Compact and discrete quantum groups

Teo Banica

"Introduction to quantum groups", 2/6

06/20

Plan

- (1) Compact quantum groups
- (2) Discrete quantum groups
- (3) Basic examples, operations
- (4) Quantum isometry groups
- ⇒ next lecture: representations

Operator algebras

- C^* -algebras: with norm and involution, $||aa^*|| = ||a||^2$.
- (1) Gelfand theorem: commutative case A = C(X).
- (2) Gelfand-Naimark-Segal theorem: $A \subset B(H)$.
- (3) Finite dimensions: $A = M_{N_1}(\mathbb{C}) \oplus \ldots \oplus M_{N_k}(\mathbb{C})$.
- \implies A = C(X), with X "noncommutative compact space"
- ⇒ NC spheres, NC tori. What about quantum groups?

Classical groups

Let G be a compact Lie group. Then $G \subset U_N$. Multiplication:

$$(UV)_{ij} = \sum_{k} U_{ik} V_{kj}$$

By Stone-Weierstrass we have $C(G) = \langle u_{ij} \rangle$, where:

$$u_{ij}(U)=U_{ij}$$

The multiplication $G \times G \rightarrow G$ transposes as:

$$u_{ij} \to \sum_{k} u_{ik} \otimes u_{kj}$$

Thus G is well described by C(G), together with $u = (u_{ij})$.

Axioms

Let A be a C^* -algebra, with $u \in M_N(A)$ biunitary $(u, u^t \text{ unitaries})$, whose entries generate A, such that:

- $-\Delta(u_{ij}) = \sum_k u_{ik} \otimes u_{kj}$ defines a morphism $\Delta: A \to A \otimes A$
- $-\varepsilon(u_{ij})=\delta_{ij}$ defines a morphism $\varepsilon:A o\mathbb{C}$
- $-S(u_{ij})=u_{ji}^*$ defines a morphism $S:A o A^{opp}$

We write then $A = C(G) = C^*(\Gamma)$, and call:

- G a compact quantum group
- Γ a discrete quantum group

[axioms due to Woronowicz, 1987, slightly modified here]

Compact groups 1/2

<u>Theorem</u>. For a closed subgroup $G \subset U_N$, the algebra A = C(G), with the matrix formed by the standard coordinates

$$u_{ij}(g)=g_{ij}$$

is a Woronowicz algebra, with structural maps given by

$$\Delta = m^T$$
 , $\varepsilon = u^T$, $S = i^T$

where m, u, i are the multiplication, unit and inverse of G.

Any commutative Woronowicz algebra appears in this way.

Compact groups 2/2

<u>Proof.</u> We compute m^T, u^T, i^T . We have:

$$m^{T}(u_{ij})(U \otimes V) = (UV)_{ij} = \sum_{k} U_{ik}V_{kj} = \sum_{k} (u_{ik} \otimes u_{kj})(U \otimes V)$$

Regarding now u^T , here we have:

$$u^T(u_{ij}) = 1_{ij} = \delta_{ij}$$

As for the map i^T , this is given by:

$$i^{T}(u_{ij})(U) = (U^{-1})_{ij} = \bar{U}_{ji} = u_{ji}^{*}(U)$$

Thus the axioms are satisfied, with $\Delta = m^T$, $\varepsilon = u^T$, $S = i^T$.

Finally, the last assertion follows by applying Gelfand.

Group duals 1/2

<u>Theorem</u>. For a discrete group $\Gamma = \langle g_1, \dots, g_N \rangle$, the algebra $A = C^*(\Gamma)$, with the diagonal matrix formed by the generators

$$u = diag(g_1, \ldots, g_N)$$

is a Woronowicz algebra, with structural maps given by

$$\Delta(g) = g \otimes g$$
 , $\varepsilon(g) = 1$, $S(g) = g^{-1}$

for any group element $g \in \Gamma$. This algebra is cocommutative, in the sense that $\Sigma \Delta = \Delta$, where $\Sigma(a \otimes b) = b \otimes a$ is the flip.

<u>Remark</u>. We'll see later that any cocommutative Woronowicz algebra appears in this way (needs representation theory).

Group duals 2/2

<u>Proof</u>. Consider the following unitary representation:

$$\Gamma o C^*(\Gamma) \otimes C^*(\Gamma)$$
 , $g o g \otimes g$

This produces a map $\Delta: C^*(\Gamma) \to C^*(\Gamma) \otimes C^*(\Gamma)$, given by:

$$\Delta(g)=g\otimes g$$

Similarly, ε comes from the trivial representation:

$$\Gamma
ightarrow \{1\}$$
 , $g
ightarrow 1$

As for S, this comes from the following representation:

$$\Gamma
ightarrow \ \ C^*(\Gamma)^{opp} \quad , \quad g
ightarrow g^{-1}$$

Remark. Note that the use of the opposite algebra is needed.

Comments 1/4

Assume that Γ is abelian, and let $G=\widehat{\Gamma}$ be its Pontrjagin dual, formed by the characters $\chi:\Gamma\to\mathbb{T}$. The isomorphism

$$C^*(\Gamma) \simeq C(G)$$

transforms the structural maps of $C^*(\Gamma)$, given by

$$\Delta(g) = g \otimes g$$
 , $\varepsilon(g) = 1$, $S(g) = g^{-1}$

into the structural maps of C(G), given by:

$$\Delta \varphi(g,h) = \varphi(gh)$$
 , $\varepsilon(\varphi) = \varphi(1)$, $S\varphi(g) = \varphi(g^{-1})$

Thus, $G = \widehat{\Gamma}$ is a compact quantum group isomorphism.

Comments 2/4

Motivated by this, given a Woronowicz algebra

$$A = C(G) = C^*(\Gamma)$$

we say that G, Γ are <u>dual to each other</u>, and write:

$$G = \widehat{\Gamma}$$
 , $\Gamma = \widehat{G}$

This duality extends the usual Pontrjagin duality.

Comments 3/4

Motivated by the compact Lie group case, we have:

<u>Definition</u>. Given A = C(G), we denote by $A \subset A$ the dense *-algebra generated by the coordinates u_{ij} , and we write

$$A = C^{\infty}(G)$$

and call it "algebra of smooth functions" on G.

Example. For $A = C^*(\Gamma)$ we have $A = \mathbb{C}[\Gamma]$.

Comments 4/4

Motivated by the group dual case, we have:

<u>Definition</u>. We agree to identify (A, u) and (B, v) when we have a *-algebra isomorphism

$$\mathcal{A} \simeq \mathcal{B}$$

mapping standard coordinates to standard coordinates, $u_{ij}
ightarrow v_{ij}.$

Example. This identifies for instance $C^*(\Gamma)$ with $C^*_{red}(\Gamma)$.

Summary

(1) We are looking at pairs (A, u), with $u \in M_N(A)$ biunitary, with:

$$\Delta(u_{ij}) = \sum_{i} u_{ik} \otimes u_{kj}$$
 , $\varepsilon(u_{ij}) = \delta_{ij}$, $S(u_{ij}) = u_{ji}^*$

(2) We have compact and discrete quantum groups, given by:

$$A = C(G) = C^*(\Gamma)$$

(3) These quantum groups are dual to each other, and we write:

$$G = \widehat{\Gamma}$$
 , $\Gamma = \widehat{G}$

(4) We set $C^{\infty}(G) = \langle u_{ij} \rangle$, and we use the identifications:

$$C^{\infty}(G) \simeq C^{\infty}(H)$$
 , $u_{ii} \rightarrow v_{ii}$

(5) All this is supported by C^* -algebras, and the above results.

Tech 1/2

<u>Theorem</u>. The comultiplication Δ , counit ε and antipode S satisfy the following conditions,

- (1) Coassociativity: $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$.
- (2) Counitality: $(id \otimes \varepsilon)\Delta = (\varepsilon \otimes id)\Delta = id$.
- (3) Coinversality: $m(id \otimes S)\Delta = m(S \otimes id)\Delta = \varepsilon(.)1$.

on the dense *-subalgebra $\mathcal{A}\subset A$ generated by the variables $u_{ij}.$

<u>Proof.</u> Clear on coordinates, and so on the *-algebra \mathcal{A} .

Tech 2/2

Remark. In the commutative case, $G \subset U_N$, we have

$$\Delta = m^T$$
 , $\varepsilon = u^T$, $S = i^T$

and the 3 conditions satisfied by Δ, ε, S come by transposition from the basic 3 conditions satisfied by m, u, i, namely

$$m(m \times id) = m(id \times m)$$

 $m(id \times u) = m(u \times id) = id$
 $m(id \otimes i)\delta = m(i \otimes id)\delta = 1$

whre $\delta(g) = (g, g)$. In general, the philosophy is the same.

1. Products

Given two compact quantum groups G, H, so is their product $G \times H$, constructed as follows:

$$C(G \times H) = C(G) \otimes C(H)$$

Equivalently, at the level of the associated discrete quantum groups Γ , Λ , which are dual to G, H, we have:

$$C^*(\Gamma \times \Lambda) = C^*(\Gamma) \otimes C^*(\Lambda)$$

As an illustration, we have things of type $G \times \widehat{\Lambda}$, with G, Λ both classical, which are not classical, nor group duals.

2. Dual free products

Given two compact quantum groups G, H, so is their dual free product $G \mathbin{\hat{*}} H$, constructed as follows:

$$C(G \mathbin{\hat{*}} H) = C(G) * C(H)$$

Equivalently, at the level of the associated discrete quantum groups Γ, Λ , which are dual to G, H, we have a usual free product:

$$C^*(\Gamma * \Lambda) = C^*(\Gamma) * C^*(\Lambda)$$

This construction always produces non-classical quantum groups, unless of course $G = \{1\}$ or $H = \{1\}$.

3. Free complexification

Given a compact quantum group G, we can construct its free complexification \widetilde{G} as follows, where $z = id \in C(\mathbb{T})$:

$$C(\widetilde{G}) \subset C(\mathbb{T}) * C(G)$$
 , $\widetilde{u} = zu$

Equivalently, at the level of the associated discrete duals $\Gamma, \widetilde{\Gamma}$, we have the following formula, where $z = 1 \in \mathbb{Z}$:

$$C^*(\widetilde{\Gamma}) \subset C^*(\mathbb{Z}) * C^*(\Gamma)$$
 , $\widetilde{u} = zu$

We'll see later that the "free analogues" of O_N , U_N are related by free complexification. Simpler than for O_N , U_N themselves (!)

4. Subgroups

Let G be compact quantum group, and let $I \subset C(G)$ be a closed *-ideal satisfying the following "Hopf ideal" condition:

$$\Delta(I) \subset C(G) \otimes I + I \otimes C(G)$$

We have then a closed subgroup $H \subset G$, as follows:

$$C(H) = C(G)/I$$

Dually, we obtain a quotient of discrete quantum groups:

$$\widehat{\Gamma} \to \widehat{\Lambda}$$

In all this the Hopf ideal condition is needed for Δ to factorize.

5. Quotients

Let us call "corepresentation" of a Woronowicz algebra A = C(G) any unitary matrix $w \in M_n(A)$ satisfying:

$$\Delta(w_{ij}) = \sum_{k} w_{ik} \otimes w_{kj}$$
 , $\varepsilon(w_{ij}) = \delta_{ij}$, $S(w_{ij}) = w_{ji}^*$

In this situation, we have a quotient group $G \rightarrow H$, given by:

$$C(H) = \langle w_{ij} \rangle$$

At the dual level we obtain a discrete quantum subgroup:

$$\widehat{\Lambda} \subset \widehat{\Gamma}$$

We will be back later to corepresentations, with a full theory.

6. Projective version

Given a quantum group G, with fundamental corepresentation $u = (u_{ij})$, the $N^2 \times N^2$ matrix given in double indices by

$$w_{ia,jb} = u_{ij}u_{ab}^*$$

is a corepresentation, and the following happen:

- (1) The corresponding quotient $G \rightarrow PG$ is a quantum group.
- (2) In the classical case, $G \subset U_N$, we have $PG = G/(G \cap \mathbb{T}^N)$.
- (3) For the group duals, $\Gamma = \langle g_i \rangle$, we have $\widehat{P\Gamma} = \langle g_i g_i^{-1} \rangle$.

Summary

The compact quantum groups are subject to making:

- 1. Products $G \times H$
- 2. Dual free products $G \hat{*} H$
- 3. Free complexification $G \leadsto \widetilde{G}$
- 4. Subgroups $H \subset G$
- 5. Quotients $G \rightarrow H$
- 6. Projective versions $G \rightarrow PG$

However, as "basic input" we only have groups, and group duals.

Liberations 1/4

Theorem. We have quantum groups defined via

$$C(O_N^+) = C^* \left((u_{ij})_{i,j=1,\dots,N} \middle| u = \bar{u}, u^t = u^{-1} \right)$$

$$C(U_N^+) = C^* \left((u_{ij})_{i,j=1,\dots,N} \middle| u^* = u^{-1}, u^t = \bar{u}^{-1} \right)$$

called free orthogonal, and free unitary quantum groups.

<u>Proof.</u> If u is biunitary/orthogonal, so are the matrices

$$(u^{\Delta})_{ij} = \sum_{k} u_{ik} \otimes u_{kj}$$
 , $(u^{\varepsilon})_{ij} = \delta_{ij}$, $(u^{S})_{ij} = u_{ji}^{*}$

and so we can construct Δ, ε, S , by universality.

Liberations 2/4

The quantum groups O_N^+ , U_N^+ have the following properties:

- (1) The closed subgroups $G \subset U_N^+$ are exactly the $N \times N$ compact quantum groups.
- (2) As for the closed subgroups $G \subset O_N^+$, these are exactly those satisfying $u = \bar{u}$.
- (3) We have embeddings $O_N \subset O_N^+$ and $U_N \subset U_N^+$, obtained by dividing $C(O_N^+)$, $C(U_N^+)$ by their commutator ideals.

Liberations 3/4

<u>Theorem.</u> The following inclusions are proper, at any $N \ge 2$:

Proof. Follows by looking at group dual subgroups. Indeed, we have

$$\widehat{L}_N \subset O_N^+$$
 , $\widehat{F}_N \subset U_N^+$

where $L_N = \mathbb{Z}_2^{*N}$, and where $F_N = \mathbb{Z}^{*N}$ is the free group.

Remark. We have a connection here with the "free tori".

Liberations 4/4

<u>Theorem</u>. We have intermediate liberations as follows,

with * meaning that u_{ij} , u_{ii}^* must satisfy the relations abc = cba.

<u>Proof.</u> If the entries of u "half-commute", so do the entries of

$$(u^{\Delta})_{ij} = \sum_{k} u_{ik} \otimes u_{kj}$$
 , $(u^{\varepsilon})_{ij} = \delta_{ij}$, $(u^{S})_{ij} = u_{ji}^{*}$

so we can construct indeed Δ, ε, S . More can be said here (..)

Affine isometries

Question. Are our quantum groups compatible with the spheres?

<u>Definition.</u> Given an algebraic manifold $X\subset S^{N-1}_{\mathbb C}$, the formula

$$G(X) = \left\{ U \in U_N \middle| U(X) = X \right\}$$

defines a compact group of unitary matrices (a.k.a. isometries), called affine isometry group of X.

 \implies For the classical spheres $S_{\mathbb{R}}^{N-1}, S_{\mathbb{C}}^{N-1}$ we obtain in this way the classical groups O_N, U_N .

Quantum isometries

Given an algebraic manifold $X \subset S^{N-1}_{\mathbb{C},+}$, the category of the closed subgroups $G \subset U_N^+$ acting affinely on X, in the sense that

$$\Phi(x_i) = \sum_a u_{ia} \otimes x_a$$

defines a morphism of C^* -algebras, as follows,

$$\Phi: C(X) \to C(G) \otimes C(X)$$

has a universal object, denoted $G^+(X)$, and called "affine quantum isometry group" of X. This is indeed routine algebra.

Rotations and spheres 1/2

Theorem. The quantum isometry groups of the basic spheres,

are the basic orthogonal and unitary quantum groups, namely:

Rotations and spheres, 2/2

<u>Proof</u>. The variables $X_i = \sum_a u_{ia} \otimes x_a$ satisfy

$$\sum_{i} X_{i} X_{i}^{*} = \sum_{iab} u_{ia} u_{ib}^{*} \otimes x_{a} x_{b}^{*} = \sum_{a} 1 \otimes x_{a} x_{a}^{*} = 1 \otimes 1$$

$$\sum_{i} X_{i}^{*} X_{i} = \sum_{iab} u_{ia}^{*} u_{ib} \otimes x_{a}^{*} x_{b} = \sum_{a} 1 \otimes x_{a}^{*} x_{a} = 1 \otimes 1$$

so we have an action $U_N^+ \curvearrowright S_{\mathbb{C},+}^{N-1}$.

If the variables are u_{ij} are real, or half-commute, or commute, so do the variables X_i . Thus, we have actions everywhere.

Some routine work shows that all these actions are universal.

Conclusion

We have a theory of compact/discrete quantum groups, featuring:

- (1) Simple axioms for the algebras $A = C(G) = C^*(\Gamma)$.
- (2) The duality formulae $G = \widehat{\Gamma}$ and $\Gamma = \widehat{G}$ well understood.
- (3) Manipulations with Δ, ε, S as our main tool, at least so far.
- (4) Many examples (various liberations, standard operations).
- (5) Compatibility of all this with the noncommutative tori/spheres.
 - ⇒ next lecture: representation theory