) — C(n—1)
r— (1% @ J(0)) (@@ 1) (17" @ J(v)

These maps make then the following diagram commutative:

FC(n) J C(n)

én Pn

FC(n—1) —2~

C(n—1)

By gluing such diagrams we get a factorization by J of the composition on the left of
conditional expectations, which is the Markov trace. By positivity J is faithful on AFC,
then by Frobenius reciprocity faithfulness has to hold on the whole F'C. U

Getting back now to quantum groups, we have:

THEOREM 7.32. Given a Markov inclusion D C B, the category of representations of
its quantum symmetry group S‘ch 1s the completion of FC.

PROOF. Since S‘gc  comes by definition from the relations corresponding to m, u, e, its
tensor category of corepresentations is the completion of the tensor category < m,u,e >.
Thus Theorem 7.31 applies, and gives an isomorphism < m,u,e >~ F(C. U

As already mentioned in the above, in terms of finite quantum spaces and quantum
graphs, the conclusion of all this is that the quantum automorphism groups S} ., of the
Markov fibrations Z — Y, which can be thought of as being the “twisted versions” of
the quantum reflection groups Hy' studied in chapter 6, correspond to the Fuss-Catalan
algebras. We refer to [2] and related papers for more on these topics.

Let us also mention that the various planar algebra results formulated so far through-
out this book have extensions to the present setting. We refer here to [89].
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7Te. Exercises

Things have been quite technical in this chapter, and as an exercise on all this, which
is quite technical, but is quite instructive, we have:

EXERCISE 7.33. Make the connection between the easiness results from chapter 6,
regarding the quantum groups HY , and the representation theory results from here, re-
garding the quantum automorphism groups S . of the Markov fibrations Z — Y.

This is something a bit tricky, in the sense that no new computations are needed, with
the work instead consisting of making lots of identifications, in order to view the main
results from chapter 6 as particular cases of those discussed here.



CHAPTER 8

Partial permutations

8a. Partial permutations

We discuss in this chapter an extension of some of the results that we have seen so
far, both of algebraic and analytic nature, from the case of the quantum permutations,
to the case of quantum partial permutations. Our motivations are as follows:

(1) In the quantum case, several things are potentially simpler for partial permutations
than for permutations, such as the diagonal subalgebras < u; >C C(G).

(2) Along the same lines, the quantum partial permutations of a graph X, finite or
not, are sometimes simpler to understand than the quantum permutations.

(3) We will see later in this book that the combinatorics of a partial Hadamard matrix
H € My;«n(T) is encoded by a certain quantum partial permutation semigroup.

Summarizing, we have good motivations, and potential applications in mind, and all
that will follow will be far from being anecdotical. Getting started now, we have:

DEFINITION 8.1. Sy is the semigroup of partial permutations of {1 ..., N},
Sy = {J:X:Y‘X,YC {1,...,N}}
with the usual composition operation for such partial permutations, namely
odo:o (X' NY)~d (X' NY)
being the composition of o' : X' ~Y'  and o : X =Y.

Observe that Sy is not simplifiable, because the null permutation () € g ~, having the
empty set as domain/range, satisfies the following formula, , for any o € Sy:

lo=0c0=0

Observe also that our semigroup S, ~ has a kind of “subinverse” map, which is not a
true inverse in the semigroup sense, sending a partial permutation o : X — Y to its usual
inverse 07! : Y — X. As a first interesting result now about Sy, which shows that we
are dealing with some non-trivial combinatorics, we have:

177



178 8. PARTIAL PERMUTATIONS

PROPOSITION 8.2. The number of partial permutations is given by

N 2
~ N
5= 2w (3)
k=0
that is, 1,2,7,34,209, ..., and we have the formula

< exp(4v/N — 1)
|Sn| =~ N!\/ P

i the N — oo limit.

PROOF. The first assertion is clear, because in order to construct a partial permutation
o : X — Y we must choose an integer k = | X| = |Y|, then we must pick two subsets
X,Y C {1,..., N} having cardinality k, and there are (]IX) choices for each, and finally we
must construct a bijection o : X — Y, and there are k! choices here. As for the estimate,
which is non-trivial, this is something standard, and well-known. U

Another result, which is trivial, but quite fundamental, is as follows:

PROPOSITION 8.3. We have a semigroup embedding u : Sy C Mny(0,1), given by
1 ifo(j)=1
uij(0) = .
0 otherwise

whose image are the matrices having at most one nonzero entry, on each row and column.

PROOF. This is trivial from definitions, with u : Sy € My/(0,1) extending the stan-
dard embedding u : Sy C Mx(0,1), that we have been heavily using, so far. O

Let us discuss now some probabilistic aspects, related to the Poisson law computations
from chapter 2. We denote by  : Sy — N the cardinality of the domain/range, and by

X Sy — N the number of fixed points among {1,...,l}. In terms of the standard
coordinates u;; from Proposition 8.3, these variables are given by:

!
K= E Uiz X1 = E Ui
ij i=1

Generally speaking, we are interested in computing the joint law of (x;, k). There are
many interesting questions here, and as a main result on the subject, we have:

THEOREM 8.4. The measures jif, = law (Xl‘/i = k:) are given by

2 E6) 5

and become Poisson (st) in the k = sN,l =tN, N — oo limit.
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PrROOF. We can use the same method as for Sy, from chapter 2. Let us set:
gz(\’f) = {0 € gN‘m(a) = k}

By using the inclusion-exclusion principle, we obtain the following formula:

P(Xzzp’/fzk> = LC)#{aegﬁ__ﬁ)

a(z');éz',vz'gl—p}

S\
1 (l) [ — P S(k—p—7)
= = (-1)*( S
SVI\P Z v
Here the index r, which counts the fixed points among {1,...,l — p}, runs a priori up

to min(k,l) — p. However, since the binomial coefficient or the cardinality of the set on
the right vanishes by definition at » > min(k,l) — p, we can sum over r > 0. We have:

2
s _ N

By using this and then cancelling various factorials, and grouping back into binomial
coefficients, we obtain the following formula:

Plomrh) = ) S (e (50)

r>0

B ; <;!71“?T (p—llg—r) (p—ll-r) <p:\—[r)2

We can now compute the measure itself. With p = ¢ — r, we obtain:

law (Xl‘” - k) =22 (_'713 (p—kliT) (pjrr> (p]-i\-fr) ) %

p>0 >0 P

2R O6) -

“EEE0) G ()

The sum on the right being (d; — dp)*?, this gives the formula in the statement. Re-
garding now the asymptotics, in the regime k = sN,l =tN, N — oo from the statement,
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the coefficient of (6; — y)*¢/q! in the formula of y is:
OO0
(&) (5 -

We deduce that the Fourier transform of pl is given by:

eV —1)¢ st(e¥—
F%(y) ~ Z(St)qg — est(e?=1)

|
q>0 £

12

But this is the Fourier transform of the law Poisson (st), and we are done. U

Following [24], let us discuss now the construction of :S’}f,, in analogy with the above
considerations. Let us go back to the embedding in Proposition 8.3, namely:

U §N C MN(O, 1) ) Uij(‘j) = 5@'(7(]’)

The image of this embedding being formed by the matrices in My(0,1) having at
most one nonzero entry on each row and column, the matrix v = (u;;) is “submagic”, in
the sense that its entries are projections, which are pairwise orthogonal on each row and
column. In fact, Gelfand duality shows that we have the following formula:

C(gN) = C:omm ((uij)i,jzl,...,N
This suggests the following definition, given in [24]:

u = submagic)

DEFINITION 8.5. C(gj\;) 1s the universal C*-algebra generated by the entries of a N x N
submagic matriz w, with comultiplication and counit maps given by

Auy) = Zuzk Qug; 5 e(uy) =6
k

where “submagic” means formed of projections, which are pairwise orthogonal on rows
and columns. We call S}, semigroup of quantum partial permutations of {1,..., N}.

Observe that the morphisms A, e constructed above satisfy the usual axioms for a
comultiplication and an antipode, in the bialgebra setting, namely:

(A ®id)A = (id® A)A
(e®id)A = (id®e)A =id
Observe also that our bialgebra C (gj\;) has a kind of “subantipode” map, defined by

S(uij) = wj;. The axiom satisfied by this subantipode map S is as follows, where m®)
the triple multiplication, and A® is the double comultiplication:

mP(S®id® S)A® = 3

18
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As a conclusion to this discussion, the basic properties of the quantum semigroup §K,
that we constructed in Definition 8.5 can be summarized as follows:

PROPOSITION 8.6. We have maps as follows,

C(S) + C(5Y) 5% < 5%
4 4 : U U
C(SN) — C(gN) Sy C gN

with the bialgebras at left corresponding to the quantum semigroups at right.

PRrOOF. This is clear from the above discussion, and from the well-known fact that
projections which sum up to 1 are pairwise orthogonal. Il

We recall from chapter 1 that we have S}, # Sy starting from N = 4. At the semigroup
level things get interesting starting from N = 2, where, following [24], we have:

ProprosITION 8.7. We have an isomorphism as follows,
C(55) = {(2,9) € C"(Dx) ® C"(Dc)|e(w) = 2(1) }
where € : C*(Dy) — C1 is the counit, given by the formula
uZ(p@OO@r)
0bs g0

where p,q and r,s are the standard generators of the two copies of C*(Dy).

Proor. Consider an arbitrary 2 x 2 matrix formed by projections:

u::(P R)
S Q
This matrix is submagic when the following conditions are satisfied:

PR=PS=QR=QS=0

Now observe that these conditions tell us that the non-unital algebras X =< P, Q >
and Y =< R, S > must commute, and must satisfy xy = 0, for any x € X,y € Y. Thus,
if we denote by Z the universal algebra generated by two projections, we have:

C(SH~CleZdZ
Now since we have C*(Dy,) = C1 @ Z, we obtain an isomorphism as follows:
<x@7:{u+mx+mxecﬂﬁez}

Thus, we are led to the conclusion in the statement. U
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Let us extend now Theorem 8.4 to the free setting. We first have:

PROPOSITION 8.8. The following two elements of C’(gjf,) are self-adjoint,
X:ZUm Fﬁ:zuij
i ij

satisfy 0 < x,k < N, and coincide with the usual x,xk on the quotient C(gN).

ProoF. All the above assertions are clear from definitions, and with the inequalities
0 < x,k < N being taken of course in an operator-theoretic sense. Il

More generally, we can talk about truncations of the variable y constructed above,
with respect to a parameter [ € {1,..., N}, which are constructed as follows:

!
Xt = Z Ui
i=1

Let us look now at Theorem 8.4. Since the algebra C (3’;\?) has no integration func-
tional, we cannot talk about the joint law of (x, ). Thus, we need an alternative approach
to uk. For this purpose, in the classical case, we use the following simple fact:

PROPOSITION 8.9. Any partial permutation o : X ~Y can be factorized as

X z Y

{1k ——— {1, k)

with o, B,y € Sy being certain non-unique permutations, where k = k(o).

PROOF. We can choose any two bijections X ~ {1,...,k} and {1,...,k} =Y, and
then complete them up to permutations v, « € Sy. The remaining permutation 5 € S
is then uniquely determined by the formula o = af~. O

We can now formulate an alternative definition for the measures ul. We fix k < N,
and we denote by p, ¢, r the magic matrices for Sy, Sk, Sy. We have:

PrOPOSITION 8.10. Consider the map ¢ : Sy X Sk X Sy — Sx. sending (o, B,7) to
the partial permutation o : v H{1,...,k} ~a{1,...,k} given by:
a(v7H (1)) = a(B(1))
(1) The image of ¢ is the set S\W = {o € Sy|r(c) = k}.
(2) The transpose of ¢ is given by ©*(ui;) = 3, 1 <p Pis @ qst @ T4
(3) . equals the law of the variable p*(x;) € C(Sny x Sy X Sn).
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PRroOF. This is an elementary statement, whose proof goes as follows:

(1) Since a,v € Sy, the domain and range of the associated element o € Sy have
indeed cardinality k. The surjectivity follows from Proposition 8.9.

(2) For the element o € Sy in the statement, we have:

o(j) =i

3t < kv Ht) = j,a(B(t) =i
Js,t <k, yTH(t) = 5, B(t) = s, a(s)
Js,t < k,ry(7) = 1,q(8) = 1, pis(c
35,1 <k, (Pis ® qat @ 145) (v, B,y) =

uij(a) =1

l
=1

LN

111

Now since the numbers s,t < k are uniquely determined by «, 8,7,1, 7, if they exist,
we conclude that we have the following formula:

ui(o) = Z (Pis ® ot @ 145)(x, B, )

s,t<k

But this gives the formula in the statement, and we are done.

(3) This comes from the fact that the map ¢r : Sy X Sp X Sy — gj(\lf) obtained by
restricting the target of ¢ commutes with the normalized counting measures. At k = N
this follows from the well-known fact that given («a, 3,7) € Sy x Sy X Sy random, the
product afy € Sy is random, and the general case is clear as well. U

The point now is that we can use the same trick, “c = af7v”, in the free case. The
precise preliminary statement that we will need is as follows:

PROPOSITION 8.11. Let p,q,r be the magic matrices for Sy, S}, S%.

(1) The matriz U;; = Zs,tgk Dis @ qst @ 145 15 submagic.
2) We have a representation T : C(gj(,) — C(S% x S x 8%, m(uy) = Uy,
) T factorizes through the algebra C(S;\r,(k)) =C(SY)) <k=k>.

) At k = N, this factorization m, commutes with the Haar functionals.

(
(3
(4

PROOF. Once again, this is an elementary statement, whose proof goes at follows:
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(1) By using the fact that p, ¢, r are magic, we obtain:
UijUil = Z Z DisPiv & qstGuw @ Tt5Twl

s,t<k v,w<k

= D) Pis @ Gutlow @ TijTuwn

s,t<k w<k

= ZPis@Qst@T’th’tl

s,t<k
= ;Ui
The proof of U;;U;; = 0;,U;; is similar, and we conclude that U is submagic.
(2) This follows from (1), and from the definition of C (514\})
(3) By using the fact that p, ¢, r are magic, we obtain indeed:

ZUij = Zzpis®qst®th
ij

ij st<k

= k
Thus the representation 7 factorizes indeed through the algebra in the statement.
(4) This is a well-known analogue of the fact that “the product of random permutations

is a random permutation”, that we already used before. Here is a representation theory
proof, using Peter-Weyl theory. With P = Proj(Fiz(u®")), we have:

/ Uiljl c Uln]n = § / pilsl . 'pinsn / qsltl o qsntn / Ttljl R Ttn]n
ShxSHxSt % JSY Cpe Cpe

= E : ‘Pil-ninysl~-~3nP51---5n7t1--~tn Ptl---tnajlu-jn

st

= DB injioin

= / WUsygy - - - Wingn,
S+

N

Thus 7 commutes indeed with the Haar functionals, and we are done. Il

Observe that, since the variable x is now continuous, 0 < k < N, the various algebras
C (S;\r,(k)) constructed above don’t sum any longer up to the algebra C(S}) itself. Thus,
in a certain sense, the above measures p}, encode only a part of the “probabilistic theory”

of gj{, We can however formulate a free analogue of Theorem 8.4, as follows:
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THEOREM 8.12. The measures pt, = law(m(x1)), where my, is defined as

me: C(Sh) = C(Sh x Sf x St

Ujj — Z Dis @ qst @ T
s,t<k

become free Poisson (st) in the k = sN,l =tN, N — oo limit.

PROOF. The variable that we are interested in, x} = m(x;), is given by:
Xk = Z Zpis@)%t@?”ti
i<l s,t<k
By raising to the power n and integrating, we obtain the following formula:
/ Z Z / pllsl . plnsn / qsltl . qsntn / rtlll . Ttnln
S;xs,jxﬁ ia<l Sarta<k S

By using now the Weingarten formula, the above moment is:

o= 5 (0)0p(s)Wan (@, B) - 05(5)05 (1) Wk (7, 0) - e (£)3,(1) Wan (€, p)

ist a..peNC(n

- Z WnN(a7B)Wnk(7a nN 5 p 25 )55( )5 ( )61)(2)
a...peNC(n) ist

- Z WnN(Oé’ B)Wnk('% 5)WnN(€’ p) Z 5a\/p(i>5ﬁ\/7(3)(55\/5(t)
a...peNC(n) ist

= Z WnN(a7 6)Wnk(77 6)WnN(57 P) : l\a\/p\k|ﬂ\/'y|k|5\/€|
a...peNC(n)

Since in the N — oo limit the Gram and Weingarten matrices are concentrated on
the diagonal, we obtain, in the regime in the statement, as in [16]:

Cr Z Nlel =1l py—lel . jlavel plaval plyvel
a,7,eENC(n)

~ Z N lal=hl=lel+lavel+lavyl+iyvel | g=lrl+lavyl+iyvel | qlavel
a,7,eENC(n)
o~ Z (st)l!
aeNC(n)
Thus, we are led to the conclusion in the statement. Il

As a conclusion, the operation Sy — gj& is indeed a “correct” liberation, agreeing
with the standard liberation operation from free probability theory [27], [94].
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8b. Graph symmetries

Some interesting questions, in relation with the classical and quantum partial permu-
tations, appear in relation with graph symmetries. We first have:

PROPOSITION 8.13. Given a graph X with N wvertices, and adjacency matriz d €
Mny(0,1), consider its partial automorphism semigroup, given by:

é(X) = {U S §N dij = da(i)g(j), Vi, j € DOTTL(O‘)}

We have then the following formula, with R = diag(R;), C' = diag(C};), with R;,C; being
the row and column sums of the associated submagic matriz w:

C(G(X)) = C(Sy) / <R(du —ud)C = 0>

Moreover, when using the relation du = ud instead of the above one, we obtain a certain
semigroup G(X) C G(X), which can be strictly smaller.

PROOF. The definition of G(X) in the statement reformulates as follows:
G(X) = {U € Syli~j,30(i),30(j) = o(i) ~ O'(j)}

We have the following computations:

1 if o(y) ~1
du z] Z dlkukj Z Uk] { ( )

— 0 otherwise

udzj Zulkdkj Zum {1 ifO'i ()Nj

v 0 otherwise

Here the “otherwise” cases include by definition the cases where o(j), respectively
o~ 1(7), is undefined. We have as well the following formulae:

Zuw {1 if 3o-1(4)

0 otherwise

2 = 3 y(0) = {1 if 30(j)

0 otherwise
Now by multiplying the above formulae, we obtain the following formulae:
1 if o(j) ~i and Fo71(7) and Jo(j)
0 otherwise

(Ri(du);;C5)(0) = {

1 if 671(i) ~ j and o71(i) and Jo(j)

0 otherwise

(Ri(ud);;C) (o) = {
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We conclude that the rela’iions in the statement, which read R;(du);;C; = R;(ud);;C},
when applied to a given o € Sy, correspond to the following condition:
Jo7!(i), 3o(j) = [0(j) ~i <= o7 '(i) ~ ]
But with i = o(k), this latter condition reformulates as follows:
30(k), 30() = [0() ~ (k) <= k~ J

Thus we must have ¢ € G(X), and we obtain the presentation result for G(X).
Regarding now the second assertion, the simplest counterexample here is simplex Xy,
having N vertices and edges everywhere. Indeed, the adjacency matrix of this simplex is
d =1y — 1y, with Iy being the all-1 matrix, and so the commutation of this matrix with
u corresponds to the fact that u must be bistochastic. Thus, u must be in fact magic,
and we obtain G(Xy) = Sy, which is smaller than G(Xy) = Sx. O

With the above result in hand, we are led to the following statement:

THEOREM 8.14. The following construction, with R,C" being the diagonal matrices
formed by the row and column sums of u, produces a subsemigroup G*(X) C Sf;,

O(GH(X)) = C(S%) / <R(du —ud)C = 0>
called semigroup of quantum partial automorphisms of X . whose classical version is G (X).
When using du = ud, we obtain a semigroup G*(X) C G*(X) which can be smaller.

Proor. All this is elementary, the idea being as follows:

(1) In order to construct the comultiplication A, consider the following elements:
Uij = Z Uik, D Uk
k

By using the fact that v is submagic, we deduce that we have:
R (dU);CY = A(Ri(du);C;)
R (Ud);Cf = A(R;(ud);;C;)

Thus we can define A by mapping u;; — U,;, as desired.

(2) Regarding now ¢, the algebra in the statement has indeed a morphism ¢ defined
by w;; —+ 0;;, because the following relations are trivially satisfied:

Ri(le)ijCj = Rz’(lNd)ijOj

(3) Regarding now S, we must prove that we have a morphism S given by u;; — w;;.
For this purpose, we know that with R = diag(R;) and C' = diag(C};), we have:

R(du —ud)C' =0
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Now when transposing this formula, we obtain:
C'(u'd — du")R" =0

Since C*, R! are respectively the diagonal matrices formed by the row sums and column
sums of u’, we conclude that the relations R(du —ud)C' = 0 are satisfied by the transpose
matrix u', and this gives the existence of the subantipode map S.

(4) The fact that we have G(X)gass = G(X) follows from (S7)eass = S

(5) Finally, the last assertion follows from the last assertion in Proposition 8.13, by
taking classical versions, the simplest counterexample being the simplex. O

As a first result now regarding the correspondence X — é+(X ), we have:
PROPOSITION 8.15. For any finite graph X we have
GH(X) = GH(X°)
where X¢ 1s the complementary graph.

PrRoOOF. The adjacency matrices of a graph X and of its complement X¢ are related
by the following formula, where Iy is the all-1 matrix:

dx +dxe =1In — 1n
Thus, in order to establish the formula in the statement, we must prove that:
RZ‘(I[NU)UC]' = Rz(U]IN)”C]

For this purpose, let us recall that, the matrix u being submagic, its row sums and
column sums R;, C; are projections. By using this fact, we have:

Ri(]INU)ijCj = RzC]C] = RZC]
Ri(U]IN)ijCj = RZRZC] = RZC]
Thus we have proved our equality, and the conclusion follows. U

In order to discuss now various aspects of the correspondence X — é+(X ), it is
technically convenient to slightly enlarge our formalism, as follows:

DEFINITION 8.16. Associated to any complex-colored oriented graph X, with adjacency
matriz d € My(C), is its semigroup of partial automorphisms, given by

G(X) = {0 € Sy

dij = dofioty; Vi j € Dom(c) }

as well as its quantum semigroup of quantum partial automorphisms, given by
C(GH(X)) = C(S%) / <R(du —ud)C = 0>

where R = diag(R;), C = diag(C;), with R;,C; being the row and column sums of u.
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With this notion in hand, following the material in chapter 5, let us discuss now the
color independence. Let m,~ be the multiplication and comultiplication of C:

m(e; ®e;) = e, () =€ ®e
We denote by m®, v their iterations, given by the following formulae:
(p)( ®...Q 611) = 511_”%61’1 R 'y(p)(ez) = €; R... & €;

Our goal is to use these iterations in the semigroup case, exactly as we did in chapter
5, in the quantum group case. We will need some technical results. Let us start with:

PROPOSITION 8.17. We have the following formulae,
mPuP = um® | By = Py

valid for any submagic matriz u.

ProoF. We have the following computations, which prove the first formula:

m(p)u®p(ei1 ®...&® 6z'p) = Z €; X Ujiq -« - ujip = (51'1 dp Zej X Uiy

J
Um(p) (61/1 ® e ® elp) = 511 Zp 611 = 7/1 'Lp Z 6] ® u]ZI

We have as well the following computations, which prove the second formula:

®p,7(17) (ez) — u®p< L® eZ Z € Q...Q¢e Quyj

f)/(p) <26J®u]l>zze]®®e]®u~”
J

Summarizing, we have proved both formulae in the statement. O
We will need as well a second technical result, as follows:
PROPOSITION 8.18. We have the following formulae, with uw, m,~ being as before,
m(p)R®pd®p7(p) = Rd*P | m(p)d®pc®p7(p) = J*PC
and with x being the componentwise, or Hadamard, product of matrices.

ProoF. We have the following computations, which prove the first formula:

(”)R‘@pd@py(”)(ei) - m(”)R‘@pd@p(ei ®...0¢)= Z e; ® Rjdﬁ?i
J

Rpr(ei) =R (Z e; ® di) = Z e; ¥ Rjdi

J J
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We have as well the following computations, which prove the second formula:

mPdPCEPA P (e)) = mPd®P(e; @ ... @ e; ® C;) = Z ej @ di;C;
J

IPC(e;) = dP(e; @ Ci) = Y e; @ dbC;
Thus, we have proved both formulae in the stateinent. O
We can now prove a key result, as follows:
PROPOSITION 8.19. We have the following formulae, with uw, m,~ being as before,
m(p)(Rdu)®p7(p) = Rd*Pu m(p)<udc>®p7(p) — ud*PC
and with x being the componentwise product of matrices.

ProOF. By using the formulae in Proposition 8.17 and Proposition 8.18, we get:

m(p)( Rdu)@’py(p) = m® R®pd®pu®p7(p)
— mP R d®pfy(p)u
= Rd*Pu
Once again by using Proposition 8.17 and Proposition 8.18, we have:
m® (udc)®p7(p) = mPyErderCer,P)
— um® d®p0®p7(p)
= ud*?’C
Thus, we have proved both formulae in the statement. O

We can now prove the color independence result, as follows:

THEOREM 8.20. The quantum semigroups of quantum partial isomorphisms of finite
graphs are subject to the “independence on the colors” formula

dij = dy = d, = d;d] — GH(X) = GH(X)
valid for any graphs X, X', having adjacency matrices d, d’ .

PROOF. Given a matrix d € My(C), consider its color decomposition, which is as
follows, with the color components d. being by definition 0-1 matrices:

d=> c-d,

ceC

We want to prove that a given quantum semigroup G acts on (X, d) if and only if it
acts on (X, d.), for any ¢ € C. For this purpose, consider the following linear space:

B, = {f c MN(C)‘Rfu - ufc}
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In terms of this space, we want to prove that we have:
de E, = d.€ E,,VceC

For this purpose, observe that we have the following implication, as a consequence of
the formulae established in Proposition 8.19:

Rdu = udC = Rd*u = ud*?C
We conclude that we have the following implication:
de E, — d*? € E,,Vpe N

But this gives the result, exactly as in [3], via the standard linear algebra fact that
the color components d. can be obtained from the componentwise powers d*?. Il

In contrast with what happens for the groups or quantum groups, in the semigroup
setting we do not have a spectral decomposition result as well. To be more precise,
consider as before the following linear space, associated to a submagic matrix u:

E, — {d € MN((C)‘Rdu — udo}

It is clear that E, is a linear space, containing 1, and stable under the adjoint operation
x too. We also know from Theorem 8.20 that FE, is stable under color decomposition.
However, FE, is not stable under taking products, and so is not an algebra, in general.

In general, the computation of é*(X ) remains a very interesting question. Interesting
as well is the question of generalizing all this to the infinite graph case, |X| = oo, with
the key remark that this might be simpler than talking about G*(X) with |X| = oc.

8c. Configuration spaces

We discuss now a number of further questions in relation with quantum partial per-
mutations, and more specifically, a number of potential applications of S to questions
regarding S}, itself. Let us start with the following key notion, that will be central:

DEFINITION 8.21. The diagonal algebra of C(Sy) is defined as
D(S;,) =< U11y...,UNN >C C(S;,)
with w;; being as usual the standard generators of the algebra C(Sy).

In this definition S} can be the usual symmetric group Sy, or its free version Sy,
that we are mainly interested in. However, we can perform this construction as well for
Sy, or for its free version Sy, and we will see that this leads to interesting conclusions.

Before getting into the study of diagonal algebras, let us complement Definition 8.21,
which is something algebraic, with its quantum space counterpart, as follows:
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DEFINITION 8.22. The configuration space of Sy is the quotient Sy — EJ given by
C(EY) = D(55)
where D(S) =< ui,...,uny >C C(S)) is the diagonal algebra of C(Sy).

According to the above definitions, we have diagrams as follows, with the quantum
groups and semigroups on the left producing the configuration spaces on the right:

SN % Ey B}

Sy — Sy En Ex

As mentioned, we are mainly interested in the diagonal algebra D(Sy) C C(Sy;), and
in the corresponding configuration space S¥ — Ej. Indeed, we know that at N > 4 the
irreducible representations of S3; have the same fusion rules as SOs, and in particular
their characters are polynomials in the main character x = ). u;;, so we have:

C(S]T[)central C D(‘S’]t/)

Thus, the diagonal algebra D(Sy) C C(S) and the corresponding configuration
space Si, — EJ; are very interesting objects, encapsulating key information regarding
the quantum group S¥. However, and here comes our point, enlarging the attention to
quantum semigroups is technically a good idea, as shown by the following result:

THEOREM 8.23. The configuration spaces for the main quantum permutation groups
and semigroups are contained into certain tori, as follows,

Ey E Ty

Ty

Tn

Ex Ex TR

with Ty = ZY being the real torus, Ty, = Z3N, and Ty C Ty being a certain subspace,
obtained by removing N points. The inclusions on the left are both isomorphisms.

PRrROOF. There are several things going on here, the idea being as follows:

(1) Let us first look at the diagonal algebra and configuration space for Sy. According
to our general construction from Definition 8.21, the diagonal algebra D(Sy) is generated
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by the characteristic functions u;; of the following subsets of Sy:
= {a € SN‘O‘(i) = z}
(2) Our first claim is that we have the following dimension formula:
dim (D(Sy)) =2V = N

Indeed, the sets S% are in “almost” generic position, leading to a dimension of 2%V,
but up to the following constraint, which lowers the dimension by N:

Sun.. NSy r=8yn...nsSY
(3) Our second claim is that, with C(Ex) = D(Sy), we have an embedding as follows:
Ex C Ty

Indeed, since the diagonal coordinates u;; are pairwise commuting projections, we have
a certain quotient map C*(ZY) — D(Sy), obtained via Fourier transform, which at the
dual level corresponds to an embedding of finite spaces Ey C Ty, as above.

(4) By combining now (2) and (3), we conclude that the configuration space for Sy is
a certain subspace Ey = Ty C T, obtained by removing N points.

(5) With the case of Sy done, let us turn now to Sy. Here the diagonal algebra D(Sy )
is generated by the characteristic functions u;; of the following sets:

§}’V = {0 € §N’0(z’) = 2}
Since the sets §]’V are now in generic position, we have the following formula:
dim (D(Sy)) = 2V
Thus, things are simpler for Sy than for Sy. As before, we have a certain quotient map

C*(ZY) — D(Sy), obtained via Fourier transform, which at the dual level corresponds
to an embedding of spaces Ey C T, which this time must be an equality.

(6) Finally, for the quantum group S, and its semigroup version S7;, there is nothing
much elementary to be done. Since the standard generators u;; are still projections, in
both cases, we can only say that the configuration spaces are as follows:

Ef c EL cTy
Thus, we are led to the conclusions in the statement. Il

As a more advanced result now, complementing Theorem 8.23, we have:

THEOREM 8.24. The following happen:
(1) The inclusion EY C Ty is an equality at N > 4.
(2) The inclusion EY; C Ty is an equality at any N > 2.
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Proor. This is something quite tricky, the idea being as follows:
(1) The problem here is that of computing the following functional:
0:C(Ty) — C(EY) C C(Sy) — C

But a routine study here leads to the conclusion that this functional ¢ is strictly
positive, giving the faithfulness of the quotient map C(Tx) — C(EY).

(2) We know from the above that the result holds at N > 4. Thus, we are led to a
study at N = 2,3, which is something elementary, and we obtain the result. O

All this is quite interesting, and we will be back to such questions, regarding diagonal
algebras and configuration spaces, later in this book, in chapters 9-12 below.
8d. Partial isometries

We have seen so far that the passage from Sy C S} to Sy C gj{, leads to some
interesting combinatorics, and to some potential applications as well. More on this later,
on various occasions, in chapters 9-12 below, and in chapters 13-16 as well.

In the remainder of this chapter we discuss one more piece of related theory, namely
the twisted version of all this, involving this time isometries and quantum isometries,
which are very basic noncommutative geometry objects. Our starting point will be:

DEFINITION 8.25. Oy is the semigroup of partial linear isometries of R,
Oy = {T :A— B isometry’A, B C RN}
with the usual composition operation for such maps, namely
TT:TYA'NB)—T(ANB)
being the composition of T' : A’ — B" with T : A — B.

As a first remark, Oy is indeed a semigroup, with respect to the operation in the
statement, and this is best seen in the matrix model picture, as follows:

PROPOSITION 8.26. We have an embedding Ox C My(R), obtained by completing
maps T : A — B into linear maps U : RN — RN | by setting Ujar = 0. Moreover:

(1) This embedding makes On correspond to the set of matriz-theoretic partial isome-
tries, i.e. to the matrices U € My(R) satisfying:

UU'vU =U

(2) The semigroup operation on 61\; corresponds in this way to the semigroup opera-
tion for matriz-theoretic partial isometries, namely:

UoV =UU'UAVVHV
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PRrOOF. All these assertions are well-known, and elementary. For a vector space
C = A, B let indeed I : C C RY be the inclusion, and Pg : RY — C be the projection.
The correspondence 71" <+ U in the statement is then given by:

A T B A T B
Py Ip Ia Pp
RN RN RN RN
U U

The fact that the composition U o V' is indeed a partial isometry comes from the fact
that the projections U'U and V'V are absorbed when performing the product:

UUUANVVHY - VHUU AVVHU - UUU ANVVHV = UUU AVVHV
Thus, we are led to the conclusions in the statement. U

In general, the multiplication formula U o V = U(U'U A VV*')V in Proposition 8.26
(2), while being quite complicated, is quite unavoidable. In view of some future liberation
purposes, we would need a functional analytic interpretation of it. We have here:

PROPOSITION 8.27. C(@N) is the universal commutative C*-algebra generated by the
entries of a N x N matriz v = (u;;) satisfying the relations

u=u |, wulu = u
with comultiplication given by the formula

(Zd X A)U = Ulg(plg A qlg)ulg = nh_{& UUt ce UtU
2n+1 terms

where p = wu',q = v'u and Uyj; = Y7, w @ uyy.

PROOF. The presentation assertion is standard, by using the Gelfand and Stone-

Weierstrass theorems. Let us find now the comultiplication map of C(aN). For this
purpose, consider the following canonical isomorphism:

®: C(Oy) ® C(Oy) = C(On x Oy)
Consider as well the following map:
Li;(UV)=UoV);
With these conventions, the comultiplication map of C' (61\7) is given by:
A(uyy) = @71 (Lyy)
In order to write now the map L;; in tensor product form, we can use:

PAQ= lim (PQ)"
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More precisely, with P = V'V and Q = U'U, we obtain the following formula:
(UoV)yy = Z U(P A Q)uVij = nh_)noloz Un(PQ)Vij
Kl ki

With ag = k, as, = [, and by expanding the product, we obtain:
(U © V)ZJ - nh_{go Z Uiao Pagay Qamz T Pa2n72a2nlea2n71a2n V;l%j

ag...a2n
= lim E UiaoQCLlCLQ cee Qa2n71a2n ’ Paoal S Pa2n72a2nflva2nj
n—oo
ag...a2n

Now by getting back to A(u;;) = ®~(Ly;), with L;;(U, V) = (U o V);;, we conclude
that we have the following formula, with p = vu! and ¢ = v'u:

A(ulj) = nh—{go § : UjagYGaras - - - Qasn_1a2n ®pa0a1 -+ Pasy_sa2,—1 Uasy,j

ag...a2n
Let us expand now both matrix products p = uu’ and ¢ = v!'u. In terms of the element

Uij = > Uik ® uy; in the statement, the sum on the right, say SZ-(;), becomes:

Sz(]n) - Z WUiag (utu)allm s (utu)a2n71a2n ® (uut)aoal s (uut)amfz@nflua%j
as

= § WiaoUbyay Ubras - - - Ubpasy—1 Ubnasn ® UagerUarer - - - Uazy—ocn Wazn—1cn Wasyj

asbscs

- § Uicl Ublcl UblCZ ct Ubncn Ubn]

bscs
— (UU'...U'U);
~——
2n+1 terms

Thus we have obtained the second formula in the statement. Regarding now the first
formula, observe that we have U = wujsu;3. This gives:

UU' ... UU = (upuis)(ululy) ... (ulsuly)(upus)
2n+1 terms
w2 (uiztys) (Uiptinz) - - - (Urauss) (uiste)ung
= Ui2P13912 - - - P13G12U13
But this gives the first formula in the statement, and we are done. U

Let us construct now the liberations. We have here the following definition:

DEFINITION 8.28. To any N € N we associate the following algebra,

C(0f) =C- ((Uz'j)z‘,j=1,...,N

Uij = Uy, wu' =p = projection)

and we call the underlying object 6} space of quantum partial isometries.
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As a first result regarding these liberations, we have:
PROPOSITION 8.29. We have embeddings of compact quantum spaces

Oy O

O O
and the spaces on the right produce the compact those on the left by dividing by the relations
p=p =q=q =1, where g = u*u and ¢’ = u'@, as in Definition 8.28.
PRrooF. It follows from definitions that we have embeddings as above. Regarding now
the second assertion, in the case of OF;, the relations p = p/ = ¢ = ¢’ = 1 read:
wu' = wu' = vlu =vlu =1
We deduce that both u,u! are unitaries, and so when dividing by these relations we

obtain the quantum group O%. As for the result regarding the classical versions, this is
clear too, by dividing by the commutation relations ab = ba. U

Let us discuss now the multiplicative structure. We have here:

ProPOSITION 8.30. 5}} has a non-associative multiplication given by
. o 9 t +
(Zd X A)u = U12<p13 A qlg)ulg = nh—>nc}o uut...UU

2n+1 terms
where p = uwut, q = u'u and Uy; = Y, wi @ ug;, compatible with that of 6N, OF.

ProoOF. First of all, the equality between the two matrices on the right in the state-
ment follows as in the proof of Proposition 8.27. Let us call W = (W;;) this matrix.
In order to check that A(u;;) = W;; defines indeed a morphism, we must verify that
W = (W,;) satisfies the conditions in Definition 8.28. We have:

WW'W = uia(pis A qu2)uas - uis(prs A qu2)ugs - w2(p1s A quz)uns
= ua(p13 A qi2)P13(p13 A qu2)p12(P1s A qr2)uas
= u(Pis A qi2)uis =W

Regarding now the last assertion, this is clear from definitions. O

Finally, let us discuss probabilistic aspects. We use the same method as for §j{, So,
pick an exponent o € {0, +}, set x = >_; ujju;;, and consider the following algebra:
C(OPy =C(0%)) < k=k >

With this convention, we have the following result:
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PROPOSITION 8.31. For any o € {0, +} we have a representation

Tt C(OX) = C(03% x 02 x 0%)

e (wij) = Z Dis @ st & Tj

s,t<k
which commutes with the Haar functionals at k = N.

PROOF. In the classical case, o = (), the first observation is that any partial isometry
T : A — B, with the linear spaces A, B C R" having dimension dim(A) = dim(B) = k,
decomposes as T'= UVW, with U W € Oy and V € Oy:

A r B
w U
R¥ R¥
1%

We conclude that we have a surjection ¢ : Oy X O X Oy — 555) mapping (U, V, W)
to the partial isometry 7' : W~1(R*) — U(R*) given by:

T(Wz)=UV)

By proceeding now as in the proof of Proposition 8.10 (2), we see that the transpose
map ™ = * is the representation in the statement, and we are done with the classical
case. In the free case, this is a routine extension of Proposition 8.10. We have indeed:

(Uvtv),; = Z UinUn Ui

kl
= Z Z Z Z DPisPivPly ® qstQuwQyz & Ttk TwkT 25

kl st<kv,w<lky,z<k

= Z Z Dis & QStotqu @ sz

s,t<k y,z<k

= Z Dis & (sz ® sz

$,2<k

Uy
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Since w;; = wuj; implies U;; = Uy, this proves the partial isometry condition. Let us
ckeck now that this representation vanishes on the ideal < k = k >. We have:

Z UZJUZtJ = Z Z Z DisPiv @ qstQuw @ TtiTwj
]

i s, t<kv,w<k

- Z 1®QStqst®]—

s,t<k
= k
Thus we have a representation m; as in the statement. Finally, the last assertion is

already known, from the proof of Proposition 8.10 (3). OJ

With the above result in hand, we can construct variables x} and then real probability
measures i} exactly as in the discrete case, in the following way:
Xe=m(a) = law(x),)

With these conventions, we have the following result, which is similar to the analytic
liberation result obtained in the above for the liberation operation Sy — S¥:

THEOREM 8.32. The operation 51\; — 5;{, 15 an analytic liberation, in the sense that
we have the Bercovici-Pata bijection for

i, = me(x1)
in the k = sN,l =tN, N — oo limit.
ProOF. This follows by using standard integration technology, from [15], [25], [42].
More precisely, the Weingarten computation in the proof of Theorem 8.12 gives the fol-

lowing formula, in the & = sN, | = tN, N — oo limit, where D(n) C P(n) denotes the
set of partitions associated to the quantum group O3 under consideration:

lim (X" = > (st)

N=20 /03 x09x0%, acD(n)

On the other hand, we know from [15], [25], [42] that the law of the truncated
character y; is given by the following formula, in the [ = tN, N — oo limit:

i [ or= 3
*J0% aeD(n)

We conclude that in the £ = sN, [ =tN, N — oo limit, we have:

lim pt = lim p
N%ooﬂlk N—oo HN

Thus, we are led to the conclusion in the statement. U
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Summarizing, we have basic results regarding Oy C 6;{,, in analogy with what we
know about Sy C S¥, and these results can be though of as being a “twisted” extension

of what we know about Sy C S3, due to the isomorphism S3; = PO}. There are far
more things that can be said on this subject, and generally speaking, the whole subject
belongs to the relatively new and exciting “free geometry” area. And here, the number
of things that can be done, inspired by classical geometry, is potentially infinite.

8e. Exercises

Things in this chapter have often been related to various research questions, and our
exercises here will be research-level as well. First, we have:

EXERCISE 8.33. Construct an explicit embedding of type
§N C Son
and then variables over Son extending our variables x, k.

Here there are of course many possible answers to the first question, but assuming that
the answer to this first question is found in the most straightforward way, our variables
X,k : Sy — N should then correspond to the variables x;, x, : Sony — N counting
respectively the number of fixed points in {1,..., N}, and in {N +1,...,2N}.

EXERCISE 8.34. Reformulate all the probabilistic computations for

5% Ox

Sy Oy
in terms of suitable homogeneous spaces over the corresponding quantum groups.

The answer can be actually found in the literature, so the question is that of finding
that literature, and making a brief account of it, in the cases that we are interested in.

EXERCISE 8.35. Develop some theory for the diagonal algebra D(ST).

To be more precise here, ST itself is not defined, and the problem is that of talking
however about D(SY), based on the computations did in the above.
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I'm coming up only to hold you under
I'm coming up only to show you wrong
And to know you is hard, we wonder
To know you all wrong, we warn



CHAPTER 9

Orbits, orbitals

9a. Orbits, orbitals

We have seen so far that several classes of subgroups G C Sy liberate into clossed
subgroups G C S§;. Our goal here, in this third part of the present book, will be to have
a systematic look at the liberation operation G — G, going beyond easiness. We will
be particularly interested in the transitive subgroups G C Sy, and how they liberate into
subgroups G C S}, this being perhaps the most important case.

Getting started now, a useful tool for the study of the subgroups G C Sy are the
orbits of the action G ~ {1,..., N}, and also the orbitals and higher orbitals of this
action. In the quantum case, G C Sy, the theory goes back to Bichon’s paper [31], and
then to the paper of Lupini, Manéinska, Roberson [69]. Following [31], we first have:

THEOREM 9.1. Given a closed subgroup G C S5, with standard coordinates denoted
u;; € C(QG), the following defines an equivalence relation on {1,..., N},

that we call orbit decomposition associated to the action G ~ {1,...,N}. In the classical
case, G C Sy, this is the usual orbit equivalence.

ProOOF. We first check the fact that we have indeed an equivalence relation. The
reflexivity axiom ¢ ~ ¢ follows by using the counit, as follows:

The symmetry axiom ¢ ~ j = j ~ i follows by using the antipode:
S(uji) = uyg = [uy; #0 = u;i # 0]

As for the transitivity axiom ¢ ~ k,k ~ j = 1 ~ j, this follows by using the
comultiplication, and positivity. Consider indeed the following formula:

Aluy) = Z Uik @ Up;
k

203
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On the right we have a sum of projections, and we obtain from this, as desired:

uik#O,ukjyéO - Uik®uk]’ >0
- A(UU) >0
- uij 7é 0

Finally, in the classical case, where G C Sy, the standard coordinates are:
Uij = X (O' € G’O’(]) = Z)
Thus u;; # 0 means that ¢, j must be in the same orbit, as claimed. Il

Generally speaking, the theory from the classical case extends well to the quantum
group setting, and we have in particular the following result, also from [31]:

THEOREM 9.2. Given a closed subgroup G C S5, with magic matriz u = (u;;), con-
sider the associated coaction map, on the space X = {1,...,N}:

¢:OX) = CX)RC(G) , e— Y e@uy;

The following three subalgebras of C(X) are then equal,

Fiz(u) = {5 € C(X)’Uf :f}

Fia(®) = {g c c<x>‘q>(5) —¢® 1}

Fia(~) = {g e O(X)

where ~ 1is the orbit equivalence relation constructed in Theorem 9.1.

PROOF. The fact that we have Fiz(u) = Fiz(®) is standard, with this being valid
for any corepresentation u = (u;;). Indeed, we first have the following computation:
€€ Fizx(u) <— uf=¢
— (u€); =§,Vj
— Zujifi =&,V
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On the other hand, we have as well the following computation:
£ € Fix(®) P =¢1
D d(e)G=¢@1

Z€j®ujifizzej®§j

i j
Z uji& = &,V

J

[

Thus we have Fix(u) = Fix(®), as claimed. Regarding now the equality of this
algebra with Fiz(~), observe first that given a vector £ € Fiz(~), we have:

Zuﬁfi = Zujzfi

in~j

= Z u;i;

]

= Zujifj
= &

Thus ¢ € Fiz(u) = Fiz(P). Finally, for the reverse inclusion, we know from The-
orem 9.1 that the magic unitary u = (u;;) is block-diagonal, with respect to the orbit
decomposition there. But this shows that the algebra Fiz(u) = Fiz(P) decomposes as
well with respect to the orbit decomposition, so in order to prove the result, we are left
with a study in the transitive case. More specifically we must prove that if the action is
transitive, then u is irreducible, and this being clear, we obtain the result. See [31]. O

We have as well a useful analytic result, as follows:

THEOREM 9.3. Given a closed subgroup G C S3;, the matriz

Bi; :/Uij
G

is the orthogonal projection onto Fix(~), and determines the orbits of G ~ {1,...,N}.

Proor. This follows from Theorem 9.2, and from the standard fact, coming from
Peter-Weyl theory, that P is the orthogonal projection onto Fiz(u). O

As a comment on the above result, we can see there an interesting relation between
the orbit problematics and the Weingarten function problematics. We will be back to this
key phenomenon on various occasions, in what follows.
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Following now Lupini, Mané¢inska, Roberson [69], let us discuss the higher orbitals.
Things are quite tricky here, and we have the following result, to start with:

THEOREM 9.4. Let G C Sy be a closed subgroup, with magic unitary v = (u;;), and
let k € N. The relation

(ilv--'aik) ~ (]h,]k) = Uiyjy - - Uiy gy, 7é0

is then reflexive and symmetric, and is transitive at k = 1,2. In the classical case,
G C Sy, this relation is transitive at any k € N, and is the usual k-orbital equivalence.

ProOF. This is known from [69], the proof being as follows:
(1) The reflexivity of ~ follows by using the counit, as follows:
(i) = 1L,Vr = Uiy -+ Uipiy,) = 1
= Uiy - Ui, 70
= (i1, 08) ~ (i1, .., 1)
(2) The symmetry follows by applying the antipode, and then the involution:
(i1, yin) ~ (J1s -y Jk) = Uiy - Uij, 0
= Ujp - Ujyiy 70
= Ujip - Wiy, 7 0
= (J1,--- k) ~ (i1, ig)
(3) The transitivity at k = 1,2 is more tricky. Here we need to prove that:
Uirjy Ui 7 05 Wity -+ Ut 70 = Wiygy - Uiy, 70
In order to do so, we use the following formula:

Ay - iyg,) = E Uiysy - - Uips,, @ Usyly - - - Usyly

51...8k

To be more precise, at k = 1 the result is clear from this by positivity, and known
since Theorem 9.1. At k£ = 2 now, we can use the following trick, from [69]:

(uhjl ® uj1l1)A(uillluin)(uinz ® ujzlz) = Z Uiy gy Wiy 51 Winsy Wiggo ® Uiy Usyly Usoly Ugaly
58189
Wiy jy Wiy @ Ujyly Ul
Indeed, we obtain from this the following implication, as desired:
Uiy gy Wiggo 7é Oaujlllujélz 7é 0 = Usy1; Uigly 7& 0
(4) Finally, assume that we are in the classical case, G C Sy. We have:

u,;jzx<U€Ga(j):i>




9B. GROUP DUALS 207
But this formula shows that we have the following equivalence:
uiljl uwk §£ O < E'O' c G, U(i1> :jl,...,U(ik> :jk

In other words, (i1,...,ix) ~ (ji,--.,Jk) happens precisely when (iy,...,7) and
(J1,---,Jk) are in the same k-orbital of GG, and this gives the last assertion. O

The above result raises the question about what exactly happens at k£ = 3, in relation
with transitivity, and the answer here, due to McCarthy [73], is as follows:

THEOREM 9.5. There are closed subgroups G C Sy, as for instance the Kac-Paljutkin
quantum group G C S}, for which ~ is not transitive at k = 3.

PRroOF. This is something quite technical, from [73], and we will come back to this,
with details, later on, when talking about S; and its subgroups. U

In view of the above results, and as a conclusion to all this, what we have on the
higher orbitals, we can only formulate a modest definition, as follows:

DEFINITION 9.6. Given a closed subgroup G C Sy, consider the relation defined by:

(ila"'aik) ~k (jlaajk) = Uiy - - Wg gy, 7& 0

(1) The equivalence classes with respect to ~1 are called orbits of G.
(2) The equivalence classes with respect to ~qo are called orbitals of G.
(3) If ~p with k > 3 is transitive, we call its equivalence classes k-orbitals of G.

We should mention here that having this definition, which might look a bit deceiving,
should not be a source of worries, because in practice, orbits and orbitals are what we
need. As for the higher orbitals, existing or not, we will be back to them later.

9b. Group duals

As an application of the above general theory, still following [31], let us discuss now
the group duals I' C Sy. We first have the following result:

THEOREM 9.7. Given a quotient group Zn, * ... Zy, — I', we have an embedding
Tc S, with N = Ny + ...+ Ny, having the following properties:
(1) This embedding appears by diagonally joining the embeddings Z;k - Sj{,k, and
the corresponding magic matriz has blocks of sizes Ny, ..., Nj.
(2) The equivalence relation on X = {1,..., N} coming from the orbits of the action

I' ~ X appears by refining the partition N = Ny + ...+ Nj.

Proor. This is something elementary, the idea being as follows:
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(1) Given a quotient group Zy, *...*Zy, — I', we have indeed a standard embedding
as follows, with N = N; + ...+ Ng, that we actually know well since chapter 1:

I' C ZNl*---*ZNk:Zqu‘-H%ZNk
~ ZN1>T<. -;‘ZN;CCSN1’T< ;‘SN;C
C Sy .. 8% C S

(2) Regarding the magic matrix, our claim is that this is as follows, Fy = \/—lﬁ(wﬁ\”,)

with wy = e*™/N being Fourier matrices, and ¢; being the standard generator of Liny:

1
Fy I Py,

u = , Il:

Fn I Fy, N
9

gi

(3) Indeed, let us recall that the magic matrix for Zy C Sy C Sy is given by:
Vij = X <O’ € ZN’O'(]) = Z) = (Si_j

Let us apply now the Fourier transform. According to our Pontrjagin duality conven-
tions from chapter 1, we have a pair of inverse isomorphisms, as follows:

1 .
D : C(ZN) — C*(ZN) , (51 — N gwmgk

U . C*<ZN) — C(ZN) , gl — Z’wilkék
k

Here w = €2™/N and we use the standard Fourier analysis convention that the indices

are 0,1,...,N — 1. With F' = \/Lﬁ(wij) and I = diag(g’) as above, we have:

uij = ®(vy)
1 o
= Nzw( ik g
k

1 ‘ B
— N Z wzkgk:w 7k
k
= (FIF");
Thus, the magic matrix that we are looking for is u = FIF*, as claimed.

(4) Finally, the second assertion in the statement is clear from the fact that u is
block-diagonal, with blocks corresponding to the partition N = Ny + ... + Ny. U
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As a first comment on the above result, not all group dual subgroups Tc S appear
exactly as above, a well-known counterexample here being the Klein group:

K =17yx7yC Sy CSf

Indeed, with K = {1,a,b, ¢}, where ¢ = ab, consider the embedding K C S, given by
a=(12)(34), b= (13)(24), ¢ = (14)(23). The corresponding magic matrix is:

51 5(1 517 50
5(1 61 5c 51)
51) 50 51 5(1
50 51) 5(1 51

u =

€ My(C(K))

Now since this matrix is not block-diagonal, the only choice for K = K to appear as
in Theorem 9.7 would be via a quotient map Z, — K, which is impossible. As a second
comment now on Theorem 9.7, in the second assertion there we really have a possible
refining operation, as shown by the example provided by the trivial group, namely:

Ly, *...x 2Ly, — {1}
Summarizing, what we have in Theorem 9.7 is rather a beginning of something, and

some further study is needed, in order to clarify the structure of the arbitrary group dual

subgroups Ic S, and the structure of their orbits, in connection with Theorem 9.1. As
a complementary result here, regarding the Klein group, we have:

PROPOSITION 9.8. The magic unitary for K C Sy diagonalizes as

56 0 0 0
0 6 0 0 .
FuF = | o 0*’5a o | € Mu(C™(K))
0 0 0 6,

where F' = Fy ® Fy is the Fourier matrixz of K.

ProOF. Consider indeed the Fourier matrix of K = Zy X Zso, which is:

11 1 1

1 /1 1 1 /1 1 Iyj1 -1 1 -1

FZF?@FQ:E(l —1)®E(l —1>:§ 11 -1 -1

1 -1 -1 1

By conjugating the magic matrix v found above by this matrix F', we obtain:
01+ 0q + 0p + 0¢ 0 0 0
_ 0 51 - (5a + 51) - 6@ O 0
Fub= 0 0 81 4 60 — 0y — O, 0
0 0 0 01 — 0q — 0p + Oc

Thus, we are led via K ~ K to the conclusion in the statement. U
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In order to further discuss all this, how the group dual subgroups T c S% and the
corresponding magic matrices appear, and how these magic matrices diagonaAlize, plainly
or over blocks, let us first enlarge the attention to the group dual subgroups I' C G of an
arbitrary closed subgroup G C Uy;. The theory here, coming from [98], is as follows:

PROPOSITION 9.9. Given a closed subgroup G C Uy, and a matriz Q € Uy, we let
Ty C G be the diagonal torus of G, with fundamental representation spinned by Q:

C(Tg) = C(G) / {((QuQ")y = 0]vi # j)

This torus is then a group dual, Ty = /A\Q, where Ag =< g1, ...,gn > 18 the discrete group
generated by the elements g; = (QuQ™*);;, which are unitaries inside C(1g).

PROOF. Since v = Qu@)* is a unitary corepresentation, its diagonal entries g; = vy,
when regarded inside C'(Tg), are unitaries, and satisfy:

A(gi) = 9 ® g;

Thus C(Tg) is a group algebra, and more specifically we have C'(T) = C*(Ag), where
Ag =< ¢1,...,9n > is the group in the statement, and this gives the result. U

Summarizing, associated to any closed subgroup G C Uy is a whole family of tori,
indexed by the unitaries U € Uy. As a first result regarding these tori, we have:

PROPOSITION 9.10. Any torus T C G appears as follows, for a certain Q) € Uy:
T'cToCG
In other words, any torus appears inside a standard torus.

PROOF. Given a torus T' C GG, we have an inclusion as follows:

TcGcCUy
On the other hand, we know that each torus T" = A C Uy, coming from a group
A=< gi,...,gn >, has a fundamental corepresentation as follows, with @ € Uy:
g1
gn
But this shows that we have T' C Tj, and this gives the result. O

Generally speaking, the family {T|Q € Un} constructed above can be thought of as
being a kind of “maximal torus” for G C U}, the idea being that various algebraic or
analytic properties of G' can be read on the tori Tyy. We refer here to [23].

In view of the above theory and results, a main problem that we are interested in,
when discussing the group dual subgroups I' C S}, is the computation of the standard
tori of S3. And the result here, complementing Theorem 9.7, is as follows:
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THEOREM 9.11. For the quantum permutation group SK,, the discrete group quotient
Fn — Ag with Q € Un comes from the following relations:

gi=1 if ZlQiﬁéO
gig; =1 i 3, QuQu #0
9:9i9x =1 if 37 QuQuQm # 0
Also, given a decomposition N = Ny + ...+ Ny, for the matriz Q = diag(Fy,, - .., Fn,),
where Fy = \/LN(GJ)U with &€ = e*™/N s the Fourier matriz, we obtain
Ao =Zn, *... %Ly,
with dual embedded into S3; in a standard way, as in Theorem 9.7.

PRrRoOOF. This can be proved by a direct computation, as follows:

(1) Fix a unitary matrix ) € Uy, and consider the following quantities:
= ,Qu
Cij = Zz QEIQ jl
diji = D2 QuQ Qi

We write w = QuQ*, where v is the fundamental corepresentation of C(S};). Assume
X ~{1,...,N}, and let a be the coaction of C'(S%) on C(X). Let us set:

pi = ZQilél € C(X)
1

Also, let g; = (QuQ*);; € C*(Ag). If B is the restriction of a to C*(Ag), then:

Blpi) = vi ® gi

(2) Now recall that C'(X) is the universal C*-algebra generated by elements dy,...,0x
which are pairwise orthogonal projections. Writing these conditions in terms of the lin-
early independent elements ¢; by means of the formulae §; = ), Qu¢y, we find that the
universal relations for C'(X) in terms of the elements ; are as follows:

Zz’ cip; =1
;= Z]’ CijPj
Piv; = >k dijkPr
(3) Let /~\Q be the group in the statement. Since [ preserves these relations, we get:
¢ij(9i9; —1) =0
dijr(9i9; — gr) =0
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We conclude from this that Ag is a quotient of /N\Q. On the other hand, it is immediate
that we have a coaction map as follows:

C(X) = C(X) @ C*(Ag)

Thus C (KQ) is a quotient of C'(S};). Since w is the fundamental corepresentation of
S with respect to the basis {¢;}, it follows that the generator w;; is sent to g; € /N\Q,
while w;; is sent to zero. We conclude that KQ is a quotient of Ag. Since the above
quotient maps send generators on generators, we conclude that Ag = /~\Q, as desired.

(4) We apply the result found in (3), with the N-element set X there being:
X =Zy U...ULy,

With this choice, we have ¢; = 9,y for any . Also, we have ¢;; = 0, unless i, j, k belong
to the same block to (), in which case ¢;; = 9,40, and also d;;; = 0, unless ¢, j, k belong
to the same block of @), in which case d;;j = 9,4, We conclude from this that Ag is the
free product of k£ groups which have generating relations as follows:

9i9i = Givj > 9 =i
But this shows that our group is Ag = Zy, * ... * Zy,, as stated. U

The above result does of course not close the discussion, and the Klein group embed-
ding, from Proposition 9.8, remains for instance to be unified with the general embeddings
from Theorem 9.7. This is something quite technical, and we will get back to this question
in chapter 10 below, after studying more in detail the transitive subgroups G C S};.

9c. Higher orbitals

Let us get away now from group dual subgroups, and go back to the general theory
of orbits and orbitals for the arbitary closed subgroups G C S3,. As a complement to
the results that we have, whose conclusions were summarized in Definition 9.6, we will
discuss now an analytic approach to the higher orbitals, which is particularly useful when
~ is not transitive. Let us begin with the following standard result:

PrROPOSITION 9.12. For a subgroup G C Sy, which fundamental corepresentation
denoted u = (u;;), the following numbers are equal:

(1) The number of k-orbitals.
(2) The dimension of space Fix(u®*).
(3) The number [, x", where x =3, us.

Proor. This is well-known, the proof being as follows:
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(1) = (2) Given o € G and vector £ = )

iy Qi g€y @ .. @ €y, We have:

O'®k£ = Z Qi .i €a(iy) @ - & €qx(iy)
i1
£ = Z Qg (iy)...o(ir) €o(in) @ - -+ @ €o(iy)
i1
Thus 0®%¢ = € holds for any o € G precisely when « is constant on the k-orbitals of
G, and this gives the equality between the numbers in (1) and (2).

(2) = (3) This follows from the Peter-Weyl theory, because x = >, u;; is the character
of the fundamental corepresentation wu. Il

In the quantum case now, where we have a closed subgroup G C S};, we have:

PROPOSITION 9.13. Given a closed subgroup G C SY;, and a number k € N, consider
the following linear space:

Fk = {5 € ((CN>®k gzlzk = €j1...jk7v<i17 ce 7216) ~ (jla ce a]k)}

) We have Fy, C Fiz(u®*).
) At k = 1,2 we have Fy, = Fiz(u®*).
) In the classical case, we have Fy, = Fix(u®*).

(1
(2
(3
(4) For G = S}, with N > 4 we have F3 # Fiz(u®?).

PROOF. The tensor power u®" being the corepresentation (i, i, 1. jc)ir. ixi..ins the
corresponding fixed point space Fix(u®*) consists of the vectors £ satisfying:

Z Uiy gy - - 'uikjk£j1-~~jk - glllk ) Vila coy Ok
J1--Jk
With this formula in hand, the proof goes as follows:
(1) Assuming £ € Fy, the above fixed point formula holds indeed, because:
Z Wipgy - - Wigjp &y = Z Wiy - - Wigjy Ciniy = inoi
Ji-Jk J1--Jk

(2) This is something more tricky, coming from the following formulae:

Uik <Z Uijfj - fi) = Uik(fk - fi)
J

Wik <Z Uiy jy WinjoErja — §i1i2> Uiy = Wirky Winks (Ehiks — &iiz)
J1jz

(3) This follows indeed from Proposition 9.12.
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(4) This follows from the representation theory of S}, with N > 4, and from some
elementary computations, the dimensions of the two spaces involved being 4 < 5. To be
more precise, let us start with the symmetric group Sy. It follows from definitions that
the k-orbitals are indexed by the partitions 7 € P(k), as follows:

C, = {(il,...,z’k)‘ keri = 7r}
In particular at £ = 3 we have 5 such orbitals, corresponding to:
AR R R N

Regarding now Sy, the 3-orbitals are exactly as for Sy, except for the fact that the ]
and ||| 3-orbitals get merged. Thus, we have 4 such orbitals, corresponding to:

mo, 0,
As for the number of analytic orbitals, this is the same as for Sy, namely 5. O

The above considerations suggest formulating the following definition:

DEFINITION 9.14. Given a closed subgroup G C U}, the integer

dimFix(u®k):/Xk
G

15 called number of analytic k-orbitals.

To be more precise, in the classical case the situation is of course well understood,
and this is the number of k-orbitals. The same goes for the general case, with k = 1,2,
where this is the number of k-orbitals. At k = 3 and higher, however, even in the case
where the algebraic 3-orbitals are well-defined, their number is not necessarily the above
one. In the particular case k = 3, we have as well the following result:

PROPOSITION 9.15. For a closed subgroup G C S5, and an integer k < 3, the following
conditions are equivalent:
(1) G is k-transitive, in the sense that Fiz(u®*) has dimension 1,2,5.
(2) The k-th moment of the main character is [, x* =1,2,5.
(3) We have the integration formula

(N — k)!
Guiljl s Wi = TN

for distinct indices i, and distinct indices j,.
(4) An arbitrary polynomial integral

/ Wiy gy - - - Ugggiy
G

w when keri = ker j, and equals 0, otherwise.

equals
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PROOF. Most of these implications are well-known, the idea being as follows:

(1) <= (2) This follows from the Peter-Weyl type theory from [98], because the
k-th moment of the character counts the number of fixed points of u®*.

(2) <= (3) This follows from the Schur-Weyl duality results for Sy, Sy and from
P(k) = NC(k) at k < 3.

(3) <= (4) Once again this follows from P(k) = NC(k) at k < 3, and from a
standard integration result for Sy, stating that we have:
B (N — | keri|)!
/SN Uiyjy -+ oo Uiy, = 6keri,kero

Thus, we are led to the conclusions in the statement. Il
As a conclusion to all these considerations, we have:

THEOREM 9.16. For a closed subgroup G C Sy, and an integer k € N, the number
dim(Fiz(u®*)) = [, x* of “analytic k-orbitals” has the following properties:
(1) In the classical case, this is the number of k-orbitals.
(2) In general, at k = 1,2, this is the number of k-orbitals.
(3) At k = 3, when this number is minimal, G is 3-transitive in the above sense.

Proor. This follows indeed from the above considerations. O

We will be back to all this later, with a number of more powerful tools.

9d. Finite subgroups

We discuss now an alternative take on the above questions, in the finite quantum
group case. Let us start with the following standard definition:

DEFINITION 9.17. Associated to any finite quantum group F is its dual finite quantum

group G = 13, given by C(G) = C(F)*, with Hopf C*-algebra structure as follows:
(1) Multiplication (pp)a = (¢ @ ¥)A(a).

) Unit 1 =c¢.
) Involution p*(a) = ¢(S(a)*).
) Comultiplication (Ap)(a @ b) = @(ab).
) Counit () = p(1).
) Antipode (S¢)a = p(S(a)).

Our aim will be that of reformulating in terms of G = F the quantum permutation
group condition F' C S5. We will see later how this can potentially help, by dropping the
assumption that F, G are finite, in connection with various quantum permutation group
questions. In order to get started, we have the following well-known fact:
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PROPOSITION 9.18. Given F and G = F as in Definition 9.17, the formula
7:C(G) = My(C) |, o= [p(uiy)i;
defines a x-algebra representation precisely when u is a corepresentation.

PROOF. In one sense, the fact that 7 is multiplicative follows from the fact that u is
comultiplicative, in the sense that A(w;;) = >, uix @ uy;, as follows:

() = [(p¥)uislis
= [(¢ @ V) A(uy)lij

- [ i),
- [@(Uij)]ij[w(uij)]ij
= 7(p)7(¥)

The fact that the morphism 7 constructed above is unital is clear, coming from the
fact that w is counital, in the sense that e(u;;) = 9,5, as follows:

m(e) = [e(uy)i; =1

Regarding now the fact that 7 is involutive, observe first that we have:

0" (uig) = ©(5(uij)*) = p(u;i)
Thus, we can prove that 7 is indeed involutive, as follows, using the fact that u is

coinvolutive, in the sense that S(u;;) = u;, as follows

(") = [0 (uij)lis = l(uzi)lij = [[90<uij)]ij} = ()"
Finally, the proof in the other sense follows from exactly the same computations. [

In order to reach now to the condition F' C S, we must impose several conditions on
the matrix u = (u;;). Let us start with the bistochasticity condition. We have here:

PROPOSITION 9.19. Given F and G = F as in Proposition 9.18, the matriz u = (wij)
15 bistochastic, in the sense that all the row and column sums are 1, precisely when the
associated *-algebra representation m : C(G) — My (C) satisfies the conditions

(@) =) , w(p)E=p(1)E

where £ € CV is the all-one vector.

Proor. We want the following two conditions to be verified:

Zuij:]_ s Zuwzl
J i
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In what regards the condition ) juwij =1, observe that in terms of 7, we have:

ZW(SO)U = Z p(uij) = ¢ (Z Uz‘j)

J

Thus, we want this quantity to be (1), for any i, and this leads to the condition
()6 = (1)§ in the statement. As for the second condition, namely ) u;; = 1, this
leads to the second condition in the statement, namely 7(¢)'¢ = p(1)E. O

Independently of the above result, we must impose the condition that the coordinates
u;; are self-adjoint. The result here is as follows:

PROPOSITION 9.20. Given F and G = F as in Proposition 9.18, we have u;; = uj;
precisely when the associated *-algebra representation w : C(G) — My (C) satisfies:

TS(p) = m(p)’
PROOF. According to formula (S¢)a = ¢(S(a)) from Definition 9.17, we have:
TS (p) = [Sepuig)liy = le(uy)]is

With this formula in hand, we see that the condition u;; = u;; means that this latter
matrix should be [p(u;;)];; = (), as claimed. O

Let us put now what we have together. We are led to the following statement:

PROPOSITION 9.21. Given F and G = F as in Proposition 9.18, u = (wij) is bis-
tochastic, with self-adjoint entries, precisely when associated *-algebra representation

m:C(G) = My(C) |, o= [p(uiy)li;
satisfying the following conditions,
T =w1)E , m(p)E=p1)E , mS(p) =)
with &€ € CN being the all-one vector.

Proor. This follows indeed from Proposition 9.19 and Proposition 9.20. U

In order to reach now to F' C S5, we must impose one final condition, stating that
the entries of u = (u;;) are idempotents, u; = u;;. This is something more technical:

PROPOSITION 9.22. Given F and G = F as in Proposition 9.21, we have Uy = Ui
precisely when the associated *-algebra representation 7w : C(G) — My (C) satisfies

m(r @ m)A(p) = m(p)m

as an equality of maps CN @ CN — CV, where m is the multiplication of CV.
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PRrROOF. We have the following computation, by using the Sweedler notation:

mir @ MAP) e ) = mrom) (Y v 0 (@oe)
- (z;wmek ® mmel)
= Zﬁkjw(um)m%)ek
= Z%:(‘Pl®902>(uki®ukj)ek
= DA D)o

= Z @(Ukiukj)ek
k

On the other hand, we have as well the following computation:
m(p)mle; ®e;) = m(p)die;
[90<uij)}ij5ij€i
8y Y pluni)e
k

Thus, the condition in the statement simply reads ugug; = 0;;uk;, for any ¢, 7, k. In
particular with ¢ = 5 we obtain, as desired, the idempotent condition:

2
Ups = Uk

Conversely now, if this idempotent condition is satisfied, then u = (u;;) follows to be
a matrix of projections, which is bistochastic. Thus this matrix is magic, and so we have
UiUy; = 045Uy, for any 4, 7, k, and this leads to the formula in the statement. O

Let us put now what we have together. We are led to the following statement:

THEOREM 9.23. Given F and G = F as in Definition 9.17, we have F C S};, with
associated magic matriv u = (u;;), precisely when we have a *-algebra representation

m:C(G) = Mn(C) o = [p(uij)l
satisfying the following conditions,
(@) =€, 7(p)'€=p(1)¢

mS(p) =7(p)" , mr@m)A(p) = (p)m
where £ € CN is the all-one vector, and m is the multiplication of CV.
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ProoF. This follows indeed from Proposition 9.21 and Proposition 9.22, and from the
well-known fact, already mentioned in the proof of Proposition 9.22, that a magic matrix
u = (u;;) is the same as a matrix of projections which is bistochastic. U

As a first illustration, in the classical case, we have:

PROPOSITION 9.24. Given a closed subgroup F C Uy, the associated x-algebra repre-
sentation constructed in Theorem 9.23 is given by

T CHF) = My(C) . ) Ag— Y Mgy
g g9

and we have F' C Sy precisely when the conditions in Theorem 9.18 are satisfied.

PROOF. Here the first assertion is clear from definitions. As for the second assertion,
this is something that we know from Theorem 9.23, but here is a direct check as well:

(1) For ¢ € C*(F) given by ¢ = >° Ajg we have m(p) = > Asg, and also o(1) =
>y A via C*(F) ~ C(F)" so the bistochasticity condition ' C Cy corresponds indeed
to the conditions m(p)& = p(1)¢ and 7(¢)'¢ = ¢(1)§ from Theorem 9.23.

(2) Once again with ¢ = 3" A,g, we have the following formulae:

TSp=m <Z /\gg_1> = Z /\gg_1
g g

7T<90>t = (Z )‘gg> = Z Aggt

Thus F' C Oy, which is the same as saying that g~! = ¢, for any ¢ € F, is indeed
equivalent to the condition 75() = m(p)" from Theorem 9.23.

(3) As before with p = > g, assuming F' C Sy, we have the following formula:

m(r @ m)A(p) (e @e;) = m (Z Mg @ g) (e: @e;)

= m (Z Ag€q(i) @ eg(a'))
g
8ij Y Ageq(i)

geG
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On the other hand, we have as well the following formula:

T(p)mle; @ e;) = (Z )\gg) m(e; ® e;)

= (Z /\gg) (0ije:)
g
0ij > Sq€q(i)
g

Thus the condition m(r @ 7)A(p) = m(¢)m in Theorem 9.23 must be indeed satisfied,
and the proof of the converse is similar, using the same computations. O

In the group dual case now, the result is as follows:

THEOREM 9.25. Given a finite group G, and setting F' = @, the associated *-algebra
representation constructed in Theorem 9.23 appears as follows, for a certain family of
generators g1, ...,y € H, and for a certain unitary U € Uy,

g1
7:C(G) = My(C) |, ©o—=U U

gN

and we have F C Sy, precisely when the conditions in Theorem 9.23 are satisfied, which
in turn mean that the representation © appears as in Theorem 9.7.

PROOF. Here the first assertion is standard, coming from Woronowicz’s Peter-Weyl
type theory from [98]. As for the second assertion, since the algebra C'(G) is commutative,
its matrix representation m must appear diagonally, spinned by a unitary, as claimed. [J

There are many things that can be done with finite quantum permutation groups, in
the present dual formalism. In order to discuss this, let us start with:

PROPOSITION 9.26. Given G = F as in Theorem 9.23, the x-algebra representation
m: C(G) = My(C)
gives rise to a family of x-algebra representations as follows, for any k € N,
™ C(G) = My(C)®F | gk =7®kA®
that we will still denote by w, when there is no confusion, which are given by

7Ti1~~ik7j1~~jk<90) - ¢(ui1j1 s uikjk)

in standard multi-indez notation for the elements of My (C)®*.
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PROOF. We have the following computation, in Sweedler notation:
Tivingign (@) = <7FAB(Q)(e;, ®...®¢€;),6:, @ ... Qe >
= <7r®k <Zg01®...®gok> (e, ®...®e€j) €, ®...®eik>
= Z < 7(p1)ej,, € > ... < w(pr)ej,, e, >
= > oiuig) - onltg,)
= A(k)(go)(uiljl e Uigy)

= So(uilﬁ .- ulk]k)

Thus, we are led to the conclusion in the statement. Il

Following [15] and related papers, and also [73], let us discuss as well integration
questions, in the present dual setting. We have here the following result:

THEOREM 9.27. The polynomial integrals over G are given by

|:/ Wiygy - - uzk]k:| = 7T®kA(k)(f)
010, J1 -0k

and the moments of the main character x =), u; are given by

/Xk = Tr(r* AW ([))
where [ € C(G) is the Haar integration functional.

PRrROOF. The first formula is clear from Proposition 9.26. Regarding now the moments
of the main character, observe that we have the following general formula:

Tr(ﬂ@kA(k)(QO)) = Z (p(uilil e ulk%) = QO(Xk)
i i
In particular, with ¢ = f , we are led to the formula in the statement. Il
As a second topic, let us discuss the orbit and orbital theory. We first have:
THEOREM 9.28. The orbits of F C S% can be defined dually by i ~ j when
Tij(p) > 0

for a certain positive linear form ¢ > 0.

ProOF. We know from [31] that ¢ ~ j when u;; # 0 is an equivalence relation on
{1,...,N}. Here is a proof of this fact, using our present, dual formalism:

(1) The reflexivity of ~ as defined in the statement is clear, coming from:
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(2) The symmetry is clear too, coming from wS(¢) = 7(p)". Alternatively:
m(@") = m(p)" = m;(¢") = ()
(3) Regarding now the transitivity, things are a bit more tricky. We have:

mii (o) = Y mar0) i (1)

Now since ¢ > 0 implies ¢(u;;) > 0 for any i, j, we obtain the result. O
Regarding the orbitals, following [69], we have:
PROPOSITION 9.29. The relation on {1,..., N}* given by i ~ j when
Ty vipgioge () >0
for a certain positive linear form ¢ > 0, is reflexive and symmetric.
PRrROOF. The reflexivity is clear exactly as at kK = 1, coming from:
(l)=1 = Ty gy, 7 0

The symmetry is clear too, coming from 7S(p) = w(p)'. Alternatively:

*

7(90*) = 77(90) = 7Ti1-~~ik7j1~~jk<90*> = Ty .igg,f1dk (@)

Thus, we are led to the conclusion in the statement. U

Finally, let us discuss the actions F' ~ X of the finite quantum groups on the finite
graphs, formulated in our dual setting, in terms of G = F. Let us start with:

DEFINITION 9.30. We say that a compact quantum group G acts dually on X when
[Im(m),d] =0
where d € My(C) is the adjacency matriz of X. Also, when the condition
Im(m) = {d}/
is satisfied, we say that G is the dual quantum automorphism group of X.

Observe also that we have assumed here d € My(C), which means that our finite
graph X can be oriented, with the edges colored by complex numbers, as in [3] and in
chapter 5. Regarding now the general theory, in the dual setting, we first have:

PrRoPOSITION 9.31. The following happen, in regards with the usual graphs:

(1) The empty graph is always invariant.
(2) The same goes for the complete graph.
(3) X and its complement X° have the same quantum automorphism group.
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PRrOOF. The empty graph, having adjacency matrix d = Oy, is obviously invariant.
The same goes for the complete graph, having adjacency matrix d = Iy — 1y, due to our
bistochasticity conditions from our main set of axioms, namely:

() =p(1)§ , 7(p)&=p(1)
More generally, we obtain from axioms, and more specifically from the above bis-

tochasticity conditions, that we have invariance under complementation, as claimed. [

Among the other basic results from [3] is the fact that the quantum actions on graphs
are stable under spectral and color decomposition, at the level of the associated adjacency
matrices. We can easily recover these key results with our dual formalism, as follows:

THEOREM 9.32. The quantum actions on graphs are stable under the following oper-
ations, at the level of the associated adjacency matrices:

(1) Spectral decomposition.
(2) Color decomposition.

ProoF. We have two results to be proved, the idea being as follows:

(1) The spectral decomposition result is clear by definition, because the spectral pro-
jections of the adjacency matrix d belong to the algebra < d >, that the algebra I'm(m)
must commute with, according to Definition 9.30.

(2) Regarding now the color decomposition, following [3], we want to prove that we
have a commutation relation as follows, for any color ¢ € C:

[Im(7),d:] =0

By a standard analytic argument, this is equivalent to the following fact, which must
be valid for any n € N, with x being the componentwise, of Hadamard product:

[Im(7),d*"] =0
In order to establish this formula, observe that we have:

[m(p),d =0 = [1(p1)®...07(pn),d*"] =0
—  [1®"AM(p),d®"] =0

We have the following formula:

7"(9) - d%is g = D (T O))irinkren (A" Vs b

ki...kn

= E go(uilkl Ce uinkn>dk1j1 e dknjn
ki...kn
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We have as well the following formula:

[d®n ' Wn(w)]ll’lru]l]n = Z (d®n)7/17/nyklk'n (Trn(gp>)k1kny]1]n
ki...kn
= Z d’ilkl Ce dinanO(ukljl ce uknjn)
Ki...kn
Now observe that with 7; = ... =1, =7 in the first formula, we obtain:
[ﬂ-n((p) ’ d®n]i...i,j...j = Z (,D(Ulkl ce uikn)dklj .. dknj
Ei...kn
= Z o(uik)dy;
k
= [m(p) - d™"]y
Also, with j; = ... = j, = 7 in the first formula, we obtain:
[d®n . Wﬂ(@)]i...i,j...j = Z dz’kl e dikncp(uklj C.e uknj)
kl---kn
= > dip(uy)
k
= [d*" - m(p)]i

Thus, we obtain [7(¢),d*"] = 0, and by arguing as in [3], we obtain the result. [

9e. Exercises

We have seen in this chapter how to deal with the arbitrary subgroups G C Sy, by
using orbitals, group duals, and related techniques. As a first exercise, we have:

EXERCISE 9.33. Formulate and study a notion of k-transitivity for the subgroups
G C Sy
by requiring that the action G ~ {1,..., N} has a minimal number of k-orbitals.

As before, there are many things that can be done here, in analogy with the theory
of the higher transitive subgroups G C Sy, but in the quantum case some of the things
will work only at £ =1, or k <2, or kK < 3. We will be back to all this.

EXERCISE 9.34. Extend the theory of the duals G = F of the finite subgroups
FcS§
developed here, notably by solving the orbital problem formulated above.

As with the previous exercises, this is something quite tricky, partly going into unex-
plored territory, and the more the results, the better.



CHAPTER 10

Transitive subgroups

10a. Transitivity

In this chapter we restrict the attention to the transitive subgroups G C Sj. Let
us first review the basic theory here, that we will need in what follows. The notion of
transitivity, which goes back to Bichon’s paper [31], can be introduced as follows:

DEFINITION 10.1. Let G C S¥ be a closed subgroup, with magic unitary u = (u;;),
and consider the equivalence relation on {1,..., N} given by i~ j <= u;; # 0.

(1) The equivalence classes under ~ are called orbits of G.
(2) G is called transitive when the action has a single orbit.

In other words, we call a subgroup G C S transitive when u;; # 0, for any i, j.

This notion of transitivity is standard, coming in a straightforward way from the orbit
theory from chapter 9. In the classical case, we obtain of course the usual notion of
transitivity. We have the following result, once again coming from [31]:

PROPOSITION 10.2. For a closed subgroup G C Sy, the following are equivalent:

(1) G is transitive.
(2) Fiz(u) = CE, where & is the all-one vector.

(3) Jyuj = %, Jor any i, .
Proor. This is well-known in the classical case. In general, the proof is as follows:

(1) <= (2) We use the standard fact that the fixed point space of a corepresentation
coincides with the fixed point space of the associated coaction:

Fix(u) = Fix(P)

As explained in chapter 9, the fixed point space of the magic corepresentation u = (u;;)
has the following interpretation, in terms of orbits:

Fia(u) = {¢ € C(X)|i~ j — €(0) = £(7)
In particular, the transitivity condition corresponds to Fliz(u) = C&, as stated.

(2) <= (3) This is clear from the general properties of the Haar integration, and
more precisely from the fact that ([, u;;)s; is the projection onto Fiz(u). O

225
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Here is now a list of basic examples of transitive quantum groups, that we already
know, coming from the various constructions from the previous chapters:

PROPOSITION 10.3. The following are transitive subgroups G C Sy

(1) The quantum permutation group Sy itself.

(2) The transitive subgroups G C Sy. These are the classical examples.

(3) The quantum automorphism groups of transitive graphs G*(X), with | X| = N.
(4) In particular, the hyperoctahedral quantum group H, C SY;, with N = 2n.

(5) We have as well the twisted orthogonal group O,* C S¥;, with N = 2".

In addition, the class of transitive quantum permutation groups {G C S§|N € N} is stable
under direct products X, wreath products ! and free wreath products .

PROOF. All these assertions are elementary, the idea being as follows:

(1) This comes from the fact that we have an inclusion Sy C S5¥. Indeed, since Sy is
transitive, so must be S}, because its coordinates u;; map to those of Sy.

(2) This is again something trivial. Indeed, for a classical group G C Sy, the variables
ui; = X(0 € Sylo(j) = i) are all nonzero precisely when G is transitive.

(3) This is trivial, because X being transitive means that G(X) ~ X is transitive,
and by definition of G*(X), we have G(X) C GT(X).

(4) This comes from the result from [11], stating that we have H;" = G*(I,), where
I,, is the graph formed by n segments, having N = 2n vertices.

(5) Once again this comes from a result from [11], stating that we have O,! = G*(0O,),
where [J,, is the n-dimensional hypercube, having N = 2" vertices.

(6) Finally, the stability assertion is clear from the definition of the various products
involved, from [30], [95]. This is well-known, and we will be back later to this. O

Let us study now the transitive subgroups G C Sj. As a first result here, in the
classical case the situation is very simple, as follows:

ProPOSITION 10.4. Let G be a finite group.

(1) Assuming that we have a transitive action G ~ {1,...,N}, by setting H =
{o € G|o(1) = 1}, we have an identification G/H = {1,...,N}.

(2) Conwversely, any H C G produces an action G ~ G/H given by g(hH) = (gh)H,
so a morphism G — Sy, with N =[G : H|.

(3) This latter morphism is injective when the subgroup H C G satisfies the condition
hgh™' € HVhe G = g =1.

(4) In the case where G C Sy is abelian and transitive, the subgroup H C G is trivial,
H = {1}, and so we have |G| = N.

Proor. All the above assertions are well-known and standard, coming from the defi-
nition of the quotient space G/H, as being the space of cosets gH. O
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In the quantum case it is quite unclear how to generalize the above result, which fails
as stated. However, we can at least try to extend the obvious fact that G = N|H| must
be a multiple of N. And here, we have the following result, from [14]:

THEOREM 10.5. If G C S} is finite and transitive, then N divides |G|. Moreover:

(1) The case |G| = N comes from the classical finite groups, of order N, acting on
themselves.

(2) The case |G| = 2N is possible, in the non-classical setting, an example here being
the Kac-Paljutkin quantum group, at N = 4.

PROOF. We use the standard coaction of C(G) on CV = C(1,..., N), given by:
(I)CN—>CN®O(G) s ei—>Zej®uﬁ
J

For a € {1,..., N} consider the evaluation map ev, : C¥ — C at a. By composing ®
with ev, ® id we obtain a C(G)-comodule map, as follows:

I, :CN = C(G) , e — g

Our transitivity assumption on GG ensures that I, is injective. Thus, we have realized
CV as a coideal subalgebra of C'(G). We recall now that a finite dimensional Hopf algebra
is free as a module over a coideal subalgebra A provided that the latter is Frobenius, in
the sense that there exists a non-degenerate bilinear form b: A ® A — C satisfying:

b(ay, z) = b(w,yz)

We can apply this result to the coideal subalgebra I,(CY) c C(G), with the remark
that CV is indeed Frobenius, with bilinear form as follows:

W) = 3 Fg()

Thus C(G) is a free module over the N-dimensional algebra CV, and this gives the
result. Regarding now the remaining assertions, the proof here goes as follows:

(1) Since C(G) =< u;; > is of dimension N, and its commutative subalgebra < wu;; >
is of dimension N already, C'(G) must be commutative. Thus G must be classical, and
by transitivity, the inclusion G C Sy must come from the action of G on itself.

(2) The closed subgroups G C S; were classified in [8], and among them we have
indeed the Kac-Paljutkin quantum group, which satisfies |G| = 8, and is transitive. O

There are many interesting questions in relation with the above considerations, with
a main one being the classification of the transitive group duals I' C S3;. As a main
example here, which is quite illustrating, we have the Klein group K C S; C S .

Following [21], let us discuss now a useful of extension of the notion of transitivity,
that we will need later, in relation with matrix modeling questions, as follows:



228 10. TRANSITIVE SUBGROUPS

DEFINITION 10.6. A quantum permutation group G C Sy, is called quasi-transitive
when all its orbits have the same size. In other words:

(1) The usual orbit equivalence relation ~, given by i ~ j <= w;; # 0, must have
its equivalence classes of the same size.

(2) Equivalently, the binary matriz € € My(0,1) given by €;; = 6u,,,0 must be block-
diagonal, with flat matrices of same size as blocks.

As a first example, if GG is transitive then it is of course quasi-transitive, trivially. In
general now, if we denote by K € N the common size of the blocks, and by M € N their
multiplicity, then we must have N = K M. We have the following result:

PROPOSITION 10.7. Assuming that G C S} is quasi-transitive, we must have
GCSEx... %Sk
—_——
M terms

where K € N is the common size of the orbits, and M € N is their number.

Proor. This follows indeed from definitions, because for a quasi-transitive subgroup
G C S}, with orbits having common size K|N, the corresponding magic matrix is by
definition block-diagonal, with the common size of the blocks being K. U

Let us discuss now the examples. Assume that we are in the following situation:
GCSEx... %Sk

If u,v are the fundamental corepresentations of C'(S5;), C'(S}), consider the quotient
map 7; : C(S5) — C(S}) constructed as follows:

u—>diag(lK,...,1K, v 71K7~-71K)

i—th term

We can then set C(G;) = m;(C(G)), and we have the following result:
ProprosiTiON 10.8. If G; s transitive for all i, then G is quasi-transitive.

ProoFr. We know that we have embeddings as follows:

Gix..xGyCGCSE*... xSk
——_————

M terms

It follows that the size of any orbit of (G is at least K, because it contains G1 X...xX Gy,
and at most K, because it is contained in S} % ... % S}t. Thus, G is quasi-transitive. [0

We call the quasi-transitive subgroups appearing as above “of product type”. There
are quasi-transitive groups which are not of product type, as for instance:

G=5CSxS5%cCS, , o—(00)
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Indeed, the quasi-transitivity is clear, say by letting G act on the vertices of a square.
On the other hand, since we have G; = Gy = {1}, this group is not of product type. In
general, we can construct examples by using various product operations:

PROPOSITION 10.9. Given transitive subgroups G, ...,Gy C Si, the following con-
structions produce quasi-transitive subgroups as follows, of product type:
GCSH*x. ... %Sk
—_———
M terms

(1) The usual product: G = Gy x ... X Gyy.
(2) The dual free product: G = Gy % ... *Gyy.

PRrROOF. All these assertions are clear from definitions, because in each case, the quan-
tum groups G; C S} constructed before are those in the statement. Il

In the group dual case, we have the following result:
ProrosITION 10.10. The group duals which are of product type
T CSh&.. %5
are precisely those appearing from intermediate groups of the following type:

ZK**ZK—)F—)ZKXXZK
N s N 7

~~
M terms M terms

PROOF. In one sense, this is clear. Conversely, consider a group dual T c st v, coming
from a quotient group Z:M — T. The subgroups G; C T constructed above must be group
duals as well, G; = Fz, for certain quotient groups I' = I';. Now if T is of product type,
F C S} must be transitive, and hence equal to 7/ k. Thus we have I' — Z. U

In order to construct some other classes of examples, we can use the notion of normality
for compact quantum groups. This notion, from [48], is introduced as follows:

DEFINITION 10.11. Given a quantum subgroup H C G, coming from a quotient map
m: C(G) — C(H), the following conditions are equivalent:

(1) The following algebra satisfies A(A) C A® A:

A= {a e C(G)‘(z’d@w)A(a) —a® 1}
(2) The following algebra satisfies A(B) C B® B:

B= {a c C(G)‘(ﬂ 2 id)Ala) = 1® a}

(3) We have A = B, as subalgebras of C(G).
If these conditions are satisfied, we say that H C G is a normal subgroup.
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Now with this notion in hand, we have, following [21]:

THEOREM 10.12. Assuming that G C Sy is transitive, and that H C G is normal,
H C Sf; follows to be quasi-transitive.

ProoFr. Consider the quotient map 7 : C(G) — C(H), given at the level of standard
coordinates by w;; — v;;. Consider two orbits Oy, O2 of H and set:

iUz':E Wij yi:E Uiz
jE€O1 j€O02

These two elements are orthogonal projections in C'(G) and they are nonzero, because
they are sums of nonzero projections by transitivity of G. We have:

(dom)A@) = Y Y ugx®uy

keO1 jeO1

= ;®1
Thus by normality of H we have the following formula:
(mr ®@id)A(z;) = 1 ® z;
On the other hand, assuming that we have i € Oy, we obtain:
(m @id)A(x;) = Z Z Vi @ Ugj = Z Uik, @ T,
k jeO; k€02

Multiplying this by v; ® 1 with k£ € Oy yields v ® zp = vy ® x;, that is to say,
xrr = x;. In other words, x; only depends on the orbit of <. The same is of course true for
y;. By using this observation, we can compute the following element:

S SPITI SPRR
k€02 j€O1 keO2
On the other hand, by applying the antipode, we have as well:
S(z) = Z Z Ujk = Z y;j = |O1ly;
k€02 j€O1 JjeO1

We therefore obtain the following formula:

01
S(x;) = =y,
( ) |02| J
Now since both z; and y; have norm one, we conclude that the two orbits have the
same size, and this finishes the proof. O

We will be back to all this later, when talking about matrix models.



10B. HIGHER TRANSITIVITY 231

10b. Higher transitivity

Let us discuss now the notion of double transitivity. Following [69], and the theory of
orbitals developed in chapter 9, we have the following definition:

DEFINITION 10.13. Let G C S¥ be a closed subgroup, with magic unitary u = (u;;),
and consider as before the equivalence relation on {1,..., N}?* given by:

(i,k) ~ (4,1) <= uiju #0

(1) The equivalence classes under ~ are called orbitals of G.
(2) G is called doubly transitive when the action has two orbitals.

In other words, we call G C Sy doubly transitive when u;;uy # 0, for any i # k,j # 1.

To be more precise, it is clear from definitions that the diagonal D C {1,..., N}? is
an orbital, and it follows that its complement D¢ must be a union of orbitals. With this
remark in hand, the meaning of (2) is that the orbitals must be D, D°.

In order to study the above notion, we will need the following fact, also from [69]:

THEOREM 10.14. Given a closed subgroup G C Sy, with magic matriz v = (uy;),
consider the following vector space coaction map, where X = {1,... N}:

@C(XXX)—)C(XXX)@C(G) , eik—>Zeﬂ®uﬂulk
jl
The following three algebras are then isomorphic,
End(u) = {d e MN((C)’du - ud}
Fia(®) = {5 e O(X x X)‘@(f) —¢® 1}

Fia(~) = {g e O(X x X)

(Zak) ~ (]71) = glk = fjl}
where ~ s the orbital equivalence relation from Definition 10.185.

Proor. This follows indeed by doing some computations, as those from chapter 9,
for the similar result there regarding the orbits, and we refer to [69] for details. O

Before going further, let us point out that the above result makes a useful connection
with the graph problematics, the precise statement here being as follows:

THEOREM 10.15. In order for a quantum permutation group G C Sy to act on a
graph X, having N wvertices, the adjacency matriz d € My(0,1) of the graph must be,
when regarded as function on the set {1,..., N}?, constant on the orbitals of G.
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Proor. This follows indeed from the following isomorphism, from Theorem 10.14:
End(u) ~ Fix(~)
For more on all this, details, examples, and applications too, we refer to [69]. U

Now back to our notion of double transitivity, from Definition 10.13, in more analytic
terms, we have the following result, also from [69]:

THEOREM 10.16. For a doubly transitive subgroup G C S3;, we have:
~ ifi=k,j=1
/uijukl: 0 ifi=kj#lori#k,j=1
a o .
m if 4 # k,j 7£ l
Moreover, this formula characterizes the double transitivity.
PROOF. We use the standard fact, from [98], that the integrals in the statement form
the projection onto Fiz(u®?). Now if we assume that G is doubly transitive, Fiz(u®?)
has dimension 2, and therefore coincides with Fiz(u®?) for the usual symmetric group

Sy. Thus the integrals in the statement coincide with those for the symmetric group Sy,
which are given by the above formula. Finally, the converse is clear as well. U

We refer to [69] and subsequent papers for more on all this.

Let us discuss the notion of k-transitivity, at £ € N. We begin our study by recalling
a few standard facts regarding the symmetric group Sy, and its subgroups G' C Sy, from
a representation theory/probabilistic viewpoint. We first have the following result:

ProprosiTIiON 10.17. Consider the symmetric group Sy, together with its standard
matriz coordinates u;; = x(0 € Sn|o(j) =1i). We have the formula

/ o R A keri=kerj
SN . 0 otherwise

where ker i denotes as usual the partition of {1,. .., k} whose blocks collect the equal indices
of i, and where |.| denotes the number of blocks.

PRrOOF. According to the definition of u,;, the integrals in the statement are given by:
1 . . . :
Wiyjy - - Wiy = ~FF {U < SN‘O'(Jl) =i1,...,0(jk) = Zk}
S N!

Since the existence of o € Sy as above requires i, = %, <= Jjmn = Jn, this integral
vanishes when keri # ker j. As for the case keri = ker j, if we denote by b € {1,...,k}
the number of blocks of this partition, we have N — b points to be sent bijectively to N —b

points, and so (N — b)! solutions, and the integral is (NJ;!b)!, as claimed. Il
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We recall now that each action G ~ {1,..., N} produces an action G ~ {1,..., N}*

for any k € N, and by restriction, G acts on the following set:
It = {(il,...,ik) {1, NYlin, .. i distinct}
We have the following well-known result:

THEOREM 10.18. Given a subgroup G C Sy, with standard matrix coordinates denoted

wi; = x(olo(j) = 1), and a number k < N, the following are equivalent:

(1) G is k-transitive, in the sense that G ~ 1% is transitive.

(2) Fiz(u®*) is minimal, i.e. is the same as for G = Sy.

(3) dim Fiz(u®*) = By, where By is the k-th Bell number.
(4) [ty - Uiy, = w, for any i,j € I%.
(5) [ ting, - i, #0, for anyi,j € If.
(6) wiyjy - Uipj, £ 0, for any i,j € I%.

Proor. All this is well-known, the idea being as follows:

(1) = (2) This follows from the fact that u®* comes by summing certain actions
G ~ I, with » < k, and the transitivity at & implies the transitivity at any r» < k.

(2) = (3) This comes from the well-known fact that for the symmetric group Sy,
the multiplicity #(1 € u®*) equals the k-th Bell number By, for any k < N.

(3) = (4) We can use the fact that P, ;, j, j, = fG Uiyjy - - - Wiy j, 18 the orthogonal
projection onto Fiz(u®*). Thus we can assume G = Sy, and here we have:

. . . . N —k)!
/ Uzuluzk]k —/ X(O-‘O'(jl) :21,...,0(]k) :Zk> = %
SN SN |

(4) = (5) This is trivial.

(5) = (6) This is trivial too.

(6) = (1) This is clear, because if w;,j, ... u;j, = x(clo(j1) =141,...,00jk) = ix) is
nonzero, we can find an element o € G such that o(js) = is, Vs. O

In the quantum case now, each magic unitary matrix v = (u;;) produces a corepre-
sentation u®* = (u;j, ..., ), and so a coaction map, constructed as follows:

d: (CV)®F 5 (CM)®F @ C(G)
(I)(elllk> = Z i1 & Ujriy - -+ Ujyiy,
J1-Jk
The problem is that span(I%) is no longer invariant, due to the fact that the variables
u;; no longer commute. We can only say that span(.J¥) is invariant, where:

J]'“V:{(il,...,z'k)e{l,...,N}kil#ig;&...#ik}
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Indeed, by using the fact, coming from the magic condition on u, that a # ¢,b = d
implies gt = 0, we obtain that for i € J¥ we have, as desired:

(p(eilmik) = Z e @ Ujiy - - - Ujpiy,
NF#jeFFik
We can study the transitivity properties of this coaction, as follows:
PROPOSITION 10.19. Given a closed subgroup G C S}, consider the associated coac-
tion map ® : span(J%) — span(J%) @ C(G). The following are then equivalent:

(1) The fized point space Fix(®) = {&|P(§) = ® 1} is 1-dimensional.
(2) We have Fix(®) = Cn, with n = Zz‘eJ}f, €iyoiy -

(3) We have the formula Ez’lev S Wiriy - - - Uigs, = 1, for any multi-index j.
If these conditions are satisfied, we say that the coaction ® is transitive.
PROOF. The equivalences are elementary, the idea being as follows:

(1) <= (2). Here we just have to check that we have indeed ®(n) = n ® 1, with n
being as in the statement. By definition of ®, we have:

o) = > > i O Uiy - Uy

1Al Fig N F T2 F - Fk
Let us compute the middle sum S. When summing over indices i; # i, we obtain:

(1 - uj2i1>uj2i2 cos Wiy = Wjsip - - - Ugpiy
Then when summing over indices iy # i3 we obtain:
(1- uj3i2>uj37ls oo Wiy = Ujsig - - - Ujpiy

And so on, up to obtaining in the end the following formula:
i

Thus we have S = 1, and so the condition ®(n) =n ® 1 is satisfied indeed.

(1) <= (3) This comes from the following general formula, where y is the character
of the corepresentation associated to ®:

dim Fiz(®) = / X

e
Indeed, in the standard basis {e;|i € J&} we have:

But this gives the result, by integrating. U
We have the following partial analogue of Theorem 10.18:
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PROPOSITION 10.20. Given a closed subgroup G C S§;, with N > 4, with matriz
coordinates denoted u;;, and a number k € N, the following conditions are equivalent:

(1) The action G ~ span(J%) is transitive.

(2) Fiz(u®*) is minimal, i.e. is the same as for G = S5;.

(3) dim Fix(u®*) = Cy, where Cy is the k-th Catalan number.
(4) [ Wirjy - - - Uiy, is the same as for G = Sy, for any i,j € JE.

Proor. This follows as in the first part of the proof of Theorem 10.18, by performing
changes where needed, and by using the general theory from [15], as an input:

(1) = (2) This follows from the fact that u®* comes by summing certain actions
G ~ Jy with » <k, and the transitivity at k implies the transitivity at any r < k.

(2) = (3) This comes from the well-known fact that for the quantum group Sy
with N > 4, the multiplicity #(1 € u®*) equals the k-th Catalan number Cj.

(3) = (4) This comes from the well-known fact that P, ;, ;. i, = [ Wi, - - - Uiy
is the orthogonal projection onto Fiz(u®*), coming from [98].

(4) = (1) This follows by taking i = j and then summing over this index, by using
the transitivity criterion for G ~ span(J%) from Proposition 10.19 (3). O

Now let us compare our main results, Theorem 10.18 and Proposition 10.20. We
conclude that the notion of k-transitivity for the subgroups G C Sy extends to the
quantum group case, G C Sy, depending on the value of k, as follows:

(1) At k = 1,2 everything extends well, due to the results in [30], [69].
(2) At k = 3 we have a good phenomenon, P; = NCj, and a bad one, I3 # J&.
(3) At k > 4 we have two bad phenomena, namely P, # NCj, and I% # J%.

Summarizing, our study suggests that things basically stop at k = 3. So, as a conclu-
sion, let us record the definition and main properties of the 3-transitivity:

THEOREM 10.21. A closed subgroup G C S5 is 3-transitive, in the sense that we have
dim(Fiz(u®?)) = 5, if and only if, for any i, k,p distinct and any j,1,q distinct:

1
Ui Ui Upg =
/G JEMTRE T N(N = 1)(N — 2)

In addition, in the classical case, we recover in this way the usual notion of 3-transitivity.

PrOOF. We know from Proposition 10.20 that the 3-transitivity condition is equiva-
lent to the fact that the integrals of type fG UijUkiUpg With 7 # k # p and j # | # ¢ have
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the same values as those for S3;,. But these values are computed by Proposition 10.17 and
the Weingarten formula, and the 3-transitivity condition follows to be equivalent to:

/Guijuklupq = m if ker(ikp) = ker(jlq) =
0 if {ker(ikp),ker(jlq)} = {|[|.m}

Now observe that the last formula is automatic, by using the traciality of the integral
and the magic assumption on u, and that the middle formula follows from the first one,
by summing over ¢, j. Thus we have are left with the first formula, as stated. Finally, the
last assertion follows from Theorem 10.18, applied at k = 3. O

10c. Classification results

Let us discuss now classification results for the transitive subgroups G C Sf. At
N =4, we will need the following result from [8], that we know from chapter 4:

THEOREM 10.22. We have an isomorphism of compact quantum groups
S§ =S50;5"!
giwven by the Fourier transform over the Klein group K = Zy X Zs.

Proor. This is something that we know from chapter 4. Consider indeed the following
matrix, corresponding to the standard vector space action of SOz ' on C*:

10
+_
=0 h)
We apply to this matrix the Fourier transform over the Klein group K = Zy X Zs:

11 1 1 1 0 0 0 1 1 1 1
11—1 -1 1 0 wupp w2 uss 1 -1 -1 1

T 1 1 10w wem w1 -1 1 -1
1 1 -1 -1 0 U31p Uz U3z 1 1 -1 -1
Then v is magic, and a converse of this holds too, and this gives the result. O

We have the following classification result, also from [8]:

THEOREM 10.23. The closed subgroups of S; = SO3 ' are as follows:
1) Infinite quantum groups: Sy, Oy ", IA)OO.
2) Finite groups: Sy, and its subgroups.
3) Finite group twists: S;*', As'.
4) Series of twists: Dy} (n > 3), DCy' (n > 2).
(5) A group dual series: D,, withn > 3.
Moreover, these quantum groups are subject to an ADFE classification result.

(
(
(
(



10C. CLASSIFICATION RESULTS 237

Proor. This is something quite technical. Regarding the precise statement, the idea
is that, with the convention that prime stands for twists, which all unique in the cases
below, and that double prime denotes pseudo-twists, the classification is as follows:

(A) Zy, Zy, Zs, K, Dy (n=2,3,...,00), Si.

(D) Z4, Dl?n’ Dgn (TL = 2,3, .. .), H;, Dl, Sg.

(E) A4, Sy, Sy, AL

There are many comments to be made here, regarding our various conventions, and
the construction of some of the above quantum groups, as follows:

— To start with, the 2-element group Z, = {1, 7} can act in 2 ways on 4 points: either
with the transposition 7 acting without fixed point, and we use here the notation Z,, or
with 7 acting with 2 fixed points, and we use here the notation D;.

— Similarly, the Klein group K = Zs X Zs can act in 2 ways on 4 points: either with 2
non-trivial elements having 2 fixed points each, and we use here the notation K, or with
all non-trivial elements having no fixed points, and we use here the notation Dy = Ds.

— We have D} = D, and D] = G, the Kac-Paljutkin quantum group. Besides being
a pseudo-twist of Ds,, the quantum group D) with n > 2 is known to be as well a
pseudo-twist of the dicyclic, or binary cyclic group DCy,.

— Finally, the definition of D) , D! can be extended at n = 1,00, and we formally
have D), = D) = K, and D = D” = H,, but these conventions are not very useful.
Also, as explained in [8], the groups Dy, S5 are a bit special at (D).

This was for the idea, and we refer to [8] for the construction and properties of the
various twists and pseudo-twists in the above ADE list, and for the classification. O

By restricting now the attention to the transitive case, we obtain:

THEOREM 10.24. The small order transitive quantum groups are as follows:
(1) At N = 1,2,3 we have {1}, Zg, Zg, 53.
(2) At N = 4 we have Zy X Zy, Ly, Dy, Ay, Ss, O34, ST and S, A5

Proor. This follows from the above result, the idea being as follows:
(1) This follows from the fact that we have Sy = S at N < 3, from [96].

(2) This follows indeed from the above ADE classification of the subgroups G' C Sy,
from [8], with all the twists appearing in the statement being standard twists. U

As an interesting consequence of the above result, we have:
ProOPOSITION 10.25. The inclusion of compact quantum groups
Sy C SZ_

1s maximal, in the sense that there is no quantum group in between.
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Proor. This follows indeed from the above classification result. O

Let us study now the subgroups G C Si. This is something substantially more
complicated, which will require the use of some advanced results from subfactor theory.
We first have the following elementary observations, regarding such subgroups:

PROPOSITION 10.26. We have the following examples of subgroups G C Si :
(1) The classical subgroups, G C Ss. There are 16 such subgroups, having order:
1,2,3,4,4,5,6,6,8,10,12,12, 20, 24, 60, 120

(2) The group duals, G = Tc S, These appear, via a Fourier transform construc-
tion, from the various quotients I' of the following groups:
Z47 ZQ * ZQ, ZQ * Zg

In addition, we have as well all the ADE quantum groups G C S C S5 from Theorem
10.23, embedded via the 5 standard embeddings S{ C S5 .

PROOF. These results are well-known, the proof being as follows:

(1) This is a classical result, with the groups which appear being respectively:
— The cyclic groups {1}, Z, Z3, Z,.

— The Klein group K = Zy X Zs.

— The groups Zs, Z¢, S3, D4, D5, Ay.

— A copy of S3 X Zs.

— The general affine group GA;(5) = Zs x Zy.

— And finally Sy, As, Ss.

(2) This follows from Bichon’s result in [31], stating that the group dual subgroups

G=TcC S appear from the various quotients Zy, *. . .xZy, — I, with Ni+...+N, = N.
At N =5 the partitions are 5 =1+4,1 4+ 2+ 2,2 + 3, and this gives the result. U

Summarizing, the classification of the subgroups G C S5 is a particularly difficult
task, the situation here being definitely more complicated than at N = 4. Let us restrict
now the attention to the transitive subgroups. We first have the following result:

PROPOSITION 10.27. We have the following examples of transitive subgroups G C Si :

(1) The classical transitive subgroups G C Ss. There are only 5 such subgroups,
namely Zs, Ds, GA1(5), As, Ss.

(2) The transitive group duals, G = T c S, There is only one example here, namely
the dual of I' = Zs, which is Zs, already appearing above.

In addition, all the ADE quantum groups G C S} C S& are not transitive.
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PRrROOF. This follows indeed by examining the lists in Proposition 10.26:

(1) The result here is well-known, and elementary. Observe that GA;(5) = Zs X Zy,
which is by definition the general affine group of Fj5, is indeed transitive.

(2) This follows from the results in [31], because with Zy, * ... * Zy, — I' as in the
proof of Proposition 10.26 (2), the orbit decomposition is precisely N = Ny + ...+ Ny.

(3) Finally, the last assertion is clear, because the embedding S; C S5 is obtained
precisely by fixing a point. Thus S; and its subgroups are not transitive, as claimed. [

In order to prove the uniqueness result, we will use the recent progress in subfactor
theory [63], concerning the classification of the small index subfactors. For our purposes,
the most convenient formulation of the result in [63] is:

THEOREM 10.28. The principal graphs of the irreducible index 5 subfactors are:

(1) Aw, and a non-extremal perturbation of AY.
(2) The McKay graphs of Zs, Ds, GA1(5), As, Ss.
(3) The twists of the McKay graphs of As, Ss.

PROOF. This is a heavy result, and we refer to [63] for the whole story. The above
formulation is the one from [63], with the subgroup subfactors there replaced by fixed
point subfactors [2], and with the cyclic groups denoted as usual by Zy. U

In the quantum permutation group setting, this result becomes:

THEOREM 10.29. The set of principal graphs of the transitive subgroups G C Si
coincide with the set of principal graphs of the following subgroups:
Z57 D57 GA1(5)7 A5a S57 S;_
ProOOF. We must take the list of graphs in Theorem 10.28, and exclude some of the

graphs, on the grounds that the graph cannot be realized by a transitive subgroup G C S5 .
We have 3 cases here to be studied, as follows:

(1) The graph A, corresponds to Si itself. As for the perturbation of AL this
dissapears, because our notion of transitivity requires the subfactor extremality.

(2) For the McKay graphs of Zs, D5, GA;(5), As, S5 there is nothing to be done, all
these graphs being solutions to our problem.

(3) The possible twists of As, S5, coming from the graphs in Theorem 10.28 (3), cannot
contain Sy, because their cardinalities are smaller or equal than |S5| = 120. 4

In connection now with our maximality questions, we have:
THEOREM 10.30. The inclusion Ss C S4 is mazimal.

Proor. This follows indeed from Theorem 10.29, with the remark that S5 being
transitive, so must be any intermediate subgroup S5 C G C S5 Il
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As a comment here, with a little more work, the above considerations give the full list
of transitive subgroups G C Sa. To be more precise, we have here the various subgroups
appearing in Theorem 10.29, plus some possible twists of As, S5, which remain to be
investigated. Finally, let us also mention that the classification of arbitrary subfactors
at N = 6 is not known, but some results are available under some strong transitivity
assumptions, in the subfactor sense. We refer here to [63] and related papers.

10d. Maximality questions

In general, the maximality of Sy C Sy is a difficult question. We discuss here the
“standard approach” to the maximality conjecture, via representation theory and dia-
grams. We first have the following result, coming from Tannakian duality:

PROPOSITION 10.31. Consider a quantum group Sy C G C S¥, with fundamental
corepresentation denoted v. We have then inclusions as follows, for any k € N,

span <§7r

and equality on the left or on the right, for any k € N, is equivalent to having equality on
the left or on the right in the inclusions Sy C G C SY;.

T E P(k)) D Fixz(v®) O span (&T

weNowD

PROOF. Consider a quantum group Sy C G C Sy, and let w, v, u be the fundamental
corepresentations of these quantum groups. We have then inclusions as follows:

Fiz(w®) D Fiz(v®) D Fiz(u®")

Moreover, by Peter-Weyl, equality on the left or on the right, for any £ € N, is
equivalent to having equality on the left or on the right in the inclusions Sy C G C S}..
Now by using the easiness property of Sy, S5, this gives the result. O

The above result is good news, because what we have there is a purely combinatorial
reformulation of the maximality conjecture, in terms of partitions, noncrossing partitions,
and the associated vectors. To be more precise, we have the following statement:

THEOREM 10.32. The following conditions are equivalent:

(1) There is no intermediate quantum group, as follows:
Sy C GCSY
(2) Any linear combination of vectors of type
£ € span <§,r T E P(k)) — span (é}

produces via Tannakian operations the flip map, ¥(a ® b) = b ® a.

weNcw0
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PROOF. According to Proposition 10.31, the non-existence of the quantum groups
Sy C G C Sj\} is equivalent to the non-existence of Tannakian categories as follows:

span <£,r

But this means that whenever we pick an element & which is on the left, but not on
the right, the Tannakian category that it generates should be the one on the left:

WGP%D

weNC%D

T e P(k)) D Cy D span <€7r

< & >= span <§7r

Now since the category of all partitions P = (P(k)) is generated by the basic crossing
X, this amounts in saying that the Tannakian category generated by £ should contain the
vector associated to this basic crossing, which is §y = X, as desired. O

The above result might look quite encouraging, and the first thought goes into invent-
ing some kind of tricky “averaging operation”, perhaps probability-inspired, made up of
Tannakian operations, which in practice means made of basic planar operations, which
converts the crossing partitions 7 € P(k) — NC(k) into the basic crossing X. However,
this is something difficult, and in fact such questions are almost always difficult.

Of course, we are not saying here that such things are hopeless, but rather that they
require considerable work. In connection with the above-mentioned mysterious “averaging
operation”, our feeling is that this cannot be found with bare hands, and that a heavy use
of a computer, in order to understand what is going on, is required. To our knowledge,
no one has ever invested much time in all this, and so things here remain open. Getting
back to Earth now, here are some concrete results, obtained in this way:

THEOREM 10.33. The following happen:

(1) There is no intermediate easy quantum group Sy C G C Sy.
(2) A generalization of this fact holds, at easiness level 2, instead of 1.

PROOF. The idea here is that everything follows from Theorem 10.32, with suitable
definitions for the various easiness notions involved, and by doing some combinatorics:

(1) Here what happens is that any 7 € P — NC has the following property:
<m>=PFP

Indeed, the idea is to cap m with semicircles, as to preserve one crossing, chosen in
advance, and to end up, by a recurrence procedure, with the standard crossing:

Xe<m>

Now in terms of the notions in Theorem 10.32, the conclusion is that the criterion (2)
there holds for the linear combinations & having lenght 1, and this gives the result. Indeed,
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according to [25], the easy quantum groups are by definition those having Tannakian
categories as follows, with D = (D(k)) being a certain category of partitions:

Fiz(v®") = span (&r T E D(k:))

Thus, the generation formula < m >= P established above does the job, and proves
that an intermediate easy quantum group Sy C G C S3; cannot exist. See [19].

(2) This is a generalization of (1), the idea being that of looking at the combinations
having length 2, of type & = a&; + B&,. Our first claim is that, assuming that G C H
comes from an inclusion of categories D C FE, the maximality at order 2 is equivalent to
the following condition, for any 7,0 € E, not both in D, and for any «a, 5 # 0:

< span(D), oI, + BT, >= span(FE)

Consider indeed a category span(D) C C' C span(FE), corresponding to a quantum
group G C K C H having order 2. The order 2 condition means that we have C' =< C'N
spany(P) >, where spany denotes the space of linear combinations having 2 components.
Since we have span(E) N spans(P) = spany(FE), the order 2 formula reads:

C' =< CNspany(E) >

Now observe that the category on the right is generated by the categories C%? con-
structed in the statement. Thus, the order 2 condition reads:

C= <ng W,UEE,@,6€C>

Now since the maximality at order 2 of the inclusion G C H means that we have
C € {span(D), span(E)}, for any such C, we are led to the following condition:

C°P ¢ {span(D),span(E)} , Vm,o€ E,a,8€C

Thus, we have proved our claim. In order to prove now that Sy C S is maximal at
order 2, we can use semicircle capping. The statement that we have to prove is as follows:
“for € P— NC,o € P and o, 3 # 0 we have < o, + T, >= span(P)”.

In order to do this, our claim is that the same method as at level 1 applies, after some
suitable modifications. We have indeed two cases, as follows:

— Assuming that 7,0 have at least one different crossing, we can cap the partition =
as to end up with the basic crossing, and o becomes in this way an element of P(2,2)
different from this basic crossing, and so a noncrossing partition, from NC(2,2). Now by
substracting this noncrossing partition, which belongs to C’S; = span(NC'), we obtain

that the standard crossing belongs to < o1 + ST, >, and we are done.

— In the case where 7,0 have exactly the same crossings, we can start our descent
procedure by selecting one common crossing, and then two strings of m,o which are
different, and then joining the crossing to these two strings. We obtain in this way a
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certain linear combination o1, + 8T, €< o1, + 5T, > which satisfies the conditions
in the first case discussed above, and we can continuate as indicated there. Il

As a last topic now, we would like to discuss a “continuous version” of the maximality
conjecture. The point indeed is that the quantum groups Sy, at square values of the
parameter, N = n?, are related to the quantum groups O;, via a twisting procedure.

In practice, the phenomenon is best understood at the Tannakian level, where the
Brauer theorem for O is as follows, with NC5 being the noncrossing pairings:

Fiz(v®") = span (fﬂ s NCg(k))

Observe the similarity with the Brauer result for S3;, which holds as above, but with
NCy(k) replaced by NC(k). The point now is that we have a bijection as follows, obtained
in one sense by fattening the partitions, and in the other sense, by shrinking them:

NC(k) ~ NCy(2k)

Thus, there is a link between S}, and O, and the result here, from [12], that we know
from chapter 4, states that PO, appears as a twist of S}, with N = n?.

All this suggests that the maximality conjectures for S} should have a continuous
counterpart, and this is indeed the case, the results being as follows:

THEOREM 10.34. The following happen:

(1) The only intermediate easy quantum group O, C G C O; is the half-classical
orthogonal group O, obtained via the relations abc = cba.

(2) There is a generalization of this result, stating that the uniqueness of OF as
intermediate object appears at easiness level 2.

(3) Regarding the inclusion O,, C O, this is mazimal, in the sense that there is no
compact quantum group in between, of any kind.

PRrooOF. This is a collection of trivial and non-trivial results, as follows:

(1) We must compute here the categories of pairings NCy C D C Ps, and this can be
done via some standard combinatorics, in three steps, as follows:

(a) Let m € P, — NC5, having s > 4 strings. Our claim is that:

—If m € P, — Py, there exists a semicircle capping ©’ € P, — Pj.

—If m € Py — NCj, there exists a semicircle capping ©’ € Py — NCs.

Indeed, both these assertions can be easily proved, by drawing pictures.

(b) Consider now a partition m € Pa(k,l) — NCy(k,l). Our claim is that:

—If 7 € Py(k,l) — Py(k,l) then < 7 >= P5.

~If m € Py(k,l) — NCy(k,l) then < 7 >= Pj.
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This can be indeed proved by recurrence on the number of strings, s = (k +1)/2, by
using (a), which provides us with a descent procedure s — s — 1, at any s > 4.

(c) Finally, assume that we are given an easy quantum group Oy C G C O, coming
from certain sets of pairings D(k,l) C Pa(k,l). We have three cases:

~If D ¢ Py, we obtain G = Oy.

~Ift DC P, D¢ NC,, we obtain G = Oj,.

~If D C NCy, we obtain G = Of,.

Thus, we are led to the conclusion in the statement.

(2) Here the study is quite similar to the study that we did for the inclusion Sy C S¥,
in the proof of Theorem 10.33 (2), by using standard semicircle capping.

(3) This is something non-trivial, from [12], that can be done as follows:

— Our first claim is that the inclusion TOy C Uy is maximal in the category of
compact groups. But this is something standard, using some Lie theory.

— Our second claim is that the inclusion POy C PUy is maximal in the category
of compact groups. Indeed, assuming that POy C G C PUy is a proper intermediate
subgroup, then its preimage under the quotient map Uy — PUy would be a proper
intermediate subgroup of TOyN C Uy, which is a contradiction.

— Finally, our claim is that the inclusion Oy C O;, is maximal in the category of com-
pact compact groups. But this follows from the maximality of the inclusion of projective
versions POy C PUy, by lifting. For further details on this, we refer to [12]. O

Summarizing, there are some difficult questions going on here. Moving forward, still
in relation with the maximality of the inclusion Sy C Sy, let us formulate:

QUESTION 10.35. What can be said, constructively, about the “exotic” quantum per-
mutation groups, Sy C G C Sy ?

In answer, given such a quantum group Sy C G C Sj;, we can expect for instance all
the combinatorics of GG to be invariant under Sy, due to the embedding Sy C G. In order
to establish some concrete results here, we can use the following formula, from [73]:

PROPOSITION 10.36. Assuming Sy C G C Sy, consider the quotient map
m:C(G) = C(Sn)
and set evy(a) = w(a)(o), for any a € C(G). Then with
Dor = EUs—1 % Q * €U,
we have the following formula,

Por(Wirjy - - Uiyg,) = P(Uo(ir)r(in) - - - Yolip)r(ip))

valid for any p € N, and any indices i1, ...,%, and j1,..., Jp.
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PRrROOF. We have indeed the following computation:

SDUT(uZdjl - 'uipjp)

= (ev,-1 @R evT>A(2)(uiljl = .uipj,,)
= Z Z €Vy—-1 (ui1k1 <o uipkp)sp(uklll s ukplp)evT (ulljl T ulpjp)

T P

= D D Gotinkn - Folip iy (ks - kg1, )0ty - - Or i

v e Loy
= PUolinyr(n) - - Uolin)r(in))
Thus, we obtain the formula in the statement. See [73]. O

As a first application, we can apply this to the existence problem for the algebraic
k-orbitals. We obtain somehow “half” of the proof of that, as follows:

PROPOSITION 10.37. Assuming Sy C G C S¥;, the relation
(Zl,Zk) ~ (jl,,jk) < Uiy gy -+ Uig gy 7é0
depends only on keri,ker j € P(k), and not of the particular multi-indices i, j.

PRrOOF. By using Proposition 10.36 and Hahn-Banach we obtain, for any two permu-
tations o, 7 € Sy, the following implication:

Wiy gy - - - Uiy, 7é 0 = Uo(i)r(j1) - - - Uo (i) T (k) 7é 0
Thus, we are led to the conclusion in the statement. Il
In short, the conjectural algebraic k-orbitals are invariant under Sy, and the problem

now is if the above relation ~ is transitive on the partitions of P(k).

As another application, we have the following result:

PROPOSITION 10.38. Given a quantum permutation group Sy C G C Sy, we have
(i, urt] # 0
for any indices i # k and j # 1. More generally, the following algebra
< wij,up >C C(G)
does not depend on the choice of i # k and j # l. Even more generally, the algebra
< Uigjs - - - Uiy, >C C(G)

depends only on the relative position of the indices (i,,j.) inside the standard square
{1,...,N}?, and not on the precise value of these indices.

PRroOF. This is similar to the proof of Proposition 10.37, by using Proposition 10.36
applied to commutators, or more general quantities, and then using Hahn-Banach. U
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As an interesting consequence of Proposition 10.38, we have:
PROPOSITION 10.39. Given an exotic quantum permutation group Sy C G C Sy, the
corresponding diagonal algebra, which is by definition given by
D(G) =< uyy,...,uyny >C C(G)
when regarded as a quotient of C*(Z5N) is invariant under the action of Sy.

PRrROOF. According to Proposition 10.38, we have an isomorphism as follows, between
subalgebras of D(G), for any indices i # j and any k # [:

< Ujjy Ui > Uk, Uy >
More generally, still according to Proposition 10.38, we have such isomorphisms in

higher length 3,4,5, ..., and at length N we obtain the result. U

The above result has some potentially interesting consequences. Indeed, since we have
Sy C G C Sf;, at the level of diagonal algebras we have quotient maps as follows:
D(Sy) = D(G) = D(Sn)

Thus, Proposition 10.39 suggests that D(G) should come from a certain uniform in-
termediate quotient Z3N — T' — Z&. This would be very interesting, first in order to
understand the structure of C(G) itself, which is not that much bigger than D(G), and
also for making the link with the quantum reflection groups.

We discuss now a number of freeness questions regarding the algebra C'(S};), or rather
its dense subalgebra C(S3) C C(S%) generated by the entries of u = (u;;). The problem
is that of understanding which are the polynomial relations relating the variables u;;:

P({ui;}) =0
That is, we would like to understand what is the kernel of the following map:
C< {ij} >— C(Sj\}) , Xij — Ugj

We know that this kernel is the ideal generated by the magic relations, and the con-
jecture would be that at N > 4 the relations P({u;;}) = 0 could only appear for “trivial
reasons”. However, it seems difficult to formulate a precise conjecture in this sense. Let
us look instead at the monomial case. Here we would simply like to understand which
are the monomials in the variables u;; which vanish, and we have:

CONJECTURE 10.40. For the quantum group Sj; with N > 4, an equality of type
Wiygy - - Wiggp = 0

can only appear “for trivial reasons”, due to an occurrence inside this relation of a can-
cellation formula of type pg = 0, with p,q € {u;;}.

Here is an equivalent form of Conjecture 10.40, using the orbital formalism:
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CONJECTURE 10.41. The relation i ~ j <= U;j, - .- U, , 7 0 is given by:
i1 =1y <= Jj1=1J2
. . . . g =13 <= J2 =173
(11, yi) ~ (J1, -y Jk) <=
-1 =l <= Jk—1 = Jk
In particular ~ is transitive, and we have 2¥=' equivalence classes, or orbitals.
Here the first assertion is a reformulation of Conjecture 10.40, using the definition
of the equivalence relation ~, and the transitivity assumption and the orbital count are
trivial consequences of it. As before, the cases k = 3,4 are of particular interest, but

this time not in view of their potential doability, but rather in view of their potential
applications. In relation with this latter conjecture, we have the following useful result:

PROPOSITION 10.42. Given a quantum permutation group G C S, the relation

(i1, yin) ~ (Jrs ey k) = Wiggy - Uiy, 0

s 1n fact a relation between the k-orbitals of Guass C Sny. In particular, with G = S;\;,
what we have is a relation on the set P(k) of partitions of {1,... k}.

PRrROOF. This is explained above, the idea being that any linear form ¢ € C(G)* can
be suitably modified by permutations o,7 € G..ss as to take the same values on the
quantities u;,;, ... u;, ., under the action of Ggqass on the indices. As explained there,
together with Hahn-Banach, this gives the result. Finally, in the case of G = S}; we have
Gass = Sy, and the orbits here are {1,..., N}*/ ~ = P(k), as claimed. O

Finally, getting back now to the general freeness questions formulated in the beginning,
an interesting question, which is complementary to the above “orbital” ones, regards the
diagonal coefficients u;;. We have here the following conjecture:

CONJECTURE 10.43. For the quantum group S with N > 4, the variables
u; € C(SY)
are algebrically free. In particular, the diagonal algebra
D(S%) =< uii,...,unn >C C(S¥)
is isomorphic to the group algebra C*(Z3N).

Observe that this is indeed complementary to the above orbital questions, because we
are dealing here with linear products of type w;,;, ... u;,i,, and their linear combinations,
which are “trivial” from the point of view of the orbital theory.

As before, it is very unclear on how to prove such things. In relation now with the
“exotic” case, Sy C G C Sy, we would like such things to be understood, because the
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orbitals for G, if well-defined indeed, should lie between those for Sy and for Sy, and
the same should happen for the diagonal algebra. Thus, the exotic quantum permutation
groups Sy C G C Sy would lead to “exotic” relations on P(k), and also to “exotic”
quotients of Z3Y, and with a bit of luck, such exotic things could not really exist.

Finally, let us mention that Conjecture 10.40 was recently proved by McCarthy [74].
For more on all this, and related topics, we refer to his papers [73], [74].

10e. Exercises

Things have been fairly technical in this chapter, and as a unique exercise on all this,
in connection with the questions at the end, we have:

EXERCISE 10.44. Prove that the diagonal algebra of the quantum group Sy,
D(S]J'\}) =< U11y...,UnNNy >C C(S}{})
is isomorphic to the group algebra C*(Z3N).

This is something that we already discussed before, in relation with the quantum par-
tial permutations and their associated diagonal algebras, and with the related functional
analysis problematics of constructing a quantum group of type SE. In view of the above
considerations, making the link with the exotic quantum groups Sy C G C Sy, this
question appears to be of great importance, related to many things.



CHAPTER 11

Liberation theory

11a. Reflection groups

In this chapter we discuss the liberation theory for the closed subgroups G C Sy, with
the aim of finding their free analogues G C S7;. We will have in mind as well the twisted
case, involving groups G C Sz and quantum groups G™ C S, with the study here for
Z = My, relying on the isomomorphism S]J\}N = PO}, = PUY, leading us, up to taking
projective versions, into the liberation question for the closed subgroups G C Uy.

Long story short, we are interested in the general liberation question for the closed
subgroups G C Uy, with particular attention to the permutation group case, G C Sy.
There are many things that can be said here, and we have seen quite a number of non-
trivial results on this subject, so far in this book. Our goal will be that of further building
on this material, with some advanced results on the subject. The presentation will be
quite technical, for the most mixing difficult theorems and conjectural statements.

In order to get started, the considerations from the previous chapter show that for
G = Sy we are into a no-go problem, the precise conjecture being as follows:

CONJECTURE 11.1. There is no proper liberation Sy C G C Sy.

We refer to the previous chapter for more on this conjecture, including evidence,
and difficulties involved. We will be actually back to this in the next chapter too, with
some probabilistic considerations, in relation with De Finetti theorems and other, relating
Conjecture 11.1 to the well-known, folklore saying in probability theory, that “there is
nothing much interesting between classical independence, and Voiculescu freeness”.

Another topic to be discussed, before anything more advanced, is the notion of quan-
tum group freeness. We already have some knowledge of that, from easiness, the idea
being that the easy groups Sy C G C Uy are in correspondence, although not always
one-to-one, with the easy quantum groups Sy, C G™ C Uy, via the following operations,
connecting the associated categories of partitions, D and D*:

Dt =DNNC , D=<D")>

But this shows in particular that the easy quantum groups Sy C G C Uy which
are “free”, in whatever natural sense of freeness that you would prefer, are simply those

249
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satisfying Sy, C G. So, forgetting now about easiness, we are led into the question of
studying the closed subgroups G C Uy satisfying S}, C G, and here we have:

CONJECTURE 11.2. The free quantum groups, S§ C G C Uy, are all easy.

To be more precise, the above easiness discussion suggests calling “free” the interme-
diate quantum groups SY C G C Ujy. However, in practice, since there are no other
known examples besides the easy ones, we are led to the above conjecture.

As before with Conjecture 11.1, this should be regarded as being a difficult combina-
torial question. Indeed, Tannakian duality allows us to reformulate everything in terms
of partitions, and the resulting partition question is well-known to be difficult. Finally,
let us mention that the easy quantum groups Sy C G C U can be fully classified, as
done by Tarrago-Weber in [89], and to be explained later, and so Conjecture 11.2 would
eventually provide us with the precise list of free quantum groups.

Summarizing, the very first thoughts about the liberation of subgroups G C Sy, or
more generally subgroups G C Uy, lead us into two difficult conjectures. However, there
is solution to anything, and on the same topic as Conjectures 11.1 and 11.2, we have:

QUESTION 11.3. What are the liberations of the complex reflection groups G C Ky ?
Also, what about the half-classical quantum groups, G C U, ?

Here the first question is obviously related to Conjecture 11.1, and the point is that,
while this still remains something quite undoable, at least the degree of flexibility brought
by looking at arbitrary reflection groups will allow us to do some interesting, non-trivial
work on the subject. As for the second question, this is a sort of downgrade of Conjecture
11.2, the idea being that, in the lack of ideas so far on how to deal with the free quantum
groups, we can try instead to look at the half-classical ones, and do some work there.

Let us first discuss the first question. We have seen in the chapters 5-8 that the basic
reflection groups HY = Z4 ! Sy, which are all easy, have free analogues Hy' = Zg 1 Sy,
and that the theory of these quantum groups, both classical and free, is very interesting,
algebrically and analytically speaking. However, the world of quantum reflection groups
is in fact much wider than this. In the classical case already, the classification theorem
for the complex reflection groups, a celebrated result by Shephard and Todd [86], from
the 1950s, is something non-trivial, which can be briefly stated as follows:

THEOREM 11.4. The irreducible complex reflection groups are

H = {U e H3|(det U)e = 1}

along with 34 exceptional examples.

PRrooOF. This is something quite advanced, and we refer here to the paper of Shephard
and Todd [86], and to the subsequent literature on the subject. U
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In the general quantum case now, the axiomatization and classification of the quantum
reflection groups is a key problem, which is not understood yet. However, at least from
an intuitive point of view, we can say that such a quantum group should be by definition
a liberation of a complex reflection group G C Uy. And with this notion in hand, getting
now into the case where G C Uy is in addition assumed to be irreducible, and leaving
aside the above 34 exceptional examples, we are led into the question of understanding
the liberations of the groups H3¢. And here, the conjecture is as follows:

CONJECTURE 11.5. Among the complex reflection groups H3Z, only the easy ones,
namely HY;, admit liberations. In addition, these latter liberations should be easy.

This might look a bit complicated, and here are some explanations. In what regards
the first assertion, this comes from the widespread belief that the usual determinant has no
“liberated analogues”, and so the constructions involving it, including that of the groups
H3? with d < s, have no quantum analogues. An obvious question here, to start with,
dealing with the simplest possible case, regards the lack of liberations of the alternating
group Ay, but this is not solved yet. However, we will be back to this later, with some
concrete results on the subject, regarding the half-liberation operation.

In what regards now the second assertion in Conjecture 11.5, this is something quite
subtle, related to both Conjecture 11.1 and Conjecture 11.2. Indeed, at s = 1, where
H$ = Sy, this would tell us that the liberations Sy C G C S}, are automatically easy,
solving Conjecture 11.2 in the case Guss = Sy, and solving as well Conjecture 11.1,
via the elementary fact, explained in chapter 10, that there is no proper easy liberation
Sy C G C S§. Let us also mention that, by using Theorem 11.4, it is possible to further
complicate Conjecture 11.5, as to fully cover both Conjecture 11.5 and Conjecture 11.6.
But too many conjectures anyway, and so probably time to stop here.

To summarize now, our hunt for complex reflection groups, or even for a doable prob-
lem regarding them, has been so far unsuccessful. As a matter of not giving up, however,
and having some bush meat on the grill for tonight, let us restrict the attention to the
easy case. Here our questions become far more reasonable, basically reducing to:

QUESTION 11.6. What are the easy quantum groups H3, C G C Hy' ?

This latter question looks fully doable and reasonable, and we already know the answer
to it in the case s = 1, form chapter 10, the answer being that there is no intermediate
easy group Sy C G C S}, with proof coming via some simple combinatorics.

In order to upgrade this result that we have, at s = 1, let us study first the other cases
of main interest, namely s = 2, 00. Here the groups Hy are respectively Hy, Ky, and we
will be interested in classifying the intermediate easy quantum groups, as follows:

HNCGCHX, , KNCGCK;\?
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The problem, however, is that there are many such quantum groups, and we will have
to develop our study slowly. Let us start with the following result, from [80]:

THEOREM 11.7. We have intermediate liberations H][\?o],K][\C;O] as follows, constructed
by using the relations afy = 0, for any a # ¢ on the same row or column of u,

Ky K% K K%

Hy H il HY

with the convention a = a, a*, and so on. These quantum groups are easy, the correspond-
ing categories Plogh, C Payen and PEY, C Peyen being generated by n = ker (3.

PRrROOF. This is routine, by using the fact that the relations a5y = 0 in the statement
are equivalent to the following condition, with |k| = 3:

n € End(u®")
For further details on these quantum groups, we refer to [19], [80]. O

Leaving aside for a moment classification questions, we would like to present now,
as a somewhat unexpected application of the above constructions, the solution to some
twisting problems, left open before. We will need the following technical result:

PROPOSITION 11.8. We have the following equalities,

Pe*ven = {ﬂ-epeven €<T>:1,VT§7T, ’T‘ :2}
PR = {w € Peven|0 € Pl Vo C w}
Pe[gzln = {ﬂ-epeven 5(7-):1,v7'§71'}

where € : Poen — {E1} is the signature of even permutations.
Proor. This is routine combinatorics, the idea being as follows:

(1) Given m € P.yen, we have 7 < 7, |7| = 2 precisely when 7 = 77 is the partition
obtained from 7 by merging all the legs of a certain subpartition S C 7, and by merging
as well all the other blocks. Now observe that 7 does not depend on , but only on
B, and that the number of switches required for making 7 noncrossing is ¢ = N, — N,
modulo 2, where N,/N, is the number of black/white legs of 5, when labelling the legs
of 7 counterclockwise o @ o e ... Thus e(7”) = 1 holds precisely when 3 € 7 has the same
number of black and white legs, and this gives the result.



11A. REFLECTION GROUPS 253

(2) This simply follows from the equality P =< n > coming from Theorem 11.7,

by computing < 1 >, and for the complete proof here we refer to Raum-Weber [80].

(3) We use here the fact, also from [80], that the relations g;g;9; = g;9:g; are trivially
satisfied for real reflections. This leads to the following conclusion:

Pl (k1) = {ker (Z.l Zk)
Ju oo

In other words, the partitions in PJEEL are those describing the relations between free

variables, subject to the conditions g? = 1. We conclude that el appears from NCopep,

Giy - - - Gip, = Gj, - - - g5, inside Z;N}

by “inflating blocks”, in the sense that each 7w € P2 can be transformed into a partition
7' € NCepen by deleting pairs of consecutive legs, belonging to the same block. Now
since this inflation operation leaves invariant modulo 2 the number ¢ € N of switches in
the definition of the signature, it leaves invariant the signature ¢ = (—1)¢ itself, and we
obtain in this way the inclusion “C” in the statement. Conversely now, given m € P,
satisfying e(7) = 1, V7 < 7, our claim is that:

ploCmlpl=2 = e(p) =1

Indeed, let us denote by «, 3 the two blocks of p, and by v the remaining blocks of
7, merged altogether. We know that the partitions 7 = (a A7, 5), 2 = (6 A 7, «),
73 = (a, B,7) are all even. On the other hand, putting these partitions in noncrossing
form requires respectively s+t, s’ +t, s+ s+t switches, where t is the number of switches
needed for putting p = («, 8) in noncrossing form. Thus ¢ is even, and we are done. With
the above claim in hand, we conclude, by using the second equality in the statement, that

we have 0 € P} . Thus m € Pe[iﬁ}n, which ends the proof of “O7”. O

even’

With the above result in hand, we can now prove:

THEOREM 11.9. The basic quantum reflection groups, namely

Ky K% K& — K

Hy H3, H Hi;

are equal to their own Schur-Weyl twists.
PrOOF. This basically comes from the results that we have, as follows:

(1) In the real case, the verifications are as follows:

— H;{,. We know from chapter 4 that for 7 € NCepen, we have T, = T, and since we
are in the situation D C NC,yen, the definitions of GG, G coincide.
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-H ][\?O ] Here we can use the same argument as in (1), based this time on the description
of P2, involving the signature found in Proposition 11.8.

— Hy. We have HY = H][\?o] N Oy, so HY C H][\(;O] is the subgroup obtained via the
defining relations for O%. But all the abc = —cba relations defining Hy, are automatic,
of type 0 = 0, and it follows that HY C H ][f;o Vs the subgroup obtained via the relations
abc = cba, for any a,b, c € {u;;}. Thus we have H} = H][\?O] NOx = H}, as claimed.

— Hy. We have Hy = H} N Oy, and by functoriality, Hy = H;{, NOy = Hy N Onx.
But this latter intersection is easily seen to be equal to Hy, as claimed.

(2) In the complex case the proof is similar, by using the same arguments. U

Getting back now to classification, and to Question 11.6, let us first discuss the clas-
sification of the easy quantum groups Hy C G C Hj,. Following Raum-Weber [80], it
is actually convenient to discuss, more generally, the classification of the easy quantum
groups Hy C G C OF. And here, we first have the folowing result:

PROPOSITION 11.10. The easy quantum groups Hy C G C O} are as follows,

Hy Ox
T
N N
T

Hy On

with the dotted arrows indicating that we have intermediate quantum groups there.

Proor. This is something quite technical, the idea being as follows:

(1) We have a first dichotomy concerning the quantum groups in the statement, namely
Hy CGC O;{,, which must fall into one of the following two classes:

ONCGCO?\} , HNCGCH]—G

(2) Moreover, the early classification results from [19] solve as well the first problem,
namely Oy C G C O, with G = O} being the unique non-trivial solution.

(3) We have then a second dichotomy, concerning the quantum groups which are left,
namely Hy C G C H};, which must fall into one of the following two classes:

HycGc HY | HY cacHj

All this comes indeed from various papers, and mainly from the final classification
paper of Raum and Weber [80], where the quantum groups Sy C G C Hy; with G ¢ H][\?o]
were classified, and shown to contain A ][\?O | For full details here, we refer to [80]. g
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Summarizing, we are left with classifying the following easy quantum groups:
HycGc HY | HYcGcH,

Regarding the second case, namely H ][\(;O lcac Hj;, the result here, also from [80],
which is quite technical, but has a simple formulation, is as follows:

ProPOSITION 11.11. Let H][G] C Hy; be the easy quantum group coming from:

1 ... rr .01
7T7"_ker(l T 1)
We have then inclusions of quantum groups as follows,
Hy =HU>HISHI 5 . > H)

and we obtain all easy quantum groups H][\C;o] C G C HY;, satisfying G # H][\?O}.

PROOF. Once again, this is something technical, and we refer here to [80]. U

It remains to discuss the easy quantum groups Hy C G C H ][\?O ]

G=Hy,H ][30 Jincluded. Once again, we follow here [80]. First, we have:

, with the endpoints

DEFINITION 11.12. A discrete group generated by real reflections, g? = 1,
=<g,...,98 >
is called uniform if each o € Sy produces a group automorphism, g; — Go(i)-

Consider now a uniform reflection group, Z;N — I' — Z5. We can associate to it a
family of subsets D(k,l) C P(k,l), which form a category of partitions, as follows:
D(k,l) = {7? € P(k:,l)’ker (;) <T = ¢y :gjl...gjl}

Observe that we have inclusions Pe[iii]n C D C P.,,. Conversely now, given such a
category, we can associate to it a uniform reflection group Zi¥ — I' — ZY, as follows:

I = <g1,...gN Gir - Gix. = Gjr - - G5, V1, 5, k, [ ker (j) € D(k,l)>

As explained in [80], the above correspondences I' — D and D — I are bijective, and
inverse to each other, at N = co. We have in fact the following result, from [80]:

ProproOSITION 11.13. We have correspondences between:
(1) Uniform reflection groups Z3>° — I' — 7Z.3°.
(2) Categories of partitions P cbDc P.oen-
(3) Easy quantum groups G = (Gy), with H][ﬁo] OGN D Hy.
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ProoF. This is something quite technical, which follows along the lines of the above
discussion. As an illustration, if we denote by Z3" the quotient of Z3" by the relations
of type abc = cba between the generators, we have the following correspondences:

Zy ZgN ZsN

Hy H?, H

More generally, for any s € {2,4,...,00}, the quantum groups H](\‘;) CH J[\S,} constructed
in [19] come from the quotients of ZY < Z3N by the relations (ab)® = 1. See [80]. [

We can now formulate a final classification result, as follows:

THEOREM 11.14. The easy quantum groups Hy C G C OF are as follows,

Hy O

HY O%

Hy On

with the family HY covering Hy, HJ[\?O], and with the series H][f}] covering Hy.

PRrooOF. This follows from the above, and we refer here to [80]. Let us also mention
that the above diagram would look better flipped, but it is better to leave it like this,
because this diagram as drawn is a face of the “standard cube”. More on this later. [J

11b. Soft liberation

Getting back now to the non-easy case, we will be interested in what follows in the
“twistable” case, where the theory is more advanced. Let us start with:

DEFINITION 11.15. A closed subgroup G C Uy is called:

(1) Half-homogeneous, when it contains the alternating group, Ay C G.
(2) Homogeneous, when it contains the symmetric group, Sy C G.
(3) Twistable, when it contains the hyperoctahedral group, Hy C G.
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These notions are mostly motivated by the easy case. Here we have by definition
Sy C G C Uy, so our quantum group is automatically homogeneous. The point now
is that the twistability assumption, as formulated above, corresponds to the following
condition, at the level of the associated category of partitions D C P:

D C Peven

We recognize here the condition which is needed for performing the Schur-Weyl twist-
ing operation, explained in chapter 4, and based on the signature map:

€ Popen — {1}

As a conclusion, in the easy case our notion of twistability is the correct one. In
general, there are of course more general twisting methods, usually requiring ZY c G
only. But in the half-homogeneous case, the condition ZY C G is equivalent to Hy C G.
With this discussion done, let us formulate now the following definition:

DEFINITION 11.16. A twistable quantum reflection group is an intermediate subgroup
Hy C K C K},
between the group Hx = Zy ! Sy, and the quantum group K = T, S¥.

Here is now another definition, which is important for general compact quantum group
purposes, and which provides motivations for our formalism from Definition 11.15:

DEFINITION 11.17. Given a closed subgroup G C Uy, which is twistable, in the sense
that we have Hy C G, we define its associated reflection subgroup to be

K=GnK}

with the intersection taken inside Uy,. We say that G appears as a soft liberation of its
classical version Gass = G N Uyx when G =< Gggs, I >

These notions are important in the classification theory of compact quantum groups,
and in connection with certain noncommutative geometry questions as well. As a first
observation, with K being as above, we have an intersection diagram, as follows:

K G

Kclass

Gclass

The soft liberation condition states that this diagram must be a generation diagram.
We will be back to this in a moment, with some further theoretical comments. Let us
first work out some examples. As a basic result, we have:
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THEOREM 11.18. The reflection subgroups of the basic unitary quantum groups

Un Uk Uy

On Oy o)
are as follows,

Ky K% K3

Hy HY HY;

and these unitary quantum groups all appear via soft liberation.

PROOF. The fact that the reflection subgroups of the quantum groups on the left are
those on the right is clear in all cases, with the middle objects being by definition:

Hy=HyNnOy , Ky=KynUy
Regarding the second assertion, things are quite tricky here, as follows:

(1) In the classical case there is nothing to prove, because any classical group is by
definition a soft liberation of itself.

(2) In the half-classical case the results are non-trivial, but can be proved by using
the technology developed by Bichon and Dubois-Violette in [33].

(3) In the free case the results are highly non-trivial, and the only known proof so far
uses the recurrence methods developed by Chirvasitu in [41]. O

Let us discuss now a number of more specialized classification results, for the twistable
easy quantum groups, and for more general intermediate quantum groups as follows:

HNCGCU;\;
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The idea will be that of viewing G as sitting inside the standard cube:

/T O/
/Jf/

To be more precise, beyond easiness, let us start with the following definition:

Uy
Uy

Hy
Hy

DEFINITION 11.19. Associated to any closed subgroup Gy C Uy are its classical,
discrete and real versions, given by

C=GyNUy , Gh=GyNK{ | Gy=GyNnOL
as well as its free, smooth and unitary versions, given by
Gl =< Gy, HY > | Gy=<Gn,Oxy> , G%=<Gy Ky>
where <, > s the topological generation operation.
We will need as well a second definition, as follows:

DEFINITION 11.20. Associated to any closed subgroup Gx C Uy, are the mizes of its
classical, discrete and real versions, given by

Gd=GyNKy , GY=GyNnOf , G¥=GynH
as well as the mixes of its free, smooth and unitary versions, given by
GIf=<Gn, 0L > | Gl =<Gn,Kf > |, G% =<Gy,Uy >
where <, > s the topological generation operation.
With the above notions in hand, we can formulate:
DEFINITION 11.21. A closed subgroup Gy C Uy, is called “oriented” if
Gy =< G¢,G5,.GE > | Gy =GEncl nay
and “weakly oriented” if the following conditions hold,
Gy =< G%, G4, G >, Gy=GLnaynay

where the various versions are those in Definition 11.19 and Definition 11.20.
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We refer to the book [4] for more on the above orientability notions, and what can be
done with them, the idea being that we notably have a “Ground Zero” theorem, stating
that when imposing very strong combinatorial axioms, including orientabilty, there will
be only 8 quantum groups surviving, namely the vertices of the standard cube.

As a continuation of this, our claim is that more classification results are possible:

(1) In the classical case, we believe that the uniform, half-homogeneous, oriented
groups should be the obvious examples of such groups. This is of course something quite
heavy, well beyond easiness, with the potential tools available for proving such things
coming from advanced finite group theory, and from Lie algebra theory.

(2) In the free case, under similar assumptions, we believe that the solutions should be
the obvious examples of such quantum groups. This is something heavy, too, related to a
well-known freeness conjecture, namely < Gy, Sy >= {G'y, S5}, with the prime standing
for the easy envelope. Indeed, assuming that we would have such a formula, along with
some further ingredients, we can in principle work out our way inside the cube, from the
edge and face projections to G itself, and in this process Gy would become easy.

(3) In the group dual case, the orientability axiom simplifies, because the group duals
are discrete in our sense. We believe that the uniform, twistable, oriented group duals
should appear as combinations of certain abelian groups, which appear in the classical
case, with duals of varieties of real reflection groups, which appear in the real case. This
is probably the easiest question in the present series, and the most reasonable one, to
start with. However, there are no concrete results so far, in this direction.

11c. Toral subgroups

Getting back now to Theorem 11.18 as it is, we are here into recent and interesting
quantum group theory. We will discuss a bit later the concrete applications of Theorem
11.18. There is a connection here as well with the notion of diagonal torus, introduced in
chapter 1. We can indeed refine Definition 11.17, in the following way:

DEFINITION 11.22. Given Hy C G C Uy, the diagonal tori T = GNT}, and reflection
subgroups K = G N K}, for G and for Guuss = G N Uy form a diagram as follows:

T K G

Tclass Kclass Gclass

We say that G appears as a soft/hard liberation when it is generated by Geqass and by
K/T, which means that the right square/whole rectangle should be generation diagrams.
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All this is quite technical, and as a concrete result in connection with the above notion
of hard liberation, we have the following statement, improving Theorem 11.18:

THEOREM 11.23. The diagonal tori of the basic unitary quantum groups

Un Uy Uy

On Ox o
are as follows,

Ty T T,

Tn TN Ty

and these unitary quantum groups all appear via hard liberation.

PROOF. The first assertion is something that we already know, from chapter 1. As
for the second assertion, this can be proved by carefully examining the proof of Theorem
11.18, and performing some suitable modifications, where needed. O

As an interesting remark, some subtleties appear in the following way:

PROPOSITION 11.24. The diagonal tori of the basic quantum reflection groups

Ky K3 K}

Hy Hy, HY,
are as follows,

Ty T T,

Tn TX% Ty

and these quantum reflection groups do not all appear via hard liberation.
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PRrROOF. The first assertion is clear, as a consequence of Theorem 11.23, because the
diagonal torus is the same for a quantum group, and for its reflection subgroup:
GNTLY=(GNKH)NTy
Regarding the second assertion, things are quite tricky here, as follows:

(1) In the classical case the hard liberation property definitely holds, because any
classical group is by definition a hard liberation of itself.

(2) In the half-classical case the answer is again positive, and this can be proved by
using the technology developed by Bichon and Dubois-Violette in [33].

(3) In the free case the hard liberation property fails, due to the intermediate quantum
groups H][\?O], K][\?O], where “hard liberation stops”. We will be back to this. Il

As a conjectural solution to these latter difficulties, we have the notion of Fourier
liberation, that we will discuss now. Let us first study the group dual subgroups of the
arbitrary compact quantum groups G' C Uy,. To start with, we have:

PROPOSITION 11.25. Let G C Uy be a compact quantum group, and consider the
group dual subgroups Ac G, also called toral subgroups, or simply “tori”.
(1) In the classical case, where G C Uy is a compact Lie group, these are the usual
tori, where by torus we mean here closed abelian subgroup.
(2) In the group dual case, G = T with T =< J1,---,9n > being a discrete group,
these are the duals of the various quotients I' — A.

PROOF. Both these assertions are elementary, as follows:

(1) This follows indeed from the fact that a closed subgroup H C Uy is at the same
time classical, and a group dual, precisely when it is classical and abelian.

(2) This follows from the general propretles of the Pontrjagin duality, and more pre-
cisely from the fact that the subgroups AcT correspond to the quotients I' — A. O

At a more concrete level now, most of the tori that we met appear as diagonal tori.
However, for certain quantum groups like the bistochastic ones, or the quantum permu-
tation group ones, this torus collapses to {1}, and so it cannot be of use in the study of
G. In order to deal with this issue, the idea, from [23], will be that of using:

PROPOSITION 11.26. Given a closed subgroup G C Uy, and a matriz Q € Uy, we let
Ty C G be the diagonal torus of G, with fundamental representation spinned by Q:

C(Tg) = C(G) / ((QuQ")y = 0]vi # j)

This torus is then a group dual, Ty = /A\Q, where Ag =< g1, ...,gn > 18 the discrete group
generated by the elements g; = (QuQ™*);i, which are unitaries inside C(1g).
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PRroOOF. This follows indeed from our results, because, as said in the statement, T, is
by definition a diagonal torus. Equivalently, since v = QuQ)* is a unitary corepresentation,
its diagonal entries g; = v;;, when regarded inside C'(Ty), are unitaries, and satisfy:

Algi) = 9 ® g;

Thus C(Tg) is a group algebra, and more specifically we have C'(Ty) = C*(Ag), where
Ag =< ¢1,...,9n > is the group in the statement, and this gives the result. U

Summarizing, associated to any closed subgroup G C Uy is a whole family of tori,
indexed by the unitaries U € Uy. As a first result regarding these tori, we have:

THEOREM 11.27. Any torus T C G appears as follows, for a certain Q) € Uy:
TcToCcG
In other words, any torus appears inside a standard torus.

PROOF. Given a torus T' C G, we have an inclusion T C G C Uy, On the other hand,

we know that each torus T = A C Uy, coming from a discrete group A =< gi,...,gn >,
has a fundamental corepresentation as follows, with ) € Uy:

g1
gn
But this shows that we have T' C T, and this gives the result. U
Let us do now some computations. In the classical case, the result is as follows:
PROPOSITION 11.28. For a closed subgroup G C Uy we have
To =GN (QTYQ)
where TN C Uy is the group of diagonal unitary matrices.

Proor. This is indeed clear at () = 1, where I'; appears by definition as the dual of
the compact abelian group G'NTY. In general, this follows by conjugating by Q. O

In the group dual case now, we have the following result, from [23]:

PROPOSITION 11.29. Given a discrete group I' =< gq1,...,gn >, consider its dual
compact quantum group G =T, diagonally embedded into Uy;. We have then

g =T/ (g: = 9:[3k. Qui # 0. Qu; #0)

with the embedding Ty C G = r coming from the quotient map I' — Aq.
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PROOF. Assume indeed that I' =< ¢q,...,gx > is a discrete group, with T c Uy
coming via u = diag(gi,...,gn). With v = Qu@*, we have:

ZQsivsk - ZQsiQst@ktgt

st
= Z 0it Qe e
t

= Qkigi
Thus v;; = 0 for 7 # j gives QriVi = Qrigi, which is the same as saying that Qp; # 0
implies g; = vg,. But this latter equality reads:

9i = Z 1Qk;il*g;
J

We conclude from this that Qi # 0,Qy; # 0 implies g; = g;, as desired. As for the
converse, this is elementary to establish as well. U

In view of the above, we can expect the collection {Ty|Q € Uy} to encode various
algebraic and analytic properties of G. We have the following result, from [23]:

THEOREM 11.30. The following results hold, both for the compact Lie groups, and for
the duals of the finitely generated discrete groups:

(1) Generation: any closed quantum subgroup G C Uy, has the generation property
G =<Ty|Q € Uy >. In other words, G is generated by its tori.

(2) Characters: if G is connected, for any nonzero P € C(Q)centrar there exists QQ €
Un such that P becomes nonzero, when mapped into C(1g).

(3) Amenability: a closed subgroup G C Uy is coamenable if and only if each of the
tori Ty is coamenable, in the usual discrete group sense.

(4) Growth: assuming G C Uy, the discrete quantum group G has polynomial growth
if and only if each the discrete groups Ty has polynomial growth.

PROOF. In the classical case, where G C Uy, the proof is elementary, based on stan-
dard facts from linear algebra, and goes as follows:

(1) Generation. We use the following formula, established above:
To =GNQTYQ
Since any group element U € G is diagonalizable, U = Q*DQ with Q € Uy, D € TV,
we have U € Ty for this value of () € Uy, and this gives the result.

(2) Characters. We can take here Q € Uy to be such that QT'Q* C TV, where T' C Uy
is a maximal torus for G, and this gives the result.

(3) Amenability. This conjecture holds trivially in the classical case, G C Uy, due to
the fact that these latter quantum groups are all coamenable.
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(4) Growth. This is something non-trivial, which is well-known from the theory of
compact Lie groups, and we refer here to [48] and related papers.

Regarding now the group duals, here everything is trivial. Indeed, when the group du-
als are diagonally embedded we can take () = 1, and when the group duals are embedded
by using a spinning matrix ) € Uy, we can use precisely this matrix Q). O

The various statements above are conjectured to hold for any compact quantum group,
and for a number of verifications, we refer to [23] and to subsequent papers. In relation
with our questions, let us focus now on the generation property. We will need:

PROPOSITION 11.31. Given a closed subgroup G C Uy and a matriz Q € Uy, the
corresponding standard torus and its Tannakian category are given by

Tb ::CIFVEQ , Chb in(jg,C&Q >

where Tg C Uy, is the dual of the free group Fy =< g1,...,gn >, with the fundamental
corepresentation of C(Tg) being the matriz v = Qdiag(gi, - .., gn)Q*.

PROOF. The first assertion comes from the well-known, and elementary fact that given
two closed subgroups G, H C Uy, the corresponding quotient algebra C(U,) — C(GNH)
appears by dividing by the kernels of both the following quotient maps:

CUy) = C(G) , C(Uy) = C(H)

Indeed, the construction of Ty amounts in performing this operation, with H = Ty,
and so we obtain Ty = G N Ty, as claimed. As for the Tannakian category formula, this
follows from this, and from the general duality formula Cony =< Cg, Cy >. O

We have the following Tannakian reformulation of the generation property:
THEOREM 11.32. Given a closed subgroup G C Uy, the subgroup
G'=<Tp|Q € Uy >
generated by its standard tori has the following Tannakian category:

Cky = (] <:(1;,C%Q >

Qeln

In particular we have G = G’ when this intersection reduces to Cg.

ProOF. Consider indeed the subgroup G’ C G in the statement. We have:

Together with the formula in Proposition 11.31, this gives the result. U
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The above result can be used for investigating the toral generation conjecture, but
the combinatorics is quite difficult, and there are no results yet, along these lines. Let us
further discuss now the toral generation property, with some modest results, regarding its
behaviour with respect to product operations. We first have:

PROPOSITION 11.33. Given two closed subgroups G, H C Uy, and Q € Uy, we have:
<Tg(G), To(H) >C To(< G, H >)
Also, the toral generation property is stable under the operation <, >.

PRrOOF. The first assertion can be proved either by using Theorem 11.32, or directly.
For the direct proof, which is perhaps the simplest, we have:

To(G)=GNTg C<G,H>NTg =To(< G, H >)
We have as well the following computation:
To(H)=HNTyg C<G,H>NTg=Ty(< G, H >)

Now since A, B C C implies < A, B >C C, this gives the result. Regarding now the
second assertion, we have the following computation:

<G H> = <<Tp(G)|Q € Uy >, < To(H)|Q € Uy >>

= <Tp(G),To(H)|Q € Uy >
= <<Tph(G), To(H) > |Q € Uy >
C <To(<G H>)Q €Uy >

Thus the quantum group < G, H > is generated by its tori, as claimed. U

We have as well the following result:

PROPOSITION 11.34. We have the following formula, for any G, H and R, S':

Tres(G x H) =Tgr(G) x Ts(H)
Also, the toral generation property is stable under usual products X.

PRrROOF. The product formula is clear. Regarding now the second assertion, we have:

<To(Gx H)QeUyn > DO <Tpes(GXx H)|ReUy,S Uy >
= <Tgr(G)xTs(H)|R € Uy, S €Uy >
= <Tr(G) x{1},{1} x Ts(H)|R € Uy, S € Uy >
<Tr(G)|ReUy >x <Tg(H)|H € Uy >
G x H

Thus the quantum group G x H is generated by its tori, as claimed. U
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11d. Fourier liberation

Let us go back now to the quantum permutation groups. In relation with the tori, let
us start with the following basic fact, that we know well from chapter 9:

PrOPOSITION 11.35. Consider a discrete group generated by elements of finite order,
written as a quotient group, as follows:

Ly, * ... % Ly, =T
We have then an embedding Tc S, where N = Ny + ...+ Ny, with magic unitary
1
Fn, L Fy,
gi
Fn I Fy, N
91

where Fy = \/Lﬁ(w%) with wy = >N and g, is the standard generator of Zy,.

PrRoOOF. We have indeed a sequence of embeddings and isomorphisms as follows:

T C Zy*.. . xZy =2y % ... %2y,
~ Zn % ... %Ly, C SNy ¥ ... % SN,
C Sj\}li %S]J{,k c Sy
Thus, we are led to the conclusion in the statement. [l

We have as well the following more specialized result, also from chapter 9:

THEOREM 11.36. For the quantum permutation group Sy, the discrete group quotient
Fn — Ag with Q € Uy comes from the following relations:

gi=1 if ZlQiﬁéo
9i9; =1 if >, QuQu #0
9i9i9k = 1 if Zz Qilelel #0

Also, given a decomposition N = Ny + ...+ Ny, for the matriz Q = diag(Fy,,- .., Fn,),
where Fy = \/—lﬁ(é”)w with & = e*™/N s the Fourier matriz, we obtain

AQZZNl **ZNk
with dual embedded into Sy in a standard way, as in Proposition 11.35.

Proo¥r. This follows indeed from a direct computation, based on the definition of the
diagonal tori Ty = Ag, explained in chapter 9. O

In connection with our liberation questions for the subgroups G C Sy, all this is quite
interesting, and suggests formulating the following definition:
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DEFINITION 11.37. Consider a closed subgroup G C Uy;.

(1) Its standard tori Tr, with F' = Fn, ® ... ® Fn,, and N = Ny + ... + Ny being
regarded as a partition, are called Fourier tori.

(2) In the case where we have Gy =< G, (Tp)r >, we say that Gy appears as a
Fourier liberation of its classical version G¢;.

The conjecture is then that the easy quantum groups should appear as Fourier liber-
ations. With respect to the basic examples, the situation in the free case is as follows:

(1) OF, Uy are diagonal liberations, so they are Fourier liberations as well.

(

2)
(3) S is a Fourier liberation too, being generated by its tori [37], [41].
4)

(

As a word of warning here, observe that an arbitrary classical group Gy C Uy is not
necessarily generated by its Fourier tori, and nor is an arbitrary discrete group dual, with
spinned embedding. Thus, the Fourier tori, and the related notion of Fourier liberation,
remain something quite technical, in connection with the easy case.

B}, C; are Fourier liberations too, with this being standard.

H};, K3 remain to be investigated, by using the general theory in [80].

As an application of all this, let us go back to quantum permutation groups, and
more specifically to the quantum symmetry groups of finite graphs, from chapter 9. One
interesting question is whether G*(X) appears as a Fourier liberation of G(X). Generally
speaking, this is something quite difficult, because for the empty graph itself we are in
need of the above-mentioned technical results from [37], [41].

In order to discuss this, let us begin with the following elementary statement:

PROPOSITION 11.38. In order for a closed subgroup G C Uj- to appear as G = G (X),
for a certain graph X having N vertices, the following must happen:
(1) We must have a representation G C U:.
(2) This representation must be magic, G C SY;.
(3) We must have a graph X having N vertices, such that d € End(u).
(4) X must be in fact such that the Tannakian category of G is precisely < d >.

ProoF. This is more of an empty statement, coming from the definition of the quan-
tum automorphism group G (X), as formulated in chapter 5. d

In the group dual case, forgetting about Fourier transforms, and imagining that we
are at step (1) in the general strategy outlined in Proposition 11.38, we must compute the

Tannakian category of I' C Uy, diagonally embedded, for the needs of (3,4). We have:
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ProPOSITION 11.39. Given a discrete group I' =< ¢1,...,gn >, embed diagonally
[ C Uy, via the unitary matriz uw = diag(gs, . .., gn). We have then the formula

Hom(u®* u®") = {T = (T}, jin.in)

iy - - - Giy, 7A 9jr --- 95, = le--.jz,h-..ik = O}
and in particular, with k =1 =1, we have the formula
End(u) = {T = (T;)|g: # 9; = T;1 =0}

with the linear maps being identified with the corresponding scalar matrices.

PRroOF. This is well-known, and elementary, with the first assertion coming from:

Tu®* = u®'T

T € Hom(u®* u®) —
= (T g = @) gy i,
<~ T ji.inGin -9 = Gir - G Ljr . jiis.in
= T jyinin(Gin - Gin — i ---95) =0
As for the second assertion, this follows from the first one. O

Let us go ahead now, with respect to the general strategy outlined in Proposition 11.38,
and apply [31] in order to solve (2), and then reformulate (3,4), by using Proposition 11.39,
and by choosing to put the multi-Fourier transform on the graph part. We are led in this
way into the following refinement of Proposition 11.38, in the group dual setting:

THEOREM 11.40. In order for a group dual T as in Proposition 11.35 to appear as

G = GT(X), for a certain graph X having N wvertices, the following must happen:

(1) First, we need a quotient map Zy, * ... * Zy, — L.

(2) Let u=diag(Iy,..., 1), with I, = diag(Zy;,), for any L.

(3) Consider also the matriz F' = diag(Fy,, ..., Fn,).

(4) We must then have a graph X having N vertices.

(5) This graph must be such that F*dF # 0 = I, = I;.

(6) In fact, < F*dF > must be the category in Proposition 11.39.

ProoF. This is something rather informal, the idea being as follows:

(1) This is the assumption of Proposition 11.35, explained above, with the remark
that we can add to this a unitary base change, as piece of data.

(2) This is just a notation, with I, = diag(Zy,) meaning that [; is the diagonal matrix
formed by 1,g,4%, ...,¢™!, with g € Zy, being the standard generator.

(3) This is another notation, with each Fourier matrix Fy, being the standard one,

namely Fy, = ﬁ(w“), with w = e?™/M  and with indices 0,1, ..., N, — 1.

(4) This is a just an informal statement, with the precise graph formalism to be
clarified later on, in view of the fact that X will get Fourier-transformed anyway:.
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(5) This is an actual result, our claim being that the condition d € End(u) from
Proposition 11.38 (3) is equivalent to the condition F*dF # 0 == I, = I; in the
statement. Indeed, we know that with F I being as in the statement, we have u = FIF™.
Now with this formula in hand, we have the following equivalences:

I'nX < du=ud
<~ dFIF*=FIF*d
< [F*dF,I]=0
Also, since the matrix [ is diagonal, with M = F*dF have:
MI=IM << (MI);;=IM);
= M;l; = I,M;;
= [M;;#0 = [, =1
We therefore conclude that we have, as desired:
I X < [F'dF £0 — I, = I]]
(6) This is the Tannakian condition in Proposition 11.38 (4), with reference to the
explicit formula for the Tannakian category of G = I' given in Proposition 11.39. U

Going ahead now, in connection with the Fourier tori, we have:

PROPOSITION 11.41. The Fourier tori of GT(X) are the biggest quotients
Zn, * ... %Ly, =T
whose duals act on the graph, T~ X.

Proor. We have indeed the following computation, at F' = 1:
C(Ti(GT(X))) = C(GT(X))/ <uy=0,Vi#j>
(C(SD)/ < [du] = 0>]/ < sy = 0,¥i # j >
— [C(S3)] < sy = 0,%i £ >)/ < [dyu] = 0 >
= C(TW(S}))/ < [d,u] =0 >
Thus, we obtain the result, with the remark that the quotient that we are interested
in appears via relations of type d;; =1 = ¢; = g;. The proof in general is similar. [

In connection now with the above-mentioned questions, we have:

THEOREM 11.42. Consider the following conditions:
(1) We have G(X) = G (X).
(2) G(X) C GT(X) is a Fourier liberation.
(3) T' ~ X implies that T is abelian.
We have then the equivalence (1) <= (2) + (3).
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Proor. This is something elementary, the proof being as follows:
(1) = (2,3) Here both the implications are trivial.

(2,3) = (1) Assuming G(X) # GT(X), from (2) we know that G™(X) has at least
one non-classical Fourier torus, and this contradicts (3). O

With this in hand, the question is whether (3) = (1) holds. This is a good question,
which in practice would make connections between the various conjectures that can be
made about a given graph X, and its quantum symmetry group G*(X).

As an illustration for the potential interest of such considerations, it is known from
[69] that the random graphs have no quantum symmetries, with this being something
advanced. Our point now is that, assuming that one day the general compact quantum Lie
group theory will solve its Weyl-type questions in relation with the tori, and in particular
include, as a theorem, the fact that any G (X) appears as a Fourier liberation of G(X),
this deep graph result from [69] would become accessible as well via its particular case
for the group dual subgroups, which is something elementary, as follows:

THEOREM 11.43. For a finite graph X, the probability for having an action
I~ X
with T being a non-abelian group goes to 0 with | X| — oc.
Proor. This is something quite elementary, the idea being as follows:

(1) First of all, the graphs X having a fixed number N € N of vertices correspond
to the matrices d € My(0,1) which are symmetric, and have 0 on the diagonal. The
probability mentioned in the statement is the uniform one on such 0-1 matrices.

(2) Regarding now the proof, our claim is that this should come in a quite elementary
way, from the du = ud condition, as reformulated before. Indeed, observe first that in the
cyclic case, where F' = Fl is a usual Fourier matrix, associated to a cyclic group Zy, we
have the following formula, with w = e2™/V:

(F*dF);; = Z(F*)ikdklﬂj
ki
—_ Zwljfikdkl
Kl
= Sl

k~l
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(3) In the general setting now, where we have a quotient map Zy, * ... * Zy, — I,
with Ny + ...+ N, = N, the computation is similar, as follows, with w; = */N::

(F*dF);; = Z(F*)ikdlelj
il

= ) (F)aFy

ke
= Z (wNi)_ik(wNj)lj
k:i,l:g,k~l1
Here the conditions k : ¢ and [ : j refer to the fact that k&, must belong respectively

to the same matrix blocks as ¢, 7, with respect to the partition Ny + ...+ Ny = N, and
k ~ [ means as usual that there is an edge between k, [, in the graph X.

(4) The point now is that with the partition Ny + ... + N, = N fixed, and with
d € My(0,1) being random, we have (F*dF);; # 0 almost everywhere in the N — oo
limit, so we have I; = I; almost everywhere, and so abelianity of I', with N — oo. U

1le. Exercises

Things have been quite technical in this chapter, and as a unique exercise, summarizing
the main problems that we have been talking about here, we have:

EXERCISE 11.44. Find an abstract framework for the “quantum reflection groups”, as
intermediate quantum groups of type

AN CcGcC K]J'\;
covering at the same time all the intermediate easy quantum groups of type
Sy CGC Ky

and all the classical, non-exceptional complex reflection groups, namely

H = {U e H|(det U)e = 1}

and then start classifying such beasts.

The point here is that in the classical case, there is a definition and then classification
result for the complex reflection groups, with the classification stating that we have as
exemples the above groups H3¢, plus a number of exceptional examples, which can be
classified as well. The problem is that of finding the correct quantum extension of this.



CHAPTER 12

Analytic aspects

12a. Weingarten estimates

We discuss here a number of advanced probabilistic aspects, with improvements of
some of the character results from chapter 2, and with De Finetti theorems as well,
following [19], [20]. We will insist on our main examples of quantum groups, namely:

SN Oy

Sn On

Here the quantum groups Sy, S3 need no presentation, being those that we are mainly
interested in. As for Oy, O%;, we will study them too, their projective versions being basic
examples of quantum groups Sz, S7, due to the isomorphism Sy; = POJ.

We already know, since chapter 2, that for everything probability we will need at
some point Weingarten function estimates. So, let us begin with this topic, which is of
independent interest as well. Let us first recall the Weingarten formula:

THEOREM 12.1. The integrals over an easy quantum group G C, O3, coming from a
category of partitions D = (D(k, 1)), are given by the formula

[ = Y G086 War(r.)
G m,veD(k)
where D(k) = D(0,k), the 6 symbols are Kronecker type symbols, § € {0,1}, and where
Win = G;ﬁ, with G, (m,v) = NI™¥ is the Weingarten matriz.

ProoF. This is something that we know from chapter 2, coming from the fact that
the integrals in the statement, with £ € N fixed and with the multi-indices 4, j varying,
form a N* x N* matrix which is the orthogonal projection onto Fiz(u®*). U

In general, the computation of the Weingarten matrix is something quite delicate.
However, in the case of the symmetric group Sy, the situation is in fact very simple,
because we can explicitly compute and estimate this matrix, as follows:

273
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THEOREM 12.2. For the group Sy the Weingarten function is given by

(N —I7])!

WkN(ﬂ-ay) = Z N(Tvﬂ-):u(T? V) NI

T<TAV

and satisfies the folowing estimate,
Wi (m,v) = N™™u(m A v, m)u(r Av,v) + O(NT)
with p being the Mdébius function of P(k).

PROOF. The first assertion follows from the usual Weingarten formula, from Theorem
12.1. Indeed, in that formula the integrals on the left are in fact known, from the explicit
integration formula over Sy that we established in chapter 2, namely:

/ Givis e i = w if keri = kerj
SN T 0 otherwise

But this allows the computation of the right term, via the M&bius inversion formula,
and we get the result. As for the second assertion, this follows from the first one. O

Regarding now the quantum group Sy, that we are particularly interested in here, let
us begin with some explicit computations. We first have the following simple and final
result at k = 2, 3, directly in terms of the quantum group integrals:

PROPOSITION 12.3. At k = 2,3 we have the following estimate:

0 (ker ¢ # ker j)
Wiy gy« -+ Uiggy, = —| ker | . .
St ~ N (ker i = ker j)

N

PROOF. Since at k < 3 we have NC(k) = P(k), the Weingarten integration formulae
for Sy and S}, coincide, and we obtain, by using the above formula for Sy:

(N — | keri|)!
/va WUgy gy oo Ugy gy, = 5keri,kero
Thus, we obtain the formula in the statement. U

In general now, the idea will be that of working out a “master estimate” for the
Weingarten function, as above. Before starting, let us record the formulae at k = 2,3,
which will be useful later, as illustrations. At k = 2, with indices ||, as usual, and with
the convention that ~ means componentwise dominant term, we have:

N2 N2
Won =~ <—N2 N1 )
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At k = 3 now, with indices |||, |7,7],M, T, and same meaning for ~, we have:
N3 —-N3 _N3 —-N3 2N
-N3% N2 N3 N3 —_N?
WSN ~ _NfS NfB N72 N73 _N72
-N3% N3 N3 N2Z2 _N?
2N3 —-N2 —-N2 —-N2 N-!
In order to deal now with the general case, let us start with some standard facts:

PROPOSITION 12.4. The following happen, regarding the partitions in P(k):
(1) 7|+ |v| < |mVv|+ | AV
(2) |7V 1|+ TV <|T V| +]7]
(3) d(m,v) = M — |m V| is a distance.

Proor. All this is well-known, the idea being as follows:
(1) This comes from the fact that P(k) is a semi-modular lattice.
(2) This follows from (1), as explained for instance in [19].

(3) This follows from (2), which says that the following holds:

T )+ T a0y < TV ) 41
Thus, we obtain the triangle inequality, and the other axioms are all clear. O

Actually in what follows we will only need (3) in the above statement. For more on
this, and on the geometry and combinatorics of partitions, we refer to [78]. As a main
result now regarding the Weingarten functions, we have:

THEOREM 12.5. The Weingarten matrix Wiy has a series expansion in N1,
Wi (7, v) = NImvvI=lml=lv] Z Ky(m,v)N™9
g=0
where the various objects on the right are defined as follows:
(1) A path from m to v is a sequence as follows:

p=lr=10#T#...FT =V

(2) The signature of such a path is + when r is even, and — when r is odd.
(3) The geodesicity defect of such a path is:
9(p) = Zd(ﬂ'—bﬂ') —d(m,v)
i=1

(4) K, counts the signed paths from w to v, with geodesicity defect g.
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PROOF. We recall that the Weingarten matrix Wyy appears as the inverse of the
Gram matrix Gy, which is given by the following formula:

Gin(m,v) = Nl
Now observe that the Gram matrix can be written in the following way:
Gin(m,v) = NI™I
= N vl
N5 N-dm) N
This suggests considering the following diagonal matrix:
A = diag(N @)
So, let us do this, and consider as well the following matrix:
Himv) = {(J)\f—dW) )
In terms of these two matrices, the above formula for Gy simply reads:
Gy =A(1+ H)A
Thus, the Weingarten matrix Wiy is given by the following formula:
Wiy =AY 1+ H)'A™
In order to compute now the inverse of 1 + H, we will use the following formula:
(1+H) '=1-H+H*-H*+...
Consider indeed the set P,.(m,v) of length r paths between 7 and v. We have:

H'(m,v) = Z H(ro,71) ... H(Tr1,77)

pEP. (V)
- Y N

pEP:(m,v)

Thus by using (1 + H)™'=1— H + H?> — H3 + ... we obtain:

1+ H) N(mv) = > (1) H (m,v)

r=0

= N—d(WvV)io: Z (=1)"N9®)

r=0 pePy(m,v)
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It follows that the Weingarten matrix is given by the following formula:

Win(mv) = AN @)1+ H) " (r,v) A (v)

— NIWVV|—W|—|V|§: Z (_1)7“]\7—9(19)

r=0 pe Py ()

Now by rearranging the various terms in the above double sum according to their
geodesicity defect g = g(p), this gives the following formula:

(o9}
WkN(ﬂ-v V) = N|7T\/V\—|7F|—|l/\ Z Kg(ﬂ—7 V)N_g
g=0
Thus, we are led to the conclusion in the statement. Il
As an illustration for all this, we have the following explicit estimates:

THEOREM 12.6. Consider an easy quantum group G = (Gy), coming from a category
of partitions D = (D(k)). For any m < v we have the estimate

Win(m,v) = N (u(m,v) + O(N )
and for w, v arbitrary we have
Win (7, 1) = O(NIWVVI—IW\—IVI)

with u being the Mobius function of D(k).

PrROOF. We have two assertions here, the idea being as follows:

(1) The first estimate is clear from the formula in Theorem 12.5, namely:

Win (7, v) = NImvvI=irl=lv| i Ky(m,v)N™9
9=0

(2) In the case m < v it is known that K, coincides with the Mobius function of
NC(k), as explained for instance in [19], so we obtain once again from Theorem 12.5 the
fine estimate in the statement as well, namely:

Win(m,v) = N~ (u(m, v) + O(N7Y)) Vo <wv
Observe that, by symmetry of Wy, we obtain as well that we have:
Win(m,v) = N“M(u(v,7) + O(N7Y)) V> v

Thus, we are led to the conclusions in the statement. U
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When 7, v are not comparable by <, things are quite unclear. The simplest example
appears at k = 3, where we have the following formula, which is elementary:

W3N(||_|, |_||) ~ N_3

As for the corresponding coefficient, Ko(|M,|) = 1, this is definitely not the Mobius
function, which vanishes for partitions which are not comparable by <. According to
Theorem 12.5, this is rather the number of signed geodesic paths from |1 to M.

12b. Traces of powers

Let us discuss now, following [19], the computation of the asymptotic laws of the
following variables, depending on an integer k € N:

X" = Tr(u")

These variables, called Diaconis-Shahshahani variables [50], generalize the usual char-
acters, which appear at kK = 1. Let us start with the following standard definition:

DEFINITION 12.7. Associated to any integers ky, . .., ks € N is the “trace” permutation
v € Sk, having cycles as follows, with k = k;:
(L,...0k) » (k41 . k1 +ky) , ... , (k—ks+1,....k)

We also denote by (o) the partition given by i ~, j <= v(i) ~() V(7).

These conventions are standard in free probability, and we refer to [78] for more on
all this. Now with these conventions, we have the following result:

PROPOSITION 12.8. Given an easy quantum group G, we have:
/ Tr(u™) ... Tr(u") du = # {7r € Dk’W = ’y(w)} +O(N™h
G
If G is classical, this estimate is exact, without any lower order corrections.

Proor. We have two assertions to be proved, the idea being as follows:

(1) Let I be the integral to be computed. According to the definition of v, we have:

= r(uf) . Tr(ub) du
I—/GT( ). Tr(u™)d

= Z /;(uiﬂ'z .- ulkh) """ (uik7k5+1ik—ks+2 .- 'uikik—kerl)

i1

= E / uiliy(l) Ce uikiw(k)
G

i1
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We use now the Weingarten formula. We obtain the following formula:

S 3 Sl DRUNCY

i1...0 m<keri o<ker iy

- Y Y Y W)

1.1, w<keri y(o)<keri
- Z N™@IW, (i, o)
m,0€ Dy,
— Z NI™@l Nlmvel=lxl=lol(] 1 O(N1))
m,0€ Dy
Let us look now at the power of NV in the above, namely:
NIV (o) +lmvol|=|r|—|o]
The leading order is N°, which is achieved if and only if ¢ > 7 and © > (o), or

equivalently when m = o = (o). But this gives the formula in the statement.

(2) In the classical case, instead of using the approximation for Wyy(m, o), we can
write NI™7@) = Gy x(y(0),7), and we can continue as follows:

I = Z Gen(y(0), ") Wiy (7, 0)

m,0€Dy

— ¥ 5(1(0),0)

O'EDk
= #{o € Difo =~(m)}
Thus, we are led to the conclusion in the statement. U

If ¢ is a cycle we use the notation ¢! = ¢, and ¢*= cycle opposite to c. We have the

following definition, generalizing Definition 12.7:

DEFINITION 12.9. Associated to any ki, ..., ks € N and any ey, ..., es € {1,x} is the
trace permutation v € Sy, with k =" k;, having as cycles

(L., k) (k41 . ki + k), .., (k—kst+1,... k)"
called trace permutation associated to kq, ..., ks € N and ey, ..., es € {1, %}.

Again, this convention is standard in free probability, and we refer to [78] for more on
all this. With this convention, Proposition 12.8 extends as follows:

PRoOPOSITION 12.10. Given an easy quantum group G, we have:
/ Tr(uf)e .. Tr(uf)® du = # {7r € Dk‘ﬂ' = 7(7?)} +O(N™h
G

If G is classical, this estimate is exact, without any lower order corrections.
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PRroOOF. This is similar to the proof of Proposition 12.8, by performing modifications
where needed, and with the computations being the same as before. See [19]. O

In terms of cumulants, we have the following result, also from [19]:

PrRoOPOSITION 12.11. For G = Oy, Sy we have the following cumulant formula:
cr(Tr(uf)er, . Tr(ufr)er) = # {7? € Dk’ﬂ' Vy=1g 7= 7(7?)}
Also, for G = O, S}, we have the following free cumulant formula:
ke (Tr(uFr)er o Tr(ub)e) = # {7‘[‘ € Dk’W Vy=1g 7= 'y(ﬂ)} +O(N™)

Proor. We have two assertions to be proved, the idea being as follows:

(1) Let ¢, be the considered cumulant. We write, for those partitions 7 € P such
that the restriction of m to a block of ¢ is an element in the corresponding set Dj,:
D, = {7? S Pk‘p\y € Dy, Vv € a}
We have then the following equivalent formula:
D, = {7T € Dk‘w < 07}
Then, by the definition of the classical cumulants via Mobius inversion, we get:

Cr = Z ,U(U7 17‘) ) #{W S DU|7T = 7(7T>}

c€P(r)

= Y ulo1,) - #{m € Dyr < o7, =7(m)}

oc€P(r)
C Y e Y
o€P(r) <o, m=7(7)

In order to exchange the two summations, we first have to replace the summation over
o € P(r) by a summation over 7 = ¢” € P(k). Note that the condition on the latter is
exactly 7 > 7 and that we have u(o,1,) = /L(a7 1x). Thus:

Cr = Zp(T, 1x) Z Z Z (1, 1)

T>Y m<t,m=y(7) m=y(n) TVYT
The definition of the M6bius function gives for the second summation:

T _—
HAT: 2k 0 otherwise

V< T

With this formula in hand, the assertion follows.
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(2) In the free case, the proof runs in the same way, by using free cumulants and the
corresponding Mobius function on noncrossing partitions. Note that we have the analogue
of our equation in this case only for noncrossing o. O

As a first application of the above cumulant formula, we can now recover the theorem
of Diaconis and Shahshahani in [50] in the orthogonal case, as follows:

THEOREM 12.12. The variables uy, = limy_,oo Tr(u”) are as follows:

(1) For Oy, the uy are real Gaussian variables, with variance k and mean 0 or 1,
depending on whether k is odd or even. The uy are independent.

(2) For O%, at k = 1,2 we get semicircular variables of variance 1 and mean 0 for
uy and mean 1 for us, and at k > 3 we get circular variables of mean 0 and
covariance 1. The uy are x-free.

ProOOF. This follows by using the formula in Proposition 12.11, as follows:

(1) In this case Dy consists of all pairings of k elements. We have to count all pairings
7 with the properties that 7V v = 1; and © = (7).

Note that if 7 connects two different cycles of 7, say ¢; and c;, then the property
7 = 7(p) implies that each element from ¢; must be paired with an element from ¢;. Thus
those cycles cannot be connected to other cycles and they must contain the same number
of elements. This means that for s > 3 there is no such n. Thus all cumulants of order 3
and higher vanish asymptotically and all traces are asymptotically Gaussian.

Since in the case s = 2 we only have permissible pairings if the two cycles have the
same number of elements, we also see that the covariance between traces of different
powers vanishes and thus different powers are asymptotically independent. The variance
of uy is given by the number of matchings between {1,...,k} and {k +1,...,2k} which
are invariant under rotations.

Now since such a matching is determined by the partner of the first element 1, for
which we have k possibilities, the variance of uy is k. For the mean, if k is odd there is
clearly no pairing at all, and if £ = 2p is even then the only pairing of {1,...,2p} which
is invariant under rotations is (1,p+1), (2,p+2), ..., (p, 2p). Thus the mean of wy, is zero
if k£ is odd and 1 if k is even.

(2) In the quantum case Dy consists of noncrossing pairings. We can essentially
repeat the arguments from above but have to take care that only noncrossing pairings
are counted. We also have to realize that for £ > 3, the u; are not selfadjoint any longer,
thus we have to consider also v in these cases. This means that in our arguments we
have to allow cycles which are rotated “backwards” under ~.

By the same reasoning as before we see that free cumulants of order three and higher
vanish. The pairing which gave mean 1 in the classical case is only in the case k£ = 2 a
noncrossing one, thus the mean of uy is 1, all other means are zero.
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For the variances, by using the same argument, one has again that different pow-
ers allow no pairings at all and are asymptotically *-free. For the matchings between
{1,...,k} and {k + 1,...,2k} one has to observe that there is only one non-crossing
possibility, namely (1,2k),(2,2k —1),...,(k,k+ 1) and this satisfies 7 = y(7) only if 7
rotates both cycles in different directions.

For £k = 1 and k = 2 there is no difference between both directions, but for k& > 3
this implies that we get only a non-vanishing covariance between u; and uj, with value
1. This shows that u; and us are semicircular, whereas the higher u; are circular. O

In order to discuss now permutations and quantum permutations, let us start with
the following technical result, further building on the formula in Proposition 12.11:

PROPOSITION 12.13. The cumulants of the variables up = limy_.. T7(u*) are as

follows, in the quantum permutation group case:

(1) For Sy, the classical cumulants are given by:

Cr(Ugyy ooy U, ) = Z ¢!
qlkVi=1,...,r

(2) For Sy, the free cumulants are given by:
2 ifr=1,k >2
2 fr=2k =k, e =e¢;
2 ifr=2k =k =2
1 otherwise

cr(uZi, . ,uZ’") =

ProoFr. We have two assertions to be proved, the idea being as follows:

(1) Here Dy, consists of all partitions. We have to count partitions 7= which have the
properties that =V v = 1 and m = (7).

Consider a partition m which connects different cycles of . Consider the restriction of
7 to one cycle. Let k be the number of elements in this cycle and ¢ be the number of the
points in the restriction. Then the orbit of those ¢ points under v must give a partition of
that cycle, which means that ¢ is a divisor of k£ and that the ¢ points are equally spaced.
The same must be true for all cycles of v which are connected via 7, and the ratio between
t and k is the same for all those cycles.

But this means that if one block of 7 connects some cycles then the orbit under v of
this block connects exactly those cycles and exhausts all points of those cycles. So if we
want to connect all cycles of 4 then this can only happen in the way that we have one
block of 7 intersecting each of the cycles of ~.

To be more precise, let us consider ¢, (ug,, - . ., ug,. ). We have then to look for a common
divisor q of all ky, ..., k., and a contributing 7 is then one the blocks of which are of the
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following form: k;/q points in the first cycle, equally spaced, and so on up to k,/q points
in the last cycle, equally spaced. We can specify this by saying to which points in the
other cycles the first point in the first cycle is connected. There are ¢"~! possibilities for
such choices, and this gives the formula in the statement.

(2) For S}; we have to consider noncrossing partitions instead of all partitions. Most of
the partitions from the classical case are crossing, so do not count for the quantum case.
Actually, whenever a restriction of a block to one cycle has two or more elements then
the corresponding partition is crossing, unless the restriction exhausts the whole group.

This is the case ¢ = 1 from the considerations above, corresponding to the partition
which has only one block, giving a contribution 1 to each cumulant ¢, (ug,, ..., ug,).

For cumulants of order 3 or higher there are no other contributions. For cumulants
of second order one might also have contributions coming from pairings, where each
restriction of a block to a cycle has one element.

But this is the same problem as in the O} case, and we only get an additional con-
tribution for the second order cumulants co(ug, u}). For first order cumulants, singletons
can also appear and make an additional contribution. And this gives the result. O

With the above ingredients in hand, still following [19], we can now formulate a result
about permutations and quantum permutations, as follows:

THEOREM 12.14. The variables uy, = limy_,oo Tr(u”) are as follows:

(1) For Sy we have a decomposition of type
Uk = Z lCl
1k

with the variables Cy being Poisson of parameter 1/k, and independent.
(2) For S, we have a decomposition of the type

w=0C , wuw=0C1+C, (k>2)

where the variables C; are x-free, C} is free Poisson, Cy is semicircular, and CY
with k > 3 are circular.

Proor. We have several assertions to be proved, the idea being as follows:

(1) Let Cj be the number of cycles of length k. We have uy = 3, IC;. We are
claiming now that the C} are independent and each is a Poisson variable of parameter
1/k, i.e., that ¢, (Cy,, ..., () is zero unless all the [; are the same, say = [, in which case
it is 1/1, independently of . This is compatible with the cumulants for the uy, according
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to the following computation:

CT(Ukl,...,Ukr) == Z...le...lrcr(C’ll,...,C’lr)

lllkl lr"‘»"r'
- Yot
o1
1k;Vi

Since the () are uniquely determined by the u;, via some kind of M6bius inversion,
this shows that the C} are independent, and that C} is Poisson with parameter 1/k.

(2) In the classical case the random variable C; can be defined by:

1
Cl = 7 Z Ui1i2uizi3 Ce uim
i1...4; distinct
Note that we divide by [ because each term appears actually [ times, in cyclically
permuted versions, which are all the same because our variables commute.

Note that, by using commutativity and the monomial condition, in general the ex-
Pression i, Wiyis - - - Wirs, has to be zero unless the indices (iy,...,7) are of the form
(i1, ... ,01,91,.,1;,...), where [ divides k and iy, ..., are distinct. This yields then the
following relation, which we used before to define Cj:

k
T?"(U ) = Z uiliguigig Ce uim
01...4]

— E E A R/
- (u711742u74223 e ullll)

Ik 41...1; distinct

= Zlq

Ik

This explicit form of Cj in terms of u;; can be used to give a direct proof, by using
the Weingarten formula, of the fact that the C) are independent and Poisson.

(3) In the free case we define the “cycle” C; by requiring neighboring indices to be
different, as follows:

Cl = E ui1i2ui2i3 ce uml
i1 Al AU A
Note that if two adjacent indices are the same in w;,;, Uiy, - - - s, then, because of the

relation u;;u;, = 0 for j # k, all must be the same or the term vanishes. For the case
where all indices are the same we have:

E UuUuUu:E u; = Cy
i i
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But this gives then the following relation:
Tr(uk) = Ck + Cl

Again, the C; are uniquely determined by the Tr(u*) and thus our calculations also
show that the C; defined by our equation are x-free and have the distributions as stated.
Thus, we are led to the conclusion in the statement. Il

For more on the above, we refer to [19] and related papers. As a comment, however,
the story is not over here, because the usual characters xy = ). u;; are generalized by both
the truncated characters y; studied in chapter 2, and the Diaconis-Shahshahani T'r(u")
variables studied here. Thus, there is certainly room for more general results, covering
both these computations. Also, in addition to this, we have many interesting questions
regarding the diagonal algebras D(G) C C(G), previously discussed in this book.

12c. Invariance questions

Following [20], let is discuss now probabilistic invariance questions with respect to the
basic quantum permutation and rotation groups, namely:

Sn O%

Sn On

We start by fixing some notations. We use as usual the formalism of the orthogonal
quantum groups, which best covers the main quantum groups that we are interested in.
In relation wih invariance questions, we first have the following definition:

DEFINITION 12.15. Given a closed subgroup G C OF, we denote by

a:C<ty,...,ty >>C<ty,...,ty >C(G)
ti%zt]‘@l)ji
J

the standard coaction of C(G) on the free complex algebra on N variables.

Observe that the map « constructed above is indeed a coaction, in the sense that it
satisfies the following standard coassociativity and counitality conditions:

(id@A)a=(a®id)a , ([d®e)a=1id

With the above notion of coaction in hand, we can now talk about invariant sequences
of classical or noncommutative random variables, in the following way:
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DEFINITION 12.16. Let (B, tr) be a C*-algebra with a trace, and x1,...,xy € B. We
say that x = (x1,...,xyN) is invariant under G C OF; if the distribution functional
pe :C<ty,...;ty >>C | P —tr(P(zy,...,zN))
1s tnvariant under the coaction «, in the sense that we have
(1o @ id)a(P) = o (P)
for any noncommuting polynomial P € C < ty,... ty >.

In the classical case, where G C Oy is a usual group, we recover in this way the
usual invariance notion from classical probability. In the general case, where G C O}
is arbitrary, what we have is a natural generalization of this. We have the following
equivalent formulation of the above invariance condition:

PROPOSITION 12.17. Let (B,tr) be a C*-algebra with a trace, and x1,...,xy € B.
Then x = (x1,...,xy) is invariant under G C OF precisely when
t’/’(l’il .. x%) = Z tT’(ZEjl e xjk)vjlil e Ujkik
Ji---Jk

as an equality in C(G), for any k € N, and any i1, ...,ix € {1,...,N}.

PROOF. By linearity, in order for a sequence x = (z1,...,2y) to be G-invariant in
the sense of Definition 12.16, the formula there must be satisfied for any noncommuting
monomial P € C < ty,...,ty >. But an arbitrary such monomial can be written as

follows, for a certain k € N, and certain indices iy, ...,ix € {1,..., N}:

Now with this formula for P in hand, we have the following computation:

(o @id)a(P) = (tp @id) Y | by ooty @ Vjriy - Vi

JlseesJk
= ) alty )V -V,
jl""’jk
= E t'f’(![’jl e xjk>vj1i1 e ,Ujk’ik
J1---Jk

On the other hand, by definition of the distribution pu,, we have:
po(P) = pg(tsy - ti,) = tr(xs, ... x5,)
Thus, we are led to the conclusion in the statement. Il

As already mentioned after Definition 12.16, in the classical case, where G C Oy is
a usual compact group, our notion of G-invariance coincides with the usual G-invariance
notion from classical probability. We have in fact the following result:
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PROPOSITION 12.18. In the classical group case, G C Oy, a sequence (xy,...,TN) 18
G-invariant in the above sense if and only if

t’f‘(l’il . Izk) = Z Gjiiy - - -gjkik”’(%'l e (L’jk)

J1e--Jk

for any k € N, any iy,...,ix € {1,...,N}, and any g = (g;5) € G, and this coincides
with the usual notion of G-invariance for a sequence of classical random variables.

PROOF. According to Proposition 12.17, the invariance property happens precisely
when we have the following equality, for any & € N, and any 41,...,74 € {1,...,N}:

t?”(Iil .. .I'Zk> = Z t?”(l'jl . xjk)vjﬂl e Ujkik
Ji---Jk

Now by evaluating both sides of this equation at a given g € G, we obtain:

t?"(ﬂfil e l’lk) = Z gj”'l .. .gjkiktr(le e xjk)
Jie-Jk

Thus, we are led to the conclusion in the statement. O

With the above ingredients in hand, we can now investigate invariance questions for
the sequences of classical or noncommutative random variables, with respect to the main
quantum permutation and rotation groups that we are interested in here. To be more
precise, we first have a reverse De Finetti theorem, from [20], as follows:

THEOREM 12.19. Let (x1,...,xy) be a sequence in A.
(1) Ifxy,...,xN are freely independent and identically distributed with amalgamation
over B, then the sequence is Sy -invariant.
(2) Ifxy,...,xN are freely independent and identically distributed with amalgamation

over B, and have centered semicircular distributions with respect to E, then the
sequence is O -invariant.

(3) If < B,xy,...,xN > is commutative and x1, ..., xy are conditionally independent
and identically distributed given B, then the sequence is Sy-invariant.
(4) If < x1,...,xn > is commutative and xq,...,xN are conditionally independent

and identically distributed given B, and have centered Gaussian distributions with
respect to E, then the sequence is Oy -invariant.
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PROOF. Assume that the joint distribution of (z1,...,xy) satisfies one of the condi-
tions in the statement, and let D be the category of partitions associated to the corre-
sponding easy quantum group. We have then the following computation:

Z t?‘(le . 'xjk>vj1i1 s Ujiy, = Z tT(E<xj1 - 'xjk))vjlil < gy,

Jie--Jk Ji---Jk

= Z Z t?“(ggr)(afl,---yxl))vhil"'Ujkik

J1...Jk m<kerj

= > (€@ m) D Vi Vg,

meD(k) ker j>m

Here £ denotes the free and classical camulants in the cases (