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Definition. Given a closed subgroup G ⊂ UN , its representations
are the continuous morphisms into unitary groups:

ρ : G → Un

As a basic example, we have the embedding G ⊂ UN , called
fundamental representation, and denoted π.

Comment. We will assume that our representations are "smooth",
in the sense that their coefficients are polynomials of gij .
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Definition. The representations of G are subject to:
(1) Making sums: ρ+ ν : g → diag(ρ(g), ν(g)).
(2) Making products: ρ⊗ ν : g → ρ(g)⊗ ν(g).
(3) Taking conjugates: ρ̄ : g → ρ(g).

Definition. Given G ⊂π UN , its Peter-Weyl representations

π⊗k , k = ◦ • • ◦ . . .

are the representations obtained by tensoring π, π̄.
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Definition. Given ρ : G → Un and ν : G → Um, we set:

Hom(ρ, ν) =
{
T ∈ Mm×n(C)

∣∣∣Tρ(g) = ν(g)T
}

and we use the following conventions:
(1) Fix(ρ) = Hom(1, ρ) and End(ρ) = Hom(ρ, ρ).
(2) ρ ∼ ν when Hom(ρ, ν) contains an invertible element.
(3) ρ is called irreducible, ρ ∈ Irr(G ), when End(ρ) = C1.

Definition. Given G ⊂π UN , the collection of vector spaces

Ckl = Hom(π⊗k , π⊗l)

with k, l = ◦ • • ◦ . . . is called Tannakian category of G .
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Theorem (PW1). Any representation ρ : G → Un decomposes as

ρ = ρ1 + . . .+ ρk

direct sum of irreducible representations.

Proof. Consider the intertwiner algebra of our representation:

A = End(ρ) ⊂ Mn(C)

By writing its unit as 1 = q1 + . . .+ qk , with qi being minimal
projections, we obtain a decomposition as follows:

A = Mn1(C)⊕ . . .⊕Mnk (C)

We can now define a subrepresentation ρi by restricting ρ to the
space Im(qi ), which is invariant, and the result follows.
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Theorem (PW2). Any irreducible representation ρ : G → Un

appears inside a certain Peter-Weyl representation π⊗k .

Proof. Given a representation ρ : G → Un, consider its space of
coefficients, Cρ = span(g → ρ(g)ij). Then ρ→ Cρ is functorial,
mapping subrepresentations into subspaces. We have:

< Cπ >=
∑
k

Cπ⊗k

By smoothness, Cρ ⊂< Cπ >, for certain exponents k1, . . . , kp:

Cρ ⊂ Cπ⊗k1⊕...⊕π⊗kp

Thus we have ρ ⊂ π⊗k1 ⊕ . . .⊕ π⊗kp , and PW1 gives the result.
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Theorem. Any closed subgroup G ⊂ UN has a Haar measure

µ(gE ) = µ(Eg) = µ(E )

which can be constructed by starting with any probability measure
ν, and taking the following Cesàro limit:

µ = lim
r→∞

1
r

r∑
k=1

ν∗k

Moreover, for any representation ρ : G → Un, the matrix

P =

(∫
G
ρ(g)ij dg

)
ij

is the projection onto Fix(ρ) = {ξ ∈ Cn|ρ(g)ξ = ξ}.
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Proof. Our first claim is that given any positive mass 1 measure ν
on our group G , not necessarily strictly positive, the limit∫ ν

G
f = lim

r→∞

1
r

r∑
k=1

∫
G
f (g)dν∗k(g)

exists, and for any representation ρ : G → Un, the matrix

P =

(∫ ν

G
ρ(g)ij dg

)
ij

is the projection onto the 1-eigenspace of the matrix:

M =

(∫
G
ρ(g)ijdν(g)

)
ij

This is indeed standard algebra, on the coefficient space Cρ.
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End of proof. Assuming now that ν is strictly positive, we must
prove that Mξ = ξ implies ξ ∈ Fix(ρ). Let us set:

f (g) =
∑
i

∑
j

ρ(g)ijξj − ξi

(∑
k

ρ(g)ikξk − ξi

)

We must prove that f = 0. Since ρ(g) is unitary, we obtain:

f (g) = 2
(
||ξ||2 − Re(< ρ(g)ξ, ξ >)

)
By using now Mξ = ξ, we obtain from this, by integrating:∫

G
f (g)dν(g) = 0

Thus we have f = 0, and so ξ ∈ Fix(ρ), as desired.
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Theorem (PW3). The space C(G ) =< Cπ > decomposes as

C(G ) =
⊕

ρ∈Irr(A)

Mdim(ρ)(C)

the summands being pairwise orthogonal with respect to
∫
G .

Proof. We must prove that for ρ, ν ∈ Irr(G ) we have:

ρ 6∼ ν =⇒ Cρ ⊥ Cν

The matrix P given by Pia,jb =
∫
G ρij ν̄ab is the projection onto:

Fix(ρ⊗ ν̄) ' Hom(ρ, ν) = {0}

Thus we have P = 0, and this gives the result.
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Theorem (PW4). The characters of irreducible representations

χρ : G → C , g → Tr(ρ(g))

belong to the algebra of “smooth central functions”

C(G )central =
{
f ∈ C(G )

∣∣∣f (gh) = f (hg)
}

and form an orthonormal basis of it.

Proof. The only tricky assertion is the norm 1 one. But:∫
G
χρχ̄ρ =

∑
ij

∫
G
ρii ρ̄jj =

∑
i

1
N

= 1

Here we have used the fact that the integrals
∫
G ρij ρ̄kl form the

orthogonal projection onto Fix(ρ⊗ ρ̄) ' End(ρ) = C1.
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Theorem. The closed subgroups G ⊂ UN are in correspondence
with the Tannakian categories C = (Ckl), via the construction

Ckl = Hom(π⊗k , π⊗l)

in one sense, and via the construction

G =
{
g ∈ UN

∣∣∣Tg⊗k = g⊗lT ,∀T ∈ C
}

in the other sense.

Proof. This is something quite technical, basically due to Tannaka
and Krein, and heavily using the Peter-Weyl theory.
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Definition. A collection of subsets D(k , l) ⊂ P(k , l) is called a
category of partitions when it satisfies:

(1) Stability under the horizontal concatenation, (π, σ)→ [πσ].

(2) Stability under vertical concatenation (π, σ)→ [σπ] (matching).

(3) Stability under the upside-down turning ∗, with ◦ ↔ •.

(4) Each P(k, k) contains the identity partition || . . . ||.

(5) Both P(∅, ◦•) and P(∅, •◦) contain the semicircle ∩.
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Definition. A closed subgroup G ⊂ UN is called easy when

Hom(π⊗k , π⊗l) = span
(
Tπ

∣∣∣π ∈ D(k , l)
)

for a certain category of partitions D ⊂ P , where

Tπ(ei1 ⊗ . . .⊗ eik ) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

with δπ ∈ {0, 1} depending on whether the indices fit or not.
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Theorem. The basic unitary and reflection groups, namely

ON
// UN

HN

OO

// KN

OO

are all easy, coming from the following categories of partitions:

P2

��

P2oo

��
Peven Pevenoo

Proof. This result, due to Brauer, and also known as Schur-Weyl
duality, comes from Tannaka, by working out the details.
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In addition to the above, it is known that:

(1) In the continuous case, the bistochastic groups BN ⊂ ON and
CN ⊂ UN are easy as well, coming from P12,P12.

(2) In the discrete case, SN is easy as well, coming from P itself. In
fact, the reflection groups Hs

N are all easy, coming from Ps .

(3) Back to the continuous case, SU2, SO3 and SpN ⊂ UN are not
easy. However, they are "super-easy" in a suitable sense.

(4) However, the general SON , SUN , and other groups constructed
using det, such as Hsd

N , are definitely not easy.


