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Abstract. We prove that we have an isomorphism of type Aaut(Cσ[G]) ' Aaut(C[G])σ,
for any finite group G, and any 2-cocycle σ on G. In the particular case G = Z2

n,
this leads to a Haar-measure preserving identification between the subalgebra of Ao(n)
generated by the variables u2ij , and the subalgebra of As(n

2) generated by the variables

Xij =
∑n
a,b=1 pia,jb. Since uij is “free hyperspherical” and Xij is “free hypergeometric”,

we obtain in this way a new free probability formula, which at n = ∞ corresponds to
the well-known relation between the semicircle law, and the free Poisson law.

Introduction

The notion of quantum automorphism group was introduced about 10 years ago, in
Wang’s paper [18]. The idea is as follows:

(1) First, a finite quantum space X is by definition the “spectrum” of a finite dimen-
sional C∗-algebra A. This space comes with the measure corresponding to the
“canonical trace” tr : A→ C, obtained via the left regular representation.

(2) Wang proved that this space X has a quantum automorphism group Gaut(X).
In algebraic terms, the result is that there is a universal Hopf algebra Aaut(A),
coacting on A, and leaving the canonical trace invariant.

As a basic, motivating example, for the space X = {n points} we have A = Cn. Just
by using some examples of dual coactions, one can prove then that for n ≥ 4 the algebra
Aaut(A) is not commutative, and infinite dimensional. In other words, the space consisting
of n ≥ 4 points has an infinite number of “quantum permutations”. See Wang [18].

The quantum automorphism groups, and their quantum subgroups, were systematically
investigated in the last years. See e.g. [1], [2], [8], [9], [10].

In this paper we establish a general isomorphism result, of the following type:

Aaut(Cσ[G]) ' Aaut(C[G])σ

Here G is a finite group, C[G] is its group algebra, σ is a 2-cocycle on G, and Cσ[G]
is the corresponding twisted group algebra. As for the algebra on the right, this is a
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2-cocycle twist. In other words, our result is that “the quantum automorphism group of
a twisted group algebra is the twist of the original quantum automorphism group”.

As an illustration for this result, we will work out in detail the case of the abelian group
G = Z2

n, coming with the cocycle σ((i, j), (k, l)) = wjk, where w = e2πi/n. Here Aaut(C[G])

is Wang’s quantum permutation algebra As(n
2) = Aaut(Cn2

), and Aaut(Cσ[G]) is Wang’s
projective quantum rotation algebra PAo(n). Thus, the above isomorphism reads:

PAo(n) ' As(n
2)σ

In other words, the above general algebraic result leads in this case to a non-trivial
relation between quantum rotations and quantum permutations!

We will further investigate this phenomenon, by using concepts from Voiculescu’s free
probability theory [16]. The idea is that, probabilistically speaking, the above result tells
us that the variables u2ij ∈ Ao(n) have the same law as the following variables:

Xij =
1

n

n∑
a,b=1

pia,jb ∈ As(n2)

Here uij and pia,jb are respectively the standard generators of Ao(n) and As(n
2).

The point now is that the variables uij can be regarded as being “free hyperspherical
variables”, and the variables Xij can be regarded as being (rescaled) “free hypergeometric
variables”. So, what we have here is a new free probability formula, which at n = ∞
corresponds to the well-known relation between the semicircle law, and the free Poisson
law. We will make several comments on this result, including a further investigation of
the free hypergeometric laws, for more general values of the parameters.

The paper is organized as follows: in 1 we state and prove the main algebraic result,
in 2 we work out the case G = Z2

n, and in 3 we discuss the free probability aspects. The
final section, 4, contains some remarks, comments, and open questions.

Acknowledgements. It is a pleasure to thank B. Collins and R. Speicher for several
useful discussions, prior to the work leading to the present article. The work of T.B. and
J.B. was supported by the ANR grant “Galoisint”.

1. The twisting result

Let A be a finite dimensional C∗-algebra, i.e. a finite direct sum of matrix algebras.
We recall from [1] that the canonical trace tr : A→ C is obtained by composing the left
regular representation A→ L(A) with the usual (normalized) trace L(A)→ C.

Note that in the cases A = Cn and A = Mn(C) we obtain the usual trace.
We let Aaut(A) be the universal Hopf algebra coacting on the algebra A, such that the

canonical trace tr is invariant. This construction is the φ = tr particular case of Wang’s
general construction Aaut(A, φ), from [18]. Regarding the choice φ = tr, see [1].
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In this paper we are interested in the case where A = C[G] is the convolution algebra
of a finite group G. If {eg} denotes the standard basis of C[G], we have tr(eg) = δg1.

Proposition 1.1. Aaut(C[G]) is isomorphic to the abstract algebra presented by generators
xg,h with g, h ∈ G, with the following relations:

x1,g = xg,1 = δ1g, xs,gh =
∑
t∈G

xst−1,gxt,h, xgh,s =
∑
t∈G

xg,t−1xh,ts

The comultiplication, counit and antipode are given by the following formulae:

∆(xg,h) =
∑
s∈G

xg,s ⊗ xs,h, ε(xg,h) = δgh, S(xg,h) = xh−1,g−1

Proof. This follows from a direct verification: in fact, for A = C[G], the algebra Aaut(A)
constructed by Wang in [18] is precisely the universal algebra in the statement. �

Now let σ : G × G → C∗ be a normalized 2-cocycle on G, i.e. a map satisfying
σ(gh, s)σ(g, h) = σ(g, hs)σ(h, s) and σ(g, 1) = σ(1, g) = 1. The twisted group algebra
Cσ[G] is by definition the vector space C[G], with product egeh = σ(g, h)egh.

It is routine to check that the canonical trace of Cσ[G] is the same as the one of C[G].
We have the following generalization of Proposition 1.1.

Proposition 1.2. Aaut(Cσ[G]) is isomorphic to the abstract algebra presented by gener-
ators xg,h with g, h ∈ G, with the relations x1,g = xg,1 = δ1g and:

σ(g, h)xs,gh =
∑
t∈G

σ(st−1, t)xst−1,gxt,h, σ(g, h)−1xgh,s =
∑
t∈G

σ(t−1, ts)−1xg,t−1xh,ts

The comultiplication, counit and antipode are given by the following formulae:

∆(xg,h) =
∑
s∈G

xg,s ⊗ xs,h, ε(xg,h) = δgh, S(xg,h) = σ(h−1, h)σ(g−1, g)−1xh−1,g−1

Proof. Once again, this follows from a direct verification. Note that by using cocycle
identities we obtain σ(g, g−1) = σ(g−1, g), needed in the proof. �

In what follows, we will prove that the Hopf algebras Aaut(C[G]) and Aaut(Cσ[G]) are
related by a “cocycle twisting” operation. Let us begin with some preliminaries.

Let H be a Hopf algebra. We use the Sweedler notation ∆(x) =
∑
x1 ⊗ x2. Recall

(see e.g. [14]) that a left 2-cocycle is a convolution invertible linear map σ : H ⊗ H →
C satisfying σ(x1, y1)σ(x2y2, z) = σ(y1, z1)σ(x, y2z2) and σ(x, 1) = σ(1, x) = ε(x), for
any x, y, z ∈ H. Note that σ is a left 2-cocycle if and only if σ−1, the convolution
inverse of σ, is a right 2-cocycle, in the sense that we have σ−1(x1y1, z)σ

−1(x1, y2) =
σ−1(x, y1z1)σ

−1(y2, z2) and σ−1(x, 1) = ε(x) = σ−1(1), for any x, y, z ∈ H.
Given a left 2-cocycle σ on H, one can form the 2-cocycle twist Hσ as follows. As a

coalgebra, Hσ = H, and an element x ∈ H, when considered in Hσ, is denoted [x]. The
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product in Hσ is defined, in Sweedler notation, by:

[x][y] =
∑

σ(x1, y1)σ
−1(x3, y3)[x2y2]

Note that the cocycle condition ensures the fact that we have indeed a Hopf algebra.
For the formula of the antipode, that we will not need here, see [14].

Note that the coalgebra isomorphism H → Hσ given by x → [x] commutes with the
respective Haar integrals (as soon as H has a Haar integral, of course).

We are now in position to state and prove our main theorem.

Theorem 1.3. If G is a finite group and σ is a 2-cocycle on G, the Hopf algebras
Aaut(C[G]) and Aaut(Cσ[G]) are 2-cocycle twists of each other.

Proof. We use the Hopf algebra map π : Aaut(C[G])→ C[G], given by xg,h → δgheg.
Our 2-cocycle σ : G × G → C∗ can be extended by linearity into a linear map σ :

C[G] ⊗ C[G] → C, which, since C[G] is a group algebra, is a left and right 2-cocycle in
the above sense. Consider the following map:

α = σ(π ⊗ π) : Aaut(C[G])⊗ Aaut(C[G])→ C[G]⊗ C[G]→ C

Then α is a left and right 2-cocycle, because it is induced by a cocycle on a group
algebra, and so is its convolution inverse α−1. Thus we can construct the twisted algebra
Aaut(C[G])α

−1
, and in this algebra we have:

[xg,h][xr,s] = α−1(xg, xr)α(xh, xs)[xg,hxr,s] = σ(g, r)−1σ(h, s)[xg,hxr,s]

By using this, we see that:∑
t∈G

σ(st−1, t)[xst−1,g][xt,h] =
∑
t∈G

σ(st−1, t)σ(st−1, t)−1σ(g, h)[xst−1,gxt,h]

= σ(g, h)[xs,gh]

Similarly, we have: ∑
t∈G

σ(t−1, ts)−1[xg,t−1 ][xh,ts] = σ(g, h)−1[xgh,s]

Thus there exists a Hopf algebra map F : Aaut(Cσ[G]) → Aaut(C[G])α
−1

, given by
xg,h → [xg,h]. This map is clearly surjective, and is injective by a standard fusion semiring
argument (both Hopf algebras have the same fusion semiring by [1]). �

Associated with any 2-cocycle are the following quantities:

Ω(g1, . . . , gm) =
m−1∏
k=1

σ(g1 . . . gk, gk+1)

With this notation, we have the following technical reformulation of Theorem 1.3.
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Proposition 1.4. If G is a finite group and σ is a 2-cocycle on G, then

F (xg1,h1 . . . xgm,hm) = Ω(g1, . . . , gm)−1Ω(h1, . . . , hm)xg1,h1 . . . xgm,hm

is a coalgebra isomorphism Aaut(Cσ[G]) ' Aaut(C[G]), commuting with the Haar integrals.

Proof. This is indeed just a technical reformulation of Theorem 1.3. �

Theorem 1.5. Let X ⊂ G be such that σ(g, h) = 1 for any g, h ∈ X, and consider the
subalgebra BX ⊂ Aaut(Cσ[G]) generated by the elements xg,h, with g, h ∈ X. Then we
have an injective algebra map F0 : BX → Aaut(C[G]), given by xg,h → xg,h.

Proof. With the notations in the proof of Theorem 1.3, we have the following equality in
Aaut(C[G])α

−1
, for any gi, hi, ri, si ∈ X:

[xg1,h1 . . . xgp,hp ] · [xr1,s1 . . . xrq ,sq ] = [xg1,h1 . . . xgp,hpxr1,s1 . . . xrq ,sq ]

Now F0 can be defined to be the composition of F|BX
with the linear isomorphism

Aaut(C[G])α
−1 → Aaut(C[G]), [x]→ x, and is clearly an injective algebra map. �

2. Rotations and permutations

In this section we discuss some concrete consequences of the general results established
in the previous section. These will concern Wang’s quantum permutation groups [18].

Consider the additive group G = Z2
n. Let w ∈ C∗ be a primitive n-th root of unity, and

consider the map σ : Z2
n × Z2

n → C∗ given by:

σ((i, j), (k, l)) = wjk

It is easy to see that σ is a bicharacter, and hence a 2-cocycle on Z2
n.

We denote by Eij with i, j ∈ Zn the standard elementary matrices in Mn(C).

Lemma 2.1. The linear map given by

ψ(e(i,j)) =
n−1∑
k=0

wkiEk,k+j

defines an isomorphism of algebras ψ : Cσ[Z2
n] 'Mn(C).

Proof. Consider indeed the following linear map:

ψ′(Eij) =
1

n

n−1∑
k=0

w−ike(k,j−i)

It is routine to check that both ψ, ψ′ are morphisms of algebras, and that these maps
are inverse to each other. In particular, ψ is an isomorphism of algebras, as stated. �
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Lemma 2.2. The algebra map given by

ϕ(uijukl) =
1

n

n−1∑
a,b=0

wai−bjx(a,k−i),(b,l−j)

defines a Hopf algebra isomorphism ϕ : Aaut(Mn(C)) ' Aaut(Cσ[Z2
n]).

Proof. Consider the universal coactions on the two algebras in the statement:

α : Mn(C) → Mn(C)⊗ Aaut(Mn(C))

β : Cσ[Z2
n] → Cσ[Z2

n]⊗ Aaut(Cσ[Z2
n])

In terms of the standard bases, these coactions are given by:

α(Eij) =
∑
kl

Ekl ⊗ ukiulj

β(e(i,j)) =
∑
kl

e(k,l) ⊗ x(k,l),(i,j)

We use now the identification Cσ[Z2
n] ' Mn(C) given by Lemma 2.1. The resulting

coaction γ : Mn(C)→Mn(C)⊗ Aaut(Cσ[Z2
n]) is then given by the following formula:

γ(Eij) =
1

n

∑
ab

Eab ⊗
∑
kr

war−ikx(r,b−a),(k,j−i)

By comparing with the formula of α, we obtain the isomorphism in the statement. �

Lemma 2.3. The algebra map given by

ρ(x(a,b),(i,j)) =
1

n2

∑
klrs

wki+lj−ra−sbp(r,s),(k,l)

defines a Hopf algebra isomorphism ρ : Aaut(C[Z2
n]) ' Aaut(C(Z2

n)).

Proof. This is similar to the proof of the previous lemma, by using the Fourier transform
isomorphism C[Z2

n] ' C(Z2
n). �

Consider now the Wang algebras Ao(n) and As(n
2), with standard generators denoted

(uij)i,j=1,...,n and (pia,jb)i,j,a,b=1,...,n. That is, u = (uij) is the universal n × n orthogonal
matrix, and p = (pia,jb) is the universal n2 × n2 magic unitary matrix. See [18].

We recall that we have canonical identifications, as follows:

As(n
2) = Aaut(Cn2

)

PAo(n) = Aaut(Mn(C))

Here the projective version of a pair (A, u) is by definition the pair (PA, v), where
v = u⊗ ū and PA =< vij >. For full details regarding the above equalities, see [1].
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Theorem 2.4. Let n ≥ 2 and w ∈ C∗ be a primitive n-th root of unity. Then

Θ(uijukl) =
1

n

n−1∑
ab=0

w−a(k−i)+b(l−j)pia,jb

defines a coalgebra isomorphism PAo(n)→ As(n
2), commuting with the Haar integrals.

Proof. This follows from the general isomorphism results in Theorem 1.3 and Proposition
1.4, by combining them with the various isomorphisms from the lemmas above. �

Theorem 2.5. The following two algebras are isomorphic, via u2ij → Xij:

(1) The algebra generated by the variables u2ij ∈ Ao(n).

(2) The algebra generated by Xij = 1
n

∑n
a,b=1 pia,jb ∈ As(n2)

Proof. We have Θ(u2ij) = Xij, so it remains to prove that if B is the subalgebra of

Aaut(Mn(C)) generated by the variables u2ij, then Θ|B is an algebra morphism.

We let X = {(i, 0)|i ∈ Zn} ⊂ Z2
n. Then X satisfies to the assumption in Theorem 1.5,

and ϕ(B) ⊂ BX . Thus by Theorem 1.5, Θ|B = ρF0ϕ|B is indeed an algebra morphism. �

3. Free hypergeometric laws

Let (A,ϕ) be a complex algebra, coming with a linear form ϕ : A→ C. We recall that
the law (or distribution) of an element a ∈ A is the linear form µa : C[X] → C given by
P → ϕ(P (a)). More generally, the joint law (or distribution) of a family a = (a1, . . . , an)
is the linear form µa : C < X1, . . . , Xn >→ C given by P → ϕ(P (a)). Thus, saying that
two families a1, . . . , an ∈ A and a′1, . . . , a

′
n ∈ A′ have the same law is the same as saying

that we have the following equalities, for any noncommutative polynomial P :

ϕ(P (a1, . . . , an)) = ϕ′(P (a′1, . . . , a
′
n))

With this notation, we know from Theorem 2.5 that the variables u2ij ∈ Ao(n) have the

same joint law as the variables Xij ∈ As(n2). In this section we will put this result into
a more general framework, related to Voiculescu’s free probability theory [16].

Let us begin by giving an independent proof for the above equality of distributions.
We use the Weingarten formula [3]. We recall that the representation-theoretic sets of
partitions for the algebras A = Ao(n), As(n

2) are respectively the set of noncrossing
pairings NC2(2k), and the set of noncrossing partitions NC(k). Associated to each of
these sets are the Gram matrix Gm(π, σ) = m|π∨σ| and the Weingarten matrix Wm = G−1m ,
where ∨ is the join operation, and m = n, n2 respectively. The Haar functional of A can
be computed explicitely in terms of Wm. For full details here, see [5].

Lemma 3.1. The Weingarten matrices of Ao(n) and As(n
2) are related by

WNC2(2k),n(π, σ) = n|π̃|+|σ̃|−kWNC(k),n2(π̃, σ̃)

where π → π̃ is the “cabling” operation, obtained by collapsing neighbors.
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Proof. We use the following general formula, due to Kodiyalam and Sunder [15]:

|π ∨ σ| = k + 2|π̃ ∨ σ̃| − |π̃| − |σ̃|
See also [13]. Now in terms of Gram matrices, we obtain:

GNC2(2k),n = nk−|π̃|−|σ̃|GNC(k),n2(π̃, σ̃)

By taking the inverse, this gives the formula in the statement. �

Theorem 3.2. The family of variables{
Xij =

1

n

n∑
a,b=1

pia,jb

}
⊂ As(n

2)

has the same law as the family of variables {u2ij} ⊂ Ao(n).

Proof. We use the Weingarten formula, which gives:∫
Xk
ij =

∑
π,σ∈NC2(2k)

n|π̃|+|σ̃|−kWNC(k),n2(π̃, σ̃)∫
u2kij =

∑
π,σ∈NC2(2k)

WNC2(2k),n(π, σ)

By Lemma 3.1 the terms on the right are equal, and this gives the equality of laws for
the individual variables. For the general statement, the proof is similar. �

The variables Xij appearing in Theorem 3.2 have the following generalization.

Definition 3.3. The noncommutative random variable

X(n,m,N) =
n∑
i=1

m∑
j=1

uij ∈ As(N)

is called free hypergeometric, of parameters (n,m,N).

The terminology here comes from the fact that the variable X ′(n,m,N), defined as
above, but over the algebra C(Sn), follows a hypergeometric law of parameters (n,m,N).

In general, the free hypergeometric laws seem to be quite difficult to compute. A first
result in this direction, heavily relying on a result recently obtained in [4], is as follows.

Theorem 3.4. The moments of X(n, n, n2) are given by∫
X(n, n, n2)k dx =

nk

(n+ 1)k
· q + 1

q − 1
· 1

k + 1

k+1∑
r=−k−1

(−1)r
(

2k + 2
k + r + 1

)
r

1 + qr

where q ∈ [−1, 0) is given by q + q−1 = −n.
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Proof. First, X(n, n, n2)/n is the variable Xij appearing by Theorem 3.2, having the
same law as the variable u2ij ∈ Ao(n). Now it is known from [11] that Ao(n) is monoidally
equivalent to C(SUq(2)), and, as explained in [4], one can use this fact for modelling
uij ∈ Ao(n) by a certain variable over SUq(2). This latter variable can be studied by
using advanced calculus methods, and this leads to the above formula. See [4]. �

As a first observation, the above result, or rather a version of it, namely Theorem 5.3
in [4], shows that the variables X(n, n, n2) superconverge with n → ∞. For more about
the superconvergence phenomenon in free probability, see Bercovici and Voiculescu [7].

The second result, that we would like to present now, is an exploration of the basic
asymptotic properties of the free hypergeometric laws.

Theorem 3.5. The free hypergeometric laws have the following properties:

(1) Let n,m,N →∞, with nm
N
→ λ ∈ (0,∞). Then the law of X(n,m,N) converges

to the free Poisson law of parameter λ.
(2) Let n,m,N →∞, with n

N
→ ν ∈ (0, 1) and m

N
→ 0. Then the law of S(n,m,N) =

(X(n,m,N)−mν)/
√
mν(1− ν) converges to a (0, 1)-semicircle law.

Proof. (1) From the Weingarten formula, we have:∫
X(n,m,N)p =

∑
π,σ∈NC(p)

WNC(p),N(π, σ)n|π|m|σ|

Now, as explained for instance in [12], we have:

WNC(p),N(π, σ) =

{
N−|π| +O(N−|π|−1), π = σ

O(N |π∨σ|−|π|−|σ|), π 6= σ

It follows that we have:

WNC(p),N(π, σ)n|π|m|σ| →

{
λ|π|, π = σ

0, π 6= σ

Thus the p-th moment of X(n,m,N) converges to
∑

π∈NC(p) λ
|π|, which is the p-th

moment of the free Poisson distribution with parameter λ, and we are done.
(2) We need to show that the free cumulants satisfy:

κ(p)[S(n,m,N), . . . , S(n,m,N)]→

{
1, p = 2

0, p 6= 2

The case p = 1 is trivial, so suppose p ≥ 2. We have:

κ(p)[S(n,m,N), . . . , S(n,m,N)] = (mν(1− ν))−p/2κ(p)[X(n,m,N), . . . , X(n,m,N)]



10 TEODOR BANICA, JULIEN BICHON, AND STEPHEN CURRAN

On the other hand, from the Weingarten formula, we have:

κ(p)[X(n,m,N), . . . , X(n,m,N)]

=
∑

w∈NC(p)

µp(w, 1p)
∏
V ∈w

∑
πV ,σV ∈NC(V )

WNC(V ),N(πV , σV )n|πV |m|σV |

=
∑

w∈NC(p)

µp(w, 1p)
∏
V ∈w

∑
πV ,σV ∈NC(V )

(N−|πV |µ|V |(πV , σV ) +O(N−|πV |−1))n|πV |m|σV |

=
∑

π,σ∈NC(p)
π≤σ

(N−|π|µp(π, σ) +O(N−|π|−1))n|π|m|σ|
∑

w∈NC(p)
σ≤w

µp(w, 1p)

We use now the following standard identity:∑
w∈NC(p)
σ≤w

µp(w, 1p) =

{
1, σ = 1p
0, σ 6= 1p

This gives the following formula for the cumulants:

κ(p)[X(n,m,N), . . . , X(n,m,N)] = m
∑

π∈NC(p)

(N−|π|µp(π, 1p) +O(N−|π|−1))n|π|

It follows that for p ≥ 3 we have, as desired:

κ(p)[S(n,m,N), . . . , S(n,m,N)]→ 0

As for the remaining case p = 2, here we have:

κ(2)[S(n,m,N), S(n,m,N)] → 1

ν(1− ν)

∑
π∈NC(2)

ν |π|µ2(π, 12)

=
1

ν(1− ν)

(
ν − ν2)

= 1

This gives the result. �

4. Concluding remarks

We have seen in this paper that Wang’s quantum automorphism groups in [18] are
subject to some general twisting results, and that these results are of relevance in the
general context of Voiculescu’s free probability theory [16]. Several questions appear:

(1) What is the most general twisting result for quantum automorphism groups? An
answer here is Aaut(Hσ) ' Aaut(H)σ, for any finite dimensional Hopf algebra H.
This result, whose proof is much more technical, will be discussed somewhere else.
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(2) Besides the quantum rotation/permutation application, is there any other con-
crete, probabilistic application of our general twisting result? One interesting
example here seems to be G = (Z2 × Z2)

n, leading to the algebra M2n(C).
(3) Can one include the monoidal equivalence used in [4] into the above considerations?

The point is that the variable uij ∈ Ao(n) has the same law as a certain variable
over SUq(2), where q + q−1 = −n, so the result in [4] can be probably stated and
proved by using As(n

2) and SUq(2) only. However, it is not clear how to do so.
(4) Are there any other free hypergeometric laws, that can be explicitely computed

by using Ao(F )? In principle the answer here is no, first because of the concluding
remarks in [4], and second, because of the “no-atoms” results of Voigt in [17].

(5) Do we have superconvergence, in the sense of Bercovici and Voiculescu [7], to the

limiting distributions in Theorem 3.5? Note that in the case n = m =
√
N the

superconvergence appears indeed, as explained after Theorem 3.4.

Finally, let us point out the fact that, as explained in [6], the free hyperspherical laws
appear in connection with the study of a number of interesting “noncommutative spaces”,
such as the free and half-liberated spheres, or projective spaces. We do not know yet if
the relation with the free hypergeometric laws, that we found in this paper, can be of
help here, but we intend to come back to this question in some future work.
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