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Plan

(1) Compact quantum groups

(2) Discrete quantum groups

(3) Basic examples, operations

(4) Quantum isometry groups

— next lecture: representations



Operator algebras

C*-algebras: with norm and involution, ||aa*|| = ||a||?.

(1) Gelfand theorem: commutative case A = C(X).
(2) Gelfand-Naimark-Segal theorem: A C B(H).

(3) Finite dimensions: A = My, (C) & ... ® My, (C).

= A= C(X), with X "noncommutative compact space"

— NC spheres, NC tori. What about quantum groups?



Classical groups

Let G be a compact Lie group. Then G C Uy. Multiplication:
(UV)j = UiV
k

By Stone-Weierstrass we have C(G) =< uj; >, where:
uj(U) = Uj

The multiplication G x G — G transposes as:

uj — Z Uik & Ugj
k

Thus G is well described by C(G), together with u = (uj).



Axioms

Let A be a C*-algebra, with u € My(A) biunitary (u, u® unitaries),
whose entries generate A, such that:

- A(uj) = >4 Uik ® uyj defines a morphism A: A — A® A
— €(ujj) = 6jj defines a morphism e : A — C
— S(ujj) = uj; defines a morphism S : A — A%P

We write then A= C(G) = C*(I'), and call:

— G a compact quantum group
— I a discrete quantum group

[axioms due to Woronowicz, 1987, slightly modified here]



Compact groups 1/2

Theorem. For a closed subgroup G C Uy, the algebra A = C(G),
with the matrix formed by the standard coordinates

uj(g) = &ij
is a Woronowicz algebra, with structural maps given by
A=m" |, e=u" |, S=iT

where m, u, i are the multiplication, unit and inverse of G.

Any commutative Woronowicz algebra appears in this way.



Compact groups 2/2

Proof. We compute m”, u”,iT. We have:

m” (uj)(U® V) Z U Vig = Z Uik @ ug)(U @ V)

Regarding now u”, here we have:
uT (uy) = 15 = 0
As for the map i ", this is given by:
i"(ug)(U) = (U = U = uj(U)

Thus the axioms are satisfied, with A =m", e =u’,S=i".

Finally, the last assertion follows by applying Gelfand.



Group duals 1/2

Theorem. For a discrete group ' =< g1,...,gn >, the algebra
A = C*(I"), with the diagonal matrix formed by the generators

u = diag(gi,..-,8n)
is a Woronowicz algebra, with structural maps given by
Alg)=gwg , clg)=1 , S(g)=g"

for any group element g € I'. This algebra is cocommutative, in the
sense that YA = A, where £(a® b) = b® a is the flip.

Remark. We'll see later that any cocommutative Woronowicz
algebra appears in this way (needs representation theory).



Group duals 2/2

Proof. Consider the following unitary representation:

r-cMecm) , g—-egwe
This produces a map A : C*(I') — C*(I') ® C*(I'), given by:

Alg)=g®g
Similarly, € comes from the trivial representation:
r—-{1 , g—1
As for S, this comes from the following representation:
r—c n» , g—g!

Remark. Note that the use of the opposite algebra is needed.



Comments 1/4

Assume that I is abelian, and let G =T be its Pontrjagin dual,
formed by the characters x : [ — T. The isomorphism

transforms the structural maps of C*(I'), given by

Alg)=g®g , c(g)=1 , S(g)=g"'

into the structural maps of C(G), given by:

Ap(g. h)=p(gh) . e(p)=wp(1) . Selg)=¢(g™")

Thus, G =T is a compact quantum group isomorphism.



Comments 2/4

Motivated by this, given a Woronowicz algebra
A= C(G) =)

we say that G, are dual to each other, and write:

~

G=T , T=G

This duality extends the usual Pontrjagin duality.



Comments 3/4

Motivated by the compact Lie group case, we have:

Definition. Given A = C(G), we denote by A C A the dense
*-algebra generated by the coordinates uj;, and we write

A= C=(G)

and call it "algebra of smooth functions" on G.

Example. For A= C*(I') we have A = C[I].



Comments 4/4

Motivated by the group dual case, we have:

Definition. We agree to identify (A, u) and (B, v) when we have a
x-algebra isomorphism
A~B

mapping standard coordinates to standard coordinates, ujj — vjj.

Example. This identifies for instance C*(I') with C},(I).



Summary

(1) We are looking at pairs (A, u), with u € My(A) biunitary, with:

Aluy) =D ux@ug , elug)=6; , S(uj)=uj
k

(2) We have compact and discrete quantum groups, given by:
A= C(G) =)
(3) These quantum groups are dual to each other, and we write:
G=T , IT=6G
(4) We set C*°(G) =< uj; >, and we use the identifications:
C®(G)~C*¥(H) , uj—vj

(5) All this is supported by C*-algebras, and the above results.



Tech 1/2

Theorem. The comultiplication A, counit ¢ and antipode S satisfy
the following conditions,

(1) Coassociativity: (A ® id)A = (id @ A)A.
(2) Counitality: (id ® e)A = (e ® id)A = id.
(3) Coinversality: m(id ® S)A = m(S ® id)A = (.)1.

on the dense x-subalgebra A C A generated by the variables uj;.

Proof. Clear on coordinates, and so on the x-algebra A.



Tech 2/2

Remark. In the commutative case, G C Uy, we have

A=m' e=u’ , S=iT

Y

and the 3 conditions satisfied by A, ¢, S come by transposition from
the basic 3 conditions satisfied by m, u, i, namely

m(m x id) = m(id x m)
m(id x u) = m(u x id) = id
m(id ® )0 =m(i®id)d =1
whre §(g) = (g, g). In general, the philosophy is the same.



1. Products

Given two compact quantum groups G, H, so is their product
G x H, constructed as follows:

C(G x H) = C(G) @ C(H)

Equivalently, at the level of the associated discrete quantum groups
I, A, which are dual to G, H, we have:

CH(I x A) = C*(N ® C*(A)

As an illustration, we have things of type G x A, with G, A both
classical, which are not classical, nor group duals.



2. Dual free products

Given two compact quantum groups G, H, so is their dual free
product G ¥ H, constructed as follows:

C(G4H) = C(G) * C(H)

Equivalently, at the level of the associated discrete quantum groups
I, A, which are dual to G, H, we have a usual free product:

C* (M« N) = C*(I') = C*(N)

This construction always produces non-classical quantum groups,
unless of course G = {1} or H = {1}.



3. Free complexification

Given a compact quantum group G, we can construct its free
complexification G as follows, where z = id € C(T):

C(G)c C(T)*«C(G) , id=zu

Equivalently, at the level of the associated discrete duals I',F, we
have the following formula, where z =1 € Z:

(M) c C*Z)«C*(N) , id=zu

We'll see later that the "free analogues" of Oy, Uy are related by
free complexification. Simpler than for Oy, Uy themselves (1)



4. Subgroups

Let G be compact quantum group, and let /| C C(G) be a closed
x-ideal satisfying the following "Hopf ideal" condition:

A(l)c C(G)® 1+ 1® C(G)
We have then a closed subgroup H C G, as follows:
C(H) = c(6)/1
Dually, we obtain a quotient of discrete quantum groups:
r—A

In all this the Hopf ideal condition is needed for A to factorize.



5. Quotients
Let us call “corepresentation” of a Woronowicz algebra A = C(G)
any unitary matrix w € M,(.A) satisfying:

A(wj) = Z wik @ wig , e(wy) =065 , S(wy)= Wﬁ
k

In this situation, we have a quotient group G — H, given by:
C(H) =< w; >
At the dual level we obtain a discrete quantum subgroup:
AcCT

We will be back later to corepresentations, with a full theory.



6. Projective version

Given a quantum group G, with fundamental corepresentation
u = (uj), the N? x N? matrix given in double indices by

Wia jb = UjjUpp,
is a corepresentation, and the following happen:
(1) The corresponding quotient G — PG is a quantum group.

(2) In the classical case, G C Uy, we have PG = G/(G N'TN).

(3) For the group duals, ' =< g; >, we have Pr =< g;gf1 >,



Summary

The compact quantum groups are subject to making:
1. Products G x H

2. Dual free products G % H

3. Free complexification G ~ G

4. Subgroups H C G

5. Quotients G — H

6. Projective versions G — PG

However, as "basic input" we only have groups, and group duals.



Liberations 1/4

Theorem. We have quantum groups defined via

C(oy) = C* ((Uij)i,jzl,...,N‘U =d,u" = ”_1>
cy) = c¢* ((UU)iJ:L...,N’U* =u = Uﬁl)

called free orthogonal, and free unitary quantum groups.

Proof. If u is biunitary/orthogonal, so are the matrices

(“A)ij = Z Uk @ ug -, (Uf); =965 (us);j = ufi

k

and so we can construct A, e, S, by universality.



Liberations 2/4

The quantum groups O}, U,J\; have the following properties:

(1) The closed subgroups G C U}, are exactly the N x N compact
quantum groups.

(2) As for the closed subgroups G C O}, these are exactly those
satisfying u = 0.

(3) We have embeddings Oy C O}, and Uy C Uy}, obtained by
dividing C(Oy), C(Uy) by their commutator ideals.



Liberations 3/4

Theorem. The following inclusions are proper, at any N > 2:

Uy —— U5,

On

Op

Proof. Follows by looking at group dual subgroups. Indeed, we have
LycOf , FycUf

where Ly = Z3N, and where Fy = Z*N is the free group.

Remark. We have a connection here with the "free tori".



Liberations 4 /4

Theorem. We have intermediate liberations as follows,

Un U, U

On 0;, o}

with * meaning that uj;, u}; must satisfy the relations abc = cba.

Proof. If the entries of u "half-commute", so do the entries of

(”A)ij = Z Uik @ ugj (Ug)ij = 5ij , (us),-j = uJ-*,-
k

so we can construct indeed A, e, S. More can be said here (..)



Affine isometries

Question. Are our quantum groups compatible with the spheres?
Definition. Given an algebraic manifold X C Sévfl, the formula
G(X) = {U c UN’U(X) - X}

defines a compact group of unitary matrices (a.k.a. isometries),
called affine isometry group of X.

— For the classical spheres SHQ’_I, S(év_l we obtain in this way
the classical groups Op, Up.



Quantum isometries

Given an algebraic manifold X C Sé’jrl, the category of the closed

subgroups G C U,Jg acting affinely on X, in the sense that
O(x) =D Ui ®x
a
defines a morphism of C*-algebras, as follows,

®: C(X) = C(6) @ C(X)

has a universal object, denoted GT(X), and called "affine quantum
isometry group" of X. This is indeed routine algebra.



Rotations and spheres 1/2

Theorem. The quantum isometry groups of the basic spheres,

N—1 N-1 N—-1
S(C S(C,* S(C,—i-

L]

N—1 N—1 N—1
Sg —>5R,* —>SR,+

are the basic orthogonal and unitary quantum groups, namely:

Un U, Uy

On o 0}



Rotations and spheres, 2/2

Proof. The variables X; = )" uiy ® x, satisfy

ZX;X* Zu,a b®xaxb—21®xa =1®1

iab

ZX*X Zu,au,b®xxb—21®xxa—l®l

iab

. T N—1
so we have an action Uy, ~ S(Q+

If the variables are wj; are real, or half-commute, or commute, so do
the variables X;. Thus, we have actions everywhere.

Some routine work shows that all these actions are universal.



Conclusion

We have a theory of compact/discrete quantum groups, featuring:
(1) Simple axioms for the algebras A = C(G) = C*(T).

(2) The duality formulae G = T and I = G well understood.

(3) Manipulations with A, e, S as our main tool, at least so far.
(4) Many examples (various liberations, standard operations).

(5) Compatibility of all this with the noncommutative tori/spheres.

= next lecture: representation theory



