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Plan

(1) Compact quantum groups

(2) Discrete quantum groups

(3) Basic examples, operations

(4) Quantum isometry groups

=⇒ next lecture: representations



Operator algebras

C ∗-algebras: with norm and involution, ||aa∗|| = ||a||2.

(1) Gelfand theorem: commutative case A = C (X ).

(2) Gelfand-Naimark-Segal theorem: A ⊂ B(H).

(3) Finite dimensions: A = MN1(C)⊕ . . .⊕MNk
(C).

=⇒ A = C (X ), with X "noncommutative compact space"

=⇒ NC spheres, NC tori. What about quantum groups?



Classical groups

Let G be a compact Lie group. Then G ⊂ UN . Multiplication:

(UV )ij =
∑
k

UikVkj

By Stone-Weierstrass we have C (G ) =< uij >, where:

uij(U) = Uij

The multiplication G × G → G transposes as:

uij →
∑
k

uik ⊗ ukj

Thus G is well described by C (G ), together with u = (uij).



Axioms

Let A be a C ∗-algebra, with u ∈ MN(A) biunitary (u, ut unitaries),
whose entries generate A, such that:

– ∆(uij) =
∑

k uik ⊗ ukj defines a morphism ∆ : A→ A⊗ A
– ε(uij) = δij defines a morphism ε : A→ C
– S(uij) = u∗ji defines a morphism S : A→ Aopp

We write then A = C (G ) = C ∗(Γ), and call:

– G a compact quantum group
– Γ a discrete quantum group

[axioms due to Woronowicz, 1987, slightly modified here]



Compact groups 1/2

Theorem. For a closed subgroup G ⊂ UN , the algebra A = C (G ),
with the matrix formed by the standard coordinates

uij(g) = gij

is a Woronowicz algebra, with structural maps given by

∆ = mT , ε = uT , S = iT

where m, u, i are the multiplication, unit and inverse of G .

Any commutative Woronowicz algebra appears in this way.



Compact groups 2/2

Proof. We compute mT , uT , iT . We have:

mT (uij)(U ⊗ V ) = (UV )ij =
∑
k

UikVkj =
∑
k

(uik ⊗ ukj)(U ⊗ V )

Regarding now uT , here we have:

uT (uij) = 1ij = δij

As for the map iT , this is given by:

iT (uij)(U) = (U−1)ij = Ūji = u∗ji (U)

Thus the axioms are satisfied, with ∆ = mT , ε = uT , S = iT .

Finally, the last assertion follows by applying Gelfand.



Group duals 1/2

Theorem. For a discrete group Γ =< g1, . . . , gN >, the algebra
A = C ∗(Γ), with the diagonal matrix formed by the generators

u = diag(g1, . . . , gN)

is a Woronowicz algebra, with structural maps given by

∆(g) = g ⊗ g , ε(g) = 1 , S(g) = g−1

for any group element g ∈ Γ. This algebra is cocommutative, in the
sense that Σ∆ = ∆, where Σ(a⊗ b) = b ⊗ a is the flip.

Remark. We’ll see later that any cocommutative Woronowicz
algebra appears in this way (needs representation theory).



Group duals 2/2

Proof. Consider the following unitary representation:

Γ→ C ∗(Γ)⊗ C ∗(Γ) , g → g ⊗ g

This produces a map ∆ : C ∗(Γ)→ C ∗(Γ)⊗ C ∗(Γ), given by:

∆(g) = g ⊗ g

Similarly, ε comes from the trivial representation:

Γ→ {1} , g → 1

As for S , this comes from the following representation:

Γ→ C ∗(Γ)opp , g → g−1

Remark. Note that the use of the opposite algebra is needed.



Comments 1/4

Assume that Γ is abelian, and let G = Γ̂ be its Pontrjagin dual,
formed by the characters χ : Γ→ T. The isomorphism

C ∗(Γ) ' C (G )

transforms the structural maps of C ∗(Γ), given by

∆(g) = g ⊗ g , ε(g) = 1 , S(g) = g−1

into the structural maps of C (G ), given by:

∆ϕ(g , h) = ϕ(gh) , ε(ϕ) = ϕ(1) , Sϕ(g) = ϕ(g−1)

Thus, G = Γ̂ is a compact quantum group isomorphism.



Comments 2/4

Motivated by this, given a Woronowicz algebra

A = C (G ) = C ∗(Γ)

we say that G , Γ are dual to each other, and write:

G = Γ̂ , Γ = Ĝ

This duality extends the usual Pontrjagin duality.



Comments 3/4

Motivated by the compact Lie group case, we have:

Definition. Given A = C (G ), we denote by A ⊂ A the dense
∗-algebra generated by the coordinates uij , and we write

A = C∞(G )

and call it "algebra of smooth functions" on G .

Example. For A = C ∗(Γ) we have A = C[Γ].



Comments 4/4

Motivated by the group dual case, we have:

Definition. We agree to identify (A, u) and (B, v) when we have a
∗-algebra isomorphism

A ' B

mapping standard coordinates to standard coordinates, uij → vij .

Example. This identifies for instance C ∗(Γ) with C ∗red(Γ).



Summary

(1) We are looking at pairs (A, u), with u ∈ MN(A) biunitary, with:

∆(uij) =
∑
k

uik ⊗ ukj , ε(uij) = δij , S(uij) = u∗ji

(2) We have compact and discrete quantum groups, given by:

A = C (G ) = C ∗(Γ)

(3) These quantum groups are dual to each other, and we write:

G = Γ̂ , Γ = Ĝ

(4) We set C∞(G ) =< uij >, and we use the identifications:

C∞(G ) ' C∞(H) , uij → vij

(5) All this is supported by C ∗-algebras, and the above results.



Tech 1/2

Theorem. The comultiplication ∆, counit ε and antipode S satisfy
the following conditions,

(1) Coassociativity: (∆⊗ id)∆ = (id ⊗∆)∆.

(2) Counitality: (id ⊗ ε)∆ = (ε⊗ id)∆ = id .

(3) Coinversality: m(id ⊗ S)∆ = m(S ⊗ id)∆ = ε(.)1.

on the dense ∗-subalgebra A ⊂ A generated by the variables uij .

Proof. Clear on coordinates, and so on the ∗-algebra A.



Tech 2/2

Remark. In the commutative case, G ⊂ UN , we have

∆ = mT , ε = uT , S = iT

and the 3 conditions satisfied by ∆, ε,S come by transposition from
the basic 3 conditions satisfied by m, u, i , namely

m(m × id) = m(id ×m)

m(id × u) = m(u × id) = id

m(id ⊗ i)δ = m(i ⊗ id)δ = 1

whre δ(g) = (g , g). In general, the philosophy is the same.



1. Products

Given two compact quantum groups G ,H, so is their product
G × H, constructed as follows:

C (G × H) = C (G )⊗ C (H)

Equivalently, at the level of the associated discrete quantum groups
Γ,Λ, which are dual to G ,H, we have:

C ∗(Γ× Λ) = C ∗(Γ)⊗ C ∗(Λ)

As an illustration, we have things of type G × Λ̂, with G ,Λ both
classical, which are not classical, nor group duals.



2. Dual free products

Given two compact quantum groups G ,H, so is their dual free
product G ∗̂H, constructed as follows:

C (G ∗̂H) = C (G ) ∗ C (H)

Equivalently, at the level of the associated discrete quantum groups
Γ,Λ, which are dual to G ,H, we have a usual free product:

C ∗(Γ ∗ Λ) = C ∗(Γ) ∗ C ∗(Λ)

This construction always produces non-classical quantum groups,
unless of course G = {1} or H = {1}.



3. Free complexification

Given a compact quantum group G , we can construct its free
complexification G̃ as follows, where z = id ∈ C (T):

C (G̃ ) ⊂ C (T) ∗ C (G ) , ũ = zu

Equivalently, at the level of the associated discrete duals Γ, Γ̃, we
have the following formula, where z = 1 ∈ Z:

C ∗(Γ̃) ⊂ C ∗(Z) ∗ C ∗(Γ) , ũ = zu

We’ll see later that the "free analogues" of ON ,UN are related by
free complexification. Simpler than for ON ,UN themselves (!)



4. Subgroups

Let G be compact quantum group, and let I ⊂ C (G ) be a closed
∗-ideal satisfying the following "Hopf ideal" condition:

∆(I ) ⊂ C (G )⊗ I + I ⊗ C (G )

We have then a closed subgroup H ⊂ G , as follows:

C (H) = C (G )/I

Dually, we obtain a quotient of discrete quantum groups:

Γ̂→ Λ̂

In all this the Hopf ideal condition is needed for ∆ to factorize.



5. Quotients

Let us call “corepresentation” of a Woronowicz algebra A = C (G )
any unitary matrix w ∈ Mn(A) satisfying:

∆(wij) =
∑
k

wik ⊗ wkj , ε(wij) = δij , S(wij) = w∗ji

In this situation, we have a quotient group G → H, given by:

C (H) =< wij >

At the dual level we obtain a discrete quantum subgroup:

Λ̂ ⊂ Γ̂

We will be back later to corepresentations, with a full theory.



6. Projective version

Given a quantum group G , with fundamental corepresentation
u = (uij), the N2 × N2 matrix given in double indices by

wia,jb = uiju
∗
ab

is a corepresentation, and the following happen:

(1) The corresponding quotient G → PG is a quantum group.

(2) In the classical case, G ⊂ UN , we have PG = G/(G ∩ TN).

(3) For the group duals, Γ =< gi >, we have P̂Γ =< gig
−1
j >.



Summary

The compact quantum groups are subject to making:

1. Products G × H

2. Dual free products G ∗̂H

3. Free complexification G  G̃

4. Subgroups H ⊂ G

5. Quotients G → H

6. Projective versions G → PG

However, as "basic input" we only have groups, and group duals.



Liberations 1/4

Theorem. We have quantum groups defined via

C (O+
N ) = C ∗

(
(uij)i ,j=1,...,N

∣∣∣u = ū, ut = u−1
)

C (U+
N ) = C ∗

(
(uij)i ,j=1,...,N

∣∣∣u∗ = u−1, ut = ū−1
)

called free orthogonal, and free unitary quantum groups.

Proof. If u is biunitary/orthogonal, so are the matrices

(u∆)ij =
∑
k

uik ⊗ ukj , (uε)ij = δij , (uS)ij = u∗ji

and so we can construct ∆, ε,S , by universality.



Liberations 2/4

The quantum groups O+
N ,U

+
N have the following properties:

(1) The closed subgroups G ⊂ U+
N are exactly the N × N compact

quantum groups.

(2) As for the closed subgroups G ⊂ O+
N , these are exactly those

satisfying u = ū.

(3) We have embeddings ON ⊂ O+
N and UN ⊂ U+

N , obtained by
dividing C (O+

N ),C (U+
N ) by their commutator ideals.



Liberations 3/4

Theorem. The following inclusions are proper, at any N ≥ 2:

UN
// U+

N

ON
//

OO

O+
N

OO

Proof. Follows by looking at group dual subgroups. Indeed, we have

L̂N ⊂ O+
N , F̂N ⊂ U+

N

where LN = Z∗N2 , and where FN = Z∗N is the free group.

Remark. We have a connection here with the "free tori".



Liberations 4/4

Theorem. We have intermediate liberations as follows,

UN
// U∗N

// U+
N

ON
//

OO

O∗N
//

OO

O+
N

OO

with ∗ meaning that uij , u∗ij must satisfy the relations abc = cba.

Proof. If the entries of u "half-commute", so do the entries of

(u∆)ij =
∑
k

uik ⊗ ukj , (uε)ij = δij , (uS)ij = u∗ji

so we can construct indeed ∆, ε,S . More can be said here (..)



Affine isometries

Question. Are our quantum groups compatible with the spheres?

Definition. Given an algebraic manifold X ⊂ SN−1
C , the formula

G (X ) =
{
U ∈ UN

∣∣∣U(X ) = X
}

defines a compact group of unitary matrices (a.k.a. isometries),
called affine isometry group of X .

=⇒ For the classical spheres SN−1
R ,SN−1

C we obtain in this way
the classical groups ON ,UN .



Quantum isometries

Given an algebraic manifold X ⊂ SN−1
C,+ , the category of the closed

subgroups G ⊂ U+
N acting affinely on X , in the sense that

Φ(xi ) =
∑
a

uia ⊗ xa

defines a morphism of C ∗-algebras, as follows,

Φ : C (X )→ C (G )⊗ C (X )

has a universal object, denoted G+(X ), and called "affine quantum
isometry group" of X . This is indeed routine algebra.



Rotations and spheres 1/2

Theorem. The quantum isometry groups of the basic spheres,

SN−1
C

// SN−1
C,∗

// SN−1
C,+

SN−1
R

//

OO

SN−1
R,∗

//

OO

SN−1
R,+

OO

are the basic orthogonal and unitary quantum groups, namely:

UN
// U∗N

// U+
N

ON
//

OO

O∗N
//

OO

O+
N

OO



Rotations and spheres, 2/2

Proof. The variables Xi =
∑

a uia ⊗ xa satisfy∑
i

XiX
∗
i =

∑
iab

uiau
∗
ib ⊗ xax

∗
b =

∑
a

1⊗ xax
∗
a = 1⊗ 1

∑
i

X ∗i Xi =
∑
iab

u∗iauib ⊗ x∗a xb =
∑
a

1⊗ x∗a xa = 1⊗ 1

so we have an action U+
N y SN−1

C,+ .

If the variables are uij are real, or half-commute, or commute, so do
the variables Xi . Thus, we have actions everywhere.

Some routine work shows that all these actions are universal.



Conclusion

We have a theory of compact/discrete quantum groups, featuring:

(1) Simple axioms for the algebras A = C (G ) = C ∗(Γ).

(2) The duality formulae G = Γ̂ and Γ = Ĝ well understood.

(3) Manipulations with ∆, ε,S as our main tool, at least so far.

(4) Many examples (various liberations, standard operations).

(5) Compatibility of all this with the noncommutative tori/spheres.

=⇒ next lecture: representation theory


