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Definition. Given a closed subgroup G C Uy, its representations
are the continuous morphisms into unitary groups:

p:G—= U,

As a basic example, we have the embedding G C Uy, called
fundamental representation, and denoted .

Comment. We will assume that our representations are "smooth",
in the sense that their coefficients are polynomials of gj;.
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Definition. The representations of G are subject to:
(1) Making sums: p+ v : g — diag(p(g),v(g)).
(2) Making products: p®@v: g — p(g) @ v(g).

(3) Taking conjugates: p: g — p(g).

Definition. Given G C, Uy, its Peter-Weyl representations

7@k k=oceeo...

are the representations obtained by tensoring 7, 7.
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Definition. Given p: G — U, and v : G — U,,, we set:

Hom(p, v) = {T € Mmxn(C)| Tp(g) = Z/(g)T}

and we use the following conventions:

(1) Fix(p) = Hom(1, p) and End(p) = Hom(p, p).

(2) p ~ v when Hom(p, ) contains an invertible element.
(3) pis called irreducible, p € Irr(G), when End(p) = C1.

Definition. Given G C, Uy, the collection of vector spaces
Ck/ = Hom(7r®k, 7T®l)

with k,/ = oceeo...is called Tannakian category of G.
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Theorem (PW1). Any representation p : G — U, decomposes as

p=p1+...+pk
direct sum of irreducible representations.
Proof. Consider the intertwiner algebra of our representation:
A= End(p) C M,(C)

By writing its unit as 1 = g1 + ... + gk, with g; being minimal
projections, we obtain a decomposition as follows:

A=M,(C)®...® M, (C)

We can now define a subrepresentation p; by restricting p to the
space Im(gq;), which is invariant, and the result follows.
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Theorem (PW2). Any irreducible representation p: G — U,
appears inside a certain Peter-Weyl representation 7K.

Proof. Given a representation p : G — U, consider its space of
coefficients, C, = span(g — p(g);j). Then p — C, is functorial,
mapping subrepresentations into subspaces. We have.

< Cr>=) Cuox
k

By smoothness, C, C< C; >, for certain exponents ki, ..., kp:
Cp C C7r®k1@_”@7r®kp

Thus we have p C 7@K @ ... @ 7®%, and PW1 gives the result.
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Theorem. Any closed subgroup G C Uy has a Haar measure

1(gE) = u(Eg) = u(E)

which can be constructed by starting with any probability measure
v, and taking the following Cesaro limit:

. 1 ; *k
p=lim 2 v
k=1
Moreover, for any representation p : G — U, the matrix
P= </ p(8)ij dg)
G ij

is the projection onto Fix(p) = {£ € C"|p(g)§ = &}.
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Proof. Our first claim is that given any positive mass 1 measure v
on our group G, not necessarily strictly positive, the limit

_ - *k
fr= r';'t.‘orZ/ )dv

exists, and for any representation p : G — U, the matrix

P = </Gyp(g)ijdg>ij

is the projection onto the 1-eigenspace of the matrix:

M = (/G p(g)ijdV(g))_j

This is indeed standard algebra, on the coefficient space C,,.
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End of proof. Assuming now that v is strictly positive, we must
prove that M& = & implies € € Fix(p). Let us set:

§;(gy@ng )(zp b € )

We must prove that £ = 0. Since p(g) is unitary, we obtain:

(g) = 2(IIgl > = Re(< p(g)s. € >))

By using now M¢ = &, we obtain from this, by integrating:

/f@wwmzo
G

Thus we have f =0, and so £ € Fix(p), as desired.
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Theorem (PW3). The space C(G) =< C; > decomposes as

C(G): @ Mdim(p)((c)

pElrr(A)

the summands being pairwise orthogonal with respect to fG.

Proof. We must prove that for p,v € Irr(G) we have:
prv = C,LC
The matrix P given by P, j» = [ pijZab is the projection onto:
Fix(p ® 7) ~ Hom(p,v) = {0}

Thus we have P = 0, and this gives the result.



Peter-Weyl 7/7

Theorem (PW4). The characters of irreducible representations

Xp:G—=C |, g— Tr(p(g))

belong to the algebra of “smooth central functions”
C(G)cenrat = { F € C(G)|f(gh) = F(hg)}

and form an orthonormal basis of it.

Proof. The only tricky assertion is the norm 1 one. But:
/x X ZZ/pnﬁ"Zzlzl
PR s i N

Here we have used the fact that the integrals [ pjpi form the
orthogonal projection onto Fix(p ® p) ~ End(p) = CL1.
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Theorem. The closed subgroups G C Uy are in correspondence
with the Tannakian categories C = (Cy), via the construction

Ck/ = Hom(7r®k, 7T®l)
in one sense, and via the construction
G = {g e UN‘Tg@’k —g® T VT e c}

in the other sense.

Proof. This is something quite technical, basically due to Tannaka
and Krein, and heavily using the Peter-Weyl theory.
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Definition. A collection of subsets D(k, /) C P(k,!) is called a
category of partitions when it satisfies:

(1) Stability under the horizontal concatenation, (7, o) — [ro].
(2) Stability under vertical concatenation (7,0) — [Z] (matching).
(3) Stability under the upside-down turning *, with o <> e.

(4) Each P(k, k) contains the identity partition || ... ||.

(5) Both P(),ce) and P((), eo) contain the semicircle N.
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Definition. A closed subgroup G C Uy is called easy when

Hom(n®*, 7®!) = span <T,r © € D(k, /))

for a certain category of partitions D C P, where

cen g
Trr(ell ®e’k Z(S (_]1 _//> ej1®...®ej,

Ji-di

with 0, € {0,1} depending on whether the indices fit or not.
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Theorem. The basic unitary and reflection groups, namely

Opn Un

Hpn

Kn
are all easy, coming from the following categories of partitions:

P>

P

Peven

'Deven

Proof. This result, due to Brauer, and also known as Schur-Weyl
duality, comes from Tannaka, by working out the details.
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In addition to the above, it is known that:

(1) In the continuous case, the bistochastic groups By C Oy and
Cyn C Uy are easy as well, coming from P2, Pro.

(2) In the discrete case, Sy is easy as well, coming from P itself. In
fact, the reflection groups Hj, are all easy, coming from P*.

(3) Back to the continuous case, SUz, SO; and Spy C Uy are not
easy. However, they are "super-easy" in a suitable sense.

(4) However, the general SOy, SUy, and other groups constructed
using det, such as H3?, are definitely not easy.



