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Foreword

This is an introduction to quantum groups, focusing on the most
basic examples, namely the closed subgroups G ⊂ U+

N .

We discuss the foundational aspects, and then a number of more
specialized topics, of algebraic and probabilistic nature.

These lecture notes consist of slides written in the Summer 2020.
Presentations available at my Youtube channel.
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Operator algebras and noncommutative spaces

Teo Banica

"Introduction to quantum groups", 1/6

06/20



Plan

(1) Hilbert spaces, linear operators

(2) Basic spectral/eigenvalue theory

(3) C ∗-algebra theory: Gelfand, GNS, FD

(4) Noncommutative spaces: spheres and tori

=⇒ next lecture: quantum groups



Hilbert spaces

Definition. Complex vector space H with < x , y >, satisfying:
(1) < x , y > is linear in x , antilinear in y .
(2) < x , y > =< y , x >, for any x , y .
(3) < x , x >> 0, for any x 6= 0.
(4) H is complete with respect to ||x || =

√
< x , x >.

Note that (4) is based on Cauchy-Schwarz. Basic examples:
(1) H = CN , with < x , y >=

∑
i xi ȳi .

(2) H = l2(N), with < x , y >=
∑

i xi ȳi .
(3) H = L2(X ), with < f , g >=

∫
X f (x)g(x)dx .

Gram-Schmidt =⇒ H ' l2(I ). When I is countable, H is called
separable. Example: H = L2[0, 1], cf. Weierstrass.



Operators

Let H be a Hilbert space, with basis {ei}i∈I . We have

L(H) ⊂ MI (C)

with T : H → H linear corresponding to the following matrix:

Mij =< Tej , ei >

In particular, when dim(H) = N <∞, we obtain:

L(H) ' MN(C)

Also, in the infinite separable case, we obtain:

L(H) ⊂ M∞(C)

=⇒ However, H = L2[0, 1] suggests not to use all this (..)



Bounded operators 1/2

Theorem. Given a Hilbert space H, the linear operators T : H → H
which are bounded, in the sense that

||T || = sup
||x ||≤1

||Tx ||

is finite, form a complex algebra with unit B(H), which:
(1) is complete with respect to ||.|| (Banach algebra).
(2) has an involution T → T ∗, < Tx , y >=< x ,T ∗y >.
The norm and involution are related by ||TT ∗|| = ||T ||2.



Bounded operators 2/2

Proof. Everything here is quite elementary:

(0) Complex algebra with unit: clear.

(1) Norm closed: set Tx = limn→∞ Tnx , for any x ∈ H.

(2) Involution: because ϕ(x) =< Tx , y > is linear.

(3) Formula ||TT ∗|| = ||T ||2: double inequality.

Remark. In the matrix setting, (M∗)ij = M̄ji .



C ∗-algebras

Definition. A C ∗-algebra is a complex algebra with unit A, with:

(1) A norm a→ ||a||, making it a Banach algebra.
(2) An involution a→ a∗, such that ||aa∗|| = ||a||2, ∀a ∈ A.

Basic examples: the closed ∗-subalgebras A ⊂ B(H).
=⇒ We’ll see that any C ∗-algebra is of this form.

Also basic: C (X ), with X being a compact space.
=⇒ We’ll see that any commutative C ∗-algebra is of this form.

Finite dimensional: sums of matrix algebras, ⊕iMNi
(C).

=⇒ We’ll see that any FD C ∗-algebra is of this form.



Spectral theory

Definition. The spectrum of an element a ∈ A is the set

σ(a) =
{
λ ∈ C

∣∣a− λ 6∈ A−1
}

where A−1 ⊂ A is the set of invertible elements.

For the matrices, we obtain the eigenvalue set.
For the continuous functions, we obtain the image.

Theorem. σ(ab) = σ(ba) outside {0}.

Proof. Indeed, c = (1− ab)−1 =⇒ 1 + cba = (1− ba)−1.

Remark: in infinite dimensions, S∗S = 1,SS∗ 6= 1 (shift).



Rational functions 1/2

Given a ∈ A, and a rational function f = P/Q having poles outside
σ(a), we can construct f (a) = P(a)Q(a)−1. We write:

f (a) =
P(a)

Q(a)

Theorem. We have the “rational functional calculus” formula

σ(f (a)) = f (σ(a))

valid for any f ∈ C(X ) having poles outside σ(a).



Rational functions 2/2

Case f ∈ C[X ]. With f (X )− λ = c(X − r1) . . . (X − rn):

λ /∈ σ(f (a)) ⇐⇒ c(a− r1) . . . (a− rn) ∈ A−1

⇐⇒ a− r1, . . . , a− rn ∈ A−1

⇐⇒ r1, . . . , rn /∈ σ(a)

⇐⇒ λ /∈ f (σ(a))

Case f ∈ C(X ). With f = P/Q and F = P − λQ:

λ ∈ σ(f (a)) ⇐⇒ 0 ∈ σ(F (a))

⇐⇒ 0 ∈ F (σ(a))

⇐⇒ ∃µ ∈ σ(a),F (µ) = 0
⇐⇒ λ ∈ f (σ(a))



Basic spectra 1/2

Given an element a ∈ A, its spectral radius ρ(a) is the radius of the
smallest disk centered at 0 containing σ(a).

Theorem. Let A be a C ∗-algebra.

(1) The spectrum of a norm 1 element is in the unit disk.
(2) The spectrum of a unitary (a∗ = a−1) is on the unit circle.
(3) The spectrum of a self-adjoint element (a = a∗) is real.
(4) ρ of a normal element (aa∗ = a∗a) equals its norm.



Basic spectra 2/2

(1) Clear from (1− a)−1 = 1 + a + a2 + . . ., for ||a|| < 1.

(2) Follows by using f (z) = z−1. Indeed, we have:

σ(a)−1 = σ(a−1) = σ(a∗) = σ(a)

(3) Follows from (2), by using f (z) = (z + it)/(z − it).

(4) By (1) we have ρ(a) ≤ ||a||. Given ρ > ρ(a), we have:∫
|z|=ρ

zn

z − a
dz =

∞∑
k=0

(∫
|z|=ρ

zn−k−1dz

)
ak = an−1

By applying the norm and taking n-th roots we obtain:

ρ ≥ lim
n→∞

||an||1/n

When a = a∗ we’re done. In general, use ||aa∗|| = ||a||2.



Gelfand

Theorem. Any commutative C ∗-algebra is the form C (X ), with its
“spectrum” X = Spec(A) consisting of the characters χ : A→ C.

Proof. Set X = Spec(A), with topology making continuous all the
evaluation maps eva : χ→ χ(a). Then X is a compact space, and
a→ eva is a morphism of algebras ev : A→ C (X ).

(1) ev involutive. Using real + imaginary parts, we must prove that
eva∗ = ev∗a when a = a∗. But this follows from σ(a) ⊂ R.

(2) ev isometric. Follows from ||eva|| = ρ(a) = ||a||.

(3) ev surjective. Follows from Stone-Weierstrass.



Continuous calculus

Theorem. Assume that a ∈ A is normal, and let f ∈ C (σ(a)).

(1) We can define f (a) ∈ A, with f → f (a) being a morphism.
(2) We have the formula σ(f (a)) = f (σ(a)).

Proof. Since a is normal, B =< a > is commutative, and the
Gelfand theorem gives B = C (X ), with X = Spec(B).

The map X → σ(a) given by evaluation at a being bijective, we
have X = σ(a). Thus B = C (σ(a)), and we are done.



Positivity

Theorem. For an element a ∈ A, the following are equivalent:

(1) a is positive, in the sense that σ(a) ⊂ [0,∞).
(2) a = b2, for some b ∈ A satisfying b = b∗.
(3) a = cc∗, for some c ∈ A.

(1) =⇒ (2): σ(a) ⊂ R implies a = a∗, so < a > is commutative,
and by using the Gelfand theorem, we can set b =

√
a.

(2) =⇒ (3): this is trivial, because we can set c = b.
(3) =⇒ (1): by contradition. By multiplying c by a suitable
element of < cc∗ >, we are led to the existence of an element
d 6= 0 satisfying −dd∗ ≥ 0. With d = x + iy we have:

dd∗ + d∗d = 2(x2 + y2) ≥ 0

Thus d∗d ≥ 0, contradicting σ(dd∗) = σ(d∗d) outside {0}.



NC spaces

Definition. Given an arbitrary C ∗-algebra A, we write

A = C (X )

and call X a "noncommutative compact space".

Equivalently, the category of the noncommutative compact spaces
is the category of the C ∗-algebras, with the arrows reversed.

The idea is that of studying A, but formulating results in terms of
X . For instance whenever we have a morphism Φ : A→ B , we can
write A = C (X ),B = C (Y ), and rather speak of the corresponding
morphism φ : Y → X . And so on, up to technical subtleties.



NC spheres

Definition. We have noncommutative spaces, as follows,

C (SN−1
R,+ ) = C ∗

(
x1, . . . , xN

∣∣∣xi = x∗i ,
∑
i

x2i = 1

)

C (SN−1
C,+ ) = C ∗

(
x1, . . . , xN

∣∣∣∑
i

xix
∗
i =

∑
i

x∗i xi = 1

)
called free real sphere, and free complex sphere.

Here C ∗ means “universal C ∗-algebra generated by”.
These universal algebras are well-defined, because we have∑

i

||xi ||2 =
∑
i

||xix∗i || ≤ ||
∑
i

xix
∗
i || = 1

and so the biggest C ∗-norms on our algebras exist indeed.



Liberation
Theorem. We have embeddings of NC spaces, as follows,

SN−1
C

// SN−1
C,+

SN−1
R

//

OO

SN−1
R,+

OO

and the free spheres are "liberations" of the classical ones.

Proof. We must establish the following isomorphisms:

C (SN−1
R,+ ) = C ∗comm

(
x1, . . . , xN

∣∣∣xi = x∗i ,
∑
i

x2i = 1

)

C (SN−1
C,+ ) = C ∗comm

(
x1, . . . , xN

∣∣∣∑
i

xix
∗
i =

∑
i

x∗i xi = 1

)
But these isomorphisms are both clear, by using Gelfand.



Tori
Definition. Given S ⊂ SN−1

C,+ , the subspace T ⊂ S given by

C (T ) = C (S)
/〈

xix
∗
i = x∗i xi =

1
N

〉
is called associated torus. In the real case, we call T cube.

As a basic example, for S = SN−1
C we obtain a torus:

S = SN−1
C =⇒ T =

{
x ∈ CN

∣∣∣|xi | =
1√
N

}
Also, for the real sphere S = SN−1

R we obtain a cube:

S = SN−1
R =⇒ T =

{
x ∈ RN

∣∣∣xi = ± 1√
N

}



Group algebras

Theorem. Let Γ be a discrete group, and consider the complex
group algebra C[Γ], with involution given by:

g∗ = g−1 , ∀g ∈ Γ

The maximal C ∗-seminorm on C[Γ] is then a C ∗-norm, and the
corresponding closure of C[Γ] is a C ∗-algebra, denoted C ∗(Γ).

Proof. Let H = l2(Γ), having {h}h∈Γ as orthonormal basis. Our
claim is that we have an embedding, as follows:

π : C[Γ] ⊂ B(H) , π(g)(h) = gh

But this is elementary to check, and gives the result.



Group duals

Theorem. When Γ is abelian, we have an isomorphism

C ∗(Γ) ' C (G )

where G = Γ̂ is its dual, formed by the characters χ : Γ→ T.

Proof. Gelfand gives A = C (X ), with X = Spec(A). But the
spectrum X = Spec(A), made of characters χ : C ∗(Γ)→ C, can be
identified with the Pontrjagin dual G = Γ̂, as desired.

Definition. Given a discrete group Γ, the space G given by

C (G ) = C ∗(Γ)

is called abstract dual of Γ, and is denoted G = Γ̂.



Back to tori
Theorem. The tori of the basic spheres are all group duals,

TN // F̂N

ZN
2

//

OO

Ẑ∗N2

OO

where FN is the free group, and ∗ is a free product.

Proof. The diagram formed by the algebras C (T ) is:

C ∗(ZN)

��

C ∗(Z∗N)

��

oo

C ∗(ZN
2 ) C ∗(Z∗N2 )oo

But this gives the result, via some standard identifications.



Summary

(1) C ∗-algebras: with norm and involution, ||aa∗|| = ||a||2.

(2) Gelfand theorem: commutative case A = C (X ).

(3) Noncommutative geometry: write A = C (X ) in general.

(4) Examples: NC spheres (real, complex) and tori (group duals).

=⇒ We’ll be back to NCG later, doing quantum groups



Embeddings

We want to prove that any C ∗-algebra appears as A ⊂ B(H).

Theorem. Assume that A is commutative, A = C (X ), and let µ be
a positive measure on X . We have then an embedding

A ⊂ B(H)

where H = L2(X ), with f ∈ A corresponding to Tf : g → fg .

Proof. Tf is well-defined, and bounded as well, because:

||fg ||2 =

√∫
X
|f (x)|2|g(x)|2dµ(x) ≤ ||f ||∞||g ||2

We obtain in this way A ⊂ B(H), as claimed.



Forms

In general, we can replace the positive measures µ with the
corresponding integration functionals.

Definition. Consider a linear map ϕ : A→ C.
(1) ϕ is called positive when a ≥ 0 =⇒ ϕ(a) ≥ 0.
(2) ϕ is called faithful and positive if a ≥ 0, a 6= 0 =⇒ ϕ(a) > 0.

In the commutative case, A = C (X ), we can write:

ϕ(f ) =

∫
X
f (x)dµ(x)

In general, the philosophy is similar.



GNS construction

Theorem. Let ϕ : A→ C be a positive linear form.

(1) < a, b >= ϕ(ab∗) defines a generalized scalar product on A.
(2) By separating and completing we obtain a Hilbert space H.
(3) π(a) : b → ab defines a representation π : A→ B(H).
(4) If ϕ is faithful in the above sense, then π is faithful.

Proof. Almost everything here is straightforward, and the last
assertion follows from a positivity trick, namely:

a 6= 0 =⇒ π(aa∗) 6= 0 =⇒ π(a) 6= 0



Existence

In order to establish the GNS theorem, it remains to prove that any
C ∗-algebra has a faithful and positive linear form ϕ : A→ C.

Theorem. Let A be a C ∗-algebra.
(1) Any positive linear form ϕ : A→ C is continuous.
(2) ϕ is positive iff there is a norm one h ∈ A+, ||ϕ|| = ϕ(h).
(3) ∀a ∈ A there exists ϕ positive of norm 1, ϕ(aa∗) = ||a||2.
(4) If A is separable there is a faithful positive form ϕ : A→ C.



Proof of (1,2)
(1) This follows from |ϕ(a)| ≤ ||π(a)||ϕ(1) ≤ ||a||ϕ(1).
(2) Let a ∈ A+, ||a|| ≤ 1. We have then:

|ϕ(h)− ϕ(a)| ≤ ||ϕ|| · ||h − a|| ≤ ϕ(h)1 = ϕ(h)

Thus Re(ϕ(a)) ≥ 0. We must prove a = a∗ =⇒ ϕ(a) ∈ R.
We can assume h = 1. With a = a∗, for t ∈ R we have:

|ϕ(1 + ita)|2 ≤ ϕ(1)2(1 + t2||a||2)

On the other hand with ϕ(a) = x + iy we have:

|ϕ(1 + ita)| ≥ (ϕ(1)− ty)2

We therefore obtain that for any t ∈ R we have:

ϕ(1)2(1 + t2||a||2) ≥ (ϕ(1)− ty)2

Thus we have y = 0, and this finishes the proof.



Proof of (3,4)
(3) This follows from (2), and from Hahn-Banach.

(4) Let (an) be a dense sequence inside A. For any n we construct
a positive form satisfying ϕn(ana

∗
n) = ||an||2, and then we set:

ϕ =
∞∑
n=1

ϕn

2n

Let a ∈ A be a nonzero element. Pick an close to a and consider
the GNS pair (H, π) associated to (A, ϕn). We have:

ϕn(aa∗) = ||π(a)1||
≥ ||π(an)1|| − ||a− an||
= ||an|| − ||a− an||
> 0

Thus ϕn(aa∗) > 0, and so ϕ(aa∗) > 0, and we are done.



GNS theorem

Theorem. Let A be a C ∗-algebra.

(1) A appears as A ⊂ B(H), for some Hilbert space H.

(2) When A is separable, H can be chosen to be separable.

(3) When A is FD, the space H can be chosen to be FD.

Proof. Follows indeed by performing the GNS construction. �



Finite dimensions

Theorem. Let A ⊂ MN(C) be a C ∗-algebra.

(1) We have 1 = p1 + . . .+ pk , with pi ∈ A minimal projections.

(2) The spaces Ai = piApi are non-unital ∗-subalgebras of A.

(3) We have a non-unital ∗-algebra sum A = A1 ⊕ . . .⊕ Ak .

(4) Unital ∗-algebra isomorphisms Ai ' MNi
(C), Ni = rank(pi ).

(5) Thus, we can decompose A ' MN1(C)⊕ . . .⊕MNk
(C).

(6) This holds in fact for any finite dimensional C ∗-algebra.

Proof. (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5) =⇒ (6).



Conclusions

C ∗-algebras: algebras with norm and involution, ||aa∗|| = ||a||2.

(1) Gelfand theorem: commutative case A = C (X ).

(2) Gelfand-Naimark-Segal theorem: A ⊂ B(H).

(3) Finite dimensions: A = MN1(C)⊕ . . .⊕MNk
(C).

=⇒ More basic theory: von Neumann algebras.

=⇒ A = C (X ). Spheres and tori. What about groups?



Compact and discrete quantum groups

Teo Banica

"Introduction to quantum groups", 2/6

06/20



Plan

(1) Compact quantum groups

(2) Discrete quantum groups

(3) Basic examples, operations

(4) Quantum isometry groups

=⇒ next lecture: representations



Operator algebras

C ∗-algebras: with norm and involution, ||aa∗|| = ||a||2.

(1) Gelfand theorem: commutative case A = C (X ).

(2) Gelfand-Naimark-Segal theorem: A ⊂ B(H).

(3) Finite dimensions: A = MN1(C)⊕ . . .⊕MNk
(C).

=⇒ A = C (X ), with X "noncommutative compact space"

=⇒ NC spheres, NC tori. What about quantum groups?



Classical groups

Let G be a compact Lie group. Then G ⊂ UN . Multiplication:

(UV )ij =
∑
k

UikVkj

By Stone-Weierstrass we have C (G ) =< uij >, where:

uij(U) = Uij

The multiplication G × G → G transposes as:

uij →
∑
k

uik ⊗ ukj

Thus G is well described by C (G ), together with u = (uij).



Axioms

Let A be a C ∗-algebra, with u ∈ MN(A) biunitary (u, ut unitaries),
whose entries generate A, such that:

– ∆(uij) =
∑

k uik ⊗ ukj defines a morphism ∆ : A→ A⊗ A
– ε(uij) = δij defines a morphism ε : A→ C
– S(uij) = u∗ji defines a morphism S : A→ Aopp

We write then A = C (G ) = C ∗(Γ), and call:

– G a compact quantum group
– Γ a discrete quantum group

[axioms due to Woronowicz, 1987, slightly modified here]



Compact groups 1/2

Theorem. For a closed subgroup G ⊂ UN , the algebra A = C (G ),
with the matrix formed by the standard coordinates

uij(g) = gij

is a Woronowicz algebra, with structural maps given by

∆ = mT , ε = uT , S = iT

where m, u, i are the multiplication, unit and inverse of G .

Any commutative Woronowicz algebra appears in this way.



Compact groups 2/2

Proof. We compute mT , uT , iT . We have:

mT (uij)(U ⊗ V ) = (UV )ij =
∑
k

UikVkj =
∑
k

(uik ⊗ ukj)(U ⊗ V )

Regarding now uT , here we have:

uT (uij) = 1ij = δij

As for the map iT , this is given by:

iT (uij)(U) = (U−1)ij = Ūji = u∗ji (U)

Thus the axioms are satisfied, with ∆ = mT , ε = uT , S = iT .

Finally, the last assertion follows by applying Gelfand.



Group duals 1/2

Theorem. For a discrete group Γ =< g1, . . . , gN >, the algebra
A = C ∗(Γ), with the diagonal matrix formed by the generators

u = diag(g1, . . . , gN)

is a Woronowicz algebra, with structural maps given by

∆(g) = g ⊗ g , ε(g) = 1 , S(g) = g−1

for any group element g ∈ Γ. This algebra is cocommutative, in the
sense that Σ∆ = ∆, where Σ(a⊗ b) = b ⊗ a is the flip.

Remark. We’ll see later that any cocommutative Woronowicz
algebra appears in this way (needs representation theory).



Group duals 2/2

Proof. Consider the following unitary representation:

Γ→ C ∗(Γ)⊗ C ∗(Γ) , g → g ⊗ g

This produces a map ∆ : C ∗(Γ)→ C ∗(Γ)⊗ C ∗(Γ), given by:

∆(g) = g ⊗ g

Similarly, ε comes from the trivial representation:

Γ→ {1} , g → 1

As for S , this comes from the following representation:

Γ→ C ∗(Γ)opp , g → g−1

Remark. Note that the use of the opposite algebra is needed.



Comments 1/4

Assume that Γ is abelian, and let G = Γ̂ be its Pontrjagin dual,
formed by the characters χ : Γ→ T. The isomorphism

C ∗(Γ) ' C (G )

transforms the structural maps of C ∗(Γ), given by

∆(g) = g ⊗ g , ε(g) = 1 , S(g) = g−1

into the structural maps of C (G ), given by:

∆ϕ(g , h) = ϕ(gh) , ε(ϕ) = ϕ(1) , Sϕ(g) = ϕ(g−1)

Thus, G = Γ̂ is a compact quantum group isomorphism.



Comments 2/4

Motivated by this, given a Woronowicz algebra

A = C (G ) = C ∗(Γ)

we say that G , Γ are dual to each other, and write:

G = Γ̂ , Γ = Ĝ

This duality extends the usual Pontrjagin duality.



Comments 3/4

Motivated by the compact Lie group case, we have:

Definition. Given A = C (G ), we denote by A ⊂ A the dense
∗-algebra generated by the coordinates uij , and we write

A = C∞(G )

and call it "algebra of smooth functions" on G .

Example. For A = C ∗(Γ) we have A = C[Γ].



Comments 4/4

Motivated by the group dual case, we have:

Definition. We agree to identify (A, u) and (B, v) when we have a
∗-algebra isomorphism

A ' B

mapping standard coordinates to standard coordinates, uij → vij .

Example. This identifies for instance C ∗(Γ) with C ∗red(Γ).



Summary

(1) We are looking at pairs (A, u), with u ∈ MN(A) biunitary, with:

∆(uij) =
∑
k

uik ⊗ ukj , ε(uij) = δij , S(uij) = u∗ji

(2) We have compact and discrete quantum groups, given by:

A = C (G ) = C ∗(Γ)

(3) These quantum groups are dual to each other, and we write:

G = Γ̂ , Γ = Ĝ

(4) We set C∞(G ) =< uij >, and we use the identifications:

C∞(G ) ' C∞(H) , uij → vij

(5) All this is supported by C ∗-algebras, and the above results.



Tech 1/2

Theorem. The comultiplication ∆, counit ε and antipode S satisfy
the following conditions,

(1) Coassociativity: (∆⊗ id)∆ = (id ⊗∆)∆.

(2) Counitality: (id ⊗ ε)∆ = (ε⊗ id)∆ = id .

(3) Coinversality: m(id ⊗ S)∆ = m(S ⊗ id)∆ = ε(.)1.

on the dense ∗-subalgebra A ⊂ A generated by the variables uij .

Proof. Clear on coordinates, and so on the ∗-algebra A.



Tech 2/2

Remark. In the commutative case, G ⊂ UN , we have

∆ = mT , ε = uT , S = iT

and the 3 conditions satisfied by ∆, ε,S come by transposition from
the basic 3 conditions satisfied by m, u, i , namely

m(m × id) = m(id ×m)

m(id × u) = m(u × id) = id

m(id ⊗ i)δ = m(i ⊗ id)δ = 1

whre δ(g) = (g , g). In general, the philosophy is the same.



1. Products

Given two compact quantum groups G ,H, so is their product
G × H, constructed as follows:

C (G × H) = C (G )⊗ C (H)

Equivalently, at the level of the associated discrete quantum groups
Γ,Λ, which are dual to G ,H, we have:

C ∗(Γ× Λ) = C ∗(Γ)⊗ C ∗(Λ)

As an illustration, we have things of type G × Λ̂, with G ,Λ both
classical, which are not classical, nor group duals.



2. Dual free products

Given two compact quantum groups G ,H, so is their dual free
product G ∗̂H, constructed as follows:

C (G ∗̂H) = C (G ) ∗ C (H)

Equivalently, at the level of the associated discrete quantum groups
Γ,Λ, which are dual to G ,H, we have a usual free product:

C ∗(Γ ∗ Λ) = C ∗(Γ) ∗ C ∗(Λ)

This construction always produces non-classical quantum groups,
unless of course G = {1} or H = {1}.



3. Free complexification

Given a compact quantum group G , we can construct its free
complexification G̃ as follows, where z = id ∈ C (T):

C (G̃ ) ⊂ C (T) ∗ C (G ) , ũ = zu

Equivalently, at the level of the associated discrete duals Γ, Γ̃, we
have the following formula, where z = 1 ∈ Z:

C ∗(Γ̃) ⊂ C ∗(Z) ∗ C ∗(Γ) , ũ = zu

We’ll see later that the "free analogues" of ON ,UN are related by
free complexification. Simpler than for ON ,UN themselves (!)



4. Subgroups

Let G be compact quantum group, and let I ⊂ C (G ) be a closed
∗-ideal satisfying the following "Hopf ideal" condition:

∆(I ) ⊂ C (G )⊗ I + I ⊗ C (G )

We have then a closed subgroup H ⊂ G , as follows:

C (H) = C (G )/I

Dually, we obtain a quotient of discrete quantum groups:

Γ̂→ Λ̂

In all this the Hopf ideal condition is needed for ∆ to factorize.



5. Quotients

Let us call “corepresentation” of a Woronowicz algebra A = C (G )
any unitary matrix w ∈ Mn(A) satisfying:

∆(wij) =
∑
k

wik ⊗ wkj , ε(wij) = δij , S(wij) = w∗ji

In this situation, we have a quotient group G → H, given by:

C (H) =< wij >

At the dual level we obtain a discrete quantum subgroup:

Λ̂ ⊂ Γ̂

We will be back later to corepresentations, with a full theory.



6. Projective version

Given a quantum group G , with fundamental corepresentation
u = (uij), the N2 × N2 matrix given in double indices by

wia,jb = uiju
∗
ab

is a corepresentation, and the following happen:

(1) The corresponding quotient G → PG is a quantum group.

(2) In the classical case, G ⊂ UN , we have PG = G/(G ∩ TN).

(3) For the group duals, Γ =< gi >, we have P̂Γ =< gig
−1
j >.



Summary

The compact quantum groups are subject to making:

1. Products G × H

2. Dual free products G ∗̂H

3. Free complexification G  G̃

4. Subgroups H ⊂ G

5. Quotients G → H

6. Projective versions G → PG

However, as "basic input" we only have groups, and group duals.



Liberations 1/4

Theorem. We have quantum groups defined via

C (O+
N ) = C ∗

(
(uij)i ,j=1,...,N

∣∣∣u = ū, ut = u−1
)

C (U+
N ) = C ∗

(
(uij)i ,j=1,...,N

∣∣∣u∗ = u−1, ut = ū−1
)

called free orthogonal, and free unitary quantum groups.

Proof. If u is biunitary/orthogonal, so are the matrices

(u∆)ij =
∑
k

uik ⊗ ukj , (uε)ij = δij , (uS)ij = u∗ji

and so we can construct ∆, ε,S , by universality.



Liberations 2/4

The quantum groups O+
N ,U

+
N have the following properties:

(1) The closed subgroups G ⊂ U+
N are exactly the N × N compact

quantum groups.

(2) As for the closed subgroups G ⊂ O+
N , these are exactly those

satisfying u = ū.

(3) We have embeddings ON ⊂ O+
N and UN ⊂ U+

N , obtained by
dividing C (O+

N ),C (U+
N ) by their commutator ideals.



Liberations 3/4

Theorem. The following inclusions are proper, at any N ≥ 2:

UN
// U+

N

ON
//

OO

O+
N

OO

Proof. Follows by looking at group dual subgroups. Indeed, we have

L̂N ⊂ O+
N , F̂N ⊂ U+

N

where LN = Z∗N2 , and where FN = Z∗N is the free group.

Remark. We have a connection here with the "free tori".



Liberations 4/4

Theorem. We have intermediate liberations as follows,

UN
// U∗N

// U+
N

ON
//

OO

O∗N
//

OO

O+
N

OO

with ∗ meaning that uij , u∗ij must satisfy the relations abc = cba.

Proof. If the entries of u "half-commute", so do the entries of

(u∆)ij =
∑
k

uik ⊗ ukj , (uε)ij = δij , (uS)ij = u∗ji

so we can construct indeed ∆, ε,S . More can be said here (..)



Affine isometries

Question. Are our quantum groups compatible with the spheres?

Definition. Given an algebraic manifold X ⊂ SN−1
C , the formula

G (X ) =
{
U ∈ UN

∣∣∣U(X ) = X
}

defines a compact group of unitary matrices (a.k.a. isometries),
called affine isometry group of X .

=⇒ For the classical spheres SN−1
R ,SN−1

C we obtain in this way
the classical groups ON ,UN .



Quantum isometries

Given an algebraic manifold X ⊂ SN−1
C,+ , the category of the closed

subgroups G ⊂ U+
N acting affinely on X , in the sense that

Φ(xi ) =
∑
a

uia ⊗ xa

defines a morphism of C ∗-algebras, as follows,

Φ : C (X )→ C (G )⊗ C (X )

has a universal object, denoted G+(X ), and called "affine quantum
isometry group" of X . This is indeed routine algebra.



Rotations and spheres 1/2

Theorem. The quantum isometry groups of the basic spheres,

SN−1
C

// SN−1
C,∗

// SN−1
C,+

SN−1
R

//

OO

SN−1
R,∗

//

OO

SN−1
R,+

OO

are the basic orthogonal and unitary quantum groups, namely:

UN
// U∗N

// U+
N

ON
//

OO

O∗N
//

OO

O+
N

OO



Rotations and spheres, 2/2

Proof. The variables Xi =
∑

a uia ⊗ xa satisfy∑
i

XiX
∗
i =

∑
iab

uiau
∗
ib ⊗ xax

∗
b =

∑
a

1⊗ xax
∗
a = 1⊗ 1

∑
i

X ∗i Xi =
∑
iab

u∗iauib ⊗ x∗a xb =
∑
a

1⊗ x∗a xa = 1⊗ 1

so we have an action U+
N y SN−1

C,+ .

If the variables are uij are real, or half-commute, or commute, so do
the variables Xi . Thus, we have actions everywhere.

Some routine work shows that all these actions are universal.



Conclusion

We have a theory of compact/discrete quantum groups, featuring:

(1) Simple axioms for the algebras A = C (G ) = C ∗(Γ).

(2) The duality formulae G = Γ̂ and Γ = Ĝ well understood.

(3) Manipulations with ∆, ε,S as our main tool, at least so far.

(4) Many examples (various liberations, standard operations).

(5) Compatibility of all this with the noncommutative tori/spheres.

=⇒ next lecture: representation theory



Haar measure and Peter-Weyl theory

Teo Banica

"Introduction to quantum groups", 3/6

06/20



Plan

(1) Representations

(2) The Haar measure

(3) Peter-Weyl theory

(4) Kesten amenability

=⇒ next lecture: Tannakian duality



Quantum groups

Axioms. Let A be a C ∗-algebra, with u ∈ MN(A) biunitary (u, ut

unitaries), whose entries generate A, such that:

– ∆(uij) =
∑

k uik ⊗ ukj defines a morphism ∆ : A→ A⊗ A
– ε(uij) = δij defines a morphism ε : A→ C
– S(uij) = u∗ji defines a morphism S : A→ Aopp

We write then A = C (G ) = C ∗(Γ), with G compact quantum
group, and Γ discrete quantum group [Woronowicz 87].

Examples. Compact Lie groups, discrete group duals (NC tori),
liberations and half-liberations, product operations..

Tools. Comultiplication, counit and antipode ∆, ε,S , in analogy
with multiplication, unit and inverse m, u, i .



Representations 1/4

Definition. A corepresentation of a Woronowicz algebra A is a
biunitary matrix v ∈ Mn(A) satisfying
– ∆(vij) =

∑
k vik ⊗ vkj

– ε(vij) = δij
– S(vij) = v∗ji
where A ⊂ A is the dense ∗-subalgebra of "smooth elements".

Examples. 1 (trivial), u (fundamental), ū (conjugate).

Idea. The corepresentations of A = C (G ) can be thought of as
corresponding to the representations of G .



Representations 2/4

Theorem. Given a closed subgroup G ⊂ UN , the corepresentations
of C (G ) are in one-to-one correspondence, given by

π(g) =

v11(g) . . . v1n(g)
...

...
vn1(g) . . . vnn(g)


with the finite dimensional unitary smooth representations of G .

Proof. Same computations as when proving that A = C (G ) is a
Woronowicz algebra, which was already done.



Representations 3/4

Theorem. The corepresentations of a given Woronowicz algebra A
are subject to the following operations:

(1) Making sums, v + w = diag(v ,w).

(2) Making tensor products, (v ⊗ w)ia,jb = vijwab.

(3) Taking conjugates, (v̄)ij = v∗ij .

(4) Spinning, w = UvU∗, with U ∈ Un.

Proof. All this is elementary, coming from definitions.



Representations 4/4

Theorem. Given a discrete group Γ =< g1, . . . , gN >, the
corepresentations of A = C ∗(Γ) are as follows:

(1) Any group element h ∈ Γ is a 1D corepresentation of A, and
the operations are the usual ones on group elements.

(2) Any diagonal matrix of type v = diag(h1, . . . , hn), with n ∈ N,
and with h1, . . . , hn ∈ Γ, is a corepresentation of A.

(3) More generally, any matrix w = Udiag(h1, . . . , hn)U∗ with
h1, . . . , hn ∈ Γ and with U ∈ Un, is a corepresentation of A.

Proof. Follows from ∆(h) = h ⊗ h, ε(h) = 1, S(h) = h−1.

Comment. We’ll see later that (3) gives all corepresentations.



Theory 1/6

Definition. Given corepresentations v ∈ Mn(A),w ∈ Mm(A), we set

Hom(v ,w) =
{
T ∈ Mm×n(C)

∣∣∣Tv = wT
}

and we use the following conventions:

(1) Fix(v) = Hom(1, v) and End(v) = Hom(v , v).

(2) v ∼ w when Hom(v ,w) contains an invertible element.

(3) v is called irreducible, v ∈ Irr(G ), when End(v) = C1.



Theory 2/6

Theorem. We have the following results:

T ∈ Hom(u, v),S ∈ Hom(v ,w) =⇒ ST ∈ Hom(u,w)

S ∈ Hom(p, q),T ∈ Hom(v ,w) =⇒ S ⊗ T ∈ Hom(p ⊗ v , q ⊗ w)

T ∈ Hom(v ,w) =⇒ T ∗ ∈ Hom(w , v)

In other words, the Hom spaces form a tensor ∗-category.

Proof. All this is elementary, coming from definitions.

Comment. We’ll be back to this later (Tannakian duality).



Theory 3/6

Theorem. Let B ⊂ MN(C) be a C ∗-algebra.

(1) We have 1 = p1 + . . .+ pk , with pi ∈ B minimal projections.

(2) The spaces Bi = piBpi are non-unital ∗-subalgebras of B .

(3) We have a non-unital ∗-algebra sum B = B1 ⊕ . . .⊕ Bk .

(4) Unital ∗-algebra isomorphisms Bi ' MNi
(C), Ni = rank(pi ).

(5) Thus, we can decompose B ' MN1(C)⊕ . . .⊕MNk
(C).

(6) This holds in fact for any finite dimensional C ∗-algebra.

Proof. This is something that we already know from lecture 1, the
idea being (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5) =⇒ (6).



Theory 4/6

Theorem (PW1). Any corepresentation v ∈ Mn(A) decomposes as
a direct sum of irreducible corepresentations

v = v1 + . . .+ vk

with each vi being obtained by restricting v to Im(pi ), where
1 = p1 + . . .+ pk is the partition of unity for B = End(v).

Proof. (1) Let Φ : Cn → A⊗Cn, Φ(ei ) =
∑

j vij ⊗ ej . If V ⊂ Cn is
invariant, Φ(V ) ⊂ A⊗ V , then Φ|V : V → A⊗ V is a coaction
too, which must come from a subcorepresentation w ⊂ v .
(2) Given p ∈ End(v), V = Im(p) must be invariant, coming from
w ⊂ v , and p → w maps subprojections to subcorepresentations,
and minimal projections to irreducible corepresentations.
(3) With these preliminaries in hand, the result follows.



Theory 5/6

Definition. We denote by u⊗k , with k = ◦ • • ◦ . . . being a colored
integer, the various tensor products between u, ū, with the rules

u⊗∅ = 1 , u⊗◦ = u , u⊗• = ū

along with multiplicativity condition

u⊗kl = u⊗k ⊗ u⊗l

and call them Peter-Weyl corepresentations.

Remarks. In the real case, u = ū, we can assume k ∈ N. In the
classical case, we can assume, up to equivalence, k ∈ N× N.



Theory 6/6

Theorem (PW2). Each irreducible corepresentation of A appears
inside a Peter-Weyl corepresentation u⊗k .

Proof. Given a corepresentation v ∈ Mn(A), consider its space of
coefficients, C (v) = span(vij). Then v → C (v) is functorial,
mapping subcorepresentations into subspaces. We have:

A =
∑

k∈N∗N
C (u⊗k)

We have C (v) ⊂ A, and so, for certain exponents k1, . . . , kp:

C (v) ⊂ C (u⊗k1 ⊕ . . .⊕ u⊗kp)

Thus v ⊂ u⊗k1 ⊕ . . .⊕ u⊗kp , and PW1 gives the result.



Summary

We are interested in the FD unitary smooth representations of G .
These come from the biunitary matrices v ∈ Mn(A) satisfying:

– ∆(vij) =
∑

k vik ⊗ vkj
– ε(vij) = δij
– S(vij) = v∗ji

As basic examples we have 1, u, ū, and more generally the PW
corepresentations u⊗k , with k colored integer.

The corepresentations decompose into irreducibles (PW1) and the
irreducibles can be obtained by splitting the u⊗k (PW2).



Haar measure 1/8

Theorem. The algebra A = C (G ) with G ⊂ UN , has a unique
faithful positive unital linear form

∫
G : A→ C satisfying:∫

G
f (xy)dx =

∫
G
f (yx)dx =

∫
G
f (x)dx

This can be constructed by starting with any faithful positive unital
form ϕ ∈ A∗, and taking the Cesàro limit∫

G
= lim

n→∞

1
n

n∑
k=1

ϕ∗k

where the convolution operation is φ ∗ ψ = (φ⊗ ψ)∆.

Proof. Well-known, and we’ll reprove it anyway.



Haar measure 2/8

Definition. Given a Woronowicz algebra A = C (G ), a positive
unital tracial state

∫
G : A→ C subject to the conditions(∫

G
⊗id

)
∆ =

(
id ⊗

∫
G

)
∆ =

∫
G

(.)1

called left/right invariance, is called Haar integration over G .

Remark. In the classical case, G ⊂ UN , we know that
∫
G exists, is

unique, and can be constructed via a Cesàro limit.



Haar measure 3/8
Theorem. Given a discrete group Γ =< g1, . . . , gN >, the algebra
A = C ∗(Γ) has a Haar functional, given on group elements by:∫

Γ̂
g = δg ,1

This functional is faithful on the image on C ∗(Γ) in the regular
representation. In the abelian case, this is the counit of C (Γ̂).

Proof. Consider indeed the left regular representation:

π : C ∗(Γ)→ B(l2(Γ)) , π(g)(h) = gh

The composition
∫

Γ̂
of π with T →< T1, 1 > is given by:∫

Γ̂
g =< g1, 1 >= δg ,1

But this gives all the assertions, the last one being clear too.



Haar measure 4/8

Theorem. Given an arbitrary unital linear form ϕ ∈ A∗, the limit∫
ϕ
a = lim

n→∞

1
n

n∑
k=1

ϕ∗k(a)

exists, and for a corepresentation coefficient a = (τ ⊗ id)v , we have∫
ϕ
a = τ(P)

where P is the projection onto the 1-eigenspace of (id ⊗ ϕ)v .

Proof. This is linear algebra, on the space of coefficients of v .



Haar measure 5/8

Theorem. Given a faithful unital linear form ϕ ∈ A∗, the limit∫
ϕ
a = lim

n→∞

1
n

n∑
k=1

ϕ∗k(a)

exists, and is independent of ϕ, given on coefficients by(
id ⊗

∫
ϕ

)
v = P

where P is the projection onto Fix(v) = {ξ ∈ Cn|vξ = ξ}.

Proof. With M = (id ⊗ ϕ)v we must prove that Mξ = ξ implies
vξ = ξ. But this follows via a standard positivity trick.



Haar measure 6/8

Assume indeed Mξ = ξ, and consider the following element:

a =
∑
i

∑
j

vijξj − ξi

(∑
k

vikξk − ξi

)∗

We must prove that a = 0. Since v is biunitary, we have:

a =
∑
i

∑
j

(
vijξj −

1
N
ξi

)(∑
k

(
v∗ik ξ̄k −

1
N
ξ̄i

))
= 2(||ξ||2 − Re(< vξ, ξ >))

By using now Mξ = ξ, we obtain from this ϕ(a) = 0. Now since ϕ
is faithful, this gives a = 0, and so vξ = ξ, as desired.



Haar measure 7/8

Theorem. Any Woronowicz algebra has a unique Haar integration
functional, which can be constructed by starting with any faithful
positive unital state ϕ ∈ A∗, and setting∫

G
= lim

n→∞

1
n

n∑
k=1

ϕ∗k

where φ ∗ ψ = (φ⊗ ψ)∆. Moreover, for any corepresentation v ,(
id ⊗

∫
G

)
v = P

where P is the projection onto Fix(v) = {ξ ∈ Cn|vξ = ξ}.

Proof. We already know all this, modulo a few extra minor things.



Haar measure 8/8

Theorem. We have the following results:

(1) For a product G × H, we have
∫
G×H =

∫
G ⊗

∫
H .

(2) For a dual free product G ∗̂H, we have
∫
G ∗̂H =

∫
G ∗
∫
H .

(3) For a quotient G → H, we have
∫
H =

(∫
G

)
|C(H)

.

(4) For a projective version G → PG , we have
∫
PG =

(∫
G

)
|C(PG)

.

Proof. All these results follow from uniqueness.



Theory 1/4

Theorem. We have a Frobenius type isomorphism

Hom(v ,w) ' Fix(v ⊗ w̄)

valid for any two corepresentations v ,w .

Proof. We have the following equivalences:

T ∈ Hom(v ,w) ⇐⇒ Tv = wT ⇐⇒
∑
j

Tajvji =
∑
b

wabTbi

T ∈ Fix(v ⊗ w̄) ⇐⇒ (v ⊗ w̄)T = ξ ⇐⇒
∑
jb

vijw
∗
abTbj = Tai

With this, both inclusions follow from the biunitarity of v ,w .



Theory 2/4

Theorem (PW3). The dense subalgebra A ⊂ A decomposes as

A =
⊕

v∈Irr(A)

Mdim(v)(C)

isomorphism of ∗-coalgebras, with the summands being pairwise
orthogonal with respect to < a, b >=

∫
G ab∗.

Proof. We must prove that for v ,w ∈ Irr(A) we have:

v 6∼ w =⇒ C (v) ⊥ C (w)

The matrix P given by Pia,jb =
∫
G vijw

∗
ab is the projection onto:

Fix(v ⊗ w̄) ' Hom(v ,w) = {0}

Thus we have P = 0, and this gives the result.



Theory 3/4

Theorem. The characters of the corepresentations, given by

χv =
∑
i

vii

behave as follows, in respect to the various operations:

χv+w = χv + χw , χv⊗w = χvχw , χv̄ = χ∗v

In addition, assuming v ∼ w , we have χv = χw .

Proof. All this is clear, coming from definitions.



Theory 4/4

Theorem (PW4). The characters of irreducible corepresentations
belong to the algebra of “smooth central functions”

Acentral =
{
a ∈ A

∣∣∣Σ∆(a) = ∆(a)
}

and form an orthonormal basis of it.

Proof. The only tricky assertion is the norm 1 one. But:∫
G
χvχ

∗
v =

∑
ij

∫
G
viiv
∗
jj =

∑
i

1
N

= 1

Here we have used the fact that the integrals
∫
G vijv

∗
kl form the

orthogonal projection onto Fix(v ⊗ v̄) ' End(v) = C1.



Examples 1/2

Theorem. Let Γ =< g1, . . . , gN > be a discrete group.

(1) The 1D corepresentations of C ∗(Γ) are the elements g ∈ Γ.

(2) The corepresentations of C ∗(Γ) are sums of group elements.

Theorem. The cocommutative Woronowicz algebras appear as

C ∗(Γ)→ A→ C ∗red(Γ)

with Γ being a discrete group, A = C ∗π(Γ) with π ⊗ π ⊂ π.

Proofs. All this is clear from the Peter-Weyl theory.



Examples 2/2

Theorem. We have the following results:

(1) The irreps of a product G × H are the tensor products of the
form π ⊗ ν, with π, ν being irreps of G ,H.

(2) The irreps of a dual free product G ∗̂H appear as alternating
tensor products of irreps of G ,H.

(3) The irreps of a quotient G → H are the irreps of G whose
coefficients belong to C (H).

(4) The irreps of G → PG are the irreps of G which appear by
decomposing the tensor powers of ad(π) = π ⊗ π̄.

Proofs. Once again, all this is clear from the Peter-Weyl theory.



Amenability 1/3

Theorem. Let Afull be the enveloping C ∗-algebra of A, and let Ared

be the quotient of A by the null ideal of the Haar integration. The
following are then equivalent:

(1) The Haar functional of Afull is faithful.

(2) The projection map Afull → Ared is an isomorphism.

(3) The counit map ε : Afull → C factorizes through Ared .

(4) We have N ∈ σ(Re(χu)), the spectrum being taken inside Ared .

If this is the case, we say that G is coamenable, and Γ is amenable.



Amenability 2/3

(1) ⇐⇒ (2) This follows from the fact that the GNS construction
for the algebra Afull produces the algebra Ared .

(2) ⇐⇒ (3) Here =⇒ is trivial. Conversely, the comultiplication
of A can be extended into a map Φ : Ared → Ared ⊗ Afull , and the
composition (ε⊗ id)Φ is then our desired isomorphism.

(3) ⇐⇒ (4) The implication =⇒ is clear, because from
ε(uii ) = 1 for any i , we obtain the following formula:

ε(N − Re(χ(u))) = 0

Thus N − Re(χ(u)) is not invertible in Ared , as claimed.



Amenability 3/3

(4) =⇒ (3) With v = u ⊕ ū, our assumption reads:

dim v ∈ σ(χv )

By functional calculus the same holds for w = v + 1, and in fact for
any tensor power wk = w⊗k . Now choose for each k ∈ N a state
εk ∈ A∗red having the following property:

εk(wk) = dimwk

By Peter-Weyl we must have εk(v) = dim v , for any v ≤ wk , and
since each irreducible corepresentation of A appears in this way, the
sequence εk converges to a counit map ε : Ared → C, as desired.



Conclusion

We have a fully working Haar integration theory and Peter-Weyl
theory, the applications of all this being, so far:

(1) Representations of group duals, and of various products.

(2) A fully satisfactory notion of amenability/coamenability.

(3) In particular, a Kesten amenability criterion, N ∈ σ(Re(χu)).

(4) Suggesting that computing law(χu) is the "main problem".

=⇒ next lecture: Tannakian duality, easiness



Tannakian duality, diagrams and easiness

Teo Banica

"Introduction to quantum groups", 4/6

06/20



Plan

(1) Tensor categories

(2) Tannakian duality

(3) Diagrams, easiness

(4) Free quantum groups

=⇒ next lecture: quantum permutations



Representations

(1) A corepresentation of a Woronowicz algebra A is a biunitary
matrix v ∈ Mn(A) satisfying:
– ∆(vij) =

∑
k vik ⊗ vkj

– ε(vij) = δij
– S(vij) = v∗ji

(2) Basic example: the fundamental corepresentation u. In fact,
the axioms state that u must be a faithful corepresentation.

(3) With A = C (G ), the corepresentations of A correspond to the
FD unitary smooth representations of the quantum group G .

(4) We have a full Peter-Weyl theory for them, the main result
stating that A decomposes as an orthogonal direct sum.



Categories 1/6

Definition. The Tannakian category of a Woronowicz algebra (A, u)
is the collection C = (C (k, l)) of vector spaces

C (k, l) = Hom(u⊗k , u⊗l)

where the corepresentations u⊗k with k = ◦ • • ◦ . . . colored integer
are defined by u⊗◦ = u, u⊗• = ū and multiplicativity.

Remark 1. We already know that C is a tensor ∗-category, the
verification of all conditions being elementary.

Remark 2. In fact, C appears by definition as subcategory of the
tensor ∗-category E (k, l) = L(H⊗k ,H⊗l), where H = CN .



Categories 2/6

Our purpose will be that of reconstructing (A, u) in terms of
C = (C (k, l)). Here is a useful preliminary result:

Theorem. Given a morphism π : (A, u)→ (B, v) we have

Hom(u⊗k , u⊗l) ⊂ Hom(v⊗k , v⊗l)

and if these inclusions are all equalities, π is an isomorphism.

Proof. Follows from Peter-Weyl, by contradiction, because each
irreducible corepresentation is contained in some u⊗k .



Categories 3/6

In order to exploit the fact that u is biunitary, we can use:

Theorem. An matrix u ∈ MN(A) is biunitary if and only if

R ∈ Hom(1, u ⊗ ū) , R ∈ Hom(1, ū ⊗ u)

R∗ ∈ Hom(u ⊗ ū, 1) , R∗ ∈ Hom(ū ⊗ u, 1)

where R : C→ CN ⊗ CN is given by R(1) =
∑

i ei ⊗ ei .

Proof. This follows from some elementary computations.



Categories 4/6

Definition. Let H be a finite dimensional Hilbert space. A tensor
category over H is a collection C = (C (k , l)) of subspaces

C (k, l) ⊂ L(H⊗k ,H⊗l)

satisfying the following conditions:

(1) S ,T ∈ C implies S ⊗ T ∈ C .

(2) If S ,T ∈ C are composable, then ST ∈ C .

(3) T ∈ C implies T ∗ ∈ C .

(4) Each C (k , k) contains the identity operator.

(5) C (∅, ◦•) and C (∅, •◦) contain the map R : 1→
∑

i ei ⊗ ei .



Categories 5/6

Theorem. Let (A, u) be a Woronowicz algebra, with fundamental
corepresentation u ∈ MN(A). The associated Tannakian category

C (k, l) = Hom(u⊗k , u⊗l)

is then a tensor category over the Hilbert space H = CN .

Proof. We already know that axioms (1-4) hold indeed, this being
elementary, and (5) is something that we just did, clear too.



Categories 6/6

Theorem. Given a tensor category C = (C (k , l)), the following
algebra is a Woronowicz algebra:

AC = C (U+
N )
/〈

T ∈ Hom(u⊗k , u⊗l)
∣∣∣∀k, l , ∀T ∈ C (k , l)

〉
In the case where C comes from a Woronowicz algebra (A, v), we
have a quotient map AC → A.

Proof. We have indeed a Woronowicz algebra, because the relations
T ∈ Hom(u⊗k , u⊗l) are of "Hopf type", i.e. ∆, ε,S factorize.

The fact that we have a quotient map AC → A is clear, because
the relations defining AC are satisfied inside A.



Summary

We have so far:

(1) Axioms for A: N × N Woronowicz algebra

(2) Axioms for C : tensor category over CN

(3) Correspondence A→ C : set CA = (Hom(u⊗k , u⊗l))kl

(4) Correspondence C → A: set AC = C (U+
N )/ < C ⊂ CA >

=⇒ we want to prove that we have a bijection A↔ C



Step 1

Theorem. Consider the following conditions:
(1) C = CAC

, for any Tannakian category C .
(2) A = ACA

, for any Woronowicz algebra (A, u).
We have then (1) =⇒ (2). Also, C ⊂ CAC

is automatic.

Proof. We know that we have an arrow as follows:

ACA
→ A

On the other hand, assuming (1), with C = CA we get:

CA = CACA

Thus, we can use our quotient map criterion from before, and we
get ACA

= A, as desired. Finally, the last assertion is clear.



Step 2

Definition. Given a tensor category C over H, we set:

EC =
⊕
k,l

C (k , l) ⊂
⊕
k,l

B(H⊗k ,H⊗l) ⊂ B

(⊕
k

H⊗k

)

Also, for any s ∈ N, we consider the following truncation:

E
(s)
C =

⊕
|k|,|l |≤s

C (k , l) ⊂
⊕
|k|,|l |≤s

B(H⊗k ,H⊗l) = B

⊕
|k|≤s

H⊗k


Remark. We obtain in this way certain ∗-algebras.



Step 3

Theorem. For any C ∗-algebra B ⊂ Mn(C) we have

B = B ′′

where prime denotes the commutant, taken inside Mn(C).

Proof. Let us decompose B as a direct sum of matrix algebras:

B = Mr1(C)⊕ . . .⊕Mrk (C)

The commutant of this algebra is then as follows:

B ′ = C⊕ . . .⊕ C

By taking once again the commutant we obtain B itself.

(This is a particular case of von Neumann’s bicommutant theorem)



Step 4

Theorem. Given a category C , the following are equivalent:

(1) C = CAC
.

(2) EC = ECAC
.

(3) E (s)
C = E

(s)
CAC

, for any s ∈ N.

(4) E (s)′

C = E
(s)′

CAC
, for any s ∈ N.

In addition, ⊂, ⊂, ⊂, ⊃ respectively are automatically satisfied.

Proof. Here (1) ⇐⇒ (2) is clear from definitions, (2) ⇐⇒ (3) is
clear from definitions as well, and (3) ⇐⇒ (4) comes from the
bicommutant theorem. As for the last assertion, we have indeed
C ⊂ CAC

, and the other inclusions follow from this.



Step 5

Theorem. Given a Woronowicz algebra (A, u), we have

E
(s)
CA

= End

⊕
|k|≤s

u⊗k


as subalgebras of B(⊕|k|≤sH⊗k).

Proof. The algebra E
(s)
CA

appears by definition as follows:

E
(s)
CA

=
⊕
|k|,|l |≤s

Hom(u⊗k , u⊗l) ⊂ B

⊕
|k|≤s

H⊗k


But this is precisely the algebra of intertwiners of

⊕
|k|≤s u

⊗k .



Step 6

Theorem. For any corepresentation v ∈ Mn(A), the map

πv : A∗ → Mn(C) , ϕ→ (ϕ(vij))ij

is a representation, having as image Im(πv ) = End(v)′.

Proof. The first assertion is clear, coming from:

(πv (ϕ ∗ ψ))ij = (ϕ⊗ ψ)∆(vij)

=
∑
k

ϕ(vik)ψ(vkj)

=
∑
k

(πv (ϕ))ik(πv (ψ))kj

= (πv (ϕ)πv (ψ))ij

As for the second assertion, this comes by double inclusion.



Conclusion

=⇒ We want to prove Tannakian duality, A↔ C . Passed a few
trivialities, this amounts in proving that:

CAC
⊂ C

=⇒ By using the C → EC construction, truncated at s ∈ N, and
then a bicommutant trick, this is the same as proving that:

E
(s)′

C ⊂ E
(s)′

CAC

=⇒ We know that for any A we have E
(s)′

CA
= Im(πv ), where

v =
⊕
|k|≤s

u⊗k

and where πv : A∗ → Mn(C) is given by ϕ→ (ϕ(vij))ij .



Modelling 1/4

In order to model AC , and to fine-tune the results that we have,
consider the following pair of dual vector spaces:

F =
⊕
k

B
(
H⊗k

)
, F ∗ =

⊕
k

B
(
H⊗k

)∗
Let fij , f ∗ij ∈ F ∗ be the standard generators of B(H)∗,B(H̄)∗.

(1) F ∗ is a ∗-algebra, with multiplication ⊗ and involution fij ↔ f ∗ij .

(2) F ∗ is a ∗-bialgebra, with ∆(fij) =
∑

k fik ⊗ fkj and ε(fij) = δij .

(3) We have a ∗-bialgebra isomorphism < uij >' F ∗, uij → fij .



Modelling 2/4

Theorem. The smooth part of the algebra AC is given by

AC ' F ∗/J

where J ⊂ F ∗ is the ideal coming from the following relations,∑
p1,...,pk

Ti1...il ,p1...pk fp1j1 ⊗ . . .⊗ fpk jk

=
∑

q1,...,ql

Tq1...ql ,j1...jk fi1q1 ⊗ . . .⊗ filql , ∀i , j

one for each pair of colored integers k , l , and each T ∈ C (k , l).

Proof. This is indeed clear from definitions.



Modelling 3/4

Theorem. The linear space A∗C is given by the formula

A∗C =
{
a ∈ F

∣∣∣Tak = alT ,∀T ∈ C (k, l)
}

and its representation constructed before, namely

πv : A∗C → B(⊕|k|≤sH⊗k)

appears diagonally, by truncating, πv : a→ (ak)kk .

Proof. Once again, this an elementary computation.



Modelling 4/4

In order to conclude, consider the following spaces:

Fs =
⊕
|k|≤s

B
(
H⊗k

)
, F ∗s =

⊕
|k|≤s

B
(
H⊗k

)∗
We denote by a→ as the truncation F → Fs . We have:

(1) E (s)′

C ⊂ Fs .

(2) E ′C ⊂ F .

(3) A∗C = E ′C .

(4) Im(πv ) = (E ′C )s .

Indeed, all this follows from the above interpretation of A∗C .



Duality

Theorem. We have a Tannakian duality correspondence

A↔ C

between Woronowicz algebras and tensor categories, given by

CA = (Hom(u⊗k , u⊗l))kl

in one sense, from algebras to categories, and by

AC = C (U+
N )/ < C ⊂ CA >

in the other sense, from categories to algebras.



Proof 1/2

We have to prove that, for any category C , and any s ∈ N:

E
(s)′

C = (E ′C )s

By taking duals, this is the same as proving that:{
f ∈ F ∗s

∣∣∣f|(E ′C )s = 0
}

=

{
f ∈ F ∗s

∣∣∣f|E (s)′
C

= 0
}

We use A∗C = E ′C . Since we have AC = F ∗/J, we conclude that
the ideal J ⊂ F ∗ previously constructed is given by:

J =
{
f ∈ F ∗

∣∣∣f|E ′C = 0
}



Proof 2/2

The point now is that we have, for any s ∈ N:

J ∩ F ∗s =

{
f ∈ F ∗s

∣∣∣f|E (s)′
C

= 0
}

On the other hand, we have as well:

J ∩ F ∗s =
{
f ∈ F ∗

∣∣∣f|E ′C = 0
}
∩ F ∗s

=
{
f ∈ F ∗s

∣∣∣f|E ′C = 0
}

=
{
f ∈ F ∗s

∣∣∣f|(E ′C )s = 0
}

Thus, we are led to the equality that we wanted to prove.



Applications

Many applications, and to begin with, we have as plan:

(1) The biggest quantum group, namely U+
N , must correspond to

the smallest tensor category, namely < R >.

(2) It is well-known that R : 1→
∑

i ei ⊗ ei can be pictured as a
semicircle ∩, so we have to get into diagrams.

(3) We will reach in this way to a notion of "easy quantum group",
covering ON ,O

+
N ,UN ,U

+
N , and many other examples.

(4) As a main application, we will solve the problem of computing
the law of the main character for ON ,O

+
N ,UN ,U

+
N .



Easiness 1/3

Let P(k , l) be the set of partitions between an upper colored
integer k , and a lower colored integer l .

Definition. A collection of subsets D(k, l) ⊂ P(k , l) is called a
category of partitions when it satisfies:

(1) Stability under the horizontal concatenation, (π, σ)→ [πσ].

(2) Stability under vertical concatenation (π, σ)→ [σπ] (matching).

(3) Stability under the upside-down turning ∗, with ◦ ↔ •.

(4) Each P(k, k) contains the identity partition || . . . ||.

(5) Both P(∅, ◦•) and P(∅, •◦) contain the semicircle ∩.



Easiness 2/3

Definition. A closed subgroup G ⊂ U+
N is called easy when

Hom(u⊗k , u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k , l)
)

for a certain category of partitions D ⊂ P , where

Tπ(ei1 ⊗ . . .⊗ eik ) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

with δπ ∈ {0, 1} depending on whether the indices fit or not.



Easiness 3/3

Theorem. The basic unitary quantum groups, namely

UN
// U+

N

ON

OO

// O+
N

OO

are all easy, coming from the following categories of pairings:

P2

��

NC2oo

��
P2 NC2oo

Proof. This comes from Tannaka (classical case: Brauer).



Applications 1/3

Theorem. We have the following free complexification formula,

Õ+
N = U+

N

and for projective versions we have the following isomorphism,

PO+
N = PU+

N

by identifying as usual the full and reduced versions.

Proof. We know that we have Õ+
N ⊂ U+

N , and since the Tannakian
categories coincide, this is an isomorphism.



Applications 2/3

Theorem. The moments of the main characters for

UN
// U+

N

ON

OO

// O+
N

OO

are, in the N →∞ limit, as follows:

(1) On the bottom, with k = 2l , we have (2l)!! and 1
l+1

(2l
l

)
.

(2) On top we have similar numbers, with k being now colored.

Proof. This follows by counting the pairings, with N →∞ being
needed as for {Tπ} to be linearly independent.



Applications 3/3

Theorem. The asymptotic laws of the main characters for

UN
// U+

N

ON

OO

// O+
N

OO

are the basic measures in probability and free probability:

Complex Gaussian // Voiculescu circular

Real Gaussian

OO

//Wigner semicircular

OO

Proof. Calculus if we guess the answer, Stieltjes inversion otherwise.



Conclusion

We have a theory of easy quantum groups, featuring:

(1) Simple axioms: "C must come from partitions".

(2) The quantum groups ON ,O
+
N ,UN ,U

+
N as main examples.

(3) Many other potential examples, e.g. coming from P,NC .

(4) Interesting connections with probability/free probability.

=⇒ next lecture: quantum permutations
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Tannaka

Theorem. We have a Tannakian duality correspondence

A←→ C

between Woronowicz algebras and tensor categories, given by

CA = (Hom(u⊗k , u⊗l))kl

in one sense, from algebras to categories, and by

AC = C (U+
N )/ < C ⊂ CA >

in the other sense, from categories to algebras.



Easiness

Theorem. Any category of partitions D = (D(k, l)) produces a
family of quantum groups G = (GN) via the formula

Hom(u⊗k , u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k , l)
)

where the linear maps Tπ associated to partitions are given by

Tπ(ei1 ⊗ . . .⊗ eik ) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

with {ei} being the basis of CN , and δπ ∈ {0, 1} being Kronecker
symbols. These quantum groups GN are called easy.



Plan

(1) Quantum permutation groups

(2) Easiness: algebra and analysis

(3) Quantum reflection groups

(4) Transitivity, planar algebras

=⇒ next lecture: tori, models



Quantum permutations

The coordinates of SN ⊂ ON , permutation matrices, are:

uij = χ
(
σ ∈ SN

∣∣∣σ(j) = i
)

A quick study of u suggests the following definition:

Definition. The quantum permutation group S+
N is defined via

C (S+
N ) = C ∗

(
(uij)

∣∣∣u = N × N magic
)

where "magic" = made of projections, sum 1 on rows/columns.

[the verification of the CQG axioms is routine: Wang 98]



Alternative definition

Theorem. S+
N is the biggest quantum group acting on

X = {1, . . . ,N}

by keeping the counting measure invariant.

Proof. In order to have a quantum group action

G × X → X , (σ, i)→ σ(i)

we need a coaction map Φ : C (X )→ C (G )⊗ C (X ). With

Φ(δi ) =
∑
j

uij ⊗ δj

the matrix u = (uij) must be magic. Thus Gmax = S+
N .



Basic properties 1/4

We have a quotient map C (S+
N )→ C (SN), given by:

uij → χ
(
σ ∈ SN

∣∣∣σ(j) = i
)

Thus we have an embedding SN ⊂ S+
N . Study:

N = 2: We have S+
2 = S2, because the 2× 2 magics are

u =

(
p 1− p

1− p p

)
and their entries commute. Thus C (S+

2 ) is commutative.

N = 3: We have S+
3 = S3, by similar arguments.



Basic properties 2/4

We know SN ⊂ S+
N isomorphism at N = 2, 3. Continuation:

N = 4: Here S+
4 is non-classical and infinite, because

u =


p 1− p 0 0

1− p p 0 0
0 0 q 1− q
0 0 1− q q


with p, q ∈ B(H) shows that C (S+

4 ) is NC and ∞D.

N ≥ 5: Here S+
N stays non-classical and infinite (clear).



Basic properties 3/4

=⇒ Can we understand better why S+
4 6= S4?

Recall that given Γ =< g1, . . . , gN > discrete group, A = C ∗(Γ) is
a Woronowicz algebra, written A = C (Γ̂), with:

u = diag(g1, . . . , gN)

Now observe that we have, trivially by Fourier transform:

Ẑ2 = Z2 = S2 = S+
2

Thus our concatenation trick at N = 4 amounts in saying that:

D̂∞ = Ẑ2 ∗ Z2 ⊂ S+
4

Even better, we have D̂∞ ⊂ G+(�). More on this later.



Basic properties 4/4

=⇒ Can we understand what this S+
4 beast is?

Algebra C (SO−13 ), with orthogonal coordinates aij , satisfying:
– aijakl = ±aklaij , with + if i 6= k , j 6= l , and − otherwise
– twisted determinant condition: Σσ∈S3a1σ(1)a2σ(2)a3σ(3) = 1

The point is that the following matrix must be magic:

1
4


1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1



1 0 0 0
0 a11 a12 a13
0 a21 a22 a23
0 a31 a32 a33



1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1


Thus S+

4 = SO−13 , via the Fourier transform over K = Z2 × Z2.



Representations 1/4

Theorem. The Tannakian category of SN is given by

Hom(u⊗k , u⊗l) = span
(
Tπ

∣∣∣π ∈ P(k , l)
)

where the linear maps associated to partitions are:

Tπ(ei1 ⊗ . . .⊗ eik ) =
∑
j1,...,jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

Regarding now S+
N , the situation is quite similar:

Hom(u⊗k , u⊗l) = span
(
Tπ

∣∣∣π ∈ NC (k , l)
)

In other words, SN , S+
N are easy, coming from P,NC .



Representations 2/4

Proof for SN . Consider the one-block partition µ ∈ P(2, 1). We
have Tµ(ei ⊗ ej) = δijei , and a computation gives:

Tµ ∈ Hom(u⊗2, u) ⇐⇒ uijuik = δjkuij ,∀i , j , k

On the right we have the magic condition. We conclude that:

C (SN) = C (ON)
/〈

Tµ ∈ Hom(u⊗2, u)
〉

Now since P is generated by µ ∈ P(2, 1), we are done.

Proof for S+
N . Similar, by using the Brauer theorem for O+

N .



Representations 3/4

Theorem. The fusion rules for S+
N are the same as for SO3,

rk ⊗ rl = r|k−l | + r|k−l |+1 + . . .+ rk+l

with dim(rk) = qk+1−q−k

q−1 , where q2 − (N − 2)q + 1 = 0.

Proof. We know from easiness that we have:

Hom(u⊗k , u⊗l) = span
(
Tπ

∣∣∣π ∈ NC (k , l)
)

Thus, the main character χ is squared-semicircular:∫
S+
N

χp = |NC (0, p)| =
1

p + 1

(
2p
p

)
But this gives the result, using S3

R ' SU2 → SO3.



Representations 4/4

Comment: the above proof is valid in fact only with N >> 0,
where the maps {Tπ} are linearly independent.

However, things are in fact fine as long as N ≥ 4.

Why 4? Because this is a "Jones index". We have indeed

NC (0, p) ' NC2(0, 2p) ' NC2(p, p) = {basis of TL(p)}

and according to Jones, we must have N ≥ 4 for things to work.

=⇒ note that all this is simpler than for SN (!)



Analysis 1/4

Let SN ⊂ ON as usual. The main character is then:

χ(σ) =
∑
i

uii (σ) =
∑
i

δσ(i)i = #
{
i
∣∣σ(i) = i

}
By using the inclusion-exclusion principle, we obtain:

P(χ = 0) = 1− 1
1!

+
1
2!
− . . .+ (−1)N−1

1
(N − 1)!

+ (−1)N
1
N!

Thus, we have the following asymptotic formula:

lim
N→∞

P(χ = 0) =
1
e

In fact, the character χ becomes Poisson with N →∞.



Analysis 2/4

Theorem. If G is easy, coming from a category of partitions D,∫
G
ui1j1 . . . uik jk =

∑
π,σ∈D(k)

δπ(i)δσ(j)WkN(π, σ)

where WkN = G−1kN is the inverse of GkN(π, σ) = N |π∨σ|.

Proof. This is the Weingarten formula, coming from the fact that
the above integrals form the projection onto Fix(u⊗k).

In the unitary case we must use colored integers.
Works too in the symplectic case, and other cases.



Analysis 3/4

Theorem. The main character χ =
∑N

i=1 uii for the quantum
groups SN ,S+

N follows with N →∞ the laws

p1 =
1
e

∑
k

δk
k!

π1 =
1
2π

√
4x−1 − 1dx

called Poisson and Marchenko-Pastur (or free Poisson) of
parameter 1, and appearing via the PLT and FPLT.

Proof. Here we do not really need Weingarten, because:∫
G
χk ' |D(k)|

By using standard calculus (e.g. cumulants) we can conclude.



Analysis 4/4
Theorem. The truncated characters χt =

∑[tN]
i=1 uii for the quantum

groups SN ,S+
N follow with N →∞ the laws

pt = e−t
∑
k

tk

k!
δk

πt = max(1− t, 0)δ0 +

√
4t − (x − 1− t)2

2πx
dx

called Poisson and Marchenko-Pastur (or free Poisson) of
parameter t, and appearing via the PLT and FPLT.

Proof. Here, by using the Weingarten formula, we have:∫
G
χk
t '

∑
π∈D(k)

t |π|

By using standard calculus (e.g. cumulants) we can conclude.



Summary

(1) The analogy between SN , S+
N is best understood via easiness

S+
N

��

NC

��

πt

��
SN

OO

P

OO

pt

OO

with N generic, for algebra, and with N →∞, for analysis.

(2) When N is fixed things collapse for both SN , S
+
N , the collapsing

being worse for SN in algebra, and worse for S+
N in analysis.

(3) All this is just the "tip of the iceberg". Many advanced results,
both algebra and analysis (planar algebras, Diaconis type).



Graphs 1/4

Let X be a finite graph, |X | = N <∞, with adjacency matrix
d ∈ MN(0, 1). Its quantum symmetry group is given by:

G+(X ) = C (S+
N )
/〈

du = ud
〉

We have then a diagram of inclusions, as follows:

G+(X ) // S+
N

G (X )

OO

// SN

OO

Trivial example: no edges (or complete graph) =⇒ get S+
N .



Graphs 2/4

Cycle graph CN . Here generically we have, by algebra,

G+(CN) = G (CN) = DN

unless at N = 4, where the following thing happens:

G+(C4) = G+(�) = G+(| |) ⊃ Ẑ2 ∗ Z2 = D̂∞

=⇒ Question: what is G+(�)?

Looking at hypercube graphs �N . Here we have:

G+(�N) = O−1N

=⇒ In particular, we obtain G+(�) = O−12 .



Graphs 3/4

This is still not ok, because HN → O−1N cannot be a "true
liberation", for analytic reasons (same law as for ON).

=⇒ Question: what is H+
N ?

Answer. Consider the graph || . . . || consisting of N segments (the
[−1, 1] segments on the N coordinate axes). Then:

G (|| . . . ||) = Z2 o SN = HN ←→ Peven

We can therefore define H+
N as follows, and we are done:

G+(|| . . . ||) = Z2 o∗ S+
N = H+

N ←→ NCeven



Graphs 4/4

More generally, for any s ∈ {1, 2, . . . ,∞} we have:

G (4s . . .4s) = Zs o SN = Hs
N ←→ Ps

We can liberate this reflection group as follows:

G+(4s . . .4s) = Zs o∗ S+
N = Hs+

N ←→ NC s

(the "s" at right mean #◦ = # • (s), signed, in each block)

– at s = 1 we recover SN , S+
N

– at s = 2 we recover HN ,H
+
N

...
– at s =∞ non-QPG, called KN ,K

+
N

Many other interesting results here.



Orbits 1/4

Recall that for G ⊂ SN the coordinates via SN ⊂ ON are:

uij = χ
(
σ ∈ G

∣∣∣σ(j) = i
)

Definition. A quantum permutation group G ⊂ S+
N is called

transitive when uij 6= 0, for any i , j .

As basic examples, all QPG that we met so far:

– we have G+(X ) with X transitive (i.e. with G (X ) transitive)
– in particular we have Hs

N ,H
s+
N , for any s ∈ N

– also in particular, we have O−1N = G+(�N)



Orbits 2/4

Orbits. Given a closed subgroup G ⊂ S+
N , let us set:

i ∼ j ⇐⇒ uij 6= 0

This is an equivalence relation. Indeed (using positivity):

∆(uik) =
∑
j

uij ⊗ ujk =⇒ [i ∼ j , j ∼ k =⇒ i ∼ k]

ε(uii ) = 1 =⇒ i ∼ i

S(uij) = uji =⇒ [i ∼ j =⇒ j ∼ i ]

In the classical case, G ⊂ SN , we recover the usual orbits.

=⇒ what to do with this notion? (no examples so far)



Orbits 3/4

Consider a quotient group of type ZN1 ∗ . . . ∗ ZNk
→ Γ, with

N = N1 + . . .+ Nk . We have then, by Fourier:

Γ̂ ⊂ ̂ZN1 ∗ . . . ∗ ZNk
= ẐN1 ∗̂ . . . ∗̂ ẐNk

' ZN1 ∗̂ . . . ∗̂ZNk
⊂ SN1 ∗̂ . . . ∗̂ SNk

⊂ S+
N1
∗̂ . . . ∗̂S+

Nk
⊂ S+

N

Theorem. Any group dual subgroup Γ̂ ⊂ S+
N appears in this way, for

a certain partition N = N1 + . . .+ Nk .

Proof. Orbit decomposition N = N1 + . . .+ Nk .



Orbits 4/4

Orbitals. Let G ⊂ S+
N , and k ∈ N. The relation

(i1, . . . , ik) ∼ (j1, . . . , jk) ⇐⇒ ui1j1 . . . uik jk 6= 0

is then reflexive and symmetric (proof as before, at k = 1).

Transitivity holds at k = 1. Also at k = 2, the trick being:

(ui1j1 ⊗ uj1l1)∆(ui1l1ui2l2)(ui2j2 ⊗ uj2l2)

=
∑
s1s2

ui1j1ui1s1ui2s2ui2j2 ⊗ uj1l1us1l1us2l2uj2l2

= ui1j1ui2j2 ⊗ uj1l1uj2l2

At k ≥ 3 this fails (but few things still hold), at k ≥ 4 totally fails.



Algebra 1/4

What can be said about the arbitrary subgroups G ⊂ S+
N ?

(in addition to the orbit/orbital theory explained above)

Theorem. Quantum Cayley fails.

Recall indeed the Cayley theorem, stating that, for classical groups:

|G | = N =⇒ G ⊂ SN

This does not work for quantum groups. There are finite quantum
groups which are not quantum permutation groups (!)



Algebra 2/4

What can be said (good) about the subgroups G ⊂ S+
N ?

Theorem. The collection of vector spaces

Pk = Fix(u⊗k)

is a planar algebra in the sense of Jones. More precisely, we have an
inclusion as follows, where QN is the "spin" planar algebra,

P ⊂ QN

and any planar subalgebra P ⊂ QN appears in this way.

Proof. Tannakian duality, applied in this setting, "rotated".



Algebra 3/4

Planar algebras, more. The correspondence established above

G ⊂ S+
N ←→ P ⊂ QN

makes correspond the following objects and constructions,

{1} ←→ QN

S+
N ←→ TLN

H+
N ←→ FCN

G+(X )←→< �X >

where �X is the Laplacian (adjacency matrix) viewed as 2-box.

=⇒ Bisch-Jones, “Laplacian in the box" philosophy



Algebra 4/4

A difficult conjecture states that SN ⊂ S+
N is maximal, in the sense

that there is no object in between. Status:

(1) Trivial: no groups, no group duals.

(2) Elementary: no easy solutions.

(3) Advanced: OK at N = 4, cf. ADE classification of the
subgroups G ⊂ S+

4 = SO−13 .

(4) Difficult: OK at N = 5, due to the classification of
index 5 subfactors. No known QPG proof.



Conclusion

We have a theory of quantum permutations, featuring:

(1) General theory, orbits, easiness.

(2) SN ,S+
N ,HN ,H

+
N ,KN ,K

+
N as main examples.

(3) Many other examples, e.g. coming from graphs.

(4) Interesting connections with probability/free probability.

=⇒ next lecture: tori, models
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Plan

(1) Easiness - review, more

(2) Orientability - questions

(3) Tori - diagonal, spinned

(4) Geometry - axiomatization

(5) Models - general theory

(6) Matrices - Weyl, Fourier



Easiness 1/4

A closed subgroup G ⊂ U+
N is called easy when

Hom(u⊗k , u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k , l)
)

for certain sets of partitions D(k, l) ⊂ P(k , l), where

Tπ(ei1 ⊗ . . .⊗ eik ) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

with {ei} = basis of CN , and δπ = Kronecker type symbols.



Easiness 2/4

The main examples of easy quantum groups are as follows,

K+
N

// U+
N

H+
N

//

>>

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

<<

where HN = Z2 o SN , KN = T o SN , H+
N = Z2 o∗ S+

N , KN = T o∗ S+
N .



Easiness 3/4

The corresponding categories of partitions are as follows,

NCeven

||

��

NC2oo

��

}}
NCeven

��

NC2oo

��

Peven

||

P2oo

}}
Peven P2oo

with the calligraphic letters standing for "matching".



Easiness 4/4

The asymptotic laws of truncated characters are as follows,

free complex Bessel

��

Voiculescu

��

free Bessel

��

Wigner

��

complex Bessel

OO

complex Gauss

OO

Bessel

OO

Gauss

OO

with the vertical arrows standing for the Bercovici-Pata bijection.



Questions

Classify. Compute laws. Find a "contravariant duality" as follows,

UN
// U

(r)
N

// UC
N

// U+
N

H+
N H

[r ]
N

oo HΓ
N

oo HN
oo

between the unitary and real reflection easy quantum groups.



Orientability 1/4

The standard cube is an intersection and generation diagram,

K+
N

// U+
N

H+
N

//

>>

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

<<

i.e. for any face P ⊂ Q,R ⊂ S we have P = Q ∩ R, < Q,R >= S .



Orientability 2/4

The needed technology here is as follows:

– Intersection G ∩ H
– Tannaka CG∩H =< CG ,CH >
– Easy case DG∩H =< DG ,DH >
=⇒ and this is OK for our cube problems

– Generation < G ,H >
– Tannaka C<G ,H> = CG ∩ CH

– Easy case D{G ,H} = DG ∩ DH

– Conjecture < G ,H >⊂ {G ,H} iso
=⇒ ad-hoc methods for 5 faces, 1 face left



Orientability 3/4

Ground Zero: the twistable, easy, uniform, oriented CQG are

K+
N

// U+
N

H+
N

//

>>

O+
N

>>

KN
//

OO

UN

OO

HN

OO

<<

// ON

OO

<<

where we know what easy means, and:
– uniform means G = (GN) with GN−1 = GN ∩ U+

N−1
– twistable means here HN ⊂ GN , for any N ∈ N
– oriented means “not disoriented” with respect to Ox,Oy,Oz



Orientability 4/4

Regarding the oriented CQG, under extra assumptions, mild:

1. classical: ON , SON , Ud
N , H

sd
N + bistochastic versions

2. free: the known easy ones, and that’s not trivial

3. group duals: abelian + varieties of real reflection groups

Here 1 looks doable, 2 looks hard, 3 is probably the simplest.



Questions

Classification of the "main" closed subgroups G ⊂ U+
N :

=⇒ use partition methods, and intersection/generation surgery, in
3D or more, in order to "classify" G .

=⇒ the good 3 dimensions are those above, discrete/continuous,
real/complex, classical/free.

=⇒ there are 3 more dimensions, “bad”, coming from taking the
bistochastic version, special version, diagonal torus.

Conjecture: 6-parameter series + exceptional examples.



Tori 1/4

The diagonal torus T ⊂ G is the group dual given by

C (T ) = C (G )
/〈

uij = 0
∣∣∣∀i 6= j

〉
the generators of T̂ being gi = uii . Equivalently, we can set

T = G ∩ T+
N

where T+
N ⊂ U+

N is the abstract dual of the free group FN .



Tori 2/4

The diagonal tori of the main quantum groups are as follows,

T+
N

// T+
N

T+
N

//

>>

T+
N

>>

TN
//

OO

TN

OO

TN

OO

<<

// TN

OO

<<

where TN = ZN
2 , TN = TN and T+

N = Ẑ∗N2 , TN = F̂N .



Tori 3/4

Given G ⊂ U+
N , consider its diagonal torus T = G ∩ T+

N , and
consider as well its reflection subgroup K = G ∩ K+

N :

T ⊂ K ⊂ G

Let also Gclass = G ∩ UN . We say that G appears as:

– a soft liberation, when G =< Gclass ,K >

– a hard liberation, when G =< Gclass ,T >

=⇒ OK (hard liberation) for O+
N ,U

+
N , and for O∗N ,U

∗
N too.

=⇒ cannot work for S+
N , or B+

N ,C
+
N , and H+

N ,K
+
N fail too.



Tori 4/4

Spinned tori, obtained by using the corepresentation v = QuQ∗:

{TQ ⊂ G |Q ∈ UN}

(1) Generation: G =< (TQ)Q∈UN
>.

(2) Weak generation: G =< Gclass , (TQ)Q∈UN
>.

(3) Fourier liberation: G =< Gclass , (TF )F=Fourier >.

(4) Hard liberation: G =< Gclass ,T1 >.

No counterexamples to (1,2). It is known that (3) holds, beyond
(4), for S+

N , and for B+
N ,C

+
N as well. No easy counterexamples.



Questions

The family {TQ |Q ∈ UN} is the "maximal torus". Conjectures:

(1) Characters: if G is connected, for any nonzero P ∈ C (G )central
there exists Q ∈ UN such that P 6= 0 inside C (TQ).

(2) Amenability: G is coamenable if and only if each of the tori TQ

is coamenable, in the usual discrete group sense.

(3) Growth: G has polynomial cogrowth if and only if each TQ has
polynomial cogrowth, in the usual discrete group sense.

=⇒ OK for groups, group duals, main easy cases.



Geometry 1/4

Step 1. Axiomatize and classify the quadruplets

S //

�� ��

Too

����
U

OO ??

// Koo

__ OO

Step 2. Develop the geometries that you found.

Step 3. Integration theory, Riemannian aspects.

Step 4. Work more, reach to "Nash-Connes Geometry".



Geometry 2/4

A first difficulty is with T → U. The axiom here must be:

U =< ON ,T >

(1) Classical real case: ON =< ON ,TN >, clear.

(2) Classical complex case: UN =< ON ,TN >, true.

(3) Free real case: O+
N =< ON ,T

+
N >. Very technical, by proving

first O+
N =< O+

N−1,ON >, by recurrence on N.

(4) Free complex case: U+
N =< ON ,T+

N >. Can be obtained from
the free real case formula, by using standard arguments.



Geometry 3/4

A second difficulty is with T → K . We have the following quantum
isometry group computations, which are quite surprising:

T+
N

// T+
N

TN
//

OO

TN

OO

→

H+
N

// K+
N

O−1N
// U−1N

The solution is by saying that T → K appears as follows:

K = G+(T ) ∩ K+
N

That is, K must be the "quantum reflection group" of T .



Geometry 4/4

An abstract NCG must come from a quadruplet (S ,T ,U,K ),

SN−1
R ⊂ S ⊂ SN−1

C,+ , TN ⊂ T ⊂ T+
N

ON ⊂ U ⊂ U+
N , HN ⊂ K ⊂ K+

N

such that we can pass from each object to all the other objects,

S = S<ON ,T> = SU = S<ON ,K>

S ∩ T+
N = T = U ∩ T+

N = K ∩ T+
N

G+(S) = < ON ,T > = U = < ON ,K >
G+(S) ∩ K+

N = G+(T ) ∩ K+
N = U ∩ K+

N = K

with all this being up to the “full=reduced” equivalence relation.



Questions

We have 9 main geometries in our sense, which are all easy:

RN
+

// TRN
+

// CN
+

RN
∗

OO

// TRN
∗

OO

// CN
∗

OO

RN

OO

// TRN

OO

// CN

OO

Under some mild extra axioms (..), these are the only ones.

=⇒ must first "develop" all these geometries
=⇒ then go towards "Nash-Connes Geometry"



Models 1/4

We are interested in random matrix models for our algebras:

π : C (G )→ MK (C (T ))

The Hopf image of π is the smallest quotient Hopf C ∗-algebra
C (G )→ C (H) producing a factorization of type

π : C (G )→ C (H)→ MK (C (T ))

When H ⊂ G is an isomorphism, we say that π is inner faithful.



Models 2/4

The inner faithful models π : C (G )→ MK (C (T )) are conjectured
to exist in general, and remind the quantum group:

(1) The Tannakian category of G is given by the formula

Ckl = Hom(U⊗k ,U⊗l)

where Uij = π(uij), with formal intertwiner spaces on the right.

(2) The Haar integration over G is given by the formula∫
G

= lim
k→∞

1
k

k∑
r=1

∫ r

G

where
∫ r
G = (ϕ ◦ π)∗r , with ϕ = tr ⊗

∫
T being the standard trace.



Models 3/4

A model π : C (G )→ MK (C (T )) is called stationary when:∫
G

=

(
tr ⊗

∫
T

)
π

In this case, the model must be faithful. We have as basic example

C (O∗N)→ M2(C (UN)) , uij →
(
0 vij
v̄ij 0

)
where v is the fundamental corepresentation of C (UN), as well as

C (U∗N)→ M2(C (UN × UN)) , uij →
(

0 vij
wij 0

)
with v ,w corresponding to the two copies of C (UN).



Models 4/4

As another basic example, we have a stationary matrix model

π : C (S+
4 )→ M4(C (SU2))

given on the standard coordinates by the formula

π(uij) = [x → Proj(cixcj)]

where x ∈ SU2, and c1, c2, c3, c4 are the Pauli matrices.



Questions

(1) Half-liberation.

(2) Weyl matrix models.

(3) Universal flat models.

(4) Sinkhorn and other.



Matrices 1/4

A pair of orthogonal MASA is a pair of maximal abelian subalgebras

B,C ⊂ A

which are orthogonal: tr(bc) = tr(b)tr(c), for any b ∈ B, c ∈ C .

Popa: up to a unitary, the pairs of orthogonal MASA in the
simplest von Neumann factor, namely MN(C), are

A = ∆ , B = H∆H∗

with ∆ = diagonal matrices, and H ∈ MN(C) being Hadamard
(entries on the unit circle, rows pairwise orthogonal).



Matrices 2/4

(1) Given H ∈ MN(C) Hadamard, the associated pair of MASA fit
into a "commuting square" in the sense of subfactor theory:

∆ // MN(C)

C

OO

// H∆H∗

OO

(2) By "basic construction" we obtain a subfactor Q ⊂ R , whose
invariants can be computed using "Ocneanu compactness".

(3) Work of Jones shows that Q must appear as fixed point algebra
under some kind of "quantum permutation group" action.



Matrices 3/4

Given an Hadamard matrix H ∈ MN(C), the rank 1 projections

Pij = Proj

(
Hi

Hj

)
where H1, . . . ,HN ∈ TN are the rows of H, form a magic unitary.

=⇒ We associate to H the quantum permutation group G ⊂ S+
N

given by the following Hopf image factorization,

C (S+
N )

π //

##

MN(C)

C (G )

::

where π(uij) = Proj(Hi/Hj) are the above rank 1 projections.



Matrices 4/4

The main results regarding H → G are as follows:

(1) Fourier: FG → G . Also H ′ ⊗ H ′′ → G ′ × G”.

(2) Various abstract results: Haar, Tannaka, duality.

(3) Relation with commuting squares and subfactors.

(4) Diţă deformations of FG , with various parameters.

(5) Extensions to the partial Hadamard matrix setting.



Questions

Physics!
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