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Abstract. This is an introduction to the theory of mathematical functions. We first
discuss various motivations and examples, ways of representing functions, and with a
detailed look into the basic functions, namely polynomials, and sin, cos, exp, log. Then
we discuss continuity, with the standard results on the subject, followed by derivatives,
again with the standard results on the subject, notably with the Taylor formula, and
its applications. Finally, we discuss integrals, with emphasis on what can be done with
Riemann sums, and their relation with derivatives. We have a look as well, at the end,
at the functions of several variables, whose study is more complicated.



Preface

A function f : R → R is a device which to each real number x ∈ R associates another
real number, f(x) ∈ R. Basic examples of functions include f(x) = 2x, or f(x) = x2.
Further examples, which are more complicated, include f(x) = sinx, or f(x) = ex.

As the name indicates, a function functions. That is, once f : R → R is fixed, say
f(x) = 3x2 + 1, for having an example, give me any x ∈ R, and even something quite
complicated, like x = 2

√
5− 1, and me, or rather function f , will tell you right away that

f(x) = 64− 2
√
5. Which is something very satisfying, compared to the variety of things

that can be purchased in stores, or on the internet, which do not necessarily function well.
With our mathematical functions f : R → R we are into reliability, and beauty.

Needless to say, functions f : R → R are something useful too. Typically x ∈ R can
be thought of as being the “input” for your problem, that is, the quantity that you can
make vary, as a scientist or engineer, and f(x) ∈ R is your “output”, that is, the quantity
that you are interested in, and that you want for instance to minimize or maximize, in
the context of your scientific or engineering business. And, the idea is that the abstract
mathematical study of f : R → R will help you, in order to achieve your goals.

Very nice all this, and as a first question that you might have, given f : R → R, what
is the formula of f? Good point, and in answer, although billions and more of functions
can be constructed by starting with the basic functions that we know well, and composing
them, with a sample example here being f(x) = sin(100x)+4e2x+5+tan(ex+7)+9, well,
bad luck, we won’t obtain in this way all the possible functions f : R → R.

You will have to believe me here, and we will of course even prove this, in this book,
as a theorem, once our knowledge of functions will be ripe. In short, this is how life and
mathematics are, functions f : R → R can be quite wild, and for studying them, there is
no formula allowed, and we will have to deal with them as such, f : R → R.

Fortunately, there is an answer to this difficulty, coming from calculus, as developed by
Newton, Leibnitz and others, a long time ago. Their idea was to say that, when thinking
a bit, geometrically, any function f : R → R must be approximately linear, around
each point x ∈ R. Moreover, when looking at the error term, this must be approximately
quadratic. And so on, and as a conclusion to this, called Taylor formula, any “reasonable”
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4 PREFACE

function f : R → R must appear as some sort of “infinite polynomial”, around each point
x ∈ R. Which is something extremely useful, because with this in hand, you can then go
back to your scientific or engineering problems, such as the minimization or maximization
problems for the output f(x) ∈ R evoked above, and eat them raw.

This book will be here for teaching you this, the theory of functions f : R → R,
developed along the above lines, following Newton and the others. That is, all basic
knowledge, that you should perfecly master, as a scientist or engineer.

Needless all say, we will only provide an introduction to this. For more, that is, more
theory of the real functions f : R → R, or theory of the complex functions f : C → C, or
theory of the real multivariable functions f : RN → RM , or even theory of the complex
multivariable functions f : CN → CM , that you should master too, in order for you science
or engineering to be truly cutting edge, we will recommend some further reading.

Many thanks to my cats, and to the other cats in this world. You have no idea how
many functions and theorems must be used, in order to properly catch a mouse, and in
fact, the theory of functions f : R → R was formalized only quite late, in the history
of mankind, after domesticating the cat, and observing his methods. Later, Newton
discovered calculus too after closely monitoring his cat. And so on. And this book is no
exception to the rule, the few points in the presentation which are original and useful, I
hope, came in the same way, by observing those of us which are smarter, and faster.

Cergy, May 2025

Teo Banica
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Part I

Functions



Don’t you know, things can change
Things will go your way

If you hold on
For one more day



CHAPTER 1

Real numbers

1a. Numbers

Welcome to functions, and mathematical analysis. We denote by N the set of positive
integers, N = {0, 1, 2, 3, . . .}, with N standing for “natural”. We will certainly need nega-
tive numbers too, and we denote by Z the set of all integers, Z = {. . . ,−2,−1, 0, 1, 2, . . .},
with Z standing here for “zahlen”, which is German for “numbers”.

As you surely know, there are many questions in mathematics involving fractions, or
quotients, which are defined as follows, and called rational numbers:

Definition 1.1. The rational numbers are the quotients of type

r =
a

b

with a, b ∈ Z, and b ̸= 0, identified according to the usual rule for quotients, namely:

a

b
=
c

d
⇐⇒ ad = bc

We denote the set of rational numbers by Q, standing for “quotients”.

Observe that we have inclusions of sets as follows, with each integer a ∈ Z being
identified with the corresponding fraction a/1:

N ⊂ Z ⊂ Q

The integers add and multiply according to the rules that you know well. As for the
rational numbers, these add according to the usual rule for quotients, as follows:

a

b
+
c

d
=
ad+ bc

bd

Also, the rational numbers multiply according to the usual rule for quotients:

a

b
· c
d
=
ac

bd

In particular that any nonzero rational r = a/b can be inverted, according to:(a
b

)−1

=
b

a
11



12 1. REAL NUMBERS

In more formal terms, we can say that Q is the smallest field containing N. But more
on fields later, for the moment, let us not bother with such abstract things.

Beyond rationals, we have the real numbers, whose set is denoted R, and which include
beasts such as

√
3 = 1.73205 . . . or π = 3.14159 . . . But more on these later.

For the moment, let us see what can be done with integers, and their quotients. As a
first theorem, solving a problem which often appears in real life, we have:

Theorem 1.2. The number of possibilities of choosing k objects among n objects is(
n

k

)
=

n!

k!(n− k)!

called binomial number, where n! = 1 · 2 · 3 . . . (n− 2)(n− 1)n, called “factorial n”.

Proof. Imagine a set consisting of n objects. We have n possibilities for choosing
our 1st object, then n−1 possibilities for choosing our 2nd object, out of the n−1 objects
left, and so on up to n−k+1 possibilities for choosing our k-th object, out of the n−k+1
objects left. Since the possibilities multiply, the total number of choices is:

N = n(n− 1) . . . (n− k + 1)

= n(n− 1) . . . (n− k + 1) · (n− k)(n− k − 1) . . . 2 · 1
(n− k)(n− k − 1) . . . 2 · 1

=
n(n− 1) . . . 2 · 1

(n− k)(n− k − 1) . . . 2 · 1

=
n!

(n− k)!

But is this correct. Normally a mathematical theorem coming with mathematical
proof is guaranteed to be 100% correct, and if in addition the proof is truly clever, like
the above proof was, with that fraction trick, the confidence rate jumps up to 200%.

This being said, never knows, so let us doublecheck, by taking for instance n = 3, k = 2.
Here we have to choose 2 objects among 3 objects, and this is something easily done,
because what we have to do is to dismiss one of the objects, and N = 3 choices here, and
keep the 2 objects left. Thus, we have N = 3 choices. On the other hand our genius math
computation gives the following formula, which is obviously the wrong answer:

N =
3!

1!
=

1 · 2 · 3
1

= 6

So, where is the mistake? Thinking a bit, the number N that we computed is in fact
the number of possibilities of choosing k ordered objects among n objects. Thus, we must
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divide everything by the number M of orderings of the k objects that we chose:(
n

k

)
=
N

M

In order to compute now the missing numberM , imagine a set consisting of k objects.
There are k choices for the object to be designated #1, then k − 1 choices for the object
to be designated #2, and so on up to 1 choice for the object to be designated #k. We
conclude that we have M = k(k − 1) . . . 2 · 1 = k!, and so that we have:(

n

k

)
=
n!/(n− k)!

k!
=

n!

k!(n− k)!

And this is the correct answer, because, well, that is how things are. In case you
doubt, at n = 3, k = 2 for instance we obtain the following answer, which is correct:(

3

2

)
=

3!

2!1!
=

6

2
= 3

Thus, eventually, theorem proved, and doublechecked as well. □

All this is quite interesting, and in addition to having some exciting mathematics going
on, and more on this in a moment, we have as well some philosophical conclusions. For-
mulae can be right or wrong, and as the above shows, good-looking, formal mathematical
proofs can be right or wrong too. So, what to do? Here is my advice:

Advice 1.3. Always doublecheck what you’re doing, regularly, and definitely at the
end, either with an alternative proof, or with some numerics.

This is something very serious. Unless you’re doing something very familiar, that
you’re used to for at least 5-10 years or so, like doing additions and multiplications for
you, or some easy calculus for me, formulae and proofs that you can come upon are by
default wrong. In order to make them correct, and ready to use, you must check and
doublecheck and correct them, helped by alternative methods, or numerics.

Back to work now, as an important adding to Theorem 1.2, we have:

Convention 1.4. By definition, 0! = 1.

This convention comes, and no surprise here, from Advice 1.3. Indeed, we obviously
have

(
n
n

)
= 1, but if we want to recover this formula via Theorem 1.2 we are a bit in

trouble, and so we must declare that 0! = 1, as for the following computation to work:(
n

n

)
=

n!

n!0!
=

n!

n!× 1
= 1

Going ahead now with more mathematics and less philosophy, with Theorem 1.2
complemented by Convention 1.4 being in final form (trust me), we have:
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Theorem 1.5. We have the binomial formula

(a+ b)n =
n∑

k=0

(
n

k

)
akbn−k

valid for any two numbers a, b ∈ Q.

Proof. We have to compute the following quantity, with n terms in the product:

(a+ b)n = (a+ b)(a+ b) . . . (a+ b)

When expanding, we obtain a certain sum of products of a, b variables, with each such
product being a quantity of type akbn−k. Thus, we have a formula as follows:

(a+ b)n =
n∑

k=0

Cka
kbn−k

In order to finish, it remains to compute the coefficients Ck. But, according to our
product formula, Ck is the number of choices for the k needed a variables among the n
available a variables. Thus, according to Theorem 1.2, we have:

Ck =

(
n

k

)
We are therefore led to the formula in the statement. □

Theorem 1.5 is something quite interesting, so let us doublecheck it with some numer-
ics. At small values of n we obtain the following formulae, which are all correct:

(a+ b)0 = 1

(a+ b)1 = a+ b

(a+ b)2 = a2 + 2ab+ b2

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4

(a+ b)5 = a5 + 5a4b+ 10a3b2 + 10a2b3 + 5a4b+ b5

...

Now observe that in these formulae, say for memorization purposes, the powers of the
a, b variables are something very simple, that can be recovered right away. What matters
are the coefficients, which are the binomial coefficients

(
n
k

)
, which form a triangle. So, it

is enough to memorize this triangle, and this can be done by using:
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Theorem 1.6. The Pascal triangle, formed by the binomial coefficients
(
n
k

)
,

1

1 , 1

1 , 2 , 1

1 , 3 , 3 , 1

1 , 4 , 6 , 4 , 1

1 , 5 , 10 , 10 , 5 , 1
...

has the property that each entry is the sum of the two entries above it.

Proof. In practice, the theorem states that the following formula holds:(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
There are many ways of proving this formula, all instructive, as follows:

(1) Brute-force computation. We have indeed, as desired:(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(n− 1)!

(k − 1)!(n− k)!
+

(n− 1)!

k!(n− k − 1)!

=
(n− 1)!

(k − 1)!(n− k − 1)!

(
1

n− k
+

1

k

)
=

(n− 1)!

(k − 1)!(n− k − 1)!
· n

k(n− k)

=

(
n

k

)
(2) Algebraic proof. We have the following formula, to start with:

(a+ b)n = (a+ b)n−1(a+ b)

By using the binomial formula, this formula becomes:
n∑

k=0

(
n

k

)
akbn−k =

[
n−1∑
r=0

(
n− 1

r

)
arbn−1−r

]
(a+ b)

Now let us perform the multiplication on the right. We obtain a certain sum of terms
of type akbn−k, and to be more precise, each such akbn−k term can either come from the(
n−1
k−1

)
terms ak−1bn−k multiplied by a, or from the

(
n−1
k

)
terms akbn−1−k multiplied by b.

Thus, the coefficient of akbn−k on the right is
(
n−1
k−1

)
+
(
n−1
k

)
, as desired.

(3) Combinatorics. Let us count k objects among n objects, with one of the n objects
having a hat on top. Obviously, the hat has nothing to do with the count, and we obtain
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n
k

)
. On the other hand, we can say that there are two possibilities. Either the object

with hat is counted, and we have
(
n−1
k−1

)
possibilities here, or the object with hat is not

counted, and we have
(
n−1
k

)
possibilities here. Thus

(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
, as desired. □

There are many more things that can be said about binomial coefficients, with all
sorts of interesting formulae, but the idea is always the same, namely that in order to find
such formulae you have a choice between algebra and combinatorics, and that when it
comes to proofs, the brute-force computation method is useful too. In practice, the best
is to master all 3 techniques. Among others, because of Advice 1.3. You will have in this
way 3 different methods, for making sure that your formulae are correct indeed.

1b. Real numbers

All the above was very nice, but remember that we are here for doing science and
physics, and more specifically for mathematically understanding the numeric variables
x, y, z, . . . coming from real life. Such variables can be lengths, volumes, pressures and so
on, which vary continuously with time, and common sense dictates that there is little to
no chance for our variables to be rational, x, y, z, . . . /∈ Q. In fact, we will even see soon a
theorem, stating that the probability for such a variable to be rational is exactly 0. Or,
to put it in a dramatic way, “rational numbers don’t exist in real life”.

You are certainly familiar with the real numbers, but let us review now their definition,
which is something quite tricky. As a first goal, we would like to construct a number
x =

√
2 having the property x2 = 2. But how to do this? Let us start with:

Proposition 1.7. There is no number r ∈ Q+ satisfying r2 = 2. In fact, we have

Q+ =
{
p ∈ Q+

∣∣∣p2 < 2
}⊔{

q ∈ Q+

∣∣∣q2 > 2
}

with this being a disjoint union.

Proof. In what regards the first assertion, assuming that r = a/b with a, b ∈ N prime
to each other satisfies r2 = 2, we have a2 = 2b2, so a ∈ 2N. But by using again a2 = 2b2

we obtain b ∈ 2N, contradiction. As for the second assertion, this is obvious. □

It looks like we are a bit stuck. We can’t really tell who
√
2 is, and the only piece of

information about
√
2 that we have comes from the knowledge of the rational numbers

satisfying p2 < 2 or q2 > 2. To be more precise, the picture that emerges is:

Conclusion 1.8. The number
√
2 is the abstract beast which is bigger than all ratio-

nals satisfying p2 < 2, and smaller than all positive rationals satisfying q2 > 2.

This does not look very good, but you know what, instead of looking for more clever
solutions to our problem, what about relaxing, or being lazy, or coward, or you name it,
and taking Conclusion 1.8 as a definition for

√
2. This is actually something not that bad,

and leads to the following “lazy” definition for the real numbers:
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Definition 1.9. The real numbers x ∈ R are formal cuts in the set of rationals,

Q = Ax ⊔Bx

with such a cut being by definition subject to the following conditions:

p ∈ Ax , q ∈ Bx =⇒ p < q , inf Bx /∈ Bx

These numbers add and multiply by adding and multiplying the corresponding cuts.

This might look quite original, but believe me, there is some genius behind this defi-
nition. As a first observation, we have an inclusion Q ⊂ R, obtained by identifying each
rational number r ∈ Q with the obvious cut that it produces, namely:

Ar =
{
p ∈ Q

∣∣∣p ≤ r
}

, Br =
{
q ∈ Q

∣∣∣q > r
}

As a second observation, the addition and multiplication of real numbers, obtained
by adding and multiplying the corresponding cuts, in the obvious way, is something very
simple. To be more precise, in what regards the addition, the formula is as follows:

Ax+y = Ax + Ay

As for the multiplication, the formula here is similar, namely Axy = AxAy, up to some
mess with positives and negatives, which is quite easy to untangle, and with this being a
good exercise. We can also talk about order between real numbers, as follows:

x ≤ y ⇐⇒ Ax ⊂ Ay

But let us perhaps leave more abstractions for later, and go back to more concrete
things. As a first success of our theory, we can formulate the following theorem:

Theorem 1.10. The equation x2 = 2 has two solutions over the real numbers, namely
the positive solution, denoted

√
2, and its negative counterpart, which is −

√
2.

Proof. By using x→ −x, it is enough to prove that x2 = 2 has exactly one positive
solution

√
2. But this is clear, because

√
2 can only come from the following cut:

A√
2 = Q−

⊔{
p ∈ Q+

∣∣∣p2 < 2
}

, B√
2 =

{
q ∈ Q+

∣∣∣q2 > 2
}

Thus, we are led to the conclusion in the statement. □

More generally, the same method works in order to extract the square root
√
r of any

number r ∈ Q+, or even of any number r ∈ R+, and we have the following result:

Theorem 1.11. The solutions of ax2 + bx+ c = 0 with a, b, c ∈ R are

x1,2 =
−b±

√
b2 − 4ac

2a

provided that b2 − 4ac ≥ 0. In the case b2 − 4ac < 0, there are no solutions.
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Proof. We can write our equation in the following way:

ax2 + bx+ c = 0 ⇐⇒ x2 +
b

a
x+

c

a
= 0

⇐⇒
(
x+

b

2a

)2

− b2

4a2
+
c

a
= 0

⇐⇒
(
x+

b

2a

)2

=
b2 − 4ac

4a2

⇐⇒ x+
b

2a
= ±

√
b2 − 4ac

2a

Thus, we are led to the conclusion in the statement. □

Summarizing, we have a nice abstract definition for the real numbers, that we can
certainly do some mathematics with. As a first general result now, which is something
very useful, and puts us back into real life, and science and engineering, we have:

Theorem 1.12. The real numbers x ∈ R can be written in decimal form,

x = ±a1 . . . an.b1b2b3 . . . . . .

with ai, bi ∈ {0, 1, . . . , 9}, with the convention . . . b999 . . . = . . . (b+ 1)000 . . .

Proof. This is something non-trivial, even for the rationals x ∈ Q themselves, which
require some work in order to be put in decimal form, the idea being as follows:

(1) First of all, our precise claim is that any x ∈ R can be written in the form in the
statement, with the integer ±a1 . . . an and then each of the digits b1, b2, b3, . . . providing
the best approximation of x, at that stage of the approximation.

(2) Moreover, we have a second claim as well, namely that any expression of type
x = ±a1 . . . an.b1b2b3 . . . . . . corresponds to a real number x ∈ R, and that with the
convention . . . b999 . . . = . . . (b+ 1)000 . . . , the correspondence is bijective.

(3) In order to prove now these two assertions, our first claim is that we can restrict
the attention to the case x ∈ [0, 1), and with this meaning of course 0 ≤ x < 1, with
respect to the order relation for the reals discussed in the above.

(4) Getting started now, let x ∈ R, coming from a cut Q = Ax ⊔ Bx. Since the set
Ax ∩ Z consists of integers, and is bounded from above by any element q ∈ Bx of your
choice, this set has a maximal element, that we can denote [x]:

[x] = max (Ax ∩ Z)

It follows from definitions that [x] has the usual properties of the integer part, namely:

[x] ≤ x < [x] + 1
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Thus we have x = [x]+y with [x] ∈ Z and y ∈ [0, 1), and getting back now to what we
want to prove, namely (1,2) above, it is clear that it is enough to prove these assertions
for the remainder y ∈ [0, 1). Thus, we have proved (3), and we can assume x ∈ [0, 1).

(5) So, assume x ∈ [0, 1). We are first looking for a best approximation from below of
type 0.b1, with b1 ∈ {0, . . . , 9}, and it is clear that such an approximation exists, simply
by comparing x with the numbers 0.0, 0.1, . . . , 0.9. Thus, we have our first digit b1, and
then we can construct the second digit b2 as well, by comparing x with the numbers
0.b10, 0.b11, . . . , 0.b19. And so on, which finishes the proof of our claim (1).

(6) In order to prove now the remaining claim (2), let us restrict again the attention,
as explained in (4), to the case x ∈ [0, 1). First, it is clear that any expression of type
x = 0.b1b2b3 . . . defines a real number x ∈ [0, 1], simply by declaring that the corresponding
cut Q = Ax ⊔Bx comes from the following set, and its complement:

Ax =
⋃
n≥1

{
p ∈ Q

∣∣∣p ≤ 0.b1 . . . bn

}
(7) Thus, we have our correspondence between real numbers as cuts, and real numbers

as decimal expressions, and we are left with the question of investigating the bijectivity
of this correspondence. But here, the only bug that happens is that numbers of type
x = . . . b999 . . ., which produce reals x ∈ R via (6), do not come from reals x ∈ R via (5).
So, in order to finish our proof, we must investigate such numbers.

(8) So, consider an expression of type . . . b999 . . . Going back to the construction in
(6), we are led to the conclusion that we have the following equality:

Ab999... = B(b+1)000...

Thus, at the level of the real numbers defined as cuts, we have:

. . . b999 . . . = . . . (b+ 1)000 . . .

But this solves our problem, because by identifying . . . b999 . . . = . . . (b+1)000 . . . the
bijectivity issue of our correspondence is fixed, and we are done. □

The above theorem was of course quite difficult, but this is how things are. Let us
record as well the following result, coming as a useful complement to the above:

Theorem 1.13. A real number r ∈ R is rational precisely when

r = ±a1 . . . am.b1 . . . bn(c1 . . . cp)

that is, when its decimal writing is periodic.
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Proof. In one sense, this follows from the following computation, which shows that
a number as in the statement is indeed rational:

r = ± 1

10n
a1 . . . amb1 . . . bn.c1 . . . cpc1 . . . cp . . .

= ± 1

10n

(
a1 . . . amb1 . . . bn + c1 . . . cp

(
1

10p
+

1

102p
+ . . .

))
= ± 1

10n

(
a1 . . . amb1 . . . bn +

c1 . . . cp
10p − 1

)
As for the converse, given a rational number r = k/l, we can find its decimal writing by

performing the usual division algorithm, k divided by l. But this algorithm will be surely
periodic, after some time, so the decimal writing of r is indeed periodic, as claimed. □

At a more advanced level, passed the rationals, our problem remains the same, namely
how to recognize the arithmetic properties of the real numbers r ∈ R, as for instance being
square roots of rationals, and so on, when written in decimal form. Many things can be
said here, and we will be back to this on several occasions, in this book.

Getting back now to Theorem 1.12, that was definitely something quite difficult. Al-
ternatively, we have the following definition for the real numbers:

Theorem 1.14. The field of real numbers R can be defined as well as the completion
of Q with respect to the usual distance on the rationals, namely

d
(a
b
,
c

d

)
=
∣∣∣a
b
− c

d

∣∣∣
and with the operations on R coming from those on Q, via Cauchy sequences.

Proof. There are several things going on here, the idea being as follows:

(1) Getting back to Definiton 1.1, we know from there what the rational numbers
are. But, as a continuation of that, we can talk about the distance between such rational
numbers, as being given by the formula in the statement, namely:

d
(a
b
,
c

d

)
=
∣∣∣a
b
− c

d

∣∣∣ = |ad− bc|
|bd|

(2) Very good, so let us get now into Cauchy sequences. We say that a sequence of
rational numbers {rn} ⊂ Q is Cauchy when the following condition is satisfied:

∀ε > 0, ∃N ∈ N,m, n ≥ N =⇒ d(rm, rn) < ε

Here of course ε ∈ Q, because we do not know yet what the real numbers are.

(3) With this notion in hand, the idea will be to define the reals x ∈ R as being the
limits of the Cauchy sequences {rn} ⊂ Q. But since these limits are not known yet to
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exist to us, precisely because they are real, we must employ a trick. So, let us define
instead the reals x ∈ R as being the Cauchy sequences {rn} ⊂ Q themselves.

(4) The question is now, will this work. As a first observation, we have an inclusion
Q ⊂ R, obtained by identifying each rational r ∈ Q with the constant sequence rn = r.
Also, we can sum and multiply our real numbers in the obvious way, namely:

(rn) + (pn) = (rn + pn) , (rn)(pn) = (rnpn)

We can also talk about the order between such reals, as follows:

(rn) < (pn) ⇐⇒ ∃N, n ≥ N =⇒ rn < pn

Finally, we can also solve equations of type x2 = 2 over our real numbers, say by
using our previous work on the decimal writing, which shows in particular that

√
2 can

be approximated by rationals rn ∈ Q, by truncating the decimal writing.

(5) However, there is still a bug with our theory, because there are obviously more
Cauchy sequences of rationals, than real numbers. In order to fix this, let us go back to
the end of step (3) above, and make the following convention:

(rn) = (pn) ⇐⇒ d(rn, pn) → 0

(6) But, with this convention made, we have our theory. Indeed, the considerations
in (4) apply again, with this change, and we obtain an ordered field R, containing Q.
Moreover, the equivalence with the Dedekind cuts is something which is easy to establish,
and we will leave this as an instructive exercise, and this gives all the results. □

Very nice all this, so have have two equivalent definitions for the real numbers. Finally,
getting back to the decimal writing approach, that can be recycled too, with some analysis
know-how, and we have a third possible definition for the real numbers, as follows:

Theorem 1.15. The real numbers R can be defined as well via the decimal form

x = ±a1 . . . an.an+1an+2an+3 . . . . . .

with ai ∈ {0, 1, . . . , 9}, with the usual convention for such numbers, namely

. . . a999 . . . = . . . (a+ 1)000 . . .

and with the sum and multiplication coming by writing such numbers as

x = ±
∑
k∈Z

ak10
−k

and then summing and multiplying, in the obvious way.

Proof. This is something which looks quite intuitive, but which in practice, and we
insist here, is not exactly beginner level, the idea with this being as follows:
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(1) Let us first forget about the precise decimal writing in the statement, and define
the real numbers x ∈ R as being formal sums as follows, with the sum being over integers
k ∈ Z assumed to be greater than a certain integer, k ≥ k0:

x = ±
∑
k∈Z

ak10
−k

(2) Now by truncating, we can see that what we have here are certain Cauchy sequences
of rationals, and with a bit more work, we conclude that the R that we constructed is
precisely the R that we constructed in Theorem 1.14. Thus, we get the result.

(3) Alternatively, by getting back to Theorem 1.12 and its proof, we can argue, based
on that, that the R that we constructed coincides with the old R from Definition 1.9, the
one constructed via Dedekind cuts, and this gives again all the assertions. □

Moving on, we made the claim in the beginning of this chapter that “in real life, real
numbers are never rational”. Here is a theorem, justifying this claim:

Theorem 1.16. The probability for a real number x ∈ R to be rational is 0.

Proof. This is something quite tricky, the idea being as follows:

(1) Before starting, let us point out the fact that probability theory is something quite
tricky, with probability 0 not necessarily meaning that the event cannot happen, but
rather meaning that “better not count on that”. For instance according to my compu-
tations the probability of you winning 1 billion at the lottery is 0, but you are of course
free to disagree, and prove me wrong, by playing every day at the lottery.

(2) With this discussion made, and extrapolating now from finance and lottery to
our question regarding real numbers, your possible argument of type “yes, but if I pick
x ∈ R to be x = 3/2, I have proof that the probability for x ∈ Q is nonzero” is therefore
dismissed. Thus, our claim as stated makes sense, so let us try now to prove it.

(3) By translation, it is enough to prove that the probability for a real number x ∈ [0, 1]
to be rational is 0. For this purpose, let us write the rational numbers r ∈ [0, 1] in the
form of a sequence r1, r2, r3 . . . , with this being possible say by ordering our rationals
r = a/b according to the lexicographic order on the pairs (a, b):

Q ∩ [0, 1] =
{
r1, r2, r3, . . .

}
Let us also pick a number c > 0. Since the probability of having x = r1 is certainly

smaller than c/2, then the probability of having x = r2 is certainly smaller than c/4, then
the probability of having x = r3 is certainly smaller than c/8 and so on, the probability
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for x to be rational satisfies the following inequality:

P ≤ c

2
+
c

4
+
c

8
+ . . .

= c

(
1

2
+

1

4
+

1

8
+ . . .

)
= c

Here we have used the following well-known formula, which comes by dividing the
interval [0, 1] into half, and then one of the halves into half again, and so on, and then
saying in the end that the pieces that we have must sum up to 1:

1

2
+

1

4
+

1

8
+ . . . = 1

Thus, getting back now to the above, we have indeed P ≤ c, and since the number
c > 0 was arbitrary, we conclude that we have P = 0, as desired. □

As a comment here, all the above was of course quite tricky, and a bit bordeline in
respect to what can be called “rigorous mathematics”. But we will be back to this, namely
general probability theory, and in particular meaning of the mysterious formula P = 0,
countable sets, infinite sums and so on, on several occasions, throughout this book.

1c. Sequences, limits

We already met, on several occasions, infinite sequences or sums, and their limits.
Time now to clarify all this. Let us start with the following definition:

Definition 1.17. We say that a sequence {xn}n∈N ⊂ R converges to x ∈ R when:

∀ε > 0,∃N ∈ N,∀n ≥ N, |xn − x| < ε

In this case, we write limn→∞ xn = x, or simply xn → x.

This might look quite scary, at a first glance, but when thinking a bit, there is nothing
scary about it. Indeed, let us try to understand, how shall we translate xn → x into
mathematical language. And here, things are quite straightforward, as follows:

(1) The condition xn → x tells us that “when n is big, xn is close to x”.

(2) That is, this tells us that “when n is big enough, xn gets arbitrarily close to x”.

(3) But, “n big enough” obviously means n ≥ N , for some N ∈ N.

(4) And “xn arbitrarily close to x” means |xn − x| < ε, for some ε > 0.

(5) Thus, we are naturally led to the above definition, and end of the story.

Time perhaps for some illustrations. As a basic example for all this, we have:
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Proposition 1.18. We have 1/n→ 0.

Proof. This is obvious, but let us prove it by using Definition 1.17. We have:∣∣∣∣ 1n − 0

∣∣∣∣ < ε ⇐⇒ 1

n
< ε

⇐⇒ 1

ε
< n

⇐⇒
[
1

ε

]
< n

Thus we can take N = [1/ε] + 1 in Definition 1.17, and we are done. □

There are countless other examples of limits, and more on this in a moment. Going
ahead with more theory, let us complement Definition 1.17 with:

Definition 1.19. We write xn → ∞ when the following condition is satisfied:

∀K > 0,∃N ∈ N,∀n ≥ N, xn > K

Similarly, we write xn → −∞ when the same happens, with xn < −K at the end.

Again, this is something very intuitive, coming from the fact that xn → ∞ can only
mean that xn is arbitrarily big, for n big enough. We will leave some thinking here, along
the lines of the discussion following Definition 1.17, as an instructive exercise.

As a basic illustration for Definition 1.19, we have:

Proposition 1.20. We have n2 → ∞.

Proof. As before, this is obvious, but let us prove it using Definition 1.19. We have:

n2 > K ⇐⇒ n >
√
K

⇐⇒ n > [
√
K]

Thus we can take N = [
√
K] + 1 in Definition 1.19, and we are done. □

We can unify and generalize Proposition 1.18 and Proposition 1.20, as follows:

Proposition 1.21. We have the following convergence,

na →


0 (a < 0)

1 (a = 0)

∞ (a > 0)

with n→ ∞.

Proof. This follows indeed by using the same method as in the proof of Proposition
1.18 and Proposition 1.20, first for a rational, and then for a real as well. We will leave
working out the details here as an instructive exercise. □
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We have some general results about limits, summarized as follows:

Theorem 1.22. The following happen:

(1) The limit limn→∞ xn, if it exists, is unique.
(2) If xn → x, with x ∈ (−∞,∞), then xn is bounded.
(3) If xn is increasing or descreasing, then it converges.
(4) Assuming xn → x, any subsequence of xn converges to x.

Proof. All this is elementary, coming from definitions:

(1) Assuming xn → x, xn → y we have indeed, for any ε > 0, for n big enough:

|x− y| ≤ |x− xn|+ |xn − y| < 2ε

(2) Assuming xn → x, we have |xn − x| < 1 for n ≥ N , and so, for any k ∈ N:
|xk| < 1 + |x|+ sup (|x1|, . . . , |xn−1|)

(3) By using x → −x, it is enough to prove the result for increasing sequences. But
here we can construct the limit x ∈ (−∞,∞] in the following way:⋃

n∈N

(−∞, xn) = (−∞, x)

(4) This is clear from definitions. □

Here are as well some general rules for computing limits:

Theorem 1.23. The following happen, with the conventions ∞+∞ = ∞, ∞·∞ = ∞,
1/∞ = 0, and with the conventions that ∞−∞ and ∞ · 0 are undefined:

(1) xn → x implies λxn → λx.
(2) xn → x, yn → y implies xn + yn → x+ y.
(3) xn → x, yn → y implies xnyn → xy.
(4) xn → x with x ̸= 0 implies 1/xn → 1/x.

Proof. All this is again elementary, coming from definitions:

(1) This is something which is obvious from definitions.

(2) This follows indeed from the following estimate:

|xn + yn − x− y| ≤ |xn − x|+ |yn − y|
(3) This follows indeed from the following estimate:

|xnyn − xy| = |(xn − x)yn + x(yn − y)|
≤ |xn − x| · |yn|+ |x| · |yn − y|

(4) This is again clear, by estimating 1/xn − 1/x, in the obvious way. □

As an application of the above rules, we have the following useful result:
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Proposition 1.24. The n→ ∞ limits of quotients of polynomials are given by

lim
n→∞

apn
p + ap−1n

p−1 + . . .+ a0
bqnq + bq−1nq−1 + . . .+ b0

= lim
n→∞

apn
p

bqnq

with the limit on the right being ±∞, 0, ap/bq, depending on the values of p, q.

Proof. The first assertion comes from the following computation:

lim
n→∞

apn
p + ap−1n

p−1 + . . .+ a0
bqnq + bq−1nq−1 + . . .+ b0

= lim
n→∞

np

nq
· ap + ap−1n

−1 + . . .+ a0n
−p

bq + bq−1n−1 + . . .+ b0n−q

= lim
n→∞

apn
p

bqnq

As for the second assertion, this comes from Proposition 1.21. □

Getting back now to theory, some sequences which obviously do not converge, like for
instance xn = (−1)n, have however “2 limits instead of 1”. So let us formulate:

Definition 1.25. Given a sequence {xn}n∈N ⊂ R, we let

lim inf
n→∞

xn ∈ [−∞,∞] , lim sup
n→∞

xn ∈ [−∞,∞]

to be the smallest and biggest limit of a subsequence of (xn).

Observe that the above quantities are defined indeed for any sequence xn. For instance,
for xn = (−1)n we obtain −1 and 1. Also, for xn = n we obtain ∞ and ∞. And so on.
Of course, and generalizing the xn = n example, if xn → x we obtain x and x.

Going ahead with more theory, here is a key result:

Theorem 1.26. A sequence xn converges, with finite limit x ∈ R, precisely when

∀ε > 0,∃N ∈ N,∀m,n ≥ N, |xm − xn| < ε

called Cauchy condition.

Proof. In one sense, this is clear. In the other sense, we can say for instance that
the Cauchy condition forces the decimal writings of our numbers xn to coincide more and
more, with n→ ∞, and so we can construct a limit x = limn→∞ xn, as desired. □

The above result is quite interesting, and as an application, we have:

Theorem 1.27. R is the completion of Q, in the sense that it is the space of Cauchy
sequences over Q, identified when the virtual limit is the same, in the sense that:

xn ∼ yn ⇐⇒ |xn − yn| → 0

Moreover, R is complete, in the sense that it equals its own completion.
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Proof. Let us denote the completion operation by X → X̄ = CX/ ∼, where CX is
the space of Cauchy sequences over X, and ∼ is the above equivalence relation. Since by
Theorem 1.26 any Cauchy sequence (xn) ∈ CQ has a limit x ∈ R, we obtain Q̄ = R. As
for the equality R̄ = R, this is clear again by using Theorem 1.26. □

1d. Sums and series

With the above understood, we are now ready to get into some truly interesting
mathematics. Let us start with the following definition:

Definition 1.28. Given numbers x0, x1, x2, . . . ∈ R, we write
∞∑
n=0

xn = x

with x ∈ [−∞,∞] when limk→∞
∑k

n=0 xn = x.

As before with the sequences, there is some general theory that can be developed for
the series, and more on this in a moment. As a first, basic example, we have:

Theorem 1.29. We have the “geometric series” formula
∞∑
n=0

xn =
1

1− x

valid for any |x| < 1. For |x| ≥ 1, the series diverges.

Proof. Our first claim, which comes by multiplying and simplifying, is that:

k∑
n=0

xn =
1− xk+1

1− x

But this proves the first assertion, because with k → ∞ we get:

k∑
n=0

xn → 1

1− x

As for the second assertion, this is clear as well from our formula above. □

Less trivial now is the following result, due to Riemann:

Theorem 1.30. We have the following formula:

1 +
1

2
+

1

3
+

1

4
+ . . . = ∞

In fact,
∑

n 1/n
a converges for a > 1, and diverges for a ≤ 1.
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Proof. We have to prove several things, the idea being as follows:

(1) The first assertion comes from the following computation:

1 +
1

2
+

1

3
+

1

4
+ . . . = 1 +

1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ . . .

≥ 1 +
1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ . . .

= 1 +
1

2
+

1

2
+

1

2
+ . . .

= ∞

(2) Regarding now the second assertion, we have that at a = 1, and so at any a ≤ 1.
Thus, it remains to prove that at a > 1 the series converges. Let us first discuss the case
a = 2, which will prove the convergence at any a ≥ 2. The trick here is as follows:

1 +
1

4
+

1

9
+

1

16
+ . . . ≤ 1 +

1

3
+

1

6
+

1

10
+ . . .

= 2

(
1

2
+

1

6
+

1

12
+

1

20
+ . . .

)
= 2

[(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+

(
1

4
− 1

5

)
. . .

]
= 2

(3) It remains to prove that the series converges at a ∈ (1, 2), and here it is enough
to deal with the case of the exponents a = 1 + 1/p with p ∈ N. We already know how to
do this at p = 1, and the proof at p ∈ N will be based on a similar trick. We have:

∞∑
n=0

1

n1/p
− 1

(n+ 1)1/p
= 1
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Let us compute, or rather estimate, the generic term of this series. By using the
formula ap − bp = (a− b)(ap−1 + ap−2b+ . . .+ abp−2 + bp−1), we have:

1

n1/p
− 1

(n+ 1)1/p
=

(n+ 1)1/p − n1/p

n1/p(n+ 1)1/p

=
1

n1/p(n+ 1)1/p[(n+ 1)1−1/p + . . .+ n1−1/p]

≥ 1

n1/p(n+ 1)1/p · p(n+ 1)1−1/p

=
1

pn1/p(n+ 1)

≥ 1

p(n+ 1)1+1/p

We therefore obtain the following estimate for the Riemann sum:
∞∑
n=0

1

n1+1/p
= 1 +

∞∑
n=0

1

(n+ 1)1+1/p

≤ 1 + p
∞∑
n=0

(
1

n1/p
− 1

(n+ 1)1/p

)
= 1 + p

Thus, we are done with the case a = 1 + 1/p, which finishes the proof. □

Here is another tricky result, this time about alternating sums:

Theorem 1.31. We have the following convergence result:

1− 1

2
+

1

3
− 1

4
+ . . . <∞

However, when rearranging terms, we can obtain any x ∈ [−∞,∞] as limit.

Proof. Both the assertions follow from Theorem 1.30, as follows:

(1) We have the following computation, using the Riemann criterion at a = 2:

1− 1

2
+

1

3
− 1

4
+ . . . =

(
1− 1

2

)
+

(
1

3
− 1

4

)
+ . . .

=
1

2
+

1

12
+

1

30
+ . . .

<
1

12
+

1

22
+

1

32
+ . . .

< ∞
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(2) We have the following formulae, coming from the Riemann criterion at a = 1:

1

2
+

1

4
+

1

6
+

1

8
+ . . . =

1

2

(
1 +

1

2
+

1

3
+

1

4
+ . . .

)
= ∞

1 +
1

3
+

1

5
+

1

7
+ . . . ≥ 1

2
+

1

4
+

1

6
+

1

8
+ . . . = ∞

Thus, both these series diverge. The point now is that, by using this, when rearranging
terms in the alternating series in the statement, we can arrange for the partial sums to
go arbitrarily high, or arbitrarily low, and we can obtain any x ∈ [−∞,∞] as limit. □

Back now to the general case, we first have the following statement:

Theorem 1.32. The following hold, with the converses of (1) and (2) being wrong,
and with (3) not holding when the assumption xn ≥ 0 is removed:

(1) If
∑

n xn converges then xn → 0.
(2) If

∑
n |xn| converges then

∑
n xn converges.

(3) If
∑

n xn converges, xn ≥ 0 and xn/yn → 1 then
∑

n yn converges.

Proof. This is a mixture of trivial and non-trivial results, as follows:

(1) We know that
∑

n xn converges when Sk =
∑k

n=0 xn converges. Thus by Cauchy
we have the following convergence, which gives the result:

xk = Sk − Sk−1 → 0

As for the simplest counterexample for the converse, this comes from the following
tricky formula of Riemann, that we know well from Theorem 1.30:

1 +
1

2
+

1

3
+

1

4
+ . . . = ∞

(2) This follows again from the Cauchy criterion, by using:

|xn + xn+1 + . . .+ xn+k| ≤ |xn|+ |xn+1|+ . . .+ |xn+k|

As for the simplest counterexample for the converse, this comes from Theorem 1.31.
Indeed, let us have a look at the formula established there, namely:

1− 1

2
+

1

3
− 1

4
+ . . . <∞

So, definitely convergent series, but when passing to absolute values, the series di-
verges, due to 1 + 1

2
+ 1

3
+ 1

4
+ . . . = ∞. Thus, we have our conterexample.

(3) Again, the main assertion here is clear, coming from, for n big:

(1− ε)xn ≤ yn ≤ (1 + ε)xn
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In what regards now the failure of the result, when the assumption xn ≥ 0 is removed,
this is something quite tricky, the simplest counterexample being as follows:

xn =
(−1)n√

n
, yn =

1

n
+

(−1)n√
n

To be more precise, we have yn/xn → 1, so xn/yn → 1 too, but according to the above-
mentioned results from (1,2), modified a bit,

∑
n xn converges, while

∑
n yn diverges. □

Summarizing, we have some useful positive results about series, which are however
quite trivial, along with various counterexamples to their possible modifications, which
are non-trivial. Staying positive, here are some more positive results:

Theorem 1.33. The following happen, and in all cases, the situtation where c = 1 is
indeterminate, in the sense that the series can converge or diverge:

(1) If |xn+1/xn| → c, the series
∑

n xn converges if c < 1, and diverges if c > 1.

(2) If n
√

|xn| → c, the series
∑

n xn converges if c < 1, and diverges if c > 1.

(3) With c = lim supn→∞
n
√

|xn|,
∑

n xn converges if c < 1, and diverges if c > 1.

Proof. Again, this is a mixture of trivial and non-trivial results, as follows:

(1) Here the main assertions, regarding the cases c < 1 and c > 1, are both clear by
comparing with the geometric series

∑
n c

n. As for the case c = 1, this is what happens
for the Riemann series

∑
n 1/n

a, so we can have both convergent and divergent series.

(2) Again, the main assertions, where c < 1 or c > 1, are clear by comparing with the
geometric series

∑
n c

n, and the c = 1 examples come from the Riemann series.

(3) Here the case c < 1 is dealt with as in (2), and the same goes for the examples at
c = 1. As for the case c > 1, this is clear too, because here xn → 0 fails. □

Finally, generalizing the first assertion in Theorem 1.31, we have:

Theorem 1.34. If xn ↘ 0 then
∑

n(−1)nxn converges.

Proof. We have the
∑

n(−1)nxn =
∑

k yk, where:

yk = x2k − x2k+1

But, by drawing for instance the numbers xi on the real line, we see that yk are positive
numbers, and that

∑
k yk is the sum of lengths of certain disjoint intervals, included in

the interval [0, x0]. Thus we have
∑

k yk ≤ x0, and this gives the result. □

So long for convergence, and basic analysis over R, in general. We will be back to this,
with some further results, which are more specialized, whenever needed.
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1e. Exercises

Exercises:

Exercise 1.35.

Exercise 1.36.

Exercise 1.37.

Exercise 1.38.

Exercise 1.39.

Exercise 1.40.

Exercise 1.41.

Exercise 1.42.

Bonus exercise.



CHAPTER 2

Functions

2a. Functions

Welcome to functions. These are the basic objects of mathematical analysis, with
their definition being something very simple and fundamental, as follows:

Definition 2.1. A real function is a correspondence as follows:

f : R → R , x→ f(x)

More generally, we can talk about functions f : X → R, with X ⊂ R.

Here the first notion is indeed something very intuitive, with this covering countless
functions that we already know, as for instance the usual power functions:

f : R → R , f(x) = xn

As for the second notion, this is something more general, which is useful too, and as
a basic example here, we have the inverse function, which cannot be defined at x = 0:

f : R− {0} → R , f(x) =
1

x

Still talking generalities, since we eventually allowed the domain to be an arbitrary
set X ⊂ R, why not doing the same for the image. We are led in this way into:

Definition 2.2 (update). More generally, we call real function any correspondence

f : X → Y , x→ f(x)

with X ⊂ R and Y ⊂ R.

In practice, however, this update will not change much to what we already had, from
Definition 2.1. Indeed, any function f : X → Y with Y ⊂ R can be regarded as a function
f : X → R in the obvious way, by composing it with the inclusion Y ⊂ R, as follows:

f : X → Y ⇝ f : X → Y ⊂ R

However, Definition 2.2 can be something useful, in relation with the notions of injec-
tivity, or surjectivity. Consider for instance the usual square function:

f : R → R , f(x) = x2

33
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This function is certainly not injective, but we can make it injective, as follows:

f : [0,∞) → R , f(x) = x2

Which is good, but this latter function is still not surjective. However, we can make
it surjective, by using the framework of Definition 2.2, as follows:

f : [0,∞) → [0,∞) , f(x) = x2

Obviously, this latter trick, in relation with surjectivity, can work for any function, in
obvious way, by setting Y = f(X). Let us record this finding, as follows:

Proposition 2.3. Any function f : X → R can be made into a function

f : X → Y

which is surjective, simply by setting Y = f(X).

Proof. This is indeed something clear from definitions, as explained above. □

With this done, you might perhaps ask at this point, why not pulling now a similar
trick, for injectivity, a bit as we did before for f(x) = x2, by restricting the domain. Well,
the problem is that is not really possible, in a general way, convenient for all functions,
because depending on the exact function f : R → R that we have in mind, restricting the
domain to this or that X ⊂ R, as to have f injective, remains something subjective. We
will be back to this, with some explicit examples, when knowing more about functions.

Getting now to more concrete mathematics, as a first question, we have:

Question 2.4. How to suitably represent our functions f : R → R?

In answer to this, usually the graph of a function f : R → R, which is something in
2D, drawn with the convention y = f(x), is the best way to represent the function.

You certainly know how to do this, draw such graphs, so let us record here:

Answer 2.5. The functions f : R → R are usually well represented by their graphs,
drawn as usual in 2D, with the convention y = f(x).

As an illustration for the power of this method, representing functions by their graphs,
we can invert quite easily the bijective functions, as follows:

Theorem 2.6. Given a bijective function f : R → R, its inverse function

f−1 : R → R

is obtained by flipping the graph over the x = y diagonal of the plane.
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Proof. This is something quite clear and intuitive, because by definition of the inverse
function f−1 : R → R, this is given by the following formula:

y = f(x) ⇐⇒ f−1(y) = x

Thus, in practice, drawing the graph of f−1 : R → R amounts in taking the graph of
f : R → R and interchanging the coordinates, x↔ y, as indicated. □

We will see in what follows many other applications of the graphs of functions, for
countless other questions that we can have, about them. However, as a word of warning,
the graph of a function is not everything. For instance the very basic function f(x) = 2x
remains best thought of as it comes, in 1D, as being the function which elongates all the
distances by 2, and with this property being harder to see on its graph.

Let us record this latter finding, which is something important, as follows:

Warning 2.7. The graph is not everything, with for instance f(x) = 2x being best
thought of as it comes, as being the function which elongates all the distances by 2.

Which brings us to the question, after all, what is the best way to represent a function.
Not clear, so time to ask the cat. And cat declares:

Cat 2.8. The best is to think as f : R → R as being yourself. In this way, you will
have no troubles with the math, just look at yourself, and record your findings.

Which sounds quite interesting and conceptual, and reminds a bit about what artists
say about their music, you have to be that music, for creating it, and then later, as a
listener, for understanding it too. I actually had some experience with this, during my
postdoc years at UC Berkeley, a very long time ago. What a crazy place California is,
and the Bay Area in particular, and nothing more pleasant, after coming back home from
one of these crazy nights out, than relaxing a bit before going to sleep, and listening to
John Coltrane. You have this feeling of being just there, as being yourself the saxophone
of Coltrane, and producing, and even being, yourself the music, and good musical under-
standing that is. Good times back then, and please of course do not do like me, unless
perhaps for serious things, like your study of functions, along the lines of Cat 2.8.

Back to more concrete mathematics now, so to say, let us have a closer look at the
simplest functions that we know, namely the degree 2 ones. One interesting question
regards solving the equation f(x) = 0, and here we know from chapter 1 that we have:

Theorem 2.9. For f(x) = ax2 + bx+ c, the solutions of f(x) = 0 are

x1,2 =
−b±

√
b2 − 4ac

2a

provided that b2 − 4ac ≥ 0. In the case b2 − 4ac < 0, there are no solutions.
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Proof. This is something that we know well from chapter 1, coming as follows:

ax2 + bx+ c = 0 ⇐⇒ x2 +
b

a
x+

c

a
= 0

⇐⇒
(
x+

b

2a

)2

=
b2 − 4ac

4a2

⇐⇒ x+
b

2a
= ±

√
b2 − 4ac

2a

Thus, we are led to the conclusion in the statement. □

Very nice all this, and you would probably say that the story is over here with degree 2,
matters to be relegated to the elementary school. However, not really. Have you noticed
that at the university, professors are usually faster than students, in dealing with degree
2? I am probably not supposed to talk about our secrets, but here are our tricks:

Tricks 2.10. The following happen:

(1) The roots of x2 − ax+ b can be computed by using r + s = a, rs = b.
(2) The eigenvalues of A ∈M2(C) are given by r + s = Tr(A), rs = detA.

To be more precise, (1) is clear, and the equations there are usually the fastest way
for computing, via instant thinking, the roots r, s, provided of course that these roots are
simple numbers, say integers. As for (2), consider indeed a 2× 2 matrix:

A =

(
m n
p q

)
In order to find the eigenvalues r, s, you are certainly very used to compute the char-

acteristic polynomial, then apply Theorem 2.9. But my point is that this characteristic
polynomial is of the form x2 − ax+ b, with a = Tr(a) and b = detA, so we can normally
apply the trick in (1), provided of course that r, s are simple numbers, say integers.

Finally, for this discussion to be complete, let us mention too:

Warning 2.11. The above tricks work in pure mathematics, where the numbers r, s
that we can meet are usually integers, or rationals. In applied mathematics, however, the
numbers that we meet are integers or rationals with probability P = 0, so no tricks.

I am saying this of course in view of the fact that in applied mathematics the numbers
that can appear, say via reading certain scientific instruments, are quite “random”, and
to be more precise, oscillating in a random way around an average value. Thus, we are
dealing here with the continuum, and the probability of being rational is P = 0.
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2b. Polynomials, roots

Still in relation with degree 2 equations and functions, what to do when the discrimi-
nant is negative? In order to solve x2 = −1, we must trick, in the following way:

Definition 2.12. The complex numbers are variables of the form

x = a+ ib

with a, b ∈ R, which add in the obvious way, and multiply according to the following rule:

i2 = −1

Each real number can be regarded as a complex number, a = a+ i · 0.

In other words, we consider variables as above, without bothering for the moment
with their precise meaning. Now consider two such complex numbers:

x = a+ ib , y = c+ id

The formula for the sum is then the obvious one, as follows:

x+ y = (a+ c) + i(b+ d)

As for the formula of the product, by using the rule i2 = −1, we obtain:

xy = (a+ ib)(c+ id)

= ac+ iad+ ibc+ i2bd

= ac+ iad+ ibc− bd

= (ac− bd) + i(ad+ bc)

Thus, the complex numbers as introduced above are well-defined. The multiplica-
tion formula is of course quite tricky, and hard to memorize, but we will see later some
alternative ways, which are more conceptual, for performing the multiplication.

The advantage of using the complex numbers comes from the fact that the equation
x2 = 1 has now a solution, x = i. In fact, this equation has two solutions, namely:

x = ±i
This is of course very good news. More generally, we have the following result, regard-

ing the arbitrary degree 2 equations, with real coefficients:

Theorem 2.13. The complex solutions of ax2 + bx+ c = 0 with a, b, c ∈ R are

x1,2 =
−b±

√
b2 − 4ac

2a
with the square root of negative real numbers being defined as

√
−m = ±i

√
m

and with the square root of positive real numbers being the usual one.
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Proof. We can write our equation in the following way:

ax2 + bx+ c = 0 ⇐⇒ x2 +
b

a
x+

c

a
= 0

⇐⇒
(
x+

b

2a

)2

− b2

4a2
+
c

a
= 0

⇐⇒
(
x+

b

2a

)2

=
b2 − 4ac

4a2

⇐⇒ x+
b

2a
= ±

√
b2 − 4ac

2a

Thus, we are led to the conclusion in the statement. □

We will see later that any degree 2 complex equation has solutions as well, and that
more generally, any polynomial equation, real or complex, has solutions. Moving ahead
now, we can represent the complex numbers in the plane, in the following way:

Proposition 2.14. The complex numbers, written as usual

x = a+ ib

can be represented in the plane, according to the following identification:

x =

(
a

b

)
With this convention, the sum of complex numbers is the usual sum of vectors.

Proof. Consider indeed two arbitrary complex numbers:

x = a+ ib , y = c+ id

Their sum is then by definition the following complex number:

x+ y = (a+ c) + i(b+ d)

Now let us represent x, y in the plane, as in the statement:

x =

(
a

b

)
, y =

(
c

d

)
In this picture, their sum is given by the following formula:

x+ y =

(
a+ c

b+ d

)
But this is indeed the vector corresponding to x+ y, so we are done. □
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Here we have assumed that you are a bit familiar with vector calculus. If not, no
problem, the idea is simply that vectors add by forming a parallelogram, as follows:

b+ d •x+y

d •y

b •x

• //

OO

c a a+ c

Observe that in our geometric picture from Proposition 2.14, the real numbers corre-
spond to the numbers on the Ox axis. As for the purely imaginary numbers, these lie on
the Oy axis, with the number i itself being given by the following formula:

i =

(
0

1

)
As an illustration for this, let us record now a basic picture, with some key complex

numbers, namely 1, i,−1,−i, represented according to our conventions:

•i

OO

•−1 •1 //

•−i

You might perhaps wonder why I chose to draw that circle, connecting the numbers
1, i,−1,−i, which does not look very useful. More on this in a moment, the idea being
that that circle can be very useful, and coming in advance, some advice:

Advice 2.15. When drawing complex numbers, always begin with the coordinate axes
Ox,Oy, and with a copy of the unit circle.

And more on this later, in chapter 3 below, when talking trigonometry.
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As a last general topic regarding the complex numbers, let us discuss conjugation.
This is something quite tricky, complex number specific, as follows:

Definition 2.16. The complex conjugate of x = a+ ib is the following number,

x̄ = a− ib

obtained by making a reflection with respect to the Ox axis.

As before with other such operations on complex numbers, a quick picture says it all.
Here is the picture, with the numbers x, x̄,−x,−x̄ being all represented:

•−x̄ •x

• //

OO

r

t

•−x •x̄

Observe that the conjugate of a real number x ∈ R is the number itself, x = x̄. In
fact, the equation x = x̄ characterizes the real numbers, among the complex numbers. At
the level of non-trivial examples now, we have the following formula:

ī = −i

There are many things that can be said about the conjugation of the complex numbers,
and here is a summary of basic such things that can be said:

Theorem 2.17. The conjugation operation x→ x̄ has the following properties:

(1) x = x̄ precisely when x is real.
(2) x = −x̄ precisely when x is purely imaginary.
(3) xx̄ = |x|2, with |x| = r being as usual the modulus.
(4) We have the formula xy = x̄ȳ, for any x, y ∈ C.
(5) The solutions of ax2 + bx+ c = 0 with a, b, c ∈ R are conjugate.

Proof. These results are all elementary, the idea being as follows:

(1) This is something that we already know, coming from definitions.

(2) This is something clear too, because with x = a + ib our equation x = −x̄ reads
a+ ib = −a+ ib, and so a = 0, which amounts in saying that x is purely imaginary.
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(3) This is a key formula, which can be proved as follows, with x = a+ ib:

xx̄ = (a+ ib)(a− ib)

= a2 + b2

= |x|2

(4) This is something quite magic, which can be proved as follows:

(a+ ib)(c+ id) = (ac− bd) + i(ad+ bc)

= (ac− bd)− i(ad+ bc)

= (a− ib)(c− id)

(5) This comes from the formula of the solutions, that we know from Theorem 2.13,
but we can deduce this as well directly, without computations. Indeed, by using our
assumption that the coefficients are real, a, b, c ∈ R, we have:

ax2 + bx+ c = 0 =⇒ ax2 + bx+ c = 0

=⇒ āx̄2 + b̄x̄+ c̄ = 0

=⇒ ax̄2 + bx̄+ c = 0

Thus, we are led to the conclusion in the statement. □

Now back to polynomials, as already mentioned, we will see later that any degree 2
complex equation has solutions over the complex numbers, and that more generally, any
polynomial equation, real or complex, has solutions over the complex numbers.

2c. Degree 3 equations

Moving now to degree 3 and higher, things here are far more complicated, and as a first
objective, we would like to understand what the analogue of the discriminant ∆ = b2−4ac
is. But even this is something quite tricky, because we would like to have ∆ = 0 precisely
when (P, P ′) ̸= 1, which leads us into the question of deciding, given two polynomials
P,Q ∈ C[X], if these polynomials have a common root, (P,Q) ̸= 1, or not.

Fortunately this latter question has a nice answer. We will need:

Theorem 2.18. Given a monic polynomial P ∈ C[X], factorized as

P = (X − a1) . . . (X − ak)

the following happen:

(1) The coefficients of P are symmetric functions in a1, . . . , ak.
(2) The symmetric functions in a1, . . . , ak are polynomials in the coefficients of P .
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Proof. This is something quite standard, requiring a bit of abstract mathematical
thinking, and a few abstract verifications too, the idea being as follows:

(1) By expanding our polynomial, we have the following formula:

P =
k∑

r=0

(−1)r
∑

i1<...<ir

ai1 . . . air ·Xk−r

Thus the coefficients of P are, up to some signs, the following functions:

fr =
∑

i1<...<ir

ai1 . . . air

But these are indeed symmetric functions in a1, . . . , ak, as claimed.

(2) Conversely now, let us look at the symmetric functions in the roots a1, . . . , ak.
These appear as linear combinations of the basic symmetric functions, given by:

Sr =
∑
i

ari

Moreover, when allowing polynomials instead of linear combinations, we need in fact
only the first k such sums, namely S1, . . . , Sk. That is, the symmetric functions F in our
variables a1, . . . , ak, with integer coefficients, appear as follows:

F = Z[S1, . . . , Sk]

(3) The point now is that, alternatively, the symmetric functions in our variables
a1, . . . , ak appear as well as linear combinations of the functions fr that we found in (1),
and that when allowing polynomials instead of linear combinations, we need in fact only
the first k functions, namely f1, . . . , fk. That is, we have as well:

F = Z[f1, . . . , fk]

But this gives the result, because we can pass from {Sr} to {fr}, and vice versa.

(4) This was for the idea, and in practice now up to you to clarify all the details. In
fact, we will also need in what follows the extension of all this to the case where P is no
longer assumed to be monic, and with this being, again, exercise for you. □

So, symmetric functions understood, and do not hesitate of course, besides working
out the details of the above proof, to work out some examples too. There is a lot of useful
algebra know-how to be learned here, and the more exercises you solve, the better.

Getting back now to our original question, namely that of deciding whether two poly-
nomials P,Q ∈ C[X] have a common root or not, this has the following nice answer:
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Theorem 2.19. Given two polynomials P,Q ∈ C[X], written as

P = c(X − a1) . . . (X − ak) , Q = d(X − b1) . . . (X − bl)

the following quantity, which is called resultant of P,Q,

R(P,Q) = cldk
∏
ij

(ai − bj)

is a certain polynomial in the coefficients of P,Q, with integer coefficients, and we have
R(P,Q) = 0 precisely when P,Q have a common root.

Proof. This is something quite tricky, the idea being as follows:

(1) Given two polynomials P,Q ∈ C[X], we can certainly construct the quantity
R(P,Q) in the statement, with the role of the normalization factor cldk to become clear
later on, and then we have R(P,Q) = 0 precisely when P,Q have a common root:

R(P,Q) = 0 ⇐⇒ ∃i, j, ai = bj

(2) As bad news, however, this quantity R(P,Q), defined in this way, is a priori not
very useful in practice, because it depends on the roots ai, bj of our polynomials P,Q,
that we cannot compute in general. However, and here comes our point, as we will prove
below, it turns out that R(P,Q) is in fact a polynomial in the coefficients of P,Q, with
integer coefficients, and this is where the power of R(P,Q) comes from.

(3) You might perhaps say, nice, but why not doing things the other way around,
that is, formulating our theorem with the explicit formula of R(P,Q), in terms of the
coefficients of P,Q, and then proving that we have R(P,Q) = 0, via roots and everything.
Good point, but this is not exactly obvious, the formula of R(P,Q) in terms of the
coefficients of P,Q being something terribly complicated. In short, trust me, let us prove
our theorem as stated, and for alternative formulae of R(P,Q), we will see later.

(4) Getting started now, let us expand the formula of R(P,Q), by making all the mul-
tiplications there, abstractly, in our head. Everything being symmetric in a1, . . . , ak, we
obtain in this way certain symmetric functions in these variables, which will be therefore
certain polynomials in the coefficients of P . Moreover, due to our normalization factor cl,
these polynomials in the coefficients of P will have integer coefficients.

(5) With this done, let us look now what happens with respect to the remaining
variables b1, . . . , bl, which are the roots of Q. Once again what we have here are certain
symmetric functions in these variables b1, . . . , bl, and these symmetric functions must be
certain polynomials in the coefficients of Q. Moreover, due to our normalization factor
dk, these polynomials in the coefficients of Q will have integer coefficients.

(6) Thus, we are led to the conclusion in the statement, that R(P,Q) is a polynomial
in the coefficients of P,Q, with integer coefficients, and with the remark that the cldk

factor is there for these latter coefficients to be indeed integers, instead of rationals. □
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All the above might seem a bit complicated, so as an illustration, let us work out an
example. Consider the case of a polynomial of degree 2, and a polynomial of degree 1:

P = ax2 + bx+ c , Q = dx+ e

In order to compute the resultant, let us factorize our polynomials:

P = a(x− p)(x− q) , Q = d(x− r)

The resultant can be then computed as follows, by using the method above:

R(P,Q) = ad2(p− r)(q − r)

= ad2(pq − (p+ q)r + r2)

= cd2 + bd2r + ad2r2

= cd2 − bde+ ae2

Finally, observe that R(P,Q) = 0 corresponds indeed to the fact that P,Q have a
common root. Indeed, the root of Q is r = −e/d, and we have:

P (r) =
ae2

d2
− be

d
+ c

=
R(P,Q)

d2

We will be back to more such examples and computations later.

Regarding now the explicit formula of the resultant R(P,Q), this is something quite
complicated, and there are several methods for dealing with this problem. We have:

Theorem 2.20. The resultant of two polynomials, written as

P = pkX
k + . . .+ p1X + p0 , Q = qlX

l + . . .+ q1X + q0

appears as the determinant of an associated matrix, as follows,

R(P,Q) =

∣∣∣∣∣∣∣∣∣∣∣

pk ql
...

. . .
...

. . .
p0 pk q0 ql

. . .
...

. . .
...

p0 q0

∣∣∣∣∣∣∣∣∣∣∣
with the matrix having size k + l, and having 0 coefficients at the blank spaces.

Proof. This is something clever, due to Sylvester, as follows:

(1) Consider the vector space Ck[X] formed by the polynomials of degree < k:

Ck[X] =
{
P ∈ C[X]

∣∣∣ degP < k
}
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This is a vector space of dimension k, having as basis the monomials 1, X, . . . , Xk−1.
Now given polynomials P,Q as in the statement, consider the following linear map:

Φ : Cl[X]× Ck[X] → Ck+l[X] , (A,B) → AP +BQ

(2) Our first claim is that with respect to the standard bases for all the vector spaces
involved, namely those consisting of the monomials 1, X,X2, . . ., the matrix of Φ is the
matrix in the statement. But this is something which is clear from definitions.

(3) Our second claim is that detΦ = 0 happens precisely when P,Q have a common
root. Indeed, our polynomials P,Q having a common root means that we can find A,B
such that AP +BQ = 0, and so that (A,B) ∈ kerΦ, which reads detΦ = 0.

(4) Finally, our claim is that we have detΦ = R(P,Q). But this follows from the
uniqueness of the resultant, up to a scalar, and with this uniqueness property being
elementary to establish, along the lines of the proofs of Theorems 2.18 and 2.19. □

In what follows we will not really need the above formula, so let us just check now
that this formula works indeed. Consider our favorite polynomials, as before:

P = ax2 + bx+ c , Q = dx+ e

According to the above result, the resultant should be then, as it should:

R(P,Q) =

∣∣∣∣∣∣
a d 0
b e d
c 0 e

∣∣∣∣∣∣ = ae2 − bde+ cd2

We can go back now to our original question, and we have:

Theorem 2.21. Given a polynomial P ∈ C[X], written as

P (X) = aXN + bXN−1 + cXN−2 + . . .

its discriminant, defined as being the following quantity,

∆(P ) =
(−1)(

N
2 )

a
R(P, P ′)

is a polynomial in the coefficients of P , with integer coefficients, and ∆(P ) = 0 happens
precisely when P has a double root.

Proof. The fact that the discriminant ∆(P ) is a polynomial in the coefficients of
P , with integer coefficients, comes from Theorem 2.19, coupled with the fact that the
division by the leading coefficient a is indeed possible, under Z, as being shown by the
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following formula, which is of course a bit informal, coming from Theorem 2.20:

R(P, P ′) =

∣∣∣∣∣∣∣∣∣∣∣

a Na
...

. . .
...

. . .
z a y Na

. . .
...

. . .
...

z y

∣∣∣∣∣∣∣∣∣∣∣
Also, the fact that we have ∆(P ) = 0 precisely when P has a double root is clear from

Theorem 2.19. Finally, let us mention that the sign (−1)(
N
2 ) is there for various reasons,

including the compatibility with some well-known formulae, at small values of N ∈ N,
such as ∆(P ) = b2 − 4ac in degree 2, that we will discuss in a moment. □

As already mentioned, by using Theorem 2.20, we have an explicit formula for the
discriminant, as the determinant of a certain matrix. There is a lot of theory here, and
in order to get into this, let us first see what happens in degree 2. Here we have:

P = aX2 + bX + c , P ′ = 2aX + b

Thus, the resultant is given by the following formula:

R(P, P ′) = ab2 − b(2a)b+ c(2a)2

= 4a2c− ab2

= −a(b2 − 4ac)

It follows that the discriminant of our polynomial is, as it should:

∆(P ) = b2 − 4ac

Alternatively, we can use the formula in Theorem 2.20, and we obtain:

∆(P ) = = −1

a

∣∣∣∣∣∣
a 2a
b b 2a
c b

∣∣∣∣∣∣
= −

∣∣∣∣∣∣
1 2
b b 2a
c b

∣∣∣∣∣∣
= −b2 + 2(b2 − 2ac)

= b2 − 4ac

Let us discuss now what happens in degree 3. Here the result is as follows:

Theorem 2.22. The discriminant of a degree 3 polynomial,

P = aX3 + bX2 + cX + d

is the number ∆(P ) = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd.
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Proof. We have two methods available, based on Theorem 2.19 and Theorem 2.20,
and both being instructive, we will try them both. The computations are as follows:

(1) Let us first go the pedestrian way, based on the definition of the resultant, from
Theorem 2.19. Consider two polynomials, of degree 3 and degree 2, written as follows:

P = aX3 + bX2 + cX + d

Q = eX2 + fX + g = e(X − s)(X − t)

The resultant of these two polynomials is then given by:

R(P,Q) = a2e3(p− s)(p− t)(q − s)(q − t)(r − s)(r − t)

= a2 · e(p− s)(p− t) · e(q − s)(q − t) · e(r − s)(r − t)

= a2Q(p)Q(q)Q(r)

= a2(ep2 + fp+ g)(eq2 + fq + g)(er2 + fr + g)

By expanding, we obtain the following formula for this resultant:

R(P,Q)

a2
= e3p2q2r2 + e2f(p2q2r + p2qr2 + pq2r2)

+ e2g(p2q2 + p2r2 + q2r2) + ef 2(p2qr + pq2r + pqr2)

+ efg(p2q + pq2 + p2r + pr2 + q2r + qr2) + f 3pqr

+ eg2(p2 + q2 + r2) + f 2g(pq + pr + qr)

+ fg2(p+ q + r) + g3

Note in passing that we have 27 terms on the right, as we should, and with this kind
of check being mandatory, when doing such computations. Next, we have:

p+ q + r = − b

a
, pq + pr + qr =

c

a
, pqr = −d

a

By using these formulae, we can produce some more, as follows:

p2 + q2 + r2 = (p+ q + r)2 − 2(pq + pr + qr) =
b2

a2
− 2c

a

p2q + pq2 + p2r + pr2 + q2r + qr2 = (p+ q + r)(pq + pr + qr)− 3pqr = − bc
a2

+
3d

a

p2q2 + p2r2 + q2r2 = (pq + pr + qr)2 − 2pqr(p+ q + r) =
c2

a2
− 2bd

a2
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By plugging now this data into the formula of R(P,Q), we obtain:

R(P,Q) = a2e3 · d
2

a2
− a2e2f · cd

a2
+ a2e2g

(
c2

a2
− 2bd

a2

)
+ a2ef 2 · bd

a2

+ a2efg

(
− bc
a2

+
3d

a

)
− a2f 3 · d

a

+ a2eg2
(
b2

a2
− 2c

a

)
+ a2f 2g · c

a
− a2fg2 · b

a
+ a2g3

Thus, we have the following formula for the resultant:

R(P,Q) = d2e3 − cde2f + c2e2g − 2bde2g + bdef 2 − bcefg + 3adefg

− adf 3 + b2eg2 − 2aceg2 + acf 2g − abfg2 + a2g3

Getting back now to our discriminant problem, with Q = P ′, which corresponds to
e = 3a, f = 2b, g = c, we obtain the following formula:

R(P, P ′) = 27a3d2 − 18a2bcd+ 9a2c3 − 18a2bcd+ 12ab3d− 6ab2c2 + 18a2bcd

− 8ab3d+ 3ab2c2 − 6a2c3 + 4ab2c2 − 2ab2c2 + a2c3

By simplifying terms, and dividing by a, we obtain the following formula:

−∆(P ) = 27a2d2 − 18abcd+ 4ac3 + 4b3d− b2c2

But this gives the formula in the statement, namely:

∆(P ) = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd

(2) Let us see as well how the computation does, by using Theorem 2.20, which is our
most advanced tool, so far. Consider a polynomial of degree 3, and its derivative:

P = aX3 + bX2 + cX + d

P ′ = 3aX2 + 2bX + c
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By using now Theorem 2.20 and computing the determinant, we obtain:

R(P, P ′) =

∣∣∣∣∣∣∣∣∣∣
a 3a
b a 2b 3a
c b c 2b 3a
d c c 2b

d c

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
a
b a −b 3a
c b −2c 2b 3a
d c −3d c 2b

d c

∣∣∣∣∣∣∣∣∣∣
= a

∣∣∣∣∣∣∣∣
a −b 3a
b −2c 2b 3a
c −3d c 2b
d c

∣∣∣∣∣∣∣∣
= −ad

∣∣∣∣∣∣
−b 3a
−2c 2b 3a
−3d c 2b

∣∣∣∣∣∣+ ac

∣∣∣∣∣∣
a −b 3a
b −2c 2b
c −3d c

∣∣∣∣∣∣
= −ad(−4b3 − 27a2d+ 12abc+ 3abc)

+ac(−2ac2 − 2b2c− 9abd+ 6ac2 + b2c+ 6abd)

= a(4b3d+ 27a2d2 − 15abcd+ 4ac3 − b2c2 − 3abcd)

= a(4b3d+ 27a2d2 − 18abcd+ 4ac3 − b2c2)

Now according to Theorem 2.21, the discriminant of our polynomial is given by:

∆(P ) = −R(P, P
′)

a
= −4b3d− 27a2d2 + 18abcd− 4ac3 + b2c2

= b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd

Thus, we have again obtained the formula in the statement. □

Still talking degree 3 equations, let us try now to solve such an equation P = 0, with
P = aX3+ bX2+ cX+d as above. By linear transformations we can assume a = 1, b = 0,
and then it is convenient to write c = 3p, d = 2q. Thus, our equation becomes:

x3 + 3px+ 2q = 0

Regarding such equations, many things can be said, and to start with, we have the
following famous result, dealing with real roots, due to Cardano:
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Theorem 2.23. For a normalized degree 3 equation, namely

x3 + 3px+ 2q = 0

the discriminant is ∆ = −108(p3 + q2). Assuming p, q ∈ R and ∆ < 0, the number

x =
3

√
−q +

√
p3 + q2 +

3

√
−q −

√
p3 + q2

is a real solution of our equation.

Proof. The formula of ∆ is clear from definitions, and with 108 = 4× 27. Now with
x as in the statement, by using (a+ b)3 = a3 + b3 + 3ab(a+ b), we have:

x3 =

(
3

√
−q +

√
p3 + q2 +

3

√
−q −

√
p3 + q2

)3

= −2q + 3
3

√
−q +

√
p3 + q2 · 3

√
−q −

√
p3 + q2 · x

= −2q + 3 3
√
q2 − p3 − q2 · x

= −2q − 3px

Thus, we are led to the conclusion in the statement. □

Regarding the other roots, it is easy to see that these are both real when ∆ < 0, and
complex conjugate when ∆ < 0. Thus, in the context of Theorem 2.23, the other two
roots are complex conjugate, the formula for them being as follows:

Proposition 2.24. For a normalized degree 3 equation, namely

x3 + 3px+ 2q = 0

with p, q ∈ R and discriminant ∆ = −108(p3 + q2) negative, ∆ < 0, the numbers

z = w
3

√
−q +

√
p3 + q2 + w2 3

√
−q −

√
p3 + q2

z̄ = w2 3

√
−q +

√
p3 + q2 + w

3

√
−q −

√
p3 + q2

with w = e2πi/3 are the complex conjugate solutions of our equation.

Proof. As before, by using (a+ b)3 = a3 + b3 + 3ab(a+ b), we have:

z3 =

(
w

3

√
−q +

√
p3 + q2 + w2 3

√
−q −

√
p3 + q2

)3

= −2q + 3
3

√
−q +

√
p3 + q2 · 3

√
−q −

√
p3 + q2 · z

= −2q + 3 3
√
q2 − p3 − q2 · z

= −2q − 3pz

Thus, we are led to the conclusion in the statement. □
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As a conclusion, we have the following statement, unifying the above:

Theorem 2.25. For a normalized degree 3 equation, namely

x3 + 3px+ 2q = 0

the discriminant is ∆ = −108(p3 + q2). Assuming p, q ∈ R and ∆ < 0, the numbers

x = w
3

√
−q +

√
p3 + q2 + w2 3

√
−q −

√
p3 + q2

with w = 1, e2πi/3, e4πi/3 are the solutions of our equation.

Proof. This follows indeed from Theorem 2.23 and Proposition 2.24. Alternatively,
we can redo the computation in their proof, which was nearly identical anyway, in the
present setting, with x being given by the above formula, by using w3 = 1. □

2d. Degree 4 equations

In higher degree things become quite complicated. In degree 4, to start with, we first
have the following result, dealing with the discriminant and its applications:

Theorem 2.26. The discriminant of P = ax4 + bx3 + cx2 + dx + e is given by the
following formula:

∆ = 256a3e3 − 192a2bde2 − 128a2c2e2 + 144a2cd2e− 27a2d4

+144ab2ce2 − 6ab2d2e− 80abc2de+ 18abcd3 + 16ac4e

−4ac3d2 − 27b4e2 + 18b3cde− 4b3d3 − 4b2c3e+ b2c2d2

In the case ∆ < 0 we have 2 real roots and 2 complex conjugate roots, and in the case
∆ > 0 the roots are either all real or all complex.

Proof. The formula of ∆ follows from the definition of the discriminant, from The-
orem 2.21, with the resultant computed via Theorem 2.20, as follows:

∆ =
1

a

∣∣∣∣∣∣∣∣∣∣∣∣∣

a 4a
b a 3b 4a
c b a 2c 3b 4a
d c b d 2c 3b 4a
e d c d 2c 3b

e d d 2c
e d

∣∣∣∣∣∣∣∣∣∣∣∣∣
As for the last assertion, the study here is routine, a bit as in degree 3. □

In practice, as in degree 3, we can do first some manipulations on our polynomials, as
to have them in simpler form, and we have the following version of Theorem 2.26:
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Proposition 2.27. The discriminant of P = x4 + cx2 + dx+ e, normalized degree 4
polynomial, is given by the following formula:

∆ = 16c4e− 4c3d2 − 128c2e2 + 144cd2e− 27d4 + 256e3

As before, if ∆ < 0 we have 2 real roots and 2 complex conjugate roots, and if ∆ > 0 the
roots are either all real or all complex.

Proof. This is a consequence of Theorem 2.26, with a = 1, b = 0, but we can deduce
this as well directly. Indeed, the formula of ∆ follows, quite easily, from:

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 4
1 4

c 1 2c 4
d c d 2c 4
e d c d 2c

e d d 2c
e d

∣∣∣∣∣∣∣∣∣∣∣∣∣
As for the last assertion, this is something that we know, from Theorem 2.26. □

We still have some work to do. Indeed, looking back at what we did in degree 3, the
passage there from Theorem 2.22 to Theorem 2.23 was made of two operations, namely
“depressing” the equation, that is, getting rid of the next-to-highest term, and then
rescaling the coefficients, as for the formula of ∆ to become as simple as possible.

In our present setting now, degree 4, with the depressing done as above, in Proposition
2.27, it remains to rescale the coefficients, as for the formula of ∆ to become as simple as
possible. And here, a bit of formula hunting, in relation with 2, 3 powers, leads to:

Theorem 2.28. The discriminant of a normalized degree 4 polynomial, written as

P = x4 + 6px2 + 4qx+ 3r

is given by the following formula:

∆ = 256× 27×
(
9p4r − 2p3q2 − 6p2r2 + 6pq2r − q4 + r3

)
In the case ∆ < 0 we have 2 real roots and 2 complex conjugate roots, and in the case
∆ > 0 the roots are either all real or all complex.
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Proof. This follows from Proposition 2.27, with c = 6p, d = 4q, e = 3r, but we can
deduce this as well directly. Indeed, the formula of ∆ follows, quite easily, from:

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 4
1 4

6p 1 12p 4
4q 6p 4q 12p 4
3r 4q 6p 4q 12p

3r 4q 4q 12p
3r 4q

∣∣∣∣∣∣∣∣∣∣∣∣∣
As for the last assertion, this is something that we know from Theorem 2.26. □

Time now to get to the real thing, solving the equation. We have here:

Theorem 2.29. The roots of a normalized degree 4 equation, written as

x4 + 6px2 + 4qx+ 3r = 0

are as follows, with y satisfying the equation (y2 − 3r)(y − 3p) = 2q2,

x1 =
1√
2

(
−
√
y − 3p+

√
−y − 3p+

4q√
2y − 6p

)

x2 =
1√
2

(
−
√
y − 3p−

√
−y − 3p+

4q√
2y − 6p

)

x3 =
1√
2

(√
y − 3p+

√
−y − 3p− 4q√

2y − 6p

)

x4 =
1√
2

(√
y − 3p−

√
−y − 3p− 4q√

2y − 6p

)
and with y being computable via the Cardano formula.

Proof. This is something quite tricky, the idea being as follows:

(1) To start with, let us write our equation in the following form:

x4 = −6px2 − 4qx− 3r

Now assume that we have a number y satisfying the following equation:

(y2 − 3r)(y − 3p) = 2q2
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With this magic number y in hand, our equation takes the following form:

(x2 + y)2 = x4 + 2x2y + y2

= −6px2 − 4qx− 3r + 2x2y + y2

= (2y − 6p)x2 − 4qx+ y2 − 3r

= (2y − 6p)x2 − 4qx+
2q2

y − 3p

=

(√
2y − 6p · x− 2q√

2y − 6p

)2

(2) Which looks very good, leading us to the following degree 2 equations:

x2 + y +
√

2y − 6p · x− 2q√
2y − 6p

= 0

x2 + y −
√

2y − 6p · x+ 2q√
2y − 6p

= 0

Now let us write these two degree 2 equations in standard form, as follows:

x2 +
√

2y − 6p · x+
(
y − 2q√

2y − 6p

)
= 0

x2 −
√

2y − 6p · x+
(
y +

2q√
2y − 6p

)
= 0

(3) Regarding the first equation, the solutions there are as follows:

x1 =
1

2

(
−
√

2y − 6p+

√
−2y − 6p+

8q√
2y − 6p

)

x2 =
1

2

(
−
√

2y − 6p−

√
−2y − 6p+

8q√
2y − 6p

)
As for the second equation, the solutions there are as follows:

x3 =
1

2

(√
2y − 6p+

√
−2y − 6p− 8q√

2y − 6p

)

x4 =
1

2

(√
2y − 6p−

√
−2y − 6p− 8q√

2y − 6p

)
(4) Now by cutting a

√
2 factor from everything, this gives the formulae in the state-

ment. As for the last claim, regarding the nature of y, this comes from Cardano. □

We still have to compute the number y appearing in the above via Cardano, and the
result here, adding to what we already have in Theorem 2.29, is as follows:
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Theorem 2.30 (continuation). The value of y in the previous theorem is

y = t+ p+
a

t

where the number t is given by the formula

t =
3

√
b+

√
b2 − a3

with a = p2 + r and b = 2p2 − 3pr + q2.

Proof. The legend has it that this is what comes from Cardano, but depressing and
normalizing and solving (y2 − 3r)(y− 3p) = 2q2 makes it for too many operations, so the
most pragmatic way is to simply check this equation. With y as above, we have:

y2 − 3r = t2 + 2pt+ (p2 + 2a) +
2pa

t
+
a2

t2
− 3r

= t2 + 2pt+ (3p2 − r) +
2pa

t
+
a2

t2

With this in hand, we have the following computation:

(y2 − 3r)(y − 3p) =

(
t2 + 2pt+ (3p2 − r) +

2pa

t
+
a2

t2

)(
t− 2p+

a

t

)
= t3 + (a− 4p2 + 3p2 − r)t+ (2pa− 6p3 + 2pr + 2pa)

+(3p2a− ra− 4p2a+ a2)
1

t
+
a3

t3

= t3 + (a− p2 − r)t+ 2p(2a− 3p2 + r) + a(a− p2 − r)
1

t
+
a3

t3

= t3 + 2p(−p2 + 3r) +
a3

t3

Now by using the formula of t in the statement, this gives:

(y2 − 3r)(y − 3p) = b+
√
b2 − a3 − 4p2 + 6pr +

a3

b+
√
b2 − a3

= b+
√
b2 − a3 − 4p2 + 6pr + b−

√
b2 − a3

= 2b− 4p2 + 6pr

= 2(2p2 − 3pr + q2)− 4p2 + 6pr

= 2q2

Thus, we are led to the conclusion in the statement. □
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2e. Exercises

Exercises:

Exercise 2.31.

Exercise 2.32.

Exercise 2.33.

Exercise 2.34.

Exercise 2.35.

Exercise 2.36.

Exercise 2.37.

Exercise 2.38.

Bonus exercise.



CHAPTER 3

Sin and cos

3a. Angles, triangles

Welcome to geometry. It all started with triangles, drawn on sand. In order to get
started, with some basic plane geometry, we first have the following key result:

Theorem 3.1 (Thales). Proportions are kept, along parallel lines. That is, given a
configuration as follows, consisting of two parallel lines, and of two extra lines,

S

A C

B D

the following equality holds:
SA

SB
=
SC

SD
Moreover, the converse of this holds too, in the sense that, in the context of a picture as
above, if this equality is satisfied, then the lines AC and BD must be parallel.

Proof. We have indeed the following computation, based on the usual area formula
for the triangles, that is, half of side times height, used multiple times:

SA

SB
=

area(CSA)

area(CSB)

=
area(CSA)

area(CSA) + area(CAB)

=
area(CSA)

area(CSA) + area(CAD)

=
area(ASC)

area(ASD)

=
SC

SD
As for the converse, we will leave the proof here as an instructive exercise. □

57
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There are some other useful versions of the Thales theorem. First, we have:

Theorem 3.2 (Thales 2). In the context of the Thales theorem configuration,

S

A C

B D

the following equality, involving the same number, holds as well:

SA

SB
=
AC

BD
However, the converse of this does not necessarily hold.

Proof. In order to prove the formula in the statement, instead of getting lost into
some new area computations, let us draw a tricky parallel, as follows:

S

A C

B E D

By using Theorem 3.1, we have then the following computation, as desired:

SA

SB
=
DE

DB
=
AC

DB
As for the converse, we will leave the proof here as an instructive exercise. □

As a third Thales theorem now, which is something beautiful too, we have:

Theorem 3.3 (Thales 3). Given a configuration as follows, consisting of three parallel
lines, and of two extra lines, which can cross or not,

A D

B E

C F

the following equality holds:
AB

BC
=
DE

EF
That is, once again, the proportions are kept, along parallel lines.
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Proof. We have two cases here, as follows:

(1) When the two extra lines are parallel, the result is clear, because we have plenty
of parallelograms there, and the fractions in question are plainly equal.

(2) When the two lines cross, let us call S their intersection:

S

A D

B E

C F

Now by using Theorem 3.1 several times, we obtain:

AB

BC
=

SB − SA

SC − SB

=
1− SA

SB
SC
SB

− 1

=
1− SD

SE
SF
SE

− 1

=
SE − SD

SF − SE

=
DE

EF

Thus, we are led to the formula in the statement. □

Before getting to angles, let us record as well the following key result:

Theorem 3.4. Given a triangle ABC, the following happen:

(1) The angle bisectors cross, at a point called incenter.
(2) The medians cross, at a point called barycenter.
(3) The perpendicular bisectors cross, at a point called circumcenter.
(4) The altitudes cross, at a point called orthocenter.
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Proof. Let us first draw our triangle, with this being always the first thing to be
done in geometry, draw a picture, and then thinking and computations afterwards:

A

B C

Allowing us the freedom to play with some tricks, as advanced mathematicians, both
students and professors, are allowed to, here is how the proof goes:

(1) Come with a small circle, inside ABC, and then inflate it, as to touch all 3 edges.
The center of the circle will be then at equal distance from all 3 edges, so it will lie on all
3 angle bisectors. Thus, we have constructed the incenter, as required.

(2) This requires different techniques. Let us call A,B,C ∈ C the coordinates of
A,B,C, and consider the average P = (A+B + C)/3. We have then:

P =
1

3
· A+

2

3
· B + C

2

Thus P lies on the median emanating from A, and a similar argument shows that P
lies as well on the medians emanating from B,C. Thus, we have our barycenter.

(3) We can use here the same method as for (1). Indeed, come with a big circle,
containing ABC, and then deflate it, as for it to pass through A,B,C. The center of the
circle will be then at equal distance from all 3 vertices, so it will lie on all 3 perpendicular
bisectors. Thus, we have constructed the circumcenter, as required.

(4) This is tougher, and I must admit that, when writing this book, I first struggled
a bit with this, then ended looking it up on the internet. So, here is the trick. Draw a
parallel to BC at A, and similarly, parallels to AB and AC at C and B. You will get in
this way a bigger triangle, upside-down, A′B′C ′. But then, the circumcenter of A′B′C ′,
that we know to exist from (3), will be the orthocenter of ABC:

C ′ A B′

B C

A′

Thus, we are led to the conclusions in the statement. □
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Many other things can be said about triangles, and we will be back to this. Impor-
tantly, we can now talk about angles, in the obvious way, by using triangles:

Fact 3.5. We can talk about the angle between two crossing lines, and have some basic
theory for the angles going, by using triangles, and Thales, in the obvious way.

To be more precise here, let us go back to the configuration from the Thales theorem,
which was as follows, with two parallel lines, and two other lines:

S

A C

B D

In this situation, we can say that the two triangles SAC and SBD are similar, and
witn an equivalent formulation of similarity being the fact that the angles are equal:

Definition 3.6. We say that two triangles are similar, and we write

SAC ∼ SBD

when their respective angles are equal.

The point now is that, in this situation, we can have some mathematics going, for the
lengths, coming from the following formula, which is the Thales theorem:

SA

SB
=
SC

SD
=
AC

BD

At the philosophical level now, you might wonder of course what the values of these
angles, that we have been heavily using in the above, should be, say as real numbers. But
this is something quite tricky, that will take us some time to understand. In the lack of
something bright, for the moment, let us formulate the following definition:

Definition 3.7. We can talk about the numeric value of angles, as follows:

(1) The right angle has value 90◦.
(2) We can double angles, in the obvious way.
(3) Thus, the half right angle has value 45◦, and the flat angle has value 180◦.
(4) We can also triple, quadruple and so on, again in the obvious way.
(5) Thus, we can talk about arbitrary rational multiples of 90◦.
(6) And, with a bit of analysis helping, we can in fact measure any angle.

So, this will be our starting definition for the numeric values of the angles. Of course,
all this might seem a bit improvized, but do not worry, we will come back later to this,
with a better, more advanced definition for these numeric values of the angles.
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Getting back to work now, theorems and proofs, in relation with the above, here is a
key result, which will be our main tool for the study of the angles:

Theorem 3.8. In an arbitrary triangle

A

B C

the sum of all three angles is 180◦.

Proof. This does not seem obvious to prove, with bare hands, but as usual, in such
situations, some tricky parallels can come to the rescue. Let us prolong indeed the segment
BC a bit, on the C side, and then draw a parallel at C, to the line AB, as follows:

A

B C

But now, we can see that the three angles around C, summing up to the flat angle
180◦, are in fact the 3 angles of our triangle. Thus, theorem proved, just like that. □

Going ahead now with our study of angles, as a continuation of the above, let us first
talk about the simplest angle of them all, which is the right angle, denoted 90◦. In relation
with it, let us formulate the following definition, making the link with triangles:

Definition 3.9. We call right triangle a triangle of type

A

B C

having one of the angles equal to 90◦.

Many things can be said about right triangles, in particular with:
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Theorem 3.10 (Pythagoras). In a right triangle ABC,

A

B C

we have AB2 +BC2 = AC2.

Proof. This comes from the following picture, consisting of two squares, and four
triangles which are identical to ABC, as indicated:

◦ ◦ ◦

◦

◦A

◦B ◦C ◦

Indeed, let us compute the area S of the outer square. This can be done in two ways.
First, since the side of this square is AB +BC, we obtain:

S = (AB +BC)2

= AB2 +BC2 + 2× AB ×BC

On the other hand, the outer square is made of the smaller square, having side AC,
and of four identical right triangles, having sizes AB,BC. Thus:

S = AC2 + 4× AB ×BC

2
= AC2 + 2× AB ×BC

Thus, we are led to the conclusion in the statement. □

As a second important angle, we have the 60◦ angle, which usually appears via:
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Theorem 3.11. In an equilateral triangle, having all sides equal,

A

B C

all angles equal 60◦.

Proof. This is clear indeed from the fact that the sum is 180◦. □

Another interesting angle is the 30◦ one. About it, we have:

Theorem 3.12. In a right triangle having small angles 30◦, 60◦,

A

B C

we have AB = AC/2.

Proof. This is clear by drawing an equilateral triangle, as follows:

A

E

B C

Thus, we are led to the conclusion in the statement. □

We will be back to such things in a moment, when doing trigonometry.

3b. Sine and cosine

Now that we know about angles, and about Pythagoras’ theorem too, it is tempting
at this point to start talking about trigonometry. Let us begin with:
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Definition 3.13. Given a right triangle ABC,

C

t
A B

we define the sine and cosine of the angle at A, denoted t, by the following formulae:

sin t =
BC

AC
, cos t =

AB

BC

We call the sine and cosine basic trigonometric functions.

As a first observation, the sine and cosine do not depend on the choice of the given
right triangle ABC having an angle t at A, and this due to the Thales theorem. In view
of this, whenever possible, we will choose the right triangle ABC as to have:

AC = 1

In this case, the formulae defining the sine and cosine simplify, as follows:

sin t = BC , cos t = AB

Equivalently, we can encode all this in a single picture, as follows:

C

1
sin t

t
A

cos t
B

As a few basic examples now, for the sine, coming from things that we know well,
about right triangles, from the previous section, we have:

sin 0◦ = 0 , sin 30◦ =
1

2
, sin 45◦ =

1√
2

, sin 60◦ =

√
3

2
, sin 90◦ = 1

Let us record as well the list of corresponding cosines. These are as follows:

cos 0◦ = 1 , cos 30◦ =

√
3

2
, cos 45◦ =

1√
2

, cos 60◦ =
1

2
, cos 90◦ = 0

Observe that the numbers in the above two lists are the same, but written backwards
in the second list. In fact, we have the following result, regarding this:
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Theorem 3.14. The sines and cosines are subject to the formulae

sin(90◦ − t) = cos t , cos(90◦ − t) = sin t

valid for any angle t ∈ [0◦, 90◦].

Proof. In order to understand this, the best is to choose our right triangle ABC
with AC = 1. In this case, the picture coming from Definition 3.13 is as follows:

C

1
sin t

t
A

cos t
B

On the other hand, by focusing now at the angle at C, and perhaps twisting a bit our
minds too, we have as well the following picture, for the same triangle:

C

1
cos(90◦−t)

90◦−t

A
sin(90◦−t)

B

Thus, we are led to the conclusion in the statement, and by the way congratulations,
with this being our first trigonometry theorem. Many more to come. □

Before going ahead with more trigonometry, a question that you might have, why
bothering with sine and cosine? Not clear, and in the lack of a bright idea here, and
believe me, I asked my colleagues too, we will have to ask the cat. And cat declares:

Cat 3.15. The area of an arbitrary triangle, having an angle t at A,

C

t
A B

is given by the following formula, making appear the sine:

area(ABC) =
AB × AC × sin t

2
As for the need for cosines, homework for you buddy.
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Thanks cat, interesting all this, let us try to understand it. To start with, the formula
of cat looks like some sort of mathematical theorem, that we must prove. But, in order
to do so, the simplest is to draw an altitude of our triangle, as follows:

C

t
A E B

Now with this altitude drawn, we have the following computation:

area(ABC) =
basis× height

2

=
AB × CE

2

=
AB × AC × sin t

2

Thus, theorem proved, so the sine is definitely a good and useful thing, as cat says.
As for the cosine, damn cat has assigned this to us as an exercise, so we will have to think
about it, and come back to it, in due time. And no late homework, of course.

Moving forward now, still in relation with Cat 3.15, we have the following question:

Question 3.16. What happens to the cat formula,

area(ABC) =
AB × AC × sin t

2

when the angle at A is obtuse, t > 90◦?

Which looks like a very good question. In answer now, given a triangle which is obtuse
at A, we can simply rotate the AC side to the right, as for that obtuse angle to become
acute, t′ = 180◦ − t, and the area of the triangle obviously remains the same, and this
since both the basis and height remain unchanged. Thus, the correct definition for sin t
for obtuse angles should be the one making the following formula work:

AB × AC × sin t

2
=
AB × AC × sin(180◦ − t)

2

Now by simplifying, we are led to the following formula:

sin t = sin(180◦ − t)

Thus, Question 3.16 answered, with our conclusions being as follows:
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Theorem 3.17. We can talk about the sine of any angle t ∈ [0◦, 180◦], according to

sin t = sin(180◦ − t)

and with this, the cat formula for the area of a triangle, namely

area(ABC) =
AB × AC × sin t

2

holds for any triangle, without any assumption on it.

Proof. This follows indeed from the above discussion. □

Moving ahead now, defining sines as in Definition 3.13 for t ∈ [0◦, 90◦], and as above
for t ∈ [90◦, 180◦] certainly does the job, as explained above, but is not very elegant. So,
let us try to improve this. We have here the following obvious speculation:

Speculation 3.18. The sine of any angle t ∈ [0◦, 180◦] can be defined geometrically,
according to the usual picture

C

1
sin t

t
A

cos t
B

with the convention that for t > 90◦, the triangle is drawn at the left of A.

Which sounds quite good, but when thinking some more, things fine of course with
the sine, but what about the cosine? The problem indeed is that, in the case t > 90◦,
when the triangle is drawn at the left of A, the lower side AB changes orientation:

AB → BA

But, as we know well from triangle geometry, from various considerations regarding
segments and orientation, this would amount in saying that we are replacing:

AB → −AB

And so, we are led to the following formula for the cosine, in this case:

cos t = − cos(180◦ − t)

Very good all this, so let us update now Theorem 3.17, and by incorporating as well
Speculation 3.18, in the form of a grand result, in the following way:
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Theorem 3.19 (update). We can talk about the sine and cosine of any angle t ∈
[0◦, 180◦], according to the following picture,

C

1
sin t

t
A

cos t
B

which in the case of obtuse angles becomes by definition as follows,

C

sin t
1

t
B − cos t

A

and with this, we have the following formulae, valid for any t ∈ [0◦, 180◦]:

sin t = sin(180◦ − t) , cos t = − cos(180◦ − t)

Moreover, the cat formula for the area of a triangle, namely

area(ABC) =
AB × AC × sin t

2

holds for any triangle, without any assumption on it.

Proof. This follows indeed by putting together all the above. □

Which sounds quite good, and normally end of the story, but let us be crazy now,
and try to talk as well about the sine or cosine of angles t < 0◦, or t > 180◦. Indeed, we
know the recipe, namely suitably drawing our right triangle, with attention to positive
and negatives. Thus, for t ∈ [180◦, 270◦], our picture should be as follows:

t t
B

− cos t
A

t

C

− sin t
1
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As for the next case, t ∈ [270◦, 360◦], here our picture should be as follows:

t t
A

cos t
B

t

C

1
− sin t

But with this, we are done, because adding or substracting 360◦ to our angles won’t
change the corresponding right triangle, and so won’t change the sine and cosine. So,
good work that we did, and time now to further improve Theorem 3.19, as follows:

Theorem 3.20 (final update). We can talk about the sine and cosine of any angle
t ∈ R, according to the following picture,

C

1
sin t

t
A

cos t
B

suitably drawn for angles t < 0◦, or t > 90◦, with attention to positive and negative
lengths, as explained above. With this, all the basic formulae still hold, for any t ∈ R.

Proof. This follows indeed by putting together all the above, and with the basic
formulae in question being as follows, and in the hope that I forgot none:

sin(90◦ − t) = cos t , cos(90◦ − t) = sin t

sin(90◦ + t) = cos t , cos(90◦ + t) = − sin t

sin(180◦ − t) = sin t , cos(180◦ − t) = − cos t

sin(180◦ + t) = − sin t , cos(180◦ + t) = − cos t

sin(270◦ − t) = − cos t , cos(270◦ − t) = − sin t

sin(270◦ + t) = − cos t , cos(270◦ + t) = sin t

sin(360◦ − t) = − sin t , cos(360◦ − t) = cos t

sin(360◦ + t) = sin t , cos(360◦ + t) = cos t

Thus, we are led to the conclusions in the statement. □
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Getting now to more advanced theory, we first have:

Theorem 3.21. The sines and cosines are subject to the formula

sin2 x+ cos2 x = 1

coming from Pythagoras’ theorem.

Proof. This is something which is certainly true, and for pure mathematical pleasure,
let us reproduce the picture leading to Pythagoras, in the trigonometric setting:

◦ ◦ ◦

◦

sinx◦

◦ ◦ cosx

1

◦

When computing the area of the outer square, we obtain:

(sinx+ cosx)2 = 1 + 4× sinx cosx

2

Now when expanding we obtain sin2 x+ cos2 x = 1, as claimed. □

It is possible to say many more things about angles and sinx, cosx, and also talk
about some supplementary quantities, such as the tangent:

tanx =
sinx

cosx

But more on this, such as various analytic aspects, later in this book, once we will
have some appropriate tools, beyond basic geometry, in order to discuss this.

Still at the level of the basics, we have the following result:

Theorem 3.22. The sines and cosines of sums are given by

sin(x+ y) = sinx cos y + cosx sin y

cos(x+ y) = cos x cos y − sinx sin y

and these formulae give a formula for tan(x+ y) too.

Proof. This is something quite tricky, using the same idea as in the proof of Pythago-
ras’ theorem, that is, computing certain areas, the idea being as follows:
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(1) Consider the following picture, consisting of a length 1 line segment, with angles
x, y drawn on each side, and with the lengths being computed, as indicated:

◦

sinx/ cosx

◦

1/ cosx

1

1/ cos y

◦

sin y/ cos y

◦
Now let us compute the area of the big triangle, or rather the double of that area. We

can do this in two ways, either directly, with a formula involving sin(x + y), or by using
the two small triangles, involving functions of x, y. We obtain in this way:

1

cosx
· 1

cos y
· sin(x+ y) =

sinx

cosx
· 1 + sin y

cos y
· 1

But this gives the formula for sin(x+ y) from the statement.

(2) By using sin(x+ y) we can deduce a formula for cos(x+ y), as follows:

cos(x+ y) = sin
(π
2
− x− y

)
= sin

[(π
2
− x
)
+ (−y)

]
= sin

(π
2
− x
)
cos(−y) + cos

(π
2
− x
)
sin(−y)

= cos x cos y − sinx sin y

(3) Finally, in what regards the tangents, we have, according to the above:

tan(x+ y) =
sinx cos y + cosx sin y

cosx cos y − sinx sin y

Thus, we are led to the conclusions in the statement. □

There are many applications of Theorem 3.22. Observe in particular that with x = y
we obtain some interesting formulae for the duplication of angles, namely:

sin(2x) = 2 sinx cosx

cos(2x) = cos2 x− sin2 x

Regarding the sines and cosines of triples of angles, or higher, things here are more
complicated. We will be back to such questions later, with better tools.
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3c. Pi, trigonometry

Let us get now into a more advanced study of the angles. For this purpose, the best
is to talk first about circles, and the number π. And here, to start with, we have:

Theorem 3.23. The following two definitions of π are equivalent:

(1) The length of the unit circle is L = 2π.
(2) The area of the unit disk is A = π.

Proof. In order to prove this theorem let us cut the unit disk as a pizza, into N
slices, and forgetting about gastronomy, leave aside the rounded parts:

◦ ◦

◦ ◦ ◦

◦ ◦
The area to be eaten can be then computed as follows, where H is the height of the

slices, S is the length of their sides, and P = NS is the total length of the sides:

A = N × HS

2

=
HP

2

≃ 1× L

2

Thus, with N → ∞ we obtain that we have A = L/2, as desired. □

In what regards now the precise value of π, the above picture at N = 6 shows that we
have π > 3, but not by much. The precise figure is as follows:

π = 3.14159 . . .

Getting now to what we wanted to do in this section, in relation with the angles, and
their numeric measuring, let us formulate the following definition:

Definition 3.24. The value of an angle is obtained by putting that angle on the center
of a circle of radius 1, and measuring the corresponding arc length.

And this, which is something quite smart, will replace our previous conventions for
the measuring of angles, with the basic conversion formulae being as follows:

0◦ = 0 , 90◦ =
π

2
, 180◦ = π , 270◦ =

3π

2
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Let us record as well the conversion formulae for the halves of these angles:

45◦ =
π

4
, 135◦ =

3π

4
, 225◦ =

5π

4
, 315◦ =

7π

4

Finally, let us record as well the formulae for the thirds of the basic angles:

30◦ =
π

6
, 60◦ =

π

3
, 120◦ =

2π

3
, 150◦ =

5π

6

210◦ =
7π

6
, 240◦ =

4π

3
, 300◦ =

5π

3
, 330◦ =

11π

6

In relation now with sin and cos, we are led in this way to the following alternate
definitions, which better explain the various sign conventions made before:

Theorem 3.25. The sine and cosine of an angle are obtained by putting the angle
on the unit circle, as above, then projecting on the vertical and the horizontal, and then
measuring the oriented segments that we get, on the vertical and horizontal.

Proof. This is clear from definitions, but for full clarity here, let us review now the
detailed construction of the sine and cosine, for the arbitrary angles, from the previous
section, with attention to signs, in the present setting. We have 4 cases, as follows:

(1) In the simplest case, namely t ∈ [0, π/2], the sine and cosine are indeed computed
according to the following picture, which is the one in the statement:

P

1
sin t

t

O
cos t

Q

(2) In the case of obtuse angles, t ∈ [π/2, π], the picture becomes as follows:

P

sin t
1

t

Q − cos t
O
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(3) In the next case, namely t ∈ [π, 3π/2], the picture becomes as follows:

t t

Q
− cos t

O

t

P

− sin t
1

(4) As for the last case, namely t ∈ [3π/2, 2π], here our picture is as follows:

t t

O
cos t

Q

t

P

1
− sin t

Thus, we are led to the conclusions in the statement. □

As an interesting fact, we can complement Theorem 3.25 with a statement regarding
the tangent, the trigonometric function that we often forgot so far, as follows:

Theorem 3.26. The tangent of an angle can be obtained by putting the angle on the
unit circle, as before, and then measuring the oriented segment that we get, on the vertical,
outside the circle, on the vertical tangent at right.

Proof. This is, again, something quite self-explanatory. □

With the circle in hand, we have the following estimates, which are both clear:

sinx ≤ x ≤ tanx

Moreover, we can now establish some useful estimates, as follows:

Theorem 3.27. The following happen, for small angles, x ≃ 0:

(1) sinx ≃ x.
(2) cosx ≃ 1− x2/2.
(3) tanx ≃ x.

Proof. Here (1) is clear on the circle, (2) comes from (1) and from Pythagoras, by
computing the quantity doing the job, and (3) is clear on the circle too. □
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3d. Complex numbers

We have a quite good understanding of their complex numbers, and their addition.
In order to understand now the multiplication operation, we must do something more
complicated, namely using polar coordinates. Let us start with:

Definition 3.28. The complex numbers x = a+ib can be written in polar coordinates,

x = r(cos t+ i sin t)

with the connecting formulae being as follows,

a = r cos t , b = r sin t

and in the other sense being as follows,

r =
√
a2 + b2 , tan t =

b

a
and with r, t being called modulus, and argument.

There is a clear relation here with the vector notation from chapter 2, because r is the
length of the vector, and t is the angle made by the vector with the Ox axis. To be more
precise, the picture for what is going on in Definition 3.28 is as follows:

b •x

• //

OO

r

t

a

As a basic example here, the number i takes the following form:

i = cos
(π
2

)
+ i sin

(π
2

)
The point now is that in polar coordinates, the multiplication formula for the complex

numbers, which was so far something quite opaque, takes a very simple form:

Theorem 3.29. Two complex numbers written in polar coordinates,

x = r(cos s+ i sin s) , y = p(cos t+ i sin t)

multiply according to the following formula:

xy = rp(cos(s+ t) + i sin(s+ t))

In other words, the moduli multiply, and the arguments sum up.



3D. COMPLEX NUMBERS 77

Proof. This follows from the following formulae, that we know well:

cos(s+ t) = cos s cos t− sin s sin t

sin(s+ t) = cos s sin t+ sin s cos t

Indeed, we can assume that we have r = p = 1, by dividing everything by these
numbers. Now with this assumption made, we have the following computation:

xy = (cos s+ i sin s)(cos t+ i sin t)

= (cos s cos t− sin s sin t) + i(cos s sin t+ sin s cos t)

= cos(s+ t) + i sin(s+ t)

Thus, we are led to the conclusion in the statement. □

The above result, which is based on some non-trivial trigonometry, is quite powerful.
As a basic application of it, we can now compute powers, as follows:

Theorem 3.30. The powers of a complex number, written in polar form,

x = r(cos t+ i sin t)

are given by the following formula, valid for any exponent k ∈ N:

xk = rk(cos kt+ i sin kt)

Moreover, this formula holds in fact for any k ∈ Z, and even for any k ∈ Q.

Proof. Given a complex number x, written in polar form as above, and an exponent
k ∈ N, we have indeed the following computation, with k terms everywhere:

xk = x . . . x

= r(cos t+ i sin t) . . . r(cos t+ i sin t)

= rk([cos(t+ . . .+ t) + i sin(t+ . . .+ t))

= rk(cos kt+ i sin kt)

Thus, we are done with the case k ∈ N. Regarding now the generalization to the case
k ∈ Z, it is enough here to do the verification for k = −1, where the formula is:

x−1 = r−1(cos(−t) + i sin(−t))

But this number x−1 is indeed the inverse of x, as shown by:

xx−1 = r(cos t+ i sin t) · r−1(cos(−t) + i sin(−t))
= cos(t− t) + i sin(t− t)

= cos 0 + i sin 0

= 1
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Finally, regarding the generalization to the case k ∈ Q, it is enough to do the verifi-
cation for exponents of type k = 1/n, with n ∈ N. The claim here is that:

x1/n = r1/n
[
cos

(
t

n

)
+ i sin

(
t

n

)]
In order to prove this, let us compute the n-th power of this number. We can use the

power formula for the exponent n ∈ N, that we already established, and we obtain:

(x1/n)n = (r1/n)n
[
cos

(
n · t

n

)
+ i sin

(
n · t

n

)]
= r(cos t+ i sin t)

= x

Thus, we have indeed a n-th root of x, and our proof is now complete. □

As a basic application of Theorem 3.30, we have the following result:

Proposition 3.31. Each complex number, written in polar form,

x = r(cos t+ i sin t)

has two square roots, given by the following formula:

√
x = ±

√
r

[
cos

(
t

2

)
+ i sin

(
t

2

)]
When x > 0, these roots are ±

√
x. When x < 0, these roots are ±i

√
−x.

Proof. The first assertion is clear indeed from the general formula in Theorem 3.30,
at k = 1/2. As for its particular cases with x ∈ R, these are clear from it. □

With the above results in hand, and notably with the square root formula from Propo-
sition 3.31, we can now go back to the degree 2 equations, and we have:

Theorem 3.32. The complex solutions of ax2 + bx+ c = 0 with a, b, c ∈ C are

x1,2 =
−b±

√
b2 − 4ac

2a
with the square root of complex numbers being defined as above.

Proof. This is clear, the computations being the same as in the real case. To be
more precise, our degree 2 equation can be written as follows:(

x+
b

2a

)2

=
b2 − 4ac

4a2

Now since we know from Proposition 3.31 that any complex number has a square root,
we are led to the conclusion in the statement. □

We can investigate as well more complicated operations, as follows:
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Theorem 3.33. We have the following operations on the complex numbers

x = r(cos t+ i sin t)

written in short polar form x = reit:

(1) Inversion: (reit)−1 = r−1e−it.

(2) Square roots:
√
reit = ±

√
reit/2.

(3) Powers: (reit)a = raeita.

(4) Conjugation: reit = re−it.

Proof. As a first observation, with the short polar form convention x = reit from the
statement, the multiplication formula from Theorem 3.29 takes the following very simple
form, with the arguments s, t being both taken modulo 2π:

reis · peit = rp ei(s+t)

Getting now to what is to be proved, we basically already know all this, but we can
now rediscuss this, from a more conceptual viewpoint, the idea being as follows:

(1) We have indeed the following computation, using the above multiplication formula:

(reit)(r−1e−it) = rr−1 · ei(t−t) = 1

(2) Once again by using the above multiplication formula, we have:

(±
√
reit/2)2 = (

√
r)2ei(t/2+t/2) = reit

(3) Given an arbitrary number a ∈ R, we can define, as stated:

(reit)a = raeita

We conclude that this operation x→ xa is indeed the correct one.

(4) This comes from the fact, that we know from the above, that the conjugation
operation x→ x̄ keeps the modulus, and switches the sign of the argument. □

We kept the best for the end. As a last topic regarding the complex numbers, which
is something really beautiful, we have the roots of unity. Let us start with:

Theorem 3.34. The equation xN = 1 has N complex solutions, namely{
wk
∣∣∣k = 0, 1, . . . , N − 1

}
, w = e2πi/N

which are called roots of unity of order N .

Proof. This follows from the general multiplication formula for complex numbers
from above. Indeed, with x = reit our equation reads:

rNeitN = 1

Thus r = 1, and t ∈ [0, 2π) must be a multiple of 2π/N , as stated. □
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As an illustration here, the roots of unity of small order are as follows:

N = 1. Here the unique root of unity is 1.

N = 2. Here we have two roots of unity, namely 1 and −1.

N = 3. Here we have 1, then w = e2πi/3, and then w2 = w̄ = e4πi/3.

N = 4. Here the roots of unity, read as usual counterclockwise, are 1, i,−1,−i.
N = 5. Here, with w = e2πi/5, the roots of unity are 1, w, w2, w3, w4.

N = 6. Here a useful alternative writing is {±1,±w,±w2}, with w = e2πi/3.

The roots of unity are very useful variables, and have many interesting properties. As
a first application, we can now solve the ambiguity questions related to the extraction of
N -th roots, from Theorem 3.33, the statement here being as follows:

Theorem 3.35. Any x = reit has exactly N roots of order N , which appear as

y = r1/Neit/N

multiplied by the N roots of unity of order N .

Proof. We must solve the equation zN = x, over the complex numbers. Since the
number y in the statement clearly satisfies yN = x, our equation is equivalent to:

zN = yN

We conclude from this that the solutions z appear by multiplying y by the solutions
of tN = 1, which are the N -th roots of unity, as claimed. □

3e. Exercises

Exercises:

Exercise 3.36.

Exercise 3.37.

Exercise 3.38.

Exercise 3.39.

Exercise 3.40.

Exercise 3.41.

Exercise 3.42.

Exercise 3.43.

Bonus exercise.



CHAPTER 4

Exp and log

4a. The number e

Time now to get into the truly scary things, namely exp and log. These are quite basic
functions in mathematics and science, but in order to introduce them, we will have to work
a bit. Indeed, the idea will be that the exponential will be something of type expx = ex,
and the logarithm log x will be its inverse, but the whole point lies in understanding what
the number e ∈ R that we really want to use is, and this is something non-trivial.

So, be patient, things here will be non-trivial, and we will have to prove some pre-
liminary results first, with no clear goal. But, as analysts, we are supposed to enjoy
everything analysis, so take what comes next like this, analysts enjoying analysis.

Regarding e, we have the following remarkable result, to start with:

Theorem 4.1. We have the following convergence(
1 +

1

n

)n

→ e

where e = 2.71828 . . . is a certain number.

Proof. This is something quite tricky, as follows:

(1) Our first claim is that the following sequence is increasing:

xn =

(
1 +

1

n

)n

In order to prove this, we use the following arithmetic-geometric inequality:

1 +
∑n

i=1

(
1 + 1

n

)
n+ 1

≥ n+1

√√√√1 ·
n∏

i=1

(
1 +

1

n

)
In practice, this gives the following inequality:

1 +
1

n+ 1
≥
(
1 +

1

n

)n/(n+1)

81
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Now by raising to the power n+ 1 we obtain, as desired:(
1 +

1

n+ 1

)n+1

≥
(
1 +

1

n

)n

(2) Normally we are left with proving that xn is bounded from above, but this is
non-trivial, and we have to use a trick. Consider the following sequence:

yn =

(
1 +

1

n

)n+1

We will prove that this sequence yn is decreasing, and together with the fact that we
have xn/yn → 1, this will give the result. So, this will be our plan.

(3) In order to prove now that yn is decreasing, we use, a bit as before:

1 +
∑n

i=1

(
1− 1

n

)
n+ 1

≥ n+1

√√√√1 ·
n∏

i=1

(
1− 1

n

)
In practice, this gives the following inequality:

1− 1

n+ 1
≥
(
1− 1

n

)n/(n+1)

Now by raising to the power n+ 1 we obtain from this:(
1− 1

n+ 1

)n+1

≥
(
1− 1

n

)n

The point now is that we have the following inversion formulae:(
1− 1

n+ 1

)−1

=

(
n

n+ 1

)−1

=
n+ 1

n
= 1 +

1

n(
1− 1

n

)−1

=

(
n− 1

n

)−1

=
n

n− 1
= 1 +

1

n− 1

Thus by inverting the inequality that we found, we obtain, as desired:(
1 +

1

n

)n+1

≤
(
1 +

1

n− 1

)n

(4) But with this, we can now finish. Indeed, the sequence xn is increasing, the
sequence yn is decreasing, and we have xn < yn, as well as:

yn
xn

= 1 +
1

n
→ 1

Thus, both sequences xn, yn converge to a certain number e, as desired.
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(5) Finally, regarding the numerics for our limiting number e, we know from the above
that we have xn < e < yn for any n ∈ N, which reads:(

1 +
1

n

)n

< e <

(
1 +

1

n

)n+1

Thus e ∈ [2, 3], and with a bit of patience, or a computer, we obtain e = 2.71828 . . .
We will actually come back to this question later, with better methods. □

More generally now, we have the following result, which is a bit more general:

Theorem 4.2. We have the following formula,(
1 +

x

n

)n
→ ex

valid for any x ∈ R.

Proof. We already know from Theorem 4.1 that the result holds at x = 1, and this
because the number e was by definition given by the following formula:(

1 +
1

n

)n

→ e

By taking inverses, we obtain as well the result at x = −1, namely:(
1− 1

n

)n

→ 1

e

In general now, when ∈ R is arbitrary, the best is to proceed as follows:(
1 +

x

n

)n
=

[(
1 +

x

n

)n/x]x
→ ex

Thus, we are led to the conclusion in the statement. □

Next, we have the following result, which is something quite far-reaching:

Theorem 4.3. We have the formula

ex =
∞∑
k=0

xk

k!

valid for any x ∈ R.

Proof. This can be done in several steps, as follows:

(1) At x = 1, which is the key step, we want to prove that we have the following
equality, between the sum of a series, and a limit of a sequence:

∞∑
k=0

1

k!
= lim

n→∞

(
1 +

1

n

)n
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(2) For this purpose, the first observation is that we have the following estimate:

2 <
∞∑
k=0

1

k!
<

∞∑
k=0

1

2k−1
= 3

Thus, the series
∑∞

k=0
1
k!

converges indeed, towards a limit in (2, 3).

(3) In order to prove now that this limit is e, observe that we have:(
1 +

1

n

)n

=
n∑

k=0

(
n

k

)
· 1

nk

=
n∑

k=0

n(n− 1) . . . (n− k + 1)

k!
· 1

nk

≤
n∑

k=0

1

k!

Thus, with n→ ∞, we get that the limit of the series
∑∞

k=0
1
k!

belongs to [e, 3).

(4) For the reverse inequality, we use the following computation:

n∑
k=0

1

k!
−
(
1 +

1

n

)n

=
n∑

k=0

1

k!
−

n∑
k=0

n(n− 1) . . . (n− k + 1)

k!
· 1

nk

=
n∑

k=2

1

k!
−

n∑
k=2

n(n− 1) . . . (n− k + 1)

k!
· 1

nk

=
n∑

k=2

nk − n(n− 1) . . . (n− k + 1)

nkk!

≤
n∑

k=2

nk − (n− k)k

nkk!

=
n∑

k=2

1−
(
1− k

n

)k
k!

(5) In order to estimate the above expression that we found, we can use the following
trivial inequality, valid for any number x ∈ (0, 1):

1− xk = (1− x)(1 + x+ x2 + . . .+ xk−1) ≤ (1− x)k
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Indeed, we can use this with x = 1− k/n, and we obtain in this way:

n∑
k=0

1

k!
−
(
1 +

1

n

)n

≤
n∑

k=2

k
n
· k
k!

=
1

n

n∑
k=2

k

(k − 1)!

=
1

n

n∑
k=2

k

k − 1
· 1

(k − 2)!

≤ 1

n

n∑
k=2

2

2k−2

<
4

n

Now since with n → ∞ this goes to 0, we obtain that the limit of the series
∑∞

k=0
1
k!

is the same as the limit of the sequence
(
1 + 1

n

)n
, manely e. Thus, getting back now to

what we wanted to prove, our theorem, we are done in this way with the case x = 1.

(6) In order to deal now with the general case, consider the following function:

f(x) =
∞∑
k=0

xk

k!

Observe that, by using our various results above, this function is indeed well-defined.
Moreover, again by using our various results above, f is continuous.

(7) Our next claim, which is the key one, is that we have:

f(x+ y) = f(x)f(y)

Indeed, by using the binomial formula, we have the following computation:

f(x+ y) =
∞∑
k=0

(x+ y)k

k!

=
∞∑
k=0

k∑
s=0

(
k

s

)
· x

syk−s

k!

=
∞∑
k=0

k∑
s=0

xsyk−s

s!(k − s)!

= f(x)f(y)
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(8) In order to finish now, we know that our function f is continuous, that it satisfies
f(x+ y) = f(x)f(y), and that we have:

f(0) = 1 , f(1) = e

But it is easy to prove that such a function is necessarily unique, and since ex obviously
has all these properties too, we must have f(x) = ex, as desired. □

Observe that we used in the above a few things about functions, which are all intuitive,
but not exactly trivial to prove. We will be back to this, with details, in Part II.

As another observation, the proof of Theorem 4.3 leads in fact to:

Theorem 4.4. We have the following formula,

ex =
∞∑
k=0

xk

k!

valid for any x ∈ R.

Proof. This is indeed something that we know, from the proof of Theorem 4.3, and
we will take the present statement as a conclusion to what we did so far. □

4b. More about e

Many things can be said about e, and we will be back to this on a regular basis, in
this book. As a basic result here, which is more advanced, we have:

Theorem 4.5. The number e from analysis, given by

e =
∞∑
k=0

1

k!

which numerically means e = 2.7182818284 . . . , is irrational.

Proof. Many things can be said here, as follows:

(1) To start with, there are several possible definitions for the number e, with the old
style one, that we have used in the above, being via a simple limit, as follows:(

1 +
1

n

)n

→ e

The definition in the statement is the modern one, explained also in the above.
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(2) Getting now to numerics, the series of e converges very fast, when compared to
the old style sequence in (1), so if you are in a hurry, this series is for you. We have:

e =
N−1∑
k=0

1

k!
+

1

N !

(
1 +

1

N + 1
+

1

(N + 1)(N + 2)
+ . . .

)

<
N−1∑
k=0

1

k!
+

1

N !

(
1 +

1

N + 1
+

1

(N + 1)2
+ . . .

)

=
N−1∑
k=0

1

k!
+

1

N !

(
1 +

1

N

)

=
N∑
k=0

1

k!
+

1

N ·N !

Thus, the error term in the approximation is really tiny, the estimate being:

N∑
k=0

1

k!
< e <

N∑
k=0

1

k!
+

1

N ·N !

(3) Now by using this, you can easily compute the decimals of e. Actually, you can’t
call yourself mathematician, or scientist, if you haven’t done this by hand, just for the
fun, but just in case, here is how the approximation goes, for small values of N :

N = 2 =⇒ 2.5 < e < 2.75

N = 3 =⇒ 2.666 . . . < e < 2.722 . . .

N = 4 =⇒ 2.70833 . . . < e < 2.71875 . . .

N = 5 =⇒ 2.71666 . . . < e < 2.71833 . . .

N = 6 =⇒ 2.71805 . . . < e < 2.71828 . . .

N = 7 =⇒ 2.71825 . . . < e < 2.71828 . . .

Thus, first 4 decimals computed, e = 2.7182 . . . , and I would leave the continuation to
you. With the remark that, when carefully looking at the above, the estimate on the right
works much better than the one on the left, so before getting into more serious numerics,
try to find a better lower estimate for e, that can help you in your work.

(4) Getting now to irrationality, a look at e = 2.7182818284 . . . might suggest that the
81, 82, 84 . . . values might eventually, after some internal fight, decide for a winner, and
so that e might be rational. However, this is wrong, and e is in fact irrational.
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(5) So, let us prove now this, that e is irrational. Following Fourier, we will do this
by contradiction. So, assume e = m/n, and let us look at the following number:

x = n!

(
e−

n∑
k=0

1

k!

)
As a first observation, x is an integer, as shown by the following computation:

x = n!

(
m

n
−

n∑
k=0

1

k!

)

= m(n− 1)!−
n∑

k=0

n(n− 1) . . . (n− k + 1)

∈ Z

On the other hand x > 0, and we have as well the following estimate:

x = n!
∞∑

k=n+1

1

k!

=
1

n+ 1
+

1

(n+ 1)(n+ 2)
+ . . .

<
1

n+ 1
+

1

(n+ 1)2
+ . . .

=
1

n

Thus x ∈ (0, 1), which contradicts our previous finding x ∈ Z, as desired. □

Still talking about e, I don’t know about you, but personally, for some peace of mind,
I would like to have as well a combinatorial interpretation of it. So, let us start with some
combinatorics. We first have the following well-known, and useful formula:(⋃

i

Ai

)c

=
⋂
i

Ac
i

We have as well a reverse formula, of the same type, as follows:(⋂
i

Ai

)c

=
⋃
i

Ac
i

At a more advanced level, we have the inclusion-exclusion principle, which has many
concrete applications. This inclusion-exclusion principle is as follows:



4B. MORE ABOUT E 89

Proposition 4.6. We have the following formula,∣∣∣∣∣
(⋃

i

Ai

)c∣∣∣∣∣ = |A| −
∑
i

|Ai|+
∑
i<j

|Ai ∩ Aj| −
∑
i<j<k

|Ai ∩ Aj ∩ Ak|+ . . .

called inclusion-exclusion principle.

Proof. This is indeed quite clear, by thinking a bit, as follows:

(1) In order to count (∪iAi)
c, we certainly have to start with |A|.

(2) Then, we obviously have to remove each |Ai|, and so remove
∑

i |Ai|.

(3) But then, we have to put back each |Ai ∩ Aj|, and so put back
∑

i<j |Ai ∩ Aj|.

(4) Then, we must remove each |Ai ∩ Aj ∩ Ak|, so remove
∑

i<j<k |Ai ∩ Aj ∩ Ak|.
...

(5) And so on, which leads to the formula in the statement. □

Getting now towards what we wanted to do, in relation with e, let us start with the
following definition, which is something very standard:

Definition 4.7. A permutation of {1, . . . , N} is a bijection, as follows:

σ : {1, . . . , N} → {1, . . . , N}

The set of such permutations is denoted SN .

There are many possible notations for the permutations, the basic one consisting in
writing the numbers 1, . . . , N , and below them, their permuted versions:

σ =

(
1 2 3 4 5
2 1 4 5 3

)
Another method, which is certainly faster, and which is actually my personal favorite,

is by denoting the permutations as diagrams, acting from top to bottom:

σ =

Here are some basic properties of the permutations:

Proposition 4.8. The permutations have the following properties:

(1) There are N ! of them.
(2) They are stable by composition, and inversion.



90 4. EXP AND LOG

Proof. In order to construct a permutation σ ∈ SN , we have:

– N choices for the value of σ(N).
– (N − 1) choices for the value of σ(N − 1).
– (N − 2) choices for the value of σ(N − 2).
...
– and so on, up to 1 choice for the value of σ(1).

Thus, we have N ! choices, as claimed. As for the second assertion, this is clear. □

With this discussed, here is now the application of the inclusion-exclusion principle
that we were having in mind, making appear e, in a nice combinatorial way:

Theorem 4.9. The probability for a random permutation σ ∈ SN to be a derangement,
that is, to have no fixed points, is given by the following formula:

P = 1− 1

1!
+

1

2!
− 1

3!
+ . . .+ (−1)N

1

N !

Thus we have the following asymptotic formula, in the N → ∞ limit,

P ≃ 1

e

with e = 2.7182 . . . being the usual constant from analysis.

Proof. This is something very classical, which is best viewed by using the inclusion-
exclusion principle. Consider indeed the following sets:

Si
N =

{
σ ∈ SN

∣∣∣σ(i) = i
}

The set of permutations having no fixed points, called derangements, is then:

XN =

(⋃
k

Sk
N

)c

Now the inclusion-exclusion principle tells us that we have:

|XN | =

∣∣∣∣∣
(⋃

k

Sk
N

)c∣∣∣∣∣
= |SN | −

∑
k

|Sk
N |+

∑
k<l

|Sk
N ∩ Sl

N | − . . .+ (−1)N
∑

k1<...<kN

|Sk1
N ∪ . . . ∪ SkN

N |

= N !−N(N − 1)! +

(
N

2

)
(N − 2)!− . . .+ (−1)N

(
N

N

)
(N −N)!

=
N∑
r=0

(−1)r
(
N

r

)
(N − r)!
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Thus, the probability that we are interested in, for a random permutation σ ∈ SN to
have no fixed points, is given by the following formula:

P =
|XN |
N !

=
N∑
r=0

(−1)r

r!

Since on the right we have the expansion of 1/e, this gives the result. □

The above is nice, but we can do even better. Let us introduce, indeed:

Definition 4.10. The Poisson law of parameter 1 is the following measure,

p1 =
1

e

∑
k∈N

δk
k!

and the Poisson law of parameter t > 0 is the following measure,

pt = e−t
∑
k∈N

tk

k!
δk

with the letter “p” standing for Poisson.

Generally speaking, these measures appear a bit everywhere, in discrete probability
contexts, the reasons for this coming from the Poisson Limit Theorem (PLT). However,
this is advanced, and for the moment, what we have in Definition 4.10 will do. Observe
that our laws have indeed mass 1, as they should, due to the following key formula:

et =
∑
k∈N

tk

k!

Getting back now to what we wanted to do, generalize Theorem 4.9, we have:

Theorem 4.11. The main character of SN , which counts the fixed points, given by

χ =
∑
i

σii

via the standard embedding SN ⊂ ON , follows the Poisson law p1, in the N → ∞ limit.
More generally, the truncated characters of SN , given by

χt =

[tN ]∑
i=1

σii

with t ∈ (0, 1], follow the Poisson laws pt, in the N → ∞ limit.

Proof. Many things going on here, the idea being as follows:
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(1) Let us construct the main character of SN , as in the statement. The permutation
matrices being given by σij = δiσ(j), we have the following formula:

χ(σ) =
∑
i

δσ(i)i = #
{
i ∈ {1, . . . , N}

∣∣∣σ(i) = i
}

In order to establish now the asymptotic result in the statement, regarding these
characters, we must prove the following formula, for any r ∈ N, in the N → ∞ limit:

P (χ = r) ≃ 1

r!e

We already know, from Theorem 4.9, that this formula holds at r = 0. In the general
case now, we have to count the permutations σ ∈ SN having exactly r points. Now
since having such a permutation amounts in choosing r points among 1, . . . , N , and then
permuting the N − r points left, without fixed points allowed, we have:

#
{
σ ∈ SN

∣∣∣χ(σ) = r
}

=

(
N

r

)
#
{
σ ∈ SN−r

∣∣∣χ(σ) = 0
}

=
N !

r!(N − r)!
#
{
σ ∈ SN−r

∣∣∣χ(σ) = 0
}

= N !× 1

r!
×

#
{
σ ∈ SN−r

∣∣∣χ(σ) = 0
}

(N − r)!

By dividing everything by N !, we obtain from this the following formula:

#
{
σ ∈ SN

∣∣∣χ(σ) = r
}

N !
=

1

r!
×

#
{
σ ∈ SN−r

∣∣∣χ(σ) = 0
}

(N − r)!

Now by using the computation at r = 0, that we already have, from Theorem 4.9, it
follows that with N → ∞ we have the following estimate:

P (χ = r) ≃ 1

r!
· P (χ = 0) ≃ 1

r!
· 1
e

Thus, we obtain as limiting measure the Poisson law of parameter 1, as stated.

(2) Let us construct now the truncated characters of SN , as in the statement. As
before in the case t = 1, we have the following computation, coming from definitions:

χt(σ) =

[tN ]∑
i=1

δσ(i)i = #
{
i ∈ {1, . . . , [tN ]}

∣∣∣σ(i) = i
}
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Also as before, we obtain by inclusion-exclusion that we have:

P (χt = 0) =
1

N !

[tN ]∑
r=0

(−1)r
∑

k1<...<kr<[tN ]

|Sk1
N ∩ . . . ∩ Skr

N |

=
1

N !

[tN ]∑
r=0

(−1)r
(
[tN ]

r

)
(N − r)!

=

[tN ]∑
r=0

(−1)r

r!
· [tN ]!(N − r)!

N !([tN ]− r)!

Now with N → ∞, we obtain from this the following estimate:

P (χt = 0) ≃
[tN ]∑
r=0

(−1)r

r!
· tr ≃ e−t

More generally, by counting the permutations σ ∈ SN having exactly r fixed points
among 1, . . . , [tN ], as in the proof of (2), we obtain:

P (χt = r) ≃ tr

r!et

Thus, we obtain in the limit a Poisson law of parameter t, as stated. □

Many other things can be said, as a continuation of the above. We will be back to
this on several occassions, once we will be better at calculus, which is needed here.

4c. Complex powers

Now that we know about e = 2.7182 . . . , we would like to understand the meaning of
the formula x = reit for the complex numbers, that we used in chapter 3. However, this
is no easy task, and we will be punching here a bit above our weight.

Nevermind. So, this will be some kind of physics class. Let us start with:

Theorem 4.12. We can exponentiate the complex numbers, according to

ex =
∞∑
k=0

xk

k!

and the function x→ ex satisfies ex+y = exey.
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Proof. We must first prove that the series converges. But this follows from:

|ex| =

∣∣∣∣∣
∞∑
k=0

xk

k!

∣∣∣∣∣
≤

∞∑
k=0

∣∣∣∣xkk!
∣∣∣∣

=
∞∑
k=0

|x|k

k!

= e|x| <∞

Regarding the formula ex+y = exey, this follows too as in the real case, as follows:

ex+y =
∞∑
k=0

(x+ y)k

k!

=
∞∑
k=0

k∑
s=0

(
k

s

)
· x

syk−s

k!

=
∞∑
k=0

k∑
s=0

xsyk−s

s!(k − s)!

= exey

Finally, the continuity of x→ ex comes at x = 0 from the following computation:

|et − 1| =

∣∣∣∣∣
∞∑
k=1

tk

k!

∣∣∣∣∣
≤

∞∑
k=1

∣∣∣∣ tkk!
∣∣∣∣

=
∞∑
k=1

|t|k

k!

= e|t| − 1

As for the continuity of x→ ex in general, this can be deduced now as follows:

lim
t→0

ex+t = lim
t→0

exet = ex lim
t→0

et = ex · 1 = ex

Thus, we are led to the conclusions in the statement. □

Next, we have the following deep result, regarding the complex exponential:
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Theorem 4.13. We have the following formula,

eit = cos t+ i sin t

valid for any t ∈ R.

Proof. Let us first recall from Theorem 4.12 that we have the following formula, for
the exponential of an arbitrary complex number x ∈ C:

ex =
∞∑
k=0

xk

k!

Now let us plug x = it in this formula. We obtain the following formula:

eit =
∞∑
k=0

(it)k

k!

=
∑
k=2l

(it)k

k!
+
∑

k=2l+1

(it)k

k!

=
∞∑
l=0

(−1)l
t2l

(2l)!
+ i

∞∑
l=0

(−1)l
t2l+1

(2l + 1)!

The point now is that, according to the findings of our colleagues in theoretical physics,
we have the following two formulae, for the cosine and sine:

cos t =
∞∑
l=0

(−1)l
t2l

(2l)!
, sin t =

∞∑
l=0

(−1)l
t2l+1

(2l + 1)!

Thus, we are led to the conclusion in the statement. □

As a main application of the above formula, we have:

Theorem 4.14. The complex numbers x = a+ ib can be written in polar coordinates,

x = reit

with the connecting formulae being

a = r cos t , b = r sin t

and in the other sense being

r =
√
a2 + b2 , tan t =

b

a

and with r, t being called modulus, and argument.

Proof. This is a reformulation of our previous polar writing notions, by using the
formula eit = cos t+ i sin t from Theorem 4.13, and multiplying everything by r. □
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With this in hand, we can now go back to the basics, namely the addition and multi-
plication of the complex numbers. We have here the following result:

Theorem 4.15. In polar coordinates, the complex numbers multiply as

reis · peit = rp ei(s+t)

with the arguments s, t being taken modulo 2π.

Proof. This is something that we already know, from chapter 3, reformulated by
using the notations from Theorem 4.14. Observe that this follows as well directly, from
the fact that we have ea+b = eaeb, that we know from analysis. □

As a basic application of Theorem 4.15, we have:

Theorem 4.16. We have the following operations on the complex numbers, written
in polar form, as above:

(1) Inversion: (reit)−1 = r−1e−it.

(2) Square roots:
√
reit = ±

√
reit/2.

(3) Powers: (reit)a = raeita.

(4) Conjugation: reit = re−it.

Proof. This is something that we already know, from chapter 3, but we can now
discuss all this, from a more conceptual viewpoint, the idea being as follows:

(1) We have indeed the following computation, using Theorem 4.15:

(reit)(r−1e−it) = rr−1 · ei(t−t)

= 1 · 1
= 1

(2) Once again by using Theorem 4.15, we have:

(±
√
reit/2)2 = (

√
r)2ei(t/2+t/2) = reit

(3) Given an arbitrary number a ∈ R, we can define, as stated:

(reit)a = raeita

Due to Theorem 4.15, this operation x→ xa is indeed the correct one.

(4) This comes from the fact, that we know from chapter 3, that the conjugation
operation x→ x̄ keeps the modulus, and switches the sign of the argument. □

Let us rewrite as well the theory of roots of unity, in this way. We first have:

Theorem 4.17. The equation xN = 1 has N complex solutions, namely{
wk
∣∣∣k = 0, 1, . . . , N − 1

}
, w = e2πi/N

which are called roots of unity of order N .
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Proof. This follows from the general multiplication formula for complex numbers
from Theorem 4.15. Indeed, with x = reit our equation reads:

rNeitN = 1

Thus r = 1, and t ∈ [0, 2π) must be a multiple of 2π/N , as stated. □

As an illustration here, the roots of unity of small order, along with some of their
basic properties, which are very useful for computations, are as follows:

N = 1. Here the unique root of unity is 1.

N = 2. Here we have two roots of unity, namely 1 and −1.

N = 3. Here we have 1, then w = e2πi/3, and then w2 = w̄ = e4πi/3.

N = 4. Here the roots of unity, read as usual counterclockwise, are 1, i,−1,−i.
N = 5. Here, with w = e2πi/5, the roots of unity are 1, w, w2, w3, w4.

N = 6. Here a useful alternative writing is {±1,±w,±w2}, with w = e2πi/3.

N = 7. Here, with w = e2πi/7, the roots of unity are 1, w, w2, w3, w4, w5, w6.

N = 8. Here the roots of unity, read as usual counterclockwise, are the numbers
1, w, i, iw,−1,−w,−i,−iw, with w = eπi/4, which is also given by w = (1 + i)/

√
2.

The roots of unity are very useful variables, and have many interesting properties. As
a first application, we can now solve the ambiguity questions related to the extraction of
N -th roots, from Theorem 4.16, the statement here being as follows:

Theorem 4.18. Any nonzero complex number, written as

x = reit

has exactly N roots of order N , which appear as

y = r1/Neit/N

multiplied by the N roots of unity of order N .

Proof. We must solve the equation zN = x, over the complex numbers. Since the
number y in the statement clearly satisfies yN = x, our equation is equivalent to:

zN = yN

Now observe that we can write this equation as follows:(
z

y

)N

= 1

We conclude that the solutions z appear by multiplying y by the solutions of tN = 1,
which are the N -th roots of unity, as claimed. □



98 4. EXP AND LOG

The roots of unity appear in connection with many other interesting questions, and
there are many useful formulae relating them, which are good to know. Here is a basic
such formula, very beautiful, to be used many times in what follows:

Theorem 4.19. The roots of unity, {wk} with w = e2πi/N , have the property

N−1∑
k=0

(wk)s = NδN |s

for any exponent s ∈ N, where on the right we have a Kronecker symbol.

Proof. The numbers in the statement, when written more conveniently as (ws)k with
k = 0, . . . , N − 1, form a certain regular polygon in the plane Ps. Thus, if we denote by
Cs the barycenter of this polygon, we have the following formula:

1

N

N−1∑
k=0

wks = Cs

Now observe that in the case N/| s our polygon Ps is non-degenerate, circling around
the unit circle, and having center Cs = 0. As for the case N |s, here the polygon is
degenerate, lying at 1, and having center Cs = 1. Thus, we have the following formula:

Cs = δN |s

Thus, we obtain the formula in the statement. □

As an interesting philosophical fact, regarding the roots of unity, and the complex
numbers in general, we can now solve the following equation, in a “uniform” way:

x1 + . . .+ xN = 0

With this being not a joke. Frankly, can you find some nice-looking family of real
numbers x1, . . . , xN satisfying x1 + . . . + xN = 0? Certainly not. But with complex
numbers we have now our answer, the sum of the N -th roots of unity being zero.

As an interesting consequence now of the above results, which is of practical interest,
we have the following useful method, for remembering the basic math formulae:

Method 4.20. Knowing ex =
∑

k x
k/k! and eix = cosx+ i sinx gives you

sin(x+ y) = sinx cos y + cosx sin y

cos(x+ y) = cos x cos y − sinx sin y

right away, in case you forgot these formulae, as well as

sinx =
∞∑
l=0

(−1)l
x2l+1

(2l + 1)!
, cosx =

∞∑
l=0

(−1)l
x2l

(2l)!

again, right away, in case you forgot these formulae.
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To be more precise, assume that we forgot everything trigonometry, which is something
that can happen to everyone, in the real life, but still know the formulae ex =

∑
k x

k/k!
and eix = cosx+ i sinx. Then, we can recover the formulae for sums, as follows:

ei(x+y) = eixeiy =⇒ cos(x+ y) + i sin(x+ y) = (cos x+ i sinx)(cos y + i sin y)

=⇒

{
cos(x+ y) = cos x cos y − sinx sin y

sin(x+ y) = sin x cos y + cosx sin y

And isn’t this smart. Also, and even more impressively, we can recover the physics
formulae for sin, cos, which are certainly difficult to memorize, as follows:

eix =
∑
k

(ix)k

k!
=⇒ cosx+ i sinx =

∑
k

(ix)k

k!

=⇒

{
cosx =

∑∞
l=0(−1)l x2l

(2l)!

sinx =
∑∞

l=0(−1)l x2l+1

(2l+1)!

Finally, in what regards log, there is a trick here too, which is partial, namely:

log(exp x) = x =⇒ log

(
1 + x+

x2

2
+ . . .

)
= x

=⇒ log(1 + y) = y − y2

2
+ . . .

To be more precise, log(1 + y) ≃ y is clear, and with a bit more work, that we will
leave here as an instructive exercise, you can recover log(1+y) = y−y2/2 too. Of course,
the higher terms can be recovered too, with enough work involved, at each step.

4d. Hyperbolic functions

Time now for some heavier stuff, which will bring us, hang on, into Einstein and
relativity, no less than that. We have the following result, to start with:

Theorem 4.21. The following functions, called hyperbolic sine and cosine,

sinhx =
ex − e−x

2
, coshx =

ex + e−x

2

are subject to the following formulae:

(1) ex = coshx+ sinhx.
(2) sinh(ix) = i sinx, cosh(ix) = cos x, for x ∈ R.
(3) sinh(x+ y) = sinh x cosh y + coshx sinh y.
(4) cosh(x+ y) = cosh x cosh y + sinhx sinh y.

(5) sinhx =
∑

l
x2l+1

(2l+1)!
, coshx =

∑
l

x2l

(2l)!
.
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Proof. The formula (1) follows from definitions. As for (2), this follows from:

sinh(ix) =
eix − e−ix

2
=

cosx+ i sinx

2
− cosx− i sinx

2
= i sinx

cosh(ix) =
eix + e−ix

2
=

cosx+ i sinx

2
+

cosx− i sinx

2
= cosx

Regarding now (3,4), observe first that the formula ex+y = ex + ey reads:

cosh(x+ y) + sinh(x+ y) = (cosh x+ sinhx)(cosh y + sinh y)

Thus, we have some good explanation for (3,4), and in practice, these formulae can
be checked by direct computation, as follows:

ex+y − e−x−y

2
=
ex − e−x

2
· e

y + e−y

2
+
ex + e−x

2
· e

y − e−y

2

ex+y + e−x−y

2
=
ex + e−x

2
· e

y + e−y

2
+
ex − e−x

2
· e

y − e−y

2

Finally, (5) is clear from the definition of sinh, cosh, and from ex =
∑

k
xk

k!
. □

Ready for some physics? Based on experiments by Fizeau, then Michelson-Morley and
others, and some physics by Maxwell and Lorentz too, Einstein came upon:

Fact 4.22 (Einstein principles). The following happen:

(1) Light travels in vacuum at a finite speed, c <∞.
(2) This speed c is the same for all inertial observers.
(3) In non-vacuum, the light speed is lower, v < c.
(4) Nothing can travel faster than light, v ̸> c.

The point now is that, obviously, something is wrong here. Indeed, assuming for
instance that we have a train, running in vacuum at speed v > 0, and someone on board
lights a flashlight ∗ towards the locomotive, then an observer ◦ on the ground will see the
light travelling at speed c+ v > c, which is a contradiction:

∗ c
//

v
//

⃝ ⃝ ⃝ ⃝ ⃝ ⃝
◦

c+v
//

Equivalently, with the same train running, in vacuum at speed v > 0, if the observer
on the ground lights a flashlight ∗ towards the back of the train, then viewed from the
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train, that light will travel at speed c+ v > c, which is a contradiction again:

◦
c+v

oo
v
//

⃝ ⃝ ⃝ ⃝ ⃝ ⃝
∗c

oo

Summarizing, Fact 4.22 implies c + v = c, so contradicts classical mechanics, which
therefore needs a fix. By dividing all speeds by c, as to have c = 1, and by restricting the
attention to the 1D case, to start with, we are led to the following puzzle:

Puzzle 4.23. How to define speed addition on the space of 1D speeds, which is

I = [−1, 1]

with our c = 1 convention, as to have 1 + c = 1, as required by physics?

In view of our geometric knowledge so far, a natural idea here would be that of
wrapping [−1, 1] into a circle, and then stereographically projecting on R. Indeed, we can
then “import” to [−, 1, 1] the usual addition on R, via the inverse of this map.

So, let us see where all this leads us. First, the formula of our map is as follows:

Proposition 4.24. The map wrapping [−1, 1] into the unit circle, and then stereo-
graphically projecting on R is given by the formula

φ(u) = tan
(πu

2

)
with the convention that our wrapping is the most straightforward one, making correspond
±1 → i, with negatives on the left, and positives on the right.

Proof. Regarding the wrapping, as indicated, this is given by:

u→ eit , t = πu− π

2

Indeed, this correspondence wraps [−1, 1] as above, the basic instances of our corre-
spondence being as follows, and with everything being fine modulo 2π:

−1 → π

2
, −1

2
→ −π , 0 → −π

2
,

1

2
→ 0 , 1 → π

2
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Regarding now the stereographic projection, the picture here is as follows:

•i

◦

• • ◦x

•

Thus, by Thales, the formula of the stereographic projection is as follows:

cos t

x
=

1− sin t

1
=⇒ x =

cos t

1− sin t

Now if we compose our wrapping operation above with the stereographic projection,
what we get is, via the above Thales formula, and some trigonometry:

x =
cos t

1− sin t

=
cos
(
πu− π

2

)
1− sin

(
πu− π

2

)
=

cos
(
π
2
− πu

)
1 + sin

(
π
2
− πu

)
=

sin(πu)

1 + cos(πu)

=
2 sin

(
πu
2

)
cos
(
πu
2

)
2 cos2

(
πu
2

)
= tan

(πu
2

)
Thus, we are led to the conclusion in the statement. □

The above result is very nice, but when it comes to physics, things do not work, for
instance because of the wrong slope of the function φ(u) = tan

(
πu
2

)
at the origin, which

makes our summing on [−1, 1] not compatible with the Galileo addition, at low speeds.

So, what to do? Obviously, trash Proposition 4.24, and start all over again. Getting
back now to Puzzle 4.23, this has in fact a simpler solution, based this time on algebra,
and which in addition is the good, physically correct solution, as follows:
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Theorem 4.25. If we sum the speeds according to the Einstein formula

u+e v =
u+ v

1 + uv

then the Galileo formula still holds, approximately, for low speeds

u+e v ≃ u+ v

and if we have u = 1 or v = 1, the resulting sum is u+e v = 1.

Proof. All this is self-explanatory, and clear from definitions, and with the Einstein
formula of u +e v itself being just an obvious solution to Puzzle 4.23, provided that,
importantly, we know 0 geometry, and rely on very basic algebra only. □

So, very nice, problem solved, at least in 1D. But, shall we give up with geometry,
and the stereographic projection? Certainly not, let us try to recycle that material. In
order to do this, let us recall that the usual trigonometric functions are given by:

sinx =
eix − e−ix

2i
, cosx =

eix + e−ix

2
, tanx =

eix − e−ix

i(eix + e−ix)

The point now is that, and you might know this from calculus, the above functions
have some natural “hyperbolic” or “imaginary” analogues, constructed as follows:

sinhx =
ex − e−x

2
, coshx =

ex + e−x

2
, tanhx =

ex − e−x

ex + e−x

But the function on the right, tanh, starts reminding the formula of Einstein addition,
from Theorem 4.25. So, we have our idea, and we are led to the following result:

Theorem 4.26. The Einstein speed summation in 1D is given by

tanhx+e tanh y = tanh(x+ y)

with tanh : [−∞,∞] → [−1, 1] being the hyperbolic tangent function.

Proof. This follows by putting together our various formulae above, but it is perhaps
better, for clarity, to prove this directly. Our claim is that we have:

tanh(x+ y) =
tanhx+ tanh y

1 + tanh x tanh y
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But this can be checked via direct computation, from the definitions, as follows:

tanhx+ tanh y

1 + tanhx tanh y

=

(
ex − e−x

ex + e−x
+
ey − e−y

ey + e−y

)/(
1 +

ex − e−x

ex + e−x
· e

y − e−y

ey + e−y

)
=

(ex − e−x)(ey + e−y) + (ex + e−x)(ey − e−y)

(ex + e−x)(ey + e−y) + (ex − e−x)(ey + e−y)

=
2(ex+y − e−x−y)

2(ex+y + e−x−y)

= tanh(x+ y)

Thus, we are led to the conclusion in the statement. □

Very nice all this, hope you agree. As a conclusion, passing from the Riemann stere-
ographic projection sum to the Einstein summation basically amounts in replacing:

tan → tanh

Let us formulate as well this finding more philosophically, as follows:

Conclusion 4.27. The Einstein speed summation in 1D is the imaginary analogue
of the summation on [−1, 1] obtained via Riemann’s stereographic projection.

Which looks quite deep, and we will stop here. More on this later in this book, when
discussing curved spacetime, in full generality, and with more advanced tools.

4e. Exercises

Exercises:

Exercise 4.28.

Exercise 4.29.

Exercise 4.30.

Exercise 4.31.

Exercise 4.32.

Exercise 4.33.

Exercise 4.34.

Exercise 4.35.

Bonus exercise.
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Continuity



Here we are
To celebrate a party

In this hot summer night
While the moon is shining bright



CHAPTER 5

Continuous functions

5a. Continuity

Welcome to advanced function theory. In order to say a number of non-trivial things,
we will focus now our study on the functions f : R → R which are suitably regular, with
the hope that these regularity properties will lead to some interesting theorems.

In what regards these regularity properties, the most basic of them, which is something
quite intuitive, that we are somehow already familiar with, is continuity:

Definition 5.1. A function f : R → R, or more generally f : X → R, with X ⊂ R
being a subset, is called continuous when, for any xn, x ∈ X:

xn → x =⇒ f(xn) → f(x)

Also, we say that f : X → R is continuous at a given point x ∈ X when the above
condition is satisfied, for that point x.

Observe that a function f : X → R is continuous precisely when it is continuous at
any point x ∈ X. We will be mostly interested in what follows in the functions which are
continuous everywhere, but continuity at a given point is something useful too.

Regarding now the basic examples of countinous functions, there are many of them,
and we will discuss them in a moment, once we will have some basic tools, in order to
prove that this or that function is continuous or not, without much pain. As a matter,
however, of having a first illustration for Definition 5.1, let us record here:

Theorem 5.2. The basic power functions, namely

f(x) = xk

with k ∈ N, are all continuous.

Proof. According to Definition 5.1, we want to prove that we have:

xn → x =⇒ xkn → xk

Which looks quite clear, but go now prove this, with full rigor, that does not look
totally obvious. So, non-trivial question, and here are two possible solutions:

107
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(1) A first method is by using the results from chapter 1 regarding the sequences. To
be more precise, we know from there that the following formula holds:

lim
n→∞

xnyn = lim
n→∞

xn lim
n→∞

yn

But with xn = yn, this leads to the following formula:

lim
n→∞

x2n =
(
lim
n→∞

xn

)2
Obviously, we can iterate this method, and so for any k ∈ N, we have:

lim
n→∞

xkn =
(
lim
n→∞

xn

)k
But now, assuming xn → x as above, this formula gives, as desired:

lim
n→∞

xkn = xk

(2) Thus, theorem proved, but let us try as well a second method, which is less
conceptual, but is instructive too. Our idea here will be to use no idea at all, that
is, to get the result via some sort of straightforward computation, using 1 neuron only.
Obviously, in order to solve our question, we must estimate quantities of type (x+t)k−xk,
with t small. But we can do this with the binomial formula, which gives, for |t| ≤ 1:

|(x+ t)k − xk| =

∣∣∣∣∣
k∑

s=0

(
k

s

)
xk−sts − xk

∣∣∣∣∣
=

∣∣∣∣∣
k∑

s=1

(
k

s

)
xk−sts

∣∣∣∣∣
≤

k∑
s=1

(
k

s

)
|x|k−s|t|s

≤ |t|
k∑

s=1

(
k

s

)
|x|k−s

≤ |t|
k∑

s=0

(
k

s

)
|x|k−s

= |t|(1 + |x|)k

Now assume xn → x. We can then write xn = x+ tn, and by choosing our n >> 0 as
to have |tn| ≤ 1, we can use the above estimate, which gives:

|xkn − xk| ≤ |tn|(1 + |x|k)
Now since we have tn → 0, we obtain from this xkn → xk, as desired. □
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Again as an illustration for Definition 5.1, let us record as well a counterexample:

Theorem 5.3. The basic inverse function, namely

f(x) =
1

x

is continuous everywhere, except at 0. That is, no matter how you pick α ∈ R and set

f(0) = α

the function will be not continuous at 0.

Proof. There are several things going on here, the idea being as follows:

(1) Let us begin with the positive statement, saying that f is continuous at any x ̸= 0.
In order to prove this, the situation is a bit similar to what we had in Theorem 5.2.
Indeed, we can use the following formula for sequences, that we know from chapter 1:

lim
n→∞

1

xn
=

1

limn→∞ xn

Alternatively, and once again a bit similarly to what we did for Theorem 5.2, we have
the 1-neuron proof, based on the following estimate, valid for |t| < |x|/2:∣∣∣∣1x − 1

x+ t

∣∣∣∣ =

∣∣∣∣ t

x(x+ t)

∣∣∣∣
=

|t|
|x| · |x+ t|

<
|t|

|x|(|x| − |t|)

<
|t|

2|x|2

Thus, either way, we conclude that f is continuous at any x ̸= 0.

(2) Regarding now the second assertion, non-continuity at 0, this is something more
tricky, requiring some thinking. You would say, how to prove such things, without even
knowing what f(0) = α is. But there is in fact no problem here, because the Devil
invented this method called “proof by contradiction”, that us mahematicians are allowed
to use. So, let us assume that, by setting f(0) = α, our function f becomes continuous
at 0. In view of Definition 5.1, this means that the following must happen:

xn → 0 =⇒ 1

xn
→ α

But with xn > 0 we obtain α > 0, and with xn < 0 we obtain α < 0. Thus, we have
our contradiction, so our assumption that f is continuous was wrong, as desired. □
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We will see in a moment that many other familiar functions are continuous, save
perhaps at some special points, a bit as in Theorem 5.2, and Theorem 5.3.

Getting back now to the general theory, and to Definition 5.1 as stated, many things
can be said. Indeed, there are many other equivalent formulations of the notion of conti-
nuity, with a well-known, and much feared one, being as follows:

Theorem 5.4. A function f : X → R is continuous when

∀x ∈ X, ∀ε > 0,∃δ > 0, |x− y| < δ =⇒ |f(x)− f(y)| < ε

holds.

Proof. Let us prove this, with no fear. According to Definition 5.1, in order for our
function f to be continuous, the following must happen, for any x ∈ X:

xn → x =⇒ f(xn) → f(x)

Now when reminding what convergence of a sequence exactly means, for both the
convergences xn → x and f(xn) → f(x), we are led to the conclusion in the statement. □

As already mentioned, at the level of examples, basically all the functions that we
know, including powers xa, exponentials ax, and more advanced functions like sin, cos,
exp, log, are continuous. However, proving this will take some time.

Let us start with a useful theoretical result regarding continuity, as follows:

Theorem 5.5. If f, g are continuous, then so are:

(1) f + g.
(2) fg.
(3) f/g.
(4) f ◦ g.

Proof. Before anything, we should mention that the claim is that (1-4) hold indeed,
provided that at the level of domains and ranges, the statement makes sense. For instance
in (1,2,3) we are talking about functions having the same domain, and with g(x) ̸= 0 for
the needs of (3), and there is a similar discussion regarding (4).

(1) The claim here is that if both f, g are continuous at a point x, then so is the sum
f + g. But this is clear from the similar result for sequences, namely:

lim
n→∞

(xn + yn) = lim
n→∞

xn + lim
n→∞

yn

(2) Again, the statement here is similar, and the result follows from:

lim
n→∞

xnyn = lim
n→∞

xn lim
n→∞

yn

(3) Here the claim is that if both f, g are continuous at x, with g(x) ̸= 0, then f/g is
continuous at x. In order to prove this, observe that by continuity, g(x) ̸= 0 shows that
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g(y) ̸= 0 for |x− y| small enough. Thus we can assume g ̸= 0, and with this assumption
made, the result follows from the similar result for sequences, namely:

lim
n→∞

xn
yn

=
limn→∞ xn
limn→∞ yn

(4) Here the claim is that if g is continuous at x, and f is continuous at g(x), then
f ◦ g is continuous at x. But this is clear, coming from:

xn → x =⇒ g(xn) → g(x)

=⇒ f(g(xn)) → f(g(x))

Alternatively, let us prove this as well by using that scary ε, δ condition from Theorem
5.4. So, let us pick ε > 0. We want in the end to have something of type |f(g(x)) −
f(g(y))| < ε, so we must first use that ε, δ condition for the function f . So, let us start
in this way. Since f is continuous at g(x), we can find δ > 0 such that:

|g(x)− z| < δ =⇒ |f(g(x))− f(z)| < ε

On the other hand, since g is continuous at x, we can find γ > 0 such that:

|x− y| < γ =⇒ |g(x)− g(y)| < δ

Now by combining the above two inequalities, with z = g(y), we obtain:

|x− y| < γ =⇒ |f(g(x))− f(g(y))| < ε

Thus, the composition f ◦ g is continuous at x, as desired. □

As a first comment, (3) shows in particular that 1/f is continuous, and we will use
this many times, in what follows. As a second comment, more philosophical, the proof of
(4) shows that the ε, δ formulation of continuity can be sometimes more complicated than
the usual formulation, with sequences, which leads us into the question of why bothering
at all with this ε, δ condition. Good question, and in answer:

(1) It is usually said that “for doing advanced math, you must use the ε, δ condition”,
but this is not exactly true, because sometimes what happens is that “for doing advanced
math, you must use open and closed sets”. With these sets, and the formulation of
continuity in terms of them, being something that we will discuss a bit later.

(2) This being said, the point is that the use of open and closed sets, technology that
we will discuss in a moment, requires some prior knowledge of the ε, δ condition. So, you
cannot really run away from this ε, δ condition, and want it or not, in order to do later
some more advanced mathematics, you’ll have to get used to that.

(3) But this should be fine, because you’re here since you love math and science, aren’t
you, and good math and science, including this ε, δ condition, will be what you will learn
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from here. So, everything fine, more on this later, and in the meantime, no matter what
we do, always take a few seconds to think at what that means, in ε, δ terms.

5b. Basic examples

Back to work now, let us have a closer look at the various functions that we know,
from the perspective of continuity. At the level of the very basic examples, we have:

Theorem 5.6. The following functions are continuous:

(1) xn, with n ∈ Z.
(2) P/Q, with P,Q ∈ R[X].
(3) sinx, cosx, tanx.
(4) expx, log x.

Proof. This is a mixture of trivial and non-trivial results, as follows:

(1) Since f(x) = x is continuous, by using Theorem 5.5 we obtain the result for
exponents n ∈ N, and then for general exponents n ∈ Z too.

(2) The statement here, which generalizes (1), follows exactly as (1), by using the
various findings from Theorem 5.5.

(3) We must first prove here that xn → x implies sinxn → sinx, which in practice
amounts in proving that sin(x+ y) ≃ sinx for y small. But this follows from:

sin(x+ y) = sinx cos y + cosx sin y

Indeed, with this formula in hand, we can establish the continuity of sinx, as follows,
with the limits at 0 which are used being both clear on pictures:

lim
y→0

sin(x+ y) = lim
y→0

(sinx cos y + cosx sin y)

= sin x lim
y→0

cos y + cosx lim
y→0

sin y

= sin x · 1 + cos x · 0
= sin x

(4) Moving ahead now with cos x, here the continuity follows from the continuity of
sinx, by using the following formula, which is obvious from definitions:

cosx = sin
(π
2
− x
)
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(5) Alternatively, and let us do this because we will need later the formula, by using
the formula for sin(x+ y) we can deduce a formula for cos(x+ y), as follows:

cos(x+ y) = sin
(π
2
− x− y

)
= sin

[(π
2
− x
)
+ (−y)

]
= sin

(π
2
− x
)
cos(−y) + cos

(π
2
− x
)
sin(−y)

= cos x cos y − sinx sin y

But with this, we can use the same method as in (4), and we get, as desired:

lim
y→0

cos(x+ y) = lim
y→0

(cosx cos y − sinx sin y)

= cos x lim
y→0

cos y − sinx lim
y→0

sin y

= cos x · 1− sinx · 0
= cos x

(6) The fact that tanx is continuous is clear from the fact that sinx, cosx are con-
tinuous, by using the result regarding quotients from Theorem 5.5. Equivalently, we can
deduce this directly, from the following formula for the tangents of sums:

tan(x+ y) =
tanx+ tan y

1− tanx tan y

Indeed, this formula holds indeed, by dividing the formulae for sines and cosines,
established above. And with this in hand, the continuity check goes as follows:

lim
y→0

tan(x+ y) = lim
y→0

tanx+ tan y

1− tanx tan y

=
tanx+ limy→0 tan y

1− tanx limy→0 tan y

=
tanx+ 0

1− tanx · 0
= tanx

(7) In what regards now the exponential, the continuity here is something very simple,
coming from the following elementary computation:

lim
y→0

exp(x+ y) = lim
y→0

(expx · exp y)

= expx · lim
y→0

exp y

= expx
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(8) Finally, in what regards the logarithm, recall that for t small we have:

et ≃ 1 + t

By applying the logarithm, we conclude that for t small we have:

t ≃ log(1 + t)

But this gives the continuity of log at x = 1, because with t→ 0 we have:

| log(1 + t)− log 1| = | log(1 + t)|
≃ |t|
→ 0

(9) In general now, at an arbitrary x > 0, we can use a similar argument. Indeed,
with t→ 0 we have the following estimate:

| log(x+ t)− log x| =

∣∣∣∣log(x+ t

x

)∣∣∣∣
=

∣∣∣∣log(1 + t

x

)∣∣∣∣
≃

∣∣∣∣ tx
∣∣∣∣

→ 0

Thus log is continuous at our arbitrary point x > 0, as desired. □

At the level of more specialized examples, we have as well:

Proposition 5.7. The following functions are continuous too:

(1) secx.
(2) cscx.
(3) cotx.

Proof. Bad news, regarding these extra trigonometric functions secx, csc x, cot x, I
must admit that I actually forgot their definition. So, allowing me a short break, for a
quick Wikipedia read, and feel free in the meantime to consult your Tiktok notifications,
or deal with whatever other urgent internet matters, here are the formulae:

secx =
1

sinx
, cscx =

1

cosx
, cotx =

1

tanx



5B. BASIC EXAMPLES 115

Which might sound quite silly, indeed, but there is in fact some logic behind these
notions. Consider indeed a right triangle, as we love them in mathematics, namely:

C

t

A B

We have then 6 possible quotients of sides to be considered, and the point is that, in
terms of the angle t at the vertex A, these are given by the following formulae:

sin t =
BC

AC
, cos t =

AB

AC
, tan t =

BC

AB

sec t =
AC

BC
, csc t =

AC

AB
, cot t =

AB

BC
Thus, it makes sense, for symmetry reasons, to enlarge the family sin x, cosx, tanx

with the functions secx, cscx, cot x. Now by getting back to what we wanted to prove,
continuity, this is clear from what we have in Theorem 5.6, by using Theorem 5.5. □

As a continuation of the above, still in relation with the basic functions, and more
specifically with the exponentials and logarithms, remember from chapter 4 that we had
some difficulties in order to have a fully rigourous theory of expx and log x running. But
now, with our notion of continuity, we can say more about all this.

To be more precise, let us start with something quite intuitive, as follows:

Principle 5.8 (Intermediate value property). The following happen:

(1) If f : [a, b] → R is continuous, then f([a, b]) is an interval.
(2) If f is continuous and invertible, then f−1 is continuous.

Observe that (1) is indeed something very intuitive, basically telling us that f cannot
jump, and with this being of course prevented by its continuity property, which is there
for preventing such things. So, we should definitely trust this, and in what regards a
formal proof, well, this is something a bit technical, that can be done too, and we will
discuss this with full details in chapter 6 below, no hurry with that.

As for the assertion (2), this is again something quite intuitive, the point being that
if a function f is continuous and invertible, then it must be obviously monotone, and it
follows that f−1 must be monotone too, and continuous. So, we should trust this too, no
question about it, and in what regards the formal proof, the idea is that this comes as an
application of (1), and we will discuss this also in chapter 6 below.
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Long story short, we have the above Principle 5.8, which is something very intuitive,
and that we can trust in, and whose formal proof exists, and is to come soon. Now the
point is that, with this in hand, we can come back to exp x and log x, and we have:

Theorem 5.9. The exponential function, defined as usual by

expx =
∞∑
k=0

xk

k!

is indeed given by expx = ex, with e = exp 1. This function is increasing, and continuous.
Its inverse, the logarithm, can be defined by one of the following equivalent formulae,

exp(log x) = x , log(exp x) = x

and is again increasing, and continuous.

Proof. These are all things that we basically know, from chapter 4 and from here,
but via proofs which, while certainly correct, lack a bit of rigor. Now the point is that,
with Principle 5.8 in hand, we can make all this fully rigorous. We will leave this for now
as an instructive exercise, and we will come back to it in chapter 6 below, after proving
Principle 5.8, as a matter of having all things 100% rigorously done, at that time. □

Still with me I hope, mathematics students I mean, and this because in what regards
physicists, engineers and other scientists, dear, do I know well, after a lifetime of teaching,
and of research too, that anything messy mathematics always brings you joy.

This being said, perhaps time to ask the cat, about this. And cat, Vladimir by his
name, who quite often has a look at what I’m doing, and does not hesitate to warn me,
whenever my computations go wrong due to lack of matematical rigor, declares:

Cat 5.10. Mathematics is the part of physics where experiments are cheap.

Thanks cat, so we have here confirmation, we are learning good science in this book,
in the good old scientific way, which has always worked well, giving us mankind countless
interesting results, and this no matter what some mathematicians might say about it. So,
Theorem 5.9 proved, and more about it, as promised, in chapter 6 below.

Along the same lines now, with exp and log understood, what about looking at other
familiar inverse functions. And here, we have the following result:

Theorem 5.11. The following functions are well-defined and continuous,

(1) arcsinx.
(2) arccosx,
(3) arctanx,

and the same goes for the functions arcsecx, arccscx, arccotx.
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Proof. The situation here is quite similar to that for the logarithm, with the existence
and continuity of the functions in the statement coming from what we have in Theorem
5.6 and Proposition 5.7, via Principle 5.8. So, we will leave this as an exercise for you, and
we will come back to it, with details, in chapter 6 below, after Principle 5.8 proved. □

We will be back to more examples of continuous functions later, and in particular to
the functions of type xa and ax with a ∈ R, which are more tricky to define.

5c. Discontinuities, jumps

There are many functions which are not continuous everywhere, such as f(x) = 1/x
at x = 0. And the question is, what to do with them? That is, can we have some
mathematical theory going on for them as well, inspired by what we did in the above?

In answer, here is something that we can do, in general:

Definition 5.12. Given a function f : X → R and x ∈ X, we set

f(x−) = lim
y↗x

f(y) , f(x+) = lim
y↘x

f(y)

provided that these two limits exist indeed, and we call the quantity

Jf (x) = f(x+)− f(x−)

which does not depend on f(x), the jump of f at the given point x ∈ X.

As a first observation, assuming that a function f : X → R is continuous at x ∈ X,
its jump there is zero, so that we have the following implications:

f continuous at x =⇒ Jf (x) = 0

f continuous =⇒ Jf (x) = 0, ∀x ∈ X

Observe also that the converses of these implications do not necessarily hold, and this
because the jump Jf (x), as constructed above, does not depend on f(x), so we can easily
construct counterexamples, just by modifying the value f(x). More on this later.

But are we here for talking about continuous functions. In the non-continuous case,
which is the one that we are interested in, here are some basic computations:

Theorem 5.13. For the basic step function, given by

f(x) =

{
0 if x < 0

1 if x > 0

we have Jf (0) = 1, as we should. Also, for the inverse function

g(x) =
1

x
we have Jg(0) = ∞, again as we should.
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Proof. Both formulae are clear from definitions. Indeed, we have:

Jf (0) = f(0+)− f(0−)

= lim
y↘0

f(y)− lim
y↗0

f(y)

= lim
y↘0

1− lim
y↗0

0

= 1− 0

= 1

As for the second formula, the computation here is similar, as follows:

Jg(0) = g(0+)− g(0−)

= lim
y↘0

g(y)− lim
y↗0

g(y)

= lim
y↘0

1

y
− lim

y↗0

1

y

= ∞− (−∞)

= ∞

Thus, we are led to the conclusions in the statement. □

There are of course many other interesting examples of discountinuous functions, quite
often coming from physics, and more on them on several occasions, in what follows.

Going ahead now with more theory, we can complement the basic notions introduced
in Definition 5.12 with some more notions, which are equally useful. First we have:

Definition 5.14. Given a function f : X → R and x ∈ X, we say that:

(1) f is left continuous at x, if f(x−) = f(x).
(2) f is right continuous at x, if f(x+) = f(x).

As before with Definition 5.12, this is something quite self-explanatory. We will see
some examples and computations, in relation with this, in a moment.

As a first observation, a function f : X → R is continuous at x precisely when it is
left and right continuous there, so that we have the following equivalences:

f continuous at x ⇐⇒ f(x−) = f(x) = f(x+)

f continuous ⇐⇒ f(x−) = f(x) = f(x+), ∀x ∈ X

Which sounds quite interesting, in relation with the issues with the jump, discussed
after Definition 5.12. So, let us update as well the definition of the jump, as follows:
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Theorem 5.15. Given a function f : X → R and x ∈ X, we call the quantities

Jf (x−) = f(x)− f(x−) , Jf (x+) = f(x+)− f(x)

the left and right jumps at x, so that the total jump there is given by:

Jf (x) = Jf (x+) + Jf (x−)

The function f is then continuous at x when both its jumps there vanish,

f continuous at x ⇐⇒ J(x−) = J(x+) = 0

and globally continuous, when we have J(x−) = J(x+) = 0, for any x ∈ X.

Proof. This is something quite self-explanatory, with a lot of talking, basically defi-
nitions, and with the jump formula being something obvious, as follows:

Jf (x) = f(x+)− f(x−)

= (f(x+)− f(x)) + (f(x)− f(x−))

= Jf (x+) + Jf (x−)

Thus, we are led to the conclusions in the statement. □

As an illustration now, for the same functions as in Theorem 5.13, we have:

Theorem 5.16. For the basic step function, given by

f(x) =

{
0 if x < 0

1 if x ≥ 0

we have Jf (0−) = 1 and Jf (0+) = 0, as we should. Also, for the inverse function

g(x) =
1

x

with the convention g(0) = α ∈ R, we have Jg(0−) = Jg(0+) = ∞, again as we should.

Proof. This is quite obvious, but let us do all four computations:

(1) For the left jump of the step function, we have:

Jf (0−) = f(0)− f(0−)

= 1− lim
y↗0

f(y)

= 1− lim
y↗0

0

= 1− 0

= 1
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(2) For the right jump of the step function, we have:

Jf (0+) = f(0+)− f(0)

= lim
y↘0

f(y)− 1

= lim
y↘0

1− 1

= 1− 1

= 0

(3) For the left jump of the inverse function, we have:

Jg(0−) = g(0)− g(0−)

= α− lim
y↗0

g(y)

= α− lim
y↗0

1

y

= α− (−∞)

= ∞

(4) For the right jump of the inverse function, we have:

Jg(0+) = g(0+)− g(0)

= lim
y↘0

g(y)− α

= lim
y↘0

1

y
− α

= ∞− α

= ∞

Thus, we are led to the conclusions in the statement. □

All the above was of course quite trivial, but we will be back to this later, once we
will have some interesting discontinuous functions, with jumps waiting to be computed.

As a last topic of discussion, let us go back to our original notion of jump, from
Definition 5.12. We already know from the discussion there that we have:

f continuous at x =⇒ Jf (x) = 0

We also know from the discussion above that the converse of this implication obviously
does not hold, and this because the jump Jf (x) does not depend on f(x), so we can easily
construct counterexamples, just by modifying the value f(x).

However, we can say something interesting here, as follows:
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Theorem 5.17. Assuming that a function f : X → R does not jump at x ∈ X,

Jf (x) = 0

we can modify our function by forgetting the old value f(x), and setting

f(x) = f(x−) = f(x+)

and we obtain in this way a function which is continuous at x.

Proof. This is something which is clear from Theorem 5.15, because our modified
function f has both its left and right jumps vanishing at x:

Jf (x−) = Jf (x+) = 0

Thus Theorem 5.15 applies, and tells us that our modified f is continuous at x. □

The above result is quite interesting, and obviously can be applied to the various
points where f is discontinous, provided that these points are “isolated” from each other.
In the case where f needs as “fix” on a more substantial set of points, such as a whole
interval (a, b) ⊂ R, things are more complicated, because the solution will obviously be
not unique, and so that we have to choose one, depending on what exactly we want our
function f to look like, and perform. More on such questions, later in this book.

5d. Uniform continuity

Back now to plain continuity, and going ahead with some more theory, some functions
are “obviously” continuous, with a basic result here being as follows:

Theorem 5.18. If a function f : X → R has the Lipschitz property

|f(x)− f(y)| ≤ K|x− y|

for some K > 0, then it is continuous.

Proof. This is indeed clear from our definition of continuity. □

There are many interesting examples of Lipschitz functions, both concrete and ab-
stract. In what regards the usual functions, the situation is as follows:

Theorem 5.19. The following functions are Lipschitz, on suitable domains:

(1) xn, with n ∈ N.
(2) x−n, with n ∈ N.
(3) P (x)/Q(x), with P,Q ∈ R[X].
(4) sinx, cosx, tanx.
(5) expx, log x.
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Proof. This is something quite routine, the idea being as follows:

(1) The function f(x) = x is certainly Lipschitz everywhere, with constant K = 1. In
what regards now f(x) = x2, we have here the following equivalence:

|x2 − y2| ≤ K|x− y| ⇐⇒ |x+ y| ≤ K

Thus f(x) = x2 is Lipschitz on any interval [a, b], with constant as follows:

K = max(|a|, |b|)
As for the study of the function f(x) = xn with n ∈ N, in general, this is similar, and

we will leave the computations here as an instructive exercise.

(2) In what regards the function f(x) = x−1, we have here the following equivalence:∣∣∣∣1x − 1

y

∣∣∣∣ ≤ K|x− y| ⇐⇒ 1

|xy|
≤ K

⇐⇒ |xy| ≥ 1

K

Thus f(x) = x−1 is Lipschitz outside [−ε, ε], with constant as follows:

K =
1

ε2

As for the study of the function f(x) = x−n with n ∈ N, in general, this is similar.

(3) The functions of type f(x) = P (x)/Q(x), with P,Q ∈ R[X], appear as a joint
generalization of what we have in (1) and (2), and the same methods as there apply.

(4) Again, the study here is standard, and we will leave this as an exercise.

(5) Similar situation here, standard study, that we will leave as an exercise. □

We will be back to this, Lipschitz functions, on several occassions, in what follows,
and notably in Part III below, when talking derivatives, which can help with this.

Along the same lines, we can also argue, based on our intuition, that “some functions
are more continuous than other”. For instance, we have the following definition:

Definition 5.20. A function f : X → R is called uniformly continuous when:

∀ε > 0,∃δ > 0, |x− y| < δ =⇒ |f(x)− f(y)| < ε

That is, f must be continuous at any x ∈ X, with the continuity being “uniform”.

As basic examples of uniformly continuous functions, we have the Lipschitz ones. Also,
as a basic counterexample, we have the following function:

f : R → R , f(x) = x2

Indeed, it is clear by looking at the graph of f that, the further our point x ∈ R is from
0, the smaller our δ > 0 must be, compared to ε > 0, in our ε, δ definition of continuity.
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Thus, given an ε > 0, we have no δ > 0 doing the |x− y| < δ =⇒ |f(x)− f(y)| < ε job
at any x ∈ R, and so our function is indeed not uniformly continuous.

As before with the Lipschitz functions, all this seems to have something to do with
the slope of the graph of f , computed at various points. We will be back to this later, in
Part III below, when talking slopes, or derivatives, which can help with this.

Quite remarkably, we have the following theorem, due to Heine and Cantor:

Theorem 5.21. Any continuous function defined on a closed, bounded interval

f : [a, b] → R

is automatically uniformly continuous.

Proof. This is something quite subtle, and we are punching here a bit above our
weight, but here is the proof, with everything or almost included:

(1) Given ε > 0, for any x ∈ [a, b] we know that we have a δx > 0 such that:

|x− y| < δx =⇒ |f(x)− f(y)| < ε

2

So, consider the following open intervals, centered at the various points x ∈ [a, b]:

Ux =

(
x− δx

2
, x+

δx
2

)
These intervals then obviously cover [a, b], in the sense that we have:

[a, b] ⊂
⋃

x∈[a,b]

Ux

Now assume that we managed to prove that this cover has a finite subcover. Then we
can most likely choose our δ > 0 to be the smallest of the δx > 0 involved, or perhaps
half of that, and then get our uniform continuity condition, via the triangle inequality.

(2) So, let us prove first that the cover in (1) has a finite subcover. For this purpose,
we proceed by contradiction. So, assume that [a, b] has no finite subcover, and let us cut
this interval in half. Then one of the halves must have no finite subcover either, and we
can repeat the procedure, by cutting this smaller interval in half. And so on.

(3) But this leads to a contradiction, because the limiting point x ∈ [a, b] that we
obtain in this way, as the intersection of these smaller and smaller intervals, must be
covered by something, and so one of these small intervals leading to it must be covered
too, contradiction. Thus, we have proved that the cover in (1) has a finite subcover.
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(4) With this done, we are ready to finish, as announced in (1). Indeed, let us denote
by [a, b] ⊂

⋃
i Uxi

the finite subcover found in (3), and let us set:

δ = min
i

δxi

2

Now assume |x− y| < δ, and pick i such that x ∈ Uxi
. By the triangle inequality we

have then |xi − y| < δxi
, which shows that we have y ∈ Uxi

as well. But by applying now
f , this gives as desired |f(x)− f(y)| < ε, again via the triangle inequality. □

We will be back to such things, which are quite subtle, in the next chapter, with more
details, in what regards the above proof, and with some applications too.

We would like to end this introductory chapter on continuity with something nice,
very useful and refreshing, namely a basic application of continuity, to the foundations of
linear algebra. Let us start with something basic and intuitive, namely:

Definition 5.22. A map f : R2 → R2 is called affine when it maps lines to lines,

f(tx+ (1− t)y) = tf(x) + (1− t)f(y)

for any x, y ∈ R2 and any t ∈ R. If in addition f(0) = 0, we call f linear.

As a first observation, our “maps lines to lines” interpretation of the equation in
the statement assumes that the points are degenerate lines, and this in order for our
interpretation to work when x = y, or when f(x) = f(y). Also, what we call line is not
exactly a set, but rather a dynamic object, think trajectory of a point on that line. We
will be back to this later, once we will know more about such maps.

Here are some basic examples of symmetries, all being linear in the above sense:

Proposition 5.23. The symmetries with respect to Ox and Oy are:(
x

y

)
→
(
x

−y

)
,

(
x

y

)
→
(
−x
y

)
The symmetries with respect to the x = y and x = −y diagonals are:(

x

y

)
→
(
y

x

)
,

(
x

y

)
→
(
−y
−x

)
All these maps are linear, in the above sense.

Proof. The fact that all these maps are linear is clear, because they map lines to
lines, in our sense, and they also map 0 to 0. As for the explicit formulae in the statement,
these are clear as well, by drawing pictures for each of the maps involved. □

Here are now some basic examples of rotations, once again all being linear:
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Proposition 5.24. The rotations of angle 0◦ and of angle 90◦ are:(
x

y

)
→
(
x

y

)
,

(
x

y

)
→
(
−y
x

)
The rotations of angle 180◦ and of angle 270◦ are:(

x

y

)
→
(
−x
−y

)
,

(
x

y

)
→
(
y

−x

)
All these maps are linear, in the above sense.

Proof. As before, these rotations are all linear, for obvious reasons. As for the
formulae in the statement, these are clear as well, by drawing pictures. □

Here are some basic examples of projections, once again all being linear:

Proposition 5.25. The projections on Ox and Oy are:(
x

y

)
→
(
x

0

)
,

(
x

y

)
→
(
0

y

)
The projections on the x = y and x = −y diagonals are:(

x

y

)
→ 1

2

(
x+ y

x+ y

)
,

(
x

y

)
→ 1

2

(
x− y

y − x

)
All these maps are linear, in the above sense.

Proof. Again, these projections are all linear, and the formulae are clear as well,
by drawing pictures, with only the last 2 formulae needing some explanations. In what
regards the projection on the x = y diagonal, the picture here is as follows:

◦

OO

•

◦ •

__

◦ ◦ ◦ //

But this gives the result, since the 45◦ triangle shows that this projection leaves
invariant x+ y, so we can only end up with the average (x+ y)/2, as double coordinate.
As for the projection on the x = −y diagonal, the proof here is similar. □

Finally, we have the translations, which are as follows:

Proposition 5.26. The translations are exactly the maps of the form(
x

y

)
→
(
x+ p

y + q

)
with p, q ∈ R, and these maps are all affine, in the above sense.
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Proof. A translation f : R2 → R2 is clearly affine, because it maps lines to lines.
Also, such a translation is uniquely determined by the following vector:

f

(
0

0

)
=

(
p

q

)
To be more precise, f must be the map which takes a vector

(
x
y

)
, and adds this vector(

p
q

)
to it. But this gives the formula in the statement. □

Summarizing, we have many interesting examples of linear and affine maps. Let us
develop now some general theory, for such maps. As a first result, we have:

Theorem 5.27. For a map f : R2 → R2, the following are equivalent:

(1) f is linear in our sense, mapping lines to lines, and 0 to 0.
(2) f maps sums to sums, f(x+ y) = f(x) + f(y), and satisfies f(λx) = λf(x).

Proof. This is something which comes from definitions, as follows:

(1) =⇒ (2) We know that f satisfies the following equation, and f(0) = 0:

f(tx+ (1− t)y) = tf(x) + (1− t)f(y)

By setting y = 0, and by using our assumption f(0) = 0, we obtain, as desired:

f(tx) = tf(x)

As for the first condition, regarding sums, this can be established as follows:

f(x+ y) = f

(
2 · x+ y

2

)
= 2f

(
x+ y

2

)
= 2 · f(x) + f(y)

2
= f(x) + f(y)

(2) =⇒ (1) Conversely now, assuming that f satisfies f(x + y) = f(x) + f(y) and
f(λx) = λf(x), then f must map lines to lines, as shown by:

f(tx+ (1− t)y) = f(tx) + f((1− t)y)

= tf(x) + (1− t)f(y)

Also, we have f(0) = f(2 · 0) = 2f(0), which gives f(0) = 0, as desired. □

The above result is very useful, and in practice, we will often use the condition (2)
there, somewhat as a new definition for the linear maps.

Let us record this finding as an updated definition, as follows:
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Definition 5.28 (upgrade). A map f : R2 → R2 is called:

(1) Linear, when it satisfies f(x+ y) = f(x) + f(y) and f(λx) = λf(x).
(2) Affine, when it is of the form f = g + x, with g linear, and x ∈ R2.

Before getting into the mathematics of linear maps, let us comment a bit more on
the “maps lines to lines” feature of such maps. As mentioned after Definition 5.22, this
feature requires thinking at lines as being “dynamic” objects, the point being that, when
thinking at lines as being sets, this interpretation fails, as shown by the following map:

f

(
x

y

)
=

(
x3

0

)
However, in relation with all this we have the following useful result:

Theorem 5.29. For a continuous injective f : R2 → R2, the following are equivalent:

(1) f is affine in our sense, mapping lines to lines.
(2) f maps set-theoretical lines to set-theoretical lines.

Proof. By composing f with a translation, we can assume that we have f(0) = 0.
With this assumption made, the proof goes as follows:

(1) =⇒ (2) This is clear from definitions.

(2) =⇒ (1) Let us first prove that we have f(x + y) = f(x) + f(y). We do this
first in the case where our vectors are not proportional, x ̸∼ y. In this case we have a
proper parallelogram (0, x, y, x+y), and since f was assumed to be injective, it must map
parallel lines to parallel lines, and so must map our parallelogram into a parallelogram
(0, f(x), f(y), f(x+ y)). But this latter parallelogram shows that we have:

f(x+ y) = f(x) + f(y)

In the remaining case where our vectors are proportional, x ∼ y, we can pick a sequence
xn → x satisfying xn ̸∼ y for any n, and we obtain, as desired:

xn → x, xn ̸∼ y,∀n =⇒ f(xn + y) = f(xn) + f(y),∀n
=⇒ f(x+ y) = f(x) + f(y)

Regarding now f(λx) = λf(x), since f maps lines to lines, it must map the line 0− x
to the line 0− f(x), so we have a formula as follows, for any λ, x:

f(λx) = φx(λ)f(x)

But since f maps parallel lines to parallel lines, by Thales the function φx : R → R
does not depend on x. Thus, we have a formula as follows, for any λ, x:

f(λx) = φ(λ)f(x)
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We know that we have φ(0) = 0 and φ(1) = 1, and we must prove that we have
φ(λ) = λ for any λ. For this purpose, we use a trick. On one hand, we have:

f((λ+ µ)x) = φ(λ+ µ)f(x)

On the other hand, since f maps sums to sums, we have as well:

f((λ+ µ)x) = f(λx) + f(µx)

= φ(λ)f(x) + φ(µ)f(x)

= (φ(λ) + φ(µ))f(x)

Thus our rescaling function φ : R → R satisfies the following conditions:

φ(0) = 0 , φ(1) = 1 , φ(λ+ µ) = φ(λ) + φ(µ)

But with these conditions in hand, it is clear that we have φ(λ) = λ, first for all the
inverses of integers, λ = 1/n with n ∈ N, then for all rationals, λ ∈ Q, and finally by
continuity for all reals, λ ∈ R. Thus, we have proved the following formula:

f(λx) = λf(x)

But this finishes the proof of (2) =⇒ (1), and we are done. □

All this is very nice, linear algebra axiomatized. We will be back to this, later.

5e. Exercises

Exercises:

Exercise 5.30.

Exercise 5.31.

Exercise 5.32.

Exercise 5.33.

Exercise 5.34.

Exercise 5.35.

Exercise 5.36.

Exercise 5.37.

Bonus exercise.



CHAPTER 6

Intermediate values

6a. Sets, topology

Moving ahead with more theory, we would like to explain now an alternative formula-
tion of the notion of continuity, which is quite abstract, and a bit difficult to understand
and to master when you are a beginner, but which is definitely worth learning, because
it is quite powerful, solving some of the questions that we have left.

Let us start with the following definition, which is certainly new to you:

Definition 6.1. The open and closed sets are defined as follows:

(1) Open means that there is a small interval around each point.
(2) Closed means that our set is closed under taking limits.

As basic illustrations here, the open intervals are open, and the closed intervals are
closed, as you would expect, as shown by the following result:

Proposition 6.2. The following happen:

(1) The open intervals (a, b) are open.
(2) The closed intervals [a, b] are closed.

Proof. This is something fairly easy, as follows:

(1) Consider indeed an open interval (a, b), and a point inside, x ∈ (a, b). We have
then an inclusion as follows, which does the job, as in Definition 6.1 (1):

x ∈
(
a+ x

2
,
x+ b

2

)
⊂ (a, b)

(2) Consider indeed a closed interval [a, b], and a sequence inside {xn} ⊂ [a, b]. As-
suming that this sequence converges, xn → x, we have:

xn ≥ a =⇒ x ≥ a

xn ≤ b =⇒ x ≤ b

Thus we obtain x ∈ [a, b], as required by Definition 6.1 (2). □

129
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Further basic examples, or rather results which are easy to establish, producing further
examples, include the fact that the finite unions or intersections of open or closed sets are
open or closed. We will be back to this later, with some precise results in this sense.

For the moment, let us develop some general theory. In order to get truly started,
with our study, we will need the following theoretical result:

Theorem 6.3. A set O ⊂ R is open precisely when its complement C ⊂ R is closed,
and vice versa.

Proof. It is enough to prove the first assertion, since the “vice versa” part will follow
from it, by taking complements. But this can be done as follows:

“ =⇒ ” Assume that O ⊂ R is open, and let C = R− O. In order to prove that C is
closed, assume that {xn}n∈N ⊂ C converges to x ∈ R. We must prove that x ∈ C, and
we will do this by contradiction. So, assume x /∈ C. Thus x ∈ O, and since O is open we
can find a small interval (x− ε, x+ ε) ⊂ O. But since xn → x this shows that xn ∈ O for
n big enough, which contradicts xn ∈ C for all n, and we are done.

“⇐=” Assume that C ⊂ R is open, and let O = R − C. In order to prove that O is
open, let x ∈ O, and consider the intervals (x− 1/n, x+1/n), with n ∈ N. If one of these
intervals lies in O, we are done. Otherwise, this would mean that for any n ∈ N we have
at least one point xn ∈ (x− 1/n, x+ 1/n) satisfying xn /∈ O, and so xn ∈ C. But since C
is closed and xn → x, we get x ∈ C, and so x /∈ O, contradiction, and we are done. □

As a basic illustration for the above result, a disjoint union of two infinite open intervals
is open, due to the fact that its complement is closed:

(−∞, a) ∪ (b,∞) = R− [a, b]

As another basic illustration, a disjoint union of two infinite closed intervals is open,
due to the fact that its complement is open:

(−∞, a] ∪ [b,∞) = R− (a, b)

There are many other such illustrations, and we will be back in a moment to all this,
with a systematic study of the various unions of open and closed intervals.

Getting now to the functions, we have the following key result about them, which
makes it clear that the notions from Definition 6.1 are of interest for us:

Theorem 6.4. A function is continuous precisely when f−1(O) is open, for any O
open. Equivalently, f−1(C) must be closed, for any C closed.

Proof. This is something coming from definitions, the idea being as follows:
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(1) The first assertion follows from definitions, and more specifically from the ε, δ
definition of continuity, which was as follows:

∀x ∈ X, ∀ε > 0,∃δ > 0, |x− y| < δ =⇒ |f(x)− f(y)| < ε

Indeed, if a function f satisfies this condition, it is then clear that if a set O is open,
then the set f−1(O) is open too. Moreover, the converse clearly holds too.

(2) As for the second assertion, regarding the closed sets, this can be proved directly,
by using the f(xn) → f(x) definition of continuity, or can be deduced from what we
already know about the open sets, by taking complements. □

As a test for the above criterion, let us reprove the fact, that we know from chapter
5, that if f, g are continuous, so is f ◦ g. But this is clear, coming from:

(f ◦ g)−1(O) = g−1(f−1(O))

In short, not bad, because at least in relation with this specific problem, our proof
using open sets is as simple as the simplest proof, namely the one using f(xn) → f(x),
and is simpler than the other proof that we know, namely the one with ε, δ.

Let us record this as a philosophical conclusion, as follows:

Conclusion 6.5. The open and closed sets are no joke, because with them, we can
see right away that a composition of continuous functions is continuous.

And, many more illustrations for this general principle coming soon. Wait for it.

In order to reach now to some true applications of Theorem 6.4, we will need to know
more about the open and closed sets. Let us begin with a useful result, as follows:

Theorem 6.6. The following happen:

(1) Union of open sets is open.
(2) Intersection of closed sets is closed.
(3) Finite intersection of open sets is open.
(4) Finite union of closed sets is closed.

Proof. Here (1) is clear from definitions, (3) is clear from definitions too, and (2,4)
follow from (1,3) by taking complements E → Ec, using the following formulae:(⋃

i

Ei

)c

=
⋂
i

Ec
i ,

(⋂
i

Ei

)c

=
⋃
i

Ec
i

Thus, we are led to the conclusions in the statement. □
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As an important comment, (3,4) above do not hold when removing the finiteness
assumption. Indeed, in what regards (3), the simplest counterexample here is:⋂

n∈N

(
− 1

n
,
1

n

)
= {0}

As for (4), here the simplest counterexample is as follows:⋃
n∈N

[
0 , 1− 1

n

]
= [0, 1)

All this is quite interesting, and leads us to the question about what the open and
closed sets really are. And fortunately, this question can be answered, as follows:

Theorem 6.7. The open and closed sets are as follows:

(1) The open sets are the disjoint unions of open intervals.
(2) The closed sets are the complements of these unions.

Proof. We have two assertions to be proved, the idea being as follows:

(1) We know that the open intervals are those of type (a, b) with a < b, with the values
a, b = ±∞ allowed, and by Theorem 6.6 a union of such intervals is open.

(2) Conversely, given O ⊂ R open, we can cover each point x ∈ O with an open
interval Ix ⊂ O, and we have O = ∪xIx, so O is a union of open intervals.

(3) In order to finish the proof of the first assertion, it remains to prove that the union
O = ∪xIx in (2) can be taken to be disjoint. For this purpose, our first observation is
that, by approximating points x ∈ O by rationals y ∈ Q ∩ O, we can make our union to
be countable. But once our union is countable, we can start merging intervals, whenever
they meet, and we are left in the end with a countable, disjoint union, as desired.

(4) Finally, the second assertion comes from Theorem 6.3. □

The above result is quite interesting, philosophically speaking, because contrary to
what we have been doing so far, it makes the open sets appear quite different from the
closed sets. Indeed, there is no way of having a simple description of the closed sets
C ⊂ R, similar to the above simple description of the open sets O ⊂ R.

Finally, a word about RN . We are for the moment doing one variable functions, so a
priori no need for this, but since we will be talking soon about complex functions, defined
on C = R2, some vague knowledge about what happens in RN would be welcome.

And here, very briefly, again we can talk about open and closed sets, with most of the
above results extending, but with our last result, Theorem 6.7, not extending, for instance
due to all sorts of open connected surfaces in R2, or open connected bodies in R3, which
obviously cannot all count as “intervals”. More on this later, when needed.
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Moving towards more concrete things, and applications, let us formulate the following
key definition, which is actually one of the most important definitions in analysis:

Definition 6.8. The compact and connected sets are defined as follows:

(1) Compact means that any open cover has a finite subcover.
(2) Connected means that it cannot be broken into two parts.

As basic examples here, the closed bounded intervals [a, b] are compact, as we know
from chapter 5, from the proof of the Heine-Cantor theorem, which used the notion of
compactness, as formalized above, and so are the finite unions of such intervals.

As for connected sets, the basic examples here are the various types of intervals,
namely (a, b), (a, b], [a, b), [a, b], with the endpoints being allowed to be finite, or not.

Thinking a bit at what we have above, as examples for both the compact and the
connected sets, it looks impossible to come up with more examples. In fact, we have:

Theorem 6.9. The compact and connected sets are as follows:

(1) The compact sets are those which are closed and bounded.
(2) The connected sets are the various types of intervals.

Proof. This is something quite intuitive, the idea being as follows:

(1) To start with, the fact that compact implies both closed and bounded is clear
from our definition of compactness, because assuming non-closedness or non-boundedness
obviously leads to an open cover having no finite subcover.

(2) As for the converse, closed and bounded implies compact, we know from chapter 5
that any closed bounded interval [a, b] is compact, and it follows that any K ⊂ R closed
and bounded is a closed subset of a compact set, which follows to be compact.

(3) Regarding now the second assertion, in relation with the connexted sets, this is
something which is obvious, and this regardless of what “cannot be broken into parts” in
Definition 6.8 exactly means, mathematically speaking, with several possible definitions
being possible here, and all these definitions being equivalent.

(4) Indeed, skipping some discussion here, E ⊂ R having this property is obviously
equivalent to a, b ∈ E =⇒ [a, b] ⊂ E, and this gives the result. □

We will be back to all this later, when looking at open, closed, compact and connected
sets in RN , or more general spaces, where things are more complicated than in R. And with
the comment that, in that setting, the notions of open, closed, compact and connected
sets are essential, in order to understand what is going on.

Now with this discussed, let us go back to the continuous functions. We have here the
following result, in the spirit of what we already know, from Theorem 6.4:
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Theorem 6.10. Assuming that f is continuous:

(1) If K is compact, then f(K) is compact.
(2) If E is connected, then f(E) is connected.

Proof. These assertions both follow from our definition of compactness and connect-
edness, as formulated in Definition 6.8. To be more precise:

(1) This comes from the fact that if a function f is continuous, then the inverse
function f−1 returns an open cover into an open cover.

(2) This is something clear as well, because if f(E) can be split into two parts, then
by applying f−1 we can split as well E into two parts. □

Next in line, let us record as well the following useful generalization of the Heine-
Cantor theorem, that we know from chapter 5:

Theorem 6.11. Any continuous function defined on a compact set

f : X → R
is automatically uniformly continuous.

Proof. We can prove this exactly as we proved the Heine-Cantor theorem in chapter
5, by using the compactness of X, as we did there, as follows:

(1) Given ε > 0, for any x ∈ X we know that we have a δx > 0 such that:

|x− y| < δx =⇒ |f(x)− f(y)| < ε

2
So, consider the following open intervals, centered at the various points x ∈ X:

Ux =

(
x− δx

2
, x+

δx
2

)
(2) These intervals then obviously cover X, in the sense that we have:

X ⊂
⋃
x∈X

Ux

By compactness of X, this cover must have a certain finite subcover, as follows:

X ⊂
⋃
i

Uxi

(3) With this done, we are ready to finish our proof. Let us set indeed:

δ = min
i

δxi

2

Now assume |x− y| < δ, and pick i such that x ∈ Uxi
. By the triangle inequality we

have then |xi − y| < δxi
, which shows that we have y ∈ Uxi

as well. But by applying now
f , this gives as desired |f(x)− f(y)| < ε, again via the triangle inequality. □
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6b. Intermediate values

Very nice all the above, good mathematical learning that was, but you might perhaps
ask at this point, were our main concrete findings, Theorem 6.10 and Theorem 6.11 really
worth all this abstract excursion into the open and closed sets.

Good point, and here is our answer, a beautiful and powerful theorem based on the
above, which can be used for a wide range of purposes:

Theorem 6.12. The following happen for a continuous function f : [a, b] → R:
(1) f takes all intermediate values between f(a), f(b).
(2) f has a minimum and maximum on [a, b].
(3) If f(a), f(b) have different signs, f(x) = 0 has a solution.

Proof. All these statements are related, and are called altogether “intermediate value
theorem”. Regarding now the proof, this goes as follows:

(1) One elegant way of viewing things, based on what we learned above, is that since
the interval [a, b] is compact and connected, the set f([a, b]) is compact and connected
too, and so it is a certain closed bounded interval [c, d], and this gives all the results.

(2) However, all this is based on rather advanced technology, as developed above, and
we should mention here that it is possible to prove (1-3) as well directly. We will leave
finding the needed tricks here as an instructive exercise for you, reader. □

Along the same lines, we have as well the following result, which is also useful for a
wide range of purposes, including fixing some previous bugs in the opresent book:

Theorem 6.13. Assuming that a function f is continuous and invertible:

(1) This function must be monotone.
(2) Its inverse function f−1 must be monotone and continuous too.
(3) Moreover, this statement holds both locally, and globally.

Proof. The fact that both f and f−1 are monotone follows from Theorem 6.12.
Regarding now the continuity of f−1, we want to prove that we have:

xn → x =⇒ f−1(xn) → f−1(x)

But with xn = f(yn) and x = f(y), this condition becomes:

f(yn) → f(y) =⇒ yn → y

And this latter condition being true since f is monotone, we are done. □

More concretely now, as a basic application of Theorem 6.13, we have:
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Theorem 6.14. The exponential function, defined as usual by

expx =
∞∑
k=0

xk

k!

is indeed given by expx = ex, with e = exp 1. This function is increasing, and continuous.
Its inverse, the logarithm, can be defined by one of the following equivalent formulae,

exp(log x) = x , log(exp x) = x

and is again increasing, and continuous.

Proof. These are all things that we basically know, from chapter 4 and from here,
but via proofs which, while certainly correct, lack a bit of rigor. Now the point is that,
with Theorems 6.12 and 6.13 in hand, we can make all this fully rigorous:

(1) Regarding the exponential, let us go back to what we did in chapter 4, when first
talking about it. According to our general theory there, the number e = 2.71828 . . . is
defined by the following formula, with the limit shown there to converge indeed:(

1 +
1

n

)n

→ e

In fact, as also explained there, we have the following formula, valid for any x ∈ R:(
1 +

x

n

)n
→ ex

(2) Coming next, still by following the material in chapter 4, some manipulations on
the binomials and factorials producing e lead the following alternative formula for e:

e =
∞∑
k=0

1

k!

And for completing now the picture, we have a fourth formula, which is as follows,
generalizing the previous one, valid for any x ∈ R:

ex =
∞∑
k=0

xk

k!

(3) In what regards now the proof of this latter formula, still by following the material
in chapter 4, the idea is to consider the following function:

f(x) =
∞∑
k=0

xk

k!
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By using the binomial formula, we have then the following computation:

f(x+ y) =
∞∑
k=0

(x+ y)k

k!

=
∞∑
k=0

k∑
s=0

(
k

s

)
· x

syk−s

k!

=
∞∑
k=0

k∑
s=0

xsyk−s

s!(k − s)!

= f(x)f(y)

(4) In order to finish now our study, we know that our function f is continuous, that
it satisfies f(x+ y) = f(x)f(y), and that we have:

f(0) = 1 , f(1) = e

But it is easy to prove that such a function is necessarily unique, and since ex obviously
has all these properties too, we must have f(x) = ex, as desired.

(5) Finally, in what regards the logarithm, its existence and continuity, and property
of being increasing, all follow from Theorem 6.13, applied to the exponential. □

Along the same lines now, with exp and log understood, what about looking at other
familiar inverse functions. And here, we have the following result:

Theorem 6.15. The following functions are well-defined and continuous,

(1) arcsinx.
(2) arccosx,
(3) arctanx,

and the same goes for the functions arcsecx, arccscx, arccotx.

Proof. The situation here is quite similar to that for the logarithm, with the existence
and continuity of the functions in the statement coming from what we know about sin,
cos, tan and sec, csc, cot from chapter 5, via Theorem 6.13. We will leave the verifications
here, and the discussion about domains and ranges, as an instructive exercise. □

Getting now towards more concrete things, still solving questions that we previously
had open, as another basic application of the intermediate value theorem, we have:

Theorem 6.16. The following happen:

(1) Any polynomial P ∈ R[X] of odd degree has a root.
(2) Given n ∈ 2N+ 1, we can extract n

√
x, for any x ∈ R.

(3) Given n ∈ N, we can extract n
√
x, for any x ∈ [0,∞).
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Proof. All these results come as applications of Theorem 6.12, as follows:

(1) This is clear from Theorem 6.12 (3), applied on [−∞,∞].

(2) This follows from (1), by using the polynomial P (z) = zn − x.

(3) This follows as well by applying Theorem 6.12 (3) to the polynomial P (z) = zn−x,
but this time on [0,∞). □

There are many other things that can be said about roots of polyomials, and solutions
of other equations of type f(x) = 0, by using Theorem 6.12. And with all this being
quite tricky, quite often being rather advanced mathematics, requiring quite a deal of
new theory and methods. We will be back to these questions later in this book.

As a concrete application, in relation with powers, we have the following result, com-
pleting our series of results regarding the basic mathematical functions:

Theorem 6.17. The function xa is defined and continuous on (0,∞), for any a ∈ R.
Moreover, when trying to extend it to R, we have 4 cases, as follows,

(1) For a ∈ Qodd, a > 0, the maximal domain is R.
(2) For a ∈ Qodd, a ≤ 0, the maximal domain is R− {0}.
(3) For a ∈ R−Q or a ∈ Qeven, a > 0, the maximal domain is [0,∞).
(4) For a ∈ R−Q or a ∈ Qeven, a ≤ 0, the maximal domain is (0,∞).

where Qodd is the set of rationals r = p/q with q odd, and Qeven = Q−Qodd.

Proof. The idea is that we know how to extract roots by using Theorem 6.16, and
all the rest follows by continuity. To be more precise:

(1) Assume a = p/q, with p, q ∈ N, p ̸= 0 and q odd. Given a number x ∈ R, we can
construct the power xa in the following way, by using Theorem 6.16:

xa = q
√
xp

Then, it is straightforward to prove that xa is indeed continuous on R.
(2) In the case a = −p/q, with p, q ∈ N and q odd, the same discussion applies, with

the only change coming from the fact that xa cannot be applied to x = 0.

(3) Assume first a ∈ Qeven, a > 0. This means a = p/q with p, q ∈ N, p ̸= 0 and q
even, and as before in (1), we can set xa = q

√
xp for x ≥ 0, by using Theorem 6.16. It is

then straightforward to prove that xa is indeed continuous on [0,∞), and not extendable
either to the negatives. Thus, we are done with the case a ∈ Qeven, a > 0, and the case
left, namely a ∈ R−Q, a > 0, follows as well by continuity.

(4) In the cases a ∈ Qeven, a ≤ 0 and a ∈ R−Q, a ≤ 0, the same discussion applies,
with the only change coming from the fact that xa cannot be applied to x = 0. □

Let us record as well a result about the function ax, as follows:
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Theorem 6.18. The function ax is as follows:

(1) For a > 0, this function is defined and continuous on R.
(2) For a = 0, this function is defined and continuous on (0,∞).
(3) For a < 0, the domain of this function contains no interval.

Proof. This is a sort of reformulation of Theorem 6.17, by exchanging the variables,
x↔ a. To be more precise, the situation is as follows:

(1) We know from Theorem 6.17 that things fine with xa for x > 0, no matter what
a ∈ R is. But this means that things fine with ax for a > 0, no matter what x ∈ R is.

(2) This is something trivial, and we have of course 0x = 0, for any x > 0. As for the
powers 0x with x ≤ 0, these are impossible to define, for obvious reasons.

(3) Given a < 0, we know from Theorem 6.17 that we cannot define ax for x ∈ Qeven.
But since Qeven is dense in R, this gives the result. □

As a comment here, both Theorem 6.17 and Theorem 6.18 obviously hide some non-
trivial mathematics, and might remain quite mysterious. We will be back to this.

Summarizing, we have been quite successful with our theory of continuous functions,
having how full results, regarding the definition and continuity property, for all basic
functions from mathematics. All this is of course just a beginning, and we will be back
to these functions on regular occasions, in what follows.

In particular, we will see at the end of the present chapter how to extend some of our
results to the complex variable case, and with this actually bringing some more light on
our last results above, regarding the power functions. More on this in a moment.

6c. Separation results

Getting back now to general topology, as developed in the beginning of this chapter,
for a number of various technical reasons, we would like to squeeze the arbitrary sets
E ⊂ X between compact sets K ⊂ X and open sets U ⊂ X, as follows:

K ⊂ E ⊂ U

In order to do this, which is something quite tricky, we will need a number of technical
preliminaries, as a continuation of our general topology material. First, we have:

Proposition 6.19. Given K ⊂ U , compact inside open, we can find inclusions

K ⊂ V ⊂ V̄ ⊂ U

with the set V being open, with compact closure V̄ .
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Proof. This is something elementary, the idea being as follows:

(1) For any x ∈ K pick a neighborhood Wx having compact closure. Since K is
compact, we can find finitely many such neighborhoods, covering it:

K ⊂ Wx1 ∪ . . . ∪Wxn

With this done, consider now the set on the right, namely:

W = Wx1 ∪ . . . ∪Wxn

This is then an open set containing our compact set K, having compact closure, that
we will use in what follows, in our constructions.

(2) In order to prove now our result, observe first that if we are in the case U = X we
are done, because here we can simply take V = W . So, assume U ̸= X.

(3) Given a point x ∈ U c, since this point is compact, and our set K not containing
it is compact as well, we can find an open set Vx having the following properties:

K ⊂ Vx , x /∈ V̄x

Now consider the following family of sets, with W being the open set in (1):{
K ∩ W̄ ∩ V̄x

∣∣∣x ∈ U c
}

This is then a family of compact sets having empty intersection, so we can find a finite
subfamily having empty intersection too. That is, we can find points xi ∈ U c such that:

K ∩ W̄ ∩ V̄x1 ∩ . . . ∩ V̄xm = ∅
(4) With this done, consider now the following open set:

V = W ∩ Vx1 ∩ . . . ∩ Vxm

Then V has compact closure, and we have the following inclusion:

V̄ ⊂ W̄ ∩ V̄x1 ∩ . . . ∩ V̄xm

Thus, V is the open set we are looking for, and we are done. □

The above result, separating K ⊂ U , compact set inside open set, via an open set V
with compact closure V̄ , is something quite useful, in practice. However, for our purposes
here, we will need more, along the same lines.

To be more precise, under the same assumptions, K ⊂ U , compact inside open, we
would like to come up with a continuous, compactly supported function f such that:

χK ≤ f ≤ χU

Which is something quite non-trivial, when thinking a bit, and so again, and with our
apologies here, we are in need of some more technical preliminaries.
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To be more precise, we will need the following standard notions:

Definition 6.20. A function f : X → R, with X topological space, is called:

(1) Upper semicontinuous, if {x ∈ X|f(x) < a} is open, for any a ∈ R.
(2) Lower semicontinuous, if {x ∈ X|f(x) > a} is open, for any a ∈ R.

These notions are actually quite interesting on their own, having many uses in many
contexts in analysis, and as basic illustrations for them, we have:

(1) A characteristic function χE is upper semicontinuous when E ⊂ X is closed. This
follows indeed from the above definition of the upper semicontinuity.

(2) Also, a characteristic function χE is lower semicontinuous when E ⊂ X is open.
Again, this follows from definitions, or simply from (1), by using the set Ec.

(3) Observe also that a continuous function is trivially both upper and lower semicon-
tinuous. The converse of this holds too, and more on this in a moment.

Many things can be said about the upper and lower semicontinuous functions, which
some knowledge here being something quite useful, when doing in analysis in general. In
what follows we will only need a handful of basic results on the subject, as follows:

Proposition 6.21. The upper and lower semicontinuous functions f : X → R have
the following properties:

(1) If F ⊂ X is closed, χF is upper semicontinuous.
(2) If U ⊂ X is open, χU is lower semicontinuous.
(3) Infimum of upper semicontinuous functions is upper semicontinuous.
(4) Supremum of lower semicontinuous functions is lower semicontinuous.
(5) f is continuous precisely when it is upper and lower semicontinuous.

Proof. All this is elementary, the idea being as follows:

(1) This assertion, already mentioned in the above, follows from definitions.

(2) This assertion, also mentioned in the above, also follows from definitions.

(3) This assertion is also trivial, also coming from definitions.

(4) And this assertion is trivial too, also coming from definitions.

(5) In one sense, this is clear, as already mentioned in the above. In the other sense,
assuming that f : X → R is both upper and lower semicontinuous, we can see that the
preimage of any open interval (a, b) ⊂ R is open, due to the following formula:

f−1(a, b) = f−1(a,∞] ∩ f−1[−∞, b)

Now since any open set U ⊂ R can be written a union of open intervals (a, b) ⊂ R, it
follows that f−1(U) is open, and so that f is continuous, as desired. □
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Many other things can be said, about the upper and lower semicontinuous functions,
notably with many examples. However, for our purposes here, the above will do.

Good news, we can now formulate the main technical result that we will need, for our
measure theory purposes here. With the convention that the support of a function f is
the closure of the set {x|f(x) ̸= 0}, this key statement is as follows:

Theorem 6.22 (Urysohn). Given K ⊂ U , compact inside open, we can find

χK ≤ f ≤ χU

with f being continuous, and compactly supported.

Proof. This is something very standard, the idea being as follows:

(1) Given sets K ⊂ U as in the statement, by using Proposition 6.19 we can find an
open set V0, having compact closure V̄0, such that:

K ⊂ V0 ⊂ V̄0 ⊂ U

But then, by using again Proposition 6.19, applied this time to the inclusion K ⊂ V0,
we can find a second open set V1, having compact closure V̄1, such that:

K ⊂ V1 ⊂ V̄1 ⊂ V0 ⊂ V̄0 ⊂ U

And so on, would be the idea. In practice now, by using the fact that the rational
numbers are countable, we can construct in this way a whole family of open sets Vr,
having compact closures V̄r, one for each rational number r ∈ [0, 1], such that:

r < s =⇒ V̄s ⊂ Vr

(2) Time now to construct our function f . Let us set, for any r ∈ [0, 1] rational:

fr(x) =

{
r if x ∈ Vr

0 otherwise

Then, we can construct our function f in the following way:

f = sup
r
fr

It is clear then that f is lower semicontinuous, that we have χK ≤ f ≤ χU , and also
that f is compactly supported, with support included in the compact set V̄0. Thus, we
are almost there, and it remains to prove that f is upper semicontinuous as well.

(3) For this purpose, let us set as well, for any r ∈ [0, 1] rational:

gs(x) =

{
1 if x ∈ V̄s
0 otherwise
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Then, we can construct another function g, in the following way:

g = inf
s
gs

It is then clear, exactly as in (2), that g is lower semicontinuous, and also that we
have χK ≤ g ≤ χU , and that g is compactly supported. Of interest for us is the lower
semicontinuity of g, because in order to finish the proof, it is enough to show that:

f = g

(4) So, let us prove this, f = g. By definition of the functions fr and gs, we have:

fr < gs

Thus f ≤ g. Now assume that we have somewhere a strict inequality, f(x) < g(x).
Then, we can find two rational numbers r, s in between, as follows:

f(x) < r < s < g(x)

But the first inequality tells us that x /∈ Vr, and the last inequality tells us that x ∈ V̄s,
and this contradicts the condition in (1) on the sets Vr, as desired. □

Very nice all this, but in fact, contrary to what was advertised before, we will actually
need in what follows, besides the Urysohn theorem, another technical result, which is
something useful too, and actually of independent interest too, as follows:

Theorem 6.23. Given a compact set inside a union of open sets

K ⊂ U1 ∪ . . . ∪ Un

we can find an associated partition of unity, that is, a decomposition of type

f1(x) + . . .+ fn(x) = 1 , ∀x ∈ K

with each fi being continuous, supported on Ui.

Proof. This follows by using the Urysohn theorem, as follows:

(1) For any x ∈ K, let us pick a neighborhood Vx such that V̄x ⊂ Ui, for some i. Since
K is compact, we can find finitely many points x1, . . . , xm ∈ K such that:

K ⊂ Vx1 ∪ . . . ∪ Vxm

Now for any index i ∈ {1, . . . , n} let us consider the following union:

Ki =
⋃

V̄xi⊂Ui

V̄xi

We can apply then the Urysohn lemma to the inclusion Ki ⊂ Ui, and we obtain in
this way a continuous, compactly supported function gi, such that:

χKi
≤ gi ≤ χUi



144 6. INTERMEDIATE VALUES

(2) With this done, consider the following sequence of functions:

f1 = g1

f2 = (1− g1)g2

...

fn = (1− g1) . . . (1− gn−1)gn

Then each fi is continuous, supported on Ui, and we have:

f1 + . . .+ fn = 1− (1− g1) . . . (1− gn)

(3) On the other hand, recall from the construction of Ki above that we have:

K ⊂ K1 ∪ . . . ∪Kn

We conclude from this that we have the following formula:

f1 + . . .+ fn = 1

Thus, we have our partition of the unity, as desired. □

Still with me, I hope. All the above results are very useful, in practice, for instance
when developing measure theory. We will be back to this at the end of this book.

6d. Complex functions

Switching topics now, and going towards the complex functions, at the level of the
general theory, the main tool for dealing with the continuous functions f : R → R is
the above intermediate value theorem. In the complex setting, that of the functions
f : C → C, we do not have such a theorem, at least in its basic formulation, because there
is no order relation for the complex numbers, or things like complex intervals.

However, the intermediate value theorem in its advanced formulation, that with con-
nected sets, extends of course, and this will be our main result, on the subject.

We will need, in order to get started with our discussion:

Definition 6.24. The distance between two complex numbers is the usual distance in
the plane between them, namely:

d(x, y) = |x− y|

With this, we can talk about convergence, by saying that xn → x when d(xn, x) → 0.
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Here the fact that d(x, y) = |x−y| is indeed the usual distance in the plane is clear for
y = 0, because we have d(x, 0) = |x|, by definition of the modulus |x|. As for the general
case, y ∈ C, this comes from the fact that the distance in the plane is given by:

d(x, y) = d(x− y, 0) = |x− y|

Observe that in real coordinates, the distance formula is quite complicated, namely:

d(a+ ib, c+ id) = |(a+ ib)− (c+ id)|
= |(a− c) + i(b− d)|
=

√
(a− c)2 + (b− d)2

However, for most computations, we will not need this formula, and we can get away
with the various tricks regarding complex numbers that we know. As a first result now,
regarding C and its distance, that we will need in what follows, we have:

Theorem 6.25. The complex plane C is complete, in the sense that any Cauchy
sequence converges.

Proof. Consider indeed a Cauchy sequence {xn}n∈N ⊂ C. If we write xn = an + ibn
for any n ∈ N, then we have the following estimates:

|an − am| ≤
√

(an − am)2 + (bn − bm)2 = |xn − xm|

|bn − bm| ≤
√
(an − am)2 + (bn − bm)2 = |xn − xm|

Thus both the sequences {an}n∈N ⊂ R and {bn}n∈N ⊂ R are Cauchy, and since we
know that R itself is complete, we can consider the limits of these sequences:

an → a , bn → b

With x = a+ ib, our claim is that xn → x. Indeed, we have:

|xn − x| =
√

(an − a)2 + (bn − b)2

≤ |an − a|+ |bn − b|

It follows that we have xn → x, as claimed, and this gives the result. □

Talking complex functions now, we have the following definition:

Definition 6.26. A complex function f : C → C, or more generally f : X → C, with
X ⊂ C being a subset, is called continuous when, for any xn, x ∈ X:

xn → x =⇒ f(xn) → f(x)

Also, we can talk about pointwise convergence of functions, fn → f , and about uniform
convergence too, fn →u f , exactly as for the real functions.
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Observe that, since xn → x in the complex sense means that (an, bn) → (a, b) in the
usual, real plane sense, a function f : C → C is continuous precisely when it is continuous
when regarded as real function, f : R2 → R2. Which is something good to know.

Regarding what is said at the end of Definition 6.26, that is certainly quite vague, I
know, and exercise for you to figure out what can be done there, and what not.

Let us point out now the fact that, contrary to what the above might suggest, every-
thing does not always extend trivally from real to complex. For instance, we have:

Proposition 6.27. We have the following formula, valid for any |x| < 1,

1

1− x
= 1 + x+ x2 + . . .

but, for x ∈ C− R, the geometric meaning of this formula is quite unclear.

Proof. Here the formula in the statement holds indeed, by multiplying and cancelling
terms, and with the convergence being justified by the following estimate:∣∣∣∣∣

∞∑
n=0

xn

∣∣∣∣∣ ≤
∞∑
n=0

|xn|

=
∞∑
n=0

|x|n

=
1

1− |x|
As for the last assertion, this is something quite informal, the idea being as follows:

(1) To start with, for the simplest possible value of our parameter, x = 1/2, our
formula is clear, by cutting the interval [0, 2] into half, and so on:

1 +
1

2
+

1

4
+

1

8
+ . . . = 2

(2) More generally, for x ∈ (−1, 1) the meaning of the formula in the statement is
something quite clear and intuitive, geometrically speaking, by using a similar argument,
and we will leave the verifications and thinking here as an instructive exercise.

(3) However, when x is complex, and not real, we are led into a kind of mysterious
spiral there, and the only case where the formula is “obvious”, geometrically speaking, is
that when x = rw, with r ∈ [0, 1), and with w being a root of unity.

(4) To be more precise here, by anticipating a bit, assume that we have a complex
number w ∈ C satisfying the root of unity equation wN = 1, for some N ∈ N. We have
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then the following formula, for our infinite sum:

1 + rw + r2w2 + . . . = (1 + rw + . . .+ rN−1wN−1)

+ (rN + rN+1w . . .+ r2N−1wN−1)

+ (r2N + r2N+1w . . .+ r3N−1wN−1)

+ . . .

(5) Thus, by grouping the terms with the same argument, our infinite sum is:

1 + rw + r2w2 + . . . = (1 + rN + r2N + . . .)

+ (r + rN+1 + r2N+1 + . . .)w

+ . . .

+ (rN−1 + r2N−1 + r3N−1 + . . .)wN−1

(6) But the sums of each ray can be computed with the real formula for geometric
series, that we know and understand well, and with an extra bit of algebra, we get:

1 + rw + r2w2 + . . . =
1

1− rN
+

rw

1− rN
+ . . .+

rN−1wN−1

1− rN

=
1

1− rN
(
1 + rw + . . .+ rN−1wN−1

)
=

1

1− rN
· 1− rN

1− rw

=
1

1− rw

(7) Summarizing, as claimed above, the geometric series formula can be understood,
in a purely geometric way, for variables of type x = rw, with r ∈ [0, 1), and with w being
a root of unity. In general, however, this formula tells us that the numbers on a certain
infinite spiral sum up to a certain number, which remains something quite mysterious. □

Getting now to less mysterious mathematics, we have the question of understanding
what our open and closed set technology becomes, in the complex setting. And here,
as good news, the intermediate value theorem in its advanced formulation, that with
connected sets, extends of course, and we have the following result:

Theorem 6.28. Assuming that f : X → C with X ⊂ C is continuous, if the domain
X is connected, then so is its image f(X).

Proof. This follows exactly as in the real case, with just a bit of discussion being
needed, in relation with open and closed sets, and then connected sets, inside C. □

We will be back to this, with applications, later in this book.
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6e. Exercises

Exercises:

Exercise 6.29.

Exercise 6.30.

Exercise 6.31.

Exercise 6.32.

Exercise 6.33.

Exercise 6.34.

Exercise 6.35.

Exercise 6.36.

Bonus exercise.



CHAPTER 7

Sequences and series

7a. Pointwise convergence

Our goal now will be to extend the material from chapter 1 regarding the numeric
sequences and series, to the case of the sequences and series of functions.

To start with, with our study, we can talk about the convergence of sequences of
functions, fn → f , in a quite straightforward way, as follows:

Definition 7.1. We say that fn converges pointwise to f , and write fn → f , if

fn(x) → f(x)

for any x. Equivalently, ∀x,∀ε > 0,∃N ∈ N,∀n ≥ N, |fn(x)− f(x)| < ε.

The question is now, assuming that fn are continuous, does it follow that f is contin-
uous? I am pretty much sure that you think that the answer is “yes”, based on:

lim
y→x

f(y) = lim
y→x

lim
n→∞

fn(y)

= lim
n→∞

lim
y→x

fn(y)

= lim
n→∞

fn(x)

= f(x)

However, this proof is wrong, because we know well from chapter 1 that we cannot
intervert limits, with this being a common beginner mistake. In fact, the result itself is
wrong in general, because if we consider the functions fn : [0, 1] → R given by fn(x) = xn,
which are obviously continuous, their limit is discontinuous, given by:

lim
n→∞

xn =

{
0 , x ∈ [0, 1)

1 , x = 1

Of course, you might say here that allowing x = 1 in all this might be a bit unnatural,
for whatever reasons, but there is an answer to this too. We can do worse, as follows:

149
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Proposition 7.2. The basic step function, namely the sign function

sgn(x) =


−1 , x < 0

0 , x = 0

1 , x > 0

can be approximated by suitable modifications of arctan(x). Even worse, there are exam-
ples of fn → f with each fn continuous, and with f totally discontinuous.

Proof. To start with, arctan(x) looks a bit like sgn(x), so to say, but one problem
comes from the fact that its image is [−π/2, π/2], instead of the desired [−1, 1]. Thus,
we must first rescale arctan(x) by π/2. Now with this done, we can further stretch the
variable x, as to get our function closer and closer to sgn(x), as desired. This proves the
first assertion, and the second assertion, which is a bit more technical, and that we will
not really need in what follows, is left as an exercise for you, reader. □

7b. Uniform convergence

Sumarizing, we are a bit in trouble, because we would like to have in our bag of theo-
rems something saying that fn → f with fn continuous implies f continuous. Fortunately,
this can be done, with a suitable refinement of the notion of convergence, as follows:

Definition 7.3. We say that fn converges uniformly to f , and write fn →u f , if:

∀ε > 0,∃N ∈ N,∀n ≥ N, |fn(x)− f(x)| < ε,∀x
That is, the same condition as for fn → f must be satisfied, but with the ∀x at the end.

And it is this “∀x at the end” which makes the difference, and will make our theory
work. In order to understand this, which is something quite subtle, let us compare
Definition 7.1 and Definition 7.3. As a first observation, we have:

Proposition 7.4. Uniform convergence implies pointwise convergence,

fn →u f =⇒ fn → f

but the converse is not true, in general.

Proof. Here the first assertion is clear from definitions, just by thinking at what
is going on, with no computations needed. As for the second assertion, the simplest
counterexamples here are the functions fn : [0, 1] → R given by fn(x) = xn, that we met
before in Proposition 7.2. Indeed, uniform convergence on [0, 1) would mean:

∀ε > 0,∃N ∈ N,∀n ≥ N, xn < ε,∀x ∈ [0, 1)

But this is wrong, because no matter how big N is, we have limx→1 x
N = 1, and so

we can find x ∈ [0, 1) such that xN > ε. Thus, we have our counterexample. □

Moving ahead now, let us state our main theorem on uniform convergence, as follows:
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Theorem 7.5. Assuming that fn are continuous, and that

fn →u f

then f is continuous. That is, uniform limit of continuous functions is continuous.

Proof. As previously advertised, it is the “∀x at the end” in Definition 7.3 that will
make this work. Indeed, let us try to prove that the limit f is continuous at some point
x. For this, we pick a number ε > 0. Since fn →u f , we can find N ∈ N such that:

|fN(z)− f(z)| < ε

3
, ∀z

On the other hand, since fN is continuous at x, we can find δ > 0 such that:

|x− y| < δ =⇒ |fN(x)− fN(y)| <
ε

3

But with this, we are done. Indeed, for |x− y| < δ we have:

|f(x)− f(y)| ≤ |f(x)− fN(x)|+ |fN(x)− fN(y)|+ |fN(y)− f(y)|

≤ ε

3
+
ε

3
+
ε

3
= ε

Thus, the limit function f is continuous at x, and we are done. □

Obviously, the notion of uniform convergence in Definition 7.3 is something quite
interesting, worth some more study. As a first result, we have:

Proposition 7.6. The following happen, regarding uniform limits:

(1) fn →u f , gn →u g imply fn + gn →u f + g.
(2) fn →u f , gn →u g imply fngn →u fg.
(3) fn →u f , f ̸= 0 imply 1/fn →u 1/f .
(4) fn →u f , g continuous imply fn ◦ g →u f ◦ g.
(5) fn →u f , g continuous imply g ◦ fn →u g ◦ f .

Proof. All this is routine, exactly as for the results for numeric sequences from
chapter 4, that we know well, with no difficulties or tricks involved. □

7c. Spaces of functions

There is some abstract mathematics to be done as well. Indeed, observe that the
notion of uniform convergence, as formulated in Definition 7.3, means that:

sup
x

∣∣fn(x)− f(x)
∣∣ −→n→∞ 0

This suggests measuring the distance between functions via a supremum as above. In
order to discuss this, we will need some abstract preliminaries. Let us start with:



152 7. SEQUENCES AND SERIES

Definition 7.7. A metric space is a set X with a distance function d : X×X → R+,
having the following properties:

(1) d(x, y) > 0 if x ̸= y, and d(x, x) = 0.
(2) d(x, y) = d(y, x).
(3) d(x, y) ≤ d(x, z) + d(y, z).

As a basic example, we have RN , as well as any of its subsets X ⊂ RN . Indeed, the
first two axioms are clear, and for the third axiom, we must prove that:√∑

i

(ai + bi)2 ≤
√∑

i

a2i +

√∑
i

b2i

Now by raising to the square, this is the same as proving that:(∑
i

aibi

)2

≤

(∑
i

a2i

)(∑
i

b2i

)
But this latter inequality is one of the many equivalent formulations of the Cauchy-

Schwarz inequality, that we know well from calculus, and which follows by using the fact
that f(t) =

∑
i(ai + tbi)

2 being positive, its discriminant must be negative.

As another example, we have CN , as well as any of its subsets X ⊂ CN . Indeed, this
follows either from CN ≃ R2N , or directly, along the lines of the above proof for RN . To
be more precise, after some algebra, we are left with proving the following inequality:∣∣∣∣∣∑

i

aib̄i

∣∣∣∣∣
2

≤

(∑
i

|ai|2
)(∑

i

|bi|2
)

But this is the complex version of the Cauchy-Schwarz inequality, that we know well
from calculus, and which follows by using the fact that the function f(t) =

∑
i |ai+ twbi|2

with t ∈ R and |w| = 1 being positive, its discriminant must be negative.

Here is now another example, which at first looks new and interesting, but is in fact
not new, because it appears as a subspace of a suitable RN :

Proposition 7.8. Given a finite set X, the following function is a metric on it, called
discrete metric:

d(x, y) =

{
1 if x ̸= y

0 if x = y

This metric space is in fact the N-simplex, which can be realized as a subspace of RN−1,
or, more conveniently, as a subspace of RN .
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Proof. There are several things going on here, the idea being as follows:

(1) First of all, the axioms from Definition 7.7 are trivially satisfied, and with the
main axiom, namely the triangle inequality, basically coming from:

1 ≤ 1 + 1

(2) At the level of examples, at |X| = 1 we obtain a point, at |X| = 2 we obtain a
segment, at |X| = 3 we obtain an equilateral triangle, at |X| = 4 we obtain a regular
tetrahedron, and so on. Thus, what we have in general, at |X| = N , is the arbitrary
dimensional generalization of this series of geometric objects, called N -simplex.

(3) In what regards now the geometric generalization of the N -simplex, our above
examples, namely segment, triangle, tetrahedron and so on, suggest to look for an embed-
ding X ⊂ RN−1. Which is something which is certainly possible, but the computations
here are quite complicated, involving a lot of trigonometry, as you can check yourself by
studying the problem at N = 4, that is, parametrizing the regular tetrahedron in R3.

(4) However, mathematics, or perhaps physics come to the rescue, via the idea “add a
dimension, for getting smarter”. Indeed, when looking for an embedding X ⊂ RN things
drastically simplify, because we can simply take X to be the standard basis of RN :

X = {e1, . . . , eN}
Indeed, we have by definition d(ei, ej) = 1 for any i ̸= j. So, we have solved our

embedding problem, just like that, without doing any computations or trigonometry. □

Moving ahead now with some theory, and allowing us a bit of slopiness, since we are
already quite familiar with such things, we have the following statement:

Proposition 7.9. We can talk about limits inside metric spaces X, by saying that

xn → x ⇐⇒ d(xn, x) → 0

and we can talk as well about continuous functions f : X → Y , by requiring that

xn → x =⇒ f(xn) → f(x)

and with these notions in hand, all the basic results from the cases X = R,C extend.

Proof. All this is very standard, and we will leave this as an exercise, namely carefully
checking what you learned in basic calculus, in relation with limits and continuity, in the
cases X = R,C, and working out the metric space extensions of this. In fact, we have
already talked in the above such things, when discussing the complex functions. □

More interestingly now, along the same lines, we can talk about open and closed sets
inside metric spaces X, again in analogy with what we did for X = R,C, but with a
whole lot of interesting new phenomena appearing, which are worth exploring.

So, we will do this in detail. Let us start with a basic result, as follows:
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Definition 7.10. Let X be a metric space.

(1) The open balls are the sets Bx(r) = {y ∈ X|d(x, y) < r}.
(2) The closed balls are the sets B̄x(r) = {y ∈ X|d(x, y) ≤ r}.
(3) U ⊂ X is called open if for any x ∈ U we have a ball Bx(r) ⊂ U .
(4) F ⊂ X is called closed if its complement F c ⊂ X is open.

With this in hand, let us work out the basics. We first have the following result,
clarifying some terminology issues from the above definition:

Proposition 7.11. The open balls are open, and the closed balls are closed.

Proof. This might sound like a joke, but it is not one, because this is the kind of
thing that we have to check. Fortunately, all this is elementary, as follows:

(1) Given an open ball Bx(r) and a point y ∈ Bx(r), by using the triangle inequality
we have By(r

′) ⊂ Bx(r), with r
′ = r − d(x, y). Thus, Bx(r) is indeed open.

(2) Given a closed ball B̄x(r) and a point y ∈ Bx(r)
c, by using the triangle inequality

we have By(r
′) ⊂ Bx(r)

c, with r′ = d(x, y)− r. Thus, B̄x(r) is indeed closed. □

Here is now something more interesting, making the link with our intuitive under-
standing of the notion of closedness, coming from our experience so far with analysis:

Theorem 7.12. For a subset F ⊂ X, the following are equivalent:

(1) F is closed in our sense, meaning that F c is open.
(2) We have xn → x, xn ∈ F =⇒ x ∈ F .

Proof. We can prove this by double implication, as follows:

(1) =⇒ (2) Assume by contradiction xn → x, xn ∈ F with x /∈ F . Since we
have x ∈ F c, which is open, we can pick a ball Bx(r) ⊂ F c. But this contradicts our
convergence assumption xn → x, so we are done with this implication.

(2) =⇒ (1) Assume by contradiction that F is not closed in our sense, meaning that
F c is not open. Thus, we can find x ∈ F c such that there is no ball Bx(r) ⊂ F c. But
with r = 1/n this provides us with a point xn ∈ Bx(1/n)∩ F , and since we have xn → x,
this contradicts our assumption (2). Thus, we are done with this implication too. □

Here is another basic theorem about open and closed sets:

Theorem 7.13. Let X be a metric space.

(1) If Ui are open, then ∪iUi is open.
(2) If Fi are closed, then ∩iFi is closed.
(3) If U1, . . . , Un are open, then ∩iUi is open.
(4) If F1, . . . , Fn are closed, then ∪iFi is closed.

Moreover, both (3) and (4) can fail for infinite intersections and unions.
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Proof. We have several things to be proved, the idea being as follows:

(1) This is clear from definitions, because any point x ∈ ∪iUi must satisfy x ∈ Ui for
some i, and so has a ball around it belonging to Ui, and so to ∪iUi.

(2) This follows from (1), by using the following well-known set theory formula:(⋃
i

Ui

)c

=
⋂
i

U c
i

(3) Given an arbitrary point x ∈ ∩iUi, we have x ∈ Ui for any i, and so we have a ball
Bx(ri) ⊂ Ui for any i. Now with this in hand, let us set:

B = Bx(r1) ∩ . . . ∩Bx(rn)

As a first observation, this is a ball around x, B = Bx(r), of radius given by:

r = min(r1, . . . , rn)

But this ball belongs to all the Ui, and so belongs to their intersection ∩iUi. We
conclude that the intersection ∩iUi is open, as desired.

(4) This follows from (3), by using the following well-known set theory formula:(⋂
i

Ui

)c

=
⋃
i

U c
i

(5) Finally, in what regards the counterexamples at the end, these can be both found
on R, and we will leave this as an instructive exercise. □

Still in relation with the open and closed sets, let us formulate as well:

Definition 7.14. Let X be a metric space, and E ⊂ X be a subset.

(1) The interior E◦ ⊂ E is the set of points x ∈ E which admit around them open
balls Bx(r) ⊂ E.

(2) The closure E ⊂ Ē is the set of points x ∈ X which appear as limits of sequences
xn → x, with x ∈ E.

These notions are quite interesting, because they make sense for any set E. That is,
when E is open, that is open and end of the story, and when E is closed, that is closed
and end of the story. In general, however, a set E ⊂ X is not open or closed, and what
we can best do to it, in order to study it with our tools, is to “squeeze” it, as follows:

E◦ ⊂ E ⊂ Ē

In practice now, in order to use the above notions, we need to know a number of
things, including that fact that E open implies E◦ = E, the fact that E closed implies
Ē = E, and many more such results. But all this can be done, and the useful statement
here, summarizing all that we need to know about interiors and closures, is as follows:
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Theorem 7.15. Let X be a metric space, and E ⊂ X be a subset.

(1) The interior E◦ ⊂ E is the biggest open set contained in E.
(2) The closure E ⊂ Ē is the smallest closed set containing E.

Proof. We have several things to be proved, the idea being as follows:

(1) Let us first prove that the interior E◦ is open. For this purpose, pick x ∈ E◦. We
know that we have a ball Bx(r) ⊂ E, and since this ball is open, it follows that we have
Bx(r) ⊂ E◦. Thus, the interior E◦ is open, as claimed.

(2) Let us prove now that the closure Ē is closed. For this purpose, we will prove
that the complement Ēc is open. So, pick x ∈ Ēc. Then x cannot appear as a limit of a
sequence xn → x with xn ∈ E, so we have a ball Bx(r) ⊂ Ēc, as desired.

(3) Finally, the maximality and minimality assertions regarding E◦ and Ē are both
routine too, coming from definitions, and we will leave them as exercises. □

As a continuation of this, we can talk as well about density, as follows:

Definition 7.16. We say that a subset E ⊂ X is dense when:

Ē = X

That is, any point of X must appear as a limit of points of E.

Obviously, this is something which is in tune with what we know so far from this book,
and with the intuitive notion of density. As a basic example, we have Q̄ = R.

Again in analogy with what we know aboutX = R,C, we can talk about compact sets.
However, things here are quite tricky, in the general metric space framework, substantially
deviating from what we know, and we will do this in detail. Let us start with:

Definition 7.17. A set K ⊂ X is called compact if any cover with open sets

K ⊂
⋃
i

Ui

has a finite subcover, K ⊂ (Ui1 ∪ . . . ∪ Uin).

This definition, which is probably new to you, might seem overly abstract, but our
claim is that this is the correct definition, and that there is no way of doing otherwise.
Let us start with some examples, with X = R. The situation here is as follows:

(1) A point is obviously compact, and we can choose that finite subcover with n = 1.
Similarly, 2 points are compact, and we can choose the subcover with n = 2. More
generally, N points are compact, and we can choose the subcover with n = N .
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(2) In contrast, the set N ⊂ R is not compact, because we can cover it with of a
suitable union of small open intervals around each point, and this open cover has no finite
subcover. For the same reasons, the set {1/n|n ∈ N} is not compact either.

(3) However, and here comes an interesting point, the following set is compact:

K =

{
1

n

∣∣∣n ∈ N
}
∪ {0}

Indeed, any open cover of it ∪iUi has to cover 0, and by selecting an open set Ui

covering 0, this set Ui will cover the whole K, except for finitely many points, due to
1/n → 0. But these finitely points left, say N of them, can be covered by suitable sets
Ui1 , . . . , UiN , and by adding this family to the set Ui, we have our finite subcover.

As a conclusion to this, Definition 7.17 is in tune with what we know about the
compact subsets K ⊂ R, namely that these are the sets which are closed and bounded.
However, and here comes our point, such things are wrong in general, due to:

Proposition 7.18. Given an infinite set X with the discrete distance on it, namely
d(p, q) = 1− δpq, which can be modeled as the basis of a suitable Hilbert space,

X = {ex}x∈X ⊂ l2(X)

this set is closed and bounded, but not compact.

Proof. Here the first part, regarding the modeling of X, that we will actually not
need here, is something that we already know. Regarding now the second part:

(1) X being the total space, it is closed. In fact, since the points of X are open, any
subset E ⊂ X is open, and by taking complements, any set E ⊂ X is closed as well.

(2) X is also bounded, because all distances are smaller than 1.

(3) However, our set X is not compact, because its points being open, as noted above,
X = ∪x∈X{x} is an open cover, having no finite subcover. □

Let us develop now the theory of compact sets, and see what we get. We first have:

Proposition 7.19. The following hold:

(1) Compact implies closed.
(2) Closed inside compact is compact.
(3) Compact intersected with closed is compact.

Proof. These assertions are all clear from definitions, as follows:

(1) Assume that K ⊂ X is compact, and let us prove that K is closed. For this
purpose, we will prove that Kc is open. So, pick p ∈ Kc. For any q ∈ K we set
r = d(p, q)/3, and we consider the following balls, separating p and q:

Uq = Bp(r) , Vq = Bq(r)
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We have then K ⊂ ∪q∈KVq, so we can pick a finite subcover, as follows:

K ⊂ (Vq1 ∪ . . . ∪ Vqn)
With this done, consider the following intersection:

U = Uq1 ∩ . . . ∩ Uqn

This intersection is then a ball around p, and since this ball avoids Vq1 , . . . , Vqn , it
avoids the whole K. Thus, we have proved that Kc is open at p, as desired.

(2) Assume that F ⊂ K is closed, with K ⊂ X being compact. For proving our result,
we can assume, by replacing X with K, that we have X = K. In order to prove now that
F is compact, consider an open cover of it, as follows:

F ⊂
⋃
i

Ui

By adding the set F c, which is open, to this cover, we obtain a cover of K. Now since
K is compact, we can extract from this a finite subcover Ω, and there are two cases:

– If F c ∈ Ω, by removing F c from Ω we obtain a finite cover of F , as desired.

– If F c /∈ Ω, we are done too, because in this case Ω is a finite cover of F .

(3) This follows from (1) and (2), because if K ⊂ X is compact, and F ⊂ X is closed,
then K ∩ F ⊂ K is closed inside a compact, so it is compact. □

As a second batch of results, which are useful as well, we have:

Proposition 7.20. The following hold:

(1) If Ki ⊂ X are compact, satisfying Ki1 ∩ . . . ∩Kin ̸= ∅, then ∩iKi ̸= ∅.
(2) If K1 ⊃ K2 ⊃ K3 ⊃ . . . are non-empty compacts, then ∩iKi ̸= ∅.
(3) If K is compact, and E ⊂ K is infinite, then E has a limit point in K.
(4) If K is compact, any sequence {xn} ⊂ K has a limit point in K.
(5) If K is compact, any {xn} ⊂ K has a subsequence which converges in K.

Proof. Again, these are elementary results, which can be proved as follows:

(1) Assume by contradiction ∩iKi = ∅, and let us pick K1 ∈ {Ki}. Since any x ∈ K1

is not in ∩iKi, there is an index i such that x ∈ Kc
i , and we conclude that we have:

K1 ⊂
⋃
i ̸=1

Kc
i

But this can be regarded as being an open cover of K1, that we know to be compact,
so we can extract from it a finite subcover, as follows:

K1 ⊂
(
Kc

i1
∪ . . . ∪Kc

in

)
But this contradicts our non-empty intersection assumption, and we are done.
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(2) This is a particular case of (1), proved above.

(3) We prove this by contradiction. So, assume that E has no limit point in K. This
means that any p ∈ K can be isolated from the rest of E by a certain open ball Vp = Bp(r),
and in both the cases that can appear, p ∈ E or p /∈ E, we have:

|Vp ∩ E| = 0, 1

Now observe that these sets Vp form an open cover of K, and so of E. But due to
|Vp ∩ E| = 0, 1 and to |E| = ∞, this open cover of E has no finite subcover. Thus the
same cover, regarded now as cover of K, has no finite subcover either, contradiction.

(4) This follows from (3) that we just proved, with E = {xn}.
(5) This is a reformulation of (4), that we just proved. □

Getting now to more exciting theory, here is a key result about compactness:

Theorem 7.21. For a subset K ⊂ RN , the following are equivalent:

(1) K is closed and bounded.
(2) K is compact.
(3) Any infinite subset E ⊂ K has a limiting point in K.

Proof. This is something quite tricky, the idea being as follows:

(1) =⇒ (2) As a first task, let us prove that any product of closed intervals is indeed
compact. We can assume by linearity that we are dealing with the unit cube:

C1 =
N∏
i=1

[0, 1] ⊂ RN

In order to prove that C1 is compact, we proceed by contradiction. So, assume that
we have an open cover as follows, having no finite subcover:

C1 ⊂
⋃
i

Ui

Now let us cut C1 into 2N small cubes, in the obvious way, over the N coordinate axes.
Then at least one of these small cubes, which are all covered by ∪iUi too, has no finite
subcover. So, let us call C2 ⊂ C1 one of these small cubes, having no finite subcover:

C2 ⊂
⋃
i

Ui

We can then cut C2 into 2N small cubes, and by the same reasoning, we obtain a
smaller cube C3 ⊂ C2 having no finite subcover. And so on by recurrence, and we end up
with a decreasing sequence of cubes, as follows, having no finite subcover:

C1 ⊃ C2 ⊃ C3 ⊃ . . .
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Now since these decreasing cubes have edge size 1, 1/2, 1/4, . . . , their intersection must
be a point. So, let us call p this point, defined by the following formula:

{p} =
⋂
k

Ck

But this point p must be covered by ∪iUi, so we can find an index i such that p ∈ Ui.
Now observe that Ui must contain a whole ball around p, and so starting from a certain
K ∈ N, all the cubes Ck will be contained in this ball, and so in Ui:

Ck ⊂ Ei , ∀k ≥ K

But this is a contradiction, because CK , and in fact the smaller cubes Ck with k > K
as well, were assumed to have no finite subcover. Thus, we proved our claim. But with
this claim in hand, the result is now clear. Indeed, assuming that K ⊂ RN is closed and
bounded, we can view it as a subset as a suitable big cube, of the following form:

K ⊂
N∏
i=1

[−M,M ] ⊂ RN

But, what we have here is a closed subset inside a compact set, which by Proposition
5.16 follows to be compact, as desired.

(2) =⇒ (3) This is something that we already know, not needing K ⊂ RN .

(3) =⇒ (1) We have to prove that K as in the statement is both closed and bounded,
and we can do both these things by contradiction, as follows:

– Assume first that K is not closed. But this means that we can find a point x /∈ K
which is a limiting point of K. Now let us pick xn ∈ K, with xn → x, and consider the
set E = {xn}. According to our assumption, E must have a limiting point in K. But this
limiting point can only be x, which is not in K, contradiction.

– Assume now that K is not bounded. But this means that we can find points xn ∈ K
satisfying ||xn|| → ∞, and if we consider the set E = {xn}, then again this set must have
a limiting point in K, which is impossible, so we have our contradiction, as desired. □

So long for compactness. As a last piece of general topology, in our metric space
framework, we can talk as well about connectedness, as follows:

Definition 7.22. We can talk about connected sets E ⊂ X, as follows:

(1) We say that E is connected if it cannot be separated as E = E1 ∪ E2, with the
components E1, E2 satisfying E1 ∩ Ē2 = Ē1 ∩ E2 = ∅.

(2) We say that E is path connected if any two points p, q ∈ E can be joined by a
path, meaning a continuous f : [0, 1] → X, with f(0) = p, f(1) = q.
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All this looks a bit technical, and indeed it is. To start with, (1) is something quite
natural, but the separation condition there E1 ∩ Ē2 = Ē1 ∩E2 = ∅ can be weakened into
E1 ∩ E2 = ∅, or strengthened into Ē1 ∩ Ē2 = ∅, depeding on purposes, and with our (1)
as formulated being the good compromise, for most purposes. As for (2), this condition
is obviously something stronger, and we have in fact the following implications:

convex =⇒ path connected =⇒ connected

Anyway, leaving aside the discussion here, once all these questions clarified, the idea
is that any set E can be written as a disjoint union of connected components:

E =
⊔
i

Ei

Getting back now to more concrete things, remember that we are here in this book
for studying functions, and doing calculus. And, regarding functions, we have:

Theorem 7.23. Assuming that f : X → Y is continuous, the following happen:

(1) If O is open, then f−1(O) is open.
(2) If C is closed, then f−1(C) is closed.
(3) If K is compact, then f(K) is compact.
(4) If E is connected, then f(E) is connected.

Proof. This is something fundamental, which can be proved as follows:

(1) This is clear from the definition of continuity, written with ε, δ. In fact, the converse
holds too, in the sense that if f−1(open) = open, then f must be continuous.

(2) This follows from (1), by taking complements. And again, the converse holds too,
in the sense that if f−1(closed) = closed, then f must be continuous.

(3) Indeed, given an open cover f(K) ⊂ ∪iUi, we have an open cover K ⊂ ∪if
−1(Ui),

and so by compactness of K, a finite subcover K ⊂ f−1(Ui1) ∪ . . . ∪ f−1(Uin), and so
finally a finite subcover f(K) ⊂ Ui1 ∪ . . . ∪ Uin , as desired.

(4) This can be proved via the same trick as for (3). Indeed, any separation of f(E) into
two parts can be returned via f−1 into a separation of E into two parts, contradiction. □

Observe the power of (3,4) in the above result, which among others prove the mean
value theorem, which is something non-trivial. Good mathematics that we have here.

In relation now with the notion of uniform continuity, we have the following result:

Theorem 7.24. The uniform convergence, fn →u f , means that we have fn → f with
respect to the following distance,

d(f, g) = sup
x

∣∣f(x)− g(x)
∣∣

which is indeed a distance function.
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Proof. Here the fact that d is indeed a distance, in the sense that it satisfies all the
intuitive properties of a distance, including the triangle inequality, follows from definitions,
and the fact that the uniform convergence can be interpreted as above is clear as well. □

7d. Power series

Power series.

7e. Exercises

Exercises:

Exercise 7.25.

Exercise 7.26.

Exercise 7.27.

Exercise 7.28.

Exercise 7.29.

Exercise 7.30.

Exercise 7.31.

Exercise 7.32.

Bonus exercise.



CHAPTER 8

Elementary functions

8a. Binomial formula

With the above theory in hand, let us get now to some interesting things, namely
computations. We will be mainly interested in the functions xa and ax, which remain
something quite mysterious. Regarding xa, we first have the following result:

Theorem 8.1. We have the generalized binomial formula

(1 + x)a =
∞∑
k=0

(
a

k

)
xk

with the generalized binomial coefficients being given by(
a

k

)
=
a(a− 1) . . . (a− k + 1)

k!

valid for any exponent a ∈ Z, and any |x| < 1.

Proof. This is something quite tricky, the idea being as follows:

(1) For exponents a ∈ N, this is something that we know well from chapter 1, and
which is valid for any x ∈ R, coming from the usual binomial formula, namely:

(1 + x)n =
n∑

k=0

(
n

k

)
xk

(2) For the exponent a = −1 this is something that we know from chapter 1 too,
coming from the following formula, valid for any |x| < 1:

1

1 + x
= 1− x+ x2 − x3 + . . .

Indeed, this is exactly our generalized binomial formula at a = −1, because:(
−1

k

)
=

(−1)(−2) . . . (−k)
k!

= (−1)k

163
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(3) Let us discuss now the general case a ∈ −N. With a = −n, and n ∈ N, the
generalized binomial coefficients are given by the following formula:(

−n
k

)
=

(−n)(−n− 1) . . . (−n− k + 1)

k!

= (−1)k
n(n+ 1) . . . (n+ k − 1)

k!

= (−1)k
(n+ k − 1)!

(n− 1)!k!

= (−1)k
(
n+ k − 1

n− 1

)
Thus, our generalized binomial formula at a = −n, and n ∈ N, reads:

1

(1 + t)n
=

∞∑
k=0

(−1)k
(
n+ k − 1

n− 1

)
tk

(4) In order to prove this formula, it is convenient to write it with −t instead of t, in
order to get rid of signs. The formula to be proved becomes:

1

(1− t)n
=

∞∑
k=0

(
n+ k − 1

n− 1

)
tk

We prove this by recurrence on n. At n = 1 this formula definitely holds, as explained
in (2) above. So, assume that the formula holds at n ∈ N. We have then:

1

(1− t)n+1
=

1

1− t
· 1

(1− t)n

=
∞∑
k=0

tk
∞∑
l=0

(
n+ l − 1

n− 1

)
tl

=
∞∑
s=0

ts
s∑

l=0

(
n+ l − 1

n− 1

)
On the other hand, the formula that we want to prove is:

1

(1− t)n+1
=

∞∑
s=0

(
n+ s

n

)
tk

Thus, in order to finish, we must prove the following formula:

s∑
l=0

(
n+ l − 1

n− 1

)
=

(
n+ s

n

)
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(5) In order to prove this latter formula, we proceed by recurrence on s ∈ N. At s = 0
the formula is trivial, 1 = 1. So, assume that the formula holds at s ∈ N. In order to
prove the formula at s+ 1, we are in need of the following formula:(

n+ s

n

)
+

(
n+ s

n− 1

)
=

(
n+ s+ 1

n

)
But this is the Pascal formula, that we know from chapter 1, and we are done. □

8b. Square roots

Quite interestingly, we have as well the following result:

Theorem 8.2. The generalized binomial formula, namely

(1 + x)a =
∞∑
k=0

(
a

k

)
xk

holds as well at a = ±1/2. In practice, at a = 1/2 we obtain the formula

√
1 + t = 1− 2

∞∑
k=1

Ck−1

(
−t
4

)k

with Ck =
1

k+1

(
2k
k

)
being the Catalan numbers, and at a = −1/2 we obtain

1√
1 + t

=
∞∑
k=0

Dk

(
−t
4

)k

with Dk =
(
2k
k

)
being the central binomial coefficients.

Proof. This can be done in several steps, as follows:

(1) At a = 1/2, the generalized binomial coefficients are as follows:(
1/2

k

)
=

1/2(−1/2) . . . (3/2− k)

k!

= (−1)k−11 · 3 · 5 . . . (2k − 3)

2kk!

= (−1)k−1 (2k − 2)!

2k−1(k − 1)!2kk!

= −2

(
−1

4

)k

Ck−1
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(2) At a = −1/2, the generalized binomial coefficients are as follows:(
−1/2

k

)
=

−1/2(−3/2) . . . (1/2− k)

k!

= (−1)k
1 · 3 · 5 . . . (2k − 1)

2kk!

= (−1)k
(2k)!

2kk!2kk!

=

(
−1

4

)k

Dk

(3) Summarizing, we have proved so far that the binomial formula at a = ±1/2 is
equivalent to the explicit formulae in the statement, involving the Catalan numbers Ck,
and the central binomial coefficients Dk. It remains now to prove that these two explicit
formulae hold indeed. For this purpose, let us write these formulae as follows:

√
1− 4t = 1− 2

∞∑
k=1

Ck−1t
k ,

1√
1− 4t

=
∞∑
k=0

Dkt
k

In order to check these latter formulae, we must prove the following identities:(
1− 2

∞∑
k=1

Ck−1t
k

)2

= 1− 4t ,

(
∞∑
k=0

Dkt
k

)2

=
1

1− 4t

(4) As a first observation, the formula on the left is equivalent to:∑
k+l=n

CkCl = Cn+1

By using the series for 1/(1− 4t), the formula on the right is equivalent to:∑
k+l=n

DkDl = 4n

Finally, observe that if our formulae hold indeed, by multiplying we must have:∑
k+l=n

CkDl =
Dn+1

2

(5) Summarizing, we have to understand 3 formulae, which look quite similar. Let us
first attempt to prove

∑
k+l=nDkDl = 4n, by recurrence. We have:

Dk+1 =

(
2k + 2

k + 1

)
=

4k + 2

k + 1

(
2k

k

)
=

(
4− 2

k + 1

)
Dk
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Thus, assuming that we have
∑

k+l=nDkDl = 4n, we obtain:∑
k+l=n+1

DkDl = D0Dn+1 +
∑

k+l=n

(
4− 2

k + 1

)
DkDl

= Dn+1 + 4
∑

k+l=n

DkDl − 2
∑

k+l=n

DkDl

k + 1

= Dn+1 + 4n+1 − 2
∑

k+l=n

CkDl

Thus, this leads to a sort of half-failure, the conclusion being that for proving by
recurrence the second formula in (4), we need the third formula in (4).

(6) All this suggests a systematic look at the three formulae in (4). According to our
various observations above, these three formulae are equivalent, and so it is enough to
prove one of them. We will chose here to prove the first one, namely:∑

k+l=n

CkCl = Cn+1

(7) For this purpose, we will trick. Let us count the Dyck paths in the plane, which
are by definition the paths from (0, 0) to (n, n), marching North-East over the integer
lattice Z2 ⊂ R2, by staying inside the square [0, n]× [0, n], and staying as well under the
diagonal of this square. As an example, here are the 5 possible Dyck paths at n = 3:

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

In fact, the number C ′
n of these paths is as follows, coinciding with Cn:

1, 1, 2, 5, 14, 42, 132, 429, . . .

(8) We will prove that the numbers C ′
n satisfy the recurrence for the numbers Cn that

we want to prove, from (6), and on the other hand we will prove that we have C ′
n = Cn.

Getting to work, in what regards our first task, this is easy, because when looking at
where our path last intersects the diagonal of the square, we obtain, as desired:

C ′
n =

∑
k+l=n−1

C ′
kC

′
l

(9) In what regards now our second task, proving that we have C ′
n = Cn, this is more

tricky. If we ignore the assumption that our path must stay under the diagonal of the
square, we have

(
2n
n

)
such paths. And among these, we have the “good” ones, those that

we want to count, and then the “bad” ones, those that we want to ignore.
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(10) So, let us count the bad paths, those crossing the diagonal of the square, and
reaching the higher diagonal next to it, the one joining (0, 1) and (n, n + 1). In order to
count these, the trick is to “flip” their bad part over that higher diagonal, as follows:

· · · · · ·
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦

(11) Now observe that, as it is obvious on the above picture, due to the flipping, the
flipped bad path will no longer end in (n, n), but rather in (n− 1, n+1). Moreover, more
is true, in the sense that, by thinking a bit, we see that the flipped bad paths are precisely
those ending in (n− 1, n+ 1). Thus, good news, we are done with the count.

(12) To finish now, by putting everything together, we have:

C ′
n =

(
2n

n

)
−
(

2n

n− 1

)
=

(
2n

n

)
− n

n+ 1

(
2n

n

)
=

1

n+ 1

(
2n

n

)
Thus we have indeed C ′

n = Cn, and this finishes the proof. □

The generalized binomial formula holds in fact for any exponent a ∈ Z/2, after some
combinatorial pain, and even for any a ∈ R, but this is non-trivial. More on this later.

8c. Catalan numbers

The Catalan numbers Ck that we met above have many other interesting properties:

Theorem 8.3. The Catalan numbers Ck count:

(1) The length 2k loops on N, based at 0.
(2) The noncrossing pairings of 1, . . . , 2k.
(3) The noncrossing partitions of 1, . . . , k.
(4) The length 2k Dyck paths in the plane.

Proof. All this is standard combinatorics, the idea being as follows:
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(1) To start with, in what regards the various objects involved, the length 2k loops
on N are the length 2k loops on N that we know, and the same goes for the noncrossing
pairings of 1, . . . , 2k, and for the noncrossing partitions of 1, . . . , k, the idea here being
that you must be able to draw the pairing or partition in a noncrossing way.

(2) Thus, we have definitions for all the objects involved, and in each case, if you start
counting them, you always end up with the same sequence of numbers, namely:

1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, . . .

(3) In order to prove now that (1-4) produce indeed the same numbers, many things
can be said. The idea is that, leaving aside mathematical brevity, and more specifically
abstract reasonings of type a = b, b = c =⇒ a = c, what we have to do, in order to fully
understand what is going on, is to etablish

(
4
2

)
= 6 equalities, via bijective proofs.

(4) However, as a matter of having our theorem formally proved, the point is that, in
each of the cases (1-4), the numbers Ck that we get are easily seen to be subject to:

Ck+1 =
∑

a+b=k

CaCb

The initial data being the same, namely C1 = 1 and C2 = 2, in each of the cases (1-4)
under consideration, we get indeed the same numbers. □

Here is as well a useful analytic result, regarding the Catalan numbers:

Theorem 8.4. The Catalan numbers have the following properties:

(1) They satisfy Ck+1 =
∑

a+b=k CaCb.

(2) The series f(z) =
∑

k≥0Ckz
k satisfies zf 2 − f + 1 = 0.

(3) This series is given by f(z) = 1−
√
1−4z
2z

.

(4) We have the formula Ck =
1

k+1

(
2k
k

)
.

Proof. Consider indeed the generating series f(z) =
∑

k≥0Ckz
k of the Catalan num-

bers. In terms of this series, the recurrence relation gives, as desired:

zf 2 =
∑
a,b≥0

CaCbz
a+b+1

=
∑
k≥1

∑
a+b=k−1

CaCbz
k

=
∑
k≥1

Ckz
k

= f − 1
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By solving the equation zf 2−f +1 = 0 found above, and choosing the solution which
is bounded at z = 0, we obtain the following formula, as claimed:

f(z) =
1−

√
1− 4z

2z

In order to compute f , we can use the generalized binomial formula, which gives:

√
1 + t = 1− 2

∞∑
k=1

1

k

(
2k − 2

k − 1

)(
−t
4

)k

Thus, we obtain the following formula for our series f :

f(z) =
1−

√
1− 4z

2z

=
∞∑
k=1

1

k

(
2k − 2

k − 1

)
zk−1

=
∞∑
k=0

1

k + 1

(
2k

k

)
zk

So, done. And exercise for you, to work out all the possible permutations of Theorem
8.2, Theorem 8.3 and Theorem 8.4, leading to various approaches to the numbers Ck. □

Many other things can be said about the Catalan numbers, mixing algebra, calculus,
probability, and more. We will be back to this, on several occasions, in what follows.

8d. Special functions

As a continuation of the above material, let us try now to count the length k paths on
Z, based at 0. At k = 1 we have 2 such paths, ending at −1 and 1, and the count results
can be pictured as follows, with everything being self-explanatory:

◦ ◦ ◦ • ◦ ◦ ◦
1 1

At k = 2 now, we have 4 paths, one of which ends at −2, two of which end at 0, and
one of which ends at 2. The results can be pictured as follows:

◦ ◦ ◦ • ◦ ◦ ◦
1 2 1

At k = 3 now, we have 8 paths, the distribution of the endpoints being as follows:

◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
1 3 3 1
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As for k = 4, here we have 16 paths, the distribution of the endpoints being as follows:

◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
1 4 6 4 1

And good news, we can see in the above the Pascal triangle, namely:

1

1 , 1

1 , 2 , 1

1 , 3 , 3 , 1

1 , 4 , 6 , 4 , 1

1 , 5 , 10 , 10 , 5 , 1
...

Thus, eventually, we found the simplest graph ever, namely Z, and we have the fol-
lowing result about it, coming as a complement to what we already know about N:

Theorem 8.5. The paths on Z are counted by the binomial coefficients. In particular,
the 2k-paths based at 0 are counted by the central binomial coefficients,(

2k

k

)
≃ 4k√

πk

with the estimate, in the k → ∞ limit, coming from the Stirling formula.

Proof. This basically follows from the above discussion, as follows:

(1) In what regards the count, we certainly have the Pascal triangle, as discovered
above, and the rest is just a matter of finishing. There are many possible ways here, a
straightforward one being that of arguing that the number C l

k of length k loops 0 → l is
subject, due to the binary choice at the end, to the following recurrence relation:

C l
k = C l−1

k−1 + C l+1
k−1

But this is exactly the recurrence for the Pascal triangle, so done with the count.

(2) In what regards the estimate, this follows indeed from Stirling, as follows:(
2k

k

)
=

(2k)!

k!k!

≃
(
2k

e

)2k √
4πk ×

( e
k

)2k 1

2πk

=
4k√
πk

Thus, we are led to the conclusions in the statement. □



172 8. ELEMENTARY FUNCTIONS

8e. Exercises

Exercises:

Exercise 8.6.

Exercise 8.7.

Exercise 8.8.

Exercise 8.9.

Exercise 8.10.

Exercise 8.11.

Exercise 8.12.

Exercise 8.13.

Bonus exercise.



Part III

Derivatives



Put me up, put me down
Put my feet back on the ground

Put me up, take my heart
And make me happy



CHAPTER 9

Derivatives, rules

9a. Derivatives

The basic idea of calculus is very simple. We are interested in functions f : R → R, and
we already know that when f is continuous at a point x, we can write an approximation
formula as follows, for the values of our function f around that point x:

f(x+ t) ≃ f(x)

The problem is now, how to improve this? And a bit of thinking at all this suggests
to look at the slope of f at the point x. Which leads us into the following notion:

Definition 9.1. A function f : R → R is called differentiable at x when

f ′(x) = lim
t→0

f(x+ t)− f(x)

t
called derivative of f at that point x, exists.

As a first remark, in order for f to be differentiable at x, that is to say, in order for
the above limit to converge, the numerator must go to 0, as the denominator t does:

lim
t→0

[f(x+ t)− f(x)] = 0

Thus, f must be continuous at x. However, the converse is not true, a basic coun-
terexample being f(x) = |x| at x = 0. Let us summarize these findings as follows:

Proposition 9.2. If f is differentiable at x, then f must be continuous at x. However,
the converse is not true, a basic counterexample being f(x) = |x|, at x = 0.

Proof. The first assertion is something that we already know, from the above. As
for the second assertion, regarding f(x) = |x|, this is something quite clear on the picture
of f , but let us prove this mathematically, based on Definition 9.1. We have:

lim
t↘0

|0 + t| − |0|
t

= lim
t↘0

t− 0

t
= 1

On the other hand, we have as well the following computation:

lim
t↗0

|0 + t| − |0|
t

= lim
t↗0

−t− 0

t
= −1

Thus, the limit in Definition 9.1 does not converge, as desired. □

175
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Generally speaking, the last assertion in Proposition 9.2 should not bother us much,
because most of the basic continuous functions are differentiable, and we will see examples
in a moment. Before that, however, let us recall why we are here, namely improving the
basic estimate f(x+ t) ≃ f(x). We can now do this, using the derivative, as follows:

Theorem 9.3. Assuming that f is differentiable at x, we have:

f(x+ t) ≃ f(x) + f ′(x)t

In other words, f is, approximately, locally affine at x.

Proof. Assume indeed that f is differentiable at x, and let us set, as before:

f ′(x) = lim
t→0

f(x+ t)− f(x)

t

By multiplying by t, we obtain that we have, once again in the t→ 0 limit:

f(x+ t)− f(x) ≃ f ′(x)t

Thus, we are led to the conclusion in the statement. □

9b. Basic examples

All this is very nice, and before developing more theory, let us work out some examples.
As a first illustration, the derivatives of the power functions are as follows:

Proposition 9.4. We have the differentiation formula

(xp)′ = pxp−1

valid for any exponent p ∈ R.

Proof. We can do this in three steps, as follows:

(1) In the case p ∈ N we can use the binomial formula, which gives, as desired:

(x+ t)p =
n∑

k=0

(
p

k

)
xp−ktk

= xp + pxp−1t+ . . .+ tp

≃ xp + pxp−1t

(2) Let us discuss now the general case p ∈ Q. We write p = m/n, with m ∈ Z and
n ∈ N. In order to do the computation, we use the following formula:

an − bn = (a− b)(an−1 + an−2b+ . . .+ bn−1)
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We set in this formula a = (x+ t)m/n and b = xm/n. We obtain, as desired:

(x+ t)m/n − xm/n =
(x+ t)m − xm

(x+ t)m(n−1)/n + . . .+ xm(n−1)/n

≃ (x+ t)m − xm

nxm(n−1)/n

≃ mxm−1t

nxm(n−1)/n

=
m

n
· xm−1−m+m/n · t

=
m

n
· xm/n−1 · t

(3) In the general case now, where p ∈ R is real, we can use a similar argument.
Indeed, given any integer n ∈ N, we have the following computation:

(x+ t)p − xp =
(x+ t)pn − xpn

(x+ t)p(n−1) + . . .+ xp(n−1)

≃ (x+ t)pn − xpn

nxp(n−1)

Now observe that we have the following estimate, with [.] being the integer part:

(x+ t)[pn] ≤ (x+ t)pn ≤ (x+ t)[pn]+1

By using the binomial formula on both sides, for the integer exponents [pn] and [pn]+1
there, we deduce that with n >> 0 we have the following estimate:

(x+ t)pn ≃ xpn + pnxpn−1t

Thus, we can finish our computation started above as follows:

(x+ t)p − xp ≃ pnxpn−1t

nxpn−p
= pxp−1t

But this gives (xp)′ = pxp−1, which finishes the proof. □

Here are some further computations, for other basic functions that we know:

Proposition 9.5. We have the following results:

(1) (sinx)′ = cosx.
(2) (cosx)′ = − sinx.
(3) (ex)′ = ex.
(4) (log x)′ = x−1.

Proof. This is quite tricky, as always when computing derivatives, as follows:
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(1) Regarding sin, the computation here goes as follows:

(sinx)′ = lim
t→0

sin(x+ t)− sinx

t

= lim
t→0

sinx cos t+ cosx sin t− sinx

t

= lim
t→0

sinx · cos t− 1

t
+ cosx · sin t

t
= cos x

Here we have used the fact, which is clear on pictures, by drawing the trigonometric
circle, that we have sin t ≃ t for t ≃ 0, plus the fact, which follows from this and from
Pythagoras, sin2+cos2 = 1, that we have as well cos t ≃ 1− t2/2, for t ≃ 0.

(2) The computation for cos is similar, as follows:

(cosx)′ = lim
t→0

cos(x+ t)− cosx

t

= lim
t→0

cosx cos t− sinx sin t− cosx

t

= lim
t→0

cosx · cos t− 1

t
− sinx · sin t

t
= − sinx

(3) For the exponential, the derivative can be computed as follows:

(ex)′ =

(
∞∑
k=0

xk

k!

)′

=
∞∑
k=0

kxk−1

k!

= ex

(4) As for the logarithm, the computation here is as follows, using log(1 + y) ≃ y for
y ≃ 0, which follows from ey ≃ 1 + y that we found in (3), by taking the logarithm:

(log x)′ = lim
t→0

log(x+ t)− log x

t

= lim
t→0

log(1 + t/x)

t

=
1

x

Thus, we are led to the formulae in the statement. □

Speaking exponentials, we can now formulate a nice result about them:
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Theorem 9.6. The exponential function, namely

ex =
∞∑
k=0

xk

k!

is the unique power series satisfying f ′ = f and f(0) = 1.

Proof. Consider indeed a power series satisfying f ′ = f and f(0) = 1. Due to
f(0) = 1, the first term must be 1, and so our function must look as follows:

f(x) = 1 +
∞∑
k=1

ckx
k

According to our differentiation rules, the derivative of this series is given by:

f(x) =
∞∑
k=1

kckx
k−1

Thus, the equation f ′ = f is equivalent to the following equalities:

c1 = 1 , 2c2 = c1 , 3c3 = c2 , 4c4 = c3 , . . .

But this system of equations can be solved by recurrence, as follows:

c1 = 1 , c2 =
1

2
, c3 =

1

2× 3
, c4 =

1

2× 3× 4
, . . .

Thus we have ck = 1/k!, leading to the conclusion in the statement. □

Observe that the above result leads to a more conceptual explanation for the number
e itself. To be more precise, e ∈ R is the unique number satisfying:

(ex)′ = ex

Which is very nice, at least we know one thing.

9c. Theorems, rules

Let us work out now some general results. We have here the following statement:

Theorem 9.7. We have the following formulae:

(1) (f + g)′ = f ′ + g′.
(2) (fg)′ = f ′g + fg′.
(3) (f ◦ g)′ = (f ′ ◦ g) · g′.

Proof. All these formulae are elementary, the idea being as follows:
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(1) This follows indeed from definitions, the computation being as follows:

(f + g)′(x) = lim
t→0

(f + g)(x+ t)− (f + g)(x)

t

= lim
t→0

(
f(x+ t)− f(x)

t
+
g(x+ t)− g(x)

t

)
= lim

t→0

f(x+ t)− f(x)

t
+ lim

t→0

g(x+ t)− g(x)

t
= f ′(x) + g′(x)

(2) This follows from definitions too, the computation, by using the more convenient
formula f(x+ t) ≃ f(x) + f ′(x)t as a definition for the derivative, being as follows:

(fg)(x+ t) = f(x+ t)g(x+ t)

≃ (f(x) + f ′(x)t)(g(x) + g′(x)t)

≃ f(x)g(x) + (f ′(x)g(x) + f(x)g′(x))t

Indeed, we obtain from this that the derivative is the coefficient of t, namely:

(fg)′(x) = f ′(x)g(x) + f(x)g′(x)

(3) Regarding compositions, the computation here is as follows, again by using the
more convenient formula f(x+ t) ≃ f(x) + f ′(x)t as a definition for the derivative:

(f ◦ g)(x+ t) = f(g(x+ t))

≃ f(g(x) + g′(x)t)

≃ f(g(x)) + f ′(g(x))g′(x)t

Indeed, we obtain from this that the derivative is the coefficient of t, namely:

(f ◦ g)′(x) = f ′(g(x))g′(x)

Thus, we are led to the conclusions in the statement. □

We can of course combine the above formulae, and we obtain for instance:

Proposition 9.8. The derivatives of fractions are given by:(
f

g

)′

=
f ′g − fg′

g2

In particular, we have the following formula, for the derivative of inverses:(
1

f

)′

= − f ′

f 2

In fact, we have (fp)′ = pfp−1, for any exponent p ∈ R.
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Proof. This statement is written a bit upside down, and for the proof it is better to
proceed backwards. To be more precise, by using (xp)′ = pxp−1 and Theorem 9.7 (3), we
obtain the third formula. Then, with p = −1, we obtain from this the second formula.
And finally, by using this second formula and Theorem 9.7 (2), we obtain:(

f

g

)′

=

(
f · 1

g

)′

= f ′ · 1
g
+ f

(
1

g

)′

=
f ′

g
− fg′

g2

=
f ′g − fg′

g2

Thus, we are led to the formulae in the statement. □

All the above might seem to start to be a bit too complex, with too many things to
be memorized and so on, and as a piece of advice here, we have:

Advice 9.9. Memorize and cherish the formula for fractions(
f

g

)′

=
f ′g − fg′

g2

along with the usual addition formula, that you know well

a

b
+
c

d
=
ad+ bc

bd

and generally speaking, never mess with fractions.

With this coming from a lifelong calculus teacher and scientist, mathematics can be
difficult, and many things can be pardoned, but not messing with fractions. And with
this going beyond mathematics too, say if you want to make a living by selling apples or
tomatoes at the market, fine, but you’ll need to know well fractions, trust me.

Back to work now, with the above formulae in hand, we can do all sorts of computations
for other basic functions that we know, including tanx, or arctanx:

Proposition 9.10. We have the following formulae,

(tanx)′ =
1

cos2 x
, (arctanx)′ =

1

1 + x2

and the derivatives of the remaining trigonometric functions can be computed as well.
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Proof. For tan, we have the following computation:

(tanx)′ =

(
sinx

cosx

)′

=
sin′ x cosx− sinx cos′ x

cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x
As for arctan, we can use here the following computation:

(tan ◦ arctan)′(x) = tan′(arctanx) arctan′(x)

=
1

cos2(arctanx)
arctan′(x)

Indeed, since the term on the left is simply x′ = 1, we obtain from this:

arctan′(x) = cos2(arctanx)

On the other hand, with t = arctanx we know that we have tan t = x, and so:

cos2(arctanx) = cos2 t =
1

1 + tan2 t
=

1

1 + x2

Thus, we are led to the formula in the statement, namely:

(arctanx)′ =
1

1 + x2

As for the last assertion, we will leave this as an exercise. □

9d. Local extrema

At the theoretical level now, further building on Theorem 9.3, we have:

Theorem 9.11. The local minima and maxima of a differentiable function f : R → R
appear at the points x ∈ R where:

f ′(x) = 0

However, the converse of this fact is not true in general.

Proof. The first assertion follows from the formula f(x+ t) ≃ f(x)+f ′(x)t. Indeed,
let us rewrite this formula, more conveniently, in the following way:

f(x+ t)− f(x) ≃ f ′(x)t

Now saying that our function f has a local maximum at x ∈ R means that there exists
a number ε > 0 such that the following happens:

f(x+ t) ≥ f(x) , ∀t ∈ [−ε, ε]
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We conclude that we must have f ′(x)t ≥ 0 for sufficiently small t, and since this small
t can be both positive or negative, this gives, as desired:

f ′(x) = 0

Similarly, saying that our function f has a local minimum at x ∈ R means that there
exists a number ε > 0 such that the following happens:

f(x+ t) ≤ f(x) , ∀t ∈ [−ε, ε]
Thus f ′(x)t ≤ 0 for small t, and this gives, as before, f ′(x) = 0. Finally, in what

regards the converse, the simplest counterexample here is the following function:

f(x) = x3

Indeed, we have f ′(x) = 3x2, and in particular f ′(0) = 0. But our function being
clearly increasing, x = 0 is not a local maximum, nor a local minimum. □

As an important consequence of Theorem 9.11, we have:

Theorem 9.12. Assuming that f : [a, b] → R is differentiable, we have

f(b)− f(a)

b− a
= f ′(c)

for some c ∈ (a, b), called mean value property of f .

Proof. In the case f(a) = f(b), the result, called Rolle theorem, states that we have
f ′(c) = 0 for some c ∈ (a, b), and follows from Theorem 9.11. Now in what regards our
statement, due to Lagrange, this follows from Rolle, applied to the following function:

g(x) = f(x)− f(b)− f(a)

b− a
· x

Indeed, we have g(a) = g(b), due to our choice of the constant on the right, so we get
g′(c) = 0 for some c ∈ (a, b), which translates into the formula in the statement. □

In practice, Theorem 9.11 can be used in order to find the maximum and minimum
of any differentiable function, and this method is best recalled as follows:

Algorithm 9.13. In order to find the minimum and maximum of f : [a, b] → R:
(1) Compute the derivative f ′.
(2) Solve the equation f ′(x) = 0.
(3) Add a, b to your set of solutions.
(4) Compute f(x), for all your solutions.
(5) Compute the min/max of all these f(x) values.
(6) Then this is the min/max of your function.

Needless to say, all this is very interesting, and powerful. The general problem in
any type of applied mathematics is that of finding the minimum or maximum of some
function, and we have now an algorithm for dealing with such questions. Very nice.
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9e. Exercises

Exercises:

Exercise 9.14.

Exercise 9.15.

Exercise 9.16.

Exercise 9.17.

Exercise 9.18.

Exercise 9.19.

Exercise 9.20.

Exercise 9.21.

Bonus exercise.



CHAPTER 10

Second derivatives

10a. Second derivatives

The derivative theory that we have is already quite powerful, and can be used in order
to solve all sorts of interesting questions, but with a bit more effort, we can do better.
Indeed, at a more advanced level, we can come up with the following notion:

Definition 10.1. We say that f : R → R is twice differentiable if it is differentiable,
and its derivative f ′ : R → R is differentiable too. The derivative of f ′ is denoted

f ′′ : R → R
and is called second derivative of f .

You might probably wonder why coming with this definition, which looks a bit abstract
and complicated, instead of further developing the theory of the first derivative, which
looks like something very reasonable and useful. Good point, and answer to this coming
in a moment. But before that, let us get a bit familiar with f ′′. We first have:

Interpretation 10.2. The second derivative f ′′(x) ∈ R is the number which:

(1) Expresses the growth rate of the slope f ′(z) at the point x.
(2) Gives us the acceleration of the function f at the point x.
(3) Computes how much different is f(x), compared to f(z) with z ≃ x.
(4) Tells us how much convex or concave is f , around the point x.

So, this is the truth about the second derivative, making it clear that what we have
here is a very interesting notion. In practice now, the situation is as follows:

(1) This is something very intuitive, which follows from the usual interpretation of the
derivative, both as a growth rate, and a slope.

(2) This is some sort of reformulation of (1), using the intuitive meaning of the word
“acceleration”, with the relevant physics equations, due to Newton, being as follows:

v = ẋ , a = v̇

To be more precise, here x, v, a are the position, speed and acceleration, and the dot
denotes the time derivative, and according to these equations, we have a = ẍ, second
derivative. We will be back to these equations later, in chapter 12 below.

185
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(3) This is something more subtle, and very useful too, which is of statistical nature,
and that we will clarify with some mathematics, in a moment.

(4) This is something quite subtle too, and again very useful in practice, that we will
again clarify with some mathematics, later on this chapter.

All in all, what we have above is a mixture of trivial and non-trivial facts, and do not
worry, we will get familiar with all this, in the next few pages.

10b. Basic examples

In practice now, in order to get familiar with the second derivatives, let us first compute
the second derivatives of the functions that we are familiar with, see what we get.

The result here, which is perhaps not very enlightening at this stage of things, but
which certainly looks technically useful, is as follows:

Theorem 10.3. The second derivatives of the basic functions are as follows:

(1) (xp)′′ = p(p− 1)xp−2.
(2) sin′′ = − sin.
(3) cos′′ = − cos.
(4) exp′′ = exp.
(5) log′′(x) = −1/x2.

Proof. The various formulae in the statement all follow from the various formulae
for the derivatives established before, as follows:

(xp)′′ = (pxp−1)′ = p(p− 1)xp−2

(sinx)′′ = (cosx)′ = − sinx

(cosx)′′ = (− sinx)′ = − cosx

(ex)′′ = (ex)′ = ex

(log x)′′ = (−1/x)′ = −1/x2

Thus, we are led to the formulae in the statement. □

At a more specialized level now, let us record as well the following result:

Proposition 10.4. We have the following second derivative formulae,

(tanx)′′ =
2 sinx

cos3 x
, (arctanx)′′ = − 2x

(1 + x2)2

and the second derivatives of the remaining trigonometric functions can be computed too.
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Proof. Regarding the tangent, we have here the following computation:

(tanx)′′ =

(
1

cos2 x

)′

= −(cos2 x)′

cos4 x

=
2 cosx sinx

cos4 x

=
2 sinx

cos3 x

As for the arctangent, the computation here is as follows:

(arctanx)′′ =

(
1

1 + x2

)′

= − 2x

(1 + x2)2

Finally, we will leave the last assertion as an instructive exercise. □

At a theoretical level now, let us record the following result:

Proposition 10.5. There are functions which are differentiable, but not twice differ-
entiable.

Proof. In order to construct a counterexample, recall first that the simplest example
of a function which is continuous, but not differentiable, was f(x) = |x|, the idea behind
this being to use a “piecewise linear function whose branches do not fit well”. In connection
now with our question, piecewise linear will not do, but we can use a similar idea, namely
“piecewise quadratic function whose branches do not fit well”. So, let us set:

f(x) =

{
ax2 (x ≤ 0)

bx2 (x ≥ 0)

This function is then differentiable, with its derivative being:

f ′(x) =

{
2ax (x ≤ 0)

2bx (x ≥ 0)

Now for getting our counterexample, we can set a = −1, b = 1, so that f is:

f(x) =

{
−x2 (x ≤ 0)

x2 (x ≥ 0)

Indeed, the derivative is f ′(x) = 2|x|, which is not differentiable, as desired. □
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10c. Taylor formula

Getting now to theory, our main purpose will be that of improving, with the help of
the second derivative, the basic approximation formula for functions, namely:

f(x+ t) ≃ f(x) + f ′(x)t

In order to do so, things will be quite tricky, and a bit more geometric, and perhaps
less intuitive, than before. We will be in need of the following standard result:

Theorem 10.6. The 0/0 type limits can be computed according to the formula

f(x)

g(x)
≃ f ′(x)

g′(x)

called L’Hôpital’s rule.

Proof. The above formula holds indeed, as an application of the general derivative
theory from chapter 9, which gives, in the situation from the statement:

f(x+ t)

g(x+ t)
≃ f(x) + f ′(x)t

g(x) + g′(x)t

=
f ′(x)t

g′(x)t

=
f ′(x)

g′(x)

Thus, we are led to the conclusion in the statement. □

We can now formulate the following key result:

Theorem 10.7. Any twice differentiable function f : R → R is locally quadratic,

f(x+ t) ≃ f(x) + f ′(x)t+
f ′′(x)

2
t2

with f ′′(x) being as usual the derivative of the function f ′ : R → R at the point x.

Proof. Assume indeed that f is twice differentiable at x, and let us try to construct
an approximation of f around x by a quadratic function, as follows:

f(x+ t) ≃ a+ bt+ ct2

We must have a = f(x), and we also know from chapter 9 that b = f ′(x) is the correct
choice for the coefficient of t. Thus, our approximation must be as follows:

f(x+ t) ≃ f(x) + f ′(x)t+ ct2

In order to find the correct choice for c ∈ R, observe that the function t → f(x + t)
matches with t→ f(x)+ f ′(x)t+ ct2 in what regards the value at t = 0, and also in what
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regards the value of the derivative at t = 0. Thus, the correct choice of c ∈ R should be
the one making match the second derivatives at t = 0, and this gives:

f ′′(x) = 2c

We are therefore led to the approximation formula in the statement, namely:

f(x+ t) ≃ f(x) + f ′(x)t+
f ′′(x)

2
t2

In order to prove now that this formula holds indeed, we can use L’Hôpital’s rule.
Indeed, by using this, if we denote by φ(t) ≃ P (t) the formula to be proved, we have:

φ(t)− P (t)

t2
≃ φ′(t)− P ′(t)

2t

≃ φ′′(t)− P ′′(t)

2

=
f ′′(x)− f ′′(x)

2
= 0

Thus, we are led to the conclusion in the statement. □

As a first application of this, justifying Interpretation 10.2 (3), we have the following
statement, which is a bit heuristic, but we will call it however Proposition:

Proposition 10.8. Intuitively speaking, the second derivative f ′′(x) ∈ R computes
how much different is f(x), compared to the average of f(z), with z ≃ x.

Proof. As already mentioned, this is something a bit heuristic, but which is good to
know. Let us write the formula in Theorem 10.7, as such, and with t→ −t too:

f(x+ t) ≃ f(x) + f ′(x)t+
f ′′(x)

2
t2

f(x− t) ≃ f(x)− f ′(x)t+
f ′′(x)

2
t2

By making the average, we obtain the following formula:

f(x+ t) + f(x− t)

2
= f(x) +

f ′′(x)

2
t2

Now assume that we have found a way of averaging things over t ∈ [−ε, ε], with the
corresponding averages being denoted I. We obtain from the above:

I(f) = f(x) + f ′′(x)I

(
t2

2

)
But this is what our statement says, save for some uncertainties regarding the aver-

aging method, and for the precise value of I(t2/2). We will leave this for later. □
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Back now to rigorous mathematics, we have the following key result:

Theorem 10.9. The local minima and local maxima of a twice differentiable function
f : R → R appear at the points x ∈ R where

f ′(x) = 0

with the local minima corresponding to the case f ′(x) ≥ 0, and with the local maxima
corresponding to the case f ′′(x) ≤ 0.

Proof. The first assertion is something that we already know. As for the second
assertion, we can use the formula in Theorem 10.7, which in the case f ′(x) = 0 reads:

f(x+ t) ≃ f(x) +
f ′′(x)

2
t2

Indeed, assuming f ′′(x) ̸= 0, it is clear that the condition f ′′(x) > 0 will produce a
local minimum, and that the condition f ′′(x) < 0 will produce a local maximum. □

As before with derivatives, the above result is not the end of the story with the
mathematics of the local minima and maxima, because things are undetermined when:

f ′(x) = f ′′(x) = 0

For instance the functions ±xn with n ∈ N all satisfy this condition at x = 0, which
is a minimum for the functions of type x2m, a maximum for the functions of type −x2m,
and not a local minimum or local maximum for the functions of type ±x2m+1.

We will be back to such questions in the next chapter, with a full, more advanced
discussion about this, by using higher derivatives.

There are some comments to be made as well in relation with the algorithm presented
at the end of the previous chapter, for finding the extrema of the function. Normally
that algorithm stays strong, because Theorem 10.9 can only help in relation with the
final steps, and is it worth it to compute the second derivative f ′′, just for getting rid of
roughly 1/2 of the f(x) values to be compared. However, in certain cases, this method
proves to be useful, so Theorem 10.9 is good to know, when applying that algorithm.

Again, we will be back to such questions in the next chapter, with a full, more advanced
discussion about all this, by using higher derivatives.

10d. Convex functions

As a main concrete application now of the second derivative, which is something very
useful in practice, and related to Interpretation 10.2 (4), we have the following result:
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Theorem 10.10. Given a convex function f : R → R, we have the following Jensen
inequality, for any x1, . . . , xN ∈ R, and any λ1, . . . , λN > 0 summing up to 1,

f(λ1x1 + . . .+ λNxN) ≤ λ1f(x1) + . . .+ λNxN

with equality when x1 = . . . = xN . In particular, by taking the weights λi to be all equal,
we obtain the following Jensen inequality, valid for any x1, . . . , xN ∈ R,

f

(
x1 + . . .+ xN

N

)
≤ f(x1) + . . .+ f(xN)

N

and once again with equality when x1 = . . . = xN . A similar statement holds for the
concave functions, with all the inequalities being reversed.

Proof. This is indeed something quite routine, the idea being as follows:

(1) First, we can talk about convex functions in a usual, intuitive way, with this
meaning by definition that the following inequality must be satisfied:

f

(
x+ y

2

)
≤ f(x) + f(y)

2

(2) But this means, via a simple argument, by approximating numbers t ∈ [0, 1] by
sums of powers 2−k, that for any t ∈ [0, 1] we must have:

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

Alternatively, via yet another simple argument, this time by doing some geometry
with triangles, this means that we must have:

f

(
x1 + . . .+ xN

N

)
≤ f(x1) + . . .+ f(xN)

N

But then, again alternatively, by combining the above two simple arguments, the
following must happen, for any λ1, . . . , λN > 0 summing up to 1:

f(λ1x1 + . . .+ λNxN) ≤ λ1f(x1) + . . .+ λNxN

(3) Summarizing, all our Jensen inequalities, at N = 2 and at N ∈ N arbitrary, are
equivalent. The point now is that, if we look at what the first Jensen inequality, that we
took as definition for the convexity, exactly means, this is simply equivalent to:

f ′′(x) ≥ 0

(4) Thus, we are led to the conclusions in the statement, regarding the convex func-
tions. As for the concave functions, the proof here is similar. Alternatively, we can say
that f is concave precisely when −f is convex, and get the results from what we have. □

As a basic application of the Jensen inequality, which is very classical, we have:
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Theorem 10.11. For any p ∈ (1,∞) we have the following inequality,∣∣∣∣x1 + . . .+ xN
N

∣∣∣∣p ≤ |x1|p + . . .+ |xN |p

N

and for any p ∈ (0, 1) we have the following inequality,∣∣∣∣x1 + . . .+ xN
N

∣∣∣∣p ≥ |x1|p + . . .+ |xN |p

N

with in both cases equality precisely when |x1| = . . . = |xN |.

Proof. This follows indeed from Theorem 10.10, because we have:

(xp)′′ = p(p− 1)xp−2

Thus xp is convex for p > 1 and concave for p < 1, which gives the results. □

Observe that at p = 2 we obtain as particular case of the above inequality the Cauchy-
Schwarz inequality, or rather something equivalent to it, namely:(

x1 + . . .+ xN
N

)2

≤ x21 + . . .+ x2N
N

We will be back to this later on in this book, when talking scalars products and Hilbert
spaces, with some more conceptual proofs for such inequalities.

As yet another important application of the Jensen inequality, we have:

Theorem 10.12. We have the Young inequality,

ab ≤ ap

p
+
bq

q

valid for any a, b ≥ 0, and any exponents p, q > 1 satisfying 1
p
+ 1

q
= 1.

Proof. We use the logarithm function, which is concave on (0,∞), due to:

(log x)′′ =

(
−1

x

)′

= − 1

x2

Thus we can apply the Jensen inequality, and we obtain in this way:

log

(
ap

p
+
bq

q

)
≥ log(ap)

p
+

log(bq)

q

= log(a) + log(b)

= log(ab)

Now by exponentiating, we obtain the Young inequality. □
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Observe that for the simplest exponents, namely p = q = 2, the Young inequality
gives something which is trivial, but is very useful and basic, namely:

ab ≤ a2 + b2

2

In general, the Young inequality is something non-trivial, and the idea with it is that
“when stuck with a problem, and with ab ≤ a2+b2

2
not working, try Young”.

Moving forward now, as a consequence of the Young inequality, we have:

Theorem 10.13 (Hölder). Assuming that p, q ≥ 1 are conjugate, in the sense that

1

p
+

1

q
= 1

we have the following inequality, valid for any two vectors x, y ∈ CN ,

∑
i

|xiyi| ≤

(∑
i

|xi|p
)1/p(∑

i

|yi|q
)1/q

with the convention that an ∞ exponent produces a max |xi| quantity.

Proof. This is something very standard, the idea being as follows:

(1) Assume first that we are dealing with finite exponents, p, q ∈ (1,∞). By linearity
we can assume that x, y are normalized, in the following way:∑

i

|xi|p =
∑
i

|yi|q = 1

In this case, we want to prove that the following inequality holds:∑
i

|xiyi| ≤ 1

For this purpose, we use the Young inequality, which gives, for any i:

|xiyi| ≤
|xi|p

p
+

|yi|q

q

By summing now over i = 1, . . . , N , we obtain from this, as desired:∑
i

|xiyi| ≤
∑
i

|xi|p

p
+
∑
i

|yi|q

q

=
1

p
+

1

q
= 1
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(2) In the case p = 1 and q = ∞, or vice versa, the inequality holds too, trivially, with
the convention that an ∞ exponent produces a max quantity, according to:

lim
p→∞

(∑
i

|xi|p
)1/p

= max |xi|

Thus, we are led to the conclusion in the statement. □

As a consequence now of the Hölder inequality, we have:

Theorem 10.14 (Minkowski). Assuming p ∈ [1,∞], we have the inequality(∑
i

|xi + yi|p
)1/p

≤

(∑
i

|xi|p
)1/p

+

(∑
i

|yi|p
)1/p

for any two vectors x, y ∈ CN , with our usual conventions at p = ∞.

Proof. We have indeed the following estimate, using the Hölder inequality, and the
conjugate exponent q ∈ [1,∞], given by 1/p+ 1/q = 1:∑

i

|xi + yi|p =
∑
i

|xi + yi| · |xi + yi|p−1

≤
∑
i

|xi| · |xi + yi|p−1 +
∑
i

|yi| · |xi + yi|p−1

≤

(∑
i

|xi|p
)1/p(∑

i

|xi + yi|(p−1)q

)1/q

+

(∑
i

|yi|p
)1/p(∑

i

|xi + yi|(p−1)q

)1/q

=

(∑
i

|xi|p
)1/p

+

(∑
i

|yi|p
)1/p

(∑
i

|xi + yi|p
)1−1/p

Here we have used the following fact, at the end:

1

p
+

1

q
= 1 =⇒ 1

q
=
p− 1

p
=⇒ (p− 1)q = p

Now by dividing both sides by the last quantity at the end, we obtain:(∑
i

|xi + yi|p
)1/p

≤

(∑
i

|xi|p
)1/p

+

(∑
i

|yi|p
)1/p

Thus, we are led to the conclusion in the statement. □
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Good news, done with inequalities, and as a consequence of the above results, and
more specifically of the Minkowski inequality obtained above, we can formulate:

Theorem 10.15. Given an exponent p ∈ [1,∞], the formula

||x||p =

(∑
i

|xi|p
)1/p

with usual conventions at p = ∞, defines a norm on CN .

Proof. Man things can be said here, the idea being as follows:

(1) To start with, the normed space assertion follows from the Minkowski inequality,
established above, which proves indeed the triangle inequality, for our norm.

(2) As a technical remark, the cases p = 1, 2,∞, which are of particular interest, in
practice, do not really need all the above, and exercise for you, to figure out all this.

(3) To be more precise, the cases p = 1,∞ are elementary, and p = 2 only needs the
knowledge of the Cauchy-Schwarz inequality, which is something elementary too.

(4) Finally, many interesting things can be said, about the spaces that we constructed.
We will be back to this, on several occasions, in what follows. □

Very nice all this, but you might wonder at this point, what is the relation of all this
with functions. In answer, Theorem 10.15 can be reformulated as follows:

Theorem 10.16. Given an exponent p ∈ [1,∞], the formula

||f ||p =
(∫

|f(x)|p
)1/p

defines a norm on the space of functions f : {1, . . . , N} → C.

Proof. This is a just fancy reformulation of Theorem 10.15, by using the standard
fact, that you might know from linear algebra, that the space formed by the functions
f : {1, . . . , N} → C is canonically isomorphic to CN , in the obvious way, as follows:

f →

 f(1)
...

f(N)


Moreover, in this picture, we must replace the sums from the CN context, on the

right, with integrals with respect to the counting measure on {1, . . . , N}, in the function
context, on the left. Thus, we are led to the conclusion in the statement. □

Finally, let us mention that there are functional versions of the above inequalities,
meaning with numbers replaced by functions. We will discuss this, later in this book.
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10e. Exercises

Exercises:

Exercise 10.17.

Exercise 10.18.

Exercise 10.19.

Exercise 10.20.

Exercise 10.21.

Exercise 10.22.

Exercise 10.23.

Exercise 10.24.

Bonus exercise.



CHAPTER 11

Taylor formula

11a. Taylor formula

Back now to the general theory of the derivatives, and their theoretical applications,
we can further develop our basic approximation method, at order 3, at order 4, and so
on. Let us start with something nice and intuitive, as follows:

Fact 11.1. Third derivatives, and the jerk.

Here the terminology comes from real life and classical mechanics, where the jerk is by
definition the derivative of the acceleration, and so is the second derivative of the speed,
and so is the third derivative of the position, according to the following formulae:

j = ȧ = v̈ =
...
x

As before with second derivatives, many other things can be said. Let us also record
the formulae of the third derivatives of the basic functions, which are as follows:

Theorem 11.2. The third derivatives of the basic functions are as follows:

(1) (xp)′′′ = p(p− 1)(p− 2)xp−3.
(2) sin′′′ = − cos.
(3) cos′′′ = sin.
(4) exp′′′ = exp.
(5) log′′′(x) = 2/x3.

Proof. The various formulae in the statement all follow from the various formulae
for the second derivatives established before, as follows:

(xp)′′′ = (p(p− 1)xp−2)′ = p(p− 1)(p− 2)xp−3

(sinx)′′′ = (− sinx)′ = − cosx

(cosx)′′′ = (− cosx)′ = sinx

(ex)′′′ = (ex)′ = ex

(log x)′′′ = (−1/x2)′ = 2/x3

Thus, we are led to the formulae in the statement. □

Getting now to the fourth derivatives, things are less intuitive here, in what regards
the interpretation, but we can nevertheless do some computations, as follows:

197
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Theorem 11.3. The fourth derivatives of the basic functions are as follows:

(1) (xp)′′′′ = p(p− 1)(p− 2)(p− 3)xp−4.
(2) sin′′′′ = sin.
(3) cos′′′′ = cos.
(4) exp′′′′ = exp.
(5) log′′′′(x) = −6/x4.

Proof. The various formulae in the statement all follow from the various formulae
for the third derivatives established before, as follows:

(xp)′′′′ = (p(p− 1)(p− 2)xp−3)′ = p(p− 1)(p− 2)(p− 3)xp−4

(sinx)′′′′ = (− cosx)′ = sinx

(cosx)′′′′ = (sinx)′ = cosx

(ex)′′′′ = (ex)′ = ex

(log x)′′′′ = (2/x3)′ = −6/x4

Thus, we are led to the formulae in the statement. □

Observe the magic brought by the fourth derivative at the level of basic trigonometric
functions. This is perhaps something worth recording, as follows:

Observation 11.4. The fourth derivative brings some periodicity magic at the level
of basic trigonometric functions.

With this discussed, and getting back now to our usual approximation business, the
ultimate result on the subject, called Taylor formula, is as follows:

Theorem 11.5. Any function f : R → R can be locally approximated as

f(x+ t) =
∞∑
k=0

f (k)(x)

k!
tk

where f (k)(x) are the higher derivatives of f at the point x.

Proof. Consider the function to be approximated, namely:

φ(t) = f(x+ t)

Let us try to best approximate this function at a given order n ∈ N. We are therefore
looking for a certain polynomial in t, of the following type:

P (t) = a0 + a1t+ . . .+ ant
n
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The natural conditions to be imposed are those stating that P and φ should match
at t = 0, at the level of the actual value, of the derivative, second derivative, and so on
up the n-th derivative. Thus, we are led to the approximation in the statement:

f(x+ t) ≃
n∑

k=0

f (k)(x)

k!
tk

In order to prove now that this approximation holds indeed, we can use L’Hôpital’s
rule, applied several times, as in the proof at order 2. To be more precise, if we denote
by φ(t) ≃ P (t) the approximation to be proved, we have:

φ(t)− P (t)

tn
≃ φ′(t)− P ′(t)

ntn−1

≃ φ′′(t)− P ′′(t)

n(n− 1)tn−2

...

≃ φ(n)(t)− P (n)(t)

n!

=
f (n)(x)− f (n)(x)

n!
= 0

Thus, we are led to the conclusion in the statement. □

11b. The remainder

Here is a related interesting statement, inspired from the above proof:

Proposition 11.6. For a polynomial of degree n, the Taylor approximation

f(x+ t) ≃
n∑

k=0

f (k)(x)

k!
tk

is an equality. The converse of this statement holds too.

Proof. By linearity, it is enough to check the equality in question for the monomials
f(x) = xp, with p ≤ n. But here, the formula to be proved is as follows:

(x+ t)p ≃
p∑

k=0

p(p− 1) . . . (p− k + 1)

k!
xp−ktk

We recognize the binomial formula, so our result holds indeed. As for the converse,
this is clear, because the Taylor approximation is a polynomial of degree n. □

Many other things can be said, about the remainder. We will be back to this.
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11c. Local extrema

In relation with the local extrema, we have the following result:

Theorem 11.7. The one-variable smooth functions are subject to the Taylor formula

f(x+ t) =
∞∑
k=0

f (k)(x)

k!
tk

which allows, via suitable truncations, to determine the local maxima and minima.

Proof. This is a compact summary of what we know from the above, with everything
being in fact quite technical, and with the idea being as follows:

(1) In order to compute the local maxima and minima, a first method is by using the
following formula, which comes straight from the definition of the derivative:

f(x+ t) ≃ f(x) + f ′(x)t

Indeed, this formula shows that when f ′(x) ̸= 0, the point x cannot be a local minimum
or maximum, due to the fact that t→ −t will invert the growth.

(2) In relation with the problems left, the second derivative comes to the rescue.
Indeed, we can use the following more advanced formula, coming via l’Hôpital’s rule:

f(x+ t) ≃ f(x) + f ′(x)t+
f ′′(x)

2
t2

To be more precise, assume that we have f ′(x) = 0, as required by the study in (1).
Then this second order formula simply reads:

f(x+ t) ≃ f(x) +
f ′′(x)

2
t2

But this is something very useful, telling us that when f ′′(x) < 0, what we have is
a local maximum, and when f ′′(x) > 0, what we have is a local minimum. As for the
remaining case, that when f ′′(x) = 0, things here remain open.

(3) All this is very useful in practice, and with what we have in (1), complemented
if needed with what we have in (2), we can in principle compute the local minima and
maxima, without much troubles. However, if really needed, more tools are available.
Indeed, we can use if we want the order 3 Taylor formula, which is as follows:

f(x+ t) ≃ f(x) + f ′(x)t+
f ′′(x)

2
t2 +

f ′′′(x)

6
t3

To be more precise, assume that we are in the case f ′(x) = f ′′(x) = 0, which is where
our joint algorithm coming from (1) and (2) fails. In this case, our formula becomes:

f(x+ t) ≃ f(x) +
f ′′′(x)

6
t3
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But this solves the problem in the case f ′′′(x) ̸= 0, because here we cannot have a
local minimum or maximum, due to t→ −t which switches growth. As for the remaining
case, f ′′′(x) = 0, things here remain open, and we have to go at higher order.

(4) Summarizing, we have a recurrence method for solving our problem. In order to
formulate now an abstract result about this, we can use the Taylor formula at order n:

f(x+ t) ≃
n∑

k=0

f (k)(x)

k!
tk

Indeed, assume that we started to compute the derivatives f ′(x), f ′′(x), f ′′(x), . . . of
our function at the point x, with the goal of finding the first such derivative which does
not vanish, and we found this derivative, as being the order n one:

f ′(x) = f ′′(x) = . . . = f (n−1)(x) = 0 , f (n)(x) ̸= 0

Then, the Taylor formula at x at order n takes the following form:

f(x+ t) ≃ f(x) +
f (n)(x)

n!
tn

But this is exactly what we need, in order to fully solve our local extremum problem.
Indeed, when n is even, if f (n)(x) < 0 what we have is a local maximum, and if f (n)(x) > 0,
what we have is a local minimum. As for the case where n is odd, here we cannot have a
local minimum or maximum, due to t→ −t which switches growth. □

All the above, Theorem 11.7 and its proof, must be of course perfectly known, when
looking for applications of such things. However, for theoretical purposes, let us record
as well, in a very compact form, what is basically to be remembered:

Theorem 11.8. Given a differentiable function f : R → R, we can always write

f(x+ t) ≃ f(x) +
f (n)(x)

n!
tn

with f (n)(x) ̸= 0, and this tells us if x is a local minimum, or maximum of f .

Proof. This was the conclusion of the proof of Theorem 11.7, and with the extra
remark that local extremum means that n is even, with in this case f (n)(x) < 0 corre-
sponding to local maximum, and f (n)(x) > 0 corresponding to local minimum. □

There are of course many applications of the above.

11d. Basic applications

As a basic application of the Taylor series, we have:
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Theorem 11.9. We have the following formulae,

sinx =
∞∑
l=0

(−1)l
x2l+1

(2l + 1)!
, cosx =

∞∑
l=0

(−1)l
x2l

(2l)!

as well as the following formulae,

ex =
∞∑
k=0

xk

k!
, log(1 + x) =

∞∑
k=0

(−1)k+1x
k

k

as Taylor series, and in general as well, with |x| < 1 needed for log.

Proof. There are several statements here, the proofs being as follows:

(1) Regarding sin and cos, we can use here the following formulae:

(sinx)′ = cosx , (cosx)′ = − sinx

Thus, we can differentiate sin and cos as many times as we want to, so we can compute
the corresponding Taylor series, and we obtain the formulae in the statement.

(2) Regarding exp and log, here the needed formulae, which lead to the formulae in
the statement for the corresponding Taylor series, are as follows:

(ex)′ = ex

(log x)′ = x−1

(xp)′ = pxp−1

(3) Finally, the fact that the formulae in the statement extend beyond the small t
setting, coming from Taylor series, is something standard too. We will leave this as an
instructive exercise, and come back to it, later in this book. □

As another basic application of the Taylor formula, we can now improve the binomial
formula, which was actually our main tool so far, in the following way:

Theorem 11.10. We have the following generalized binomial formula, with p ∈ R,

(x+ t)p =
∞∑
k=0

(
p

k

)
xp−ktk

with the generalized binomial coefficients being given by the formula(
p

k

)
=
p(p− 1) . . . (p− k + 1)

k!

valid for any |t| < |x|. With p ∈ N, we recover the usual binomial formula.
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Proof. It is customary to divide everything by x, which is the same as assuming
x = 1. The formula to be proved is then as follows, under the assumption |t| < 1:

(1 + t)p =
∞∑
k=0

(
p

k

)
tk

Let us discuss now the validity of this formula, depending on p ∈ R:
(1) Case p ∈ N. According to our definition of the generalized binomial coefficients,

we have
(
p
k

)
= 0 for k > p, so the series is stationary, and the formula to be proved is:

(1 + t)p =

p∑
k=0

(
p

k

)
tk

But this is the usual binomial formula, which holds for any t ∈ R.
(2) Case p = −1. Here we can use the following formula, valid for |t| < 1:

1

1 + t
= 1− t+ t2 − t3 + . . .

But this is exactly our generalized binomial formula at p = −1, because:(
−1

k

)
=

(−1)(−2) . . . (−k)
k!

= (−1)k

(3) Case p ∈ −N. This is a continuation of our study at p = −1, which will finish the
study at p ∈ Z. With p = −m, the generalized binomial coefficients are:(

−m
k

)
=

(−m)(−m− 1) . . . (−m− k + 1)

k!

= (−1)k
m(m+ 1) . . . (m+ k − 1)

k!

= (−1)k
(m+ k − 1)!

(m− 1)!k!

= (−1)k
(
m+ k − 1

m− 1

)
Thus, our generalized binomial formula at p = −m reads:

1

(1 + t)m
=

∞∑
k=0

(−1)k
(
m+ k − 1

m− 1

)
tk

But this is something which holds indeed, as we know from chapter 8.

(4) General case, p ∈ R. As we can see, things escalate quickly, so we will skip the
next step, p ∈ Q, and discuss directly the case p ∈ R. Consider the following function:

f(x) = xp
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The derivatives at x = 1 are then given by the following formula:

f (k)(1) = p(p− 1) . . . (p− k + 1)

Thus, the Taylor approximation at x = 1 is as follows:

f(1 + t) =
∞∑
k=0

p(p− 1) . . . (p− k + 1)

k!
tk

But this is exactly our generalized binomial formula, so we are done with the case
where t is small. With a bit more care, we obtain that this holds for any |t| < 1, and we
will leave this as an instructive exercise, and come back to it, later in this book. □

We can see from the above the power of the Taylor formula, saving us from quite
complicated combinatorics. Remember indeed the mess from chapter 8, when trying to
directly establish particular cases of the generalized binomial formula. Gone all that.

11e. Exercises

Exercises:

Exercise 11.11.

Exercise 11.12.

Exercise 11.13.

Exercise 11.14.

Exercise 11.15.

Exercise 11.16.

Exercise 11.17.

Exercise 11.18.

Bonus exercise.



CHAPTER 12

Differential equations

12a. Newton, gravity

Good news, with the calculus that we know we can do some physics, in 1 dimension.
Let us start with something immensely important, in the history of science:

Fact 12.1. Newton invented calculus for formulating the laws of motion as

v = ẋ , a = v̇

where x, v, a are the position, speed and acceleration, and the dots are time derivatives.

To be more precise, the variable in Newton’s physics is time t ∈ R, playing the role of
the variable x ∈ R that we have used in the above. And we are looking at a particle whose
position is described by a function x = x(t). Then, it is quite clear that the speed of this
particle should be described by the first derivative v = x′(t), and that the acceleration of
the particle should be described by the second derivative a = v′(t) = x′′(t).

Summarizing, with Newton’s theory of derivatives, as we learned it in the previous
chapters, we can certainly do some mathematics for the motion of bodies. But, for these
bodies to move, we need them to be acted upon by some forces, right? The simplest such
force is gravity, and in our present, modest 1 dimensional setting, we have:

Theorem 12.2. The equation of a gravitational free fall, in 1 dimension, is

ẍ = −GM
x2

with M being the attracting mass, and G ≃ 6.674× 10−11 being a constant.

Proof. Assume indeed that we have a free falling object, in 1 dimension:

◦m

��
•M

In order to reach to calculus as we know it, we must peform a rotation, as to have all
this happening on the Ox axis. By doing this, and assuming that M is fixed at 0, our
picture becomes as follows, with the attached numbers being now the coordinates:

•0 ◦xoo

205
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Now comes the physics. The gravitational force exterted by M , which is fixed in our
formalism, on the object m which moves, is subject to the following equations:

F = −G · Mm

x2
, F = ma , a = v̇ , v = ẋ

To be more precise, in the first equationG ≃ 6.674×10−11 is the gravitational constant,
in usual SI units, and the sign is − because F is attractive. The second equation is
something standard and very intuitive, and the last two equations are those from Fact
12.1. Now observe that, with the above data for F , the equation F = ma reads:

−G · Mm

x2
= mẍ

Thus, by simplifying, we are led to the equation in the statement. □

12b. Wave equation

As more phsyics, we can talk as well about waves in 1 dimension, as follows:

Theorem 12.3. The wave equation in 1 dimension is

φ̈ = v2φ′′

with the dot denoting time derivatives, and v > 0 being the propagation speed.

Proof. In order to understand the propagation of the waves, let us model the space,
which is R for us, as a network of balls, with springs between them, as follows:

· · · ××× • ××× • ××× • ××× • ××× • ××× · · ·
Now let us send an impulse, and see how balls will be moving. For this purpose, we

zoom on one ball. The situation here is as follows, l being the spring length:

· · · · · · •φ(x−l) ××× •φ(x) ××× •φ(x+l) · · · · · ·
We have two forces acting at x. First is the Newton motion force, mass times accel-

eration, which is as follows, with m being the mass of each ball:

Fn = m · φ̈(x)
And second is the Hooke force, displacement of the spring, times spring constant.

Since we have two springs at x, this is as follows, k being the spring constant:

Fh = F r
h − F l

h

= k(φ(x+ l)− φ(x))− k(φ(x)− φ(x− l))

= k(φ(x+ l)− 2φ(x) + φ(x− l))

We conclude that the equation of motion, in our model, is as follows:

m · φ̈(x) = k(φ(x+ l)− 2φ(x) + φ(x− l))



12C. HEAT EQUATION 207

Now let us take the limit of our model, as to reach to continuum. For this purpose
we will assume that our system consists of N >> 0 balls, having a total mass M , and
spanning a total distance L. Thus, our previous infinitesimal parameters are as follows,
with K being the spring constant of the total system, which is of course lower than k:

m =
M

N
, k = KN , l =

L

N

With these changes, our equation of motion found in (1) reads:

φ̈(x) =
KN2

M
(φ(x+ l)− 2φ(x) + φ(x− l))

Now observe that this equation can be written, more conveniently, as follows:

φ̈(x) =
KL2

M
· φ(x+ l)− 2φ(x) + φ(x− l)

l2

With N → ∞, and therefore l → 0, we obtain in this way:

φ̈(x) =
KL2

M
· d

2φ

dx2
(x)

Thus, we are led to the conclusion in the statement. □

12c. Heat equation

Along the same lines, we can talk as well about the heat equation in 1D, as follows:

Theorem 12.4. The heat equation in 1 dimension is

φ̇ = αφ′′

where α > 0 is the thermal diffusivity of the medium.

Proof. As before with the wave equation, this is not exactly a theorem, but rather
what comes out of experiments, but we can justify this mathematically, as follows:

(1) As an intuitive explanation for this equation, since the second derivative φ′′ com-
putes the average value of a function φ around a point, minus the value of φ at that point,
as we know from chapter 10, the heat equation as formulated above tells us that the rate
of change φ̇ of the temperature of the material at any given point must be proportional,
with proportionality factor α > 0, to the average difference of temperature between that
given point and the surrounding material. Which sounds reasonable.

(2) In practice now, we can use, a bit like before for the wave equation, a lattice model
as follows, with distance l > 0 between the neighbors:

◦x−l
l ◦x

l ◦x+l



208 12. DIFFERENTIAL EQUATIONS

In order to model now heat diffusion, we have to implement the intuitive mechanism
explained above, and in practice, this leads to a condition as follows, expressing the change
of the temperature φ, over a small period of time δ > 0:

φ(x, t+ δ) = φ(x, t) +
αδ

l2

∑
x∼y

[φ(y, t)− φ(x, t)]

But this leads, via manipulations as before, to φ̇(x, t) = α · φ′′(x, t), as claimed. □

12d. Higher dimensions

In higher dimensions things are certainly more complicated. Let us start instead
with some abstract mathematics. Here is a good, concrete question, which appears in
mathematics, physics, and related disciplines, that we would like to solve:

Question 12.5. How to solve differential equations?

Obviously, this question is quite broad, and as a first concrete example, let us examine
the case of a falling object. If we denote by x = x(t) : R → R3 the position of our falling
object, then its speed v = v(t) : R → R3 and acceleration a = a(t) : R → R3 are given by
the following formulae, with the dots standing for derivatives with respect to time t:

v = ẋ , a = v̇ = ẍ

Regarding now the equation of motion, this is as follows, coming from Newton, with
m being the mass of our object, and with F being the gravitational force:

m · a(t) = F (x(t))

Thus, in terms of derivatives as above, in order to have as only unknown the position
vector x = x(t) : R → R3, the equation of motion is as follows:

m · ẍ(t) = F (x(t))

Which looks nice, but since what we have here is a degree 2 equation, instead of degree
1, which would be better, was it really a good idea to get rid of speed v : R → R3 and
acceleration a : R → R3, and reformulate everything in terms of position x : R → R3.

Nevermind. So going all over again, with the aim this time of reaching to a degree 1
equation, let us replace our 3-dimensional unknown x : R → R3 with the 6-dimensional
unknown (x, v) : R → R6. And with this done, surprise, we have our degree 1 system:{

ẋ(t) = v(t)

v̇(t) = 1
m
F (x(t))

Which was a nice trick, wasn’t it. So, before going further, let us record the following
conclusion, that we will come back to in a moment, after done with gravity:
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Conclusion 12.6. We can convert differential equations of higher order into differ-
ential equations of first order, by suitably enlarging the size of our unknown vectors.

Now back to gravity and free falls, and to the degree 1 system found above, we will
assume in what follows that our object is subject to a free fall under a uniform gravitational
field. In practice, this means that the force F is given by the following formula, withm > 0
being as usual the mass of our object, and with g > 0 being a certain constant:

F (x) = −mg

0
0
1


With this data, the system that we found takes the following form:

ẋ(t) = v(t)

v̇(t) = −g

0

0

1


But this latter system is very easy to solve. Indeed, the second equation gives:

v(t) = v(0)− g

0
0
1

 t

Now by integrating once again, we can recover as well the formula of x, as follows:

x(t) = x(0) + v(0)t− g

2

0
0
1

 t2

Which is very nice, good work that we did here, so let us record our findings, along
with a bit more, in the form of a complete statement, as follows:

Theorem 12.7. For a free fall in a uniform gravitational field, with gravitational
acceleration constant g > 0, the equation of motion is

x(t) = x(0) + v(0)t− g

2

0
0
1

 t2

and the trajectory is a parabola, unless in the case where the free fall is straight downwards,
where the trajectory is a line.

Proof. This is a conclusion to what we found above, namely equation of motion, and
its obvious implications, and the level of the corresponding trajectory. □



210 12. DIFFERENTIAL EQUATIONS

Now back to theory, let us go back to Conclusion 12.6, which was our main theoretical
finding so far, and further comment on that. Of course in the case of extremely simple
equations, like the above uniform gravity ones, there is no really need to use this trick,
because you can directly integrate twice, and so on. However, in general, this remains a
very useful trick, worth some discussion, and we will discuss this now.

Let us start with some generalities in one variable. We have here:

Definition 12.8. A general ordinary differential equation (ODE) is an equation as
follows, with a function x = x(t) : R → R as unknown,

F (t, x, ẋ, . . . , x(k)) = 0

depending on a given function F : U → R, with U ⊂ Rk+2 being an open set.

As a first observation, under suitable assumptions on our function F : U → R, and
more specifically non-vanishing of its partial derivatives, in all directions, we can use the
implicit function theorem, in order to reformulate our equation as follows, for a certain
function f : V → R, with V ⊂ Rk+1 being a certain open set:

x(k) = f(t, x, ẋ, . . . , x(k−1))

In practice, we will make this change, which often comes by default, when investigating
questions coming from physics, and these will be the ODE that we will be interested in.

Now moving to several variables, more generally, let us formulate:

Definition 12.9. A standard system of ODE is a system as follows,

x
(k)
1 = f1(t, x, ẋ, . . . , x

(k−1))

...

x
(k)
N = fN(t, x, ẋ, . . . , x

(k−1))

with the unknown being a vector function x = x(t) : R → RN .

Here the adjective “standard” refers to the implicit function theorem manipulation
made in the above, which can be of course made in the context of several variables too.

Now with these abstract definitions in hand, we can go back to Conclusion 12.6, and
formulate a more precise version of that observation, as follows:

Theorem 12.10. We can convert any standard system of ODE into a standard order
1 system of ODE, by suitably enlarging the size of the unknown vector.
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Proof. This is indeed clear from definitions, because with y = (x, ẋ, . . . , x(k−1)), in
the context of Definition 12.9, the system there takes the following form, as desired:

ẏ1 = y2

ẏ2 = y3

...

ẏk−1 = yk

ẏk = f(t, y)

Thus, we are led to the conclusion in the statement. There are of course many explicit
applications of this method, and further comments that can be made. □

Getting now to the point where we wanted to get, in order to get truly started with
all this, with some mathematics going on, let us have a look at the systems of ODE which
are linear. That is, we would like to solve equations as follows, with fi being linear:

x
(k)
1 = f1(t, x, ẋ, . . . , x

(k−1))

...

x
(k)
N = fN(t, x, ẋ, . . . , x

(k−1))

By doing the manipulation in Theorem 12.10, and assuming that we are in the “au-
tonomous” case, where there is no time t in our linear function which produces the system,
we are led to a vector equation as follows, with A ∈MN(R) being a certain matrix:

x′ = Ax

But here, we are in familiar territory, namely very standard calculus, because in the
1D case, the solution simply appears by exponentiating, as follows:

x = etAx0

Which is something very nice, and with this understood, we can now go back to our
original Question 12.5, from the beginning of this section. As already mentioned, that
question was something very broad, and as something more concrete now, we have:

Question 12.11. The solution of a system of linear differential equations,

x′ = Ax , x(0) = x0

with A ∈MN(R), is normally given by x = etAx0, and this because we should have:

(etAx0)
′ = AetAx0

But, what exactly is etA, and then, importantly, how to explicitly compute etA?
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To be more precise, again as with Question 12.5, this question appears indeed in
a myriad contexts, all across physics and science, and with all this needing no further
presentation. Observe also that, due to Theorem 12.10, this question allows us to deal
with differential equations of higher order too, by enlarging the size of our vectors.

In answer now, the key to all this is advanced linear algebra theory. We will be back
to all this at the end of the present book, where linear algebra will naturally appear in
connection with the basic study of functions and their derivatives, in several variables.

12e. Exercises

Exercises:

Exercise 12.12.

Exercise 12.13.

Exercise 12.14.

Exercise 12.15.

Exercise 12.16.

Exercise 12.17.

Exercise 12.18.

Exercise 12.19.

Bonus exercise.



Part IV

Integrals



You’ll die as you lived, in a flash of the blade
In a corner forgotten by no one

You lived for the touch, for the feel of the steel
One man and his honor



CHAPTER 13

Integration theory

13a. Integration theory

We have seen so far the foundations of calculus, with lots of interesting results regard-
ing the functions f : R → R, and their derivatives f ′ : R → R. The general idea was
that in order to understand f , we first need to compute its derivative f ′. The overall
conclusion, coming from the Taylor formula, was that if we are able to compute f ′, but
then also f ′′, and f ′′′ and so on, we will have a good understanding of f itself.

However, the story is not over here, and there is one more twist to the plot. Which will
be a major twist, of similar magnitude to that of the Taylor formula. For reasons which
are quite tricky, that will become clear later on, we will be interested in the integration
of the functions f : R → R. With the claim that this is related to calculus.

There are several possible viewpoints on the integral, which are all useful, and good
to know. To start with, we have something very simple, as follows:

Definition 13.1. The integral of a continuous function f : [a, b] → R, denoted∫ b

a

f(x)dx

is the area below the graph of f , signed + where f ≥ 0, and signed − where f ≤ 0.

Here it is of course understood that the area in question can be computed, and with
this being something quite subtle, that we will get into later. For the moment, let us just
trust our intuition, our function f being continuous, the area in question can “obviously”
be computed. More on this later, but for being rigorous, however, let us formulate:

Method 13.2. In practice, the integral of f ≥ 0 can be computed as follows,

(1) Cut the graph of f from 3mm plywood,
(2) Plunge that graph into a square container of water,
(3) Measure the water displacement, as to have the volume of the graph,
(4) Divide by 3× 10−3 that volume, as to have the area,

and for general f , we can use this plus f = f+ − f−, with f+, f− ≥ 0.

215
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So far, so good, we have a rigorous definition, so let us do now some computations.
In order to compute areas, and so integrals of functions, without wasting precious water,
we can use our geometric knowledge. Here are some basic results of this type:

Proposition 13.3. We have the following results:

(1) When f is linear, we have the following formula:∫ b

a

f(x)dx = (b− a) · f(a) + f(b)

2

(2) In fact, when f is piecewise linear on [a = a1, a2, . . . , an = b], we have:∫ b

a

f(x)dx =
n−1∑
i=1

(ai+1 − ai) ·
f(ai) + f(ai+1)

2

(3) We have as well the formula
∫ 1

−1

√
1− x2 dx = π/2.

Proof. These results all follow from basic geometry, as follows:

(1) Assuming f ≥ 0, we must compute the area of a trapezoid having sides f(a), f(b),
and height b−a. But this is the same as the area of a rectangle having side (f(a)+f(b))/2
and height b− a, and we obtain (b− a)(f(a) + f(b))/2, as claimed.

(2) This is clear indeed from the formula found in (1), by additivity.

(3) The integral in the statement is by definition the area of the upper unit half-disc.
But since the area of the whole unit disc is π, this half-disc area is π/2. □

As an interesting observation, (2) in the above result makes it quite clear that f does
not necessarily need to be continuous, in order to talk about its integral. Indeed, assuming
that f is piecewise linear on [a = a1, a2, . . . , an = b], but not necessarily continuous, we
can still talk about its integral, in the obvious way, exactly as in Definition 13.1, and we
have an explicit formula for this integral, generalizing the one found in (2), namely:∫ b

a

f(x)dx =
n−1∑
i=1

(ai+1 − ai) ·
f(a+i ) + f(a−i+1)

2

Based on this observation, let us upgrade our formalism, as follows:

Definition 13.4. We say that a function f : [a, b] → R is integrable when the area
below its graph is computable. In this case we denote by∫ b

a

f(x)dx

this area, signed + where f ≥ 0, and signed − where f ≤ 0.
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As basic examples of integrable functions, we have the continuous ones, provided
indeed that our intuition, or that Method 13.2, works indeed for any such function.
We will soon see that this is indeed true, coming with mathematical proof. As further
examples, we have the functions which are piecewise linear, or piecewise continuous. We
will also see, later, as another class of examples, that the piecewise monotone functions
are integrable. But more on this later, let us not bother for the moment with all this.

This being said, one more thing regarding theory, that you surely have in mind: is
any function integrable? Not clear. I would say that if the Devil comes with some sort
of nasty, totally discontinuous function f : R → R, then you will have big troubles in
cutting its graph from 3mm plywood, as required by Method 13.2. More on this later.

Back to work now, here are some general results regarding the integrals:

Proposition 13.5. We have the following formulae,∫ b

a

f(x) + g(x)dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx

∫ b

a

λf(x) = λ

∫ b

a

f(x)

valid for any functions f, g and any scalar λ ∈ R.

Proof. Both these formulae are indeed clear from definitions. □

Moving ahead now, passed the above results, which are of purely algebraic and geo-
metric nature, and perhaps a few more of the same type, which are all quite trivial and
that we we will not get into here, we must do some analysis, in order to compute integrals.
This is something quite tricky, and we have here the following result:

Theorem 13.6. We have the Riemann integration formula,∫ b

a

f(x)dx = (b− a)× lim
N→∞

1

N

N∑
k=1

f

(
a+

b− a

N
· k
)

which can serve as a definition for the integral.

Proof. This is standard, by drawing rectangles. We have indeed the following for-
mula, which can stand as a definition for the signed area below the graph of f :∫ b

a

f(x)dx = lim
N→∞

1

N

N∑
k=1

b− a

N
· f
(
a+

b− a

N
· k
)

Thus, we are led to the formula in the statement. □
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Observe that the above formula suggests that
∫ b

a
f(x)dx is the length of the interval

[a, b], namely b − a, times the average of f on the interval [a, b]. Thinking a bit, this is
indeed something true, with no need for Riemann sums, coming directly from Definition
13.1, because area means side times average height. Thus, we can formulate:

Theorem 13.7. The integral of a function f : [a, b] → R is given by∫ b

a

f(x)dx = (b− a)× A(f)

where A(f) is the average of f over the interval [a, b].

Proof. As explained above, this is clear from Definition 13.1, via some geometric
thinking. Alternatively, this is something which certainly comes from Theorem 13.6. □

The point of view in Theorem 13.7 is something quite useful, and as an illustration
for this, let us review the results that we already have, by using this interpretation. First,
we have the formula for linear functions from Proposition 13.3, namely:∫ b

a

f(x)dx = (b− a) · f(a) + f(b)

2

But this formula is totally obvious with our new viewpoint, from Theorem 13.7. The
same goes for the results in Proposition 13.5, which become even more obvious with the
viewpoint from Theorem 13.7. Thus, what we have in Theorem 13.7 is definitely useful.

However, not everything trivializes in this way, and the result which is left, from what
we have so far, namely the formula

∫ 1

−1

√
1− x2 dx = π/2 from Proposition 13.3 (3), not

only does not trivialize, but becomes quite opaque with our new philosophy.

In short, modesty. Integration is a quite delicate business, and we have several equiv-
alent points of view on what an integral means, and all these points of view are useful,
and must be learned, with none of them being clearly better than the others.

Going ahead with more interpretations of the integral, we have:

Theorem 13.8. We have the Monte Carlo integration formula,∫ b

a

f(x)dx = (b− a)× lim
N→∞

1

N

N∑
k=1

f(xi)

with x1, . . . , xN ∈ [a, b] being random.
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Proof. We recall from Theorem 13.7 that the idea is that we have a formula as
follows, with the points x1, . . . , xN ∈ [a, b] being uniformly distributed:∫ b

a

f(x)dx = (b− a)× lim
N→∞

1

N

N∑
k=1

f(xi)

But this works as well when the points x1, . . . , xN ∈ [a, b] are randomly distributed,
for somewhat obvious reasons, and this gives the result. □

Observe that Monte Carlo integration works better than Riemann integration, for
instance when trying to improve the estimate, via N → N + 1. Indeed, in the context of
Riemann integration, assume that we managed to find an estimate as follows, which in
practice requires computing N values of our function f , and making their average:∫ b

a

f(x)dx ≃ b− a

N

N∑
k=1

f

(
a+

b− a

N
· k
)

In order to improve this estimate, any extra computed value of our function f(y) will
be unuseful. For improving our formula, what we need are N extra values of our function,
f(y1), . . . , f(yN), with the points y1, . . . , yN being the midpoints of the previous division
of [a, b], so that we can write an improvement of our formula, as follows:∫ b

a

f(x)dx ≃ b− a

2N

2N∑
k=1

f

(
a+

b− a

2N
· k
)

With Monte Carlo, things are far more flexible. Assume indeed that we managed to
find an estimate as follows, which again requires computing N values of our function:∫ b

a

f(x)dx ≃ b− a

N

N∑
k=1

f(xi)

Now if we want to improve this, any extra computed value of our function f(y) will
be helpful, because we can set xn+1 = y, and improve our estimate as follows:∫ b

a

f(x)dx ≃ b− a

N + 1

N+1∑
k=1

f(xi)

And isn’t this potentially useful, and powerful, when thinking at practically computing
integrals, either by hand, or by using a computer. Let us record this finding as follows:

Conclusion 13.9. Monte Carlo integration works better than Riemann integration,
when it comes to computing as usual, by estimating, and refining the estimate.

As another interesting feature of Monte Carlo integration, this works better than Rie-
mann integration, for functions having various symmetries, because Riemann integration
can get “fooled” by these symmetries, while Monte Carlo remains strong.
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As an example for this phenomeon, chosen to be quite drastic, let us attempt to
integrate, via both Riemann and Monte Carlo, the following function f : [0, π] → R:

f(x) =
∣∣∣ sin(120x)∣∣∣

The first few Riemann sums for this function are then as follows:

I2(f) =
π

2
(| sin 0|+ | sin 60π|) = 0

I3(f) =
π

3
(| sin 0|+ | sin 40π|+ | sin 80π|) = 0

I4(f) =
π

4
(| sin 0|+ | sin 30π|+ | sin 60π|+ | sin 90π|) = 0

I5(f) =
π

5
(| sin 0|+ | sin 24π|+ | sin 48π|+ | sin 72π|+ | sin 96π|) = 0

I6(f) =
π

6
(| sin 0|+ | sin 20π|+ | sin 40π|+ | sin 60π|+ | sin 80π|+ | sin 100π|) = 0

...

Based on this evidence, we will conclude, obviously, that we have:∫ π

0

f(x)dx = 0

With Monte Carlo, however, such things cannot happen. Indeed, since there are
finitely many points x ∈ [0, π] having the property sin(120x) = 0, a random point x ∈ [0, π]
will have the property | sin(120x)| > 0, so Monte Carlo will give, at any N ∈ N:∫ π

0

f(x)dx ≃ b− a

N

N∑
k=1

f(xi) > 0

Again, this is something interesting, when practically computing integrals, either by
hand, or by using a computer. So, let us record, as a complement to Conclusion 13.9:

Conclusion 13.10. Monte Carlo integration is smarter than Riemann integration,
because the symmetries of the function can fool Riemann, but not Monte Carlo.

All this is good to know, when computing integrals in practice, especially with a
computer. Finally, here is one more useful interpretation of the integral:

Theorem 13.11. The integral of a function f : [a, b] → R is given by∫ b

a

f(x)dx = (b− a)× E(f)

where E(f) is the expectation of f , regarded as random variable.

Proof. This is just some sort of fancy reformulation of Theorem 13.8, the idea being
that what we can “expect” from a random variable is of course its average. We will be
back to this later in this book, when systematically discussing probability theory. □
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13b. Integrable functions

Our purpose now will be to understand which functions f : R → R are integrable, and
how to compute their integrals. For this purpose, the Riemann formula in Theorem 13.6
will be our favorite tool. Let us begin with some theory. We first have:

Theorem 13.12. The following functions are integrable:

(1) The piecewise continuous functions.
(2) The piecewise monotone functions.

Proof. This is indeed something quite standard, as follows:

(1) It is enough to prove the first assertion for a function f : [a, b] → R which is
continuous, and our claim here is that this follows from the uniform continuity of f . To
be more precise, given ε > 0, let us choose δ > 0 such that the following happens:

|x− y| < δ =⇒ |f(x)− f(y)| < ε

In order to prove the result, let us pick two divisions of [a, b], as follows:

I = [a = a1 < a2 < . . . < an = b]

I ′ = [a = a′1 < a′2 < . . . < a′m = b]

Our claim, which will prove the result, is that if these divisions are sharp enough, of
resolution < δ/2, then the associated Riemann sums ΣI(f),ΣI′(f) are close within ε:

ai+1 − ai <
δ

2
, a′i+1 − a′i < δ2 =⇒

∣∣ΣI(f)− ΣI′(f)
∣∣ < ε

(2) In order to prove this claim, let us denote by l the length of the intervals on the
real line. Our assumption is that the lengths of the divisions I, I ′ satisfy:

l
(
[ai, ai+1]

)
<
δ

2
, l

(
[a′i, a

′
i+1]
)
<
δ

2

Now let us intersect the intervals of our divisions I, I ′, and set:

lij = l
(
[ai, ai+1] ∩ [a′j, a

′
j+1]
)

The difference of Riemann sums that we are interested in is then given by:∣∣∣ΣI(f)− ΣI′(f)
∣∣∣ =

∣∣∣∣∣∑
ij

lijf(ai)−
∑
ij

lijf(a
′
j)

∣∣∣∣∣
=

∣∣∣∣∣∑
ij

lij(f(ai)− f(a′j))

∣∣∣∣∣
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(3) Now let us estimate f(ai) − f(a′j). Since in the case lij = 0 we do not need this
estimate, we can assume lij > 0. Now by remembering what the definition of the numbers
lij was, we conclude that we have at least one point x ∈ R satisfying:

x ∈ [ai, ai+1] ∩ [a′j, a
′
j+1]

But then, by using this point x and our assumption on I, I ′ involving δ, we get:

|ai − a′j| ≤ |ai − x|+ |x− a′j|

≤ δ

2
+
δ

2
= δ

Thus, according to our definition of δ from (1), in relation to ε, we get:

|f(ai)− f(a′j)| < ε

(4) But this is what we need, in order to finish. Indeed, with the estimate that we
found, we can finish the computation started in (2), as follows:∣∣∣ΣI(f)− ΣI′(f)

∣∣∣ =

∣∣∣∣∣∑
ij

lij(f(ai)− f(a′j))

∣∣∣∣∣
≤ ε

∑
ij

lij

= ε(b− a)

Thus our two Riemann sums are close enough, provided that they are both chosen to
be fine enough, and this finishes the proof of the first assertion.

(5) Regarding now the second assertion, this is something more technical, that we will
not really need in what follows. We will leave the proof here, which uses similar ideas to
those in the proof of (1) above, namely subdivisions and estimates, as an exercise. □

We should mention that the above result is just a beginning, and many other things
can be said about the integrable functions, and about the non-integrable functions too.
For more on all this, we recommend any specialized measure theory book.

Going ahead with more theory, let us establish now some abstract properties of the
integration operation. This will be actually quite technical, and we will be quite brief,
and for more on this, we recommend as usual any specialized measure theory book.

We already know from Proposition 13.5 that the integrals behave well with respect to
sums and multiplication by scalars. Along the same lines, we have:
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Theorem 13.13. The integrals behave well with respect to taking limits,∫ b

a

(
lim
n→∞

fn(x)
)
dx = lim

n→∞

∫ b

a

fn(x)dx

and with respect to taking infinite sums as well,∫ b

a

(
∞∑
n=0

fn(x)

)
dx =

∞∑
n=0

∫ b

a

fn(x)dx

with both these formulae being valid, undwer mild assumptions.

Proof. This is something quite standard, by using the general theory developed in
chapter 7 for the sequences and series of functions. To be more precise, (1) follows by
using the material there, via Riemann sums, and then (2) follows as a particular case of
(1). We will leave for now the clarification of all this as an instructive exercise, and we
will come back to it, with full details, at the end of the present chapter. □

Finally, still at the general level, let us record as well the following result:

Theorem 13.14. Given a continuous function f : [a, b] → R, we have

∃c ∈ [a, b] ,

∫ b

a

f(x)dx = (b− a)f(c)

with this being called mean value property.

Proof. Our claim is that this follows from the following trivial estimate:

min(f) ≤ f ≤ max(f)

Indeed, by integrating this over [a, b], we obtain the following estimate:

(b− a)min(f) ≤
∫ b

a

f(x)dx ≤ (b− a)max(f)

Now observe that this latter estimate can be written as follows:

min(f) ≤
∫ b

a
f(x)dx

b− a
≤ max(f)

Since f must takes all values on [min(f),max(f)], we get a c ∈ [a, b] such that:∫ b

a
f(x)dx

b− a
= f(c)

Thus, we are led to the conclusion in the statement. □
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13c. Abstract integration

Let us discuss now abstract measure theory. We first need measurable sets, and on
the bottom line, we would like our open and closed sets, and their “combinations”, to be
measurable. But these “combinations” can be understood and axiomatized, and are called
Borel sets. So, this will be the idea in what follows, talking about abstract measurable
sets, then about Borel sets, and then coming with measures, and integration theory.

Let us start with the abstract measurable sets. We have here the following definition,
which is something very general, not making reference to any metric on our space X, nor
making reference to any measure on X, measuring these measurable sets:

Definition 13.15. An abstract measured space is a set X, given with a set of subsets
M ⊂ P (X), called measurable sets, which form an algebra, in the sense that:

(1) ∅, X ∈M .
(2) E ∈M =⇒ Ec ∈M .
(3) M is stable under countable unions and intersections.

Obviously, this is something quite abstract. If the last axiom, (3), is only satisfied for
the finite unions and intersections, we say that M ⊂ P (X) is a finite algebra.

As a first observation, some of the axioms above are redundant. Indeed, assuming
that (2) holds, we have the following equivalence, which can help in verifying (1):

∅ ∈M ⇐⇒ X ∈M

The same goes for the axiom (3), with only one of the conditions there being in need
to be verified, in practice, and this due to the following formula:(⋃

i

Ei

)c

=
⋂
i

Ei
c

However, it is most convenient to write Definition 13.15 as above, in a symmetric way
with respect to the two operations involved, namely union and intersection.

At the level of examples of abstract measured spaces, there are many of them, and
more on this in a moment, usually coming via the following result:

Theorem 13.16. Given a set of subsets S ⊂ P (X), there is a smallest algebra

M = S̄

containing it, called algebra generated by X.

Proof. This can be viewed in two possible ways, as follows:

(1) According to the axioms in Definition 13.15, what we have to do in order to
construct M = S̄ is to start with S, then add ∅, X to it, along with the complements Ec
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of all the sets E ∈ S, and then take countable unions and intersections of such sets. And,
some elementary verifications show that what we get in this way is indeed an algebra.

(2) Alternatively, we can define M = S̄ as being the intersection of all algebras con-
taining S, and with the remark that we have at least one such algebra, namely P (X)
itself. It is then clear from definitions that M is an algebra, as desired. □

Getting now to the concrete examples of abstract measured spaces, we have:

Definition 13.17. Any metric space X is automatically an abstract measured space,
with the algebra of measurable sets being

B = Ō

that is, the smallest algebra containing the open sets, called Borel algebra of X.

Observe that the Borel sets include all open sets, all closed sets, as well as all countable
unions of closed sets, and all countable intersections of open sets. As an example here, in
the case X = R, with its usual topology, all kinds of intervals are Borel sets:

(a, b), [a, b], (a, b], [a, b) ∈ B

Indeed, the first interval is open, and the second one is closed, so these are certainly
Borel sets. As for the third and fourth intervals, these appear as countable unions of
closed intervals, or as countable intersections of open intervals, so they are Borel too.

Getting back now to the general case, following Definition 13.15, we have:

Definition 13.18. Given a measured space (X,M), a measure on it is a function

µ :M → [0,∞]

which is countably additive, in the sense that we have

µ

(
∞⋃
i=1

Ei

)
=

∞∑
i=1

µ(Ei)

for any countable family of disjoint measurable sets Ei ∈M .

This definition, which will play a key role in what follows, is something quite tricky,
and there are several comments to be made about it, as follows:

(1) Obviously, what we axiomatized above are the positive measures, and for the
moment this will do, and we will omit the term “positive”. More on this later, when we
will talk about differences µ− η of such measures, and about complex measures too.

(2) In contrast, we did not assume that our measures are finite, and this because many
interesting spaces, such as X = R itself, are naturally of infinite measure, µ(X) = ∞. In
the case where the measure µ happens to be bounded, up to a rescaling we can assume
µ(X) = 1, and we say in this case that we have a probability measure on X.



226 13. INTEGRATION THEORY

(3) Yet another subtlety comes in relation with the countable additivity condition at
the end, the point being that for many measured spaces X, the finite additivity condition
is something strictly weaker, and leads to a wrong theory. More on this later.

Looking at what we have so far, Definition 13.17 and Definition 13.18, many natural
questions appear, and leaving aside anything too specialized, we are led to:

Question 13.19. Given a metric space X, such as X = R, or X = RN , how to
construct a measure on it? Also, once we have such a measure, how to integrate the
functions f : X → R, or f : X → C, with respect to this measure?

As you can see, we have two questions here, and none is trivial:

(1) Indeed, regarding the first question, this is something that we do not know yet
how to solve, even this even for very simple spaces like X = R. Indeed, while we certainly
know how to measure the real intervals, simply by setting µ(a, b) = b−a, and then unions
of such intervals too, by decomposing then into disjoint unions of intervals, and making
sums, nothing guarantees that we can measure any Borel set E ∈ B, in this way.

(2) As for the second question, experience with the usual Riemann integral, that you
know well from calculus, shows that such things can be quite tricky too. Observe also
that this second question is more general than the first one, because we have µ(E) =

∫
χE

for any E ∈M , so if we know how to integrate, we know how to measure.

In short, we are facing non-trivial questions here, and we need a plan. And, perhaps
a bit surprisingly, the best plan in order to deal with Question 13.19 is as follows:

Plan 13.20. We will jointly develop measure and integration theory, as follows:

(1) We will first keep staying abstract, and understand how the functions f : X → R,
or f : X → C, can be integrated, with respect to an abstract measure.

(2) With this understood, we will conclude that the integration over X = R can only
be a straightforward extension of the usual Riemann integration.

(3) But, in the end, this will enable us to both measure all the Borel sets E ⊂ R, and
to integrate the measurable functions f : R → C.

(4) Finally, we will discuss how to deal with X = RN too, and with other product
spaces X = Y × Z, both measure theory and integration.

As you can see, all this is quite tricky, the main idea behind this plan being functional
analysis, that is, using functions and their integrals, instead of just fighting with abstract
measure theory first, and looking at functions and their integrals afterwards.

Getting started now, let us first talk about measurable functions, in the general context
of Definition 13.15, with no measure involved. We have here the following notion:
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Definition 13.21. Given a measured space X, and a metric space Y , a function

f : X → Y

is called measurable when it satisfies the following condition:

U ∈ O =⇒ f−1(U) ∈M

When X comes with a measure, we also call such functions integrable.

Obviously, this is something simplified, because for doing abstract measurability the-
ory, our spaces should be abstract measured spaces in the sense of Definition 13.15, and
so the functions that we should normally care about should be functions f : X → Y , with
both X, Y being abstract measured spaces. However, in view of Definition 13.17, this is
more or less that what we are doing here, by restricting the attention to the target spaces
Y which are metric, with this being the case that really matters.

Many things can be said about the measurable functions. We first have:

Proposition 13.22. The measurable functions have the following properties:

(1) If f : X → Y is measurable and g : Y → Z is continuous, g ◦ f is measurable.
(2) If f, g : X → R are both measurable and h : R2 → Y is continuous, then the

function x→ h(f(x), g(x)) is measurable.
(3) f : X → C is measurable precisely when Re(f), Im(f) : X → R are measurable.

In this case, the function |f | : X → R is measurable too.
(4) If f, g : X → C are measurable, then so are f + g, fg : X → C.

Proof. This is something very standard, the idea being as follows:

(1) This is clear from definitions, because we have:

U ∈ O =⇒ g−1(U) ∈ O =⇒ f−1(g−1(U)) ∈M

(2) By using (1), it is enough to check that the function k(x) = (f(x), g(x)) is measur-
able. But this follows by writing any open set U ⊂ R2 as a union of rectangles. Indeed,
the preminage of each rectangle R = I × J is measurable, as shown by:

k−1(R) = (f, g)−1(I × J) = f−1(I) ∩ g−1(J) ∈M

But then, with this in hand, since any open set U ⊂ R2 can be written as a union of
rectangles, it follows that k−1(U) is measurable, as desired.

(3) This follows indeed by using (2), with the following functions:

h(z) = z,Re(z), Im(z), |z|
(4) In the real case, f, g : X → R, the result follows by using (2), with:

h(x, y) = x+ y, xy

Then, the result can be extended to the complex case, f, g : X → C, by using (3). □
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Next, we have the following useful characterization of the real measurable functions:

Proposition 13.23. A function f : X → [−∞,∞] is mesurable precisely when

f−1(I) ∈M

for any interval of type I = (a,∞], with a ∈ R.

Proof. Consider the following set, which is easily seen to be an algebra:

Ω =
{
E ⊂ [−∞,∞]

∣∣∣f−1(E) ∈M
}

We want to prove that Ω contains all the open sets, and this can be done as follows:

(1) Pick a ∈ R, and then pick an increasing sequence an → a. We have then the
following formula, which shows that we have [−∞, a) ∈ Ω:

[−∞, a) =
⋃
n

[−∞, an) =
⋃
n

(an,∞]c ∈ Ω

(2) But with this in hand, we obtain, for any a < b, that we have:

(a, b) = [−∞, b) ∩ (a,∞] ∈ Ω

(3) Now since any open set U ⊂ [−∞,∞] can be written as a union of open intervals,
we conclude that we have U ∈ Ω, as desired. □

Getting now to limits of measurable functions, we have the following result:

Proposition 13.24. Given an abstract measured space X, the measurable functions
f : X → [−∞,∞] have the following properties:

(1) If fn are measurable, so are g = supn fn, and h = lim supn fn.
(2) If fn are measurable, so are k = infn fn, and l = lim infn fn.
(3) If fn → f and fn are measurable, then f is measurable.
(4) If f, g are measurable, so are h = min(f, g) and k = max(f, g).
(5) If f is measurable, so are f+ = max(f, 0) and f− = −min(f, 0).

Proof. This is again something very standard, the idea being as follows:

(1) For the function g = supn fn we can use the measurability criterion from Proposi-
tion 13.23, along with the following fact, valid for any a ∈ R:

g = sup
n
fn =⇒ g−1(a,∞] =

⋃
n

f−1
n (a,∞]

By symmetry we obtain that the function k = infn fn is measurable as well. But with
these results in hand, the last assertion follows too, by using the following formula:

lim sup
n

fn = inf
k

(
sup
n≥k

fn

)
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(2) Here the fact that k = infn fn is measurable was already proved in the above, and
for l = lim infn fn we can use the same argument, symmetry, or the following formula:

lim inf
n

fn = sup
k

(
inf
n≥k

fn

)
(3) This follows indeed from (1), or from (2), and from the following fact:

fn → f =⇒ f = inf
n
fn = sup

n
fn

(4) This is a trivial application of (1) and (2).

(5) This follows from (4), and from the fact that if f is measurable, so is −f . □

As a main result now regarding the measurable functions, which will be of key impor-
tance in what follows, we have the following statement, with the convention that a step
function means a function which takes finitely many values:

Theorem 13.25. Given a measurable function f : X → [0,∞], we can write

f(x) = lim
n→∞

φn(x)

with 0 ≤ φ1 ≤ φ2 ≤ . . . ≤ f , and with each φi being a measurable step function.

Proof. As a first observation, the converse holds too, thanks to the results in Propo-
sition 13.24. Regarding now the proof, this goes as follows:

(1) First, it is clear by drawing a picture that we can approximate the identity of [0,∞]
with step functions as in the statement. That is, we can obviously find an increasing
sequence of measurable step functions 0 ≤ ψ1 ≤ ψ2 ≤ . . . ≤ id, satisfying:

lim
n→∞

ψn(x) = x

(2) Now let us set φn = ψn ◦ f . According to the limiting formula above, we have:

lim
n→∞

φn(x) = f(x)

On the other hand, by using the measurability criterion from Proposition 13.23, it
follows that our truncation functions φn = ψn ◦ f are measurable, as desired. □

Good news, with the above general theory understood, we can now integrate functions,
by following the good old method of Riemann, that we know well from the beginning of
this chapter. To be more precise, we have the following result, which is of course stated
a bit informally, with some of the details being left to you, as an instructive exercise:

Theorem 13.26. We can integrate the measurable functions f : X → R+ by setting∫
X

f(x)dµ(x) = sup
0≤φ≤f

∫
X

φ(x)dµ(x)

with sup over measurable step functions, then extend this by linearity.
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Proof. This is something very standard, and we will leave the clarification of all this,
both precise statement, and proof, as an instructive exercise. To be more precise:

(1) We can certainly integrate the step functions φ : X → R+, by writing each such
function as a linear combination of characteristic functions, as follows:

φ =
∑
i

λiχEi

Indeed, with this formula in hand, we can integrate our function φ, as follows:∫
X

φ(x) dµ(x) =
∑
i

λiµ(Ei)

The integral of step functions constructed in this way has then all the linearity and
positivity properties that you might expect, and behaves well with respect to limits.

(2) Next, consider an arbitrary measurable function f : X → [0,∞]. We know from
Theorem 13.25 that we can write this function as an increasing limit, as follows, with
0 ≤ φ1 ≤ φ2 ≤ . . . ≤ f , and with each φi being a measurable step function:

f(x) = lim
n→∞

φn(x)

But this suggests to define the integral of f by the formula in the statement, namely:∫
X

f(x)dµ(x) = sup
0≤φ≤f

∫
X

φ(x)dµ(x)

Indeed, we can see that the integral constructed in this way has all the linearity and
positivity properties that you might expect, and behaves well with respect to limits. □

More in detail now, here are some basic properties of the integrals, which are very
similar to those of the Riemann integral, that we know from before:

Proposition 13.27. The integrals of measurable functions f : X → R+ have the
following properties:

(1) f ≤ g implies
∫
f ≤

∫
g.

(2) E ⊂ F implies
∫
E
f ≤

∫
F
f .

(3)
∫
f + g =

∫
f +

∫
g.

(4)
∫
λf = λ

∫
f .

Proof. All this is indeed very standard, all routine verifications. □

Summarizing, we know how to integrate the real positive functions, in our abstract
measure theory setting. In general, we can use the following formula:∫

X

(f − g)(x) dµ(x) =

∫
X

f(x)dµ(x)−
∫
X

g(x)dµ(x)
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We can integrate as well the complex functions, by setting:∫
X

(f + ig)(x) dµ(x) =

∫
X

f(x)dµ(x) + i

∫
X

g(x)dµ(x)

All this is, indeed, very standard, exactly as for the Riemann integral. Let us record
these findings as an upgrade of Theorem 13.26, as follows, once again with the statement
being a bit informal, and with some of the details being left as instructive exercises:

Theorem 13.28. We can integrate the measurable functions f : X → C by setting∫
X

f(x)dµ(x) = sup
0≤φ≤f

∫
X

φ(x)dµ(x)

with sup over measurable step functions, for f : X → R+ then extend this by linearity.

Proof. This follows indeed from what we already know from Theorem 13.26, and
from the above discussion, exactly as for the Riemann integral. □

13d. Lebesgue, Fatou

Many other things can be said here, following Lebesgue, Fatou and others. We first
have the following result, regarding the monotone convergence, due to Lebesgue:

Theorem 13.29 (Lebesgue). Given an increasing sequence of measurable functions

0 ≤ f1 ≤ f2 ≤ . . . ≤ ∞
which converges pointwise, fn → f , their limit is measurable, and we have∫

X

fn(x)dµ(x) →
∫
X

f(x)dµ(x)

for any positive measure on X.

Proof. This is indeed something very standard, the idea being as follows:

(1) We first have the following obvious implication, showing that the sequence of
integrals on the right converges, to a certain number in [0,∞]:

f1 ≤ f2 ≤ . . . =⇒
∫
X

f1(x)dµ(x) ≤
∫
X

f2(x)dµ(x) ≤ . . .

Moreover, since we have fn → f , it follows that we have the following inequality:

lim
n→∞

∫
fn(x)dµ(x) ≤

∫
X

f(x)dµ(x)

(2) In order to prove now the reverse inequality, pick a measurable simple function
0 ≤ φ ≤ f , pick also a number c ∈ (0, 1), and consider the following sets:

En =
{
x ∈ X

∣∣∣fn(x) ≥ cφ(x)
}
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These sets are then measurable, we have E1 ⊂ E2 ⊂ . . ., and our claim is that:

X =
⋃
n

En

Indeed, given x ∈ X, if f(x) = 0 then x ∈ E1 and things fine. Otherwise, we have
f(x) > 0, and so f(x) > cφ(x), since c < 1, and so x ∈ En for some n, as desired.

(3) Now observe that, with 0 ≤ φ ≤ f and c ∈ (0, 1) as above, we have:∫
X

fn(x)dµ(x) ≥
∫
En

fn(x)dµ(x) ≥ c

∫
En

φ(x)dµ(x)

By taking the limit of this estimate, with n→ ∞, we obtain:

lim
n→∞

∫
fn(x)dµ(x) ≥ c

∫
X

φ(x)dµ(x)

Now with c→ 1, we obtain from this the following estimate:

lim
n→∞

∫
fn(x)dµ(x) ≥

∫
X

φ(x)dµ(x)

But this being true for any simple function 0 ≤ φ ≤ f , we conclude that we have:

lim
n→∞

∫
fn(x)dµ(x) ≥

∫
X

f(x)dµ(x)

Thus we have the reverse of the estimate found in (1), which finishes the proof. □

Regarding now the series of functions, again following Lebesgue, we have:

Theorem 13.30. Given measurable functions fn : X → [0,∞], their sum

f(x) =
∞∑
n=1

fn(x)

is measurable, and we have the formula∫
X

f(x)dµ(x) =
∞∑
n=1

∫
X

fn(x)dµ(x)

for any positive measure on X.

Proof. This follows indeed from Theorem 13.29, applied to the partial sums, and we
will leave all the verifications here as an instructive exercise. □

Following now Fatou, we have as well the following key result:
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Theorem 13.31 (Fatou). Given measurable functions fn : X → [0,∞], their limit

f(x) = lim inf
n

fn(x)

is measurable, and we have the formula∫
X

f(x)dµ(x) ≤ lim inf
n

∫
X

fn(x)dµ(x)

for any positive measure on X.

Proof. The first assertion is something that we know, from Proposition 13.24. As
for the second assertion, this can be proved by using the same trick as there, namely:

lim inf
n

fn = sup
k

(
inf
n≥k

fn

)
Indeed, we can apply Theorem 13.29 to the following sequence of functions:

gk(x) = inf
n≥k

fn(x)

Thus, we are led to the conclusion in the statement. □

Regarding the above result of Fatou, let us mention that there are examples where
the inequality can be strict, with the standard example here being as follows:

fn =

{
χE (n odd)

1− χE (n even)

Finally, as a last basic result, due to Lebesgue again, we have:

Theorem 13.32 (Lebesgue). Assuming fn → f pointwise, and assuming too

|fn| ≤ g

with
∫
g <∞, the following happen:

(1)
∫
|f | <∞.

(2)
∫
|fn − f | → 0.

(3)
∫
fn →

∫
f .

Proof. This is something very standard, using Fatou, the idea being as follows:

(1) This follows from |fn| ≤ g, which in the limit gives |f | < g, so
∫
|f | <∞.

(2) Since |fn − f | ≤ 2g, we can apply Theorem 13.31 to the following functions:

hn = 2g − |fn − f |
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We obtain in this way the following estimate:∫
X

2g ≤ lim inf
n

∫
X

2g − |fn − f |

=

∫
X

2g + lim inf
n

(
−
∫
X

|fn − f |
)

=

∫
X

2g − lim sup
n

∫
X

|fn − f |

Now by substracting
∫
X
2g, this estimate gives the following formula:

lim sup
n

∫
X

|fn − f | ≤ 0

We conclude that this limit must be 0, as claimed in (2).

(3) This follows indeed from (2). □

Many other things can be said, along these lines, which are more specialized, and
such knowledge can be very useful when doing applied probability, and statistics. For
our purposes here, which will be mostly pure mathematical, with a touch of theoretical
physics, the above general theory, and results of Lebesgue and Fatou, will do.

13e. Exercises

Exercises:

Exercise 13.33.

Exercise 13.34.

Exercise 13.35.

Exercise 13.36.

Exercise 13.37.

Exercise 13.38.

Exercise 13.39.

Exercise 13.40.

Bonus exercise.



CHAPTER 14

Main theorems

14a. Riemann sums

At the level of examples now, let us first look at the simplest functions that we know,
namely the power functions f(x) = xp. However, things here are tricky, as follows:

Theorem 14.1. We have the integration formula∫ b

a

xpdx =
bp+1 − ap+1

p+ 1

valid at p = 0, 1, 2, 3.

Proof. This is something quite tricky, the idea being as follows:

(1) By linearity we can assume that our interval [a, b] is of the form [0, c], and the
formula that we want to establish is as follows:∫ c

0

xpdx =
cp+1

p+ 1

(2) We can further assume c = 1, and by expressing the left term as a Riemann sum,
we are in need of the following estimate, in the N → ∞ limit:

1p + 2p + . . .+Np ≃ Np+1

p+ 1

(3) So, let us try to prove this. At p = 0, obviously nothing to do, because we have
the following formula, which is exact, and which proves our estimate:

10 + 20 + . . .+N0 = N

(4) At p = 1 now, we are confronted with a well-known question, namely the compu-
tation of 1 + 2 + . . . + N . But this is simplest done by arguing that the average of the
numbers 1, 2, . . . , N being the number in the middle, we have:

1 + 2 + . . .+N

N
=
N + 1

2

Thus, we obtain the following formula, which again solves our question:

1 + 2 + . . .+N =
N(N + 1)

2
≃ N2

2
235
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(5) At p = 2 now, go compute 12 + 22 + . . . + N2. This is not obvious at all, so as
a preliminary here, let us go back to the case p = 1, and try to find a new proof there,
which might have some chances to extend at p = 2. The trick is to use 2D geometry.
Indeed, consider the following picture, with stacks going from 1 to N :

□
...

□ . . . □
□ □ . . . □

□ □ □ . . . □

Now if we take two copies of this, and put them one on the top of the other, with a
twist, in the obvious way, we obtain a rectangle having size N × (N + 1). Thus:

2(1 + 2 + . . .+N) = N(N + 1)

But this gives the same formula as before, solving our question, namely:

1 + 2 + . . .+N =
N(N + 1)

2
≃ N2

2

(6) Armed with this new method, let us attack now the case p = 2. Here we obviously
need to do some 3D geometry, namely taking the picture P formed by a succession of
solid squares, having sizes 1 × 1, 2 × 2, 3 × 3, and so on up to N × N . Some quick
thinking suggests that stacking 3 copies of P , with some obvious twists, will lead us to a
parallelepiped. But this is not exactly true, and some further thinking shows that what
we have to do is to add 3 more copies of P , leading to the following formula:

12 + 22 + . . .+N2 =
N(N + 1)(2N + 1)

6

Or at least, that’s how the legend goes. In practice, the above formula holds indeed,
and you can check it for instance by recurrence, and this solves our problem:

12 + 22 + . . .+N2 ≃ 2N3

6
=
N3

3

(7) At p = 3 now, the legend goes that by deeply thinking in 4D we are led to the
following formula, a bit as in the cases p = 1, 2, explained above:

13 + 23 + . . .+N3 =

(
N(N + 1)

2

)2

Alternatively, assuming that the gods of combinatorics are with us, we can see right
away the following formula, which coupled with (4) gives the result:

13 + 23 + . . .+N3 = (1 + 2 + . . .+N)2
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In any case, in practice, the above formula holds indeed, and you can check it for
instance by recurrence, and this solves our problem:

13 + 23 + . . .+N3 ≃ N4

4

(8) Thus, good news, we proved our theorem. Of course, I can hear you screaming,
that what about p = 4 and higher. But the thing is that, by a strange twist of fate, there
is no exact formula for 1p + 2p + . . .+Np, at p = 4 and higher. Thus, game over. □

What happened above, with us unable to integrate xp at p = 4 and higher, not to
mention the exponents p ∈ R − N that we have not even dared to talk about, is quite
annoying. As a conclusion to all this, however, let us formulate:

Conjecture 14.2. We have the following estimate,

1p + 2p + . . .+Np ≃ Np+1

p+ 1

and so, by Riemann sums, we have the following integration formula,∫ b

a

xpdx =
bp+1 − ap+1

p+ 1

valid for any exponent p ∈ N, and perhaps for some other p ∈ R.

We will see later that this conjecture is indeed true, and with the exact details regard-
ing the exponents p ∈ R− N too. However, all this is quite non-trivial.

Now, instead of struggling with the above conjecture, let us look at some other func-
tions, which are not polynomial. And here, as good news, we have:

Theorem 14.3. We have the following integration formula,∫ b

a

exdx = eb − ea

valid for any two real numbers a < b.
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Proof. This follows indeed from the Riemann integration formula, because:∫ b

a

exdx = lim
N→∞

ea + ea+(b−a)/N + ea+2(b−a)/N + . . .+ ea+(N−1)(b−a)/N

N

= lim
N→∞

ea

N
·
(
1 + e(b−a)/N + e2(b−a)/N + . . .+ e(N−1)(b−a)/N

)
= lim

N→∞

ea

N
· eb−a − 1

e(b−a)/N − 1

= (eb − ea) lim
N→∞

1

N(e(b−a)/N − 1)

= eb − ea

Thus, we are led to the conclusion in the statement. □

Summarizing, we have some Riemann sum knowledge for the power functions, and the
exponentials. For other functions, such as the trigonometric ones, such computations can
be quite complicated, and so, with due apologies, we will have to stop our study here.

14b. Fundamental theorem

The problem is now, what to do with what we have, from the above. Not obvious, so
stuck, and as always in such situations, time to ask the cat. And cat says:

Cat 14.4. Summing the infinitesimals of the rate of change of the function should give
you the global change of the function. Obvious.

Which is quite puzzling, usually my cat is quite helpful. Guess he must be either a
reincarnation of Newton or Leibnitz, these gentlemen used to talk like that, or that I
should take care at some point of my garden, remove catnip and other weeds.

This being said, wait. There is suggestion to connect integrals and derivatives, and
this is in fact what we have, coming from what we have from before, due to:(

xp+1

p+ 1

)′

= xp , (ex)′ = ex

So, eureka, we have our idea, thanks cat. Moving ahead now, following this idea, we
first have the following result, called fundamental theorem of calculus:

Theorem 14.5. Given a continuous function f : [a, b] → R, if we set

F (x) =

∫ x

a

f(s)ds

then F ′ = f . That is, the derivative of the integral is the function itself.
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Proof. This follows from the Riemann integration picture, and more specifically,
from the mean value property from chapter 13. Indeed, we have:

F (x+ t)− F (x)

t
=

1

t

∫ x+t

x

f(x)dx

On the other hand, our function f being continuous, by using the mean value property
from chapter 13, we can find a number c ∈ [x, x+ t] such that:

1

t

∫ x+t

x

f(x)dx = f(x)

Thus, putting our formulae together, we conclude that we have:

F (x+ t)− F (x)

t
= f(c)

Now with t → 0, no matter how the number c ∈ [x, x + t] varies, one thing that we
can be sure about is that we have c→ x. Thus, by continuity of f , we obtain:

lim
t→0

F (x+ t)− F (x)

t
= f(x)

But this means exactly that we have F ′ = f , and we are done. □

We have as well the following result, also called fundamental theorem of calculus:

Theorem 14.6. Given a function F : R → R, we have∫ b

a

F ′(x)dx = F (b)− F (a)

for any interval [a, b].

Proof. As already mentioned, this is something which follows from Theorem 14.5,
and is in fact equivalent to it. Indeed, consider the following function:

G(s) =

∫ s

a

F ′(x)dx

By using Theorem 14.5 we have G′ = F ′, and so our functions F,G differ by a constant.
But with s = a we have G(a) = 0, and so the constant is F (a), and we get:

F (s) = G(s) + F (a)

Now with s = b this gives F (b) = G(b) + F (a), which reads:

F (b) =

∫ b

a

F ′(x)dx+ F (a)

Thus, we are led to the conclusion in the statement. □

As a first illustration for all this, solving our previous problems, we have:
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Theorem 14.7. We have the following integration formulae,∫ b

a

xpdx =
bp+1 − ap+1

p+ 1
,

∫ b

a

1

x
dx = log

(
b

a

)
∫ b

a

sinx dx = cos a− cos b ,

∫ b

a

cosx dx = sin b− sin a∫ b

a

exdx = eb − ea ,

∫ b

a

log x dx = b log b− a log a− b+ a

all obtained, in case you ever forget them, via the fundamental theorem of calculus.

Proof. We already know some of these formulae, but the best is to do everything,
using the fundamental theorem of calculus. The computations go as follows:

(1) With F (x) = xp+1 we have F ′(x) = pxp, and we get, as desired:∫ b

a

pxp dx = bp+1 − ap+1

(2) Observe first that the formula (1) does not work at p = −1. However, here we can
use F (x) = log x, having as derivative F ′(x) = 1/x, which gives, as desired:∫ b

a

1

x
dx = log b− log a = log

(
b

a

)
(3) With F (x) = cos x we have F ′(x) = − sinx, and we get, as desired:∫ b

a

− sinx dx = cos b− cos a

(4) With F (x) = sinx we have F ′(x) = cos x, and we get, as desired:∫ b

a

cosx dx = sin b− sin a

(5) With F (x) = ex we have F ′(x) = ex, and we get, as desired:∫ b

a

ex dx = eb − ea

(6) This is something more tricky. We are looking for a function satisfying:

F ′(x) = log x

This does not look doable, but fortunately the answer to such things can be found on
the internet. But, what if the internet connection is down? So, let us think a bit, and try
to solve our problem. Speaking logarithm and derivatives, what we know is:

(log x)′ =
1

x
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But then, in order to make appear log on the right, the idea is quite clear, namely
multiplying on the left by x. We obtain in this way the following formula:

(x log x)′ = 1 · log x+ x · 1
x
= log x+ 1

We are almost there, all we have to do now is to substract x from the left, as to get:

(x log x− x)′ = log x

But this this formula in hand, we can go back to our problem, and we get the result. □

Getting back now to theory, inspired by the above, let us formulate:

Definition 14.8. Given f , we call primitive of f any function F satisfying:

F ′ = f

We denote such primitives by
∫
f , and also call them indefinite integrals.

Observe that the primitives are unique up to an additive constant, in the sense that if
F is a primitive, then so is F +c, for any c ∈ R, and conversely, if F,G are two primitives,
then we must have G = F + c, for some c ∈ R, with this latter fact coming from a result
from chapter 9, saying that the derivative vanishes when the function is constant.

As for the convention at the end, F =
∫
f , this comes from the fundamental theorem

of calculus, which can be written as follows, by using this convention:∫ b

a

f(x)dx =

(∫
f

)
(b)−

(∫
f

)
(a)

By the way, observe that there is no contradiction here, coming from the indeterminacy
of
∫
f . Indeed, when adding a constant c ∈ R to the chosen primitive

∫
f , when conputing

the above difference the c quantities will cancel, and we will obtain the same result.

We can now reformulate Theorem 14.7 in a more digest form, as follows:

Theorem 14.9. We have the following formulae for primitives,∫
xp =

xp+1

p+ 1
,

∫
1

x
= log x∫

sinx = − cosx ,

∫
cosx = sinx∫

ex = ex ,

∫
log x = x log x− x

allowing us to compute the corresponding definite integrals too.

Proof. Here the various formulae in the statement follow from Theorem 14.7, or
rather from the proof of Theorem 14.7, or even from chapter 9, for most of them, and the
last assertion comes from the integration formula given after Definition 14.8. □
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Getting back now to theory, we have the following key result:

Theorem 14.10. We have the formula∫
f ′g +

∫
fg′ = fg

called integration by parts.

Proof. This follows by integrating the Leibnitz formula, namely:

(fg)′ = f ′g + fg′

Indeed, with our convention for primitives, this gives the formula in the statement. □

It is then possible to pass to usual integrals, and we obtain a formula here as well, as
follows, also called integration by parts, with the convention [φ]ba = φ(b)− φ(a):∫ b

a

f ′g +

∫ b

a

fg′ =
[
fg
]b
a

In practice, the most interesting case is that when fg vanishes on the boundary {a, b}
of our interval, leading to the following formula:∫ b

a

f ′g = −
∫ b

a

fg′

Examples of this usually come with [a, b] = [−∞,∞], and more on this later. Now
still at the theoretical level, we have as well the following result:

Theorem 14.11. We have the change of variable formula∫ b

a

f(x)dx =

∫ d

c

f(φ(t))φ′(t)dt

where c = φ−1(a) and d = φ−1(b).

Proof. This follows with f = F ′, from the following differentiation rule, that we
know from chapter 9, and whose proof is something elementary:

(Fφ)′(t) = F ′(φ(t))φ′(t)

Indeed, by integrating between c and d, we obtain the result. □

As a main application now of our theory, in relation with advanced calculus, and more
specifically with the Taylor formula from chapter 11, we have:

Theorem 14.12. Given a function f : R → R, we have the formula

f(x+ t) =
n∑

k=0

f (k)(x)

k!
tk +

∫ x+t

x

f (n+1)(s)

n!
(x+ t− s)n ds

called Taylor formula with integral formula for the remainder.
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Proof. This is something which looks a bit complicated, so we will first do some
verifications, and then we will go for the proof in general:

(1) At n = 0 the formula in the statement is as follows, and certainly holds, due to

the fundamental theorem of calculus, which gives
∫ x+t

x
f ′(s)ds = f(x+ t)− f(x):

f(x+ t) = f(x) +

∫ x+t

x

f ′(s)ds

(2) At n = 1, the formula in the statement becomes more complicated, as follows:

f(x+ t) = f(x) + f ′(x)t+

∫ x+t

x

f ′′(s)(x+ t− s)ds

As a first observation, this formula holds indeed for the linear functions, where we
have f(x+ t) = f(x) + f ′(x)t, and f ′′ = 0. So, let us try f(x) = x2. Here we have:

f(x+ t)− f(x)− f ′(x)t = (x+ t)2 − x2 − 2xt = t2

On the other hand, the integral remainder is given by the same formula, namely:∫ x+t

x

f ′′(s)(x+ t− s)ds = 2

∫ x+t

x

(x+ t− s)ds

= 2t(x+ t)− 2

∫ x+t

x

sds

= 2t(x+ t)− ((x+ t)2 − x2)

= 2tx+ 2t2 − 2tx− t2

= t2

(3) Still at n = 1, let us try now to prove the formula in the statement, in general.
Since what we have to prove is an equality, this cannot be that hard, and the first thought
goes towards differentiating. But this method works indeed, and we obtain the result.

(4) In general, the proof is similar, by differentiating, the computations being similar
to those at n = 1, and we will leave this as an instructive exercise. □

14c. Basic applications

As a first application of our integration methods, we can now solve the 1D wave
equation. In order to explain this, we will need a standard calculus result, as follows:

Proposition 14.13. The derivative of a function of type

φ(x) =

∫ h(x)

g(x)

f(s)ds

is given by the formula φ′(x) = f(h(x))h′(x)− f(g(x))g′(x).
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Proof. Consider a primitive of the function that we integrate, F ′ = f . We have:

φ(x) =

∫ h(x)

g(x)

f(s)ds

=

∫ h(x)

g(x)

F ′(s)ds

= F (h(x))− F (g(x))

By using now the chain rule for derivatives, we obtain from this:

φ′(x) = F ′(h(x))h′(x)− F ′(g(x))g′(x)

= f(h(x))h′(x)− f(g(x))g′(x)

Thus, we are led to the formula in the statement. □

Now back to the 1D waves, the result here, due to d’Alembert, is as follows:

Theorem 14.14. The solution of the 1D wave equation φ̈ = v2φ′′ with initial value
conditions φ(x, 0) = f(x) and φ̇(x, 0) = g(x) is given by the d’Alembert formula:

φ(x, t) =
f(x− vt) + f(x+ vt)

2
+

1

2v

∫ x+vt

x−vt

g(s)ds

Moreover, in the context of our previous lattice model discretizations, what happens is
more or less that the above d’Alembert integral gets computed via Riemann sums.

Proof. There are several things going on here, the idea being as follows:

(1) Let us first check that the d’Alembert solution is indeed a solution of the wave
equation φ̈ = v2φ′′. The first time derivative is computed as follows:

φ̇(x, t) =
−vf ′(x− vt) + vf ′(x+ vt)

2
+

1

2v
(vg(x+ vt) + vg(x− vt))

The second time derivative is computed as follows:

φ̈(x, t) =
v2f ′′(x− vt) + v2f(x+ vt)

2
+
vg′(x+ vt)− vg′(x− vt)

2
Regarding now space derivatives, the first one is computed as follows:

φ′(x, t) =
f ′(x− vt) + f ′(x+ vt)

2
+

1

2v
(g′(x+ vt)− g′(x− vt))

As for the second space derivative, this is computed as follows:

φ′′(x, t) =
f ′′(x− vt) + f ′′(x+ vt)

2
+
g′′(x+ vt)− g′′(x− vt)

2v

Thus we have indeed φ̈ = v2φ′′. As for the initial conditions, φ(x, 0) = f(x) is clear
from our definition of φ, and φ̇(x, 0) = g(x) is clear from our above formula of φ̇.
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(2) Conversely now, we can simply solve our equation, which among others will dou-
blecheck the computations in (1). Let us make the following change of variables:

ξ = x− vt , η = x+ vt

With this change of variables, which is quite tricky, mixing space and time variables,
our wave equation φ̈ = v2φ′′ reformulates in a very simple way, as follows:

d2φ

dξdη
= 0

But this latter equation tells us that our new ξ, η variables get separated, and we
conclude from this that the solution must be of the following special form:

φ(x, t) = F (ξ) +G(η) = F (x− vt) +G(x+ vt)

Now by taking into account the intial conditions φ(x, 0) = f(x) and φ̇(x, 0) = g(x),
and then integrating, we are led to the d’Alembert formula. Finally, in what regards the
last assertion, we will leave the study here as an instructive exercise. □

So long for basic integration theory. As another type of application now, we can
compute all sorts of areas and volumes. Normally such computations are the business of
multivariable calculus, and we will be back to this later, but with the technology that we
have so far, we can do a number of things. As a first such computation, we have:

Proposition 14.15. The area of an ellipsis, given by the equation(x
a

)2
+
(y
b

)2
= 1

with a, b > 0 being half the size of a box containing the ellipsis, is A = πab.

Proof. The idea is that of cutting the ellipsis into vertical slices. First observe that,
according to our equation (x/a)2 + (y/b)2 = 1, the x coordinate can range as follows:

x ∈ [−a, a]

For any such x, the other coordinate y, satisfying (x/a)2 + (y/b)2 = 1, is given by:

y = ±b
√
1− x2

a2

Thus the length of the vertical ellipsis slice at x is given by the following formula:

l(x) = 2b

√
1− x2

a2
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We conclude from this discussion that the area of the ellipsis is given by:

A = 2b

∫ a

−a

√
1− x2

a2
dx

=
4b

a

∫ a

0

√
a2 − x2 dx

= 4ab

∫ 1

0

√
1− y2 dy

= 4ab · π
4

= πab

Finally, as a verification, for a = b = 1 we get A = π, as we should. □

Moving now to 3D, as an obvious challenge here, we can try to compute the volume
of the sphere. This can be done a bit as for the ellipsis, the answer being as follows:

Theorem 14.16. The volume of the unit sphere is given by:

V =
4π

3

More generally, the volume of the sphere of radius R is V = 4πR3/3.

Proof. We proceed a bit as for the ellipsis. The equation of the sphere is:

x2 + y2 + z2 = 1

Thus, the range of the first coordinate x is as follows:

x ∈ [−1, 1]

Now when this first coordinate x is fixed, the other coordinates y, z vary on a circle,
given by the equation y2 + z2 = 1− x2, and so having radius as follows:

r(x) =
√
1− x2

Thus, the vertical slice of our sphere at x has area as follows:

a(x) = πr(x)2 = π(1− x2)
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We conclude from this discussion that the volume of the sphere is given by:

V = π

∫ 1

−1

1− x2 dx

= π

∫ 1

−1

(
x− x3

3

)′

dx

= π

[(
1− 1

3

)
−
(
−1 +

1

3

)]
= π

(
2

3
+

2

3

)
=

4π

3

Finally, the last assertion is clear too, by multiplying everything by R, which amounts
in multiplying the final result of our volume computation by R3. □

14d. Some probability

As yet another application of the integration theory developed above, let us develop
now some theoretical probability theory. You probably know, from real life, what proba-
bility is. But in practice, when trying to axiomatize this, in mathematical terms, things
can be quite tricky. So, here comes our point, the definition saving us is as follows:

Definition 14.17. A probability density is a function φ : R → R satisfying

φ ≥ 0 ,

∫
R
φ(x)dx = 1

with the convention that we allow Dirac masses, δx with x ∈ R, as components of φ.

To be more precise, in what regards the convention at the end, which is something of
physics flavor, this states that our density function φ : R → R must be a combination as
follows, with ψ : R → R being a usual function, and with αi, xi ∈ R:

φ = ψ +
∑
i

αiδxi

Assuming that xi are distinct, and with the usual convention that the Dirac masses
integrate up to 1, the conditions on our density function φ : R → R are as follows:

ψ ≥ 0 , αi ≥ 0 ,

∫
R
ψ(x)dx+

∑
i

αi = 1

Observe the obvious relation with intuitive probability theory, where the probability
for something to happen is always positive, P ≥ 0, and where the overall probability for
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something to happen, with this meaning for one of the possible events to happen, is of
course ΣP = 1, and this because life goes on, and something must happen, right.

In short, what we are proposing with Definition 14.17 is some sort of continuous
generalization of basic probability theory, coming from coins, dice and cards, that you
know well. Moving now ahead, let us formulate, as a continuation of Definition 14.17:

Definition 14.18. We say that a random variable f follows the density φ if

P (f ∈ [a, b]) =

∫ b

a

φ(x)dx

holds, for any interval [a, b] ⊂ R.

With this, we are now one step closer to what we know from coins, dice, cards and so
on. For instance when rolling a die, the corresponding density is as follows:

φ =
1

6
(δ1 + δ2 + δ3 + δ4 + δ5 + δ6)

In what regards now the random variables f , described as above by densities φ, the
first questions regard their mean and variance, constructed as follows:

Definition 14.19. Given a random variable f , with probability density φ:

(1) Its mean is the quantity M =
∫
R xφ(x) dx.

(2) More generally, its k-th moment is Mk =
∫
R x

kφ(x) dx.
(3) Its variance is the quantity V =M2 −M2

1 .

Before going further, with more theory and examples, let us observe that, in both
Definition 14.18 and Definition 14.19, what really matters is not the density φ itself, but
rather the related quantity µ = φ(x)dx. So, let us upgrade our formalism, as follows:

Definition 14.20 (upgrade). A real probability measure is a quantity of the following
type, with ψ ≥ 0, αi ≥ 0 and xi ∈ R, satisfying

∫
R ψ(x)dx+

∑
i αi = 1:

µ = ψ(x)dx+
∑
i

αiδxi

We say that a random variable f follows µ when P (f ∈ [a, b]) =
∫ b

a
dµ(x). In this case

Mk =

∫
R
xkdµ(x)

are called moments of f , and M =M1 and V =M2 −M2
1 are called mean, and variance.
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In practice now, let us look for some illustrations for this. The simplest random
variables are those following discrete laws, ψ = 0, and as a basic example here, when
flipping a coin and being rewarded $0 for heads, and $1 for tails, the corresponding law
is µ = 1

2
(δ0 + δ1). More generally, playing the same game with a biased coin, which lands

on heads with probability p ∈ (0, 1), leads to the following law, called Bernoulli law:

µ = pδ0 + (1− p)δ1

Many more things can be said here, notably with a study of what happens when you
play the game n times in a row, leading to some sort of powers of the Bernoulli laws,
called binomial laws. In order to discuss this, let us first formulate:

Definition 14.21. Given p ∈ [0, 1], the Bernoulli law of parameter p is given by:

P (win) = p , P (lose) = 1− p

More generally, the k-th binomial law of parameter p, with k ∈ N, is given by

P (s) = ps(1− p)k−s

(
k

s

)
with the Bernoulli law appearing at k = 1, with s = 1, 0 here standing for win and lose.

The point now is that the Bernoulli laws produce the binomial laws, simply by iterating
the game, from 1 throw to k ∈ N throws. Obviously, what matters in all this is the
“independence” of our coin throws, so let us record this finding, as follows:

Theorem 14.22. The following happen, in the context of the biased coin game:

(1) The Bernoulli laws µber produce the binomial laws µbin, by iterating the game
k ∈ N times, via the independence of the throws.

(2) We have in fact µbin = µ∗k
ber, with ∗ being the convolution operation for real

probability measures, given by δx ∗ δy = δx+y, and linearity.

Proof. This is something a bit informal, but let us prove this as stated, and we will
come back later to it, with more details. In what regards the first assertion, this is what
life teaches us. As for the second assertion, job for us to figure out what the formula
there, µbin = µ∗k

ber, exactly means. And, this can be done as follows:

(1) The first idea is to encapsulate the data from Definition 14.21 into the probabil-
ity measures associated to the Bernoulli and binomial laws. For the Bernoulli law, the
corresponding measure is as follows, with the δ symbols standing for Dirac masses:

µber = (1− p)δ0 + pδ1

As for the binomial law, here the measure is as follows, constructed in a similar way,
you get the point I hope, again with the δ symbols standing for Dirac masses:

µbin =
k∑

s=0

ps(1− p)k−s

(
k

s

)
δs
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(2) Getting now to independence, the point is that, as we will soon discover abstractly,
the mathematics there is that of the following formula, with ∗ standing for the convolution
operation for the real measures, which is given by δx ∗ δy = δx+y and linearity:

µbin = µber ∗ . . . ∗ µber︸ ︷︷ ︸
k terms

(3) To be more precise, this latter formula does hold indeed, as a straightforward
application of the binomial formula, the formal proof being as follows:

µ∗k
ber =

(
(1− p)δ0 + pδ1

)∗k
=

k∑
s=0

ps(1− p)k−s

(
k

s

)
δ
∗(k−s)
0 ∗ δ∗s1

=
k∑

s=0

ps(1− p)k−s

(
k

s

)
δs

= µbin

(4) Summarizing, save for some uncertainties regarding what independence exactly
means, mathematically speaking, and more on this later, theorem proved. □

Skipping some further discussion here, and getting now straight to the point, the most
important laws in discrete probability are the Poisson laws, constructed as follows:

Definition 14.23. The Poisson law of parameter 1 is the following measure,

p1 =
1

e

∑
k∈N

δk
k!

and more generally, the Poisson law of parameter t > 0 is the following measure,

pt = e−t
∑
k∈N

tk

k!
δk

with the letter “p” standing for Poisson.

Observe that our laws have indeed mass 1, as they should, and this due to:

et =
∑
k∈N

tk

k!

In general, the idea with the Poisson laws is that these appear a bit everywhere, in the
real life, the reasons for this coming from the Poisson Limit Theorem (PLT). However,
this theorem uses advanced calculus, and we will leave it for later. In the meantime,
however, we can have some fun with moments, the result here being as follows:
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Theorem 14.24. The moments of p1 are the Bell numbers,

Mk(p1) = |P (k)|

where P (k) is the set of partitions of {1, . . . , k}. More generally, we have

Mk(pt) =
∑

π∈P (k)

t|π|

for any t > 0, where |.| is the number of blocks.

Proof. The moments of p1 satisfy the following recurrence formula:

Mk+1 =
1

e

∑
r

(r + 1)k+1

(r + 1)!

=
1

e

∑
r

rk

r!

(
1 +

1

r

)k

=
1

e

∑
r

rk

r!

∑
s

(
k

s

)
r−s

=
∑
s

(
k

s

)
· 1
e

∑
r

rk−s

r!

=
∑
s

(
k

s

)
Mk−s

With this done, let us try now to find a recurrence for the Bell numbers, Bk = |P (k)|.
Since a partition of {1, . . . , k + 1} appears by choosing s neighbors for 1, among the k
numbers available, and then partitioning the k − s elements left, we have:

Bk+1 =
∑
s

(
k

s

)
Bk−s

Since the initial values coincide, M1 = B1 = 1 and M2 = B2 = 2, we obtain by
recurrence Mk = Bk, as claimed. Regarding now the law pt with t > 0, we have here a
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similar recurrence formula for the moments, as follows:

Mk+1 = e−t
∑
r

tr+1(r + 1)k+1

(r + 1)!

= e−t
∑
r

tr+1rk

r!

(
1 +

1

r

)k

= e−t
∑
r

tr+1rk

r!

∑
s

(
k

s

)
r−s

=
∑
s

(
k

s

)
· e−t

∑
r

tr+1rk−s

r!

= t
∑
s

(
k

s

)
Mk−s

Regarding the initial values, the first moment of pt is given by:

M1 = e−t
∑
r

trr

r!
= e−t

∑
r

tr

(r − 1)!
= t

Now by using the above recurrence we obtain from this:

M2 = t
∑
s

(
1

s

)
Mk−s = t(1 + t) = t+ t2

On the other hand, some standard combinatorics, a bit as before at t = 1, shows that
the numbers in the statement Sk =

∑
π∈P (k) t

|π| satisfy the same recurrence relation, and
with the same initial values. Thus we have Mk = Sk, as claimed. □

14e. Exercises

Exercises:

Exercise 14.25.

Exercise 14.26.

Exercise 14.27.

Exercise 14.28.

Exercise 14.29.

Exercise 14.30.

Exercise 14.31.

Exercise 14.32.

Bonus exercise.



CHAPTER 15

Function spaces

15a. Normed spaces

Welcome to function space theory, also known as functional analysis. Although, for
being fully honest, the basics here, which are quite algebraic, rather deserve the name
“functional algebra”. But do not worry, we will keep things as analytic as possible.

Let us start with something very general, as follows:

Definition 15.1. A normed space is a complex vector space V , which can be finite or
infinite dimensional, together with a map

||.|| : V → R+

called norm, subject to the following conditions:

(1) ||x|| = 0 implies x = 0.
(2) ||λx|| = |λ| · ||x||, for any x ∈ V , and λ ∈ C.
(3) ||x+ y|| ≤ ||x||+ ||y||, for any x, y ∈ V .

As a basic example here, which is finite dimensional, we have the space V = CN , with
the norm on it being the usual length of the vectors, namely:

||x|| =
√∑

i

|xi|2

Indeed, for this space (1) is clear, (2) is clear too, and (3) is something well-known,
which is equivalent to the triangle inequality in CN , and which can be deduced from the
Cauchy-Schwarz inequality. More on this, with some generalizations, in a moment.

Getting back now to the general case, we have the following result:

Proposition 15.2. Any normed vector space V is a metric space, with

d(x, y) = ||x− y||
as distance. If this metric space is complete, we say that V is a Banach space.

Proof. This follows from the definition of the metric spaces, as follows:

(1) The first distance axiom, d(x, y) ≥ 0, and d(x, y) = 0 precisely when x = y, follows
from the fact that the norm takes values in R+, and from ||x|| = 0 =⇒ x = 0.

253
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(2) The second distance axiom, which is the symmetry one, d(x, y) = d(y, x), follows
from our condition ||λx|| = |λ| · ||x||, with λ = −1.

(3) As for the third distance axiom, which is the triangle inequality d(x, y) ≤ d(x, z)+
d(y, z), this follows from our third norm axiom, namely ||x+ y|| ≤ ||x||+ ||y||. □

Very nice all this, and it is possible to develop some general theory here, but before
everything, however, we need more examples, besides CN with its usual norm.

However, these further examples are actually quite tricky to construct, needing some
inequality know-how. Let us start with a very basic result, as follows:

Theorem 15.3 (Young). We have the following inequality,

ab ≤ ap

p
+
bq

q

valid for any a, b ≥ 0, and any exponents p, q > 1 satisfying 1
p
+ 1

q
= 1.

Proof. We use the logarithm function, which is concave on (0,∞), due to:

(log x)′′ =

(
−1

x

)′

= − 1

x2

Thus we can apply the Jensen inequality, and we obtain in this way:

log

(
ap

p
+
bq

q

)
≥ log(ap)

p
+

log(bq)

q

= log(a) + log(b)

= log(ab)

Now by exponentiating, we obtain the Young inequality. □

Observe that for the simplest exponents, namely p = q = 2, the Young inequality
gives something which is trivial, but is very useful and basic, namely:

ab ≤ a2 + b2

2

In general, the Young inequality is something non-trivial, and the idea with it is that
“when stuck with a problem, and with ab ≤ a2+b2

2
not working, try Young”.

We will be back to this general principle, in a moment, with some illustrations.

Moving forward now, as a consequence of the Young inequality, we have:
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Theorem 15.4 (Hölder). Assuming that p, q ≥ 1 are conjugate, in the sense that

1

p
+

1

q
= 1

we have the following inequality, valid for any two vectors x, y ∈ CN ,

∑
i

|xiyi| ≤

(∑
i

|xi|p
)1/p(∑

i

|yi|q
)1/q

with the convention that an ∞ exponent produces a max |xi| quantity.

Proof. This is something very standard, the idea being as follows:

(1) Assume first that we are dealing with finite exponents, p, q ∈ (1,∞). By linearity
we can assume that x, y are normalized, in the following way:∑

i

|xi|p =
∑
i

|yi|q = 1

In this case, we want to prove that the following inequality holds:∑
i

|xiyi| ≤ 1

For this purpose, we use the Young inequality, which gives, for any i:

|xiyi| ≤
|xi|p

p
+

|yi|q

q

By summing now over i = 1, . . . , N , we obtain from this, as desired:∑
i

|xiyi| ≤
∑
i

|xi|p

p
+
∑
i

|yi|q

q

=
1

p
+

1

q
= 1

(2) In the case p = 1 and q = ∞, or vice versa, the inequality holds too, trivially, with
the convention that an ∞ exponent produces a max quantity, according to:

lim
p→∞

(∑
i

|xi|p
)1/p

= max |xi|

Thus, we are led to the conclusion in the statement. □

As a consequence now of the Hölder inequality, we have:
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Theorem 15.5 (Minkowski). Assuming p ∈ [1,∞], we have the inequality(∑
i

|xi + yi|p
)1/p

≤

(∑
i

|xi|p
)1/p

+

(∑
i

|yi|p
)1/p

for any two vectors x, y ∈ CN , with our usual conventions at p = ∞.

Proof. We have indeed the following estimate, using the Hölder inequality, and the
conjugate exponent q ∈ [1,∞], given by 1/p+ 1/q = 1:∑

i

|xi + yi|p =
∑
i

|xi + yi| · |xi + yi|p−1

≤
∑
i

|xi| · |xi + yi|p−1 +
∑
i

|yi| · |xi + yi|p−1

≤

(∑
i

|xi|p
)1/p(∑

i

|xi + yi|(p−1)q

)1/q

+

(∑
i

|yi|p
)1/p(∑

i

|xi + yi|(p−1)q

)1/q

=

(∑
i

|xi|p
)1/p

+

(∑
i

|yi|p
)1/p

(∑
i

|xi + yi|p
)1−1/p

Here we have used the following fact, at the end:

1

p
+

1

q
= 1 =⇒ 1

q
=
p− 1

p
=⇒ (p− 1)q = p

Now by dividing both sides by the last quantity at the end, we obtain:(∑
i

|xi + yi|p
)1/p

≤

(∑
i

|xi|p
)1/p

+

(∑
i

|yi|p
)1/p

Thus, we are led to the conclusion in the statement. □

Good news, done with inequalities, and as a consequence of the above results, and
more specifically of the Minkowski inequality obtained above, we can formulate:

Theorem 15.6. Given an exponent p ∈ [1,∞], the formula

||x||p =

(∑
i

|xi|p
)1/p

with usual conventions at p = ∞, defines a norm on CN , making it a Banach space.
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Proof. Here the normed space assertion follows from the Minkowski inequality, es-
tablished above, and the Banach space assertion is trivial, because our space being finite
dimensional, by standard linear algebra all the Cauchy sequences converge. □

Very nice all this, but you might wonder at this point, what is the relation of all this
with functions. In answer, Theorem 15.6 can be reformulated as follows:

Theorem 15.7. Given an exponent p ∈ [1,∞], the formula

||f ||p =
(∫

|f(x)|p
)1/p

with usual conventions at p = ∞, defines a norm on the space of functions

f : {1, . . . , N} → C

making it a Banach space.

Proof. This is a just fancy reformulation of Theorem 15.6, by using the fact that
the space formed by the functions f : {1, . . . , N} → C is canonically isomorphic to CN ,
in the obvious way, and by replacing the sums from the CN context with integrals with
respect to the counting measure on {1, . . . , N}, in the function context. □

15b. Banach spaces

Moving now towards infinite dimensions and more standard analysis, the idea will be
that of extending Theorem 15.7 to the arbitrary measured spaces. Let us start with:

Theorem 15.8. Given an exponent p ∈ [1,∞], the formula

||x||p =

(∑
i

|xi|p
)1/p

with usual conventions at p = ∞, defines a norm on the space of sequences

lp =

{
(xi)i∈N

∣∣∣∑
i

|xi|p <∞

}
making it a Banach space.

Proof. As before with the finite sequences, the normed space assertion follows from
the Minkowski inequality, established above, which extends without problems to the case
of the infinite sequences, and with the Banach space assertion being clear too. □

We can unify and generalize what we have, in the following way:
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Theorem 15.9. Given a discrete measured space X, and an exponent p ∈ [1,∞],

||f ||p =
(∫

X

|f(x)|p
)1/p

with usual conventions at p = ∞, defines a norm on the space of functions

lp(X) =

{
f : X → C

∣∣∣ ∫
X

|f(x)|p <∞
}

making it a Banach space.

Proof. This is just a fancy reformulation of what we have:

(1) The case where X is finite corresponds to Theorem 15.7.

(2) The case where X is countable corresponds to Theorem 15.8.

(3) Finally, the case where X is uncountable is easy to deal with too, by using the
same arguments as in the countable case. □

In order to further extend the above result, to the case of the arbitrary measured
spaces X, which are not necessarily discrete, let us start with:

Theorem 15.10. Given two functions f, g : X → C and an exponent p ≥ 1, we have(∫
X

|f + g|p
)1/p

≤
(∫

X

|f |p
)1/p

+

(∫
X

|g|p
)1/p

called Minkowski inequality. Also, assuming that p, q ≥ 1 satisfy 1/p+ 1/q = 1, we have∫
X

|fg| ≤
(∫

X

|f |p
)1/p(∫

X

|g|q
)1/q

called Hölder inequality. These inequalities hold as well for ∞ values of the exponents.

Proof. This is very standard, exactly as in the case of sequences, finite or not, but
since the above inequalities are really very general and final, here are the details:

(1) Let us first prove Hölder, in the case of finite exponents, p, q ∈ (1,∞). By linearity
we can assume that f, g are normalized, in the following way:∫

X

|f |p =
∫
X

|g|q = 1

In this case, we want to prove that the following inequality holds:∫
X

|fg| ≤ 1

For this purpose, we use the Young inequality, which gives, for any x ∈ X:

|f(x)g(x)| ≤ |f(x)|p

p
+

|g(x)|q

q
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By integrating now over x ∈ X, we obtain from this, as desired:∫
X

|fg| ≤
∫
X

|f(x)|p

p
+

∫
X

|g(x)|q

q

=
1

p
+

1

q
= 1

(2) Let us prove now Minkowski, again in the finite exponent case, p ∈ (1,∞). We
have the following estimate, using the Hölder inequality, and the conjugate exponent:∫

X

|f + g|p =

∫
X

|f + g| · |f + g|p−1

≤
∫
X

|f | · |f + g|p−1 +

∫
X

|g| · |f + g|p−1

≤
(∫

X

|f |p
)1/p(∫

X

|f + g|(p−1)q

)1/q

+

(∫
X

|g|p
)1/p(∫

X

|f + g|(p−1)q

)1/q

=

[(∫
|f |p
)1/p

+

(∫
X

|g|p
)1/p

](∫
X

|f + g|p
)1−1/p

Thus, we are led to the Minkowski inequality in the statement.

(3) Finally, in the infinite exponent cases we have similar results, which are trivial this
time, with the convention that an ∞ exponent produces an essential supremum:

lim
p→∞

(∫
X

|f |p
)1/p

= ess sup|f |

Thus, we are led to the conclusion in the statement. □

We can now extend Theorem 15.9, into something very general, as follows:

Theorem 15.11. Given a measured space X, and p ∈ [1,∞], the following space, with
the convention that functions are identified up to equality almost everywhere,

Lp(X) =

{
f : X → C

∣∣∣ ∫
I

|f(x)|pdx <∞
}

is a vector space, and the following quantity

||f ||p =
(∫

X

|f(x)|p
)1/p

is a norm on it, making it a Banach space.
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Proof. This follows indeed from Theorem 15.10, with due attention to the null sets,
and this because of the first normed space axiom, namely:

||x|| = 0 =⇒ x = 0

To be more precise, in order for this axiom to hold, we must identify the functions up
to equality almost everywhere, as indicated in the statement. □

Very nice all this. So, we have our examples of Banach spaces, which look definitely
interesting, and related to analysis. In the remainder of this chapter we will develop some
general Banach space theory, and apply it to the above Lp spaces.

Getting now to work, as a first result about the abstract normed spaces, we would like
to talk about the linear maps T : V → W , which can be thought of as being some kind
of infinite matrices, when V,W are infinite dimensional. We first have here:

Proposition 15.12. For a linear map T : V → W , the following conditions are
equivalent, and if they hold, we say that T is bounded:

(1) T is continuous.
(2) T is continuous at 0.
(3) T maps the unit ball of V into something bounded.
(4) T is bounded, in the sense that ||T || = sup||x||=1 ||Tx|| is finite.

Proof. Here the equivalences (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4) all follow from
definitions, by using the linearity of T , and performing various rescalings, and with the
number ||T || needed in (4) being the bound coming from (3). □

With the above result in hand, we can now formulate:

Theorem 15.13. Given two Banach spaces V,W , the bounded linear maps

T : V → W

form a linear space B(V,W ), on which the following quantity is a norm,

||T || = sup
||x||=1

||Tx||

making B(V,W ) a Banach space. When V = W , we obtain a Banach algebra.

Proof. All this is very standard, and in the case V = W , for simplifying, which is
the one that matters the most, the proof goes as follows:

(1) The fact that we have indeed an algebra, satisfying the product condition in the
statement, follows from the following estimates, which are all elementary:

||S + T || ≤ ||S||+ ||T ||
||λT || = |λ| · ||T ||
||ST || ≤ ||S|| · ||T ||
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(2) Regarding now the last assertion, if {Tn} ⊂ B(V ) is Cauchy then {Tnx} is Cauchy
for any x ∈ V , so we can define the limit T = limn→∞ Tn by setting:

Tx = lim
n→∞

Tnx

Let us first check that the application x→ Tx is linear. We have:

T (x+ y) = lim
n→∞

Tn(x+ y)

= lim
n→∞

Tn(x) + Tn(y)

= lim
n→∞

Tn(x) + lim
n→∞

Tn(y)

= T (x) + T (y)

Similarly, we have as well the following computation:

T (λx) = lim
n→∞

Tn(λx)

= λ lim
n→∞

Tn(x)

= λT (x)

Thus we have a linear map T : A → A. It remains to prove that we have T ∈ B(V ),
and that we have Tn → T in norm. For this purpose, observe that we have:

||Tn − Tm|| ≤ ε , ∀n,m ≥ N

=⇒ ||Tnx− Tmx|| ≤ ε , ∀||x|| = 1 , ∀n,m ≥ N

=⇒ ||Tnx− Tx|| ≤ ε , ∀||x|| = 1 , ∀n ≥ N

=⇒ ||TNx− Tx|| ≤ ε , ∀||x|| = 1

=⇒ ||TN − T || ≤ ε

As a first consequence, we obtain T ∈ B(V ), because we have:

||T || = ||TN + (T − TN)||
≤ ||TN ||+ ||T − TN ||
≤ ||TN ||+ ε

< ∞
As a second consequence, we obtain TN → T in norm, and we are done. □

As a basic example for the above construction, in the case where both our spaces are
finite dimensional, V = CN and W = CM , with N,M <∞, we obtain a matrix space:

B(CN ,CM) =MM×N(C)

More on this later. On the other hand, of particular interest is as well the caseW = C
of the above construction, which leads to the following result:
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Theorem 15.14. Given a Banach space V , its dual space, constructed as

V ∗ =
{
f : V → C, linear and bounded

}
is a Banach space too, with norm given by:

||f || = sup
||x||=1

|f(x)|

When V is finite dimensional, we have V ≃ V ∗.

Proof. This is clear indeed from Theorem 15.13, because we have:

V ∗ = B(V,C)
Thus, we are led to the conclusions in the statement. □

In order to better understand the linear forms, we will need:

Theorem 15.15 (Hahn-Banach). Given a Banach space V , the following happen:

(1) Given x ∈ V − {0}, there exists f ∈ V ∗ with f(x) ̸= 0.

(2) Given a subspace W ⊂ V , any f ∈ W ∗ extends into a f̃ ∈ V ∗, of same norm.

Proof. This is something quite tricky, the idea being as follows:

(1) As a first observation, (1) is weaker than (2).

(2) As a second observation, (2) can be proved in finite dimensions by using a direct

sum decomposition V = W ⊕ U , and setting f̃ ∈ V ∗ to be zero on U .

(3) In general, the proof is quite similar, by using the same ideas. To be more precise,
we can first prove (1), and then by using using this, prove (2) as well. □

We can now formulate a key result, as follows:

Theorem 15.16. Given a Banach space V , we have an embedding as follows,

V ⊂ V ∗∗

which is an isomorphism in finite dimensions, and for the lp and Lp spaces too.

Proof. There are several things going on here, the idea being as follows:

(1) The fact that we have indeed a vector space embedding V ⊂ V ∗∗ is clear from
definitions, the formula of this embedding being as follows:

i(v)[f ] = f(v)

(2) However, the fact that this embedding V ⊂ V ∗∗ is isometric is something more
subtle, which requires the use of the Hahn-Banach result from Theorem 15.15.

(3) Next, the fact that we have V = V ∗∗ in finite dimensions is clear.



15B. BANACH SPACES 263

(4) Regarding now the formula V = V ∗∗ for the various lp and Lp spaces, this is
something quite tricky. Let us start with the simplest case, that of the space V = l2. We
know that this space is given by definition by the following formula:

l2 =

{
(xi)i∈N

∣∣∣∑
i

x2i <∞

}
Now let us look for linear forms f : l2 → C. By linearity such a linear form must

appear as follows, for certain scalars ai ∈ C, which must be such that f is well-defined:

f ((xi)i) =
∑
i

aixi

But, what does the fact that f is well-defined mean? In answer, this means that the
values of f must all converge, which in practice means that we must have:∑

i

x2i <∞ =⇒

∣∣∣∣∣∑
i

aixi

∣∣∣∣∣ <∞

Moreover, we would like our linear form f : l2 → C to be bounded, and by denoting
by A = ||f || <∞ the minimal bound, this means that we must have:∣∣∣∣∣∑

i

aixi

∣∣∣∣∣ ≤ A

√∑
i

x2i

Now recall that the Cauchy-Schwarz inequality tells us that we have:∣∣∣∣∣∑
i

aixi

∣∣∣∣∣ ≤
√∑

i

a2i ·
√∑

i

x2i

Thus, the linear form f : l2 → C associated to any a = (ai) ∈ l2 will do. Moreover,
conversely, by examining the proof of Cauchy-Schwarz, we conclude that this condition
a = (ai) ∈ l2 is in fact necessary. Thus, we have proved that we have:

(l2)∗ = l2

But this gives the V = V ∗∗ result in the statement for our space V = l2, because by
dualizing one more time we obtain, as desired:

(l2)∗∗ = (l2)∗ = l2

(5) Getting now to more complicated spaces, let us look, more generally, at L2(X).
We know that this space is given by definition by the following formula:

L2(X) =

{
f : X → C

∣∣∣ ∫
X

f(x)2dx <∞
}
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As before, when looking for linear forms φ : L2(X) → C, by linearity, and with some
mesure theory helping, our forms must appear via a formula as follows:

φ(f) =

∫
X

f(x)φ(x)dx

Now in order for this integral to converge, as for our map φ : L2(X) → C to be
well-defined, and with the additional requirement that φ must be actually bounded, we
must have an inequality as follows, for a certain positive constant A <∞:∣∣∣∣∫

X

f(x)φ(x)dx

∣∣∣∣ ≤ A

√∫
X

f(x)2dx

Now recall that the Cauchy-Schwarz inequality tells us that we have:∣∣∣∣∫
X

f(x)φ(x)dx

∣∣∣∣ ≤
√∫

X

φ(x)2dx ·

√∫
X

f(x)2dx

Thus, the linear form φ : L2(X) → C associated to any φ ∈ L2(X) will do. Moreover,
conversely, by examining the proof of Cauchy-Schwarz, we conclude that this condition
φ ∈ L2(X) is in fact necessary. Thus, we have proved that we have:

(L2)∗ = L2

But this gives the V = V ∗∗ result in the statement for our space V = L2, because by
dualizing one more time we obtain, as desired:

(L2)∗∗ = (L2)∗ = L2

(6) Before getting further, let us mention that, more generally with respect to our
l2, L2 computations, we have the following formula, valid for any Hilbert space H:

H∗ ≃ H̄

To be more precise, we can talk about Hilbert spaces, as being those Banach spaces
whose norm comes from a scalar product, via ||x|| = √

< x, x >, and we will discuss this
in the next chapter. And, the point is that, as we will see in the next chapter, any such
Hilbert space has an orthogonal basis, which in practice means that we can write:

H = l2(I)

Thus, we are apparently led to H∗ = H, but this is not exactly true, because the
correspondence a → f that we constructed in (4), and that we would like to rely upon,
is antilinear, instead of being linear. Of course, this was not a problem in the context of
(4), and nor is this a problem, for the same reasons, for a Hilbert space H given with a
basis, and so with an explicit isomorphism H = l2(I), as above. However, when talking
about abstract Hilbert spaces H, coming without a basis, we must correct this, into:

H∗ ≃ H̄
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But this gives the V = V ∗∗ result in the statement for our Hilbert space V = H,
because by dualizing one more time we obtain, as desired:

H∗∗ = (H̄)∗ = ¯̄H = H

So long for l2, L2 spaces, and more general Hilbert spaces H. We will be back to this
in the next chapter, when systematically discussing the Hilbert spaces.

(7) Moving ahead now, let us go back to the lp spaces, as in (4), but now with general
exponents p ∈ [1,∞], instead of p = 2. The space lp is by definition given by:

lp =

{
(xi)i∈N

∣∣∣∑
i

|xi|p <∞

}
Now by arguing as in (4), a linear form f : lp → C must come as follows:

f ((xi)i) =
∑
i

aixi

To be more precise, here ai ∈ C are certain scalars, which are subject to an inequality
as follows, for a certain constant A <∞, making f well-defined, and bounded:∣∣∣∣∣∑

i

aixi

∣∣∣∣∣ ≤ A

(∑
i

|xi|p
)1/p

Now recall that the Hölder inequality tells us that we have, with 1
p
+ 1

q
= 1:∣∣∣∣∣∑

i

aixi

∣∣∣∣∣ ≤
(∑

i

|xi|p
)1/p(∑

i

|ai|p
)1/q

Thus, the linear form f : l2 → C associated to any element a = (ai) ∈ lq will do.
Moreover, conversely, by examining the proof of Hölder, we conclude that this condition
a = (ai) ∈ lq is in fact necessary. Thus, we have proved that we have:

(lp)∗ = lq

But this gives the V = V ∗∗ result in the statement for our space V = lp, because by
dualizing one more time we obtain, as desired:

(lp)∗∗ = (lq)∗ = lq

(8) All this is very nice, and time now to generalize everything that we know, by
looking at the general spaces Lp(X), with p ∈ [1,∞]. These spaces are given by:

Lp(X) =

{
f : X → C

∣∣∣ ∫
X

|f(x)|pdx <∞
}



266 15. FUNCTION SPACES

As before in (5), when looking for linear forms φ : Lp(X) → C, by linearity, and with
some mesure theory helping, our forms must appear via a formula as follows:

φ(f) =

∫
X

f(x)φ(x)dx

Now in order for this integral to converge, as for our map φ : Lp(X) → C to be
well-defined, and with the additional requirement that φ must be actually bounded, we
must have an inequality as follows, for a certain positive constant A <∞:∣∣∣∣∫

X

f(x)φ(x)dx

∣∣∣∣ ≤ A

(∫
X

|f(x)|pdx
)1/p

Now recall that the Hölder inequality tells us that we have, with 1
p
+ 1

q
= 1:∣∣∣∣∫

X

f(x)φ(x)dx

∣∣∣∣ ≤ (∫
X

|f(x)|pdx
)1/p(∫

X

|φ(x)|qdx
)1/q

Thus, the linear form φ : Lp(X) → C associated to any function φ ∈ Lq(X) will do.
Moreover, conversely, by examining the proof of Hölder, we conclude that this condition
φ ∈ Lq(X) is in fact necessary. Thus, we have proved that we have:

(Lp)∗ = Lq

But this gives the V = V ∗∗ result in the statement for our space V = Lp, because by
dualizing one more time we obtain, as desired:

(Lp)∗∗ = (Lq)∗ = Lp

(9) Finally, let us mention that not all Banach spaces satisfy V = V ∗∗, with a basic
counterexample here being the space c0 of sequences xn ∈ C satisfying xn → 0, with the
sup norm. Indeed, computations show that we have the following formulae:

c∗0 = l1 , (l1)∗ = l∞

Thus, in this case V ⊂ V ∗∗ is the embedding c0 ⊂ l∞, which is not an isomorphism. □

15c. Spectral theory

Many interesting things can be said about the Banach algebras:

Definition 15.17. A Banach algebra is a complex algebra with a norm satisfying

||ab|| ≤ ||a|| · ||b||

and which makes it a Banach space, in the sense that the Cauchy sequences converge.
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The basic examples of Banach algebras are the operator algebra B(H), and its norm
closed subalgebras A ⊂ B(H), such as the algebras A =< T > generated by a single
operator T ∈ B(H). There are many other examples, and more on this later.

Generally speaking, the elements a ∈ A of a Banach algebra can be thought of as
being bounded operators on some Hilbert space, which is not present. With this idea in
mind, we can emulate spectral theory in our setting, the starting point being:

Definition 15.18. The spectrum of an element a ∈ A is the set

σ(a) =
{
λ ∈ C

∣∣∣a− λ ̸∈ A−1
}

where A−1 ⊂ A is the set of invertible elements.

As a basic example, the spectrum of a usual matrix M ∈ MN(C) is the collection of
its eigenvalues, taken of course without multiplicities. In the case of the trivial algebra
A = C, appearing at N = 1, the spectrum of an element is the element itself.

Given an arbitrary Banach algebra element a ∈ A, and a rational function f = P/Q
having poles outside the spectrum σ(a), we can construct the following element:

f(a) = P (a)Q(a)−1

For simplicity, and due to the fact that the elements P (a), Q(a) commute, so that the
order is irrelevant, we write this element as a usual fraction, as follows:

f(a) =
P (a)

Q(a)

With this convention, we have the following result:

Theorem 15.19. We have the “rational functional calculus” formula

σ(f(a)) = f(σ(a))

valid for any rational function f ∈ C(X) having poles outside σ(a).

Proof. In order to prove this result, we can proceed in two steps, as follows:

(1) Assume first that we are in the polynomial function case, f ∈ C[X]. We pick a
scalar λ ∈ C, and we decompose the polynomial f − λ into factors:

f(X)− λ = c(X − r1) . . . (X − rn)
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By using this formula, we have then, as desired:

λ /∈ σ(f(a)) ⇐⇒ f(a)− λ ∈ A−1

⇐⇒ c(a− r1) . . . (a− rn) ∈ A−1

⇐⇒ a− r1, . . . , a− rn ∈ A−1

⇐⇒ r1, . . . , rn /∈ σ(a)

⇐⇒ λ /∈ f(σ(a))

(2) Assume now that we are in the general rational function case, f ∈ C(X). We pick
a scalar λ ∈ C, we write f = P/Q, and we set:

F = P − λQ

By using now what we found in (1), for this polynomial, we obtain:

λ ∈ σ(f(a)) ⇐⇒ F (a) /∈ A−1

⇐⇒ 0 ∈ σ(F (a))

⇐⇒ 0 ∈ F (σ(a))

⇐⇒ ∃µ ∈ σ(a), F (µ) = 0

⇐⇒ λ ∈ f(σ(a))

Thus, we have obtained the formula in the statement. □

Summarizing, we have so far a beginning of theory. Let us prove now something that
we do not know yet, namely that the spectra are non-empty:

σ(a) ̸= ∅
In the present Banach algebra setting, this is definitely something non-trivial. In order

to establish this result, we will need a number of analytic preliminaries, as follows:

Proposition 15.20. The following happen:

(1) ||T || < 1 =⇒ (1− T )−1 = 1 + T + T 2 + . . .
(2) The set B(V )−1 is open.
(3) The map T → T−1 is differentiable.

Proof. All these assertions are elementary, as follows:

(1) This follows as in the scalar case, the computation being as follows, provided that
everything converges under the norm, which amounts in saying that ||T || < 1:

(1− T )(1 + T + T 2 + . . .) = 1− T + T − T 2 + T 2 − T 3 + . . .

= 1

(2) Assuming T ∈ B(V )−1, let us pick S ∈ B(V ) such that:

||T − S|| < 1

||T−1||
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We have then the following estimate:

||1− T−1S|| = ||T−1(T − S)||
≤ ||T−1|| · ||T − S||
< 1

Thus we have T−1S ∈ B(V )−1, and so S ∈ B(V )−1, as desired.

(3) In the scalar case, the derivative of f(t) = t−1 is f ′(t) = −t−2. In the present
normed space setting the derivative is no longer a number, but rather a linear transfor-
mation, which can be found by developing f(T ) = T−1 at order 1, as follows:

(T + S)−1 = ((1 + ST−1)T )−1

= T−1(1 + ST−1)−1

= T−1(1− ST−1 + (ST−1)2 − . . .)

≃ T−1(1− ST−1)

= T−1 − T−1ST−1

Thus f(T ) = T−1 is indeed differentiable, with derivative f ′(T )S = −T−1ST−1. □

We can now formulate a key result about spectra, as follows:

Theorem 15.21. The spectrum of a bounded operator T ∈ B(V ) is:

(1) Compact.
(2) Contained in the disc D0(||T ||).
(3) Non-empty.

Proof. This can be proved by using Proposition 15.20, as follows:

(1) In view of (2) below, it is enough to prove that σ(T ) is closed. But this follows
from the following computation, with |ε| being small:

λ /∈ σ(T ) =⇒ T − λ ∈ B(V )−1

=⇒ T − λ− ε ∈ B(V )−1

=⇒ λ+ ε /∈ σ(T )

(2) This follows from the following computation:

λ > ||T || =⇒
∣∣∣∣∣∣T
λ

∣∣∣∣∣∣ < 1

=⇒ 1− T

λ
∈ B(V )−1

=⇒ λ− T ∈ B(V )−1

=⇒ λ /∈ σ(T )
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(3) Assume by contradiction σ(T ) = ∅. Given a linear form f ∈ B(V )∗, consider the
following map, which is well-defined, due to our assumption σ(T ) = ∅:

φ : C → C , λ→ f((T − λ)−1)

By using the fact that T → T−1 is differentiable, that we know from Proposition 15.20,
we conclude that this map is differentiable, and so holomorphic. Also, we have:

λ→ ∞ =⇒ T − λ→ ∞
=⇒ (T − λ)−1 → 0

=⇒ f((T − λ))−1 → 0

Thus by the Liouville theorem we obtain φ = 0. But, in view of the definition of φ,
this gives (T − λ)−1 = 0, which is a contradiction, as desired. □

15d. Distributions

Distributions.

15e. Exercises

Exercises:

Exercise 15.22.

Exercise 15.23.

Exercise 15.24.

Exercise 15.25.

Exercise 15.26.

Exercise 15.27.

Exercise 15.28.

Exercise 15.29.

Bonus exercise.



CHAPTER 16

Several variables

16a. Partial derivatives

Moving now to several variables, N ≥ 2, as a first job, given a function φ : RN → R,
we would like to find a quantity φ′(x) making the following formula work:

φ(x+ h) ≃ φ(x) + φ′(x)h

But here, as in 1 variable, there are not so many choices, and the solution is that of
defining φ′(x) as being the row vector formed by the partial derivatives at x:

φ′(x) =

(
dφ

dx1
. . .

dφ

dxN

)
To be more precise, with this value for φ′(x), our approximation formula φ(x+ h) ≃

φ(x) +φ′(x)h makes sense indeed, as an equality of real numbers, with φ′(x)h ∈ R being
obtained as the matrix multiplication of the row vector φ′(x), and the column vector
h. As for the fact that our formula holds indeed, this follows by putting together the
approximation properties of each of the partial derivatives dφ/dxi, which give:

φ(x+ h) ≃ φ(x) +
N∑
i=1

dφ

dxi
· hi = φ(x) + φ′(x)h

Before moving forward, you might say, why bothering with horizontal vectors, when
it is so simple and convenient to have all vectors vertical, by definition. Good point, and
in answer, we can indeed talk about the gradient of φ, constructed as follows:

∇φ =


dφ
dx1
...
dφ
dxN


With this convention, ∇φ geometrically describes the slope of φ at the point x, in the

obvious way. However, the approximation formula must be rewritten as follows:

φ(x+ h) ≃ φ(x)+ < ∇φ(x), h >

In what follows we will use both φ′ and ∇φ, depending on the context. Moving now
to second derivatives, the main result here is as follows:

271
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Theorem 16.1. The second derivative of a function φ : RN → R, making the formula

φ(x+ h) ≃ φ(x) + φ′(x)h+
< φ′′(x)h, h >

2

work, is its Hessian matrix φ′′(x) ∈MN(R), given by the following formula:

φ′′(x) =

(
d2φ

dxidxj

)
ij

Moreover, this Hessian matrix is symmetric, φ′′(x)ij = φ′(x)ji.

Proof. There are several things going on here, the idea being as follows:

(1) As a first observation, at N = 1 the Hessian matrix constructed above is simply
the 1 × 1 matrix having as entry the second derivative φ′′(x), and the formula in the
statement is something that we know well from chapter 10, namely:

φ(x+ h) ≃ φ(x) + φ′(x)h+
φ′′(x)h2

2

(2) At N = 2 now, we obviously need to differentiate φ twice, and the point is that
we come in this way upon the following formula, called Clairaut formula:

d2φ

dxdy
=

d2φ

dydx

But, is this formula correct or not? As an intuitive justification for it, let us consider
a product of power functions, φ(z) = xpyq. We have then our formula, due to:

d2φ

dxdy
=

d

dx

(
dxpyq

dy

)
=

d

dx

(
qxpyq−1

)
= pqxp−1yq−1

d2φ

dydx
=

d

dy

(
dxpyq

dx

)
=

d

dy

(
pxp−1yq

)
= pqxp−1yq−1

Next, let us consider a linear combination of power functions, φ(z) =
∑

pq cpqx
pyq,

which can be finite or not. We have then, by using the above computation:

d2φ

dxdy
=

d2φ

dydx
=
∑
pq

cpqpqx
p−1yq−1

Thus, we can see that our commutation formula for derivatives holds indeed, due to
the fact that the functions in x, y commute. Of course, all this does not fully prove our
formula, in general. But exercise for you, to have this idea fully working, or to look up
the standard proof of the Clairaut formula, using the mean value theorem.
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(3) Moving now to N = 3 and higher, we can use here the Clairaut formula with
respect to any pair of coordinates, which gives the Schwarz formula, namely:

d2φ

dxidxj
=

d2φ

dxjdxi

Thus, the second derivative, or Hessian matrix, is symmetric, as claimed.

(4) Getting now to the main topic, namely approximation formula in the statement,
in arbitrary N dimensions, this is in fact something which does not need a new proof,
because it follows from the one-variable formula in (1), applied to the restriction of φ to
the following segment in RN , which can be regarded as being a one-variable interval:

I = [x, x+ h]

To be more precise, let y ∈ RN , and consider the following function, with r ∈ R:

f(r) = φ(x+ ry)

We know from (1) that the Taylor formula for f , at the point r = 0, reads:

f(r) ≃ f(0) + f ′(0)r +
f ′′(0)r2

2

And our claim is that, with h = ry, this is precisely the formula in the statement.

(5) So, let us see if our claim is correct. By using the chain rule, we have the following
formula, with on the right, as usual, a row vector multiplied by a column vector:

f ′(r) = φ′(x+ ry) · y

By using again the chain rule, we can compute the second derivative as well:

f ′′(r) = (φ′(x+ ry) · y)′

=

(∑
i

dφ

dxi
(x+ ry) · yi

)′

=
∑
i

∑
j

d2φ

dxidxj
(x+ ry) · d(x+ ry)j

dr
· yi

=
∑
i

∑
j

d2φ

dxidxj
(x+ ry) · yiyj

= < φ′′(x+ ry)y, y >

(6) Time now to conclude. We know that we have f(r) = φ(x + ry), and according
to our various computations above, we have the following formulae:

f(0) = φ(x) , f ′(0) = φ′(x) , f ′′(0) =< φ′′(x)y, y >
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Buit with this data in hand, the usual Taylor formula for our one variable function f ,
at order 2, at the point r = 0, takes the following form, with h = ry:

φ(x+ ry) ≃ φ(x) + φ′(x)ry +
< φ′′(x)y, y > r2

2

= φ(x) + φ′(x)t+
< φ′′(x)h, h >

2

Thus, we have obtained the formula in the statement. □

As before in the one variable case, many more things can be said, as a continuation
of the above. For instance the local minima and maxima of φ : RN → R appear at the
points x ∈ RN where the derivative vanishes, φ′(x) = 0, and where the second derivative
φ′′(x) ∈MN(R) is positive, respectively negative. But, you surely know all this.

As a key observation now, generalizing what we know in 1 variable, we have:

Proposition 16.2. Intuitively, the following quantity, called Laplacian of φ,

∆φ =
N∑
i=1

d2φ

dx2i

measures how much different is φ(x), compared to the average of φ(y), with y ≃ x.

Proof. As before with 1 variable, this is something a bit heuristic, but good to know.
Let us write the formula in Theorem 16.1, as such, and with h→ −h too:

φ(x+ h) ≃ φ(x) + φ′(x)h+
< φ′′(x)h, h >

2

φ(x− h) ≃ φ(x)− φ′(x)h+
< φ′′(x)h, h >

2

By making the average, we obtain the following formula:

φ(x+ h) + φ(x− h)

2
= φ(x) +

< φ′′(x)h, h >

2

Thus, thinking a bit, we are led to the conclusion in the statement, modulo some
discussion about integrating all this, that we will not really need, in what follows. □

With this understood, the problem is now, what can we say about the mathematics
of ∆? As a first observation, which is a bit speculative, the Laplace operator appears by
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applying twice the gradient operator, in a somewhat formal sense, as follows:

∆φ =
N∑
i=1

d2φ

dx2i

=
N∑
i=1

d

dxi
· dφ
dxi

=

〈
d

dx1
...
d

dxN

 ,


dφ
dx1
...
dφ
dxN

〉

= < ∇,∇φ >

Thus, it is possible to write a formula of type ∆ = ∇2, with the convention that the
square of the gradient ∇ is taken in a scalar product sense, as above. However, this can
be a bit confusing, and in what follows, we will not use this notation.

Instead of further thinking at this, and at double derivatives in general, let us formulate
a more straightforward question, inspired by linear algebra, as follows:

Question 16.3. The Laplace operator being linear,

∆(aφ+ bψ) = a∆φ+ b∆ψ

what can we say about it, inspired by usual linear algebra?

In answer now, the space of functions φ : RN → R, on which ∆ acts, being infinite
dimensional, the usual tools from linear algebra do not apply as such, and we must be
extremely careful. For instance, we cannot really expect to diagonalize ∆, via some sort
of explicit procedure, as we usually do in linear algebra, for the usual matrices.

Thinking some more, there is actually a real bug too with our problem, because at
N = 1 this problem becomes “what can we say about the second derivatives φ′′ : R → R
of the functions φ : R → R, inspired by linear algebra”, with answer “not much”.

And by thinking even more, still at N = 1, there is a second bug too, because if
φ : R → R is twice differentiable, nothing will guarantee that its second derivative
φ′′ : R → R is twice differentiable too. Thus, we have some issues with the domain and
range of ∆, regarded as linear operator, and these problems will persist at higher N .

So, shall we trash Question 16.3? Not so quick, because, very remarkably, some magic
comes at N = 2 and higher in relation with complex analysis, according to:
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Principle 16.4. The functions φ : RN → R which are 0-eigenvectors of ∆,

∆φ = 0

called harmonic functions, have the following properties:

(1) At N = 1, nothing spectacular, these are just the linear functions.
(2) At N = 2, these are, locally, the real parts of holomorphic functions.
(3) At N ≥ 3, these still share many properties with the holomorphic functions.

In order to understand this, or at least get introduced to it, let us first look at the
case N = 2. Here, any function φ : R2 → R can be regarded as function φ : C → R,
depending on z = x+ iy. But, in view of this, it is natural to enlarge the attention to the
functions φ : C → C, and ask which of these functions are harmonic, ∆φ = 0. And here,
we have the following remarkable result, making the link with complex analysis:

Theorem 16.5. Any holomorphic function φ : C → C, when regarded as function

φ : R2 → C

is harmonic. Moreover, the conjugates φ̄ of holomorphic functions are harmonic too.

Proof. The first assertion comes from the following computation, with z = x+ iy:

∆zn =
d2zn

dx2
+
d2zn

dy2

=
d(nzn−1)

dx
+
d(inzn−1)

dy

= n(n− 1)zn−2 − n(n− 1)zn−2

= 0

As for the second assertion, this follows from ∆φ̄ = ∆φ, which is clear from definitions,
and which shows that if φ is harmonic, then so is its conjugate φ̄. □

Many more things can be said, along these lines.

16b. Multiple integrals

We can talk about multiple integrals, in the obvious way. Getting now to the general
theory and rules, for computing such integrals, the key result here is the change of variable
formula. In order to discuss this, let us start with something that we know well, in 1D:

Proposition 16.6. We have the change of variable formula∫ b

a

f(x)dx =

∫ d

c

f(φ(t))φ′(t)dt

where c = φ−1(a) and d = φ−1(b).



16C. SPHERICAL COORDINATES 277

Proof. This follows with f = F ′, via the following differentiation rule:

(Fφ)′(t) = F ′(φ(t))φ′(t)

Indeed, by integrating between c and d, we obtain the result. □

In several variables now, we can only expect the above φ′(t) factor to be replaced by
something similar, a sort of “derivative of φ, arising as a real number”. But this can only
be the Jacobian det(φ′(t)), and with this in mind, we are led to:

Theorem 16.7. Given a transformation φ = (φ1, . . . , φN), we have∫
E

f(x)dx =

∫
φ−1(E)

f(φ(t))|Jφ(t)|dt

with the Jφ quantity, called Jacobian, being given by

Jφ(t) = det

[(
dφi

dxj
(x)

)
ij

]
and with this generalizing the formula from Proposition 16.6.

Proof. This is something quite tricky, the idea being as follows:

(1) Observe first that this generalizes indeed the change of variable formula in 1
dimension, from Proposition 16.6, the point here being that the absolute value on the
derivative appears as to compensate for the lack of explicit bounds for the integral.

(2) In general now, we can first argue that, the formula in the statement being linear
in f , we can assume f = 1. Thus we want to prove vol(E) =

∫
φ−1(E)

|Jφ(t)|dt, and with

D = φ−1(E), this amounts in proving vol(φ(D)) =
∫
D
|Jφ(t)|dt.

(3) Now since this latter formula is additive with respect to D, it is enough to prove
that vol(φ(D)) =

∫
D
Jφ(t)dt, for small cubes D, and assuming Jφ > 0. But this follows

by using the usual definition of the determinant, as a volume.

(4) The details and computations however are quite non-trivial, and can be found for
instance in Rudin [79]. So, please read that. With this, reading the complete proof of
the present theorem from Rudin, being part of the standard math experience. □

Many other things can be said, as a continuation of the above.

16c. Spherical coordinates

Time now do some exciting computations, with the technology that we have. In what
regards the applications of Theorem 16.7, these often come via:
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Proposition 16.8. We have polar coordinates in 2 dimensions,{
x = r cos t

y = r sin t

the corresponding Jacobian being J = r.

Proof. This is elementary, the Jacobian being:

J =

∣∣∣∣∣∣
d(r cos t)

dr
d(r cos t)

dt

d(r sin t)
dr

d(r sin t)
dt

∣∣∣∣∣∣
=

∣∣∣∣cos t −r sin t
sin t r cos t

∣∣∣∣
= r cos2 t+ r sin2 t

= r

Thus, we have indeed the formula in the statement. □

We can now compute the Gauss integral, which is the best calculus formula ever:

Theorem 16.9. We have the following formula,∫
R
e−x2

dx =
√
π

called Gauss integral formula.

Proof. Let I be the above integral. By using polar coordinates, we obtain:

I2 =

∫
R

∫
R
e−x2−y2dxdy

=

∫ 2π

0

∫ ∞

0

e−r2rdrdt

= 2π

∫ ∞

0

(
−e

−r2

2

)′

dr

= 2π

[
0−

(
−1

2

)]
= π

Thus, we are led to the formula in the statement. □

Moving now to 3 dimensions, we have here the following result:
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Proposition 16.10. We have spherical coordinates in 3 dimensions,
x = r cos s

y = r sin s cos t

z = r sin s sin t

the corresponding Jacobian being J(r, s, t) = r2 sin s.

Proof. The fact that we have indeed spherical coordinates is clear. Regarding now
the Jacobian, this is given by the following formula:

J(r, s, t)

=

∣∣∣∣∣∣
cos s −r sin s 0

sin s cos t r cos s cos t −r sin s sin t
sin s sin t r cos s sin t r sin s cos t

∣∣∣∣∣∣
= r2 sin s sin t

∣∣∣∣ cos s −r sin s
sin s sin t r cos s sin t

∣∣∣∣+ r sin s cos t

∣∣∣∣ cos s −r sin s
sin s cos t r cos s cos t

∣∣∣∣
= r sin s sin2 t

∣∣∣∣cos s −r sin s
sin s r cos s

∣∣∣∣+ r sin s cos2 t

∣∣∣∣cos s −r sin s
sin s r cos s

∣∣∣∣
= r sin s(sin2 t+ cos2 t)

∣∣∣∣cos s −r sin s
sin s r cos s

∣∣∣∣
= r sin s× 1× r

= r2 sin s

Thus, we have indeed the formula in the statement. □

Let us work out now the general spherical coordinate formula, in arbitrary N dimen-
sions. The formula here, which generalizes those at N = 2, 3, is as follows:

Theorem 16.11. We have spherical coordinates in N dimensions,

x1 = r cos t1
x2 = r sin t1 cos t2
...

xN−1 = r sin t1 sin t2 . . . sin tN−2 cos tN−1

xN = r sin t1 sin t2 . . . sin tN−2 sin tN−1

the corresponding Jacobian being given by the following formula,

J(r, t) = rN−1 sinN−2 t1 sin
N−3 t2 . . . sin

2 tN−3 sin tN−2

and with this generalizing the known formulae at N = 2, 3.
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Proof. As before, the fact that we have spherical coordinates is clear. Regarding
now the Jacobian, also as before, by developing over the last column, we have:

JN = r sin t1 . . . sin tN−2 sin tN−1 × sin tN−1JN−1

+ r sin t1 . . . sin tN−2 cos tN−1 × cos tN−1JN−1

= r sin t1 . . . sin tN−2(sin
2 tN−1 + cos2 tN−1)JN−1

= r sin t1 . . . sin tN−2JN−1

Thus, we obtain the formula in the statement, by recurrence. □

As a comment here, the above convention for spherical coordinates is one among many,
designed to best work in arbitrary N dimensions. Also, in what regards the precise range
of the angles t1, . . . , tN−1, we will leave this to you, as an instructive exercise.

As an application, let us compute the volumes of spheres. For this purpose, we must
understand how the products of coordinates integrate over spheres. Let us start with the
case N = 2. Here the sphere is the unit circle T, and with z = eit the coordinates are
cos t, sin t. We can first integrate arbitrary powers of these coordinates, as follows:

Proposition 16.12. We have the following formulae,∫ π/2

0

cosp t dt =

∫ π/2

0

sinp t dt =
(π
2

)ε(p) p!!

(p+ 1)!!

where ε(p) = 1 if p is even, and ε(p) = 0 if p is odd, and where

m!! = (m− 1)(m− 3)(m− 5) . . .

with the product ending at 2 if m is odd, and ending at 1 if m is even.

Proof. Let us first compute the integral on the left in the statement:

Ip =

∫ π/2

0

cosp t dt

We do this by partial integration. We have the following formula:

(cosp t sin t)′ = p cosp−1 t(− sin t) sin t+ cosp t cos t

= p cosp+1 t− p cosp−1 t+ cosp+1 t

= (p+ 1) cosp+1 t− p cosp−1 t

By integrating between 0 and π/2, we obtain the following formula:

(p+ 1)Ip+1 = pIp−1
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Thus we can compute Ip by recurrence, and we obtain:

Ip =
p− 1

p
Ip−2

=
p− 1

p
· p− 3

p− 2
Ip−4

=
p− 1

p
· p− 3

p− 2
· p− 5

p− 4
Ip−6

...

=
p!!

(p+ 1)!!
I1−ε(p)

But I0 =
π
2
and I1 = 1, so we get the result. As for the second formula, this follows from

the first one, with t = π
2
− s. Thus, we have proved both formulae in the statement. □

We can now compute the volume of the sphere, as follows:

Theorem 16.13. The volume of the unit sphere in RN is given by

V =
(π
2

)[N/2] 2N

(N + 1)!!

with our usual convention N !! = (N − 1)(N − 3)(N − 5) . . .

Proof. Let us denote by B+ the positive part of the unit sphere, or rather unit ball
B, obtained by cutting this unit ball in 2N parts. At the level of volumes, we have:

V = 2NV +

We have the following computation, using spherical coordinates:

V + =

∫
B+

1

=

∫ 1

0

∫ π/2

0

. . .

∫ π/2

0

rN−1 sinN−2 t1 . . . sin tN−2 drdt1 . . . dtN−1

=

∫ 1

0

rN−1 dr

∫ π/2

0

sinN−2 t1 dt1 . . .

∫ π/2

0

sin tN−2dtN−2

∫ π/2

0

1dtN−1

=
1

N
×
(π
2

)[N/2]

× (N − 2)!!

(N − 1)!!
· (N − 3)!!

(N − 2)!!
. . .

2!!

3!!
· 1!!
2!!

· 1

=
1

N
×
(π
2

)[N/2]

× 1

(N − 1)!!

=
(π
2

)[N/2] 1

(N + 1)!!
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Here we have used the following formula, for computing the exponent of π/2:

ε(0) + ε(1) + ε(2) + . . .+ ε(N − 2) = 1 + 0 + 1 + . . .+ ε(N − 2)

=

[
N − 2

2

]
+ 1

=

[
N

2

]
Thus, we obtain the formula in the statement. □

As main particular cases of the above formula, we have:

Theorem 16.14. The volumes of the low-dimensional spheres are as follows:

(1) At N = 1, the length of the unit interval is V = 2.
(2) At N = 2, the area of the unit disk is V = π.
(3) At N = 3, the volume of the unit sphere is V = 4π

3

(4) At N = 4, the volume of the corresponding unit sphere is V = π2

2
.

Proof. Some of these results are well-known, but we can obtain all of them as par-
ticular cases of the general formula in Theorem 16.13, as follows:

(1) At N = 1 we obtain V = 1 · 2
1
= 2.

(2) At N = 2 we obtain V = π
2
· 4
2
= π.

(3) At N = 3 we obtain V = π
2
· 8
3
= 4π

3
.

(4) At N = 4 we obtain V = π2

4
· 16

8
= π2

2
. □

The formula in Theorem 16.13 is certainly nice, but in practice, we would like to have
estimates for that sphere volumes too. For this purpose, we will need:

Theorem 16.15. We have the Stirling formula

N ! ≃
(
N

e

)N √
2πN

valid in the N → ∞ limit.

Proof. This is something quite tricky, the idea being as follows:

(1) Let us first see what we can get with Riemann sums. We have:

log(N !) =
N∑
k=1

log k

≈
∫ N

1

log x dx

= N logN −N + 1
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By exponentiating, this gives the following estimate, which is not bad:

N ! ≈
(
N

e

)N

· e

(2) We can improve our estimate by replacing the rectangles from the Riemann sum
approach to the integrals by trapezoids. In practice, this gives the following estimate:

log(N !) =
N∑
k=1

log k

≈
∫ N

1

log x dx+
log 1 + logN

2

= N logN −N + 1 +
logN

2

By exponentiating, this gives the following estimate, which gets us closer:

N ! ≈
(
N

e

)N

· e ·
√
N

(3) In order to conclude, we must take some kind of mathematical magnifier, and
carefully estimate the error made in (2). Fortunately, this mathematical magnifier exists,
called Euler-Maclaurin formula, and after some computations, this leads to:

N ! ≃
(
N

e

)N √
2πN

(4) However, all this remains a bit complicated, so we would like to present now
an alternative approach to (3), which also misses some details, but better does the job,
explaining where the

√
2π factor comes from. First, by partial integration we have:

N ! =

∫ ∞

0

xNe−xdx

Since the integrand is sharply peaked at x = N , as you can see by computing the
derivative of log(xNe−x), this suggests writing x = N + y, and we obtain:

log(xNe−x) = N log x− x

= N log(N + y)− (N + y)

= N logN +N log
(
1 +

y

N

)
− (N + y)

≃ N logN +N

(
y

N
− y2

2N2

)
− (N + y)

= N logN −N − y2

2N
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By exponentiating, we obtain from this the following estimate:

xNe−x ≃
(
N

e

)N

e−y2/2N

Now by integrating, and using the Gauss formula, we obtain from this:

N ! =

∫ ∞

0

xNe−xdx

≃
∫ N

−N

(
N

e

)N

e−y2/2N dy

≃
(
N

e

)N ∫
R
e−y2/2N dy

=

(
N

e

)N √
2N

∫
R
e−z2 dz

=

(
N

e

)N √
2πN

Thus, we have proved the Stirling formula, as formulated in the statement. □

With the above formula in hand, we have many useful applications, such as:

Proposition 16.16. We have the following estimate for binomial coefficients,

(
N

K

)
≃
(

1

tt(1− t)1−t

)N
1√

2πt(1− t)N

in the K ≃ tN → ∞ limit, with t ∈ (0, 1]. In particular we have(
2N

N

)
≃ 4N√

πN

in the N → ∞ limit, for the central binomial coefficients.

Proof. All this is very standard, by using the Stirling formula etablished above, for
the various factorials which appear, the idea being as follows:
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(1) This follows from the definition of the binomial coefficients, namely:(
N

K

)
=

N !

K!(N −K)!

≃
(
N

e

)N √
2πN

( e
K

)K 1√
2πK

(
e

N −K

)N−K
1√

2π(N −K)

=
NN

KK(N −K)N−K

√
N

2πK(N −K)

≃ NN

(tN)tN((1− t)N)(1−t)N

√
N

2πtN(1− t)N

=

(
1

tt(1− t)1−t

)N
1√

2πt(1− t)N

Thus, we are led to the conclusion in the statement.

(2) This estimate follows from a similar computation, as follows:(
2N

N

)
=

(2N)!

N !N !

≃
(
2N

e

)2N √
4πN

( e
N

)2N 1

2πN

=
4N√
πN

Alternatively, we can take t = 1/2 in (1), then rescale. Indeed, we have:(
N

[N/2]

)
≃

(
1

(1
2
)1/2(1

2
)1/2

)N
1√

2π · 1
2
· 1
2
·N

= 2N
√

2

πN

Thus with the change N → 2N we obtain the formula in the statement. □

We can now estimate the volumes of the spheres, as follows:

Theorem 16.17. The volume of the unit sphere in RN is given by

V ≃
(
2πe

N

)N/2
1√
πN

in the N → ∞ limit.
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Proof. We use the formula for V found in Theorem 16.13, namely:

V =
(π
2

)[N/2] 2N

(N + 1)!!

In the case where N is even, the estimate goes as follows:

V =
(π
2

)N/2 2N

(N + 1)!!

≃
(π
2

)N/2

2N
( e
N

)N/2 1√
πN

=

(
2πe

N

)N/2
1√
πN

In the case where N is odd, the estimate goes as follows:

V =
(π
2

)(N−1)/2 2N

(N + 1)!!

≃
(π
2

)(N−1)/2

2N
( e
N

)N/2 1√
2N

=

√
2

π

(
2πe

N

)N/2
1√
2N

=

(
2πe

N

)N/2
1√
πN

Thus, we are led to the uniform formula in the statement. □

Getting back now to our main result so far, Theorem 16.13, we can compute in the
same way the area of the sphere, the result being as follows:

Theorem 16.18. The area of the unit sphere in RN is given by

A =
(π
2

)[N/2] 2N

(N − 1)!!

with the our usual convention for double factorials, namely:

N !! = (N − 1)(N − 3)(N − 5) . . .

In particular, at N = 2, 3, 4 we obtain respectively A = 2π, 4π, 2π2.

Proof. Regarding the first assertion, there is no need to compute again, because the
formula in the statement can be deduced from Theorem 16.13, as follows:

(1) We can either use the “pizza” argument from chapter 3, which shows that the area
and volume of the sphere in RN are related by the following formula:

A = N · V
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Together with the formula in Theorem 16.13 for V , this gives the result.

(2) Or, we can start the computation in the same way as we started the proof of
Theorem 16.13, the beginning of this computation being as follows:

vol(S+) =

∫ π/2

0

. . .

∫ π/2

0

sinN−2 t1 . . . sin tN−2 dt1 . . . dtN−1

Now by comparing with the beginning of the proof of Theorem 16.13, the only thing
that changes is the following quantity, which now dissapears:∫ 1

0

rN−1 dr =
1

N

Thus, we have vol(S+) = N · vol(B+), and so we obtain the following formula:

vol(S) = N · vol(B)

But this means A = N · V , and together with the formula in Theorem 16.13 for V ,
this gives the result. As for the last assertion, this can be either worked out directly, or
deduced from the results for volumes that we have so far, by multiplying by N . □

16d. Normal variables

We have kept the best for the end. As a starting point, we have:

Definition 16.19. Let X be a probability space, that is, a space with a probability
measure, and with the corresponding integration denoted E, and called expectation.

(1) The random variables are the real functions f ∈ L∞(X).
(2) The moments of such a variable are the numbers Mk(f) = E(fk).
(3) The law of such a variable is the measure given by Mk(f) =

∫
R x

kdµf (x).

Here the fact that a measure µf as above exists indeed is not exactly trivial. But we
can do this by looking at formulae of the following type:

E(φ(f)) =

∫
R
φ(x)dµf (x)

Indeed, having this for monomials φ(x) = xn, as above, is the same as having it
for polynomials φ ∈ R[X], which in turn is the same as having it for the characteristic
functions φ = χI of measurable sets I ⊂ R. Thus, in the end, what we need is:

P (f ∈ I) = µf (I)

But this formula can serve as a definition for µf , and we are done.

Regarding now independence, we can formulate here the following definition:
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Definition 16.20. Two variables f, g ∈ L∞(X) are called independent when

E(fkgl) = E(fk)E(gl)

happens, for any k, l ∈ N.

Again, this definition hides some non-trivial things, the idea being a bit as before,
namely that of looking at formulae of the following type:

E[φ(f)ψ(g)] = E[φ(f)]E[ψ(g)]

To be more precise, passing as before from monomials to polynomials, then to char-
acteristic functions, we are led to the usual definition of independence, namely:

P (f ∈ I, g ∈ J) = P (f ∈ I)P (g ∈ J)

As a first result now, which is something very standard, we have:

Theorem 16.21. Assuming that f, g ∈ L∞(X) are independent, we have

µf+g = µf ∗ µg

where ∗ is the convolution of real probability measures.

Proof. We have the following computation, using the independence of f, g:∫
R
xkdµf+g(x) = E((f + g)k) =

∑
r

(
k

r

)
Mr(f)Mk−r(g)

On the other hand, we have as well the following computation:∫
R
xkd(µf ∗ µg)(x) =

∫
R×R

(x+ y)kdµf (x)dµg(y)

=
∑
r

(
k

r

)
Mr(f)Mk−r(g)

Thus µf+g and µf ∗ µg have the same moments, so they coincide, as claimed. □

As a second result on independence, which is more advanced, we have:

Theorem 16.22. Assuming that f, g ∈ L∞(X) are independent, we have

Ff+g = FfFg

where Ff (x) = E(eixf ) is the Fourier transform.
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Proof. This is something which is very standard too, coming from:

Ff+g(x) =

∫
R
eixzd(µf ∗ µg)(z)

=

∫
R×R

eix(z+t)dµf (z)dµg(t)

=

∫
R
eixzdµf (z)

∫
R
eixtdµg(t)

= Ff (x)Fg(x)

Thus, we are led to the conclusion in the statement. □

Let us introduce now the normal laws. This can be done as follows:

Definition 16.23. The normal law of parameter 1 is the following measure:

g1 =
1√
2π
e−x2/2dx

More generally, the normal law of parameter t > 0 is the following measure:

gt =
1√
2πt

e−x2/2tdx

These are also called Gaussian distributions, with “g” standing for Gauss.

Observe that the above laws have indeed mass 1, as they should. This follows indeed
from the Gauss formula, which gives, with x =

√
2t y:∫

R
e−x2/2tdx =

∫
R
e−y2

√
2t dy

=
√
2t

∫
R
e−y2dy

=
√
2t×

√
π

=
√
2πt

Generally speaking, the normal laws appear as bit everywhere, in real life. The reasons
behind this phenomenon come from the Central Limit Theorem (CLT), that we will
explain in a moment, after developing some general theory. As a first result, we have:

Proposition 16.24. We have the variance formula

V (gt) = t

valid for any t > 0.
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Proof. The first moment is 0, because our normal law gt is centered. As for the
second moment, this can be computed as follows:

M2 =
1√
2πt

∫
R
x2e−x2/2tdx

=
1√
2πt

∫
R
(tx)

(
−e−x2/2t

)′
dx

=
1√
2πt

∫
R
te−x2/2tdx

= t

We conclude from this that the variance is V =M2 = t. □

Here is another result, which is the key one for the study of the normal laws:

Theorem 16.25. We have the following formula, valid for any t > 0:

Fgt(x) = e−tx2/2

In particular, the normal laws satisfy gs ∗ gt = gs+t, for any s, t > 0.

Proof. The Fourier transform formula can be established as follows:

Fgt(x) =
1√
2πt

∫
R
e−y2/2t+ixydy

=
1√
2πt

∫
R
e−(y/

√
2t−

√
t/2ix)2−tx2/2dy

=
1√
2πt

∫
R
e−z2−tx2/2

√
2tdz

=
1√
π
e−tx2/2

∫
R
e−z2dz

=
1√
π
e−tx2/2 ·

√
π

= e−tx2/2

As for the last assertion, this follows from the fact that logFgt is linear in t. □

We are now ready to state and prove the CLT, as follows:

Theorem 16.26 (CLT). Given random variables f1, f2, f3, . . . ∈ L∞(X) which are
i.i.d., centered, and with variance t > 0, we have, with n→ ∞, in moments,

1√
n

n∑
i=1

fi ∼ gt

where gt is the Gaussian law of parameter t, having as density 1√
2πt
e−y2/2tdy.
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Proof. We use the Fourier transform, which is by definition given by:

Ff (x) = E(eixf )

In terms of moments, we have the following formula:

Ff (x) = E

(
∞∑
k=0

(ixf)k

k!

)

=
∞∑
k=0

(ix)kE(fk)

k!

=
∞∑
k=0

ikMk(f)

k!
xk

Thus, the Fourier transform of the variable in the statement is:

F (x) =

[
Ff

(
x√
n

)]n
=

[
1− tx2

2n
+O(n−2)

]n
≃

[
1− tx2

2n

]n
≃ e−tx2/2

But this latter function being the Fourier transform of gt, we obtain the result. □

Let us discuss now some further properties of the normal law. We first have:

Proposition 16.27. The even moments of the normal law are the numbers

Mk(gt) = tk/2 × k!!

where k!! = (k − 1)(k − 3)(k − 5) . . . , and the odd moments vanish.

Proof. We have the following computation, valid for any integer k ∈ N:

Mk =
1√
2πt

∫
R
yke−y2/2tdy

=
1√
2πt

∫
R
(tyk−1)

(
−e−y2/2t

)′
dy

=
1√
2πt

∫
R
t(k − 1)yk−2e−y2/2tdy

= t(k − 1)× 1√
2πt

∫
R
yk−2e−y2/2tdy

= t(k − 1)Mk−2
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Now recall from the proof of Proposition 16.24 that we have M0 = 1, M1 = 0. Thus
by recurrence, we are led to the formula in the statement. □

We have the following alternative formulation of the above result:

Proposition 16.28. The moments of the normal law are the numbers

Mk(gt) = tk/2|P2(k)|
where P2(k) is the set of pairings of {1, . . . , k}.

Proof. Let us count the pairings of {1, . . . , k}. In order to have such a pairing, we
must pair 1 with one of the numbers 2, . . . , k, and then use a pairing of the remaining
k − 2 numbers. Thus, we have the following recurrence formula:

|P2(k)| = (k − 1)|P2(k − 2)|
As for the initial data, this is P1 = 0, P2 = 1. Thus, we are led to the result. □

We are not done yet, and here is one more improvement of the above:

Theorem 16.29. The moments of the normal law are the numbers

Mk(gt) =
∑

π∈P2(k)

t|π|

where P2(k) is the set of pairings of {1, . . . , k}, and |.| is the number of blocks.

Proof. This follows indeed from Proposition 16.28, because the number of blocks of
a pairing of {1, . . . , k} is trivially k/2, independently of the pairing. □

Many other things can be said, as a continuation of the above.

16e. Exercises

Congratulations for having read this book, and no exercises for this final chapter.
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slope, 175
sparse matrix, 44
spectrum, 267, 269
speed, 205
speed addition, 101
speed of light, 100
spherical coordinates, 278, 279
spiral, 146

square root, 16, 17, 37, 78, 137, 165
step function, 149
stereographic projection, 101
Stirling formula, 171, 282
subcover, 133
subsequence, 25, 26
sum of cubes, 235
sum of squares, 235
sum of vectors, 39
sums of integrals, 222
Sylvester determinant, 44
symmetric function, 41
symmetry, 124

tan, 181
tangent of sum, 71
Taylor formula, 198, 201, 242
thermal diffusivity, 207
time derivative, 205
totally discontinuous, 149
trace of Hessian, 274
translation, 125
triangle, 59
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trigonometric integral, 280
truncated character, 91
twice differentiable, 185

uniform convergence, 145, 150
uniformly continuous, 122, 134
union of intervals, 132
union of open sets, 131

vacuum, 100
variance, 248, 289
vector, 38
volume, 215
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