
INTEGRATION OVER COMPACT QUANTUM
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Abstract. We find a combinatorial formula for the Haar func-
tional of the orthogonal and unitary quantum groups. As an ap-
plication, we consider diagonal coefficients of the fundamental rep-
resentation, and we investigate their spectral measures.

Introduction

A basic question in functional analysis is to find axioms for quantum
groups, which ensure the existence of a Haar measure. In the com-
pact case, this was solved by Woronowicz in the late eighties ([22]).
The Haar functional is constructed starting from an arbitrary faithful
positive unital linear form ϕ, by taking a Cesaro limit with respect to
convolution: ∫

= lim
n→∞

1

n

n∑
k=1

ϕ∗k

The explicit computation of the Haar functional is a representation
theory problem. There are basically two ideas here:

I. For a classical group the integrals can be computed by using in-
version of matrices and non-crossing partitions. The idea goes back to
Weingarten’s work [20], and explicit formulae are found in [7], [8].

II. For a free quantum group the integrals of characters can be com-
puted by using tensor categories and diagrams. The idea goes back to
Woronowicz’s work [23], and several examples are studied in [1], [3].

In this paper we find an explicit formula for the Haar functional of
free quantum groups. For this purpose, we use a combination of I and
II.

As an application, we consider diagonal coefficients of the funda-
mental representation, and we investigate their spectral measures. For
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instance in the orthogonal case we find a formula of type∫
(u11 + . . .+ uss)

2k = Tr(G−1knGks)

where Gkn is a certain Gram matrix of Temperley-Lieb diagrams. This
enables us to find several partial results regarding the law of u11.

The interest here is that knowledge of the law of u11 would be the
first step towards finding a model for the orthogonal quantum group.
That is, searching for an explicit operator U11 doing what the abstract
operator u11 does would be much easier once we know its law.

As a conclusion, we can state some precise problems. In the orthog-
onal case the question is to find the real measure µ satisfying∫

x2k dµ(x) = Tr(G−1knGks)

and we have a similar statement in the unitary case.
An answer to these questions would no doubt bring new information

about free quantum groups. But this requires a good knowledge of
combinatorics of Gram matrices, that we don’t have so far.

The whole thing is probably related to questions considered by Di
Francesco, Golinelli and Guitter, in connection with the meander prob-
lem. In [9], [10] they find a formula for the determinant of Gkn, but we
don’t know yet how to apply their techniques to our situation.

Finally, let us mention that techniques in this paper apply as well to
the quantum symmetric group and its versions, whose corresponding
Hom spaces are known to be described by Temperley-Lieb diagrams
([3], [19]). This will be discussed in a series of papers, the first of which
is in preparation ([4]).

The paper is organised as follows. 1, 2, 3 are preliminary sections
on the orthogonal quantum group. In 4, 5, 6, 7, 8 we establish the or-
thogonal integration formula, then we apply it to diagonal coefficients,
and then to coefficients of type u11, with a separate discussion of the
case n = 2. In 9 we find similar results for the unitary quantum group.

Acknowledgements. We would like to express our deepest gratitude
to the referee, for a careful reading of the manuscript.

1. The orthogonal quantum group

In this section we present a few basic facts regarding the universal
algebra Ao(n). This algebra appears in Wang’s thesis (see [18]).

For a square matrix u = uij having coefficients in a C∗-algebra, we
use the notations ū = u∗ij, u

t = uji and u∗ = u∗ji.

A matrix u is called orthogonal if u = ū and ut = u−1.
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Definition 1.1. Ao(n) is the C∗-algebra generated by n2 elements uij,
with relations making u = uij an orthogonal matrix.

In other words, we have the following universal property. For any
pair (B, v) consisting of a C∗-algebra B and an orthogonal matrix v ∈
Mn(B), there is a unique morphism of C∗-algebras

Ao(n)→ B

mapping uij → vij for any i, j. The existence and uniqueness of such a
universal pair (Ao(n), u) follow from standard C∗-algebra results.

Proposition 1.1. Ao(n) is a Hopf C∗-algebra, with comultiplication,
counit and antipode given by the formulae

∆(uij) =
n∑
k=1

uik ⊗ ukj

ε(uij) = δij

S(uij) = uji

which express the fact that u is a n-dimensional corepresentation.

These maps are constructed by using the universal property of Ao(n),
and verification of Woronowicz’s axioms in [22] is straightforward. As
an example, the counit ε : Ao(n)→ C is constructed by using the fact
that 1n = δij is an orthogonal matrix over the algebra C.

Observe that the square of the antipode is the identity:

S2 = id

The motivating fact about Ao(n) is a certain analogy with C(O(n)).
The coefficients vij of the fundamental representation of O(n) form an
orthogonal matrix, and we have the following presentation result.

Proposition 1.2. C(O(n)) is the commutative C∗-algebra generated by
n2 elements vij, with relations making v = vij an orthogonal matrix.

Observe in particular that we have a morphism of C∗-algebras

Ao(n)→ C(O(n))

mapping uij → vij for any i, j. The above formulae of ∆, ε, S show
that this is a Hopf algebra morphism. We get an isomorphism

Ao(n)/I = C(O(n))

where I is the following ideal:

I =< [uij, ukl] = 0 | i, j, k, l >
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This is usually called commutator ideal, because the quotient by it
is the biggest commutative quotient.

This result is actually not very relevant, because Ao(n) has many
other quotients. Consider for instance the group Z2 = {1, g}. The
equality g = g−1 translates into the equality

g = g∗ = g−1

at the level of the group algebra C∗(Z2), which tells us that the 1× 1
matrix g is orthogonal.

Now by taking n free copies of Z2, we get the following result.

Proposition 1.3. C∗(Z∗n2 ) is the C∗-algebra generated by n elements
gi, with relations making g = diag(g1, . . . , gn) an orthogonal matrix.

In particular we have a morphism of C∗-algebras

Ao(n)→ C∗(Z∗n2 )

mapping uij → gij for any i, j. The above formulae of ∆, ε, S show
that this is a Hopf algebra morphism. We get an isomorphism

Ao(n)/J = C∗(Z∗n2 )

where J is the following ideal:

J =< uij = 0 | i 6= j >

This can be probably called cocommutator ideal, because the quo-
tient by it is the biggest cocommutative quotient.

As a conclusion here, best is to draw a diagram.

Theorem 1.1. We have surjective morphisms of Hopf C∗-algebras

Ao(n)
↙ ↘

C(O(n)) C∗(Z∗n2 )

obtained from the universal property of Ao(n).

This diagram is to remind us that Ao(n) is at the same time a non-
commutative version of C(O(n)), and a non-cocommutative version of
C∗(Z∗n2 ). We say that it is a free version of both.

2. Analogy with SU(2)

The study of Ao(n) is based on a certain similarity with C(SU(2)).
The fundamental corepresentation of C(SU(2)) is given by

w =

(
a b
−b̄ ā

)
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with |a|2 + |b|2 = 1. This is of course a unitary matrix, which is not
orthogonal. However, w and w̄ are related by the formula(

a b
−b̄ ā

)(
0 1
−1 0

)
=

(
0 1
−1 0

)(
ā b̄
−b a

)
which is a twisted self-conjugation condition of type

w = rw̄r−1

where r is the following matrix:

r =

(
0 1
−1 0

)
One can show that unitarity plus this condition are in fact the only

ones, in the sense that we have the following presentation result.

Proposition 2.1. C(SU(2)) is the C∗-algebra generated by 4 elements
wij, with the relations w = rw̄r−1 = unitary, where w = wij.

This is to be compared with the definition of Ao(n), which can be
written in the following way.

Ao(n) = C∗ {(uij)ij=1,...,n | u = ū = unitary}

We see that what makes the difference between the two matrices
v1 = u and v2 = w is possibly their size, plus the value of a scalar
matrix r intertwining v and v̄.

This leads to the conclusion that Ao(n) should be a kind of defor-
mation of C(SU(2)). Here is a precise result in this sense.

Theorem 2.1. We have an isomorphism

Ao(2) = C(SU(2))−1

where the algebra on the right is the specialisation at µ = −1 of the
algebra C(SU(2))µ constructed by Woronowicz in [21].

This result, pointed out in [1], is clear from definitions.
We should mention here that the parameter µ ∈ R − {0} used by

Woronowicz in [21] is not a particular case of the parameter q ∈ C−{0}
used in the quantum group literature. In fact, we have the formula

µ = τq2

where q > 0 is the usual deformation parameter, and where τ = ±1
is the twist, constructed by Kazhdan and Wenzl in [12]. In particular
the value µ = −1 corresponds to the values q = 1 and τ = −1.
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Finally, let us mention that theorem 2.1 follows via a change of vari-
ables from the general formula

Ao

(
0 1
−µ−1 0

)
= C(SU(2))µ

where the algebra on the left is constructed in the following way:

Ao(r) = C∗
{

(uij)ij=1,...,n | u = rūr−1 = unitary
}

See [6] for more on parametrisation of algebras of type Ao(r).

3. Diagrams

The main feature of the fundamental representation of SU(2) is that
commutants of its tensor powers are Temperley-Lieb algebras:

End(w⊗k) = TL(k)

This equality is known to hold in fact for the fundamental corepre-
sentation of any C(SU(2))µ, as shown by Woronowicz in [21].

The same happens for Ao(n), as pointed out in [1]. We present now
a proof of this fact, a bit more enlightening than the original one. For
yet another proof, see Yamagami ([24], [25]).

Definition 3.1. The set of Temperley-Lieb diagrams D(k, l) consists
of diagrams formed by an upper row of k points, a lower row of l points,
and of (k + l)/2 non-crossing strings joining pairs of points.

In this definition, for k + l odd we have D(k, l) = ∅. Also, diagrams
are taken of course up to planar isotopy.

It is convenient to summarize this definition as

D(k, l) =

 · · · ← k points
W ← (k + l)/2 strings
· · · · · ← l points


where capital letters denote diagrams formed by non-crossing strings.

Definition 3.2. The operation on diagrams given by

· · ·
W
||
A

· · · · ·

→
e

AM
· · · · · · · ·

is an identification D(k, l) ' D(0, k+l), called Frobenius isomorphism.
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Observe in particular the identification at k = l, namely

D(k, k) ' D(0, 2k)

where at left we have usual Temperley-Lieb diagrams,

D(k) =

 · · · ← k points
W ← k strings
· · · · · ← k points


and at right we have non-crossing partitions of 1, . . . , 2k:

NC(2k) =

{
W ← k strings
· · · · · ← 2k points

}
It is convenient to reformulate the above Frobenius isomorphism by

using these notations, and to use it as an equality.

Definition 3.3. We use the Frobenius identification

D(k) = NC(2k)

between usual Temperley-Lieb diagrams and non-crossing partitions.

Consider now the vector space where v acts, namely

V = Cn

and denote by e1, . . . , en its standard basis. Each diagram p ∈ D(k, l)
acts on tensors according to the formula

p(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

i1 . . . ikp
j1 . . . jl

 ej1 ⊗ . . .⊗ ejl

where the middle symbol is 1 if all strings of p join pairs of equal indices,
and is 0 if not. Linear maps corresponding to different diagrams can be
shown to be linearly independent provided that n ≥ 2, and this gives
an embedding

TL(k, l) ⊂ Hom(V ⊗k, V ⊗l)

where TL(k, l) is the abstract vector space spanned by D(k, l). This is
easy to check by using positivity of the trace, see for instance [3].

Theorem 3.1. We have an equality of vector spaces

Hom(u⊗k, u⊗l) = TL(k, l)

where Hom(u⊗k, u⊗l) is the subalgebra of Hom(V ⊗k, V ⊗l) of Ao(n)-
equivariant endomorphisms.
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Proof. We use tensor categories with suitable positivity properties, as
axiomatized by Woronowicz in [23].

The starting remark is that for a unitary matrix u, the fact that u
is orthogonal is equivalent to the fact that the vector

ξ =
∑
k

ek ⊗ ek

is fixed by u⊗2, in the sense that we have the following equality:

u⊗2(ξ ⊗ 1) = ξ ⊗ 1

This follows by writing down relations for both conditions on u. Now
in terms of the linear map E : C→ V ⊗2 given by

E(1) = ξ

we have the following equivalent condition:

E ∈ Hom(1, u⊗2)

On the other hand, E is nothing but the operator corresponding to
the semicircle in D(0, 2):

E = ∩
Summing up, Ao(n) is the universal C∗-algebra generated by entries

of a unitary n× n matrix u, satisfying the following condition:

∩ ∈ Hom(1, u⊗2)

In terms of tensor categories, this gives the equality

< ∩ >= {Hom(u⊗k, u⊗l) | k, l}
where the category on the left is the one generated by ∩, meaning the
smallest one satisfying Woronowicz’s axioms in [23], and containing ∩.

Woronowicz’s operations are the composition, tensor product and
conjugation. At level of Temperley-Lieb diagrams, these are easily seen
to correspond to horizontal concatenation, vertical concatenation and
upside-down turning of diagrams. Since all Temperley-Lieb diagrams
can be obtained from ∩ via these operations, we get the equality

< ∩ >= {TL(k, l) | k, l}
which together with the above equality gives the result. �

Observe that the ingredients of this proof are Woronowicz’s Tan-
nakian duality, plus basic facts concerning Temperley-Lieb diagrams.
For a more detailed application of Tannakian duality, in a similar sit-
uation, see [3]. As for Temperley-Lieb diagrams, what we use here is
the tensor planar algebra, constructed by Jones in [11].
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4. Integration formula

In this section we find a formula for the Haar functional of Ao(n).
This is a certain linear form, denoted here as an integral∫

: Ao(n)→ C

and whose fundamental property is the following one.

Definition 4.1. The Haar functional of Ao(n) is the positive linear
unital form satisfying the bi-invariance condition(

id⊗
∫ )

∆(a) =

(∫
⊗id

)
∆(a) =

∫
a

whose existence and uniqueness is shown by Woronowicz in [22].

For the purposes of this paper, we just need the following property:
for a unitary corepresentation r ∈ End(H)⊗ Ao(n), the operator

P =

(
id⊗

∫ )
r

is the orthogonal projection onto the space of fixed points of r. This
space is in turn defined as

Hom(1, r) = {x ∈ H | r(x) = x⊗ 1}
and the whole assertion is proved in [22].

The integration formula involves scalar matrices Gkn and Wkn, in-
troduced in the following way.

Definition 4.2. The Gram and Weingarten matrices are given by

Gkn(p, q) = nl(p,q)

Wkn = G−1kn
where l(p, q) is the number of loops obtained by closing the composed
diagram p∗q for p, q ∈ D(k).

The fact that Gkn is indeed a Gram matrix comes from the equality

Gkn(p, q) =< p, q >

where p, q are regarded as operators on the Hilbert space V ⊗k, with V =
Cn, and where the scalar product on V is the usual one. Alternatively,
< p, q > can be understood as the value of the Markov trace of p∗q in
the Temperley-Lieb algebra.

As for Wkn, we will see that this is a quantum analogue of the matrix
constructed by Weingarten in [20].
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For a diagram p ∈ D(k) and a multi-index i = (i1 . . . i2k) we use the
notation

δpi =

i2k . . . ik+1

p
i1 . . . ik


where, as usual, the symbol on the right is 1 if all strings of p join pairs
of equal indices, and 0 if not. This is the same as the notation

δpi =

(
p

i1 . . . i2k

)
where p is regarded now as a non-crossing partition, via the Frobenius
identification in definition 3.3.

Theorem 4.1. The Haar functional of Ao(n) is given by∫
ui1j1 . . . ui2kj2k =

∑
pq

δpiδqjWkn(p, q)

∫
ui1j1 . . . ui2k+1j2k+1

= 0

where the sum is over all pairs of diagrams p, q ∈ D(k).

Proof. We have to compute the linear maps

E(ei1 ⊗ . . .⊗ eil) =
∑
j1...jl

ej1 ⊗ . . .⊗ ejl
∫
ui1j1 . . . uiljl

which encode all integrals in the statement.
In case l = 2k is even we use the fact that E is the orthogonal

projection onto End(u⊗k). With the notation

Φ(x) =
∑
p

< x, p > p

we have E = WΦ, where W is the inverse on TL(k) of the restriction
of Φ. But this restriction is the linear map given by Gkn, so W is the
linear map given by Wkn. This gives the first formula.

In case l is odd we use the automorphism uij → −uij of Ao(n). From
E = (−1)lE we get E = 0, which proves the second formula. �

5. Diagonal coefficients

The law of a self-adjoint element a ∈ Ao(n) is the real probability
measure µ given by ∫

ϕ(x) dµ(x) =

∫
ϕ(a)
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for any continuous function ϕ : R→ C. As for any bounded probability
measure, µ is uniquely determined by its moments. These are the
numbers ∫

xk dµ(x) =

∫
ak

with k = 1, 2, 3, . . ., also called moments of a.
We are particularly interested in the following choice of a.

Definition 5.1. The osn variable is given by

osn = u11 + . . .+ uss

where u is the fundamental corepresentation of Ao(n).

The motivating fact here is that all coefficients uii have the same
law. This is easily seen by using automorphisms of Ao(n) of type

σ : u→ pup−1

where p is a permutation matrix. This common law, whose knowledge
might be the first step towards finding an explicit model for Ao(n), is
the law of o1n.

The idea of regarding o1n as a specialisation of osn comes from the
fact that onn is a well-known variable, namely the semicircular one.
This is known from [1], and is deduced here from the following result.

Theorem 5.1. The even moments of the osn variable are given by∫
o2ksn = Tr(G−1knGks)

and the odd moments are all equal to 0.

Proof. The first assertion follows from theorem 4.1,∫
o2ksn =

∫
(u11 + . . .+ uss)

2k

=
s∑

a1=1

. . .
s∑

a2k=1

∫
ua1a1 . . . ua2ka2k

=
s∑

a1=1

. . .

s∑
a2k=1

∑
p,q∈D(k)

δpaδqaWkn(p, q)

=
∑

p,q∈D(k)

Wkn(p, q)
s∑

a1=1

. . .
s∑

a2k=1

δpaδqa

=
∑

p,q∈D(k)

Wkn(p, q)Gks(q, p)

= Tr(WknGks)
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and from the equality Wkn = G−1kn . As for the assertion about odd
moments, this follows as well from theorem 4.1. �

As a first application, we get another proof for the fact that onn is
semicircular. The semicircle law has density

dµ(x) =
1

2π

√
4− x2 dx

on [−2, 2], and 0 elsewhere. A variable having this law is called semi-
circular. The even moments of µ are the Catalan numbers

Ck =
1

k + 1

(
2k
k

)
and the odd moments are all equal to 0. See [17].

Corollary 5.1. The variable onn is semicircular.

Proof. The even moments of onn are the Catalan numbers∫
o2knn = Tr(G−1knGkn)

= Tr(1)
= #D(k)
= Ck

hence are equal to the even moments of the semicircle law. As for odd
moments, they are 0 for both onn and for the semicircle law. �

The second application brings some new information about Ao(n).

Corollary 5.2. The variable (n/s)1/2 osn is asymptotically semicircular
as n→∞.

Proof. We have Gkn(p, q) = nk for p = q, and Gkn(p, q) ≤ nk−1 for
p 6= q. Thus with n→∞ we have Gkn ∼ nk1, which gives∫

o2ksn = Tr(G−1knGks)

∼ Tr((nk1)−1Gks)
= n−kTr(Gks)
= n−ksk#D(k)
= n−kskCk

which gives the convergence in the statement, for even moments. As
for odd ones, they are all 0, so we have convergence here as well. �
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6. Asymptotic freeness

We know from corollary 5.2 that the variable n1/2o1n is asymptoti-
cally semicircular. Together with the observation after definition 5.1,
this shows that the normalised generators

{n1/2uij}i,j=1,...,n

of Ao(n) become asymptotically semicircular as n → ∞. Here we
assume that i, j are fixed, say i, j ≤ s and the limit is over n ≥ s.

This result might be useful when looking for explicit models for
Ao(n). Here is a more precise statement in this sense.

Theorem 6.1. The elements (n1/2uij)i,j=1,...,s of Ao(n) with n ≥ s
become asymptotically free and semicircular as n→∞.

Proof. The joint moments of a free family of semicircular elements are
computed by using the fact that the second order free cumulant is one,
and the other ones are zero. Therefore for a free family of semicircular
variables x1, . . . , xk, an integral of type∫

xi1 . . . xil

is zero if l is odd, and is the sum of matching non-crossing pair parti-
tions if l is even. This is a free version of Wick theorem; see Speicher
([14]) for details. Now when computing

nk
∫
ui1j1 . . . ui2kj2k

by using Theorem 4.1, observe that

nkWkn(p, p)→ 1

nkWkn(p, q)→ 0

as n→∞, whenever p 6= q. This completes the proof. �

Observe that theorem 6.1 is indeed stronger than corollary 5.2: it
is known that, with suitable normalisations, a sum of free semicircular
variables is semicircular. See [17].

7. Second order results

A basic problem regarding the algebra Ao(n) is to find the law of
coefficients uij. This is the law of the variable o1n, as defined in previous
section, with moments given by∫

o2k1n =
∑

p,q∈D(k)

Wkn(p, q).
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We know from corollary 5.2 that, under a suitable normalisation,
these moments converge with n → ∞ to those of the semicircle law.
In this section we find a power series expansion of Wkn, which can be
used for finding higher order results about the law of o1n.

Observe first that the integer-valued function

d(p, q) = k − l(p, q)
is a distance on the space D(k). Indeed, it can be shown by induction
that if p 6= q, d(p, q) is the minimal number l such that there exists
p1, . . . , pl satisfying p1 = p, pl = q, and for each pair {pi, pi+1}, pi, pi+1

have all strings identical except two of them. We call this distance
“loop distance”.

Proposition 7.1. The Gram matrix is given by

n−kGkn(p, q) = n−d(p,q)

where d is the loop distance on D(k).

Proof. This is clear from definitions. �

In other words, the matrix n−kGkn is an entry-wise exponential of
the distance matrix of D(k). This exponential can be inverted by using
paths on D(k). Such a path is a sequence of elements of the form:

p0 6= p1 6= . . . 6= pl−1 6= pl

We call this sequence path from p0 to pl.

Definition 7.1. The distance along a path P = p0, . . . , pl is the number

d(P ) = d(p0, p1) + . . .+ d(pl−1, pl)

and the length of such a path is the number l(P ) = l.

Observe that a length 0 path is just a point, and the distance along
such a path is 0.

With these definitions, we have a power series expansion in n−1 for
the Weingarten matrix.

Proposition 7.2. The Weingarten matrix is given by

nkWkn(p, q) =
∑
P

(−1)l(P )n−d(P )

where the sum is over all paths from p to q.

Proof. For n large enough we have the following computation.

nkWkn = (n−kGkn)−1

= (1− (1− n−kGkn))−1
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= 1 +
∞∑
l=1

(1− n−kGkn)l

We know that Gkn has nk on its diagonal, so 1 − n−kGkn has 0 on
the diagonal, and its l-th power is given by

(1− n−kGkn)l(p, q) =
∑
P

l∏
i=1

(1− n−kGkn)(pi−1, pi)

=
∑
P

l∏
i=1

−n−d(pi−1,pi)

= (−1)l
∑
P

n−d(P )

with P = p0, . . . , pl ranging over all length l paths from p0 = p to
pl = q. Together with the first formula, this gives

nkWkn(p, q) = δpq +
∑
P

(−1)l(P )n−d(P )

where the sum is over all paths between p and q, having length l ≥ 1.
But the leading term δpq can be added to the sum, by enlarging it to
length 0 paths, and we get the formula in the statement. �

In terms of moments of o1n, we get the following power series expan-
sion in n−1.

Proposition 7.3. The moments of n1/2o1n are given by∫ (
n1/2o1n

)2k
=
∞∑
d=0

(Ek
d −Ok

d)n
−d

where Ek
d , O

k
d count even and odd length paths of D(k) of distance d.

Proof. ¿From theorem 5.1 and proposition 7.2 we get

nk
∫
o2k1n =

∑
P

(−1)l(P )n−d(P )

where the sum is over all paths in D(k). This is a series in n−1, whose
d-th coefficient is the sum of numbers (−1)l(P ), given by Ek

d −Ok
d . �

We have now all ingredients for computing the second order term of
the law of n1/2o1n. Consider the formula∫

1

1− z(n1/2o1n)
=
∞∑
k=0

zk
∫

(n1/2o1n)k
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valid for z small complex number, or for z formal variable. The left
term is the Stieltjes transform of the law of n1/2o1n, and we have the
following power series expansion of it, when z is formal.

Theorem 7.1. We have the formal estimate
∞∑
k=0

zk
∫

(n1/2o1n)k =
2

1 +
√

1− 4z2

+ n−1
32z4

(1 +
√

1− 4z2)4
√

1− 4z2

+ O(n−2)

where O(n−2) should be understood coefficient-wise.

Proof. We use proposition 7.3. Since paths of distance 0 are of length
0 and correspond to points of D(k), the leading terms of the series of
moments of n1/2o1n are the Catalan numbers

Ek
0 −Ok

0 = Ek
0 = #D(k) = Ck

which are the moments of the semicircle law.
The next terms come from paths of distance 1. Such a path must be

of the form P = p, q with d(p, q) = 1, and has length 1. It follows that
the second terms we are interested in are given by

Ek
1 −Ok

1 = −Ok
1 = −Nk

where Nk counts neighbors in D(k), meaning pairs of diagrams (p, q)
at distance 1. This situation happens when all blocks of p and q are
the same, except for two blocks of p and two blocks of q, which do not
match with corresponding blocks of q and p. In such a situation, these
four blocks yield a circle.

Consider the generating series of numbers Ck and Nk:

C(z) =
∞∑
k=0

Ckz
2k

N(z) =
∞∑
k=0

Nkz
2k

In order to make an effective enumeration of Nk using power series
tools, we need to make some observations:

1. The circle given by non-matching blocks of p and q intersects in
four points the set of 2k points on which elements of D(k) are drawn.
For each choice of four such points there are two possible circles, ex-
plaining the 2 factor appearing in the functional equation below.
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2. There is a symmetry by circular permutation in the enumeration
problem of Nk.

These observations give the following equation:

N(z) = 2z4C(z)3
(
C(z) + z

d

dz
C(z)

)
On the other hand, the generating series of Catalan numbers is

C(z) =
2

1 +
√

1− 4z2

where the square root is defined as analytic continuation on C−R− of
the positive function t→

√
t on R∗+. We get

N(z) =
32z4

(1 +
√

1− 4z2)4
√

1− 4z2

which completes the proof. �

8. The case n = 2

We end the study of o1n with a complete computation for n = 2.
The formula in this section is probably known to specialists, because
Ao(2) is one of the much studied deformations of C(SU(2)), but we
were unable to find the right bibliographical reference for it.

Lemma 8.1. We have the equalities

u211 + u212 = 1

[u12, u
2
11] = 0

where v is the fundamental corepresentation of Ao(2).

Proof. The first equality comes from the fact that u is orthogonal. The
second one comes from the computation

u12u
2
11 − u211u12 = u12(1− u212)− (1− u212)u12

= u12 − u312 − u12 + u312
= 0

where we use twice the first equality. �

Theorem 8.1. For the generators uij of the algebra Ao(2), the law of
each u2ij is the uniform measure on [0, 1].

Proof. As explained after definition 5.1, we may assume i = j = 1. Let
D = D(k). We use the partition

D = D1 t . . . tDk

where Di is the set of of diagrams such that a string joins 1 with 2i.



18 TEODOR BANICA AND BENOÎT COLLINS †

By applying twice theorem 4.1, then by using several times lemma
8.1, we have the following computation.∫

u2k11 =
∑
p,q∈D

Wk2(p, q)

=
k∑
l=1

∑
p∈D

∑
q∈Dl

Wk2(p, q)

=
k∑
l=1

∫
u12u

2l−2
11 u12u

2k−2l
11

=
k∑
l=1

∫
u212u

2k−2
11

=
k∑
l=1

∫
(1− u211)u2k−211

= k

∫
u2k−211 − k

∫
u2k11

Rearranging terms gives the formula

(k + 1)

∫
u2k11 = k

∫
u2k−211

and we get by induction on k the value of all moments of u211:∫
u2k11 =

1

k + 1

But these numbers are known to be the moments of the uniform
measure on [0, 1], and we are done. �

9. The unitary quantum group

In this section we study the Haar functional of the universal algebra
Au(n). This algebra appears in Wang’s thesis (see [18]).

Definition 9.1. Au(n) is the C∗-algebra generated by n2 elements vij,
with relations making v = vij and vt = vji unitary matrices.

It follows from definitions that Au(n) is a Hopf C∗-algebra. The
comultiplication, counit and antipode are given by the formulae

∆(vij) =
n∑
i=1

vik ⊗ vkj

ε(vij) = δij

S(vij) = v∗ji
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which express the fact that v is an n-dimensional corepresentation.
The motivating fact about Au(n) is an analogue of theorem 1.1,

involving the unitary group U(n) and the free group Fn.

Au(n)
↙ ↘

C(U(n)) C∗(Fn)

We already know that this kind of result might not be very relevant.
This is indeed the case, so we switch to computation of commutants.
For this purpose, here is the key observation.

Proposition 9.1. We have an isomorphism

Au(n)/J = Ao(n)

where J is the ideal generated by the relations vij = v∗ij.

Proof. This is clear from definitions of Ao(n) and Au(n). �

Let F be the set of words on two letters α, β. For a ∈ F we denote
by v⊗a the corresponding tensor product of v = v⊗α and v̄ = v⊗β.

We denote as usual by u the fundamental corepresentation of Ao(n).
Since morphisms increase Hom spaces, we have inclusions

Hom(va, vb) ⊂ Hom(u⊗l(a), u⊗l(b))

where l is the length of words. These can be combined with equalities
in theorem 3.1. We get in this way inclusions

Hom(va, vb) ⊂ TL(l(a), l(b)).

Definition 9.2. For a, b ∈ F we consider the subset

D(a, b) ⊂ D(l(a), l(b))

consisting of diagrams p such that when putting a, b on points of p, each
string joins an α letter to a β letter.

In other words, the set D(a, b) can be described as

D(a, b) =

 · · · ← word a
W ← uncolorable strings
· · · · · ← word b


where capital letters denote diagrams formed by non-crossing strings,
which cannot be colored α or β, as to match colors of endpoints.

Consider also the subspace

TL(a, b) ⊂ TL(l(a), l(b))

generated by diagrams in D(a, b).
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Theorem 9.1. We have an equality of vector spaces

Hom(v⊗a, v⊗b) = TL(a, b)

where TL(a, b) is identified with its image in Hom(V ⊗l(a), V ⊗l(b)).

Proof. We follow the proof of theorem 3.1, with notations from there.
The starting remark is that for a unitary matrix v, the fact that vt is
unitary is equivalent to the fact that ξ is fixed by both v⊗ v̄ and v̄⊗ v.
In other words, we have the following two conditions:

E ∈ Hom(1, v ⊗ v̄)

E ∈ Hom(1, v̄ ⊗ v)

Now since E is the semicircle in D(0, 2), these conditions are

∩1 ∈ Hom(1, v⊗αβ)

∩2 ∈ Hom(1, v⊗βα)

where ∩1 is the semicircle having endpoints α, β, and ∩2 is the semi-
circle having endpoints β, α. As in proof of theorem 3.1, this gives

< ∩1,∩2 >= {Hom(v⊗a, v⊗b) | a, b}
where tensor categories have this time F as monoid of objects. On the
other hand, pictures show that we have the equality

< ∩1,∩2 >= {TL(a, b) | a, b}
which together with the above equality gives the result. �

Observe that what changed with respect to proof of theorem 3.1 is
the fact that the Temperley-Lieb algebra is replaced with a kind of free
version of it. The whole combinatorics is worked out in detail in [1].

We get another proof of a main result in [1], a bit more enlighten-
ing than the original one. For two other proofs, probably even more
enlightening, but relying on quite technical notions, see [2] and [5].

Theorem 9.2. We have an embedding of reduced Hopf algebras

Au(n)red ⊂ C∗(Z) ∗red Ao(n)red

given by v = zu, where z is the generator of Z.

Proof. Since u and ut are unitaries, so are the matrices

w = zu

wt = zut

so we get a morphism from left to right:

f : Au(n)→ C∗(Z) ∗ Ao(n)
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As for any morphism, f increases spaces of fixed points:

Hom(1, v⊗a) ⊂ Hom(1, w⊗a)

By standard results in [23], generalising Peter-Weyl theory, f is an
isomorphism at level of reduced algebras if and only if all inclusions
are equalities. See e.g. [1]. Now all fixed point spaces being finite
dimensional, this is the same as asking for equalities of dimensions:

dim(Hom(1, v⊗a)) = dim(Hom(1, w⊗a))

In terms of characters, we have to prove the formula∫
χ(v)a =

∫
χ(w)a

where exponentials xa are obtained as corresponding products of terms
xα = x and xβ = x∗. The term on the right is the a-th moment of

χ(w) = χ(zu) = zχ(u)

which by Voiculescu’s polar decomposition result in [16] is a circular
variable. As for the term on the left, this is given by∫

χ(v)a = dim(Hom(1, v⊗a)) = #D(a)

which by results of Speicher ([14]) and Nica-Speicher ([13]) is also the
a-th moment of the circular variable. �

Definition 9.3. The usn variable is given by

usn = v11 + . . .+ vss

where v is the fundamental corepresentation of Au(n).

This notation looks a bit confusing, because uij was so far reserved
for the fundamental corepresentation of Ao(n). However, this corepre-
sentation will no longer appear, and there is no confusion.

The properties of usn can be deduced from corresponding properties
of osn by using standard free probability tools.

Theorem 9.3. The usn variable has the following properties.
(1) We have usn = zosn, where z is a Haar-unitary free from osn.
(2) The variable unn is circular.
(3) The variable (n/s)1/2usn with n→∞ is circular.

Proof. The first assertion follows from theorem 9.2. The other ones
follow from (1) and from corollaries 5.1 and 5.2, by using Voiculescu’s
result on the polar decomposition of circular variables ([16]). �

Theorem 9.4. The elements (n1/2vij)i,j=1,...,s of Au(n) with n ≥ s
become asymptotically free and circular as n→∞.
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Proof. This follows along the same lines as theorem 6.1. �

Finally, it is possible to derive from theorem 9.1 a general integration
formula for Au(n), in the same way as theorem 4.1 is derived from
theorem 3.1. For this purpose, we first extend definition 4.2.

Definition 9.4. For a ∈ F , the Gram and Weingarten matrices are

Gan(p, q) = nl(p,q)

Wan = G−1an

where both indices p, q are diagrams in D(a).

It is convenient at this point to remove the tensor sign in our nota-
tions v = v⊗α and v̄ = v⊗β. That is, we use the following notations:

v = vα

v̄ = vβ

As in case of Ao(n), we get that integrals are either 0, or equal to
certain sums of entries of the Weingarten matrix.

Theorem 9.5. The Haar functional of Au(n) is given by∫
va1i1j1 . . . v

a2k
i2kj2k

=
∑
pq

δpiδqjWan(p, q)

∫
va1i1j1 . . . v

al
iljl

= 0

where a = a1a2 . . . is a word in F , which in the first formula contains
as many α as many β, and in the second formula, doesn’t.

Proof. This proof is done along the same lines as the proof of Theorem
4.1.

�

Theorem 9.5 has its own interest; however, it is not really needed for
study of usn, where the procedure to follow is explained in theorem 9.3
and its proof: find results about osn, then make a free convolution by
a Haar-unitary. This kind of convolution operation is standard in free
probability, see for instance Nica and Speicher ([13]).
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